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Foreword

Verilog-A is a new hardware design language (HDL) for analog circuit and systems
design. Since the mid-eighties, Verilog HDL has been used extensively in the design
and verification of digital systems. However, there have been no analogous high-level
languages available for analog and mixed-signal circuits and systems.

xi

Verilog-A provides a new dimension of design and simulation capability for analog
electronic systems. Previously, analog simulation has been based upon the SPICE cir-
cuit simulator or some derivative of it. Digital simulation is primarily performed with
a hardware description language such as Verilog, which is popular since it is easy to
learn and use. Making Verilog more worthwhile is the fact that several tools exist in
the industry that complement and extend Verilog’s capabilities.

Although SPICE is very effective in the simulation of analog and digital integrated
circuits, it is limited to the use of primitives such as transistors, resistors, and capaci-
tors. Hence, SPICE lacks the ease that Verilog HDL possesses of describing and sim-
ulating higher-levels of abstraction of the design. In the past, this gap has been filled
with such programs as Mathcad and Matlab that allow description of electronic func-
tions based upon numeric computation and data analysis. Although these programs
are useful for studying electronic and non-electronic systems at higher levels of
abstraction, they do not tie into other tools such as SPICE and Verilog. The Verilog-A
language enables description directly using mathematical relationships, thus easily
allowing system descriptions other than electrical. Additionally, Verilog-A interfaces
to numeric computation programs, such as SPICE and Verilog.



Verilog-A HDL

Analog Behavioral Modeling with the Verilog-A Language provides a good introduc-
tion and starting place for students and practicing engineers with interest in under-
standing this new level of simulation technology. This book contains numerous
examples that enhance the text material and provide a helpful learning tool for the
reader. The text and the simulation program included can be used for individual study
or in a classroom environment.

High level languages such as Verilog-A are evolving to enable simulation of complex
mixed analog and digital for both electrical and non-electrical systems. This book will
get you started now.

Dr. Thomas A. DeMassa
Professor of Engineering
Arizona State University

xii



Preface

The Verilog HDL was introduced in 1984 as a means for specifying digital systems at
many levels of abstraction, from behavioral to the structural. Accepted for standard-
ization in 1995 by the IEEE, Verilog HDL continues to grow in acceptance and play
an increasing role in the specification and design of digital systems. For analog sys-
tems analysis and design, Spice, developed by the University of California at Berke-
ley in 1971, became the defacto standard used to simulate the performance of
electronic circuits. While Spice provides a high-level of accuracy as a simulation tool,
designs can only be represented on a structural level. As such, the ability to handle
large analog and mixed-signal systems, as well as explore design ideas at the behav-
ioral level, is fairly limited.

The Verilog-A language is derived from Verilog HDL for the description of high-level
analog behaviors. Used in conjunction with a Spice simulator, The Verilog-A lan-
guage expands the simulation capabilities for analog and mixed-signal systems to top-
down and bottom-up methodologies. The proposed Verilog-A language is described
in the Language Reference Manual (LRM) draft prepared by a standards working
group of the Open Verilog International (OVI) organization. The LRM Version 1.0,
August 1, 1996 is not yet fully defined and is subject to change. As such, the material
in this book focuses on the core aspects of the Verilog-A language as presented in the
LRM and the work within the OVI Verilog-A Technical Subcommittee.

The goal of this book is to provide the designer a brief introduction into the methodol-
ogies and uses of analog behavioral modeling with the Verilog-A language. In doing
so, an overview of Verilog-A language constructs as well as applications using the

xiii
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language are presented. In addition, the book is accompanied by the Verilog-A
Explorer IDE (Integrated Development Environment), a limited capability Verilog-A
enhanced Spice simulator for further learning and experimentation with the Verilog-A
language. This book assumes a basic level of understanding of the usage of Spice-
based analog simulation and the Verilog HDL language, although any programming
language background and a little determination should suffice.

Certain typographical conventions are used to emphasize different kinds of text used
in this book. Both Spice and Verilog-A code fragments are in Courier font, keywords
in the respective languages are also in bold. This is an example of Cou-
rier font with a keyword in bold.

The organization of the book is such that it hopefully presents a connection between
the motivation behind the development of the Verilog-A language and the capabilities
it provides. Chapter 1 provides an introduction on motivations and benefits for stan-
dard analog HDLs such as the Verilog-A language. Chapter 2 is designed to provide
an outline of the Verilog-A language in terms of structural and behavioral definitions.
In Chapter 3 we investigate more thoroughly the behavioral aspects of the Verilog-A
language, while Chapter 4 does the same for the structural constructs within the lan-
guage. Chapter 5 brings these concepts together in a variety of applications presented
in their entirety. The appendices provide detailed reference for those that wish to
probe further into the usage and capabilities of the language.

Examples, when they are presented, are done so in terms of the Verilog-A Explorer
IDE input format. The Verilog-A Explorer uses standard Spice design netlist descrip-
tion and simulation control constructs. A summary of Spice input file descriptions is
provided for reference in Appendix E.

The Verilog-A Explorer IDE, is a Windows ‘95 / NT application designed to provide
sufficient capabilities to the designer and/or model developer with enough capability
to learn analog behavioral modelling with the Verilog-A language. The Verilog-A
Explorer IDE incorporates context sensitive editors, waveform display, and simulator
based on Spice3 from the University of California Berkeley along with Apteq Design
Systems’s Spice Analog HDL Extension Kernel and Verilog-A compiler integrated.
In addition, the package is accompanied with examples to provide starting points for
experimenting with the Verilog-A language.

The Verilog-A Explorer IDE is provided for educational purposes only. As such,
there is no direct software warrantee or support provided either by Apteq Design Sys-
tems or Kluwer Academic Publishers and its dealers. It is our hope that the benefits of
using the tools provided will greatly outweigh any inconvenience you may have in

xiv



Preface

using them. Detailed information regarding installation, setup, and usage of the Ver-
ilog-A Explorer IDE is presented in Appendix D. For bug reports, availability of
updates, additional modeling information and/or modeling examples in the Verilog-A
language, contact:

Apteq Design Systems, Inc.
652 Bair Island Rd. Suite 300
Redwood City, CA 94063-2704
support @ apteq.com

Or visit the company website at:

http://www.apteq.com

Analog and mixed-signal extensions are currently being developed under Open Ver-
ilog International via the Verilog-AMS Technical Subcommittee. You can find infor-
mation regarding the Verilog-A standard, such as the Language Reference Manual
via:

Open Verilog International
15466 Los Gatos Boulevard, Suite 109071
Los Gatos, CA 95032
(408) 358-9510
http://www.ovi.org.

You can participate in the Verilog-AMS Technical Subcommittee by joining the mail
reflector. To join in the discussion, send a request to:

Verilog-ms@galaxy.nsc.com

Giving credit to all who contributed to the development of the Verilog-A language is
difficult and we apologize to anyone we have neglected to mention. We gratefully
acknowledge support from the members of board of directors and the of the OVI and
especially the support of Vasilious Gerouisis of Motorola, Chairman of Technical
Coordinating Committees. The Verilog-AMS Committee is chaired by Ira Miller of
Motorola, and co-chairman is James Spoto of Enablix Design. The participating
members of the Verilog-AMS committee included (in alphabetical order): Ramana
Aisola of Motorola, Graham Bell of Viewlogic, William Bell of Veribest, Kevin Cam-
eron of Antrim Design Systems, Raphael Dorado of Apteq Design Systems, John

xv
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Downey of Viewlogic, Dan FitzPatrick of Apteq Design Systems, Vassilious Gerousis
of Motorola, Ian Getreu of Analogy, Kim Hailey of Santolina, William Hobson of
Cadence Design Systems, Ken Kundert of Cadence Design Systems, Oskar Leuthold
of GEC Plessy, S. Peter Liebmann of Antrim Design Systems, Ira Miller of Motorola,
Tom Reeder of Viewlogic, Steffen Rochel of Simplex, James Spoto of Enablix
Design, Richard Trihy of Cadence Design Systems, Yatin Trivedi of Seva Technolo-
gies, and Alex Zamfirescu of Veribest.

Special thanks in review of this book go to Dr. Richard Shi from the University of
Iowa, Clem Meas of QuickStart, Peter Hunt from Portability, Dr. Robert Fox from the
University of Florida, and Dr. Thomas A. DeMassa from Arizona State University for
their special efforts. The following people also provided reviews of the initial drafts
of this book and participated in the beta evaluation of Verilog-A Explorer (in the order
their reviews were received): Ed Cheng, Xian Meng of Littlefuse, George Corrigan of
Hewlett Packard, and Norman Dancer of Gigatronics, Dale Witt of Createch, and
John Wynen of Research In Motion.
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CHAPTER 1 Introduction

1.1 Motivation

The rapidly evolving markets in communications, computers, automotive and con-
sumer electronics, driven by feature and cost-competition, are driving the demand for
higher levels of integration of analog and digital functionality. This dynamic is push-
ing the need for more effective product development methodologies for analog and
mixed-signal IC and electronic systems manufacturers. The scope and magnitude of
new product innovations, the push towards system-on-chip integration levels, and
decreasing product life cycles have all exacerbated the need for more effective design
tools and methodologies which best utilize the limited availability of analog and
mixed-signal IC and systems developers.

From the technical requirements perspective of product design, the increasing levels
of integration required for these products and the high degree of interaction between
analog and digital circuitry has moved the design into the mixed-signal realm. In dig-
ital systems design, hierarchical approaches incorporating hardware description lan-
guages (HDLs), synthesis, and use of third-party IP (intellectual property), and cell
libraries have been used to alleviate the increasing demands and complexities of prod-
uct design. Conversely, in analog and mixed-signal design, the approach has been
bottom-up at the transistor level, effectively limiting design reuse to the particular tar-
geted process technology (Figure 1.1).

Introduction 1
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Along the way, partitioning the design into subsystems and components enables the
exchange and reuse of design intellectual property from both within, and external, to
the organization. Verifying the finished design performance to specifications requires
determining trade-offs associated with design architecture, algorithms, and imple-
mentation - all of which can involve multiple simulation cycles. Employing higher
levels of abstraction for the analog and mixed-signal components of the design is nec-
essary for addressing the limited capacity and capabilities of traditional analog and
mixed-signal simulation tools.

As the level of integration increases, it becomes increasingly necessary to provide a
means to not only abstract the design, but to allow for partitioning of the design fur-
ther into subsystems and components. Analyzing the architectural and technical
trade-offs required for high-functionality analog and mixed-signal systems design,
requires a hierarchical methodology that is tightly integrated from system specifica-
tions to silicon.

Introduction



Introduction 3

In the increasing specialization in the IC and systems design markets, such as the
fabless business model, in which one or more companies performs the design role and
another manufacturing and test, a similar sequential flow of product development is

The analog and mixed-signal product development cycle (digital, analog, and mixed-
signal) for electronic IC and systems is a process involving many steps from concept
to final product as shown in Figure 1.2. From the initial product concept, specifica-
tions are developed in terms of the performance and conditions under which the prod-
uct is to operate. These specifications are then used to qualify an architecture,
typically requiring multiple iterations in the development of a new product. Final ver-
ification of the IC is completed and verified against the extracted layout design data-
base. After fabrication of the IC, the design is subjected to test criteria based on the
original specifications. A failure to meet specifications after layout and fabrication
constitutes a design iteration which requires repeating significant and time-consum-
ing steps in the design process and additional costs of multiple mask set making and
fab runs.

1.2 Product Design Methodologies

Enable the communication of high-level design information including electronic
and electro-mechanical or other system aspects.

Apply behavioral approaches in the design at the architectural level.

Encourage the exchange and reuse of design intellectual property.

Provide a standard analog and mixed-signal description language for tool compat-
ibility and for protecting investments in models and libraries.

A comprehensive set of objectives for the Verilog-A language definition were gath-
ered by the OVI Verilog-A committee and incorporated into the OVI Design Objec-
tive Document (DOD). These objectives were used in developing the Verilog-A
Language Reference Manual (LRM) by the OVI Verilog-A Technical Subcommittee.
These design objectives of the Verilog-A language were considered in the context of
meeting the goals of the use model of the language, including:

The Verilog-A language, the result of a two year process of development and stan-
dardization through Open Verilog International (OVI) and now continuing through
IEEE, was defined to address these issues. The Verilog-A language extends the syntax
and semantics of the Verilog HDL language for the description and simulation of ana-
log and mixed-signal systems from behavioral to the circuit level.

Product Design Methodologies
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followed as illustrated in Figure 1.3. However, in cases where one or more organiza-
tions are involved, the need for effective and accurate communication of the design
representation among different phases in the design process now crosses multiple dif-
ferent organizations. Here, a design house or system integrator can utilize pre-charac-
terized process libraries from its manufacturing partner, as well as sub-chip building
blocks acquired from a component library provider.

Communication of the design information between the different organizations such as
these relies on a standardized means of representing the design. Increasingly, as
higher levels of integration are being pursued, the type and content of this information
as it encompasses analog and mixed-signal designs will also change. For example, a
high-level representation of the design enables the ability to effectively make incre-
mental changes in the design functionality, such as higher frequency operation, noise
immunity, etc. (Figure 1.4). High-level representations of designs can facilitate func-
tional and/or process portability. Hence, the representation of the behavioral or struc-
tural aspects of a design can and should be independent of a underlying fabrication
process technology, allowing and encouraging maximum re-targetability of the design
to a new target process.

4 Introduction
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In both of these product design flows, the sequential and iterative nature of the prod-
uct development process highlight some very important aspects:

As in digital systems design, top-down methodologies are required to perform
analyses of architectural trade-offs, evaluate library options, and reduce costly
design iterations.

Accurate and effective communication of the representation of the design is cru-
cial between the hierarchical stages of the design.

Introduction 5
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Among multiple groups participating in the design, accuracy in the representation
of the design is crucial as the complexity of the development, as well as the diver-
sity in the tools, becomes greater.

The sequential nature of the product development process has a two-fold impact in
that steps within the process typically do not occur concurrently and errors at any
stage can require costly backtracking in terms of time and money.

High-level design methodologies enable concurrent activities in the development
flow, such as in design, verification, and test, enabling shorter product develop-
ment cycles.

In addition to technical considerations, the business model dictates that the design
information exchanged can incorporate proprietary information - either from the
foundry in terms of process libraries, the design house in terms of the design, or a
third party vendor whose primary function is solely to provide intellectual property.
The proprietary nature of the information is typically reflected in terms of implemen-
tation - further emphasizing the need for different levels of design abstraction.

One of the primary focus of the Verilog-A language is towards enhancing the porta-
bility of designs between suppliers and customers as well as allowing for best-in-class
tool solutions. A high level of design abstraction such as the Verilog-A language for
analog and mixed-signal designs, maximizes the effectiveness of communication
between different levels of designers within product design, verification, test, as well
as IP providers and foundries. The high-level description can also be used for verify-

6 Introduction
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ing the implementation against the original specifications. This capability has one of
its most profound effects in minimizing the design iterations by simply allowing for
system-level verification.

1.3 The Role of Standards

Representation of design information, including specifications, has evolved from spe-
cialized tools targeted towards accomplishing specific roles in the product develop-
ment process. Generally speaking, these can be categorized based on the types of
designs for which they represent and the level of abstraction in which those designs
are described as shown in Figure 1.5.

Some design representations are capable of spanning multiple abstraction levels. Ver-
ilog HDL, for instance, is able to represent digital designs at switch, gate, and behav-
ioral levels. Conversely, more structural representations of design, such as SPICE, are
only capable of representing a design at the lowest circuit-level.

Whether the scope of a standard is an industry, or a defacto standard limited to a sin-
gle company or tool, design representations such as Spice or Verilog HDL, and the

Introduction 7
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8 Introduction

libraries and infrastructure built on top of them, represent some of the largest invest-
ments in design methodologies within companies. The use of non-standard solutions,
able to target specific niches within an industry or application area, must be balanced
against the risks proprietary solutions impose on these investments. The ability to
maintain these investments becomes a crucial consideration in the adoption of a
design methodology.

1.3.1 Verilog-A as an Extension of Spice

The Verilog-A language was designed to be compatible as an extension of Spice for
both low- and high-abstraction levels. Similar to Verilog HDL and its ability to span

designed to function just as effectively at describing high-level analog behaviors as
well as circuit level descriptions. The syntactic heritage of Verilog-A is Verilog HDL,
but semantics derived from standard Spice in terms of capabilities such as the types of
designs and analyses supported (Figure 1.6).

Building on the standards of Spice and Verilog HDL provides an opportunity not only
to address product development needs in a technological sense, but also provide a

the range of abstraction levels for digital descriptions, the Verilog-A language was
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transition path from current design methodologies and infrastructure. Based on tradi-
tional Spice design methodologies, the Verilog-A language allows utilization of exist-
ing frameworks, libraries, models, and training.

1.4 The Role of Verilog-A

The Verilog-A language allows the description of analog and/or mixed-signal systems
with varying amounts of detail. The analog behavioral capability allows the designer
to span the abstraction levels, allowing direct access to the underlying technology
while maintaining the capability of system-level modelling and simulation. As such,
the analog and mixed-signal system can be described and simulated at a high-level of
abstraction early in the design cycle to facilitate full-chip architectural trade-offs. The
resulting Verilog-A description, as an executable specification, promotes communica-
tion and consistency throughout the design process (from specification to implemen-
tation).

A standardized analog behavioral modeling language such as the Verilog-A language,
with capabilities from the behavioral to circuit-level provides:

An enabling technology for analog and mixed-signal top-down design

Managing complexity and significant performance factors within the
design

Specification, documentation, and simulation

A compact and clear expression of design intent

Independent of the implementation

Behavioral model reuse enabling design reuse

Standardized form of communication of design information

Between tools within the design flow

Between product development groups for exchange and reuse

Virtual component IP providers

Semiconductor foundries

Concurrent development for shortening product development life cycles

Design, verification, and test program development

Introduction 9



Introduction

1.4.1 Looking Ahead to Verilog-AMS

The Verilog-AMS specification, currently under development by Open Verilog Inter-
national, is targeted to be a single-language solution for the specification and simula-
tion of analog, digital, and mixed-signal systems. The objectives of the Verilog-AMS
specification are to facilitate portable mixed-signal system description and simula-
tion. In addition, a design described with the Verilog-AMS language will provide the
capability to integrate system and circuit-level aspects of the design allowing the
design intent to be maintained throughout the entire mixed-signal design process.

The Verilog-AMS specification, yet to be finalized at the time of this writing, is
beyond the scope of this introductory book.

10 Introduction



CHAPTER 2 Analog System
Description and
Simulation

2.1 Introduction

The Verilog-A language gives designers the flexibility to describe systems at multiple
levels of abstraction for architectural definition, verification, and analysis. The basis
for both structural and behavioral descriptions in the Verilog-A language are modules.
A module definition can incorporate parametric and/or structural declarations (instan-
tiation or creation of other modules), behavioral descriptions, or all three.

Structural descriptions allow system definition via pre-defined, user-defined, or third-
party-defined components. The instantiation of a module definition in a larger system
defines a component or instance of that system. In an analog HDL such as Verilog-A,
behavioral descriptions map directly to the mathematical relationships of the system.
Both the structural and behavioral abstractions of system definitions share the signals
of the system. Signal definitions in Verilog-A have their basis in both the require-
ments of their usage for behavioral descriptions and the underlying requirements of
analog simulation.

Analog System Description and Simulation 11

This chapter introduces the fundamental aspects of the representation of analog and
mixed-signal systems with the Verilog-A language.



12 Verilog-A HDL

In defining a system such as a modem, it is useful to encapsulate the components of
the system into manageable sub-components. In the Verilog-A language, the mecha-
nism by which this is done is the module definition.

of the hardware comprising the system (modulator, demodulator, carrier recovery cir-
cuits, etc.) but also include effects of the environment in which the system is to oper-
ate. In this particular example, a model of the channel is used to determine the effect
of channel distortion on the transmission integrity.

Analog System Description and Simulation

2.2 Representation of Systems

In general, systems are considered to be a collection of interconnected components
that are acted upon by a stimulus and produce a response. The Verilog-A language
allows analog and mixed-signal systems to be described by a set of components or
modules. The module definition declares the mechanisms by which it is connected as
well as the behavior that it contributes in the system performance. Each of these mod-
ules in the system can be described by specifying the following:

Structural descriptions in which a module is comprised of other child modules.
Each module in the structural definition of the system connects to one or more sig-
nals through the module’s ports or connection points.

Behavioral descriptions in a programmatic fashion with the Verilog-A language.
The behavior of a module is defined in terms of the values for each signal.

Mixed-level descriptions combine aspects of both structural and behavioral
descriptions at a variety of different abstraction levels.

The behaviors comprising a system described in the Verilog-A language can be at var-
ious levels of abstraction depending upon the level of detail required.

An example of an analog and mixed-signal system is a modem, as shown in Figure 2-
-1. A system-level simulation and verification would encompass not only simulation
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Representation of Systems

2.2.1 Anatomy of a Module

A Verilog-A module definition not only defines the behavior of the component, but
must declare the interface necessary to configure and connect the component. These
interface declarations are used in the composition of the structural descriptions of sys-
tems. The interface declarations for a module include signal as well as parameter dec-
larations. We will be using the module definition of the modem as an example
(Listing 2.1). Later we will expand this module definition into a more detailed exam-
ple using a 16-QAM (Quadrature Amplitude Modulation) architecture.

The connection points of the module are defined by the port signal interface declara-
tions. The module defines the external ports or signals to which the module can con-
nect as a component in the system. In this example, these signals are the indicated by
the identifiers dout and din. The module also defines any directionality associated
with those connection points (in Listing 2.1, the connection points dout and din are
defined as inout or bidirectional), as well as the type of the analog signals (elec-
trical).

The other facet of the interface declarations are parameter definitions which allow the
characterization of the behavior of the component when it is used within a design. In
the modem example of Listing 2.1, a real-valued parameter fc is declared with a
default value of 100.0e6. Signal and parameter interface declarations are covered in
more detail in Chapter 4.
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1. Verilog-A language extends the Verilog HDL specification for structural definition via the
addition of named association for parameters. This is discussed in more detail in the following
chapters. In addition, parameter types can be specified in Verilog-A as opposed to taking the
type of the initializer expression.

Analog System Description and Simulation

2.2.2 Structural Descriptions

Structural descriptions of a module for defining system behavior can also be done
with the Verilog-A language. A structural description in Verilog-A is any description
in which a module instantiates or creates another module within its definition. A
structural definition for the modem will define an explicit hierarchy, or parent-child
relationship between modules in the system. The example 16-QAM modem has a par-
ent-child relationship with its the modulator, channel, and demodulator instances
(Figure 2.1). The module definition of the modem will declare the names, and assign
parameter values and connections for each of its child-modules via instantiation
statements.

The structural definition of systems allows the designer to pass parametric specifica-
tions, as well as connections, throughout the levels of hierarchy in the design. The
assignment of the parameters and connections of child modules is done via parameter
and port association. The Verilog-A language allows parameters to be assigned and
ports to be connected by position or name. Structural definitions such as for the 16-
QAM modem are derived from Verilog HDL, and are done in a programmatic fashion
as illustrated in Listing 2.2.1

LISTING 2.2 Verilog-A definition of the modem system in Figure 2-1.

‘include “std.va"

module modem(dout, din);
inout dout, din;
electrical dout, din;

parameter real fc = 100.0e6;

electrical clk, cin, cout;

qam_mod #(.carrier_freq(fc)) mod(cin, din, clk);
channel c1(cout, cin);
qam_demod #(.carrier_freq(fc)) demod(dout, cout,

clk) ;
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Structural definitions in the Verilog-A language facilitate the use of top-down design
methodologies. As architectural design progresses, structural and behavioral defini-
tions with finer details of description can be substituted for determining the system

Representation of Systems

endmodule

A module instantiation in the Verilog-A language is similar to a variable declaration
in programming languages. The module type name declares the module instance type,
followed by optional parameter settings (within the “#(...)” construct), the instance
name, and the connection list. From Listing 2.2, the following is used to illustrate the
module instantiation syntax:

The module type name qam_mod creates the instance named mod. The mod instance
is passed the value fc as the value for the parameter carrier_freq to the
instance. The instance is connected to signals cin, din and clk within the defini-
tion of the module modem. The instantiation for the qam_mod instance mod, and the
other two component instantiations within the modem module definition in Listing
2.2 declares the design hierarchy of Figure 2.2.
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performance to specifications. Utilizing this capability requires no more than an
understanding of the parameter and port definitions of a module.

2.2.3 Behavioral Descriptions

The Verilog-A language provides for describing the behavior of analog and mixed-
signal systems. The analog behavioral descriptions are encapsulated within analog
statements (or blocks) within a module definition. The behavioral descriptions are
mathematical mappings which relate the input signals of the module to output signals
in terms of a large-signal or time-domain behavioral description. The mapping uses
the Verilog-A language contribution operator “<+” which assigns an expression to a
signal. The assigned expression can be linear, non-linear, algebraic and/or differential
functions of the input signals. These large-signal behavioral descriptions define the
constitutive relationship of the module, and take the form:

output_signal <+ f( input_signal );

In signal contribution, the right-hand side expression, or f( input_signal ), is
evaluated, and its value is assigned to the output signal. Consider, for instance, the
representation of a resistor connected between electrical nodes n1 and n2:

The constitutive relationship of the element could be encapsulated as a module defini-
tion in the Verilog-A language as shown in the resistor module definition of List-
ing 2.3.

LISTING 2.3 Verilog-A module of the resistor in Figure 2.3.

module resistor(n1, n2);
inout n1, n2;
electrical n1, n2;

parameter real R = 1.0;

analog

16 Verilog-A HDL
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I(n1, n2) <+ isat*(exp(V(n1, n2)/$vt()) - 1.0);

The behavior of the diode can be defined in the Verilog-A language as,

This simple way of representing the behavior of the system allows designers to easily
explore more complex constructs like non-linear behaviors, as in the diode in Figure
2.4.

It is important to note that the contribution operator is a concise description of the
behavior of the element in terms of its terminal voltages and currents. The simulator
becomes responsible for making sure that the relationship established by the contribu-
tion operator is satisfied at each point in the analysis. This is accomplished via the
strict enforcement of conservation laws that the Verilog-A language semantics
defined for the simulation of analog systems.

where V (n1, n2 ) is the voltage across the resistor connected between nodes n1 and
n2 of the module, and I (n1, n2) is the current through the branch connecting nodes
nl and n2. The behavior of the module is defined by the analog statement within
the module definition. In the resistor of Listing 2.3, the analog statement is a
single line description of the voltage and current relationship of the resistor related by
the contribution operator.

endmodule

I(n1, n2) <+ V(n1, n2)/R;

Representation of Systems



Analog System Description and Simulation

where $vt ()1 is a Verilog-A system task that returns the thermal voltage. Time-dif-
ferential constructs as in the capacitor:

can be expressed in the Verilog-A language as,

I(n1,n2) <+ ddt(C*V(n1, n2));

where ddt() performs time-differentiation of its argument. The time-integral descrip-
tion of an inductor:

is represented simply as,

I(n1, n2) <+ idt(V(n1, n2)/L);

1. System tasks are a general class of functions within the Verilog language that are prefixed by
($). $vt() is a system task associated with the Verilog-A language. Refer to Appendix B for
more information on this and other system tasks.

18 Verilog-A HDL
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The Verilog-A language allows the designer the flexibility to model components at
various levels of abstraction. Mixed-level descriptions can incorporate behavior and
structure at various levels of abstraction. Flexibility in choosing the level of abstrac-
tion allows the designer to examine architectural trade-offs for design performance
and physical implementation.

2.3 Mixed-Level Descriptions

where laplace_nd() is a transfer function representation of the behavior. These
behavioral constructs will be discussed in more detail in Chapter 3.

V(out) <+ laplace_nd(V(in), { Ku }, { Kp, 1 });

where the behavior is formulated in terms of V(out). Alternatively, using other con-
structs within the Verilog-A language, the behavior can also be expressed as,

V(out) < + idt(Ku*V(in) - Kp*V(out));

The behavior of Figure 2.7 can be expressed compactly in the Verilog-A language as
(derived in terms of the signal at V(out)),

Higher level representations of behavior can be defined similarly in a simple pro-
grammatic fashion using the Verilog-A language. In the following example, a simple
signal-flow representation is used to represent the system such as in Figure 2.7.

Using idt() for time-integration of its argument.

Mixed-Level Descriptions
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One of the techniques available to designers for mixing levels of abstractions are
mixed-level descriptions themselves - module definitions that incorporate both struc-
tural and behavioral aspects. In addition to mixing structure and behavior, the Ver-
ilog-A language is designed to accommodate the structural instantiation of Spice
primitives and subcircuits, within the module definition1. This methodology provides
a path to final verification within the design cycle, when detailed models are neces-
sary for insuring adherence to performance specifications.

For example, for the 16-QAM modem system, a block diagram of the modulator
module, qam_mod, could be defined as shown in Figure 2.8.

The definition of module qam_mod can include behavioral and structural aspects. In
Listing 2.4, the module definition instantiates components that provide the serial-to-
parallel conversion of the incoming digital data stream. The QAM modulation is
defined behaviorally in terms of its mathematical representation. The signals and
parameters declared within the module definition can be shared between both the

1. One method is demonstrated in this book, but the specification permits some flexibility in
this aspect.

20 Verilog-A HDL
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Expressed mathematically, the behavior is ideal, de-emphasizing any non-idealities in
the multiplier implementations. During the later parts of the design cycle, it may be
necessary to determine the impact on the performance of these non-idealities in the
modulator description.

V(out) <+ 0.5*(V(ai)*cos(phase) + V(aq)*sin(phase));

The signals ai and aq are the outputs of the 2-bit D/A converters. The behavioral
definition of the QAM modulation is defined:

endmodule

end

phase = 2.0*‘M_PI*fc*$realtime() + ‘M_PI_4;
V(mout) <+ 0.5*(V(ai)*cos(phase) +

V(aq)*sin(phase));

analog begin

real phase;

electrical di1, di2, dq1, dq2;
electrical ai, aq;
serin_parout sipo(di1, di2, dq1, dq2, din, clk);
d2a d2ai(ai, di1, di2, clk);
d2a d2aq(aq, dq1, dq2, clk);

parameter real fc = 100.0e6;

module qam_mod(mout, din, clk);
inout mout, din, clk;
electrical mout, din, clk;

‘include "std.va"
‘include "const.va"

LISTING 2.4 Verilog-A definition of 16-QAM modulator

structural and behavioral aspects within the same module, providing a high-degree of
flexibility within the design process. For example, in Listing 2.4, the signals ai and
aq are used within both the structural and behavioral aspects of the 16-QAM module
definition.

Mixed-Level Descriptions
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Analog System Description and Simulation

If the structural definition of the qam_mod module is expanded further to account for
the multipliers used in each branch of the modulator (done behaviorally), the instance
hierarchy shown in Figure 2.10 would result. Here we indicate two different modules
that could be used for the ai_mult instance, gilbert_va and gilbert_ckt.
The following Verilog-A description of the gilbert_va module is shown in List-
ing 2.5.

Including the nonlinearities of the multipliers found in the behavioral description for
the modulator may be required in simulations for evaluating the modem system per-
formance. One method of doing this is to allow the mixing of Verilog-A and Spice
built-in primitives and subcircuits via a generalization of the module concept. A cor-
responding structural view to the behavioral representation of the modulator is shown
in Figure 2.9.

LISTING 2.5 Verilog-A description of multiplier

module gilbert_va(outp, outn, in1p, in1n, in2p, in2n);
inout outp, outn, in1p, in1n, in2p, in2n;
electrical outp, outn, in1p, in1n, in2p, in2n;

parameter real gain = 1.0;

analog begin
V(outp, outn) <+ gain*V(in1p, in1n)*

22 Verilog-A HDL
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LISTING 2.6 Spice netlist of Gilbert Cell of Figure 2.11.

as one representation for the multiplier behavior within the modulator. Given the
schematic representation in Figure 2.11 of a four-quadrant Gilbert Cell multiplier, a
structural representation of the multiplier can be defined in Spice netlist syntax as in
Listing 2.6.

endmodule

end
V(in2p, in2n);

Mixed-Level Descriptions
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.subckt gilbert_ckt outp outn in1p in1n in2p in2n
Q1 outp out1p n1 npn_mod
Q2 outp in1n n2 npn_mod
Q3 outp in1n n2 npn_mod
Q4 outn in1p n2 npn_mod
Q5 n1 in2p n3 npn_mod
Q5 n2 in2n n3 npn_mod

iee n3 0 dc 1m
vcc vcc 0 dc 5.0

r1 vcc outp 200
r2 vcc outn 200

.ends

The structural description of the modulator can now be described utilizing both the
behavioral and physical representations of the multipliers. For the physical represen-

24 Verilog-A HDL
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The potential of the node is shared with all ports connected to the node in such a way
that all ports see the same potential. The flow is shared such that flow from all termi-
nals at a node must sum to zero. In this way, the node acts as an infinitesimal point of
interconnection in which the potential is the same everywhere on the node and on
which no flow can accumulate. The node embodies the conservation laws, Kirchoff’s
Potential Law (KPL) and Kirchoff’s Flow Law (KFL) in the equations that describe

Conservative systems are those that are formulated using conservation laws at the
connection points or nodes. An important characteristic of conservative systems is
that there are two values associated with every node or signal (and hence every port of
a component of the system) - the potential (or across value) and the flow (or thru
value). In electrical systems, the potential is also known as voltage and the flow is
known as the current. The Verilog-A language uses potential and flow as a generaliza-
tion for the description of multi-disciplinary systems (e.g., electrical, mechanical,
thermal, etc.).

2.4.1 Conservative Systems

The structure of the components in an analog system, and behavioral descriptions of
those components define the system of ordinary differential equations, or ODEs, that
govern the response of the analog system to an external stimulus. The process by
which the system of equations is derived is known as formulation. From a systems
perspective, two types of systems can be described - conservative and signal-flow. A
conservative type of system, which includes those described by conventional Spice,
incorporates a set of constraints within the system that insure conservation of charges,
fluxes, etc. within the system. Signal-flow systems employ a different level of formu-
lation, which focuses only on the propagation of signals throughout the system.

2.4 Types of Analog Systems

tation of the multiplier, either the Verilog-A representation or the Spice subcircuit
netlist can be used. Thus, in general, mixed levels of behavioral and structural
descriptions can be used in the description and analysis of the system.

Types of Analog Systems
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With conservative systems it is also useful to define the concept of a branch. A branch
is a path of flow between two nodes. Every branch has an associated potential (the

2.4.2 Branches

In a conservative system, when a component connects to a node through a port, it may
either affect, or be affected by, either the potential at the node, and/or the flow onto
the node through the port. A basic example of a conservative component is a resistor.
The voltage across the resistor is dependent on the current flow and vice-versa.
Changes in the potential at, or flow into, either end of the device would affect the
other end to which the resistor component is connected.

the system. KPL and KFL are a generalization of KVL and KCL for electrical sys-
tems which allow the conservation laws to be applied to any conservative system.

Analog System Description and Simulation
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The second set of relationships for conservative systems are the interconnection rela-
tionships which describe the structure of the network. Interconnection relationships
contain information on how the components are connected to each other, and are only

There are two types of relationships used for defining conservative systems. The first
of these are the constitutive relationships that describe the behavior of each instance
of the design. Constitutive relationships for a component or module can be described
in the Verilog-A language or built into a simulator as Spice-level primitives.

2.4.3 Conservation Laws In System Descriptions

The potential of a single node is given with respect to a reference node. The potential
of the reference node, which is called ground in electrical systems, is always zero.

The reference direction for a potential is indicated by the plus and minus symbols at
each end of the branch. Given the chosen reference direction, the branch potential is
positive whenever the potential of the branch marked with a (+) sign is larger than the
potential of the branch marked with a minus (–) sign. Similarly, the flow is positive
whenever it moves in the direction of the arrow (in this case from + to –). In the Ver-
ilog-A language, for an electrical device, the potential would be represented by
V(p,n), and the associated flow would be represented by I(p,n):

potential difference between the two branch nodes), and a flow. The reference direc-
tions for a branch are as follows:

Types of Analog Systems
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flows into a node is zero. Both KPL and KFL are used to relate the values on nodes
and branches. The application of both KPL and KFL imply that a node is infinitely

the loop are zero. KFL, likewise, is illustrated in Figure 2.16, in which the sum of the

KPL and KFL can be used to determine the interconnection relationships for any type
of system. KPL, is illustrated in Figure 2.15, where the sum of the potentials around

a function of the system topology. The interconnection relationships define the con-
servation of energy within the analog system.

Analog System Description and Simulation
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The Verilog-A language supports the description and simulation of systems used in
many disciplines such as electrical, mechanical, fluid dynamics, and thermodynamics.
To accomplish this, Verilog-A uses the concepts of a discipline and nature

2.5 Signals in Analog Systems

Signal-flow ports support a subset of the functionality of conservative ports in that
KFL is not enforced. As such, one can always use conservative semantics to represent
signal-flow components.

Changes in potential of the in port would be reflected as A*V(in) on the port out.
However, any changes on the output port out would not be seen by the input port
in.

V(out) <+ A*V(in);

defined as in, and an output port defined as out. The behavior would be expressed
as,

A typical signal-flow component is an amplifier (Figure 2-18) with an input port

Unlike conservative systems, signal-flow systems only have a potential associated
with every node. As a result, a signal-flow port must be unidirectional. It may either
read the potential of the node (input), or it may assign it (output). Signal-flow termi-
nals are either considered input ports if they pass the potential of the node into a com-
ponent, or output ports if they specify the potential of a node.

2.4.4 Signal-Flow Systems

small so that there is negligible difference in potential between any two points on the
node and there is a negligible accumulation of flow.

Signals in Analog Systems
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for encapsulating the characteristics and physical quantities associated with the differ-
ent types of analog signals. A nature definition defines the characteristics of quanti-
ties to the simulator, while a discipline definition composes one or more
nature definitions into the definition of an analog signal.

In Verilog-A, the primary motivation for providing this level of detail using disci-
plines and natures within the language is to support model portability amongst
different analog simulators. Standard definitions of disciplines and natures pre-
defined within the standard definitions1 and are summarized in the following table:

For conservative analog systems, a discipline definition will have two natures associ-
ated with it - the potential nature and the flow nature. The definition will also define
how these different components of the signal are utilized within behavioral descrip-
tions. From the perspective of a user of the Verilog-A language, a discipline type is
used for declaration of, and accessing quantities composing analog signals.

To use the quantities associated with an analog signal, access functions2 are used to
access values on nodes, ports, or branches. The name of the access function for a sig-
nal is taken from the discipline definition of the node, port or branch to which the sig-
nal is associated. The signal access functions are used in both reading and assigning
signal values.

The Verilog-A language uses these access functions, together with the concept of
probes and sources (described in the Section 2.6), to describe analog behaviors. If the

1. The examples in this book reference the standard definitions via the Verilog pre-processor
mechanism, ‘include “std.va”.

2. The term access function is a syntactic description.
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The discipline electrical consists of two nature declarations, Voltage
and Current, respectively, with the potential and flow aspects of the quanti-
ties of signals of type electrical. These nature definitions define the physical

discipline electrical
potential Voltage;
flow Current;

enddiscipline

// Potential in volts
nature Voltage

units =   "V";
access =    V;
abstol =    1e-6;

endnature

// Current in amperes
nature Current

units  = "A";
access =    I;
abstol = 1e–12;

endnature

LISTING 2.7 Nature and discipline definitions for electrical systems.

For example, given the following portions nature and discipline definitions
for type electrical (taken from the standard definitions file):

The access functions for an analog signal are derived from the discipline defini-
tion that declares it. For conservative nodes (or ports and branches of conservative
nodes), there are access functions for both the potential and flow.

2.5.1 Access Functions

In most cases, the standard definitions of disciplines and natures can be used without
modification.

access function is used in an expression, the access function returns the value of the
signal. If the access function is being used on the left side of a branch assignment or
contribution statement, it assigns a value to the signal.

Signals in Analog Systems
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quantities of signals of type electrical as well as how to access (reading and
assigning) those signal values.

From this definition of the discipline electrical, the following

electrical n1, n2;

declares two nodes n1, and n2. To determine the potential or Voltage between
the two nodes, n1 and n2, the Verilog-A language uses the construct:

V(n1, n2)

where V is the access function for the potential nature of signals of type electri-
cal. Similarly, to determine the flow or Current between the two nodes, use:

I(n1, n2)

where I is the access function for the flow nature of signals of type electrical.
The relationship between the discipline definition and the access functions of the
nature definition are elaborated in more detail later in Section 2.5.2 on implicit
branches.

2.5.2 Implicit Branches

From the two nodes, n1 and n2, we can form an implicit branch1. To access the
potential across the branch, refer to the potential binding in the electrical
discipline definition. The potential of electrical is bound to the nature defi-
nition of Voltage, which defines an access function of V. Hence, to access the
potential across the branch, use:

V(n1, n2)

In other words, accessing the potential from a node or port to a node or port defines
the implicit branch. Accessing the potential on a single node or port defines an
implicit branch from the node or port to ground. So,

V(n1)

1. A branch is formed implicitly by use within the behavioral definition.
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accesses the potential on the implicit branch from n1 to ground. Likewise, the flow
of electrical is bound to the nature definition of Current, which defines an
access function of I. Hence, to access the flow through the branch from n1 to n2,
use:

I(n1, n2)

and,

I(n1)

accesses the flow on the implicit branch from n1 to ground.

2.5.3 Summary of Signal Access

The following table shows how access functions can be applied to nodes and ports. In
this table, n1 and n2 represent either nodes or ports belonging to the electrical
discipline.

The arguments to an access function must be a list of one or two nodes or port identi-
fiers. If two node identifiers are given as arguments to an access function, they must
not be the same identifier. The access function name must match the discipline decla-
ration for the nodes or ports given in the argument expression list.

2.6 Probes, Sources, and Signal Assignment

The Verilog-A language uses what is referred to as the probe-source formulation for
describing analog behaviors. The probe-source formulation is a simple (and probably
familiar) concept that allows for describing high-level behaviors. The contribution
operator “<+”, in conjunction with the probe-source formulation, form the basis for
the description of analog behaviors in the Verilog-A language. The contribution oper-
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ator is only valid within the analog block. Contribution statements are statements
that use the contribution operators to describe behavior in terms of the mathematical
relationships of input signals to output signals.

In general, a contribution statement consists of two parts, a left-hand side, and a right-
hand side separated by the contribution operator. The right-hand side can be any
expression that evaluates to a real value. The left-hand side specifies the source
branch signal that the right hand side is to be assigned. It must consist of an access
function applied to a branch. Hence, analog behaviors can be described using:

V(n1, n2) <+ expression;

or

I(n1, n2) <+ expression;

where (n1, n2) represents an implicit source branch, and the V(n1, n2)
access function refers to the potential across the branch while the I(n1, n2) access
function refers to the flow through the branch. Access functions within expres-
sion can be used within linear, nonlinear, algebraic, or dynamic functions and
become probes in the equation formulation.

Branch contribution statements implicitly define source branch relations. The branch
is directed from the first node of the access function to the second node. If the second
node is not specified, the second node is taken as the ground or the reference node.

2.6.1 Probes

Probes are formed from access functions whenever the access function is used in an
expression. If the flow of the branch is used in an expression anywhere in the module,
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1. A branch cannot simultaneously be both a potential and a flow source, though it
can switch between them, in which case it is referred to as a switch branch.

define a potential source on the implicit branch between nodes nl and n2, and a flow
source between the implicit branch between nodes n3 and n4.1

V(n1, n2) <+ . . . . ;
I(n3, n4) <+ . . . . ;

Sources are formed from access functions whenever the access function appears as a
target on the left-hand side of the contribution operator, “<+”. It is a potential source
if the branch potential is specified, and it is a flow source if the branch flow is speci-
fied. For the following,

2.6.2 Sources

The branch potential of a flow probe is zero. The branch flow of a potential probe is
zero. When a flow probe is introduced between two nodes, it introduces a zero-imped-
ance path between the nodes. Conversely, a potential probe introduces an infinite
impedance path between the two nodes it connects.

the branch is a flow probe, otherwise the branch is a potential probe. The models for
probe branches are shown in Figure 2.19.

Probes, Sources, and Signal Assignment
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that measures the potential across the branch. Hence, both potential and flow sources
can assign as well as measure quantities across their respective branches.

Both the potential and the flow of a source branch are accessible in expressions any-
where in the module. The models for potential and flow sources are shown in Figure
2.20, where f is a probe that measures the flow through the branch, and p is a probe

Analog System Description and Simulation
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2.6.3 Illustrated Examples

The concepts of probes and sources in the Verilog-A language is readily illustrated
using examples of the controlled sources that are the staple of behavioral modeling in
Spice. These include the current- and voltage-controlled current and voltage sources.
The Verilog-A module definitions of these elements, with their corresponding net-
work representations, are shown in Figures 2-21 thru 2-24.
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2.7 Analog System Simulation

Analog simulation involves solving systems of ordinary differential equations that
describe the system. The system of equations that define the circuit is of the
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form:                        where x is a vector representing the unknowns,    the time rate of
change of the unknowns, and u is a vector representing the external stimulus to the
system. The system of equations is derived from both the behaviors describing the
components and the interconnection or structure of the components as shown in Fig-
ure 2-25.

Simulation of an analog system requires an analysis of all nodes in the system to
develop the equations that define the complete set of potentials and flows in the net-
work. During transient analysis, these equations are solved incrementally with respect
to time. Given the nonlinear nature of the system, at each time increment, equations
are iteratively solved until they converge to a solution in which error criteria is satis-
fied.

The standard approach to analog circuit simulation involves:

Formulate the differential-algebraic equations for the circuit

Applying implicit integration methods to the sequence of nonlinear algebraic
equations

Iterative methods such as Newton-Raphson to reduce the problem to a sparse set
of linear equations

Using sparse-matrix techniques, solve the system of linear equations
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2.7.1 Convergence

To determine when iterative methods such as Newton-Raphson have converged to a
sufficiently accurate solution, tolerance criteria is used. Tolerance criteria can be
applied to conservative systems in two ways:

Solution between the current and previous iterations at a time point converge, i.e.,

Conservation of the constraints on charges, fluxes, currents, potentials, etc. within
the system for KFL and KPL are satisfied:

where is the    iteration of the solution for x. The reltol within the conver-
gence criteria, is a global option of the simulation. The and are associ-
ated with the type, or nature of the unknown x.
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CHAPTER 3 Behavioral Descriptions

3.1 Introduction

The Verilog-A language allows analog and mixed-signal systems to be described by a
set of components or modules and the signals that interconnect them. Modules are the
fundamental user-defined primitive in the Verilog-A language. Modules can be
defined structurally and/or behaviorally. The designer is free to choose the level of
abstraction within the structural or behavioral components of the definition of the
module. Once a module is defined, it can be instantiated as a child module within a
parent module definition or as a top-level component in the design.

The behavioral description is done in a programmatic fashion in the Verilog-A lan-
guage within the analog statement or block of the module. The analog block
encapsulates the behavioral description, or the mathematical relationships between
input signals and output signals. A behavioral model of the component allows the
designer a degree of freedom over the amount of detail to be used in the design for
architectural exploration and verification.

This chapter overviews the basic statements and expressions used the description of
analog behaviors with the Verilog-A language. A concise description of the mathe-
matical, trigonometric, and hyperbolic functions available for describing analog
behaviors are listed in Appendix A. A special class of expression-level constructs
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known as analog operators in the Verilog-A language are introduced and illustrated
via example.

3.2 Behavioral Descriptions

The Verilog-A language provides the fundamental capabilities necessary for describ-
ing the behavior of modules comprising analog and mixed-signal systems. Within a
module definition, the analog behavioral descriptions are encapsulated within ana-
log statements or blocks:

analog begin
<behavioral_statements>

end

The analog statement encapsulates a large-signal behavior for the model valid for
all time. The large-signal model of a component is the behavior expressed in the time
domain. From this large-signal definition of the model, representations required for
the simulation of other types of analyses can be derived (Figure 3.1). For example, the
linearization of the large-signal model about its operating point allows small-signal
AC analysis to be performed1.

1. Linearization of the large-signal model about the operating point is the same technique uti-
lized by Spice.
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The behavioral statements within the analog block can include control-flow or
looping constructs for defining the behavior of the module. These statements are sim-
ilar to those found in many programming languages. Additionally, the Verilog-A lan-
guage provides different language constructs that can be utilized for representing
equivalent behavior. For example, in Figure 3.2 three different ways of formulating
the behavioral construct for assigning the maximum of two values to a variable are
presented1. All of these are equivalent representations using statement, expression,

and functional techniques respectively for determining the maximum value and
assigning it to a variable.

The Verilog-A language introduces a class of behavioral constructs known as analog
operators that are used in defining the large-signal behavioral characteristics of the
module. Because of mathematical and other properties associated with analog opera-
tors, there are special considerations in their usage. These and other issues associated
with the use of analog operators will be discussed in Section 3.4.

3.2.1 Analog Model Properties

The behavioral descriptions with the Verilog-A language can be used to represent dif-
ferent types of behaviors. These can include:

Linear

Nonlinear

Piecewise linear

1. There is at least one more, albeit more obscure, equivalent statement method of determining
the maximum of two values in the Verilog language.
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Integro-differential

Event-driven analog

or combinations thereof. All behavioral models rely on the understanding of the mod-
eler in terms of the formulation of the model and the models’ valid regions of opera-
tion1. The model must also show stable and/or continuous behavior between its’
various regions of operation. For example, the behavior of a resistor connected
between two electrical type nodes p and n could be represented in one of two
ways. First as,

V(p, n) <+ res*I(p, n);

or,

I(p, n) <+ V(p, n)/res;

From a perspective of the description of behavior for a resistor, the two formulations
are equivalent. However, note that for the condition,

res == 0.0

the first formulation handles this case correctly, but the second generates a divide by
zero. Similar conditions can occur for the signals from which the behavior is formu-
lated. For example, a voltage divider could be represented behaviorally as,

V(out) <+ V(numer)/V(denom);

If V(denom) ever goes to zero, which can happen during the course of a simulation
or at initialization, a similar divide by zero condition can occur. It is up to the mod-
eler, with an understanding of the task at hand, to insure that the model is mathemati-
cally valid.

The model developer must also insure the model is stable or well-behaved. This prop-
erty is most obvious in the continuity in both time and value that the model shows.
For example,

if (x > 2.5)
V(out) <+ 5.0;

1. The iterative nature of the solution of the system of equations used in analog simulation
essentially dictates that the model be valid or well-behaved for any potential region of opera-
tion or input signal values.
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else
V(out) <+ 0.0;

for the variable x as some arbitrary function of time, is discontinuous at the output
about the condition x == 2.5 for V(out), in both time and value. This may or
may not be a problem, depending upon the type of network to which the output sig-
nal, V(out) is attached. For resistive loads, these types of discontinuities do not
present problems. However, for capacitive or inductive loads, this type of behavior
will potentially cause problems for the simulation. The Verilog-A language provides
capabilities for the model developer to effectively handle such cases but still relies on
the developer for recognizing and utilizing these capabilities.

The mathematical validity and stability of the formulation of a model are important
issues to consider when developing a behavioral model, particularly during the test
and validation of the model.

3.3 Statements for Behavioral Descriptions

In the Verilog-A language, all analog behavior descriptions are encapsulated within
the analog statement. The analog statement encompasses the contribution state-
ment(s) that are used to define the relationships between the input and output signals
of the module. Statements within the Verilog-A language allows these contribution
statements used in defining the analog behaviors to be sensitive to procedural and/or
timing control.

This section describes the statements used in formulating analog behavioral descrip-
tions.

3.3.1 Analog Statement

The analog statement is used for defining the behavior of the model in terms of con-
tribution statements, control-flow, and/or analog event statements. All the state-
ment(s) comprising the analog statement are evaluated at each point during an
analysis. The analog statement is the keyword analog followed by a valid Ver-
ilog-A statement.
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analog
<statement>

Where <statement> is a single statement in the Verilog-A language as in the module
resistor of Listing 3.1.

LISTING 3.1 Resistor module illustrating a single statement attached to the
analog statement.

module resistor(p, n);
inout p, n;
electrical p, n;

parameter real res = 1.0;

analog
V(p, n) <+ res*I(p, n);

endmodule

The statement attached to an analog statement is usually a block statement delim-
ited by a begin-end pair.

analog begin
<statements>

end

The block or compound statement defines the behavior of the module as a procedural
sequence of statements. The block statement is a means of grouping two or more
statements together so that they act syntactically like a single statement. For example,
the module resistor of Listing 3.1 could be re-written using a block statement as
in Listing 3.2.

LISTING 3.2 Resistor module illustrating a block statement attached to the
analog statement.

module resistor(p, n);
inout p, n;
electrical p, n;

parameter real res = 1.0;
real volts;
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analog begin
volts = res*I(p, n);
V(p, n) <+ volts;

end

endmodule

The group of statements within the analog block are processed sequentially in the
given order and at each timepoint during a transient simulation. This aspect of the
Verilog-A language allows the module developer the ability to define the flow of con-
trol within the behavioral description1 .

Statements of any block statement are guaranteed to be evaluated if the block state-
ment is evaluated. This property, in conjunction with properties of analog behaviors
described in the Verilog-A language to be discussed in Section 3.4, has implications
in the formulation of the analog behaviors for stability and robustness.

3.3.2 Contribution Statements

The contribution statements within the analog block of a module form the basis of
the behavioral descriptions used to compute flow and potential values for the signals
comprising the analog system. The behavioral or large-signal description is the math-
ematical relationships of the input signals to output signals. In the probe-source
model described in Section 2.6, the relationships between input and output signals is
done with contribution statements of the form:

output_signal <+ f(input_signals);

Where output_signal is a branch potential or flow source that is the target of the
contribution operator (<+) assigned by the value of the right-hand side expression,
f (input_signals). For example,

V(pout1, nout1) <+ expr1;
I(pout2, nout2) <+ expr2;

1. The evaluation of the entire group of statements within the analog block at every time-
point is a departure from the semantics of the always statement in digital Verilog. In digital
Verilog, the evaluation of the behavioral model is determined by monitoring and blocking on
events of the (digital) signals.
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are examples of potential and flow branch contributions respectively. The right-hand
side expressions, expr1 and expr2, can be any combination of linear, nonlinear,
algebraic, or differential expressions of module signals, constants and parameters.

A contribution statement is formed such that the output is isolated1. For example,
given the following transfer function for H(s) :

the transfer function relationship can be formulated in terms of the output, y(t), for
the large-signal response as,

from which, the behavioral relationship can be expressed in the Verilog-A language
contribution statement as

V(y) <+ ddt(V(y))/R + V(x);

Where V(y), the potential of the signal y, or y(t) and V(x) is the potential of the
signal x, or x(t). Note that Only a potential or flow source branch can be the target of
a contribution operator, i.e., no real or integer variables.

3.3.3 Procedural or Variable Assignments

In the Verilog-A language, branch contributions and indirect branch contributions2

are used for modifying signals. The procedural assignments are used for modifying
integer and real variables. A procedural assignment in the Verilog-A language is sim-
ilar to that in any programming language:

1. The probe-source formulation does not require that the output cannot also appear on the
right-hand side of the contribution operator. In addition, an alternative equation formulation
construct is presented in Section 3.6.2 for such cases when it is not easy to isolate the output.
2. Described later in section 3.6.
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real x;
real y[1:12];

analog begin

In general, the left-hand side of the assignment must be an integer or a real identifier
or a component of an integer or real array. The right-hand side expression can be any
arbitrary expression constituted from legal operands and operators in the Verilog-A
language.

3.3.4 Conditional Statements and Expressions

The Verilog-A supports two primary methods of altering control-flow within the
behavioral description of a module which are the conditional statement and the ter-
nary or ?: operator. The control-flow constructs within the Verilog-A language are
used for defining piece-wise behaviors (linear or nonlinear). The conditional state-
ment (or if-else statement) is used to make a decision as to whether a statement is
executed or not. The syntax of a conditional statement is as follows:

if ( expr )
<statement>

else
<statement>

where the else branch of the if-else statement is optional. If the expression eval-
uates to true (that is, has a non-zero value), the first statement will be executed. If it
evaluates to false (has a zero value), the first statement will not be executed. If there is
an else statement and expression is false, the else statement will be executed.

As previously described, the if-else statement can be used to define an analog
behavior that determines the maximum of two input signals (or values) as in Listing
3.3.

LISTING 3.3 Module definition illustrating use of if-else statements.
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module maximum(out, in1, in2);
inout out, in1, in2;
electrical out, in1, in2;

real vout;

analog begin
if (V(in1) > V(in2))

vout = V(in1);
else

vout = V(in2);

V(out) <+ vout;
end

endmodule

Because the else <statement> part of an if-else is optional, there can be con-
fusion when an else is omitted from a nested if sequence. This is resolved by always
associating the else with the closest previous if that lacks an else. In Listing 3.4,
the else goes with the inner if, as shown by indentation.

LISTING 3.4 Proper association of else <statement> within a nested if.

if ( expr1 )
if ( expr2 )

<statement2a>
else

<statement2b>

If that association is not desired, a begin-end block statement must be used to force
the proper association, as shown in Listing 3.5.

LISTING 3.5 Forced association of an else <statement> using a block
statement.

if ( expr1 ) begin
if ( expr2 )

<statement2>
end else

<statement1b>
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The ternary operator (?:) can be used in place of the if statement when one of two
values is to be selected for assignment. The general form of the expression is:

conditional_expr ? expr1 : expr2

If the conditional_expr is non-zero, then the value of the ternary expression is
expr1, else the value is expr2. The maximum module definition of Listing 3.3 can
be written much more compactly using the ternary operator as in Listing 3.6.

LISTING 3.6 Module definition illustrating use of ternary operator.

module maximum(out, in1, in2);
inout out, in1, in2;
electrical out, in1, in2;

analog
V(out) <+ ((V(in1) > V(in2)) ? V(in1) : V(in2));

endmodule

The distinction between the if-else and the ternary operator is that the ternary
operator can appear anywhere an expression is valid in the Verilog-A language. Con-
versely, the if-else statement can only appear in the body of an analog or a
block statement.

3.3.5 Multi-way Branching

The Verilog language provides two ways of creating multi-way branches in behav-
ioral descriptions; the if-else-if and the case statements. The most general way
of writing a multi-way decision in Verilog-A is with an if-else-if construct as
illustrated in Listing 3.7.

LISTING 3.7 Multi-way branching using the if-else-if statement construct.

if ( expr1 )
<statement1>

else if ( expr2 )
<statement2>

else
<statement3>
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The expressions are evaluated in order; if any of the expressions are true (expr1,
expr2), the statement associated with it will be executed, and this will terminate the
whole chain. Each statement is either a single statement or a sequential block of state-
ments. The last else part of the if-else-if construct handles the none-of-the-
above or default case where none of the other conditions are satisfied. Sometimes
there is no explicit action for the default; in that case, the trailing else statement can
be omitted or it can be used for error checking to catch an unexpected condition.

For example, the behavior of a dead-band amplifier (Figure 3.3) using the if-else-

if construct, the behavior can be represented in the Verilog-A language as in Listing
3.8.

LISTING 3.8 Dead-band amplifier behavior using the if-else-if statement
construct.

analog begin
if (V(in) >= db_high)

vout = gain*(V(in) - db_high);
else if (V(in) <= db_low)

vout = gain*(V(in) + db_low);
else

vout = 0.0;

V(out) <+ vout;
end
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Note that the variable vout, will be piece-wise continuous in value across the range
ofV(in).

3.4 Analog Operators

Analog operators in the Verilog-A language are used for formulating the large-signal
behavioral descriptions of modules. Used in conjunction with the standard mathemat-
ical and transcendental functions (Appendix A), with analog operators the modeler
can define the components constitutive behavior. Similar to functions, analog opera-
tors take an expression as input and return a value. However, analog operators differ
in that they maintain internal state and their output is a function of both the current
input and this internal state.

The Verilog-A language defines analog operators for:

Time derivative

Time integral

Linear time delay

Discrete waveform filters

Continuous waveform filters

Laplace transform filters
Z-transform filters

3.4.1 Time Derivative Operator

The ddt operator computes the time derivative of its argument.
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In DC analysis, ddt returns zero. Application of the ddt operator results in a zero at
the origin. Consider the example module definition of Listing 3.9 taking the time
derivative of the input signal.

LISTING 3.9 ddt analog operator example.

module ddt_op(out, in);
inout out, in;
electrical out, in;
parameter real scale = 1.0e-6;

analog
V(out) <+ scale*ddt(V(in));

endmodule

The results of applying a 100KHz sinusoidal signal, with amplitude of 1.0V, to the in
signal of the module, with scale set to its default value of 1.0e-6 are shown in Fig-
ure 3.5.

It is important to consider the input signal characteristics when doing when using the
ddt operator (as with all analog operators). Without setting the parameter scale to
1.0e-6, the output of the module would have been 6.28e6 volts with the same input

54 Verilog-A HDL



Analog Operators

signal applied. The model developer should be aware that when differentiating an
unknown input signal, a fast varying ‘noise’ component can dominate the true deriva-
tive of the signal of interest.

3.4.2 Time Integral Operator

The idt operator computes the time-integral of its argument.

idt(expr, ic, reset)

When specified with initial conditions, the idt operator returns the value of the ini-
tial condition in DC. Without initial conditions, idt multiplies it’s argument by infin-
ity in DC analysis. Hence, without initial conditions, idt must be used in a system
description with feedback that forces its argument to zero1 . The optional argument
reset allows resetting of the integrator to the initial condition or ic value. Applica-
tion of the idt operator results in a pole at the origin.

The module definition of Listing 3.10 illustrates the use of idt operators with differ-
ent values of initial conditions specified.

LISTING 3.10 idt analog operator example.

module idt_op(out1, out2, in);
inout out1, out2, in;
electrical out1, out2, in;
parameter real scale = 1.0e6;

analog begin
V(out1) <+ idt(scale*V(in), 0.0);

1. Failure to do so will result in a system description that is not solvable - i.e., convergence will
not likely be achieved.
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V(out2) <+ idt(scale*V(in), 2.0);
end

endmodule

The results of applying V(in) as a clock with a pulse period of 50n to the input of
the module of Listing 3.10 which differ only in the initial condition parameter ic (0.0
and 2.0), are shown in Figure 3.7. Both integrator modules were applied scale

parameter values of 1.0e6.
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3.4.3 Delay Operator

The delay operator implements a transport, or linear time delay for continuous
waveforms (similar to a transmission line).

The parameter dt must be nonnegative and any changes to the parameter dt are
ignored during simulation (the initially specified value for dt is used). The effect of
the delay operator in the time domain is to provide a direct time-translation of the
input. An example of the delay analog operator is illustrated in Listing 3.11.

LISTING 3.11 delay analog operator example.

module delay_op(out, in);
inout out, in;
electrical out, in;

analog
V(out) <+ delay(V(in), 50n);

endmodule
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The results of applying a signal V(in) (two-tone sinusoidal) to the input of the mod-
ule of Listing 3.11 is shown in Figure 3.9. For AC small-signal analysis, the delay

operator introduces a phase shift.

3.4.4 Transition Operator

The transition operator smooths out piece-wise constant waveforms. The
transition filter is used to imitate transitions and delays on discrete signals.
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The input expr to the transition operator must be defined in terms of discrete
states1. The parameters dt, tr, and tf are optional to the transition analog
operator. If dt is not specified, it is taken to be zero. If only the tr value is specified,
the simulator uses it for both rise and fall times. In DC analysis, transition
passes the value of the expr directly to its output.

Consider the example of Listing 3.12 illustrating the effect of the transition time
parameters versus the magnitude of different input step changes.

LISTING 3.12 transition operators with different step changes.

module transition_op(out1, out2, in);
inout out1, ou2, in;
electrical out1, out2, in;

real vin;
analog begin

// discretize the input into two states
if (V(in) > 0.5)

vin = 1.0;
else

vin = 0.0;

V(out1) <+ transition(vin, 2n, 5n, 5n);
V(out2) <+ transition(2*vin, 2n, 5n, 5n);

end

endmodule

The input expression to the transition operator, vin, is a discretization of the
input signal and results in the pulse shown in Figure 3.11 with the resulting outputs.

Note that the rise and fall times are independent of the value being transitioned. In
addition, the input to transition operators is best kept under the control of the modeler
- in this example with a simple if-else construct is applied to some arbitrary input
signal V(in) to generate the discrete states that become the input to the transi-
tion operator.

1. For smoothing piece-wise continuous signals see the slew analog operator.

Behavioral Descriptions 59



Behavioral Descriptions

Another characteristic of the transition operator is exhibited when the rise and
fall times are longer than the specified delay. If interrupted on a transition, transi-
tion will try to complete the transition in the specified time.

If the new final value level is below the value level at the point of the interruption
(the current value), transition uses the old destination as the origin.

If the new destination is above the current level, the first origin is retained.

In Figure 3.12, a rising transition is interrupted near its midpoint, and the new destina-
tion level of the value is below the current value. For the new origin and destination,
transition computes the slope that completes the transition from the origin (not
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the current value) in the specified transition time. It then uses the computed slope to
transition from the current value to the new destination.

Taking the module definition of Listing 3.12, the input signal is changed to create
pulses of shorter duration. The result is shown in Figure 3.13.

Because the transition function cannot be linearized in general, it is not possible
to accurately represent a transition function in AC analysis. The AC transfer
function is approximately modeled as having unity transmission for all frequencies in
all situations. Because the transition function is intended to handle discrete-valued
signals, the small signals present in AC analysis rarely reach transition func-
tions.
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3.4.5 Slew Operator

The slew operator bounds the rate of change (slope) of the waveform. A typical use
for slew is to generate continuous signals from piece-wise continuous signals1.
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When applied, slew forces all transitions of the input expr faster than mpsr to
change at mpsr for positive transitions and limits negative transitions to mnsr. The
mpsr and mnsr arguments are optional. The parameter mpsr must be greater than 0
and mnsr must be less than 0. If only one rate is specified, its absolute value is used
for both rates. If no rates are specified, slew passes the signal through unchanged. If
the rate of change of expr is less than the specified maximum slew rates, slew
returns the value of expr.

Consider the following example for the effect of different slew rates on the slew
analog operator:

LISTING 3.13 slew analog operators with different slew rates.

module slew_op(out1, out2, in);
inout out1, out2, in;
electrical outl, out2, in;

analog begin
V(out1) <+ slew(V(in), 5e8, -5e8);
V(out2) <+ slew(V(in), 1e9, -1e9);

end

endmodule

The results of applying a sinusoid of 5 Vpp and a frequency of 25MHz (which defines
a maximum slew rate of about 1.6e9 V/s) to the signal in are shown in Figure 3.15.

In DC analysis, slew simply passes the value of the destination to its output. In AC
small-signal analyses, the slew function has unity transfer function except when
slewing, in which case it has zero transmission through the slew operator.

1. For discrete-valued signals see transition.
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3.4.6 Laplace Transform Operators

The Laplace transform operators implement lumped, continuous-time filters.

The laplace transform analog operators take vector arguments that specify the coeffi-
cients of the filter. The vectors numer and denom represent the numerator and
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denominator of the transfer function of the filter. The numerator or denominator can
be expressed in the forms:

laplace_zp in which the zeros and poles of the filter are specified as pairs of
real numbers, specifying the real and imaginary components of each zero or pole.

laplace_nd in which the zeros and poles of the filter are specified as polyno-
mial coefficients from lowest order term to the highest.

laplace_zd in which the zeros of the filter are specified as pairs of real num-
bers, specifying the real and imaginary components of each zero. The poles of the
filter are specified as polynomial coefficients from lowest order term to the high-
est.

laplace_np in which the zeros of the filter are specified as polynomial coeffi-
cients from the lowest order term to the highest. The poles of the filter are speci-
fied as pairs of real numbers, specifying the real and imaginary components of
each pole.

These different forms of specifications for the numerator and denominator allow for
four different variants on specifying the filter coefficients. 1 All of the laplace analog
operators represent linear time-invariant (LTI) filters which require that the values of
the filter coefficients cannot change during a simulation. Hence, only numeric literals,
parameters or expressions of these are allowed for defining the filter coefficients. The
coefficients are arrays specified using the Verilog HDL concatenation operator ({ })
for creating arrays from these scalar constant expressions.

For example, consider the pole locations of a normalized 5’th order Butterworth low-
pass filter with a 3-dB bandwidth of 1 rad/s as shown in Figure 3.17.

The Verilog-A numerator-pole laplace operator representation of Butterworth filter
would be:

LISTING 3.14 Laplace analog operator example using laplace_np.

module laplace_op(out, in);
inout out, in;
electrical out, in;

analog

Appendix C includes references to Matlab scripts which are useful for generating Verilog-A
continuous and discrete domain filters from the filter specifications such as pass/stop bands and
ripple and sampling rate (for discrete filters).

1.
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V(out) <+ laplace_np(V(in), { 1 }, {
-0.81, 0.59, -0.81, -0.59,
-0.31, 0.95, -0.31, -0.95,
-1.0, 0.0 }) ;

endmodule

Note that the real and imaginary pairs for the zeros can be specified in any order. Con-
versely, the laplace transform operator can be expressed in the polynomial form. The
corresponding Butterworth polynomial of the filter of Listing 3.14 is:

The Butterworth polynomial can be expressed in the polynomial or numerator-
denominator form as shown in Listing 3.15.

LISTING 3.15 Laplace analog operator using laplace_nd.

module laplace_op(out, in);
inout out, in;
electrical out, in;
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analog
V(out) <+ laplace_nd(V(in), { 1.0 },

{ 1.0, 3.236, 5.236, 5.236, 3.236, 1.0 });

endmodule

The coefficients are specified from lowest to highest-order term (in this case from
to The laplace analog operators are valid for both transient and small-signal anal-
yses. Shown in Figure 3.18 is the step response for order = 2 to order = 6 for Butter-
worth low-pass filters with 3dB bandwidth of 1 rad/s. The Bode plots for the same

Butterworth are shown in Figure 3.18.

All of the different variants of the laplace analog operators are described in more
detail in Appendix C.
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3.4.7 Z-Transform Operators

The Z Transform operators implement linear discrete-time filters.
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Like the laplace analog operators, the Z-transform analog operators take vector argu-
ments that specify the coefficients of the filter. The vectors numer and denom repre-
sent the numerator and denominator of the transfer function of the filter. The
numerator or denominator can be expressed in the forms:

zi_zp in which the zeros and poles of the filter are specified as pairs of real num-
bers, specifying the real and imaginary components of each zero or pole.

zi_nd in which the zeros and poles of the filter are specified as polynomial coef-
ficients from lowest order term to the highest.

zi_zd in which the zeros of the filter are specified as pairs of real numbers, spec-
ifying the real and imaginary components of each zero. The poles of the filter are
specified as polynomial coefficients from lowest order term to the highest.

zi_np in which the zeros of the filter are specified as polynomial coefficients
from the lowest order term to the highest. The poles of the filter are specified as
pairs of real numbers, specifying the real and imaginary components of each pole.

All Z-transform filters share three common arguments, T, trf, and to. The parame-
ter T specifies the period of the filter, and is mandatory, and must be positive. A filter
with unity transfer function acts like a simple sample-and-hold that samples every T
seconds and exhibits no delay. For example, the zero-order sample-and-hold of List-
ing 3.16 is applied a sinusoidal input. The corresponding response is shown in Figure
3.21.

LISTING 3.16 Discrete analog operator using zi_nd.

module discrete_op(out, in);
inout out, in;
electrical out, in;

analog
V(out) <+ zi_nd(V(in), { 1.0 }, { 1.0 }, 10u);

endmodule

Both tau and t0 apply to the output of the discrete filter (and are similar to the char-
acterization of the transition operator). The parameter trf specifies the optional
transition time and must be non-negative. If the output transition time trf is speci-
fied as 0, then the output is abruptly discontinuous. A Z-transform filter with 0 transi-
tion time assigned directly to a source branch can generate discontinuities. Finally, t0
specifies the time of the first transition and is optional. If not given, the first transition
occurs at t = 0. Consider the example analog operators in 3.17:
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LISTING 3.17 Variation of transition parameters for Z-transform operators.

module discrete_op(out1, out2, out3, in);
inout out1, out2, out3, in;
electrical out1, out2, out3, in;

analog begin
V(out1) <+ zi_nd(V(in),

{ 1.0 }, { 1.0 }, 10u);
V(out2) <+ zi_nd(V(in),

{ 1.0 }, { 1.0 }, 10u, 2u);
V(out3) <+ zi_nd(V(in),

{ 1.0 }, { 1.0 }, 10u, 2u, 4u);
end

endmodule

The variation of the trf and t0 parameters to the discrete filter is illustrated in Fig-
ure 3.22 for the zero-order sample and hold block.
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Similar to the laplace filters, the Z-transform filters are specified in terms of poles and
zeros and have representation in both the time and frequency domains. For example, a
Chebyshev Type II lowpass filter specified as:

Pass Band = 18KHz

Stop Band = 22KHz

Ripple in Pass Band = 3dB

Ripple in Stop Band = 60dB

Sampling Rate = 100KHz

would be specified in the Verilog-A language as in Listing 3.18.1

LISTING 3.18 Verilog-A definition of a Chebyshev Type II lowpass filter.

1. This Verilog-A module was generated using the MATLAB scripts found in appendix C.
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‘include “std.va”
‘include “const.va”

// order=10 Chebyshev Type-II Low Pass Filter.

module filter(out, in);
inout out, in;
electrical out, in;

analog begin
V(out) <+ 0.01136415726096424*zi_zp( V(in), {

0.1756441185917541,
0.1756441185917541,

0.9844537285236532,
-0.9844537285236532,

-0.9309202894238989,
-0.9309202894238989,
-0.5369117667994778,
-0.5369117667994778,
-0.1554308159507361,
-0.1554308159507361,
0.07433175677690351,
0.07433175677690351,

0.3652224181768157,
-0.3652224181768157,
0.8436384027960446,
-0.8436384027960446,
0.9878467803525443,
-0.9878467803525443,
0.9972335683953182,
-0.9972335683953182

}, {
0.3844405110017898,
0.3844405110017898,
0.01384422707688819,
0.01384422707688819,
0.07803296529534992,
0.07803296529534992,
0.1797392266505038,
0.1797392266505038,
0.2881635143364021,
0.2881635143364021,

0.8271728406050872,
-0.8271728406050872,
0.1216675978586536,
-0.1216675978586536,
0.3470777160617312,
-0.3470777160617312,
0.5330681862512341
-0.5330681862512341,
0.6850968689804718,
-0.6850968689804718

}, 1.0e-05, 1.0e-7);
end

endmodule
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The large-signal transfer characteristics of the filter in Listing 3.18, to the application
of a two-tone source, 18KHz and 22KHz, thru the filter is shown in Figure 3.23.

The magnitude response of the same filter exhibits the affects of aliasing at the sam-
pling rate of 100KHz as shown in Figure 3.24.
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3.4.8 Considerations on the Usage of Analog Operators

Because analog operators are used in the definition of the large-signal response of the
model, they maintain internal state. As such, they are subject to several important
restrictions:

Analog operators can only be used within an analog block.
Analog operators should not be used inside conditional (e.g., if, ?: and case)
or looping (repeat, while, and for) statements.

The exception to the latter restriction being that analog operators are allowed if the
expression controlling the condition does not change during a simulation or is stati-
cally defined. Static expressions consist only of expressions consisting of literals,
parameters, and the analysis() function (Section 3.6.1). These restrictions are
present to prevent usage that would cause the internal state of the operator to become
out-of-date, which can result in inconsistent behavior.1

3.5 Analog Events

The analog behavior of a component can be controlled using analog events. The ana-
log events have the following characteristics:

Analog events can be triggered and detected in the behavioral model

Analog events do not block the execution of an analog block

Analog events are detected using the “@” operator

Analog events differ from standard control-flow constructs (if-else or case) in
the Verilog-A language in that the event generation and detection requires satisfying
accuracy constraints. The accuracy constraints can be either in value or time. The Ver-
ilog-A language provides two analog operators for this purpose: cross and timer.
Detection of an analog event generated by these analog operators requires using the
“@” operator. It takes the form:

@ ( event_expression ) statement

These limitations are inherent in any analog HDL. Analog HDLs can enforce this restriction
syntactically. The Verilog-A language, however, uses this semantic restriction.
1.
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The statement following the event expression is executed whenever the event expres-
sion triggers. Analog event detection in the Verilog-A language is non-blocking,
meaning that the execution of the statement is skipped unless the analog event has
occurred. This non-blocking behavior is a general characteristic of any statement
within the analog statement.

The event expression consists of one or more monitored events separated by the or
operator. The "or-ing" of any number of events can be expressed such that the occur-
rence of any one of the events trigger the execution of the event statement that fol-
lows it, as:

@(analog_event_1 or analog_event_2)
<statement>

3.5.1 Cross Event Analog Operator

The cross event analog operator is used for generating a monitored analog event to
detect threshold crossings in analog signals.

The cross function generates events when the expression argument crosses zero in
the specified direction. cross controls the timestep to accurately resolve the cross-
ing within a time resolution of timetol and value resolution of valuetol. Both
timetol and valuetol are optional.

If the direction argument, dir, is 0 or not specified, then the event and timestep con-
trol occur on both positive and negative crossings of the signal. If the direction indica-
tor is +1 (-1), then the event and timestep control only occurs on positive (negative)
transitions of the signal. These cases are illustrated graphically in Figure 3.26. For
any other transitions of the signal, the cross function does not generate an event.
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The use of timetol is relevant for rapidly changing signals. If the cross analog
operator is used to delineate regions of behavior in the model, then valuetol crite-
ria can also be applied to define the appropriate level of accuracy.

The example Listing 3.19 illustrates a clocked sample-and-hold and how the cross
operator is used to set the sample value when the rising transition of the clock passes
through 2.5.

LISTING 3.19 Verilog-A definition of sample-and-hold based on cross.

module sah(out, in, clk);
output out;
input in, clk;
electrical out, in, clk;
real state = 0;

analog begin
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@ (cross(V(clk) - 2.5, +1.0)) begin
state = V(in);

end
V(out) <+ transition(state, 1m, 0.1u);

end

endmodule

The analog event statement is specified such that it is triggered by a cross analog
operator when the value of its’ expression, V(clk) – 2.5, goes from positive to
negative.

The 1 millisecond delay specified in the transition operator for the output signal,
is seen in the simulation results between the sample taken at the rising edge of the clk
signal passing through 2.5 volts shown in Figure 3.27.

The cross analog operator maintains internal state and thus has the same restrictions
as other analog operators.
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3.5.2 Timer Event Analog Operator

The timer event analog operator is used to generate analog events to detect specific
points in time.

The timer event analog operator schedules an event that occurs at an absolute time
(as specified by the start). The analog simulator places a time point at, or just
beyond, the time of the event. If period is specified, then the timer function schedules
subsequent events at multiples of period.

For example, the following module uses the timer operator to generate a pseudo-
random bit sequence. To do this, a shift register of length m bits is clocked at some
fixed rate period as shown in Figure 3.29. An exclusive-OR of the m-th and n-th bits
form the input of the shift-register and the output is taken from the m-th bit.
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In the definition of the behavior of the pseudo-random bit sequence generator, an inte-
ger array is used to represent the shift register and the exclusive-OR operation is done
using the (^) operator as shown in Listing 3.20.

LISTING 3.20 Verilog-A behavioral definition of pseudo-random bit stream
generator using the timer analog operator.

analog begin
@(timer(start, period)) begin

res = ireg[width - 1] ireg[tap];
for (i = width - 1 ; i > 0 ; i = i - 1 ) begin

ireg[i] = ireg[i - 1];
end
ireg[0] = res;

end
V(out) <+ transition(ireg[width-1], 1n, 1n, 1n);

end

The outputs of two pseudo-random bit sequence generators are shown in Figure 3.30
for a period of 100n.
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3.6 Additional Constructs

The Verilog-A language provides some additional behavioral constructs, especially
useful in the definition of high-level behavioral models. These include access to the
simulation environment, additional methods of formulating behaviors, and iterative
statements. Some of these have already been introduced indirectly, but will be dis-
cussed in more detail in this section.

3.6.1 Access to Simulation Environment

Access to the simulation environment can be necessary for describing behaviors that
can be dependent upon external simulation conditions. For example, the following

$realtime()
$temperature()

are Verilog-A defined system tasks that provide access to the conditions under which
the component is being evaluated. The $realtime() system tasks accesses the cur-
rent simulation time and allows custom independent sources to be defined in the lan-
guage. The ambient temperature, returned by the $temperature() system task, can
be used to define temperature dependent models such as semiconductor devices.

The modeler has some degree of control over the timesteps utilized during the course
of a transient simulation via use of the bound_step() function. The real-valued
argument to bound_step()indicates the maximum timestep that the module
requires for meeting its own accuracy constraints; the simulator can make a smaller
timestep based on its own accuracy constraints or those of other modules. An exam-
ple of the use of bound_step() is provided in Section 5.5 of the applications chap-
ter.

Additionally, it becomes useful to define behaviors conditionally upon the current
analysis. For this purpose, the analysis() function is provided. analysis()takes
a string argument that is a descriptor of the analysis type to test for. For example,

analysis(“dc”)

returns 1 during DC analysis, such as that prior to transient analysis in order to deter-
mine the initial operating point, and 0 otherwise. Similarly,

analysis(“tran”)
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returns 1 during a transient analysis, and 0 otherwise. An example of the use of
analysis() for initial conditions is provided in an example of Section 3.6.2.

3.6.2 Indirect Contribution Statements

The probe-source formulation is the primary method of formulating analog behaviors.
It provides a clear and tractable description of inputs, outputs, and their relationships
in the module definition. However, in all cases it is not necessarily possible nor con-
venient to formulate behaviors as a function of the output signals. These cases occur
commonly while developing purely mathematical models or modeling multi-disci-
plinary components.

In these cases, the Verilog-A language provides the indirect contribution statement.
The indirect contribution statement allows for the specification of a behavior in terms
of a condition that must be solved for (as opposed to defining an output). The indirect
contribution statement allows descriptions of an analog behavior that implicitly spec-
ifies a branch potential in fixed-point form. This does not require that behavioral rela-
tionships be formulated in terms of the outputs.

The general form of the indirect contribution statement is:

target : branch == f( signals );

Where target represents the desired output, branch can be either of the following:

An implicit branch such as V(out).

A derivative of an implicit branch such as ddt (V(out)).

A integral of an implicit branch such as idt (V(out)).

As with contribution statements, f ( signals ) can be any combination of linear,
nonlinear, algebraic, or differential expressions of a modules input or output signals,
constants, and parameters. For example, the ideal op amp, in which the output is
driven to the voltage that results in the input voltage being zero. Using indirect contri-
bution assignments, the opamp model could be written1:

V(out) : V(in) == 0.0;

1. The behavior can also be expressed in the probe-source formulation as: V(out) <+
V(out)+V(in) ;
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which can be read as: "determine V (out) such that V(in) == 0". The indirect
contribution statement indicates that the signal out should be driven with a voltage
source and the source voltage value should be solved such that the given equation is
satisfied. Any branches referenced in the equation are only probed and not driven.

For example, the following differential equation and initial condition has a known
solution of sin

Using indirect contribution statements, the behavior would be represented as:

LISTING 3.21 Indirect contribution statement example.

analog begin
if (analysis (“dc”))

V(dx) <+ w0;
else

V(dx) <+ ddt(v(x));

V(x) : ddt(V(dx)) == -w0*w0*V(x);
end

For DC (which includes transient analysis initialization), the signal dx is set to the
initial condition of w0 by using the analysis() function within the conditional of
the if-else statement. Note that the else statement branch of the if-else
statement contains a ddt operator. This is permissible because the analysis()
statement has static properties (refer to Section 3.4.8).

The contribution statements and indirect contribution statement modelling methodol-
ogies provide similar functionality. Use of one or the other depends upon the particu-
lar modelling task at hand. However, as a general rule, the two different
methodologies are not mixed.
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3.6.3 Case Statements

As introduced in Section 3.3.5, the case statement is another statement-level con-
struct that allows for multi-way decision tests. The statement tests whether an expres-
sion matches one of a number of other expressions, and branches accordingly. The
case statement is generally used in the following form:

case (p1)
0: $strobe(“p1 == 0”);
1: $strobe(“p1 == 1”);
default: $strobe(“p1 == %d”, p1);

endcase

The expression within the case statement (p1) is evaluated and compared in the
exact order to the case items (0, 1, and default) in which they are given. Dur-
ing the linear search of the case items, if one of the case item expressions matches
the case expression given in parenthesis, then the statement associated with that
case item is executed. In this example, if p1 == 0 or p1 == 1, then we will print a
message corresponding to p1 being either 0 or 1.

If all comparisons fail, and the default item is given, then the default item
statement is executed. If the default statement is not given, and all of the compari-
sons fail, then none of the case item statements are executed. In the example, for any
case other than p1 being either 0 or 1, we print a message indicating the value of p1.

3.6.4 Iterative Statements

The Verilog-A language supports three kinds of iterative statements. These statements
provide a means of controlling the execution of a statement zero, one, or more times.

repeat executes <statement> a fixed number of times. Evaluation of the con-
stant loop_cnt_expr decides how many times a statement is executed.

repeat ( loop_cnt_expr )
<statement>

while executes a <statement> until the loop_test_expr becomes false. If
the loop_test_expr starts out false, the <statement> is not executed at all.
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while ( loop_test_expr )
<statement>

for is an iterative construct that uses a loop variable.

for ( init_expr ; loop_test_expr ; post_expr )
<statement>

for controls execution of its associated statement(s) by a three-step process as fol-
lows:

Execute init_expr, or an assignment which is normally used to initialize an
integer that controls the number of times the <statement> is executed

Evaluate loop_test_expr - if the result is zero, the for-loop exits, and if it is
not zero, the for-loop executes the associated <statement>

Execute post_expr, or an assignment normally used to update the value of the
loop-control variable, then continue.

As the state associated with analog operators cannot be reliably maintained, analog
operators are not allowed in any of the three looping statements.

3.7 Developing Behavioral Models

For both novice and seasoned model developers, a methodology for developing and
validating behavioral models is essential. The process of developing a behavioral
model should provide for a development of an intuitive understanding of the model as
well as the system in which it will operate. In contrast to digital simulation which is
activity-directed and the signals that effect a model can be easily isolated, behavioral
models defined for analog simulation must account for the loading and timing (or lack
thereof) in the whole system.

3.7.1 Development Methodology

A methodology for developing behavioral models should encourage a process of step-
wise refinement from the concept, to implementation and validation of the model. The
conceptual stage involves developing an understanding of what the behavioral model
is to accomplish in terms of capabilities and performance and other specifications.
The formulation, preferably beginning from an existing model, is the factorization of
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that specification into structural and behavioral components and its actual implemen-
tation. Verification and/or validation of the model includes the development of test
benches that can be used to test the behavior of the module to the original specifica-
tions. The methodology and development used for verification and validation of the
model can also be applicable in the verification of the final circuit-level implementa-
tion.

3.7.2 System and Use Considerations

A module defined in a behavioral language such as Verilog-A can be used as a com-
ponent within different types of systems and this should be reflected in the verifica-
tion phase of the module. For example, developing a behavioral model for use as a
component within a library would require much more rigorous formulation, as well as
have more stringent criteria for validation, than a model developed strictly for use as a
component in one specific design.

Understanding the context of use can also help the model developer make appropriate
decisions for accuracy as well as for efficiency in simulation. The transition ana-
log operator, which converts a discrete input to a piece-wise linear output, is charac-
terized in terms of rise (tr) and fall (tf) times of the output.

pwl_output = transition(disc, td, tr, tf) ;

Using very small values for tr and tf, relative to the overall length of the simulation
can be very costly in terms of simulation time. Moreover, the resulting fast-changing
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output will not necessarily reflect the physical system or the underlying implementa-
tion. Similar considerations can be made when defining the sensitivity of a a model to
its inputs as in the use of tolerances in the cross operator.

3.7.3 Style

One of the major benefits of HDL-based design is the ability to convey and reuse
designs that are represented at a high-level of abstraction. This ability to communi-
cate the design information effectively amongst a group of designers is enhanced by
adopting consistent and agreed-upon techniques of style for the development of mod-
els. For example, the following are some of the common denominators in the devel-
opment of behavioral models that are easily defined:

Port ordering convention (inputs first, then outputs or vice-versus).

Degree of parameterization of the model and naming conventions.

Use of the Verilog pre-processor for enabling consistency and code documentation
purposes.

Coding style (layout) conventions for the module definitions.

The basic underlying theme is to plan for model reuse.
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CHAPTER 4 Declarations and
Structural Descriptions

4.1 Introduction

Structural definitions in the Verilog-A language are the primary mechanism by which
a hierarchical design methodology such as top-down is facilitated for analog and
mixed-signal designs. The Verilog-A language allows analog and mixed-signal sys-
tems to be described by a set of components or modules and the signals that intercon-
nect them. The connection of these modules is defined in terms of the parameters, as
well as the ports or connection points, declared within the module definitions. The
declaration of parameters and ports within the module definition define the interface.
The interface definition determines how the module will be instantiated as part of a
structural module definition or as a component within a Spice netlist.

This chapter overviews the parameter, port, local variable and signal declarations, as
well as module instantiations within the Verilog-A language. This chapter also looks
at how module definitions relate to their instantiations.

4.2 Module Overview

A module in the Verilog-A language represents the fundamental user-defined type. A
module definition can be an entire system, or only a component within a system. A
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module definition can be an active component in the system in which it effects the
signals in the system, either dependently or independently. Conversely, a module can
be a passive component which only monitors activity in the system, performing func-
tions associated with test benches.

Other than adhering to the constructs of the Verilog-A language, there are no restric-
tions on the type of systems that can be represented and how the representation is
defined. Module descriptions can include any number and type of parameters, be an
entirely structural or behavioral description, or include aspects of both structure and
behavior.

The general constituents of a module definition include the interface declarations and
the contents. The interface declarations consist of both the port and parametric decla-
rations of the module. The module contents can be composed of structural instantia-
tions, behavioral relationships, or both. For illustration purposes, the Verilog-A
description for a phase-lock loop system is used as shown in Figure 4.1.

The corresponding Verilog-A definition of the system is listed in Listing 4.1.

LISTING 4.1 Verilog-A definition of VCO and PLL.

‘include “std.va”
‘include “const.va”

module pd(out, in1, in2);
inout out, in1, in2;
electrical out, in1, in2;

parameter real gain = 1.0;
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analog
V(out) <+ gain*V(in1)*V(in2);

endmodule

module lpf(l, r, gnd);
inout l, r, gnd;
electrical l, r, gnd;

parameter real res = 1k;
parameter real cap = 1u;

I(l, r) <+ V(l, r)/res;
I(r,gnd) <+ ddt(V(r, gnd)*cap);

endmodule

module vco(out, in);
inout out, in;
electrical out, in;

parameter real ampl = 1.0; // V
parameter real fc = 10.0k; // Hz
parameter real kv = 1.0k; // V/s

real freq_v; // local variable declaration

analog begin
freq_v = fc + kv*V(in);
V(out) <+ ampl*sin(2*‘M_PI*idt(freq_v));

end

endmodule

// structural definition of the pll system
module pll(out, in, gnd);

inout out, in, gnd;
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electrical out, in, gnd;

electrical pdout, vcoout; // local signals

pd pd1(pdout, in, vcoout);
lpf 1pf1(pdout, out, gnd);
vco vco1(vcoout, out);

endmodule

The module definitions listed above consist of four primary components:

interface declarations (port and parameter declarations for all modules).

structural instantiations (module instantiations declared in the pll module).

local variable declarations (freq_v in the vco module).

behavioral relationships (vco constitutive relationship).

The module definition of the phase-locked loop (pll), declares (instantiates) the
phase detector (pd), low-pass filter (lpf), and voltage-controlled oscillator (vco)
components. The definition of the phase-locked loop module defines the connectivity
of the other components comprising the system. In addition, parameters specified at
one level in the hierarchy can be passed down to lower levels during instantiation.

The structural instantiation of components within the Verilog-A language is depen-
dent upon the nature of the interface port and parameter declarations of the module,
and the language constructs used for instantiation.

4.2.1 Introduction to Interface Declarations

The interface declarations for a module definition include both port and parameter
declarations. The port declarations define the type and direction of signals and indi-
cate how that component can be instantiated within a structural description. The
parameters to the module can be used to characterize both behavior and structure.

Analog signals in the Verilog-A language are defined in terms of the quantities com-
posing the signal. As described previously, the definition of a signal type is encapsu-
lated in the nature and discipline definitions and must be known before used
within a module definition. The following Verilog-A preprocessor construct is used to
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include the standard definitions of signals and physical constants prior to the defini-
tion of any modules.

‘include "std.va"
‘include "const.va"

The vco uses the standard definition for electrical systems of the discipline of type
electrical for declaring the types of the ports.

module vco(out, in);
inout out, in;
electrical out, in;

The electrical discipline characterizes the type of the signals between compo-
nents in the system. This example declares the ports of the vco to be of types inout
(bidirectional) which is a characteristic of conservative systems.

Parameter declarations include both the name and default values. Parameters for the
vco, include the amplitude of the output sinusoid (ampl), the center frequency of the
oscillator (fc), and the conversion gain of the oscillator (kv), are declared by the fol-
lowing1:

parameter real ampl = 1.0; // V
parameter real fc = 10.0k; // Hz
parameter real kv = 1.0k; // V/s

For both port and parameter declarations, the order within the module definition is
significant as this defines how the module is instantiated within a hierarchical design.
These concepts will be expanded upon further in section 4.3.2.

4.2.2 Introduction to Local Declarations

The Verilog-A language supports local declarations of variables of type integer
and real, as well as analog signals. In the vco module, the line

real freq_v; // local variable declaration

declares a local variable freq_v for use within the module. Similarly, local signals,
or signals that do not appear within the modules port or connection list, are declared

1. The Verilog-A language specification extends the Verilog HDL specification to include
optional type specifiers on parameter declarations. This is described in Section 4.3.2.
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in the same manner: a discipline type name followed by a list of one or more identifi-
ers of the signals. The difference between local and port signal declarations is that the
local signal declarations do not have directions associated with them. Local signals
are typically used for defining intermediate structure within the module or for higher-
order formulations of analog behaviors. In the pll module definition of Listing 4.1,

electrical pdout, vcout;

declares signals pdout and vcout that are local to the pll module and used only
for connecting the pll’s instantiated components.

4.2.3 Introduction to Structural Instantiations

The Verilog-A language supports hierarchical descriptions by allowing modules to be
embedded within other modules. Higher level modules create instances of lower-level
modules and communicate with them through input, output, and inout ports.

The pll module definition instantiates the modules pd, lpf, and vco via the decla-
ration statements:

pd pd1(in, pdout, vcout);
lpf lpf1(pdout, out, gnd);
vco vco1(vcoout, out);

For example, we instantiate one vco instance named vco1 within the pll module
definition.

The type and direction of the signals, as well as parameters, used within the instantia-
tion statements must be compatible with the respective declarations within the child
module definition(s). The assignment of the connections and parameters of child
modules is done via port and parameter association. The association can be done via
named association, which assigns an expression or signal in the parent module with
the parameter or signal name in the child module, or by positional association, which
assigns an expression or signal to the order of declaration of a parameter or signal in
the child module.
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4.3 Module Interface Declarations

A module definition is enclosed between the keywords module and endmodule, in
which the identifier following the keyword module is the name of the module being
defined. For the vco module previously defined:

The optional list of ports specify an ordered list of the module’s ports. The order spec-
ified will be significant when instantiating the module. The identifiers in this list must
be declared with a discipline type defining the type of the signal and a directional
specifier such as input, output, and inout in declaration statements within the
module definition.

In addition to port declarations, module definitions can also optionally incorporate
declarations of parameters incorporating default values and optional range checks. As
with ports, the order of declaration can be significant when instantiating the module.

4.3.1 Port Signal Types and Directions

Ports provide a means of interconnecting instances of modules. For example, if a
module X instantiates module Y, the ports of module Y are associated with either the
ports or the internal signals of module X. Associating connections between modules
requires that both the type and the direction of the signals are compatible. The Ver-
ilog-A language requires that both the type and direction attributes be declared for
each of a modules’ port signals.

The Verilog-A language uses the discipline definition for the type of the declaration
for module ports (ports are also analog signals or nodes). Hence, the type of a mod-
ules’ ports are declared by giving their discipline type, followed by the list of
port identifiers as,
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electrical out, in;

which declares two signals, out and in, of type electrical. The electrical
discipline must have been defined prior to its use in the declaration. In essentially all
cases, the definition of a discipline type comes from the standard include files,

‘include “std.va”

which is read prior to any module definitions.

The direction of a port can be specified as input, output, or inout (bidirec-
tional)1. If the direction is specified as being an input port, then the module will
only monitor the signals at the port and not modify them. That is, within the module
the port can only be passed into other modules as input ports and the signals on the
ports can only be used in expressions. A signal declared as input cannot be used on
the left side of a contribution statement (as a source).

If the direction is specified as being an output port, then the module will only affect
the signals at the port, but not be affected by them. Thus, the port can be passed to
instances of other modules as output ports and the signals on the ports cannot be
used in expressions but can be used on the left side of a contribution statement.
Finally, ports that are declared as being inout or bidirectional are not subject to
these restrictions.The syntax for port directional declarations is illustrated by example
below:

module vco(out, in);
electrical out, in;
inout out, in;

Two signals, out and in, in the port list of the vco are declared of type electri-
cal. The syntax for the port direction specification follows that from the type of the
port signals.

If the direction of the port is not specified, it is taken to be bidirectional (inout). In
analog system modeling, a port, which is also a node, represents a point of physical
connection between modules of continuous-time descriptions obeying conservation-
law semantics. Thus, in most cases, the inout directional specifier is used. In mod-

1. The directional specifiers input, output, and inout are only relevant for signals
within the modules port list. Internal signals only require (allow) the type specifier or disci-
pline.

94 Verilog-A HDL



Module Interface Declarations

ule definitions in which signal-flow behavioral modeling is used, or when the direc-
tional specifiers are required as an documentation aid in a conservative description,
the unidirectional specifiers input and output are appropriate.

In Verilog HDL, there is a close association of the directionality specified for the ports
due to the activity-directed nature of digital simulation. In the Verilog-A language, for
analog simulation, the same degree of association does not exist as all analog signals
or unknowns in the analog system are solved for simultaneously.

Listing 4.2 and 4.3 provide examples of port declarations and their usage.

LISTING 4.2 Definition and usage of conservative signals

module conservative(p, n);
electrical p, n;
inout p, n;

// ports p, n used on both sides of contribution
analog

V(p, n) <+ I(p, n)*R;

endmodule

LISTING 4.3 Definition and usage of signal-flow signals.

module signal_flow(out, in);
voltage out, in;
output out;
input in;

parameter real gain = 1.0;

// out only used for source, in only for probe.
analog

V(out) < + gain*V(in);

endmodule
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4.3.2 Parameter Declarations

Parameter declarations are extensions of the basic integer and real type declara-
tions supported by the Verilog-A language. Parameters differ in that parameter decla-
rations must have initialization or default value expressions. Parameters can be
modified via structural instantiation to have values that are different from those speci-
fied by the default value expression. In addition, parameters support an extended dec-
laration syntax for range checking which allow the model developer to define
acceptable ranges or values for the parameters. Specifying the valid range of values
that a parameter can be assigned to during instantiation allows the model developer
the ability to restrict the values for the parameters to insure proper and/or expected
use of the model.

The basic syntax of parameter declarations is illustrated below:

The parameter keyword can be followed by an optional type specification (real
or integer) prior to the parameter name (p1 above). If a type of a parameter is not
specified, it is derived from the type of the value of the default value expression. If the
type of the parameter is specified, and the value of the default expression conflicts
with the declared type of the parameter, the value of the default expression is coerced
to the type of the parameter.

As parameters are considered constants1 during the simulation. As constants, a
default value for the parameter must always be specified in its declaration. This also
infers that the parameter value can only be set during the instantiation of the module,
and hence it is illegal to modify their value at runtime.

1. Their values are know at elaboration or at the time of instantiation and do not change during
the course of the simulation.
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The parameter declaration can contain optional specifications of the permissible range
of the values for that parameter. The range specification consists of a qualifier and a
range. The value of a parameter is checked against the range during instantiation, and
is not a runtime assertion check.

The qualifiers for the range specification include either from or exclude. If the
keyword from is used, the value of the parameter must be within the following
range. If the keyword exclude is used, the value of the parameter must be outside
of the specified range. For the range, the use of brackets for the lower bound specifier
(lb_spec) and upper-bound specifier (ub_spec), [ and ] respectively, indicate
inclusion of the end point lb or ub in the range. The use of parenthesis for the
lb_spec or ub_spec, ( and ) respectively, indicate exclusion of the end point lb
or ub from the valid range. It is possible to include one end point and not the other by
mixing inclusion/exclusion combinations of the range bound specifiers, such as [ ) or
( ]. In all cases, the first expression in the range must be numerically smaller than the
second expression in the range (lb < ub).

More than one range may be specified for inclusion or exclusion of values as legal
values for the parameter. The keyword inf may be used to indicate infinity for one or
the other bound if there is none. Examples of legal parameter declarations are shown
in Listing 4.4.

LISTING 4.4 Example parameter declarations

parameter real p1 = 1.0;
parameter real p2 = 1.0 from (0:inf);
parameter integer ip1 = 1 exclude 0;
parameter p3 = 1.0;
parameter real p4 = 1;
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4.4 Local Declarations

Local declarations are variables and signals declared within the scope of a modules
definition. For variables in the Verilog-A language, this includes variables of types
integer and real. For signals, these can be of any defined discipline type.

Variable declarations in the Verilog-A language are similar to many programming
languages in that the type keyword is followed by a list of one or more identifiers. The
identifiers can be scalar or vector. Each variable identifier is initialized to zero, as ini-
tializer expressions for non-parameters is not allowed. For example,

LISTING 4.5 Illustration of local variable declarations.

module ex(out, in);
inout out, in;
electrical out, in;

parameter integer width = 4;

real x, y;
real d[0:width - 1];

electrical t1, t2;

endmodule

The first declaration, “real x, y;”, declares two real-type variables named x and
y. The second, “real d[0:width - 1];”, declares a real-type vector with a left
bound of 0, and an upper bound of width - 1. The size of the vector d is parame-
terized by the parameter width and includes both the left-bound and right-bound
elements.

Signal declarations are similar in that the discipline is treated as a user-defined
type. The declaration,

electrical t1, t2 ;
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declares two signals of type electrical named t1 and t2. These signals can be used in
the instantiation of components of a structural definition for the module (Section 4.5),
in defining internal structure for the module, or higher-order behavioral definitions.

4.5 Module Instantiations

A structural description in Verilog-A is any description in which a module instantiates
another module within the scope of its definition. A structural definition for the sys-
tem will define an explicit hierarchy in the design.

Instantiation allows one module to incorporate a copy of another module into itself by
instantiating it1. The module instantiation statement creates one or more named
instances of a defined module.

When one module instantiates another module, it can alter the values of any parame-
ters declared within the instantiated module. The common ways to alter parameter
values are:

Module instance parameter value assignment by order, which allows values to be
assigned in-line during module instantiation in the order of their declaration. This
is known as positional association of module parameters.

Module instance parameter value assignment by name, which allows values to be
assigned in-line during module instantiation by explicitly associating parameter
names with the overriding values. This is known as named association of module
parameters.

Similarly, for connections to the model, there are two ways to assign ports of the
instantiated module to the local connection points:

Module instance parameter value assignment by order, which allows values to be
assigned in-line during module instantiation in the order of their declaration (posi-
tional association).

Module instance parameter value assignment by name, which allows values to be
assigned in-line during module instantiation by explicitly associating parameter
names with the overriding values (named association).

1. A module definition does not contain the text of another module definition within its mod-
ule-endmodule keyword pair.
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The general syntax for module instantiation are:

mod_name #(param_assigns) inst_name(port_assigns)

Where param_assigns and port_assigns can be either by positional or
named association. Within an individual param_assigns or port_assigns of
a module instantiation, positional and named association cannot be mixed.

4.5.1 Positional and Named Association Example

The example of Figure 4.2 of a sub-ranging 8-bit A/D will be used to illustrate the
parametric specification and port connection of the module instantiation process. The
sub-ranging A/D consists of two 4-bit A/Ds, a 4-bit D/A, summing, and gain stages.

The Verilog-A language definition of the interfaces (parameters and ports) of the rele-
vant portions of the instantiated components, as well as the structural definition of the
sub-ranging N-bit A/D system are shown in Listing 4.6.

LISTING 4.6 Verilog-A definition of the 8-bit sub-ranging A/D structure.

// module interface declarations for a2d definition
module a2d(d0, d1, d2, d3, in, clk);

input in, clk;
output d0, d1, d2, d3;
electrical in, clk;
electrical d0, d1, d2 , d3 ;

100 Verilog-A HDL



Module Instantiations

parameter real vrange = 1.0;
parameter real tdel = 10n;
parameter real trise = 10n;
parameter real tfall = 10n;

endmodule

// module interface declarations for d2a definition
module d2a(out, d0, d1, d2, d3, clk);

output out;
input d0, d1, d2, d3, clk;
electrical out;
electrical d0, d1, d2, d3, clk;

parameter real vthresh = 0.5;
parameter real tdel = 10n;
parameter real trise = 10n;
parameter real tfall = 10n;

endmodule

module sum(out, posin, negin);
inout out, posin, negin;
electrical out, posin, negin;

endmodule

module gain(out, in);
inout out, in;
electrical out, in;
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endmodule

// structural instantiations of all child modules
module subranging_a2d(bit0, bit1, bit2, bit3,

bit4, bit5, bit6, bit7, in, clock);
output bit0, bit1, bit2, bit3,

bit4, bit5, bit6, bit7;
input in, clock;
electrical bit0, bit1, bit2, bit3,

bit4, bit5, bit6, bit7;
electrical in, clock;

// internal signals
electrical aout, rem_out, gain_out;

// structure
a2d #(.vrange(5.0))

msb_a2d(bit4, bit5, bit6, bit7, in, clock),
lsb_a2d(bit0, bit1, bit2, bit3, gain_out, clock);

d2a #(.vthresh(2.5))
convrtr(aout, bit4, bit5, bit6, bit7, clock);

sum sum1(rem_out, aout);
gain gain1(gain_out, rem_out);

endmodule

This example will be used in the following sections as an example of the variations
for assigning parameters and connecting ports in structural definitions.

4.5.2 Assignment of Parameters

Parameter value assignment by position is a method for assigning values to parame-
ters within module instances of a module to any parameters that have been specified
in the definition of that module.
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The order of the assignments in module instance parameter value assignment must
follow the order of declaration of the parameters within the module. For example, in
the a2d module defined previously:

Parameter value assignment by name, or named association, is a method for assigning
values to parameters within a module instance to any parameters that have been spec-
ified in the definition of that module. Parameters are assigned within the declaration
or instantiation statement (within the “#(...)”) in the parent module definition. The
name of the parameter to be assigned must be preceded by a period (.) and must be the
name of a parameter in the definition of the module being instantiated. The overriding
value for each parameter must be a constant expression and must be enclosed in
parenthesis (( )).

Named association is used for the two a2d module instances within the
subranging_a2d module. The following lines instantiated the two components
msb_a2d and 1sb_a2d of the a2d module:

a2d #(.vrange(5.0))
msb_a2d(bit4, bit5, bit6, bit7, in, clock),
lsb_a2d(bit0, bit1, bit2, bit3, gain_out, clock);

For both instances, the vrange parameter is set to 5.0. Note that the parameter
vrange belongs to the module a2d. The expression that is used to initialize the
parameter, 5.0, is evaluated in the context of the instantiating module
(subranging_a2d).

Positional association is the other way to assign values to parameters. The order in
which parameters are passed in the declaration or instantiation statement (within the
“#(...)”), correspond to the order in the definition of the module. It is not necessary to
assign values to all of the parameters within a module using this method, only up to
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the last parameter in the module definition that should be assigned a value different
from its default value. For example, using the a2d instances of subranging_a2d:

a2d #(5.0)
msb_a2d(bit4, bit5, bit6, bit7, in, clock),
lsb_a2d(bit0, bit1, bit2, bit3, gain_out, clock);

also assigns the value 5.0 to the parameter vrange of both instances as vrange is
the first parameter defined in the a2d module. Note that it is not possible to skip over
a parameter assignment using this method. An alternative is to assign values to all of
the parameters, but use the default value (the same value assigned in the declaration
of the parameter within the module definition) for those parameters that do not need
new values. For instance,.

a2d #(5.0, 10n, 15n, 15n)
msb_a2d(bit4, bit5, bit6, bit7, in, clock),
lsb_a2d(bit0, bit1, bit2, bit3, gain_out, clock);

The above instantiates the components (msb_a2d and lsb_a2d) of the
subranging_a2d module with specified parameter values of vrange = 5.0
as before, and trise = 15n, and tfall = 15n. Parameter tdel is assigned
its default value of 10n as specified in the definition of the a2d module. Only those
parameters whose value is being overridden from the modules default value need
specification within the declaration statement.

4.5.3 Connection of Ports

One method of making the connection between the ports listed in a module instantia-
tion and the ports defined by the instantiated module is the ordered list - that is, the
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ports listed for the module instance must be in the same order as the ports listed in the
module definition. For example, in the a2d module defined previously:

The following instantiates a components (msb_a2d) of the a2d module defined
above:

The second way to connect module ports consists of explicitly linking the two names
for each side of the connection - the name used in the module definition, followed by
the name used in the instantiating module. This compound name is then placed in the
list of module connections. The name of the port must be the name specified in the
module definition (same as for parameters).

Using connection by name, the previous example can be rewritten:
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a2d #(.vrange(5.0))
msb_a2d(.d0(bit4), .d1(bit5), .d2(bit6),

.d3(bit7), .in(in), .clk(clock)),
lsb_a2d(.d0(bit0), .d1(bit1), .d2(bit2),

.d3(bit3), .in(gain_out), .clk(clock));

The two types of module port connections can not be mixed; connections to the ports
of a particular module instance must be all by order or all by name. The are rules gov-
erning the way module ports are declared and the way they are interconnected. The
most important of which is that all ports connected to a node must be compatible with
each other as well as to the discipline of the node1.

1. The node of any discipline type is compatible in a connection to the ground or ref-
erence node.
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CHAPTER 5 Applications

5.1 Introduction

The Verilog-A language can be used to describe the analog behaviors of both electri-
cal and non-electrical systems at different levels of abstractions. To illustrate this, a
number of examples are given in this chapter using different modeling objectives and
techniques. The examples illustrated in this chapter include modeling of:

Common emitter amplifier

Voltage regulator

Operational amplifier

QPSK modulator and demodulator

Frequency synthesizer

Position control system

The modeling and characterization of a common emitter amplifier is used to illustrate
three levels of models for the amplifier. The first model is only applicable for mid-
band operation, where gain is constant over a given frequency range. The other two
examples of the common emitter amplifier, show different styles to include gain
behavior outside the midband range. Spice simulation results are provided for refer-
ence.
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An operational amplifier example includes the model of the op amp, including a test
bench model to measure the settling time characteristics of the amplifier. The effects
of poles in the gain/frequency plot is modeled using two techniques. One model uses
a resistor and a capacitor in the transfer function to provide the dominant low fre-
quency pole effect. The other example models a higher frequency second order pole
using a Laplace transform function.

The voltage regulator example includes a bandgap reference circuit which uses a
curve-fitting equation to define the output voltage. The equation includes the effect of
supply voltage and temperature variation. The equation was derived from extrapo-
lated data obtained from transistor-level Spice simulations, traceable to actual silicon.

Three system level examples are also given. The QPSK modulator and demodulator
show high-level modeling of analog behaviors in which nonlinearities are present. A
fractional N-loop frequency synthesizer illustrates analog and digital modeling in a
mixed-signal system. An antenna position-control system is used to illustrate the use
of the Verilog-A language in modeling and optimization of electro-mechanical sys-
tems.

5.2 Behavioral Modeling of a Common Emitter
Amplifier

A single transistor common emitter amplifier is used to illustrate the concept of devel-
oping a model. This classic example provides a good review of basic principals of cir-
cuit design and analysis. It includes DC biasing requirements, transistor parameter
considerations, and AC constraints due to the transistor parasitics and discrete capaci-
tors used in the design.

Results from the simulation of the Verilog-A common emitter amplifier model can be
compared to Spice transistor-level simulations and with laboratory measurements, if
desired.

This section explains a bottom-up methodology of step-wise refinement in analog
behavioral model development consisting of the following:

spice transistor model

functional model

structural model for the behavior .
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behavioral model

It is common to define different levels of abstractions in the model of a component for
either top-down or bottom-up design methodologies. Functional models can be used
to verify connectivity of the component within the system of a larger design, while
more detailed behavioral and transistor-level models can be utilized to investigate
higher-order effects on performance.

The common emitter amplifier circuit to be modeled is shown in Figure 5.1. It con-
tains a generic npn transistor, biasing resistors, and coupling capacitors, designed to
provide a small signal gain of around 25 in the midband frequency range between a
low frequency zero less than and high frequency pole greater than

Typically, Spice circuit simulation results are used as a reference for integrated circuit
model development. The Spice transistor model parameters can be characterized to
agree with silicon test structures, and provide a path to link the simulation results to
the manufacturing process.
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For the purpose of the Verilog-A model development, a test structure, as shown in
Figure 5.2, is utilized for encapsulating the different representations of the amplifier.

The gain block is an inverting amplifier, that is, the output is inverted with respect to
the input. To develop an understanding for the design requirements and constraints,
the amplifier circuit is analyzed in detail, within and outside the midband range.

The Spice input file for the common emitter amplifier is shown in Listing 5.1.1

LISTING 5.1 Spice listing of common emitter amplifier test bench for
representations of all models in this section.

* title: test bench for models

* Verilog-A input files
.verilog "ceamp_fm.va"
.verilog "ceamp_rc.va"
.verilog "ceamp_lp.va"

* sources
Vcc 1 0 dc 12

1. The Spice test bench file contains references to all the behavioral models being
developed in this section.
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Vin 6 0 dc 0 ac 1 sin(0 10m 10k)

* biasing resistors
Rs 5 6 4k
Rb1 4 0 4k
Rb2 1 4 8k
Rc 1 2 6k
Re 3 0 3.3k

* load resistors
Rsp out_sp 0 4k
Rfm out_fm 0 4k
Rrc out_rc 0 4k
Rlp out_lp 0 4k

* coupling capacitors
Cin 5 4 1uf
Ce 3 0 10uf
Cout 2 out_sp 1uf

* transistors
Q1 2 4 3 Qnpn
.model Qnpn npn (Is=48.718fA BF=200 BR=100.1m Rb=0
+ Re=0 Rc=0 Cjs=0F Cje=4.5pF Cjc=3.5pF Vje=750mV
+ Vjc=750mV Tf=461.95ps Tr=10ns mje=333.33m
+ mjc=333.33m VA=200V ISE=0A IKF=10mA Ne=1.5)

* Verilog-A behavioral models
xa1 6 out_fm ceamp_fm gain=25
xa2 6 out_rc ceamp_rc gain=25
xa3 6 out_lp ceamp_lp gain=25

.op

.ac dec 1k 10 100Meg

.tran 1n 200u

.end

The common emitter amplifier is first simulated at the transistor level with Spice for
the amplifier biased in the midband frequency range. The results of running a Spice
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small-signal transient analysis on the common emitter amplifier is shown in Figure
5.3. The transient simulation results of Figure 5.3(a) are used to verify the connectiv-

ity and proper operation of the amplifier. In addition, the small-signal AC response of
Figure 5.3(b) of the amplifier offers some insight into the model requirements.

5.2.1 Functional Model

When the amplifier is used within the midband frequency range, a simple gain model
without frequency effects is adequate for system evaluation purposes. Functional
models are useful for top-level system architectural design and analysis. From the
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previous transistor-level Spice analysis, a simple functional model can be valid for
the midband frequency range between 1kHz to 400kHz. With this simplification, we
only need to focus on modeling the gain characteristics.

With reference to the schematic of Figure 5.1, the gain of the amplifier at midband is
determined using the following equation:

The resistance at the base of the npn is related to the following parameters:

where is the internal resistance of the npn between the base and the emitter, and
is resistance from the external base to the internal intrinsic base of the npn. The effec-
tive load resistance is a parallel combination of resistances at the output node.

The output resistance of the npn is a function of a constant called the Early
voltage, and the collector current The transconductance of the npn is
3.85mA/V  at  T = 300K and In this example the current is 1mA. With

and using the values from the schematic, and a npn
transistor with a gain equal to 200, the amplifier gain is calculated.

The derived value of is used as the gain value in the simple functional model of
Listing 5.2.

LISTING 5.2 Verilog-A module definition for common emitter amp
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module ceamp_fm(in, out);
inout in, out;
electrical in, out;

parameter real gain = 1.0;

analog begin
V(out) <+ V(in)*(-gain);

end

`include "std.va"

endmodule

The gain of the amplifier can be selected with parameters passed into the model from
the test bench (Spice circuit file) or from another Verilog-A module. If a parameter is
not specified during instantiation, the default value declared in the behavioral model
file is used. In this example the parameter gain is specified in the Spice circuit file
as,

xa1 in out ceamp_fm gain = 25

and the default value declared in the Verilog-A model file,

parameter real gain = 1.0;

System performance can be easily studied with various amplifier gain values by
choosing the value in the Spice circuit file, without having to rewrite and test the
model. The final transistor level circuit design can then be completed and character-
ized with a final gain selected for optimum system level performance. In this example
the gain of the behavioral model was selected to be 25 to match results with Spice
simulations. The results from the transistor-level Spice and functional model simula-
tions are shown in Figure 5.4.

5.2.2 Modeling Higher-Order Effects

Modeling higher-order effects in the common emitter amplifier to account for the fre-
quency response, requires developing an intuitive understanding of the circuits gen-
eral behavior. For example, in the amplifier, the input and output capacitors will
appear as near open circuits at 0 Hz, and as near short circuits at high frequencies
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(although the capacitors do have leakage and resistive components which is not fac-
tored in). The first order basic equation for the gain of the common emitter amplifier,
as a function of frequency is:

Fortunately, there is a dominant low frequency zero which allows the equation to be
simplified, yielding one easier to use while adequately representing the behavior:

The effective emitter resistance, as a function of circuit and npn transistor parameters,
is required in the low frequency zero calculation. It is dependent upon the following
relationship:
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The dominant low frequency zero, as a result of the effective resistance between the
emitter and ground, is given by the following equation:

In a similar fashion, the dominant high frequency pole is approximated by the follow-
ing relationship:

And, as discussed during midband model development, the term is the transistor
transconductance, the parameters and are the dominant intrinsic npn resis-
tances, and the values and are the dominant npn capacitance for the design.
Discrete values from the schematic and parameters from the midband gain analysis
are used in the calculation of and with the following results:

These approximations were verified using the transistor-level Spice small-signal AC
analysis as shown previously in Figure 5.3 (b).

5.2.3 Structural Model of Behavior

As previously discussed, the gain of the amplifier is not constant with respect to fre-
quency because of parasitic capacitances of the transistor, AC coupling capacitors,
and the bypass capacitors. A structural/behavioral model, based upon a classical RC
network using the Verilog-A language, can be used to model the amplifier as a func-
tion of frequency. The simple RC network, followed by the gain stage, is used to
model gain and frequency response characteristics of common emitter amplifier (Fig-
ure 5.5). The gain of the amplifier has been modified to 25 to match the characteristics
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of the Spice model. The other values for the structural RC network were selected by
first setting resistor R1 to 4000 ohms, calculating the capacitance C1 at      and then
adjusting the value until the simulation results of the structural model matched the
transistor-level Spice simulation. The calculated value of the capacitance C1 is 68nF.

The value of Cl was tuned to l00nF for use in the simplified behavioral model. The
same procedure is use to determine R2 and C2. Resistor R2 is selected to be 100k,
capacitor C2 was calculated at and tuned to match Spice results. The final value
for C2 is 2.8pF.

The resulting Verilog-A model file is shown in Listing 5.3. Internal nodes are declared
within the module for the RC network. The analog block is used to implement the
behavior.

LISTING 5.3 Verilog-A module of ce-amp w/RC bandpass filter.

`include "std.va"

module mbce_amp_rcn(in, out, gnd);
inout in, out, gnd;
electrical in, out, gnd;

parameter real gain = 1.0;
parameter real r1 = 4k;
parameter real c1 = 100n;
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parameter real r2 = 100k;
parameter real c2 = 2.8p;

electrical n1;
electrical n2;

analog begin
I(in, n1) < + c1*ddt (V(in, n1));
V(n1, gnd) <+ r1*I(in, n1);
I(n1, n2) <+ V(n1, n2)/r2;
I(n2, gnd) <+ c2*ddt(V(n2, gnd));
V(out, gnd) <+ V(n2, gnd)*(-gain);

end

endmodule

Transient analysis of the common emitter amplifier based on the RC bandpass net-
work for a sinusoidal input is shown in Figure 5.6 (a). Figure 5.6 (b) shows the mag-
nitude of the frequency response. Both are compared to the transistor-level
simulations and exhibiting the expected behavior.

5.2.4 Behavioral Model

The Verilog-A language includes built-in Laplace transform functions that implement
lumped linear continuous-time filters. This transform is used to model the frequency
effects of the amplifier by treating the behavior as a simple bandpass filter,

The laplace_nd analog operator is used in this behavioral model to provide the
behavior of the gain with respect to frequency. The simplified form of the frequency
response equation for the amplifier is expanded and coefficients are calculated for use
in the laplace_nd analog operator.
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where,
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are used as the starting point values for the coefficients in the denominator expres-
sion. The coefficients were then tuned to match Spice transistor-level simulations.

LISTING 5.4 Verilog-A model of ce-amp using laplace analog operators

`include "std.va"

module com_emtr_amp_lp(in, out, gnd);
inout in, out;
electrical in, out;

parameter real gain = 1.0;

analog begin
V(out, gnd) <+ -gain*laplace_nd( V(in),

{ 0.0, 1.0 }, // numerator zeros
{ 3.6k, 1.001, 3.7e-7 } ) ; // denomenator poles

end

endmodule

After curve-fitting to the transistor-level Spice reference simulation results, the coeffi-
cients for the denominator of the laplace_nd analog operator of the model in List-
ing 5.4 become 2K, 1.001, and 2.7e-7 respectively. The transient and small-signal AC
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analysis for the resulting behavioral model is shown in Figures 5.8 (a) and (b) respec-
tively.

121



5.3 A Basic Operational Amplifier

Operational amplifiers are key building blocks for the analog functions used within
signal processing systems. The basic configuration of this op amp as shown in Figure
5.8, is a voltage-to-current converter followed by an inverting voltage amplifier which
drives a current output buffer. The amplifier gain is provide by the first and second
stages. The first stage converts a differential input voltage to a single ended output
current which drives the second gain stage. The bypass capacitor around the sec-
ond stage, ensures stable operation within the intended frequency range of operation
by bypassing higher frequencies around the gain stage, reducing the gain to zero at
some high frequency value. The bypass capacitor will also set the slew rate, or the
maximum rate of change reflected in the output for any given step at the input of the
amplifier, since it must be charged and discharged with current from the input ampli-
fier stage.
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5.3.1 Model Development

A variety of modeling levels can be used to describe the operational amplifier. These
range from a simple functional model with a gain equation to sophisticated models
with pole and zero effects, as well as noise behavior, offset and drift effects.

The first example uses a simple model useful for top-level architectural studies. The
symbols to represent the behavior of the basic stages of the op amp are shown in Fig-
ure 5.9.
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The input impedance for the op amp is modeled with a simple resistor across the dif-
ferential input. The frequency behavior of the first gain stage is represented by pass-
ing the signal through a laplace transform function filter. The dominant pole
introduced in the second gain stage is modeled using the analog operator in conjunc-
tion with a resistor and a capacitor  Note the slew rate of the model is the rate
at which the capacitor can be charged and discharged in this RC low pass filter. The
voltage-controlled voltage source is used to create a zero-impedance output stage
with infinite sourcing capability. In higher-level models the output stage usually con-
tains output impedance and output voltage swing limitation characteristics. These
effects are not included in this model.

The Verilog-A module definition of the op amp using the conceptual model is shown
in Listing 5.5.

LISTING 5.5 Verilog-A model of the operational amplifier

`include “std.va”
`include "const.va"

module opamp(inm, inp, out);
inout inm, inp, out;
electrical inm, inp, out;

parameter real gain = 250k;
parameter real rgm = 2.3k;
parameter real cc = 30p;
parameter real rin = 2Meg;
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electrical vin, vo;

analog begin
I(inp, inm) <+ V(inp, inm)/rgm;
V(vin) <+ laplace_nd(gain*V(inp, inm),

{ 1.0 },{ 1.0, 5.0e-7 });
I(vin, vo) <+ V(vin, vo)/rgm;
I(vo) < + ddt(cc*V(vo));
V(out) <+ V(vo);

end

endmodule

For the purpose of the Verilog-A model development, a test structure symbol, as
shown in Figure 5.10, is utilized to encapsulate the amplifier. In addition to develop-
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operational amplifier. Here, we will develop a module that sets up the step input and
measures the settling time at the output of the op amp.

Listing 5.6 shows the circuit file for the operational amplifier circuit used to test the
model:

LISTING 5.6 Spice netlist of the operational amplifier test bench

* basic operational amplifier

.verilog "op_amp.va"

Vb inp 0 dc 0
Vin 1 0 dc 0 ac 1 sin(0 10m 1k 0 0)

xamp1 inm inp out 0 opamp

Rin 1 inm 10k
Rf inm out 100k
Rload out 0 100k
Cload out 0 20p

.op

.ac dec 100 0.1 10Meg

.tran 10u 3m

.end

The magnitude response of the op amp for AC small-signal simulation results of the
operational amplifier are shown in Figure 5.11. The bode plot shows both the low and
high-frequency poles of the op amp.
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The op amp transient response to a sinusoidal input verifying the functionality of the
model is shown in Figure 5.12.
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Measuring the settling time of an operational amplifier can be automated by develop-
ment of a Verilog-A module that acts as a test bench for the device under test. The
conceptual approach is illustrated in Figure 5.13. A measurement module sets up a

stimulus to the Device Under Test (or DUT) under known conditions and records the
results. At the end of the simulation, the measure results are summarized.
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5.3.2 Settling Time Measurement

The module (Listing 5.7) performs the measurement using a timer analog operator
to initialize a step on the stimulus signal that provides the input to the operational
amplifier. The measurement module then senses the crossings of the output of the
module when they are within +/- 5% of the final state value. The times of the cross-
ings are recorded, the settling time being the difference between the latest crossing
time and the start of the stimulus step input.

LISTING 5.7 Verilog-A model of settling-time test bench measurement

module settling_test(stim, meas);
inout stim, meas;
electrical stim, meas;

parameter real vstep = 5.0;
parameter real tstart = 1.0u;
parameter real interval = 10.0u;

real vstim;
real last;

analog begin
// generate stimulus



vstim = vstep;
last = tstart;

end
V(stim) <+ transition(vstim, 0.0, 1.0n, 1.0n);

// measure results - op amp is in inverting
@(cross(V(meas) - 1.05*vstep, -1.0)) begin

last = $realtime();
end
@(cross(V(meas) - 0.95*vstep, +1.0)) begin

last = $realtime();
end

// report at end of measurement interval.
@(timer(interval)) begin

$strobe(“settling time = %g s.”,
last - tstart);

@(timer(tstart)) begin

endmodule

end
end
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The result of the measurement is printed to the standard output using the $strobe

system task. The results of the measurement simulation are shown in Figure 5.14. The
results for the simulation are recorded to the standard output as:

settling time = 2.84e-06 s.

5.4 Voltage Regulator

The architecture of the voltage regulator (Figure 5.15), is composed of a bandgap ref-
erence model, the operational amplifier model from Section 5.3, a module to repre-
sent the current of the op amp, and a switch model. The bandgap reference circuit
which a curve-fitting equation to define the output voltage. The equation includes the
effect of supply voltage and temperature variation. The equation was derived from
extrapolated data obtained from transistor-level Spice simulations, traceable to actual
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silicon behavior. The reference is connected to an amplifier module that boosts the
voltage to 3.3 volts and provides the current necessary to drive the load. A switch
model connects the reference voltage to the amplifier so that the voltage can be
switched to zero for power down applications. The switch model was reused in the
current load model that represents the current required by the amplifier. This illus-
trates how another module can be added to include the current loading requirements
of behavioral models. Separate modules can be used, or the behavior can be included
in the functional definition of the module, depending upon design requirements and
modeling methodology.

At the heart of most voltage regulators in integrated circuit design is a bandgap volt-
age reference (Listing 5.8). The voltage is proportional to the band-gap voltage
of silicon, and a thermal voltage evaluated at a given temperature. With careful
design a low voltage drift with respect to temperature can be maintained throughout a
given temperature range. Theoretical calculations can predict the first order behavior
of the generated voltage, but secondary effects due to differing manufacturing pro-
cesses must be considered, and the model tuned to match performance.

LISTING 5.8 Verilog-A model of bandgap reference

// bandgap reference
`include "std.va"
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`include "const.va"

module bandgap(vcc, vbg, temp);
inout vcc, vbg, temp;
electrical vcc, vbg, temp;

parameter real vbg_nom = 1.0;
parameter real icc_nom = 10.0e-6;
real tempC_swp;
real vcc_appl;

analog begin
tempC_swp =(V(temp) - 27.0)/27.0;
vcc_appl =(V(vcc) - 5.0)/5.0;
I(vcc, gnd) <+ (icc_nom - 2.78e-8*tempC)*

(1.0 + (0.01*(V(vcc) - 2.0)));
V(vbg) <+ vbg_nom - 0.0008 +

1.1m*vcc_appl - 0.5m*tempC_swp*tempC_swp;
end

endmodule

The Verilog-A equation for the voltage and the cell current are:

I(vcc, gnd) <+ (icc_nom – 2.78e–8*tempC)*
(1.0 + (0.01*(V(vcc) - 2.0)));

V(vbg) <+ vbg_nom - 0.0008 +
1.1m*vcc_appl - 0.0005*tempC_swp*tempC_swp;

The switch model in the voltage regulator uses a control signal to change the charac-
teristics of its output branch (Listing 5.9). The model monitors changes in the control
signal with the use of the cross analog operator. The control signal is then compared
to its threshold value to determine the state of the switch. The variable that is set is
then used to set either the voltage or current condition at the output branch, I (vp,
vn) or V(vp, vn) depending upon the switch state. Note the use of preprocessor
defines (‘OPEN and ‘CLOSED) to help document the module description.

LISTING 5.9 Verilog-A simple switch model.

‘define OPEN 1
‘define CLOSED 0
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module sw(vp, vn, vctrlp, vctrln);
inout vp, vn, vctrlp, vctrln;
electrical vp, vn, vctrlp, vctrln;

parameter real vth = 2.0;

integer sw_state;

analog begin
@(cross(V(vctrlp, vctrln) - vth, 0.0, 1u)) ;

if ((V(vctrlp, vctrln) - vth) > 0.0)

else
sw_state = `OPEN;

sw_state = `CLOSED;

if (sw_state == `OPEN)
V(vp, vn) <+ 0.0;

else
I(vp, vn) <+ 0.0;

end

endmodule

The op amp current load model is used to generate a current, Icc2, to represent the
cell current of the amplifier. The current load module, icc, is derived from the switch
module (Listing 5.10), excepting in this case the objective is to sink 20.0u of current
to represent the load of the op amp during the switching on condition.

LISTING 5.10 Current load module.

‘define OPEN 1
‘define CLOSED 0

module icc(vcc, vctrlp, vctrln);
inout vcc, vctrlp, vctrln;
electrical vcc, vctrlp, vctrln;

parameter real vth = 2.0;
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integer sw_state;

analog begin
@(cross(V(vctrlp, vctrln) - vth, 0.0, 1.0u)) ;

if ((V(vctrlp, vctrln) - vth) > 0.0)
sw_state = `CLOSED;

sw_state = `OPEN;

if (sw_state == `OPEN)

else

I(vcc) < + 0.0;
else

I(vcc) <+ 20.0u;
end

endmodule

The icc module can be part of the amplifier module or maintained separately,
depending upon the design style, reuse considerations, and model methodology. By
including the cell current, we can accurately capture the total amount of current used
within the system. For example, during architectural studies the current can be moni-
tored to help select various configurations for the system. The current for the bandgap
reference, Icc1, is included in the bandgap model and is constant because the cell is
not switched off in this application.

5.4.1 Test Bench and Results

Circuit file for the bandgap reference circuit used to test the model is shown in Listing
5.11. The circuit file includes tests for temperature, supply voltage, and the switching
characteristics.

LISTING 5.11 Spice netlist of bandgap reference test bench

* voltage regulator circuit.

.verilog "bandgap.va"

.verilog "sw.va"

.verilog "icc.va"
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.verilog "op_amp.va"

vcc1 vcc 0 dc 3.0
vc cntrl 0 dc 2.5 pulse(0 2.5 0.1m 50u 50u 2.5m 5m)
vtemp temp 0 dc 25.0

xbg vcc vbg temp bandgap vbg_nom=1.295 icc_nom=19u
xicc vcc cntrl 0 icc vth=1.0
xsw vbg inp cntrl 0 sw vth=1.0
xamp1 inm inp vout opamp

* amplifier biasing
Rf2 inm vout 100k
Cf inm vout 150p
Rf1 inm 0 61k
Rinp inp 0 30k
Rload vout 0 5k

.op

.dc vtemp -40 140 1

.dc vcc 4 6.1

.tran 1u 6m

.end

The output voltage is designed for a nominal bandgap voltage of 1.259 volts. The
results of simulation using the Verilog-A model over a temperature range of -40 to
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180 degrees Celsius is shown in Figure 5.16. The “bow” in the voltage with respect to
temperature is a typical characteristic for bandgap based voltage reference.

Figure 5.17, shows the output voltage and the cell current as the supply voltage is var-
ied over the expected range of usage from 4 to 6 volts.
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Figure 5.18, testing the dynamic response of models, verifies the output voltage as a
function of the switch current between the reference and the buffer amplifier.
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5.5 QPSK Modulator/Demodulator

Quadrature phase-shift keying, or QPSK, is an example of a modulation technique in
which the information carried within the signal is contained in the phase. The phase
of the signal can take on one of four values, such as shown in the constellation dia-
gram of Figure 5.19.

5.5.1 Modulator

As shown in the QPSK modulator schematic (Figure 5.20), the incoming binary
sequence is transformed into polar form by a nonreturn-to-zero (NRZ) encoder. Here,
the binary 1 and 0 symbols are transformed into +1 and -1 respectively. The NRZ data
stream is de-multiplexed into two separate binary sequences consisting of the odd-
and even-numbered input bits. These binary sequences are used to modulate a pair of
quadrature carriers, which are added together to produce the QPSK signal.

The QPSK modulator module consists of two primary components for the polariza-
tion of the input data sequence and the modulation of the quadrature components to
produce the QPSK signal. The modulator samples the input data stream (0s and 1s)
and converts it to the corresponding -1 or +1 every period seconds using the
timer operator. An integer variable state is toggled to convert the serial data
stream into two parallel streams for modulating the quadrature carriers.

LISTING 5.12 Verilog-A module definition of QPSK modulator
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module qpsk_mod(out, in);
inout out, in;
electrical out, in;

parameter real offset = 0.0n;
parameter real period = 100.0n;
parameter real oscfreq = 2 .0e7;

real an, bn, bnm1;
integer state;

analog begin
@(timer(offset, period)) begin

if (state == 0) begin
an = (V(in) > 2.5) ? 1.0 : -1.0;
bn = bnm1;

end else begin
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bnm1 = (V(in) > 2.5) ? 1.0 : -1.0;

state = !state;
end

end

V(out) <+ (1.0/sqrt(2.0))*
(an*cos(2.0*`M_PI*oscfreq*$realtime()) +
bn*sin(2.0*`M_PI*oscfreq*$realtime()));

bound_step(0.05/oscfreq);
end

endmodule

To insure that an accurate representation of the QPSK signal is generated, the simula-
tion timestep is bounded to require a minimum of 20 points per oscillator period using
the bound_step function. The bound_step function acts to limit the timestep
utilized during the simulation. Its primary use is for the accurate generation of inde-
pendent sources such as the modulator. In this case,

bound_step(0.05/oscfreq);

limits the timestep used in the representation of the modulated signal to a minimum of
20 points per the period of the oscillator (Figure 5.21).
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The output of the modulator (shown in Figure 5.22), shows the constant-envelope
modulator output with the phase transitions at the changes in the input data sequence.

5.5.2 Demodulator

The QPSK demodulator, shown in Figure 5.23, consists of a pair of correlators sup-
plied with a locally generated pairs of reference signals. The outputs of the correla-
tors, and are compared to a threshold of zero for their respective in-phase and
quadrature channel outputs. For the in-phase channel, if then a decision is
made in favor of symbol 1. Likewise, if then a decision is made in favor of the
symbol 0. A similar process occurs for the quadrature channel. The two binary
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sequences are combined in a parallel-to-serial converter to produce the original binary
input sequence.

LISTING 5.13 Verilog-A definition of QPSK demodulator.

module qpsk_demod(out, in);
inout out, in;
electrical out, in;

parameter real offset = 0.0n;
parameter real period = 100.0n;
parameter real oscfreq = 2.0e7;

real x_i, x_q;
real v_i, v_q;
real d_i, d_q;
real bout;
integer integreset;
integer state;
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analog begin
v_i = V(in)*cos(2.0*`M_PI*oscfreq*$realtime());
v_q = V(in)*sin(2.0*`M_PI*oscfreq*$realtime());

integreset = 0;
@(timer(offset, period)) begin

integreset = 1;
d_i = (x_i > 0.0) ? 5.0 : 0.0;
d_q = (x_q > 0.0) ? 5.0 : 0.0;

end

x_i = idt(v_i, 0.0, integreset);
x_q = idt(v_q, 0.0, integreset);

@(timer(offset, period)) begin
if (state == 0) begin

bout = d_i;
end else begin

bout = d_q;
end
state = !state;

end

V(out) < + transition(bout, 1n, 1n, 1n);
end

endmodule

The timer analog operator is used to sample the output of the quadrature correlators at
the symbol period rate. The real variables x_i and x_q are used to store the correla-
tor outputs from the previous evaluation time. At the same time the correlator outputs
are sampled, the variable integreset is set to 1, causing the correlators to be reset
to the specified initial condition ( 0.0) .

integreset = 0;
@(timer(offset, period)) begin

integreset = 1;
d_i = (x_i > 0.0) ? 5.0 : 0.0;
d_q = (x_q > 0.0) ? 5.0 : 0.0;

end
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5.6 Fractional N-Loop Frequency Synthesizer

This example illustrates design and analysis of a N.F frequency synthesizer, where N
is the integer multiple of the number and F is the fractional portion that the synthe-
sizer multiplies its input signal by.
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x_i = idt(v_i, 0.0, integreset);
x_q = idt(v_q, 0.0, integreset);

A more detailed model of the demodulator would extract the timing information from
the incoming signal and use that to synchronize the symbol extraction.

Resetting the integrators at the symbol period implements an integrate-and-dump
algorithm for determining the symbol thresholds as shown in Figure 5.24.



The architecture, shown in Figure 5.25, consists of a divide-by-N frequency synthe-
sizer, augmented to provide fractional loop division. The fractional loop division is
carried out by removing pulses (module PR) prior to the divide-by-N counter which
feeds the phase detector. A pulse is removed whenever the accumulator (module
ACCUM) detects that the number of reference clock pulses times the fractional part
exceed one. To adjust for the phase error that occurs due to the missing pulses, the
accumulator generates an offset term that is summed in with the VCO control signal.

The structural definition of the fractional n-loop frequency synthesizer is shown
below. The resistor and capacitor instantiations that constitute the low-pass
filter use simulator built-in primitives (see the test bench Listing 5.14 for their defini-
tions).

LISTING 5.14 Verilog-A definition for the structural module of the frequency
synthesizer.

‘include "std.va"
‘include "const.va"
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parameter integer n = 1;
parameter integer f = 1;

accu #(.fract(f), .tdel(2n), .trise(2n), .tfall(2n))
xaccu(phase_offset, overflow, in);

fpd #(.tdel(2n), .trise(2n), .tfall(2n))
xpd(in, ndiv_out, inc, dec);

cp #(.cmag(.2m), .tdel(1n), .trise(5n), .tfall(5n))
xcp(inc, dec, filt_in, gnd) ;

sum
xsum(vco_in, filt_in, phase_offset);

dvco #(.fc(20e6), .gain(2e6), .tdel(10n), .
trise(2n), .tfall(2n)) xvco(vco_in, out);

pulrem #(.tdel(10n), .trise(2n), .tfall(2n))
xpulrem(rem_out, out, overflow);

divbyn #(.ratio(n))
xdivbyn(ndiv_out, rem_out);

capacitor #(.cap(50p)) c1(filt_in, comm);
resistor #(.resis(10k)) r1(comm, gnd);
capacitor #(.cap(5p)) c2(comm, gnd) ;

endmodule

5.6.1 Digital VCO

The digital vco defines a relationship between its input voltage and output frequency
as follows:
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The algorithm used must have two discernible states that can be used to drive the vco
output. Consider the algorithm represented graphically in Figure 5.26.

The period, T, is defined by a full cycle of the integration - integrating the characteris-
tic equation from 0.0 to 0.5 and then back to 0.0 again. The direction of the inte-
gration is set by the variable integ_dir, which is also used to define the output
(either 0 or 1). The implementation of this algorithm for the VCO is shown in Listing
5.15.

LISTING 5.15 Verilog-A definition of the digital vco.

‘include "std.va"
‘include "const.va"
‘include "logic.va"

module dvco(in, out);
inout in, out;
electrical in, out;

parameter real fc = 200.0;
parameter real gain = 1.0;

parameter real tdel = `LF_GATE_PROP_DELAY;
parameter real trise = `LF_GATE_01_DRIVE_DELAY;
parameter real tfall = `LF_GATE_10_DRIVE_DELAY;
parameter real vhigh = `LF_GATE_LOGIC_HIGH;
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real vout;
real period;
real integ_dir;

initial begin
integ_dir = 1.0;

end

analog begin
period = idt(integ_dir*(fc + kv*V(in));

// catch rising transition.
@(cross(period - 0.5, +1.0)) begin

integ_dir = -1.0;
end

// catch falling transition.
@(cross(period, -1.0)) begin

integ_dir = 1.0;
end

vout = 0.5*vhigh*(integ_dir + 1.0);
V(out) <+ transition(vout, tdel, trise, tfall);

end

endmodule

The variable period is used to store the value of the integral. Analog events are
generated whenever the value of period crosses 0.5 in the positive or upward direc-
tion, or 0 .0 in the negative or downward direction. At the generation of these events,
the output is toggled via the integ_dir variable, and the direction of the integra-
tion is reversed.

5.6.2 Pulse Remover

The pulse-removing module needs to monitor the overflow signal from the accumula-
tor in order to determine when to remove a pulse from the vco output prior to the
counter. A flag, rn, is used to determine when to signal that an overflow condition
has been received. This flag is checked on the next input transition - if set, that transi-
tion is effectively ignored. The use of a flag (versus direct clearing of the output
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value) allows that an entire pulse will be removed, and not partial pulses. The imple-
mentation is shown in Listing 5.16.

LISTING 5.16 Verilog-A definition of pulse-remover

‘include "std.va"
‘include "const.va"
‘include "logic.va"

module pulrem(out, in, remove);
inout out, in, remove;
electrical out, in, remove;

parameter real tdel = ‘LF_GATE_PROP_DELAY;
parameter real trise = ‘LF_GATE_01_DRIVE_DELAY;
parameter real tfall = ‘LF_GATE_10_DRIVE_DELAY;
parameter real vthresh = ‘LF_MID_THRESH;

real vout_val = 0.0;
integer rn = 0;

analog begin
@(cross(V(in) - vthresh, +1.0)) begin

vout_val = (rn) ? 0.0 : 5.0;
rn = 0;

end
@(cross(V(in) - vthresh, -1.0)) begin

vout_val = 0.0;
end

// set the rn (remove_next) flag on positive
// transitions of the remove signal.

@(cross(V(remove) - vthresh, +1.0)) begin
rn = 1 ;

end
V(out) <+ transition(vout_val, tdel, trise,

tfall) ;
end

endmodule
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5.6.3 Phase-Error Adjustment

The accumulator module is used to both determine the removal of pulses from the vco
output for the control loop and to provide the phase-error correction voltage that is
required to offset the missing pulse. At each edge of the reference input, a summation
register vsum is incremented with the fractional loop value. When this value exceeds
the equivalent value of 1.0, the overflow bit is set and vsum is set to the remainder.
The overflow bit is reset on the next clock cycle of the reference input.

LISTING 5.17 Verilog-A definition of phase adjustment accumulator

‘include "std.va"
‘include "const.va"
‘include "logic.va"

module accu(sum, ovf, ref);
inout sum, ovf, ref;
electrical sum, ovf, ref;

parameter real tdel = ‘LF_GATE_PROP_DELAY;
parameter real trise = ‘LF_GATE_01_DRIVE_DELAY;
parameter real tfall = ‘LF_GATE_10_DRIVE_DELAY;
parameter real vthresh = ‘LF_MID_THRESH;

parameter real fract = 1.0;
parameter real scale = 1.0;

real vsum = 0.0;
real vovf = 0.0;

analog begin
@(cross(V(ref) - vthresh, +1.0)) begin

vsum = vsum + fract;
if (vovf > 0.0) begin

vovf = 0.0;
end
if (vsum > 10.0) begin

vsum = vsum - 10.0;
vovf = 5.0;

end
end

149



V(ovf) <+ transition(vovf, tdel, trise, tfall);
V(sum) <+ transition(0.1*scale*vsum, tdel,

trise, tfall);
end

endmodule

5.6.4 Test Bench and Results

Listing 5.18 is the test bench designed for evaluating the system performance. The
input reference clock is 4MHz. The loop multiplication factor is set to 5.4 (N=5, F=4)
and thus the vco output frequency should be at 21.6MHz.

LISTING 5.18 Spice netlist of frequency synthesizer test bench.

* Fractional N-loop frequency synthesizer
.verilog "accu.va"
.verilog "cp.va"
.verilog "dvco.va"
.verilog "divbyn.va"
.verilog "fnfs.va"
.verilog "fpd.va"
.verilog "pulrem.va"
.verilog "sum.va"

vref ref 0 dc 0 pulse(0 5 10n 2n 2n 100n 250n)

xfnfs out ref 0 fnfs n=5 f =4

.model capacitor c

.model resistor r

.tran .02u 10. 0u

.end

The test bench setup defines two model definitions (for resistor and capaci-
tor) which are simulator primitives instantiated from within the fnfs structural
description.
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Figure 5.27 shows the dynamic characteristics of the vco input signal. The phase-
locked loop achieves lock after approximately five microseconds.
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Figuire 5.28 shows the output signal after the vco acquires lock. Note, that for five
clock cycles of the reference signal, the output goes through 27 cycles (5.4 * 5).
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5.7 Antenna Position Control System

This example illustrates some of the multi-disciplinary modeling capabilities of the
Verilog-A language. The antenna position control system, shown in Figure 5.29, con-
sists of both electrical and mechanical (rotational) components.

The position control system employs two potentiometers, one for converting the
external position control into a voltage and another for sensing the current position of
the antenna. The outputs of the potentiometers feed into a differential amplifier which
drives the motor. The antenna is driven by the output of the motor via a gearbox.

The potentiometers are defined in terms of electrical and rotational disci-
plines. The rotational discipline relates an angle to a torque and is used to sense
the position of the input shaft of the potentiometer. The motor, gearbox, and antenna
mechanical components are defined in terms of the rotational_omega discipline
which relates angular velocity to torque. Hence, we integrate the angular velocity of
the antenna to determine its position.
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5.7.1 Potentiometer

The potentiometer model converts a rotational position into a voltage. The module is
parameterized in terms of the minimum and maximum values of the potentiometer
control shaft. The corresponding output voltage scale is controlled by the value of the
voltage across the input pins, inPos and inNeg.

LISTING 5.19 Verilog-A potentiometer definition.

module potentiometer(out, shaft, inPos, inNeg);
output out;
input shaft, inPos, inNeg;
electrical out;
rotational shaft;
electrical inPos, inNeg;

parameter real min_angle = -‘M_PI;
parameter real max_angle = ‘M_PI;

real scale, shaft_angle;

analog begin
if (Theta(shaft) > max_theta)

shaft_angle = max_theta;
else if (Theta(shaft) < min_theta)

shaft_angle = min_theta;
else

shaft_angle = Theta(shaft);

scale = V(inPos, inNeg)/(max_cntrl - min_cntrl);
V(out) <+ V(inNeg) + scale*ctrl_val;

end

endmodule

5.7.2 DC Motor

The core of any DC motor is an electrical armature which converts between electrical
and mechanical power without any loss. The electrical properties of the motor include
its resistance,      and                  inductance, The mechanical properties are the motors iner-
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tia, and rotational friction, The back voltage generated by the motor is
times the angular frequency of the motor, , and the torque is times the current
through the motor, This is shown diagrammatically in Figure 5.30.

The equations describing the terminal and output characteristics of the motor become:

Within the DC motor module, these equations representing the constitutive behavior
of the component are:

Tau(shaft) <+ Kt*I(in) - Bm*Omega(shaft) -
ddt(Jm*Omega(shaft));

V(in) <+ Rm*I(in) + ddt(Lm*I(in)) + Km*Omega(shaft);

5.7.3 Gearbox

The motor translates torque to the antenna via a gearbox. In addition to the transla-
tional affects of the gear ratios between the two shafts, the model for the gearbox
must be bidirectional in that the torque from the motor must affect the antenna, and
the inertial load of the antenna must be expressed on the load of the motor.
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If we assume that the gears do not slip, then equating translational distance for the
two gears in terms of their angular position yields:

The relationship between the torque on the two shafts is related by the force at the
point of contact, where The total torque on the shaft is the exter-
nally applied torque less the inertia of the gear.

LISTING 5.20 Verilog-A gearbox model.

module gearbox(shaft1, shaft2);
inout shaft1, shaft2;
rotational_omega shaft1, shaft2;

parameter real r1 = 1 from (0:inf);
parameter real i1 = 1m from [0:inf);
parameter real r2 = 1 from (0:inf);
parameter real i2 = 1m from [0:inf);

analog begin
Omega(shaft1) <+ Omega(shaft2)*(r2/r1);
Tau(shaft2) <+ i2*ddt(Omega(shaft2)) +

(Tau(shaft1) - i1*ddt(Omega(shaft1)))*r2/r1;
end

endmodule

5.7.4 Antenna

The antenna represents a rotational load on the shaft of the gearbox which is charac-
terized in terms of the inertia.

LISTING 5.21 Verilog-A antenna model.

module antenna(shaft);
inout shaft;
rotational_omega shaft;

parameter real i = 1 ;
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analog begin
Tau(shaft) <+ i*ddt(Omega(shaft));

end

endmodule

5.7.5 Test Bench and Results

The modules are assembled in the Listing 5.22 as per the schematic of Figure 5.31.

LISTING 5.22 Spice netlist of antenna position controller test bench

* position controller

.verilog “servo.va”

vsupply supply 0 5.0
vctrl inpos 0 pwl(0 0 1 0 2 -1.0472
+ 10 -1.0472 11 0.7854 20 0.7854)

xinpot supply 0 inpos diffplus potentiometer
+ min_ctrl=-1.5708 max_ctrl=1.5708

xdiffamp inmotor diffplus diffminus diff_amp k = 24

xmotor inmotor outangle motor_dc

xgearbox outangle gearangle gearbox
+ r2=10 i1=0 i2=0

xantenna gearangle antenna inertia=1

xintgr8 igearpos gearangle intgr8 pos_ic = 0

xoutpot supply 0 igearpos diffminus potentiometer
+ min_ctrl = -1.5708 max_ctrl = 1.5708

.tran 0.01 20

.end
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In Figure 5.31, we show the applied position to the control system and the response
for both light and heavy antennas. The position input to the system is in radians.

The applied voltage to the motor is shown in Figure 5.32
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Compiler Directives

Appendix A

Verilog-A source files are a stream of lexical tokens. A lexical token consists of one
or more characters. The layout of tokens in a source file is free format - spaces and
newlines are not syntactically significant other than being token separators, except
escaped identifiers.

The types of lexical tokens in the language are as follows:

white space

comment

operators

number

string

identifier

keyword

A.1.1 White Space

White space contains the characters for spaces, tabs, newlines, and form feeds. These
characters are ignored except when they serve to separate other lexical tokens.
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A.1.2 Comments

The Verilog-A language has two forms to introduce comments. A one-line comments
starts with two characters / / and ends with a newline. A block comment starts with
a / * and ends with a * /. Block comments can not be nested. The one-line comment
token / / does not have any meaning within a block comment.

A.1.3 Operators

Operators are single, double, or triple character sequences and are used in expres-
sions. Unary operators appear to the left of their operand. Binary operators appear
between their operands. A conditional operator has two operator characters that sepa-
rate three operands. The following table lists the Verilog-A operators and their
descriptions.
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plus

minus

times

divide

modulus

logical or

logical and

bit or

bit and

bit xor

bit xnor

neg

left shift

right shift

less than

greater than

less equal

greater equal

not equal

+

*

/

%

<<

>>

<

>

>=

!=

||

&&

|

&

-

~

<=
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equal

assignment

contrib

ternary

A.1.4 Numbers

Constant numbers can be specified as integer or real constants.

Integer constants are specified in decimal format as a sequence of digits 0 through 9,
optionally starting with a plus or minus unary operator. The underscore character (_)
is legal anywhere in a decimal number except as the first character. The underscore
character is ignored. This feature can be used to break up long numbers for readability
purposes.

Real constant numbers are represented as described by IEEE STD-754-1985, an IEEE
standard for double precision floating point numbers.

Real numbers can be specified in either decimal notation (for example, 14.82) or in
scientific notation (for example 1.6e8, which indicates 1.6 multiplied by 10 raised to
the 8th power). Real numbers expressed with a decimal point must have at least one
digit on each side of the decimal point.

Real numbers can be specified with the following letter symbols for the scale factors
indicated:
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T

G

Meg

K

m

u

n

p

f

a

10e12

10e9

10e6

10e3

10e-3

10e-6

10e-9

10e-12

10e-15

10e-18

<+

?:

=  =

=



Lexical Conventions and Compiler Directives

No space is permitted between the number and the symbol. This form of floating-
point number specification is provided in the Verilog-A language in addition to the
other methods for writing floating point numbers.

Real numbers are converted to integers by rounding the real number to the nearest
integer, rather than truncating it. Implicit conversion takes place when a real number
is assigned to an integer. The ties are rounded away from zero.

An identifier is used to give an object an unique name so that it can be referenced. An
identifier can be any sequence of letters, digits, and the underscore characters (_).

The first character of an identifier can not be a digit; it can be a letter. Identifiers are
case sensitive.

Escaped identifiers start with the backslash character (\) and end with white space
(space, tab, newline). They provide a means of including any of the printable ASCII
characters in an identifier (the decimal values 33 through 126 or hexadecimal values
21 through 7E).

Neither the leading back-slash character nor the terminating white space is considered
part of the identifier.

Keywords are predefined non-escaped identifiers that are used to define language con-
structs. All keywords are defined in lowercase only.

A.1.5 Conversion

A.1.6 Identifiers, Keywords and System Names

A.1.7 Escaped Identifiers

A.1.8 Keywords
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A.1.9 Verilog-A Keywords

Verilog-A Language Tokens

abstol

case

discipline

enddiscipline

flow

idt_nature

inout

nature

potential

while

access

ddt

else

endmodule

for

if

input

output

real

analog

ddt_nature

end

endnature

from

inf

integer

or

repeat

begin

default

endcase

exclude

idt

initial

module

parameter

units

A.1.10 Math Function Keywords

abs

asinh

cosh

max

sinh

acos

atan

exp

min

sqrt

acosh

atanh

ln

pow

tan

asin

cos

log

sin

tanh

The following table contains the standard mathematical functions supported by the
Verilog-A language and their regions of validity. The operands must be numeric (inte-
ger or real). For min, max, and abs , if either operand is real, both are converted to
real as is the result. Arguments to all other functions are converted to real.
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The following table defines the trigonometric and hyperbolic functions supported by
the Verilog-A language. All operands must be of the numeric type (integer and real)
and are converted to real if necessary. All arguments to the trigonometric and hyper-
bolic functions are specified in radians.

As with any mathematical description language, the Verilog-A language requires that
the model developer (and user of the model) understand the usage conditions. Almost
all the mathematical and trigonometric functions, by their definition, have some
restrictions on their inputs. Consideration of these properties require that the modeler
understand the types and ranges of signals that the model will be used under and
develop accordingly.

A.1.11 Analog Operator Keywords

Analog operators are described in Chapter 3.
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analysis

laplace_nd

slew

zi_np

bound_step

laplace_np

timer

zi_zd

cross

laplace_zd

transition

zi_zp

delay

laplace_zp

zi_nd



A.1.12 System Tasks and Functions

Compiler Directives

The ($) character introduces a language construct that enables development of user-
defined tasks and functions. A name following the ($) is interpreted as a system task
or a system function.

See Appendix B. for Verilog-A system tasks and their descriptions

All Verilog-A language compiler directives are preceded by the ( ‘) character. This
character is called accent grave. It is different from the character ( ’ ), which is the sin-
gle quote character. The scope of compiler directives extends from the point where it
is processed, across all files processed, to the point where another compiler directive
supersedes it or the processing completes.

The following compiler directives are available:

A.2.1 ‘define and ‘undef

The directive ‘define creates a macro for text substitution. This directive can be
used both inside and outside module definitions. After a text macro is defined, it can
be used in the source description by using the (‘) character, followed by the macro
name. The compiler substitutes the text of the macro for the string ‘macro_name.
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A.2 Compiler Directives

‘define

‘else

‘endif

‘ifdef

‘include

‘resetall

‘undef



All compiler directives are considered predefined macro names; it is illegal to rede-
fine a compiler directive as a macro name. A text macro can be defined with argu-
ments. This allows the macro to be customized for each individual use. An example
of the definition and use is illustrated below:

Lexical Conventions and Compiler Directives

‘define threshold 0.5
‘define pp_max(a,b) ((a > b) ? a : b)

@(cross(V(thr) -‘threshold, 0.0))

V(out) <+ ‘pp_max(V(in1), V(in2));

The macro text can be any arbitrary text specified on the same line as the text macro
name. If more than one line is necessary to specify the text, the newline must be pre-
ceded by a backslash (\). The first newline not preceded by a backslash will end the
macro text The newline preceded by a backslash is replaced in the expanded macro
with a newline (but without the preceding backslash character).

For an argument-less macro, the text is substituted “as-is” for every occurrence of the
‘text_macro. However, a text macro with one or more arguments must be expanded
by substituting each formal argument with the expression used as the actual argument
in the macro usage.

A.2.2 ‘ifdef, ‘else, ‘endif

These conditional compilation compiler directives are used to optionally include lines
of a Verilog-A language source description during compilation. The ‘ifdef com-
piler directive checks for the definition of a variable name. If the variable name is
defined, then the lines following the ‘ifdef directive are included. If the variable
name is not defined and a ‘else directive exists then this source is compiled.

These directives may appear anywhere in the Verilog-A source description.
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The directive ‘undef   undefines a previously defined text macro. An attempt to
undefine a text macro that was not previously defined using a ‘define compiler
directive can result in a warning.
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The ‘ifdef, ‘else, ‘endif compiler directives work in the following manner:

When an ‘ifdef is encountered, the text macro name is test to see if it is defined
as a text macro name using ‘define within the Verilog-A language source
description

If the text macro name is defined, the first group of lines is compiled as a part of
the description. If there is an ‘else compiler directive, the second group of lines
is ignored.

If the text macro name has not been defined, the first group of lines is ignored. If
there is an ‘else compiler directive the second group of lines is compiled.

Any group of lines that the compiler ignore still must follow the Verilog-A language
lexical conventions for white space, comments, numbers, strings, identifiers, key-
words, and operators. The following are some examples of using the ‘ifdef and
‘endif compiler directives:

‘define debug

‘ifdef debug
$strobe(“module %m: input signal = %g at time %g”,

V(in), $realtime());

These compiler directives may be nested.

A.2.3 ‘include

The ‘include compiler directive is used to insert the entire contents of a source file
in another file during compilation. The result is as thought the contents of the
included source file appear in place of the ‘include compiler directive. The
‘include compiler directive can be used to include global or commonly used def-
initions and tasks without encapsulating repeated code within module boundaries. For
example:

‘include “std.va”

Includes the standard definitions for discipline and nature definitions into the
scope of the current file. The ‘include mechanism permits configuration management
and organization of Verilog-A source files.
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The compiler directive ‘include can be specified anywhere within the Verilog-A
language description. The filename is the name of the file to be included in the source
file. The filename can be a full or relative path name.

Only white space or a comment may appear on the same line as the ‘include com-
piler directive.

A file included in the source using the ‘include compiler directive may contain
other ‘include compiler directives. The number of nesting levels for included
may be limited, but the limit shall be at least 15.

A.2.4 ‘resetall

When the ‘reset_all compiler directive is encountered during compilation, all
compiler directives are set to the default values. This is useful for insuring that only
those directives that are desired in compiling a particular source file are active.

The recommend usage is to place ‘resetall at the beginning of each source text
file, followed immediately by the directives desired in the file.
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Appendix B System Tasks and
Functions

B.1 Introduction

The Verilog-A language supports a variety of system tasks and functions. These tasks
and functions are useful for querying and controlling the current simulation as well as
displaying the results of the simulation as it progresses.

B.2 Strobe Task

The $strobe task is the main task for printing information during a simulation.
$strobe always prints a newline character at the end of its execution. The typical
form of the parameters to $strobe is:

$strobe("format specification", parameters)

The format control specification string defines how the following arguments in the
$strobe task are to be printed. The syntax is a percent character (%) followed by a
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format specifier letter. Allowable letters in the format control specification are shown
in the table below:

letter display format
hexadecimal

decimal

octal

binary

ASCII character

string

hierarchical name

comments

takes no arguments

Other special characters may be used with escape sequences.

escape sequence
\n
\t

\\
\"
\ddd

display
new line character

tab character

the \ character

the " character

character specified in up to three octal digits

B.2.1 Examples

The following are examples on the use of the $strobe task:

$strobe("input = %g", V(in));
$strobe("result = %b", ~flag & bits);
$strobe("%m: event triggered at t = %g", $realtime());

B.3 File Output

The $strobe task has a version for writing to files, $fstrobe.  $fstrobe
requires an extra parameter, called the file descriptor, as shown below:
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$fstrobe(descriptor, "format specification",
parameters)

The descriptor is an integer value returned from the $fopen function. $fopen
takes the form:

integer fdescriptor;

fdescriptor = $fopen("file_name");

$fopen will return a 0 if it was unable to open the file for writing. When finished,
the file can be closed with the $fclose function call:

$fclose(fdescriptor) ;

The file descriptors are set up so that each bit of the descriptor indicates a different
channel. Thus, multiple calls to $fopen will return a different bit set. The least sig-
nificant bit indicates the "standard output". By passing the bit-wise or of two or more
file descriptors to $fstrobe, the same message will be printed into all of the files
(as well as standard output) indicated by the or-ed file descriptors.

B.4 Simulation Time

$realtime is a system task that returns the current simulation time as a real
number.

$realtime()

B.5 Probabilistic Distribution

The probabilistic distribution functions return pseudo-random numbers whose char-
acteristics are described by the task name.

$dist_uniform(seed, start, end)
$dist_normal(seed, mean, standard_deviation)
$dist_exponential(seed, mean)
$dist_poisson(seed, mean)
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$dist_chi_square (seed, degree_of_freedom)

All of the parameter are integer values and all return real values. For each system
task, the seed parameter must also be an integer variable that is initialized by the
user and only updated by the system task.

The $dist_uniform returns random numbers uniformly distributed in the interval
specified by its parameters.

For the $dist_normal and $dist_chi_square functions, the
standard_deviation and degree_of_freedom parameter respectively are
used to determine the shape of the density functions. With a mean of 0 and
standard_deviation of 1, $dist_normal generates a gaussian distribution.
For $dist_chi_square, larger numbers will spread the returned values over a
wider range.

For $dist_exponential and $dist_poisson, the mean parameter is an inte-
ger which causes the average value returned by the function to approach the value
specified.

B.6 Random

The $random system function provides a random number mechanism, returning a
new 32-bit random number each time the function is called. The returned value is a
signed integer; it can be positive or negative. The function may be called with or
without a seed parameter.

$random
$random(seed)

The seed parameter is used to initialize the stream of numbers that $random
returns. The seed parameter must be a integer variable and assigned a value before
calling $random.
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B. 7 Simulation Environment

These functions return information about the current simulation environment parame-
ters. All return a real number.
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Laplace and Discrete
Filters

Appendix C

C.1 Introduction

The laplace and discrete transform analog operators in the Verilog-A language allow
for specification of the filter coefficients in four different combinations of either poly-
nomial or zeros/poles for the numerator and denominator of the filter.

This appendix describes these forms in detail, as well as presenting some MATLAB
scripts for generating the required coefficients from filter specifications. (MATLAB is
a registered trademark of the MathWorks, Inc., 24 Prime Park Way, Natick, MA
01760-1500: telephone (508) 653-1415, Fax (508) 653-2997, e-mail: info@math-
works.com). These scripts may require the Simulink Toolkit.

C.2 Laplace Filters

C.2.1 laplace_zp

laplace_zp implements the zero-pole form of the Laplace transform filter.
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where is a vector of M paris of real numbers. Each pair represents a zero, the first
number in the pair is the real part of the zero, and the second is the imaginary part.
Similarly, is the vector of N real pairs, one for each pole. The poles are given in the
same manner as the zeros. The transfer function is:

where and are the real and imaginary parts of the zero, while and
are the real and imaginary parts of the pole. If a root (a pole or a zero) is

real, the imaginary part must be specified as 0. If a root is complex, its conjugate must
also be present. If a root is zero, then the term associated with it is implemented as s
rather than (1 – s / r) where r is the root.

C.2.2 laplace_zd

laplace_zd implements the zero-denominator form of the Laplace transform filter.

where is a vector of M paris of real numbers. Each pair represents a zero, the first
number in the pair is the real part of the zero, and the second is the imaginary part.
Similarly, d is the vector of N real coefficients of the denominator. The transfer func-
tion is:

where and are the real and imaginary parts of the zero, while is the
power of s in the denominator. If a zero is real, the imaginary part must be spec-
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ified as 0. If a zero is complex, its conjugate must also be present. If a zero is zero,
then the term associated with it is implemented as s rather than

C.2.3 laplace_np

laplace_np implements the numerator-pole form of the Laplace transform filter.

where is a vector of M real numbers that contains the coefficients of the numerator.
For the denominator, is the vector of N real pairs, one for each pole where the first
number in the pair is the real part of the zero, and the second is the imaginary part.
The transfer function is:

where is the coefficient of the power of s in the numerator, while          and
are the real and imaginary parts of the pole. If the pole is real, the imaginary

part must be specified as 0. If a pole is complex, its conjugate must also be present. If
a pole is zero, then the term associated with it is implemented as s rather than

C.2.4 laplace_nd

laplace_nd implements the numerator-denominator form of the Laplace trans-
form filter.

laplaca_nd(expr, n, d)

where n is a vector of M real numbers that contains the coefficients of the numerator,
and d is a vector of N real numbers that contains the coefficients of the denominator.
The transfer function is:
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where is the coefficient of the power of s in the numerator, and is the
coefficient of the power of s in the denominator.

C.3 Discrete Filters

C.3.1 zi_zp

zi_zp implements the zero-pole form of the Z transform filter.

where is a vector of M paris of real numbers. Each pair represents a zero, the first
number in the pair is the real part of the zero, and the second is the imaginary part.
Similarly, is the vector of N real pairs, one for each pole. The poles are given in the
same manner as the zeros. The transfer function is:

where and are the real and imaginary parts of the zero,while and
are the real and imaginary parts of the pole. If a root (a pole or a zero) is

real, the imaginary part must be specified as 0. If a root is complex, its conjugate must
also be present. If a root is zero, then the term associated with it is implemented as
rather than where r is the root
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C.3.2 zi_zd

zi_zd implements the zero-denominator form of the Z transform filter.

where is a vector of M paris of real numbers. Each pair represents a zero, the first
number in the pair is the real part of the zero, and the second is the imaginary part.
Similarly, d is the vector of N real coefficients of the denominator. The transfer func-
tion is:

where and are the real and imaginary parts of the zero, while is the
power of s in the denominator. If a zero is real, the imaginary part must be spec-

ified as 0. If a zero is complex, its conjugate must also be present. If a zero is zero,
then the term associated with it is implemented as rather than

C.3.3 zi_np

zi_np implements the numerator-pole form of the Z transform filter.

where n is a vector of M real numbers that contains the coefficients of the numerator.
For the denominator, is the vector of N real pairs, one for each pole where the first
number in the pair is the real part of the zero, and the second is the imaginary part.
The transfer function is:

where is the coefficient of the power of s in the numerator, while and
are the real and imaginary parts of the pole. If the pole is real, the imaginary

part must be specified as 0. If a pole is complex, its conjugate must also be present. If
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a pole is zero, then the term associated with it is implemented as rather than

C.3.4 zi_nd

zi_nd implements the numerator-denominator form of the Z transform filter.

where n is a vector of M real numbers that contains the coefficients of the numerator,
and d is a vector of N real numbers that contains the coefficients of the denominator.
The transfer function is:

zi_nd(expr, n, d, T)

where is the coefficient of the power of  in the numerator, and is the
coefficient of the power of in the denominator.
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C.4 Verilog-A MATLAB Filter Specification Scripts

The following MATLAB scripts for generating Verilog-A laplace and discrete filter
coefficients from the filter characteristics. Scripts are provided for Butterworth, Che-
byshev Type I and II, and Elliptic filters for both continuous and discrete time filters.
The Verilog-A MATLAB filter scripts are found in the MATLAB subdirectory on the
Verilog-A Explorer distribution diskette.

For laplace filters, there are four nnMATLAB scripts:

laplace_butter(fname, fpass, fstop, apass, astop);

laplace_cheby1(fname, fpass, fstop, apass, astop)

laplace_cheby2(fname, fpass, fstop, apass, astop)

laplace_ellip(fname, fpass, fstop, apass, astop)

Discrete filters in Verilog-A are specified:

zi_butter(fname, samp_freq, fpass, fstop, apass, astop,
tau, t0)

zi_cheby1(fname, samp_freq, fpass, fstop, apass, astop,
tau, t0)

zi_cheby2(fname, samp_freq, fpass, fstop, apass, astop,
tau, t0)

zi_ellip(fname, samp_freq, fpass, fstop, apass, astop,
tau, t0)

Both laplace and discrete filters accept the following arguments:

filter_name - name of the Verilog-A filter module.

fpass - passband corner frequency or cutoff frequency.

fstop - stopband corner frequency.

apass - passband attenuation in dBs. Maximum passband ripple or loss.

astop - stopband attenuation in dBs. Amount the stopband is down from the
passband.

In addition, the discrete filters take the following arguments:

samp_freq - sampling frequency of the filter.
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tau - filter output transition time.

t0 - initial delay to the filter output.

The type of the filter is specified by the relationship of the passband to corner fre-
quencies. For lowpass filters, fpass is less than fstop:

A lowpass example:

laplace_cheby1(‘filter_1p’, 18000, 22000, 10, 60);

For highpass filters, fpass is greater than fstop

A highpass example:
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laplace_cheby1(‘filter_hp', 22000, 18000, 10, 60);

For bandpass and bandstop filters, fpass and fstop are two-element vectors that
specify the corner frequencies at both edges of the filter, lower frequency edge first.

A bandpass example:

laplace_cheby1(‘filter_bp’, [17750 18250],
[17500 18500], 3, 90);

For bandstop:
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laplace_cheby1(‘filter_bs’, [17500 18500],
[17750 18250], 3, 90);
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D.1 Introduction

The Verilog-A Explorer IDE (Integrated Development Environment) is a Windows
‘95/NT application targeted for designers and modelers wishing to learn analog
behavioral modeling with the Verilog-A language. The application includes:

Graphical user interface for language-based design entry and analysis

Spice-SL, a Spice3f5-based1 simulator with the Verilog-A language compiler inte-
grated

Example circuits and sample Verilog-A modules

The Verilog-A Explorer user interface (Figure D.1) consists of thee major sections:

Project Navigator which allows interactive navigation of the design via the simu-
lation output results database

Workspace for editing of both circuit (* .ckt) and Verilog-A (* .va) files

1. The simulator is a limited capability demonstration version in terms of capacity, compo-
nents, and analysis types supported.

Appendix D Verilog-A Explorer IDE
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Simulation Output Window for viewing the output results of the simulation.

All evaluation and analysis of Verilog-A designs within the Verilog-A Explorer envi-
ronment is centered around standard Spice circuit files. The circuit files include fea-
tures of:

Standard Spice syntax for design description and simulation control.

.verilog extension for incorporating Verilog-A module descriptions within the
circuit or test-bench description.

Instantiation of Verilog-A modules via standard subcircuit instantiations (standard
Spice Xxxxx device card).

186 Verilog-A HDL



Installation and Setup

D.2 Installation and Setup

Running a:\setup from the distribution media results in the following setup dia-
log. Choose the installation directory (<install_dir>) if you would like to
change the path from the default (c:\veriloga)

D.2.1 Overview of the Distribution

After successful installation, under <install_dir> you will find the following
directory structure and files:

File license.txt.

Directory bin executables for the IDE and simulator.

Directory book contains selected examples from the book.

Directory examples contains miscellaneous examples.

Directory include contains the Verilog-A standard definitions for disciplines
and physical constants.

Directory lib is organized in subdirectories for behavioral models of analog,
communications, data acquisition, and digital. Circuit test bench files are also
included.

Directory matlab includes the MATLAB scripts referenced in Appendix C.

Directory template has the template files for new * . ckt and * . va files cre-
ated from the Explorer IDE.

Directory tutorial contains the behavioral models and circuit used for illustra-
tion in this Appendix.
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D.2.2 Executable and Include Path Setup

From the program group that is created, you can check the installation by starting the
Verilog-A Explorer IDE. From the Design->Settings menu (from the main menu bar),
raise the Settings dialog:

The Settings dialog includes information regarding paths to the Verilog-A Explorer
executables and include directories. These properties are defined as follows:

Executable: Path to the Spice simulator (should be:
<install_dir>\bin\spicesl.exe)

Output Directory: Path to top-level directory where the results directory will be
created. The default output directory is the path of the input circuit file. Change
this to point to an area where you would like all the simulation results to be stored.
Maintaining a common output directory can help with the organization (and dele-
tion) of unneeded results directories.

Verilog-A Preprocessor Definitions: A comma-separated list of Verilog-A prepro-
cessor directives to be passed to the Verilog-A language compiler. An identifier,
var, on this line is passed to the Verilog-A compiler with the same effect as
‘define var in the Verilog-A source.

Verilog-A Preprocessor Include Directory: Path to a comma-separated list of stan-
dard (for “std.va” and “const.va” definition files) and user-defined include
directories (should at least have <install_dir>\include for the standard
include files). If you maintain your own Verilog-A module libraries in a separate
directory, add a path to that directory here.
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D.2.3 Overview of the IDE Organization

The organization of the Verilog-A Explorer IDE is centered around the input circuit
file (* . ckt). The files containing the Verilog-A module definitions (* . va for the
environment) are referenced from the circuit file with the .verilog statement. For

example, the circuit file exp.ckt of Figure D.4 references two Verilog-A files,
file1.va and file2.va. When the Spice-SL simulator processes the input cir-
cuit file, it will pass these files off to the Verilog-A compiler.

A Verilog-A file can contain one or more definitions of Verilog-A modules. In essen-
tially all cases, module files include at least the standard discipline definitions file,
“std.va”, as well as a file of pre-defined physical constants, “const.va”, as
shown in Listing D.1.

LISTING D.1 Inclusion of standard discipline and constants definitions

Verilog-A Explorer IDE 189

‘include “std.va"
‘include “cons t.va"

...



Verilog-A Explorer IDE

Within the circuit file, instantiations of Verilog-A modules is done via an extension of
the Spice subcircuit instantiation mechanism. The subcircuit is instantiated as a ‘X’

device, as part of the instance name. Followed are the circuit nodes attached to the
module in the order as defined in the modules’ port list. The Verilog-A module name
identifies the type of the module, followed by an optional list of parameter-value
pairs.

Simulation of a circuit file creates a results directory that stores the output results for
all the analyses specified within the circuit file. The name of the results directory cre-
ated is the same as the circuit file but with a . res extension. When you are asked to
specify a results directory, it is this name. For example, in Figure D.5, exp.res is
the name of the results directory.
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Within the results directory, each analysis type creates a results file of the circuit name

with a corresponding extension indicating the type of analysis. An index identifier is
used in the suffix of the filename for differentiating the results files of different analy-
sis of the same type.

You can change the destination of the results directory via the Design->Settings menu
to be another location such as a common temporary directory. This can be used to
simplify data management (see Section D.2, Installation and Setup) as unwanted
results directories can be easily identified and removed.

D.3 Using the Explorer IDE

This section provides simple walk-through examples of the Verilog-A Explorer IDE.
The first example will include opening and running an existing design and plotting
results. The second example will create a circuit file and Verilog-A module from
scratch.
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D.3.1 Opening and Running an Existing Design

First start the Explorer IDE and from the main menu, select File->Open. From the
Open File dialog, select the file pll.ckt from the <install_dir>\tuto–
rial directory as in Figure D.6.

This will load the circuit file into the Explorer IDE workspace. As everything is
already defined for this example circuit, you can begin simulation. From the Explorer
IDE toolbar, Figure D.7, press the start simulation button, or from the Design->Start
Simulation menu entry.

Output from the Spice-SL simulation will be displayed in the Output Window (Figure
D.1) as the simulation progresses. If there are errors in the circuit, all information will
be output to the Output Window.
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When the simulation completes successfully, either

The output results of the simulation will be auto-loaded into the workspace if there
was only one analysis in the circuit file.

Or, a Load Results dialog will be raised asking you to select the results you would
like to look at if there were multiple analysis (.dc, .tran, .ac) performed (Fig-
ure D.8):

The Load Results dialog displays the available result files that can be loaded into the
workspace. If the results directory entry is empty, to the right of the results directory
name is a button which raises a directory browser (Figure D.9) which allows you to
specify the directory containing the output results files of interest.

After the results directory is defined, you can choose one of the results files (Figure
D. 10). A results file will be identified by name (pll.tr0) and description of the
type of corresponding analysis.

When a results file is read into the environment, the Explorer IDE will use the infor-
mation in the results file to fill out the Project Navigator (Figure D.1). The Project
Navigator allows you to plot signals (via the hierarchy browser) and manage the files
associated with the design.
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For pll. ckt, loading the results file pll.tr0 results in the Project Navigator of
Figure D. 11. The Project Navigator shows a hierarchical view of both signals and
components within the design. If there is a plus (+) box to the left of an icon, that indi-
cates that there is another level of hierarchy in the design below that component.

The Project Navigator is used for both traversing the hierarchy as well as specifying
the output signals to be plotted. Once a results file has been loaded into the Explorer
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workspace, you can display simulation results with the waveform viewer. From the
main menu, select View->Plot Window to raise the plot window (or use the toolbar
shortcut - Figure D.7). To add signals to the plot window, simply double-click on a
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signal icon within the hierarchy view of the Project Navigator. For example, double-
clicking on signal icon out results in shown in Figure D.12.

Signals can be deleted from the plot view by clicking on the signal within the plot leg-
end. This will select the signal by placing a box around the name. If a signal is
selected, it can be deleted simply by pressing the <DEL> key.

Zooming in on a specific area of the plot view is accomplished by left-mouse button
drag operations. To zoom back out, press the right-mouse button in the plot window
and choose either Zoom To Fit or Zoom Out.
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After a plot has been selected, you can change its properties via the Plot Properties
dialog accessible from the right-mouse button within the plot window. The Plot Prop-
erties dialog allows you to set generic, axis, and signal attributes.

Generic plot attributes include the plot type as well as display of titles and/or subti-
tles.

Axis properties of the plot allow you to set the axis styles for both the X- and Y-axis,
including labels and tic-mark styles.
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Signal properties allow you to edit the description of the signals displayed in the leg-
end box, as well as the data format and drawing attributes.

D.3.2 Creating a New Designs

Starting a new design follows essentially the same procedure as previously outlined,
but with the addition to creating a new circuit and/or Verilog-A file(s). From the main
Explorer menu, select File->New, which raises the following dialog box:

If you select a circuit file, the workspace will be cleared of any open files. If you
select a Verilog-A file, it is assumed that it is associated with any existing circuit
design open within the workspace. In both cases, a new file is created and initialized
with a template file of the appropriate type. If you prefer your own template files,
change the path of the template via the respective Editor Properties dialog accessible
via the right mouse button.

198 Verilog-A HDL



Appendix E Spice Quick Reference

E.1 Introduction

Spice is a general-purpose circuit simulation program for nonlinear DC, nonlinear
transient, and linear AC analysis. Originating from the University of California at
Berkeley, is by far the best known and most widely used circuit simulator. It is availa-
ble in for a wide variety of computer platforms, in both commercial and proprietary
derivatives of the original version.

Newer versions of Spice offer many extensions, but the input format for circuit
descriptions reflect the original batch-oriented program architecture. This appendix
overviews the Spice input format, or netlist files including the fundamental types and
analyses supported. Omitted for brevity are details regarding semiconductor device
models and the various Spice options.
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E.2 Circuit Netlist Description

The netlist (also referred to as the input deck) consists of element lines which
describes both the circuit topology and element values and control lines which
describe analyses to be performed for Spice. The first card in the input deck must be a
title card, and the last card must be the .END control line. The order of the remaining
element and control lines is arbitrary.

The input format is free format. Fields on an element or control line are separated by
one or more blanks, commas, equal (=) sign, or a left or right parenthesis. A element
or control line may be continued by placing a (+) in column 1 on the following line.
Spice will continue reading beginning with column 2.

Name fields must begin with a letter [a–z] and cannot contain any delimeters. Names
within Spice netlists are considered case-insensitive1. An integer or a floating point
number can be followed by one of the following scale factors:

G = 1.0e9
MEG = 1.0e6
K = 1.0e3
MIL = 25.4e-4
M = 1.0e-3
U = 1.0e-6
N = l.0e-9
P = 1.0e-12

1. Names in Verilog are case-sensitive requiring a certain level of awareness for modelers in
developing Verilog-A models that are case-independent for use within Spice netlists.
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E.3 Components

Letters immediately following a scale factor are ignored.

Each element in the circuit is specified by an element line that contains the element
name, the circuit nodes to which the element is connected, and the values of the
parameters that determine the electrical characteristics of the element.

The first letter of the element name specifies the element type. The nodes following
the element name must be non-negative integers but need not be numbered sequen-
tially and where node 0 is the ground or reference node.

A control line within the input deck is specified by a line containing a (.) in the first
column, followed by the name of the control and its parameters. Examples include all
the analysis cards (described later) and the . END control line signifying the end of
input.

Circuits in Spice may contain resistors, capacitors, inductors, mutual inductors, inde-
pendent voltage and current sources, dependent sources, transmission lines and the
four most common semiconductor devices: diodes, bipolar junction transistors, junc-
tion field-effect transistors, and mosfets. The general input formats for each of these
types is described below. Arguments specified within [] are optional.

E.3.1 Elements

Passive elements in Spice such as resistors (R), capacitors (C), and inductors (L):

Rxxxxxxx NP NN value
Cxxxxxxx NP NN value
Lxxxxxxx NP NN value

Components
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Linear dependent sources including voltage-controlled current sources (G) , voltage-
controlled voltage sources (E) , current-controlled current sources (F) , and current-
controlled voltage sources (H):

Gxxxxxxx NP NN NCP NGN value
Exxxxxxx NP NN NCP NCN value
Fxxxxxxx NP NN vname value
Hxxxxxxx NP NN vname value

where <vname> is the source through which the controlling current is measured.
Independent voltage and current sources are specified in Spice as:

Vxxxxxxx NP NN [[DC] dctr_value] [AC [acmag [acphase]]
Ixxxxxxx NP NN [[DC] dctr value] [AC [acmag [acphase]]

where dctran_val is a constant value for time-independent sources, and one of
the following for time-dependent sources:
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For AC small-signal analyses, at least one AC source must be defined in the circuit.

E.3.2 Semiconductor Devices and Models

For semiconductor devices, the large number of parameters require that the device
model parameters be specified on a separate .MODEL definition and assigned a
unique model name. The device element cards in Spice then reference the model
name.

Each device element card contains the device name, the nodes to which the device is
connected to, and the device model name. The standard semiconductor devices sup-
ported by Spice include diodes (D), bipolar junction transistors (Q), junction field-
effect transistors (J), and mosfets (M) devices.

Dxxxxxxx NP NN MNAME [area]
Qxxxxxxx NC NB NE MNAME [area]
Jxxxxxxx ND NG NS MNAME [area]
Mxxxxxxx ND NG NS NB MNAME [w=value] [l=value]

Where MNAME is the model name. The model name is defined using a .MODEL card,
assigning parameters by appending the parameter name for the given model type with
an equal sign and the parameter value. Model parameters not given are assigned the
default values for the model. The general format of .MODEL cards is:

.MODEL MNAME TYPE ( P1=VAL1 P2=VAL2 ... )

and TYPE is one of the following:

NPN NPN bjt model
PNP PNP bjt model
D Diode model
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NJF N–channel jfet model
PJF P–channel jfet model
NMOS N–channel mosfet model
PMOS P–channel mosfet model

For information on the specific model types and associated parameters, refer to more
complete documentation.

E.4 Analysis Types

E.4.1 Operating Point Analysis

The DC analysis portion of Spice determines the operating point of the circuit with
inductors shorted and capacitors opened. An operating point analysis is specified
using:

.OP

In addition, an operating point analysis is performed automatically prior to a transient
analysis to determine the transient initial conditions, and prior to an AC small-signal
analysis to determine the linearized, small-signal models for nonlinear devices.

E.4.2 DC Transfer Curve Analysis

A DC transfer curve analysis can be used to examine the response of the circuit to a
range of input conditions. A transfer curve analysis is specified using:

.DC srcname <srcstart> <srcstop> <srcincr>

Where srcname is the name of an independent voltage or current source. <src-
start>,<srcstop>, and <srcincr> are the starting, final, and incrementing
values of the transfer curve analysis respectively.

E.4.3 Transient Analysis

The transient analysis command of Spice computes the transient output variables as a
function of time over a user-specified time interval. The initial conditions are auto-
matically computed by an operating point analysis. A transient analysis is specified
using:
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.TRAN <tstep> <tstop> [<tstart> [<tmaxstep>] ]

Where <tstep> is the printing increment, <tstop> is the final time, and
<tstart> is the initial time. If <tstart> is omitted, it is assumed to be zero.
<tmaxstep> is the maximum stepsize that Spice will use (defaults to <tstop>/
50.0).

E.4.4 AC Small-signal Analysis

The AC small-signal portion of spice computes the AC output variables as a function
of frequency. Spice first computes the operating point of the circuit and determines
linearized small-signal models for all the nonlinear devices in the circuit. The result-
ant linear circuit is then analysed over a user-specified range of frequencies. An AC
small-signal analysis is specified using:

.AC DEC <numdec> <fstart> <fstop>

.AC OCT <numoct> <fstart> <fstop>

.AC LIN <numlin> <fstart> <fstop>

Where DEC stands for decade variation, and <numdec> is the number of points per
decade, OCT stands for octave variation and <numoct> is the number of points per
octave, and LIN stands for linear variation and <numlin> is the number of points.
Note, that for AC small-signal analysis to be meaningful, at least one independent
source must have been specified with an AC value.
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This package contains a diskette that includes software described in
this book. See the applicable appendix for descriptions of this program
and instructions for its use. By opening this package you are agreeing
to be bounded by the following:

The software contained on this diskette is copyrighted
and all rights are reserved by Apteq Design Systems,
Inc.

THIS SOFTWARE IS PROVIDED FREE OF
CHARGE, AS IS, AND WITHOUT WARRANTY OF
ANY KIND, EITHER OR EXPRESSED OR
IMPLIED, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS FOR A PARTICULAR
PURPOSE.

Neither Apteq Design Systems, Inc., Kluwer Academic Publishers,
Inc., its dealers and distributors assumes any liability for any alleged or
actual damages arising from the use of this software.
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