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Preface

This book covers fundamental concepts in probability, random processes, and statisti-
cal analysis. A central theme in this book is the interplay between probability theory
and statistical analysis. The book will be suitable to graduate students majoring in
information sciences and systems in such departments as Electrical and Computer
Engineering, Computer Science, Operations Research, Economics and Financial Engi-
neering, Applied Mathematics and Statistics, Biology, Chemistry and Physics. The
instructor and the reader may opt to skip some chapters or sections and focus on chapters
that are relevant to their fields of study. At the end of this preface, we provide suggested
course plans for various disciplines.

Organization of the book

Before we jump into a mathematical description of probability theory and random pro-
cesses, we will provide in Chapter 1, Introduction, specific reasons why the subjects
of this book pertain to study and research across diverse fields or disciplines: (i) commu-
nications, information and control systems, (ii) signal processing, (iii) machine learning,
(iv) bioinformatics and related fields, (v) econometrics and mathematical finance, (vi)
queueing and loss systems, and (vii) other applications. We will then provide a brief but
fascinating historical review of the development of (a) classical probability theory, (b)
modern probability theory, (c) random processes, and (d) statistical analysis and infer-
ence. This historical review also serves as an overview of various topics discussed in
this volume.

The remainder of the volume consists of five parts (see Figure 0.1, Chapter Depen-
dencies).

Part I: Probability, random variables and statistics, starting with axiomatic proba-
bility theory (Chapter 2, Probability) introduced by Kolmogorov, covers a broad range
of basic materials on probability theory: random variables and probability distribu-
tions (Chapter 3, Discrete random variables, and Chapter 4, Continuous random
variables). In Sections 4.4 and 4.5 we introduce the canonical exponential family and
conjugate priors, which will be used in later chapters.

In Section 5.4 of Chapter 5, Functions of random variables and their distribu-
tions) we discuss how random variates with a specified distribution can be generated
for Monte Carlo simulation.
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Chapter 6, Fundamentals of statistical data analysis, is rather unique to this vol-
ume: it relates the abstract notion of probability theory to real statistical data, with
emphasis on graphical presentations, which are important in an exploratory stage
of data analysis. Chapter 7, Distributions derived from the normal distribution,
discusses important distributions related to the Gaussian distribution: chi-squared,
Student’s t , Fisher’s F, lognormal, Rayleigh, and Rice distributions. Complex-valued
Gaussian variables are especially useful to communication engineers.

Part II: Transform methods, bounds, and limits, Chapter 8, Moment generat-
ing function and characteristic function, and Chapter 9, Generating functions and
Laplace transform discuss various transform methods. The reader will learn the rela-
tionships among these powerful techniques. We also describe numerical methods to
invert the Laplace transform, which are not discussed in most textbooks. Chapter 10,
Inequalities, bounds, and large deviation approximation, starts with derivations of
several inequalities often encountered in probability and statistics: Cauchy–Schwarz
inequality, Jensen’s inequality, log-sum inequality, Markov’s inequality, Chebyshev’s
inequality, and Kolmogorov’s inequalities for martingales and submartingales. We
then provide a detailed discussion of Chernoff’s bounds and large deviation theory,
which have been increasingly used in recent years. Chapter 11, Convergence of a
sequence of random variables, may be mathematically challenging to some readers.
But it is important to understand the weak and strong laws of large numbers and the
central limit theorem, which are among the most important concepts in probability
theory.

Part III: Random processes, Chapter 12, Random processes, introduces differ-
ent classifications of random processes and serves as an introduction to a wide range
of random processes, including Markov processes. The notions of strict stationarity
and wide-sense stationarity and ergodicity are defined. The complex-valued Gaussian
process is discussed in much more detail than can be found elsewhere. Chapter 13,
Spectral representation of random processes and time series, focuses on spectral
representation of random processes. The power spectrum of a wide-sense stationary pro-
cess is defined, and its statistical counterpart, the periodogram, and its use in time-series
analysis are presented. The Karhunen–Loève expansion is presented as a continuous-
time counterpart of eigenvector expansion of the correlation matrix. The principal
component analysis (PCA) and singular value decomposition (SVD) are presented in a
unified setting. The chapter ends with a discussion of the autoregressive moving average
(ARMA) time series and its spectrum.

Chapter 14, Poisson process, birth–death process, and renewal process,
Chapter 15, Discrete-time Markov chains, and Chapter 16, Semi-Markov pro-
cesses and continuous-time Markov chains, present standard materials found in most
textbooks on random processes. But Section 15.2.2, Spectral expansion method, is prob-
ably unique to our book. In Section 16.3 we introduce the notion of reversible Markov
chains, whose properties are used in the Markov chain Monte Carlo (MCMC) method in
Chapter 21 on machine learning. Section 16.4, An application: phylogenetic tree and its
Markov chain representation, illustrates how Markov chain theory is used in biostatistics
and bioinformatics.
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Chapter 17, Random walk, Brownian motion, diffusion and Itô processes, is also
at the core of random process theory. Its application is diverse, ranging from physics,
chemistry and material sciences, to operations research, and most recently to mathemat-
ical finance. We include two topics seldom covered in textbooks on random processes.
They are Einstein’s diffusion equation (Section 17.3.2) and the Ornstein–Uhlenbeck
process (Section 17.3.4), which are important to research in areas of bioinformatics that
deal with the motion of molecules in the three-dimensional space. Our discussion on
Itô’s formula, geometric Brownian motion and the Black–Scholes differential equation
in Section 17.4 serves as an introduction to mathematical finance.

Part IV: Statistical Inference consists of three chapters. Chapter 18, Estimation
and decision theory, contains three important subjects: 18.1 Parameter estimation,
where the theory of maximum-likelihood estimation is developed and its theoretical
lower bound, the Cramér–Rao lower bound, is derived; 18.2 Hypothesis testing, where
we discuss the famous Neyman–Pearson lemma and derive the likelihood ratio test.
Some of the concepts and techniques developed in radar detection and statistical com-
munication theory, such as the receiver operating characteristic (ROC) curve, are now
practiced in medical diagnosis and decision making, and also in data mining research;
and 18.3 Bayes decision and estimation theory, built on Bayes’ theorem (Section 2.4.2),
serves as the foundation for the Bayesian statistical approach that is increasingly used
in machine learning, econometrics, and other disciplines.

Chapter 19, Estimation algorithms, discusses classical numerical methods for
estimation, including the method of moments, whose generalized version is used in
econometrics, and the Newton–Raphson algorithm. We then discuss the expectation-
maximization (EM) algorithm, a computationally efficient algorithm to obtain a
maximum-likelihood estimate of a parameter. The EM algorithm is used widely in com-
munications, speech recognition, machine learning, econometrics, and bioinformatics,
especially for state estimation and model parameter estimation of a hidden Markov
model, as discussed in Chapter 20.

Part V: Applications and Advanced Topics, covers three application topics.
Chapter 20, Hidden Markov models and applications, will be valuable to students
and researchers in a variety of fields. We provide a unified treatment of the forward–
backward algorithm, the Viterbi algorithm, and the BCJR (Bahl–Cocke–Jelinek–Raviv)
algorithm, using a transition-based hidden Markov model (HMM) representation,
where the observable is a probabilistic function of the state transition. This approach is
more concise than the conventional state-based HMM representation, where the observ-
able is a function of the current state. The EM algorithm discussed in Section 19.2 is
used to yield a maximum-likelihood estimate in an iterative fashion, and a forward–
backward algorithm, known as the Baum–Welch algorithm, is derived in a simple and
elegant fashion.

Chapter 21, Probabilistic models in machine learning. Probabilistic modeling and
the Bayesian statistical approach are increasingly important to research in machine
learning. This chapter serves as an introduction to this rapidly developing field. Appli-
cations such as speech recognition and biological sequence alignment are briefly
discussed, and Bayesian networks are presented as a generalization of the HMM
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formulation. The advent of a computationally efficient simulation technique, called
Markov chain Monte Carlo (MCMC), which can estimate a desired probability distribu-
tion as the stationary distribution of a Markov chain, now makes the Bayesian approach
practical in machine learning, econometrics, and bioinformatics. The Metropolis–
Hastings algorithm, the Gibbs sampler, simulated annealing, and other techniques are
also discussed.

Chapter 22, Filtering and prediction of random processes, begins with a dis-
cussion on MMSE (minimum mean square error) estimation, conditional expectation,
and regression analysis, followed by two major theories on filtering and prediction:
the Wiener filter and the Kalman filter. The latter is applied in almost all disciplines,
including econometrics and bioinformatics. The Wiener filter theory is important to
gain insight in filtering and prediction problems, although it is not as widely practiced
as the Kalman filter, because of its difficulty associated with the Wiener–Hopf integral
equation or its discrete-time analog.

Chapter 23, Queueing and loss models, will be useful to performance modeling
and analysis of computers and communication networks, transportation systems, man-
ufacturing systems, and in other fields that involve scheduling and logistics. Several
important topics are addressed here. The notion of processor sharing, originally devel-
oped as a mathematical limit of round-robin scheduling in a time-shared computer, has
been recently found to be applicable to modeling of (i) statistically multiplexed traf-
fic, (ii) Web servers, and (iii) links congested with TCP (transmission control protocol)
traffic in the Internet. The Erlang and Engset loss models, traditionally presented as
special cases of the birth–death process model, have been substantially generalized by
the present authors in recent years, including general service time distributions, multiple
classes of customers, and multiple types of servers. This generalized loss model, which
we term a generalized loss station (GLS), appears for the first time in a textbook. A loss
network, which is also a recent development, is also presented in this chapter.

Suggested course plans

Familiarity with college-level calculus and matrix algebra is sufficient background. The
book is suitable as a first-year graduate textbook on probability, statistics, and random
processes.

In the Department of Electrical Engineering at Princeton, a first-year graduate
course “ELE 525: Random Processes in Information Systems” covers the materials in
Chapters 2 through 17 and Chapter 22, not including the Kalman filter. The Kalman
filter, the topics in Chapter 18 and some subjects in state-space-based control the-
ory form another semester course “ELE 530 Theory of Detection and Estimation.”
Chapter 23 was taught as part of another graduate course “ELE 531: Communication
Networks,” which includes network architectures and protocols, network performance
and security.

In the Department of Electrical and Computer Engineering of George Mason Uni-
versity, a first-year graduate course “ECE 528: Introduction to Random Processes in
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ECE” covers the materials in Chapters 2 through 9, together with selected materials
from Chapters 10 through 14. A more advanced course, “ECE 728: Random Processes
in ECE” covers the material in Chapters 11 through 17 and parts of Chapters 20 and
22. Chapter 23 was taught as part of another graduate course, “ECE 642: Design and
Analysis of Computer Communication Networks.” Figure 0.1 shows how a course may
be designed by skipping some chapters, depending on the objective of the course.

We believe that the following combinations of chapters will pertain to courses or self-
study plans, making this book useful as a reference book, if not a textbook, in various
disciplines of science and engineering.

1. Communications, information and control systems:
Chapters 1 through 13 and Chapter 22.
Chapters 14 through 19 and 23 together with review of the preceding chapters may
form a separate advanced graduate course.

2. Signal processing:
Chapters 1 through 16, Chapters 18 through 20, plus Chapter 22 (excluding
Section 22.2, Wiener filter theory) may constitute a workable course plan.
Chapters 14, 17, and 23 will be of lesser importance to signal processing appli-
cations. Section 10.3, Large deviation theory, and Section 12.4, Complex-valued
Gaussian process, may be skipped.

3. Machine learning:
Chapters 1 through 16 and Chapters 18 through 21 should provide a good back-
ground required in machine learning, as far as probabilistic modeling and statistics
are concerned. A book on machine learning principles and algorithms (e.g., [211])
should supplement the above mathematical topics.

Chapter 11, Convergence of a sequence of random variables, Section 10.3, Large
deviation theory, and Section 12.4, Complex-valued Gaussian process may be
skipped.

4. Biostatistics, bioinformatics and related fields:
Chapters 1–7 and Chapters 14–16 and 18–20 supplemented by “Classical Probabil-
ity in Statistical Mechanics,” (e.g., [32]) should provide a good background required
in bioinformatics, as far as probability theory and statistics are concerned.
Chapter 11 Convergence of a sequence of random variables may be skipped.

5. Econometrics:
Chapters 1 through 10, 12 (excluding Section 12.4), 13, 22 (excluding Section 22.2
Wiener filter theory), and 18 through 20, supplemented by a Bayesian statistical
approach (e.g., [128]), should provide a good background required in econometrics,
as far as probability theory and statistics are concerned.

6. Mathematical finance:
Chapters 1 through 11 and Chapters 14, 16, and 17. Game theoretic probability plays
an important role in mathematical finance [299].

7. Queueing and loss systems:
Chapters 1 through 17, and Chapter 23, supplemented by Kobayashi and Mark [203].
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Supplementary materials

Owing to page limitations, this book does not include some important prerequisite mate-
rials or advanced subjects which might ordinarily be provided as appendices in more
conventional books. Instead we are going to provide such supplementary materials on
the book’s website, which will be accessible online by interested readers. A preliminary
list of topics to be included is as follows: (1) Selected topics of set theory, (2) Selected
topics of linear algebra, (3) The Dirac delta function, (4) Stieltjes and Lebesgue inte-
grals, and d F notation, (5) Selected topics in measure theory, (6) Interchanging limit
and integral, (7) Differentiating integrals and sums, (8) Complex analysis: contour inte-
gral and the residue theorem, (9) Functional transformation and Jacobians, and (10)
Stirling’s (de Moivre’s) approximation formula for a factorial.

Solution manuals

The solutions to problems with a � will be available online to all readers, whereas
the solutions to the other problems will be accessible only to registered instructors
authorized by Cambridge University Press.

Lecture slides

Lecture slides for all chapters will be available for registered instructors.

Matlab exercises and programs

MATLAB exercise problems and their programs will be available. The MATLAB pro-
grams used to generate numerical plots presented in the text will also be available online
to registered users.
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1 Introduction

1.1 Why study probability, random processes, and statistical analysis?

Many problems we face in daily life involve some degree of uncertainty and we need
to use probabilistic reasoning in order to make a sound decision, be it an investment,
medical, or social problem. In many cases “probability” may represent our personal
judgment about how likely a particular event (e.g., price movement of a stock we
own; positive or negative effect of some medicine we may choose to take when we
are ill) is to occur. Probability attached to a given event is generally not based on
any precise computation but is often a reasonable assessment based on our knowl-
edge or experience. Such probability may be aptly called subjective or qualitative
probability, and may not be scientifically estimated, unless the same event happens
repeatedly.

The other type of probability we deal with is what we may call objective or quanti-
tative probability, which can be estimated objectively based on empirical evidence from
observable events. This philosophical question concerning subjective versus objective
probability has been pondered by many probabilists and statisticians, as we will briefly
discuss in Section 1.2. Philosophical discussion on subjective probability still continues
today as a fascinating topic, as is found in arguments between two schools of statistics,
i.e., frequentist statistics and Bayesian statistics, which will be discussed at the end of
this chapter.

In this book we will discuss probability based on the modern probability theory estab-
lished by Kolmogorov in the early twentieth century. The theory of statistical estimation
and decision presented in Chapters 18 and 19 is largely based on results developed in
the context of frequentist statistics, but we will embrace the Bayesian view of statistics
and discuss many subjects recently developed and applied to such fields as machine
learning, economics, and biology.

A given scientific or engineering problem that we wish to investigate or solve may
often involve some unknown or unpredictable components. We then need to extract the
essential part of the given complex system and cast it into some abstract model and
solve it analytically or by simulation. Such a model is often stochastic or probabilistic
in nature.
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1.1.1 Communications, information, and control systems

Suppose that you are an electrical engineer assigned to a task of designing a mobile
handset for a wireless communication system. The function of a receiver is to recover
the sender’s message, be it voice, data, or video, with acceptable signal quality or
to keep the bit error probability below some specified value. There are at least five
components that are probabilistic. First, the signal itself is not known a priori; all we
can specify is its statistical properties. Second, the characteristic of a radio channel
is not fixed and is often time varying. Third, there will be interfering signals coming
from other users who may be using the same frequency band, operating in other cells.
Fourth, there will be thermal noise introduced at the antenna and the front-end RF
(radio frequency) amplifier. Last, the major challenge for you is to characterize these
stochastic components as accurately as possible and then design receiver components
and algorithms that allow you to recover the signal with a desired level of quality,
which more frequently than not will be expressed in a probabilistic statement. An
encouraging part is that recent advances made in computer and storage technologies
allow you to apply sophisticated algorithms for channel estimation and adopt powerful
error-correcting codes and complex decoding algorithms for reliable signal recovery.
Signals as well as noise at the physical layer can be often represented by Gaussian
processes. If these processes are band-pass processes, which is usually the case, they
can be more conveniently represented in terms of their low-pass equivalents, which are
complex-valued Gaussian processes.

Design and analysis of communication and control systems are often formulated as
statistical estimation and decision problems (see Chapters 18 and 19) and/or filtering
and prediction problems (Chapter 22). The Kalman filter was originally developed in
the context of stochastic control and its use in the Apollo spacecraft (the first mission to
land humans on the moon!) is among its earliest successful applications. In communi-
cation networks, arrivals of data packets (as in a packet-switched network), occurrences
of calls (as in a circuit-switched network) or connections of flows (as in the Internet) are
mathematically modelled as point processes such as Poisson processes.

Information theory pioneered by Shannon1 is basically an applied probability
theory and much of the material covered in Chapters 2 through 5, 10, and 11 is a
prerequisite to the study of information theory.

1.1.2 Signal processing

Signal processing is concerned with manipulation of signals such as sound, images,
video, biological signals, and data in storage media (such as magnetic or optical discs).
Processing of such signals includes filtering, compression, feature extraction, and clas-
sification. It often involves characterization of such signals as random processes and
use of statistical inference theory. A Markov process representation (Chapters 15, 16,

1 Claude Elwood Shannon (1916–2001) was an American electrical engineer and mathematician, and has
been called “the father of information theory.”
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and 20) of the underlying random process is sometimes found to be very powerful. It
is interesting to note that Markov,2 who introduced in 1907 [238] the concept of what
we now call a Markov chain (Section 15.1), applied his Markov model representation
to the first 20 000 letters of Pushkin’s3 Eugene Onegin. Shannon also discussed in his
1948 seminal paper [300] a Markov model representation of a written English text.

1.1.3 Machine learning

Probabilistic reasoning and the Bayesian statistical approach play an increasingly
important role in machine learning. Machine learning (Chapter 21) refers to the
design of computer algorithms for obtaining new knowledge or improving exist-
ing knowledge in the form of a model of some experimental data. A broad family
of such models developed in this field include Bayesian networks (Section 21.5),
which represent generalizations of hidden Markov models (HMMs) (Chapter 20), sup-
port vector machines (SVMs) [338], and artificial neural networks (ANNs) [149].
A major task of machine learning is to classify data using prior knowledge and/or
statistical properties of data. Practical applications of machine learning include recog-
nition of speech, image, and handwriting, robotics (such as pattern recognition), and
bioinformatics.

The speech recognition technology practiced today is largely based on a statistical
approach, in which a sequence of phonemes or sub-words is characterized as a random
sequence drawn from an underlying (i.e., unobservable) hidden Markov process, with
the number of states as large as several thousand. Such an HMM together with the
Viterbi algorithm for sequence estimation, and the expectation-maximization (EM)
algorithm (Chapter 19) for model parameter estimation, has been successfully used in
speech recognition.

The EM algorithm is also used for data clustering in machine learning and com-
puter vision. In natural language processing, two frequently used algorithms are the
forward–backward algorithm (FBA), also known as the Baum–Welch algorithm
(BWA) (Section 20.6.2), and the inside–outside algorithm, a generalization of the FBA
for unsupervised induction of probabilistic context-free grammars.

Search engines, such as Google search, make use of statistical inference applied to
a Markov chain, where Markov states correspond to pages on the World Wide Web
and state transitions are dictated by Web users randomly clicking on links to these
pages.

In machine learning, complex probabilistic distributions are often represented in
terms of probabilistic graphical models [206], in which the nodes represent variables
and the edges correspond to probabilistic interactions between them. A Markov process
on a phylogenetic tree (Section 16.4) and factor graphs (Section 21.6.1) for sum-product
algorithms (Pearl’s belief propagation) are such examples.

2 Andrei A. Markov (1856–1922) was a Russian mathematician best known for the Markov chain.
3 Alexander Sergeyevich Pushkin (1799–1837) was a Russian novelist/poet who is considered to be the

founder of modern Russian literature.
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1.1.4 Biostatistics, bioinformatics, and related fields

Biostatistics deals with applications of statistics in the design, analysis, and interpre-
tation of biological experiments, including medicine and agriculture. Bioinformatics is
an interdisciplinary study that applies statistics and information sciences to the field of
biology. Biostatistics, bioinformatics, and related fields – such as computational biology
and epidemology – make use of probabilistic formulation as well as statistical analysis.
Such noted statisticians as K. Pearson4 and Fisher5 developed and applied statistics
primarily to biology. Such notions as survivor function, hazard function, and mean
residual life, originated with biostatistical applications of survival analysis, are used by
the biotech industry, schools of public health, hospitals, etc.

Biological and chemical phenomena are often represented as Gaussian processes.
The notion of ergodicity formulated for time-domain random processes can be
extended, in the temporal–spatial domain, to conformational sampling of biological
molecules.

The methods of principal component analysis (PCA), singular value decom-
position (SVD), and regression analysis are routinely used in bioinformatics.
Maximum-likelihood estimation is performed for constructing phylogenetic trees
or evolutionary trees based on DNA and/or amino-acid sequences. Bayesian infer-
ence is used, for instance, to predict drug efficacy and adverse drug effects for
patients. Hypothesis testing and the statistical decision approach are also found
useful in biostatistics and epidemology. Receiver operating characteristic (ROC)
curves, originally developed in radar detection theory, are now commonly used in
medical decision making, and in recent years have been increasingly adopted in
the data mining research community as well. A variant of the Newton–Raphson
algorithm, called the “adopted basis Newton–Raphson (ABNR) algorithm,” is often
used for an energy minimization scheme for biological molecules. Brownian motion
and diffusion processes are also important to bioinformatics. Brownian dynamics
simulation, which is closely related to the Langevin equation, is used to study inter-
actions between biological molecules and/or complex formation. The aforementioned
HMM and related algorithms have been successfully used for sequence alignment
for DNA and proteins, and also for prediction of receptor-binding ligands and pro-
tein structure. The HMM and related estimation algorithms are extensively discussed
in Chapter 20.

1.1.5 Econometrics and mathematical finance

Econometrics is primarily concerned with developing and applying quantitative or sta-
tistical methods to better understand economic principles. In econometrics, a time
series or a discrete-time random process is usually adopted to represent economic
data (e.g., a country’s gross domestic product (GDP) as a function of time). An

4 Karl Pearson (1857–1936) was a British statistician who applied statistics to biological problems of heredity
and evolution.

5 Sir Ronald Aylmer Fisher (1890–1962) was a British statistician, evolutionary biologist, and geneticist.
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autoregressive (AR) model or autoregressive moving average (ARMA) model is
often adopted to take into account the temporal dependency. When multiple economic
data (e.g., the inflation rate, unemployment rate, interest rate, and the GDP) are simul-
taneously considered, a multiple time-series representation with vector autoregression
(VAR) [305] or vector ARMA is used.

The principal component analysis (PCA) and a generalized method of moments,
as alternatives to maximum-likelihood estimation procedures such as the aforemen-
tioned EM algorithm, are among the statistical analysis tools available to deal with
large cross-sectional data.

The numerical Bayesian method that adopts a Markov chain Monte Carlo
(MCMC) simulation such as the Metropolis–Hastings algorithm is increasingly used
in Bayesian econometrics. The aforementioned HMM was independently developed in
econometrics and the term regime-switching models [142] is used synonymously with
HMMs.

Mathematical finance is a branch of applied mathematics concerned with financial
markets, and is closely related to financial economics. Unlike econometrics, it usually
deals with continuous-time random processes, and its mathematical tools include
martingales, Brownian motion (also known as the Wiener process or Wiener–Lévy
process), and stochastic differential equations. These advanced theories of random
processes have been much contributed to and used by researchers in statistical
mechanics.

In the mid 1960s Samuelson6 discovered the long forgotten Ph.D. thesis “Theory of
speculation” [9, 10] of Bachelier7 published in 1900. He recognized the applicability of
the theory of Brownian motion to analysis of financial markets, by confirming that the
history of stock markets’ fluctuations fits quite well to what is known as the “square-root
law” of Brownian motion. Merton,8 Scholes,9 and Black10 made use of a new random
process, called geometric Brownian motion (GBM) or exponential Brownian motion,
introduced by Osborne [261] in 1959.

Geometric Brownian motion, denoted S(t), has since been widely used to model the
movement of a stock price – also bonds, commodity, and inflation. Black and Scholes
[29] showed that if the derivative value function F(t) is a function of S(t) and time t ,
i.e., F(t) = F(S, t), it should satisfy the following partial differential equation:

∂

∂t
F(S, t)+ bS

∂

∂S
F(S, t)+ σ 2S2

2

∂2

∂S2 F(S, t) = r F(S, t), t < T ∗, (1.1)

where r is the interest rate and d is the dividend yield of the stock; thus b � r − d repre-
sents the cost of carrying the stock. The time T ∗ is the exercising time of the derivatives.

6 Paul Samuelson (1915–2009) was a US economist, and received the Nobel Prize in Economics in 1970.
7 Louis Bachelier (1870–1946) was a French mathematician, and is regarded as the founder of modern

financial mathematics.
8 Robert C. Merton (1944–) is a US economist, Nobel Laureate, and Harvard University professor.
9 Myron S. Scholes (1941–) is a professor emeritus of Stanford Graduate School of Business, and a Nobel

Laureate.
10 Fischer Black (1938–1995) was an American economist, taught at the University of Chicago and MIT

Sloan School, and worked for Goldman Sachs. His premature death prevented him from receiving a Nobel
Prize.
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Equation (1.1), now widely known as the Black–Scholes differential equation for
option pricing, was published in 1973. Scholes and Merton received a Nobel prize in
Economics in 1997 for this equation and related work.

Today, the mathematical theory of finance uses advanced probability theory and
random processes. So, scientists and engineers well versed in probability and ran-
dom processes to the level of this textbook will find it not so difficult to comprehend
additional topics such as the stochastic differential equation pioneered by Itô.11

Chapter 17 serves as an introduction to mathematical finance.

1.1.6 Queueing and loss systems

When multiple users contend for a resource simultaneously, congestion develops at the
resource. Then, either users must be put into a queue of some sort or must be rejected
from accessing the resource. Such rejected users are said to be lost. Examples of the
queued case are (i) a queue of automobiles at a toll booth of a highway and (ii) data
packets stored temporally enqueued in a buffer at a network router. Examples of the lost
case are (i) calls denied in the conventional telephone systems and (ii) calls denied in a
cellular phone system. The mathematical theory for such queueing and loss systems is
referred to as queueing theory or traffic theory and is a branch of applied probability
theory.

Study of queueing and loss models dates back to the pioneering work by Erlang,12

who published a significant paper [95] in 1917 in which he showed that arrivals of calls
at a telephone exchange are distributed randomly and follow a Poisson distribution.
The Poisson process (Section 14.1) plays an important role in queueing theory. Appli-
cations of queueing and loss models include not only the circuit- or packet-switched
networks and cellular networks, but also an Internet model at the TCP (transmission
control protocol) level. In Chapter 23, we discuss queueing and loss system models,
including recent results on loss network models and a generalized loss station (GLS),
which generalizes the classical Erlang and Engset loss models in several aspects.

1.1.7 Other application domains

The birth–death (BD) process (Section 14.2) is used not only in queueing models,
but also in social sciences, such as in the study of demography and population models
in biology (in describing the population in biology such as the evolution of bacteria).
Renewal processes and related concepts such as hazard function and residual life
have immediate applications in survival analysis, reliability theory, and duration mod-
eling, where survival analysis deals with death in biological organisms and failure in
mechanical system, reliability theory is used in engineering, and duration modeling or
analysis is used in economics or sociology.

11 Kiyoshi Itô (1915–2008) was a Japanese mathematician and was a professor of Kyoto University.
12 Agner Krarup Erlang (1878–1929) was a Danish mathematician and an engineer who founded traffic

engineering.
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Probability theory originally grew out of problems encountered by gamblers in the
sixteenth century as described in Section 1.2. So, many examples in this book, such as
gambler’s ruin and coin tossing, are taken from betting problems. The term martin-
gale originally referred to a class of betting strategies that were popular in France in the
eighteenth century. Martingale theory, however, is a much more recent development,
introduced in the mid-twentieth century by the aforementioned Lévy13 and developed
further by Doob.14

1.2 History and overview

1.2.1 Classical probability theory

It is known that the sixteenth-century Italian Cardano15 wrote Liber de Ludo Aleae, a
book about games of chance, in the 1560s but it was not published until 1663, long after
his death. His book is said to contain the first systematic treatment of probability. But
the origin of probability theory is often ascribed to the correspondence in 1654 between
two famous French mathematicians: Pascal16 and Fermat17 [78]. They were inspired
by questions on gambling posed by Gombaud.18 In 1657, Huygens19 published the
first book on probability entitled De Ratiociniis in Ludo Aleae (On Reasoning in Games
of Chance), a treatise on problems associated with gambling, motivated by Pascal and
Fermat’s correspondence. From this period, probability theory became a favorite sub-
ject of some great minds, including Jacob Bernoulli,20 Leibniz,21 Daniel Bernoulli,22

De Moivre,23 Bayes,24 and Lagrange.25

In 1713, Daniel Bernoulli’s book Ars Conjectandi (The Art of Conjecture) was
published posthumously; it included not only the results by Fermat, Pascal, and
Huygens, but also his own result: “If a very large number N of independent trials are

13 Paul Pierre Lévy (1886–1971) was a French mathematician who investigated dependent variables and
introduced martingale theory.

14 Joseph Leo Doob (1910–2004) was an American mathematician who taught at the University of Illinois.
15 Gerolamo Cardano (1501–1576) was an Italian mathematician, physician, astrologer, and gambler.
16 Blaise Pascal (1623–1662) was a French mathematician, physicist, and philosopher.
17 Pierre de Fermat (1601–1665) was a French lawyer and government official most remembered for his

work in number theory; in particular for Fermat’s last theorem. He also made important contributions to
the foundations of the calculus.

18 Antoine Gombaud (1607–1684), Chevalier de Méré, was a French writer. As a contemporary of Pascal,
the two corresponded frequently on the calculation of probabilities.

19 Christiaan Huygens (1629–1695) was a Dutch mathematician, astronomer, and physicist.
20 Jacob Bernoulli (1654–1705) was a Swiss mathematician.
21 Gottfried Wilhelm Leibniz (1646–1716) was a German mathematician and philosopher.
22 Daniel Bernoulli (1700–1782) was a Dutch-born Swiss mathematician and scientist, and a nephew of

Jacob Bernoulli. The Bernoulli family produced a number of famous mathematicians and scientists in the
eighteenth century.

23 Abraham de Moivre (1667–1754) was a French mathematician, who worked in London. He was an
intimate friend of Isaac Newton.

24 Thomas Bayes (1702–1761) was a British mathematician and Presbyterian minister.
25 Joseph Lagrange (1736–1813) was a French mathematician and mathematical physicist.
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made, the ratio of the number of successes n to N will, with probability close to 1, be
very close to the theoretical probability of success.” This result became generally known
as Bernoulli’s theorem. In 1733 De Moivre published The Doctrine of Chances, in
which he sharpened Bernoulli’s theorem and proved the first form of the central limit
theorem (CLT), by introducing the normal distribution as an approximation to the
binomial distribution. The normal distribution was subsequently used by Laplace26 in
1783 to study measurement errors and by Gauss27 in 1809 in the analysis of astronomi-
cal data. A special case of what is now known as Bayes’ rule is stated in Bayes’ “Essay
towards solving a problem in the doctrine of chances,” published posthumously in 1764
by his friend Richard Price in the Philosophical Transactions of the Royal Society of
London.

By the 1770s, Laplace became the leading authority on mathematical probability,
and his Théorie Analytique des Probabilités (Analytic Theory of Probability) pub-
lished in 1812 remained authoritative for over half a century after his death. Laplace
discussed an instance of the CLT for i.i.d. (independent and identically distributed)
random variables (Theorem 8.2 of Section 8.2.5). Poisson28 followed in Laplace’s foot-
steps. In Recherches sur la Probabilité des Jugements en Matière Criminelle et Matière
Civile (Research on the Probability of Judgments in Criminal and Civil Matters),
published in 1837, the Poisson distribution first appears. In 1835, Poisson described
Bernoulli’s theorem under the name “La loi des grands nombres (The law of large
numbers).”

The latter half of the nineteenth century witnessed the advancing empiricism in prob-
ability that equated the notion of probability merely as the limit of relative frequency,
and this discouraged philosophical questions on probability, such as subjective vesus
objective probability posed by Poisson and others. In England, Venn29 wrote “The logic
of chance” in 1866. His work emphasized the frequency interpretation of probability
and influenced the development of the theory of statistics.

A renewal of mathematical and philosophical interest in probability came only
towards the end of the nineteenth century, as probability began to play a fundamen-
tal role in statistical mechanics advanced by such theoretical physicists as Maxwell,30

Kelvin,31 Boltzmann,32 and Gibbs.33

26 Pierre-Simon, Marquis de Laplace (1749–1827) was a French mathematician and astronomer whose work
was pivotal to the development of mathematical astronomy.

27 Carl Friedrich Gauss (1777–1805) was a German mathematician and scientist who contributed to a wide
variety of fields in both mathematics and physics, including number theory, analysis, differential geometry,
magnetism, astronomy, and optics.

28 Siméon-Denis Poisson (1781–1840) was a French mathematician, geometer, and physicist.
29 John Venn (1834–1923) was a British logician and philosopher.
30 James Clerk Maxwell (1831–1879) was a Scottish physicist best known for his revolutionary work in

electromagnetism and the kinetic theory of gases.
31 Lord William Thompson Kelvin (1824–1907) was a British mathematical physicist and engineer, best

known for his work in the mathematical analysis of electricity and thermodynamics.
32 Ludwig Boltzmann (1844–1906) was an Austrian physicist famous for his founding contributions in the

fields of statistical mechanics and statistical thermodynamics.
33 Josiah Willard Gibbs (1839–1903) was an American mathematical physicist, physical chemist, and

contributed to thermodynamic and statistical mechanics.
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By the late nineteenth century, Russian mathematicians became significant players in
probability theory. The most notable among them were Chebyshev34 and his student
Markov, who introduced, as mentioned in Section 1.1.2, the theory of Markov chains
[238] and generalized the law of large numbers to dependent variables.

1.2.2 Modern probability theory

By the early twentieth century, French mathematicians regained interest in mathematical
probability: they included Poincaré,35 Borel,36 and the aforementioned Lévy.

At the beginning of the twentieth century, however, the status of probability was
perceived as unsatisfactory by many mathematicians: They felt that it lacked clarity and
rigor to be a respectable branch of mathematics. In 1900, at the second International
Congress of Mathematicians held in Paris, Hilbert37 lectured on what he believed to
be the most important 23 open problems in mathematics. He listed probability as a
subdiscipline of his sixth problem; i.e., axiomatic foundations for physics.

Hilbert’s call for axiomatization of probability stimulated many mathematicians in
the first two decades of the twentieth century. During this period, an increased empha-
sis on measure theory and generalized concepts of integration pioneered by Borel,
Lebesgue,38 Hausdorff,39 Fréchet,40 and others became notable. But it was not until
1933 that Hilbert’s call was fully answered when Kolmogorov41 published his 62-
page monograph Grundbegriffe der Wahrscheinlichkeitsrechnung (Basic Concepts of
Probability Theory) [208, 210].

Kolmogorov’s measure theoretic approach to probability was a major breakthrough
in the history of probability theory; his approach was soon accepted by a majority of
mathematicians and statisticians. The “limiting frequency theory” approach, long advo-
cated by von Mises42 [342] and others, is no longer subscribed to by many. Kolmogorov
himself, however, did not negate von Mises’ approach, and in fact he wrote in 1963: “ ...
that the basis for the applicability of the results of the mathematical theory of probabil-
ity to real ‘random phenomena’ must depend on some form of the frequency concept of

34 Pafnuty Lvovich Chebyshev (1821–1894) is known for his work in the fields of probability, statistics, and
number theory. Among his students were Markov and Aleksandr Mikhailovich Lyapunov (1857–1918).

35 Henri Poincaré (1854–1912) was a French mathematician, theoretical physicist, and a philosopher of
science.

36 Émile Borel (1871–1956) was a French mathematician and pioneered measure theory.
37 David Hilbert (1862–1943) was a German mathematician, known for his contributions to algebra,

topology, geometry, number theory, and physics.
38 Henri Léon Lebesgue (1875–1941) was a French mathematician who formulated measure theory and

defined the Lebesgue integral that generalized the notion of the Riemann integral.
39 Felix Hausdorff (1868–1942) was a German mathematician who founded the theory of topological and

metric spaces. He also investigated set theory and introduced the concept of a partially ordered set.
40 René Maurice Fréchet (1878–1973) was a French mathematician who contributed to real analysis and

founded the theory of abstract spaces.
41 Andrey Nikolaevich Kolmogorov (1903–1987) was a Soviet mathematician who made major advances in

probability theory, topology, logic, turbulence, classical mechanics, and computational complexity.
42 Richard von Mises (1887–1953) was an Austrian-born American mathematician who worked on fluid

mechanics, aerodynamics, aeronautics, statistics, and probability theory.
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probability, the unavoidable nature of which has been established by von Mises in a spir-
ited manner.” A majority of textbooks on probability theory today takes the axiomatic
approach, and so does this textbook.

1.2.3 Random processes

In the axiomatic formulation of probability theory introduced in 1933, a random
variable X is defined as a mapping X (ω) from a sample point ω in sample space �
to a real number; i.e., X (ω) ∈ R. A random process (also called a stochastic pro-
cess) is then defined as a collection of random variables. That is, for each t in the
index set T , X (ω; t) is a random variable. We will postpone a formal discussion of
random processes until Chapter 12, but it should be noted that investigation of ran-
dom processes began well before 1933. In the theory of random processes there are
two fundamental processes: one is the Poisson process and the other is Brownian
motion [186].

1.2.3.1 Poisson process to Markov process
The Poisson process is named after the aforementioned French mathematician Siméon-
Denis Poisson. What the Poisson process is to a class of point processes (Chapter 14)
is what the Gaussian process is to a class of continuous-time and continuous-valued
processes (Chapter 12). The Poisson process can be considered as a special case of the
birth-death (BD) process, which in turn is a special case of a continuous-time Markov
chain (CTMC), also called a Markov process (Chapter 16). Markov introduced (as
mentioned already in Section 1.1.2 and towards the end of Section 1.2.2) what we call
a discrete-time Markov chain (DTMC) in 1907 [238]. Chebyshev and Markov proved
the central limit theorem (CLT) under conditions weaker than Laplace’s proof, using
moments. Lyapunov43, another student of Chebyshev, later proved the same theorem
using characteristic functions.

Markov process models have been used in numerous applications, including statisti-
cal mechanics in physics, queueing theory (Chapter 23), information theory, and many
other scientific and engineering disciplines, including signal processing applications
and bioinformatics, as discussed in the previous sections.

Another generalization of the Markov process led to semi-Markov processes
(Section 16.1) and the renewal process (Section 14.3), which find applications in
simulation methodology as well as the aforementioned reliability theory and queueing
theory.

The concept of martingale in probability theory was originally introduced by Lévy,
and much of the theory was developed by Doob, as remarked at the end of the previous
section.

43 Aleksandr Mikhailovich Lyapunov (1857–1918) contributed also to a study of stability conditions in
dynamical systems.



1.2 History and overview 11

1.2.3.2 Brownian motion to Itô process
The origin of Brownian motion goes back to in 1827, when Brown44 observed the
irregular motion of pollen particles suspended in water. Several decades later the afore-
mentioned Bachelier gave a mathematical description of Brownian motion in his 1900
Ph.D. thesis “The theory of speculation” [9, 10]. His work presented a stochastic anal-
ysis of the stock and option markets. Five years later, in 1905, Einstein,45 based on his
independent work, published a mathematical analysis of Brownian motion [86], which
showed that the concentration density of a large number of Brownian particles should
satisfy a partial differential equation, now known as a diffusion equation. Almost at
the same time, Smoluchowski46 worked on the theory of Brownian motion [270, 307],
independently of Einstein. The atomic nature of matter was still a controversial idea
around the turn of the century. Einstein and Smoluchowski reasoned that, if the kinetic
theory of fluids was right, the molecules of water would move randomly. Therefore,
a small particle would receive a random number of impacts of random strength and
from random directions in any short period of time. This random bombardment by the
molecules of the fluid would cause a sufficiently small particle to move in exactly the
way observed by Brown almost 80 years earlier.

Perrin47 carried out experiments to verify the new mathematical models, and his
results finally put an end to the century-long dispute about the reality of atoms and
molecules. Perrin received the Nobel Prize in Physics in 1926.

The theory of Brownian motion was further investigated by Lévy, Wiener,48 Kol-
mogorov, Feller,49 and others. In Chapter 17 we will derive Brownian motion as a
continuous limit of a random walk. But Wiener derived in 1923 the Brownian motion
as a random real-valued continuous function W (t) on [0,∞) [351]. We now call such a
random function a Wiener process.

In 1944, the aforementioned Itô published his work on a theory of stochas-
tic differential equations [157, 158]. The basic concepts of his theory, often called
Itô calculus, consist of the Itô integral and Itô’s lemma. Stochastic differential
equations have been applied to many disciplines, including Kalman–Bucy filter-
ing (Section 22.3) and the Black–Scholes differential equation for option pricing
(Chapter 17.4.3). Itô became the first recipient of the Carl Friedrich Gauss Prize
newly established at the 2006 International Congress of Mathematicians. We should

44 Robert Brown (1773–1858) was a Scottish biologist.
45 Albert Einstein (1879–1955). Scientists call year 1905 “Einstein’s annus mirabilis” (a Latin phrase mean-

ing “Einstein’s year of miracles”). Within a few months, Einstein published three seminal papers in
Annalen der Physik that profoundly transformed our understanding of physics. The first paper was on
his “special theory of relativity” and the famous equation E = mc2. The second paper was on the photo-
electric effect by hypothesizing that light consisted of particles (called photons). For this work he received
the Nobel Prize in Physics in 1921. The third paper was on Brownian motion.

46 Marion Smoluchowski (1872–1917) was a Polish physicist.
47 Jean-Baptiste Perrin (1870–1942) was a French physicist and a Nobel Prize winner.
48 Norbert Wiener (1894–1964) was an American theoretical and applied mathematician. He was a pioneer

in the study of stochastic and noise processes. Wiener is also the founder of cybernetics.
49 William Feller (1906–1970) was a Croatian–American mathematician specializing in probability theory.

He was a professor of mathematics at Princeton University from 1950 till 1970.
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also note that Stratonovich50 introduced a stochastic calculus, different from Itô cal-
culus; the Stratonovich integration is most frequently used within physical sciences. He
also solved the problem of optimal nonlinear filtering based on his theory of conditional
Markov process [313], and the Kalman–Bucy linear filter is considered as a special case
of Stratonovich’s filter.

1.2.4 Statistical analysis and inference

The history of mathematical statistics is not separable from that of probability theory.
Much of modern statistical theory and its application are founded on modern probability
theory.

The method of least squares is often credited to Gauss, Legendre,51 and Adrain.52

Gauss also showed that among linear models where the errors are uncorrelated, having
zero mean and equal variances, the best linear unbiased estimate of the linear coeffi-
cients is the least-squares estimate. This result is now known as the Gauss–Markov
theorem. This result can be interpreted in the context of the least-squares approach to
regression analysis introduced in the late nineteenth century.

Around the period “probabilists” in France were studying games of chance, some
mathematicians in England were concerned with sampling, motivated by selling life
insurance, financing pensions, and insuring ships at sea [20]. They contributed to the
theory of sampling and reasoning from sets of data.53 The concept of regression comes
from genetics and was popularized by Galton,54 who discovered “regression toward the
mean” by experimenting with sweet peas. His sweet peas produced seeds with a normal
variation of sizes that regressed from the distribution of their parents. The aforemen-
tioned K. Pearson is credited for the establishment of the discipline of statistics; he
contributed to such classical statistical methods as linear regression, correlation, and
the chi-square test. Gosset,55 an employee of Guinness Brewery Co. in Dublin, studied
in K. Pearson’s biometric laboratory in 1906–07 and published in 1908 two papers on
Student’s t distribution, using the pseudonym ‘Student,’ which addressed the brewer’s
concern with small samples.

The notion of a maximum likelihood estimator (Section 18.1.2) for estimating a
parameter of a distribution was introduced in the 1912–1922 period by the aforemen-
tioned Fisher, who is also known for his work on the analysis of variance (ANOVA),
the F-distribution, Fisher information, and the design of experiments.

50 Ruslan Leont’evich Stratonovich (1930–1997) was a Russian mathematician, physicist, and engineer.
51 Adrien-Marie Legendre (1752–1833) was a French mathematician and made contributions to statistics,

number theory, abstract algebra, and mathematical analysis.
52 Robert Adrain (1775–1843) was an American mathematician.
53 Personal communication with David Goodman.
54 Sir Francis Galton (1822–1911) was an English Victorian polymath, anthropologist, eugenicist, proto-

geneticist, and statistician.
55 William Sealy Gosset (1876–1937) was a British statistician, best known for Student’s t-distribution.
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The theory of hypothesis testing (Section 18.2) was also developed in the early part
of the twentieth century. Neyman56 and E. Pearson57 are best known for the Neyman–
Pearson lemma which states that, when performing a hypothesis test between two
hypotheses, the likelihood-ratio test is the most powerful test (Section 18.2.2).

Estimation and decision theory provided foundations for radar detection theory,
statistical communication theory, and control theory. Such notions as unbiasedness,
efficiency, and sufficiency are important ingredients of estimation theory. The famous
minimum variance unbiased estimator bound, known as the Cramér–Rao lower bound
(Section 18.1.3), is due to Cramér58 and Rao.59

Filter design theory was developed as part of circuit theory in the early twentieth
century, but the birth of modern filter theory based on statistical estimation theory was
in 1949, when Wiener published his work developed in the 1940s [350]. It is based on
the minimum mean square error criterion (Chapter 22). The discrete-time version of the
Wiener filter was obtained independently by Kolmogorov and published in 1941 [209].
Hence, the theory is sometimes called the Kolmogorov–Wiener theory.

Kalman60 introduced in 1960 what is known as the Kalman filter [171], an efficient
recursive filter that estimates the state of a dynamic system from a series of incomplete
and noisy data (Section 22.3). There is a close relationship between the Kalman filter
and the estimation problem for an HMM.

The EM algorithm (Section 19.2) developed by Dempster, Laird, and Rubin in
1977 [80] is an iterative algorithm to find maximum likelihood estimates of model
parameters, when the model depends on unobserved latent variables, and has been
widely applied to signal processing, communications, bioinformatics, machine learning,
and econometrics, as mentioned in the previous section.

1.2.4.1 Frequentist statistics versus Bayesian statistics
As remarked earlier, the theory of mathematical statistics was founded from the late
nineteenth century through the early twentieth century by such British statisticians as
Galton, the two Pearsons, Gosset, and Fisher. Their work is based on the frequency
interpretation of probability advocated by Venn in his 1866 book, as discussed in
Section 1.2.1. This school of statisticians is often referred to as the frequentists in
contrast with the “Bayesians” to be described below. Such statistical methods and tools
as regression, multiple regression, ANOVA, analysis of covariance (ANCOVA), maxi-
mum likelihood, F test, experimental design, PCA, and time series analysis all belong
to frequentist statistics.

Use of probability to describe the degree of belief in states of a “system” of our
interest forms the basis of the Bayesian statistical approach alluded to at the beginning

56 Jerszy Neyman (1894–1981) was a Polish–American mathematician.
57 Egon Sharpe Pearson (1895–1980) was a British statistician, a son of Karl Pearson.
58 Carl Harald Cramér (1893–1985) was a Swedish probabilist and statistician.
59 Calyampudi Radhakrishna Rao (1920–) is an Indian statistician.
60 Rudolph Emil Kalman (1930–) is a Hungarian-born American system theorist.
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of this chapter. It starts with some prior belief and updates it using observation data to
give a posterior belief, which may be used to draw an inference. With the advent of
computationally efficient methods such as MCMC, the Bayesian approach has recently
become of real practical use, and is increasingly used in such fields as machine learning
(e.g., Koller and Friedman [206] and Kononenko and Kukar [211]) and information
theory (e.g., MacKay [234]), econometrics (e.g., Greenberg [128]), and bioinformatics
(e.g., Wilkinson [352]).

1.3 Discussion and further reading

There exists a large body of literature concerning the history of probability and statis-
tics; e.g., Todhunter [325] (1865), David [78], Maistrov [235], Hacking [135, 136],
Stigler [312], Hald [140], and Franklin [111]. Shafer and Vovk [299] provide a rather
comprehensive treatment on the history of probability and related bibliography, as well
as their own view of probability. Fine [105] gives a brief but informative description of
the history of probability in his introductory chapter.

Williams [355] (Appendix D) provides a well-selected list of books, together with
his own witty remarks, on probability (including genetics, random walks, Markov
chains, stochastic processes, martingales, and stochastic calculus), frequentist statis-
tics (including regression, ANOVA and experimental design, time series), Bayesian
statistics (including decision theory – frequentist and Bayesian, model choice), quantum
theory and quantum computing.



Part I

Probability, random variables,
and statistics





2 Probability

2.1 Randomness in the real world

2.1.1 Repeated experiments and statistical regularity

One way to approach the notion of probability is through the phenomenon of statistical
regularity. There are many repeating situations in nature for which we can predict in
advance, from previous experiences, roughly what will happen, but not exactly what
will happen. We say in such cases that the occurrences are random. The reason that we
cannot predict future events exactly may be that (i) we do not have enough data about the
condition of the given problem, (ii) the laws governing a progression of events may be so
complicated that we cannot undertake a detailed analysis, or possibly (iii) there is some
basic indeterminacy in the physical world. Whatever the reason for the randomness, a
definite average pattern of results may be observed in many situations leading to random
occurrences when the situation is recreated a great number of times. For example, if a
fair coin is flipped many times, it will turn up heads on about half of the flips.

Another example of randomness is the response time of a web (i.e., World Wide Web
or WWW) access request you may send over the Internet in order to retrieve some infor-
mation from a certain website. The amount of time you have to wait until you receive a
response will not be precisely predictable, because the total round trip time depends on
a number of factors. Thus, we say that the response time varies randomly. Although we
cannot predict exactly what the response time of a given web access request will be, we
may find experimentally that certain average properties do exhibit a reasonable regu-
larity. The response time of small requests averaged over minutes will not vary greatly
over an observation interval of several minutes; the response time averaged over a given
day will not differ greatly from its value averaged over another day of similar system
usage.

The tendency of repeated experiments to result in the convergence of the averages as
more and more trials are made is what we refer to as statistical regularity. This statistical
regularity of averages is an experimentally verifiable phenomenon in many situations
that involve randomly varying quantities. We are therefore motivated to construct a
mathematical model adequate for the study of such phenomena. This is the domain of
probability and statistics.
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2.1.2 Random experiments and relative frequencies

By an experiment, we mean a measurement procedure in which all conditions are pre-
determined to the limit of our ability or interest. We use the word trial to mean the
making of the measurement. An experiment is called random when the conditions of
the measurement are not predetermined with sufficient accuracy and completeness to
permit a precise prediction of the result of a trial. Whether an experiment should be
considered random depends on the precision with which we wish to distinguish pos-
sible outcomes. If we desire or are able to look closely enough, in some sense, any
experiment is random.

We now discuss more precisely what we mean by statistical regularity. Let A denote
one of the possible outcomes of some experiment, say, the “head” in coin tossing, and
we repeat the experiment a large number of times N under uniform conditions. Denote
by N (A) the number of times that the outcome A occurs. The fraction

fN (A) = N (A)

N
(2.1)

is called the relative frequency or simply the frequency of outcome A. If there is a prac-
tical certainty that the measured relative frequency will tend to a limit as N increases
without limit, we would like to say that the outcome A has a definite probability of
occurrence, and take P[A] to be that limit; i.e.,

fN (A)→ P[A] as N →∞. (2.2)

Unfortunately, this simple approach faces many difficulties. One obvious difficulty is
that, strictly speaking, the limit may never be found, since an infinite number of repeti-
tions of the experiment takes an infinite amount of time. Therefore, rather than defining
a probability as the limit of a relative frequency, we will construct an abstract model
of probability so that probabilities behave like the limits of relative frequencies. An
important after-the-fact justification of this procedure is that it leads to the so-called
laws of large numbers, according to which, in certain very general circumstances,
the mathematical counterpart of an empirical relative frequency does converge to the
appropriate probability. Hence, an empirical relative frequency may be used to estimate
a probability.

2.2 Axioms of probability

A mathematical model will prove useful in predicting the results of experiments in the
real world if the following two conditions are met. First, pertinent physical entities and
their properties must be reflected in the model. Second, the properties of the model
must be mathematically consistent and make analysis tractable. We begin by defining
the following three abstract entities: sample space, event, and probability measure.
We then develop a model by assigning them mathematically consistent properties that
reflect constraints in the real world.
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2.2.1 Sample space

The sample space1 is a mathematical abstraction of the collection of all possible exper-
imental outcomes. We denote this collection by the symbol �. An object in � is called
a sample point and denoted ω. Each sample point, therefore, corresponds to a possible
outcome of a real-world experiment.

Example 2.1: Tossing of two coins. Consider the experiment of tossing two coins,
denoted coin i (i = 1, 2). We are interested in whether each coin falls heads (h) or tails
(t), and denote the four possible outcomes of this experiment as (hh), (ht), (th), and (tt).
Each outcome of the experiment corresponds to exactly one member of the sample space

� = {ω1, ω2, ω3, ω4}, (2.3)

where

ω1 = (hh), ω2 = (ht), ω3 = (th), ω4 = (tt). (2.4)

�

Example 2.2: Response time to a web request. Consider the experiment in which
we measure the response time for a web request that is sent over the Internet to a certain
web server. In theory, the system response time can be anywhere between zero and plus
infinity. Then � is the positive half-line:

� = {ω : 0 ≤ ω <∞}. (2.5)

�

2.2.2 Event

An event is a set of sample points. We usually denote events by capital letters, such as
A, B, . . ., or A1, A2, . . .. An event is concisely defined by the expression

A = {ω : certain conditions on ω are satisfied}, (2.6)

which reads “Event A is the set of all ω such that certain conditions on ω are satisfied.”
Clearly, an event is a subset of �.

Example 2.3: Tossing of two coins – continued. Consider again the experiment with
two coins. If A is the subset of � defined by

1 According to Feller [99], the notion of “sample space” comes from R. von Mises [341], who used the
German word “Merkmalraum.”
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A = {(hh), (ht), (th)}, (2.7)

then A is the event that there is at least one head. Similarly,

B = {(hh)} (2.8)

is the event that there are two heads. Thus, an event may contain one or more sample
points. An event like B, which contains only one sample point, is called a simple event.

In order to explain the significance of the notion of events, we may distinguish, in
connection with a real-world experiment, between the terms outcome and result. By
different outcomes we mean outcomes that are separately identifiable in an ultimate
sense. On the other hand, by different results we mean sets of outcomes between which
we choose to distinguish. Thus, results in the real world correspond to events in the
mathematical model. For example, a result in our response-time experiment might be
that the observed response time at the terminal is between 1.0 and 1.5 s. Such a result
clearly embraces an infinite number of different possible response times or outcomes.

2.2.3 Probability measure

A probability measure is an assignment of real numbers to the events defined on �.
The probability of an event A is denoted by P[A].2 The set of properties that the assign-
ment must satisfy are sometimes called the axioms of probability. This axiomatic
formulation of probability is the aforementioned great accomplishment by Kolmogorov
[208] published in 1933. The probability assigned to an event corresponds to that value
at which we expect the relative frequency of the associated result to stabilize in an
infinitely long sequence of independent trials of the real-world experiment.

Example 2.4: Tossing of two coins – continued. If the sample space � is the one
defined by (2.4) and (2.3), a possible probability assignment to the simple events is

P[{ω1}] = 1

2
, P[{ω2}] = P [{ω3}] = 1

4
, andP[{ω4}] = 0.

However, this assignment is not appropriate to reflect the coin-tossing experiment.

Example 2.5: Response time to the web request – continued. If � is the set of all
response times given by (2.5) and we define the event Et by

Et = {ω : 0 ≤ ω ≤ t}, (2.9)

2 Note that some authors write P(A) or P{A} instead of P[A], the notation we adopt in this textbook.
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a possible probability assignment is

P[Et ] = 1− e−t/T , (2.10)

where T is the average value of response time.

2.2.4 Properties of probability measure

Before we discuss the properties of the probability measure, we must know some ele-
mentary set theory, since the definition of sample space � and events implies the
existence of certain other identifiable sets of points.

1. The complement of event A, denoted Ac, is the event containing all sample points
that belong to �, but not to A:

Ac = {ω : ω does not belong to A}. (2.11)

2. The union of A and B, denoted A ∪ B, is the event containing all sample points that
belong to at least one of the two sets A, B:3

A ∪ B = {ω : ω belongs to A or B}. (2.12)

3. The intersection of A and B, denoted by A ∩ B, is the event containing all sample
points in both A and B:

A ∩ B = {ω : ω belongs to both A and B}. (2.13)

4. The event containing no sample points is called the null event, denoted ∅. For any
event A, the intersection of A and Ac is the null event; i.e., A ∩ Ac = ∅.

5. The event containing all points – that is, the sample space � – is called the sure
event or certain event (an event that must occur). For any event A, the union of A
and Ac is the sure event; that is, A ∪ Ac = �. It is clear that the null event and sure
event are related by �c = ∅ and ∅c = �.

6. Two events A and B are called disjoint or mutually exclusive if they have no sample
points in common; that is, if A ∩ B = ∅.

The relations between the operations (i.e., complement, union, and intersection) are
easily visualized in the schematic diagrams of Figure 2.1. Such drawings are called
Venn diagrams.

3 The word “or” is used in mathematics and logic in the inclusive sense. Thus, the statement “A or B” is the
mathematical expression for “either A or B or both.”
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(a) (b) (c)

Ac

A A ∩ B

(A ∪ B)c = Ac ∩ Bc

A ∪ B

Ac ∩ Bc

A  ∩ Bc Ac ∩ B

A B A BΩ Ω Ω

Figure 2.1 Venn diagrams.

The symbols ∪ and ∩ are operations between any two sets, just as + and × are
operations between any two numbers, and they obey similar laws:

commutative laws:
A ∪ B = B ∪ A
A ∩ B = B ∩ A

; (2.14)

associative laws:
(A ∪ B) ∪ C = A ∪ (B ∪ C)
(A ∩ B) ∩ C = A ∩ (B ∩ C)

; (2.15)

distributive laws:
A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)
A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

. (2.16)

Finally, we note two very useful identities:

(A ∪ B)c = Ac ∩ Bc, (2.17)

(A ∩ B)c = Ac ∪ Bc, (2.18)

which are sometimes called de Morgan’s laws.4 All of these laws can be readily
verified by the Venn diagrams in Figure 2.1.

Having extended the notion of an event, we will now consider certain properties that
a probability measure should satisfy. In a long sequence of N independent trials of a
real-world experiment, the observed relative frequency fN (A) of the result A meets
certain conditions:

1. The relative frequency fN (A) is always nonnegative:

fN (A) ≥ 0.

2. Every trial of an experiment is sure to have a result. Hence,

fN (�) = 1.

3. If two results A and B are mutually exclusive, then

fN (A or B) = fN (A)+ fN (B).

4 Augustus de Morgan (1806–1871) was an Indian-born British mathematician and logician.
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Since we are going to use probability theory to predict the results of real-world ran-
dom experiments, it is reasonable that we impose similar conditions on corresponding
entities in our mathematical model. We therefore require our assignment of probability
measure P [·] to satisfy the following axioms of probability:

Axiom 1. P[A] ≥ 0 for all events A. (2.19)

Axiom 2. P[�] = 1; that is, the probability of the sure event is 1. (2.20)

Axiom 3. If A and B are mutually exclusive events – i.e., if A ∩ B = ∅ –

then P[A ∪ B] = P[A] + P[B]. (2.21)

These properties, motivated from real-world considerations, are self-consistent and are
adequate for a formal development of probability theory, whenever the totality of events
on � is finite.

A consequence of Axiom 3 is that if A1, A2, . . ., AM are M mutually exclusive
events, then their union A1 ∪ A2 ∪ · · · ∪ AM , which we denote by

⋃M
m=1 Am , has the

probability

P

[
M⋃

m=1

Am

]
=

M∑
m=1

P[Am]. (2.22)

This is easily shown by successive applications of Axiom 3 or, more formally, by the
method of mathematical induction. A consequence of Axioms 2 and 3 is

P[A] ≤ 1 (2.23)

for any event A, since

P[A] + P[Ac] = P(�) = 1, (2.24)

and P[Ac] ≥ 0, where Ac is the complement of A. It also follows from Axioms 2 and 3
that the probability of the null event is zero; i.e.,

P[∅] = 1− P[�] = 0. (2.25)

Since the event A ∪ B is decomposable into a set of mutually exclusive events A ∩ B,
Ac ∩ B, and A ∩ Bc, we have

P[A ∪ B] = P[A ∩ B] + P[Ac ∩ B] + P[A ∩ Bc]
= P[A ∩ B] + (P[B] − P[A ∩ B])+ (P[A] − P[A ∩ B]). (2.26)

Thus, we have

P[A ∪ B] = P[A] + P[B] − P[A ∩ B]. (2.27)

Hence,

P [A ∪ B] ≤ P [A] + P [B], (2.28)

where the equality holds only when A and B are mutually exclusive. If the total number
of possible events is infinite, then the above three properties alone are insufficient. It is
necessary to extend Axiom 3 to include infinite unions of disjoint events.



24 Probability

Axiom 4. If A1, A2, . . . are mutually exclusive events, then their union A1 ∪ A2 ∪ · · · ,
denoted

⋃∞
m=1 Am , has the probability

P

[ ∞⋃
m=1

Am

]
=

∞∑
m=1

P [Am]. (2.29)

Since Axiom 4 subsumes Axiom 3, only three axioms are necessary to define proba-
bilities for any events in�. Equation (2.25) implies that the probability of the null event
is zero. However, the converse is not true: even if the probability of an event is zero,
it does not imply that it is the null event. The null event is the mathematical counter-
part of an impossible outcome; probability theory assigns probability zero to anything
impossible, but does not imply that if an event has probability zero it is impossible. It is
entirely conceivable that there is an event A such that fN (A)→ 0 even though N (A)
does not remain zero. For example, the probability that you observe the response time
of exactly 2 seconds is zero, yet the response time of 2 seconds is a possible event.

Because of Axiom 4, we require that the collection of events be closed5 under the
operation of taking countable unions. So we introduce the notion of σ -field.

D E FI N I T I O N 2.1 (σ -field).6 A collection F of subsets of � is called a σ -field, if it
satisfies the following properties:

(a) ∅ ∈ F;
(b) if A ∈ F, then Ac ∈ F;

(c) if A1, A2, . . . ∈ F, then
∞⋃

m=1

Am ∈ F .
(2.30)

�

Because of the property (c), a σ -field is indeed closed under the operation of tak-
ing countable unions. It is not difficult to see that it is also closed under countable
intersections (Problem 2.13).

Example 2.6: Smallest σ -field. The smallest σ -field associated with� is F = {∅,�}.

Example 2.7: If A is a subset of �, then F = {∅, A, Ac,�} is a σ -field.

5 In mathematics, a set is said to be closed under some operation if the operation on members of the set
produces a member of the set. For example, the real numbers are closed under subtraction, but the natural
numbers are not: 2 and 5 are both natural numbers, but the result of 2− 5 = −3 is not.

6 Also called a σ -algebra.
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Consider a collection C of subsets of �. We can find a smallest σ -field that contains all
the elements of C.

Example 2.8: Consider a sample space defined by � = {a, b, c, d}. A set C =
{{a}, {b}} is a subset of �, but it is not a field. The complement of a simple event
{a} is {a}c = {b, c, d}. Similarly, {b}c = {a, c, d}. We also find {a} ∪ {b} = {a, b} and
({a} ∪ {b})c = {c, d}. Then collecting all these subsets of �, we find that

{∅, {a}, {b}, {a, b}, {c, d}, {b, c, d}, {a, c, d},�}
is the smallest σ -field containing all the elements of C. �

We are ready to provide the following formal definition of probability measure and
probability space.

D E FI N I T I O N 2.2 (Probability measure and probability space). A probability measure
P defined on (�,F) is a function that maps any element of F into [0, 1] such that

(a) P [∅] = 0, P [�] = 1;
(b) if A1, A2, . . . ∈ F and Am ∩ An = ∅ (m �= n), then

P

[ ∞⋃
m=1

Am

]
=

∞∑
m=1

P [Am]. (2.31)

The triple (�,F, P) is called a probability space. �

Example 2.9: Tossing of two coins and a product space. Let us consider again the
experiment of tossing two coins. We now assume that the coins are possibly biased. The
sample space of tossing the first coin (coin “1”) is denoted �1 = {h, t}. Its σ -field is
F1 = {∅, {h}, {t},�1}. A possible probability measure P1 is given by

P1[∅] = 0, P1[{h}] = p1, P1[{t}] = 1− p1, and P1[�1] = 1,

where p1 is a fixed real number in the interval [0, 1]. If p1 = 1
2 , then we say that the coin

1 is unbiased or fair. Thus, the experiment of tossing “coin 1” has the probability space
(�1,F1, P1). We can define the probability space (�2,F2, P2) for the experiment of
tossing “coin 2” in a similar manner, except that P2[{h}] = p2 and P2[{t}] = 1− p2,
where p2 may be different from p1.

The sample space � of the experiment of tossing the two coins is the Cartesian
product of the two sample spaces defined above:

� = �1 ×�2 = {(ω1, ω2) : ω1 ∈ �1, ω2 ∈ �2}. (2.32)

The σ -field is not so straightforward to construct. It certainly should contain all sub-
sets of �1 ×�2 of the form A1 × A2 = {(a1, a2) : a1 ∈ A1, a2 ∈ A2}, where Ai is an
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element of Fi , i = 1, 2. Note, however, that the collection of all such sets F1 × F2 =
{A1 × A2 : A1 ∈ F1, A2 ∈ F2} is not generally a σ -field.

The smallest σ -field associated with � is found as

F = {∅, (hh), (ht), (th), (tt),

(hh) ∪ (ht), (th) ∪ (tt), (hh) ∪ (th),
(ht) ∪ (tt), (hh) ∪ (tt), (ht) ∪ (th),
(ht) ∪ (th) ∪ (tt), (hh) ∪ (th) ∪ (tt),
(hh) ∪ (ht) ∪ (tt), (hh) ∪ (ht) ∪ (th),�},

where we write, for brevity of notation, simply (hh) to denote the simple event {(h, h)}.
We now need to find a suitable probability measure P on (�,F). Since the two

experiments (i.e., tossing coin 1 and then coin 2) are considered to be statistically inde-
pendent (see the next section for a formal definition of statistical independence of two
events) it is appropriate to define P [·] by

P [A1 × A2] = P1[A1]P2[A2], (2.33)

for any Ai ∈ Fi , i = 1, 2. For example, P [{(t, h)}] = P1[{t}]P2[{h}] = (1− p1)p2.
But the domain of the function P [·] defined above must be extended beyond the set
{F1 × F2}, since, for instance, the event A = {(hh), (ht), (th)}, is in the σ -field F ,
but does not take the form A1 × A2. It is easy to see, however, that its probability
assignment can be found by proper interpretation:

P [A] = 1− P [Ac] = 1− P [{(tt)}] = 1− P [{t} × {t}] = 1− P1[{t}]P2[{t}]
= 1− (1− p1)(1− p2) = p1 + p2 − p1 p2.

In a similar manner, we can extend the domain of P [ · ] to the whole σ -field F . The
resulting probability space (�,F, P) is called the product space of the probability
spaces (�1,F1, P1) and (�2,F2, P2), and the measure P [·] is sometimes called the
product measure. There are, of course, other probability measures that can be assigned
to (�,F, P), but if the condition (2.33) is not met for all elements, then such measures
may contradict the independence assumption. �

2.3 Bernoulli trials and Bernoulli’s theorem

Repeated independent trials are called Bernoulli trials if there are only two possible
outcomes for each trial and their probabilities remain the same throughout the trials. It
is usual to refer to the two possible outcomes as “success” and “failure.” The sample
space of each individual trial is

� = {s, f},
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where s stands for success and f for failure. If we denote the probability of the simple
event {s} by p, i.e.,

P [{s}] = p, 0 ≤ p ≤ 1, (2.34)

then the probability of the event {f} is given by7

P [{ f }] = 1− p � q, (2.35)

since the event {f} is the complement of the event {s}. The probabilities (2.34) and
(2.35) constitute the Bernoulli distribution for a single trial.

The sample space for an experiment consisting of two independent Bernoulli trials is
the Cartesian product of the sample space � with itself:

�2 = �×� = {(ss), (sf), (fs), (ff)}.

Thus, the Bernoulli distribution for two trials is given by {p2, pq, qp, q2}. In general,
the sample space for n Bernoulli trials is the nth-fold Cartesian product of �:

�n = �×�× · · · ×� = {(ss . . . s), (ss . . . f), . . . , (ff . . . s), (ff . . . f)}.

Each of the sample points is made up of a string of n symbols, s or f. Since the trials
are independent, the probabilities multiply. For example, the probability of the outcome
ssf . . . fsf is given by

P[{ssf . . . fsf}] = ppq . . . qpq = pkqn−k, (2.36)

where k is the number of successes and n − k is that of failures in a given outcome of n
Bernoulli trials. Equation (2.36) defines the Bernoulli distribution of n trials.

If the order in which the successes occur does not matter, then the number of sample
points belonging to this event is equal to the number of combinations of n things taken
k at a time. This number is referred to as the binomial coefficient and denoted as

(n
k
)

and is given by (
n

k

)
� n!

k!(n − k)! =
n(n − 1) · · · (n − k + 1)

k × (k − 1) · · · 2× 1
. (2.37)

Since each of these sample points (simple events by themselves) has probability
pkqn−k , the probability of k successes in n trials is given by

B(k; n, p) �
(

n

k

)
pkqn−k , k = 0, 1, 2, . . . , n. (2.38)

The set of probabilities B(k; n, p) is called the binomial distribution.

7 The notation � is to be read “is defined as.”
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If we sum B(k; n, p) over k from 0 to n, we find

n∑
k=0

B(k; n, p) =
n∑

k=0

(
n

k

)
pkqn−k = (p + q)n = 1, (2.39)

as it should be for the probability distribution.
If we take the ratio of B(k; n, p) over B(k − 1; n, p) we have

B(k; n, p)

B(k − 1; n, p)
= n!pkqn−k

(n − k)!k!
(n − k + 1)!(k − 1)!

n!pk−1qn−k+1 = n − k + 1

k

p

q
. (2.40)

Therefore, B(k; n, p) ≥ B(k − 1; n, p) if k(1− p) ≤ (n − k + 1)p or k ≤ (n + 1)p.
Thus, B(k; n, p), as a function of k, increases until

kmax = (n + 1)p�, (2.41)

which is defined as the largest integer not exceeding (n + 1)p. In other words, kmax

represents the most likely value of k, or the most likely number of successes in n trials.
From (2.41) we find that kmax satisfies

(n + 1)p − 1 < kmax ≤ (n + 1)p, (2.42)

from which we have

p − q

n
<

kmax

n
≤ p + p

n
. (2.43)

Therefore, by taking the limit n →∞, we find

lim
n→∞

kmax

n
= p. (2.44)

In other words, the ratio of the most probable number of successes to the number of
Bernoulli trials tends to p, the probability of success in a single trial. Equation (2.44)
relates the relative frequency k/n to the axiomatic definition of p.

We can state a more general result along this line of argument, which is due to Swiss
mathematician Jacob Bernoulli (1654–1705) in his book Ars Conjectandi (The Art of
Conjecture) published in 1713, after his death, by his nephew Nicholas Bernoulli (1687–
1759):

THEOREM 2.1 (Bernoulli’s theorem (weak law of large numbers)).8 Let p denote the
probability of success in a single trial, and let k be the number of successes that occur
in n independent trials. Then, for any ε > 0, the following inequality holds:

P

[∣∣∣∣ kn − p

∣∣∣∣ > ε

]
≤ p (1− p)

nε2
. (2.45)

8 There is another Bernoulli’s theorem (or Bernoulli’s principle, Bernoulli’s law) in fluid dynamics, named
after Daniel Bernoulli (1700–1782), another nephew of Jacob Bernoulli.



2.3 Bernoulli trials and Bernoulli’s theorem 29

Therefore, in the limit, we have the following weak law of large numbers:9

P

[∣∣∣∣ kn − p

∣∣∣∣ > ε

]
→ 0, as n →∞. (2.46)

We say that k/n converges to p in probability.10

Proof. First, we observe that | k
n − p| > ε, if and only if (k − np)2 > n2ε2. Hence,

P

[∣∣∣∣ kn − p

∣∣∣∣ > ε

]
= P [(k − np)2 > n2ε2]. (2.47)

By direct computation, we can find that (see Problem 2.14)
n∑

k=0

(k − np)2 B(k; n, p) = np (1− p). (2.48)

The above summation, which we denote by S, can be split into two components, one
for those values of k which satisfy (k − np)2 > n2ε2 and the other for k such that
(k− np)2 ≤ n2ε2:

S =
∑

(k−np)2>n2ε2

(k − np)2 B(k; n, p)+
∑

(k−np)2≤n2ε2

(k − np)2 B(k; n, p)

> n2ε2
∑

(k−np)2>n2ε2

B(k; n, p)+
∑

(k−np)2≤n2ε2

(k − np)2 B(k; n, p)

> n2ε2
∑

(k−np)2>n2ε2

B(k; n, p)

= n2ε2 P

[∣∣∣∣ kn − p

∣∣∣∣ > ε

]
. (2.49)

Therefore, from the last equation and (2.48), we have

np (1− p) > n2ε2 P

[∣∣∣∣ kn − p

∣∣∣∣ > ε

]
, (2.50)

which results in (2.45). By taking the limit n →∞, we prove the weak law of large
numbers (2.46).

The term “law of large numbers (la loi des grands nombres)” was christened by
Siméon-Denis Poisson (1781–1840) in 1835 to describe Bernoulli’s theorem. This
theorem can be paraphrased as

lim
n→∞ P

[∣∣∣∣ kn − p

∣∣∣∣ < ε

]
= 1, (2.51)

for any ε > 0.

9 The adjective “weak” is added to this theorem because stronger versions of the law of large numbers were
later developed, as noted after this theorem.

10 Convergence in probability and other modes of convergence, such as convergence with probability 1, will
be duly discussed in Chapter 11.
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Later, the French mathematician Émile Borel (1871–1956) in 1909 and the Italian
mathematician Francesco Paolo Cantelli (1875–1966) in 1917 showed, using different
approaches, stronger versions of the law of large numbers; i.e., k/n converges to p not
only in probability, but also with probability 1. That is,

P

[
lim

n→∞

∣∣∣∣ kn − p

∣∣∣∣ < ε

]
= 1, (2.52)

for any ε > 0. Hence, Bernoulli’s theorem is now called the weak law of large numbers.
Note that in the stronger version limn→∞ comes inside of P [ ]. We will further discuss
weak and strong laws of large numbers in Chapter 11.

2.4 Conditional probability, Bayes’ theorem, and statistical independence

2.4.1 Joint probability and conditional probability

So far we have been concerned primarily with the outcomes of a single experiment. In
real-world problems, however, we often deal with the outcomes of combined exper-
iments. A joint (or compound) experiment that consists of one experiment having
possible outcomes Am (m = 1, 2, · · ·,M) and another having the possible outcomes
Bn (n = 1, 2, · · ·, N ) can be considered as a single experiment having the set of possi-
ble outcomes (Am, Bn). Probabilities relating to such a combined experiment are known
as joint (or compound) probabilities. The joint probability of events A and B is often
written as P [A, B] instead of P [A ∩ B]. From the axioms of probability and related
results discussed in the previous section, it follows that

0 ≤ P [A,B] ≤ 1. (2.53)

If the M possible events Am are mutually exclusive and the same property holds for the
N possible events Bn , we have

M∑
m=1

N∑
n=1

P [Am, Bn] = 1. (2.54)

Both (2.53) and (2.54) can be extended in an obvious fashion to cases in which we deal
with more than two basic experiments.

Suppose that the combined experiment is repeated N times, out of which the result
Am occurs N (Am) times, the result Bn occurs N (Bn) times, and the compound result
(Am, Bn) occurs N (Am, Bn) times. Then the relative frequency of the compound result
is given by

fN (Am, Bn) = N (Am, Bn)

N
. (2.55)

For the moment, let us focus our attention on those N (Am) trials in each of which
the result Am occurred. In each of these trials, one of the NB possible results Bn ,
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1≤ n≤ NB , occurred; in particular, the result Bn occurred N (Am, Bn) times. Thus, the
relative frequency of occurrence of the result Bn under the assumption that the result
Am also occurred is

fN (Bn | Am) = N (Am, Bn)

N (Am)
. (2.56)

This relative frequency is called the conditional relative frequency of Bn on the second
experiment, given Am on the first experiment. Alternatively, it may be expressed as

fN (Bn | Am) = fN (Am, Bn)

fN (Am)
. (2.57)

In accordance with (2.57), we define the following.

D E FI N I T I O N 2.3 (Conditional probability). The conditional probability that event B
occurs given that event A occurs is defined as

P [B | A] � P [A, B]
P [A] , (2.58)

provided that P [A] > 0. The conditional probability P [B | A] is undefined if
P [A] = 0. �

We can rewrite (2.58) as

P [A, B] = P [B | A]P [A]. (2.59)

Conditional probabilities possess essentially the same properties as the unconditional
probabilities already discussed. The significance of (2.58) is that only the unconditional
probabilities are primitive. Prior to Kolmogorov’s work both conditional and uncondi-
tional probabilities were either defined in terms of equally probable cases or else taken
as primitives. In that case, (2.58) was a theorem rather than a definition.

2.4.2 Bayes’ theorem

A set of events A1, A2, . . . , An is called a partition of the sample space � if they are a
set of mutually exclusive and exhaustive events in�; i.e., A1 ∪ A2 ∪ · · · ∪ An = � and
Ai ∩ A j = ∅ for i �= j . Then we obtain for any event B

n⋃
j=1

{
B ∩ A j

} = B, (2.60)

and then

n∑
j=1

P [B, A j ] =
n∑

j=1

P [A j ]P [B | A j ] = P [B]. (2.61)
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The last formula is sometimes referred to as the total probability theorem, meaning
that the total probability P [A] of event A is divided into the n components.

As a special case of the total probability theorem (2.61), for any events A and B we
can write P [B] as

P [B] = P [B | A]P [A] + P [B | Ac]P [Ac]. (2.62)

This is simply because A and Ac form a partition of �.
We now state the following useful formula.

THEOREM 2.2 (Bayes’ theorem). Let B be an event in a sample space � and
A1, A2, . . . , An be a partition of �. Then it can be shown that

P [A j | B] = P [A j ] P [B | A j ]
P [B] = P [A j ] P[B | A j ]∑n

i=1 P [B | Ai ]P [Ai ] . (2.63)

�

The proof is straightforward, and is left to the reader as an exercise (Problem 2.17).
The above theorem is called Bayes’ theorem or Bayes’ rule. The probability P[A j ] is
called the prior probability (or a priori probability) of event A j (before event B occurs),
whereas the conditional probability P[A j |B] is often called the posterior probability
(or a posteriori probability) of event A j after event B occurs.

Example 2.10: Medical test. Consider some disease and its medical diagnosis test.
The following statistics are known about this disease and its medical test.

• For a person with this disease, the test yields a positive result 99% of the time and a
negative result 1%.

• For a person without this disease, the test yields a negative result 99% of the time and
a positive result 1%.

• Suppose that 1% of the population is infected by this disease and 99% of the
population is not.

Suppose that you have taken this test and, unfortunately, the test result is positive. What
is the chance that you are indeed infected by this disease?

Answer:
Let A represent a person’s condition with respect to this disease and B represent their
test result:

A = “Not infected by the disease,” Ac = “Infected by the disease,”

B = “Negative test result,” Bc = “Positive test result.”
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Let

P [A] = p, P [Ac] = 1− p ;
P [B|A] = α, P [Bc|A] = 1− α ;
P [Bc|Ac] = β, P [B|Ac] = 1− β.

Then

P [A, B] = P [A]P [B|A] = pα ;
P [A, Bc] = p (1− α) ;
P [Ac, B] = (1− p)(1− β) ;
P [Ac, Bc] = (1− p)β.

Then, the probability that a person is infected by the disease when the medical test is
positive is obtained from Bayes’ theorem as

P [Ac|Bc] = P [Ac, Bc]
P [A, Bc] + P [Ac, Bc] =

(1− p)β

p (1− α)+ (1− p)β
.

If we substitute p = α = β = 0.99, then

P [Ac|Bc] = 0.01× 0.99

0.99× 0.01+ 0.01× 0.99
= 0.0099

0.0198
= 0.5.

That is, the probability that you have this disease is 50%.
If the test is less accurate, say α = 0.95, then P [Ac|Bc] = 0.167; hence P [A|Bc] =

0.833. Hence, the probability that you are indeed sick is 16.7%.
If the test misses the sick patient more often, say β = 0.95, while α remains 0.99,

then P [Ac|Bc] = 0.4896. Hence, the probability that you are sick decreases slightly
from 50% to 48.96%.

Suppose the disease is much rarer and only 0.1% of the population is infected;
i.e., p = 0.999. Then, while keeping α = β = 0.99, we find P [Ac|Bc] = 0.09016, or
P [A|Bc] = 0.90984. Hence, the probability that you are indeed sick is 9%. This means
that the incidence of the disease is so low that the vast majority of people with a positive
test result do not actually have the disease. Thus, retesting will improve the reliability
of the result. �

2.4.2.1 Frequentist probabilities and Bayesian probabilities
As remarked in Chapter 1, a major controversy in probability theory that has been in
existence since almost the birth of probability theory is regarding the types of statements
to which probabilities can be assigned. The “frequentists” take the view that probabil-
ities can be assigned only to the outcomes of an experiment that can be repeated a
number of times, whereas the “Bayesians” take the subjective view of probability and
believe that the notion of probability is applicable to any situation or event for which
we attach some uncertainty or belief. In the medical test example discussed above, the
frequentists will argue that the probability P[A], the probability that a given individual
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is infected by this disease, should be given only if sufficient clinical data have been
collected with a large number of individuals.

The Bayesians might argue that this kind of experiment – i.e., to find a certain indi-
vidual is infected by the particular disease – is not repeatable. Even if we accept the
existence of a perfect diagnostic method – which in reality is rare – and accept to esti-
mate P[A] by the proportion of infected people in individuals with backgrounds similar
to that of this individual in question, the frequentists’ method of probability assignments
suffers from the problem that it requires a very large number of such individuals to be
diagnosed. The Bayesians argue that a “subjective probability” can be and should be
assigned to any situation for which we have uncertainty or belief. Calling the probabili-
ties subjective does not imply, however, that they can be assigned arbitrarily. The assign-
ment ought to be consistent with the axioms of the probability discussed in Section 2.2.
This Bayesian view of probability is appealing to those who investigate learning the-
ory from the probabilistic point of view. Referring to the above example, P[A] is the
prior probability or belief that the given individual is infected by the disease, and its
posterior probability P[A|Bi ] is its updated belief based on data Bi , and this Bayes’
theorem provides the fundamental principle of learning based on data or evidence.

Although this different view of probability assignment in the above example might
appear as a mere philosophical argument, the significance of the difference between
the two schools of thought will become clearer when we revisit Bayes’ theorem in
Section 4.5, where we deal with parameters, such as means and variances, associated
with probability distributions.

2.4.3 Statistical independence of events

As interpreted above, P [B | A] is the probability of occurrence of event B assuming
the occurrence of event A. In general, this posterior probability is different from the
prior probability P [B], because knowing that event A has happened should help us
sharpen our ability to infer about the occurrence of B. In other words, information
about the result of one experiment should generally decrease our uncertainty about
possible results of the other experiment. If not, we shall say that B is statistically
independent of A.

D E FI N I T I O N 2.4 (Statistical independence). Event B is said to be statistically inde-
pendent11 of event A if

P [B | A] = P [B], (2.64)

or, equivalently, if

P [A, B] = P [A]P [B]. (2.65)

Then the events A and B are said to be statistically independent. �

11 Some authors (e.g., [99]) use the term “stochastically independent,” while others (e.g., [131]) simply use
the term “independent” without any adverb.
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Equations (2.64) and (2.65) are also equivalent to

P [A | B] = P [A]; (2.66)

that is, A is also statistically independent of B.
An interpretation of (2.64) and (2.65) is that if the events A and B are statistically

independent, then knowledge of the occurrence of one event tells us no more about the
probability of occurrence of the other event than what we know without that knowledge.

When more than two events are to be considered, the situation becomes more com-
plicated. A set of M events Am (m = 1, 2, · · ·,M) is said to be mutually independent if
and only if the probability of every intersection of M or fewer events equals the product
of the probabilities of the constituents. For example, three events A, B, C are mutually
independent when

P [A, B] = P [A]P [B],
P [B,C] = P [B]P [C], (2.67)

P [A,C] = P [A]P [C],
and

P [A, B,C] = P [A]P [B]P [C]. (2.68)

No three of these relations necessarily implies the fourth. If only the equations in (2.67)
are satisfied, we say that the events are pairwise independent. Pairwise independence
does not imply mutual independence.

Example 2.11: Throwing two dice. Suppose that two true dice are thrown and that the
dice are distinguishable. An outcome of this experiment is denoted by (m, n), where m
and n are the faces of the dice. Let A and B be the following events of this experiment:

A = {m + n = 11},
B = {n �= 5}.

Then we find

P [A] = P [(5, 6)] + P [(6, 5)]
= P [{m = 5}]P [{n = 6}] + P [{m = 6}]P [{n = 5}] = 1

18
,

P [B] = 1− P [{n = 5}] = 5

6
,

and

P [A, B] = P [{m = 5} ∩ {n = 6}] = 1

36
.

Therefore,

P [A, B] �= P [A]P [B].
Thus, the events A and B are not statistically independent.
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2.5 Summary of Chapter 2

Relative frequency of an
event:

fN (A) = N (A)
N (2.1)

Properties of events:

Complement of A Ac = {ω : ω does not belong to A} (2.11)

Union of A and B A ∪ B = {ω : ω belongs to A or B} (2.12)

Intersection of A and B A ∩ B = {ω : ω belongs to A and B} (2.13)

Null event ∅ = empty event = A ∩ Ac

Sure event � = sample space = A ∪ Ac

A and B are disjoint A ∩ B = ∅
Commutative laws A ∪ B = B ∪ A

A ∩ B = B ∩ A (2.14)

Associative laws (A ∪ B) ∪ C = A ∪ (B ∪ C)

(A ∩ B) ∩ C = A ∩ (B ∩ C) (2.15)

Distributive laws A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) (2.16)

DeMorgan’s laws (A ∪ B)c = Ac ∩ Bc (2.17)

(A ∩ B)c = Ac ∪ Bc (2.18)

Axioms of probability:

Axiom 1 P[A] ≥ 0 (2.19)

Axiom 2 P[�] = 1 (2.20)

Axiom 3 If A ∩ B = ∅, P[A ∪ B] = P[A] + P[B] (2.21)

Axiom 4 If A1, A2, . . . , AM are mutually exclusive,

P
[⋃M

m=1 Am

]
=∑M

m=1 P[Am] (2.22)

Prob. of union of two P[A ∪ B] = P[A] + P[B] − P[A ∩ B] (2.27)

events:

σ -field F : (a) ∅ ∈ F
(b) A ∈ F ⇒ Ac ∈ F
(c) A1, A2, . . . ∈ F ⇒⋃∞

m=1 Am ∈ F (2.30)

Binomial distribution: B(k; n, p) �
(n

k

)
pkqn−k , k = 0, 1, . . . , n (2.38)

Bernoulli’s theorem: P
[∣∣ k

n − p
∣∣ > ε

]→ 0, as n →∞ (2.46)

Conditional probability: P [B | A] � P [A,B]
P [A] (2.58)

Bayes’ theorem: P [A j | B]= P [A j ] P [B | A j ]
P [B] = P [A j ] P[B | A j ]∑n

i=1 P [B | Ai ]P [Ai ] (2.63)

Statistical independence P [A, B] = P [A]P [B] (2.65)

of events:
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2.6 Discussion and further reading

The materials presented in this chapter can be found in most books on probability theory
and its applications, e.g., Bertsekas and Tsitsiklis [24], Blake [31], Davenport and Root
[77], Feller [99], Fine [105], Gray and Davisson [126], Grimmett and Stirzaker [131],
Gubner [133], Leon-Garcia [222], Nelson [254], Papoulis and Pillai [262], Ross [289],
Stark and Woods [310], Thomas [319], Trivedi [327], Wilks [353], Yates and Goodman
[363]. Virtually all textbooks today take the axiomatic approach. When we deal with
experiments that have equally probable outcomes (or simple events), such as tossing fair
coins, throwing dice, or drawing cards, combinatorial analysis is a very powerful tool
for probabilistic analysis. In the correspondence with Pascal in 1654, Fermat proposed
a combinatorial method in answering the questions on gambling.

We assume that the reader is familiar with basic combinatorics such as those required
in answering some questions of this chapter. For those who wish to review combinatorial
mathematics or further study the subject, they are directed to Feller [99], Nelson [254],
and Ross [289], who devote an entire chapter to combinatorics.

Discussion of subjective probability is found, for example, in Hacking [136].

2.7 Problems

Section 2.2: Axioms of probability

2.1∗ Tossing a coin three times. Consider the experiment of tossing a coin three times.

(a) What is the sample space �?
(b) Define event Ei as an outcome where exactly i tosses yield “heads,” i = 0, 1, 2, 3.

How many sample points does Ei contain, i = 0, 1, 2, 3?
(c) Define event F as an event in which at least two of the tosses yield “heads.”

2.2∗ Tossing a coin until “head” or “tail” occurs twice in succession [99]. Consider
an experiment in which a coin is tossed until “head (h)” or “tail (t)” appears twice in
succession. Examples of simple events are {thh} and {hthtt}. Find the sample space �
of this experiment.

2.3 Placing distinguishable particles in different cells [99]. Consider the experiment
of placing three distinguishable particles (which we denote by a, b, and c) into three
cells. Examples of sample points are ω1 = (abc| − |− ), ω2 = (a c| b | − ), etc.

(a) Write down the sample space �. How many sample points are there in �?
(b) Let events A, B,C be defined as

A = multiple particles occupy a cell;
B = the first cell is not empty;
C = both A and B occur.

How many sample points are there in events A, B, and C respectively?
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2.4 Placing indistinguishable particles in different cells [99]. Consider the same
experiment as Problem 2.3, but suppose that the three particles are not distinguishable.
Examples of sample points are ω1 = (∗ ∗ ∗| − |− ), ω2 = (∗ ∗ | ∗ |− ), etc.

(a) Write down the sample space �. How many sample points are there?
(b) Let event Ã, B̃, C̃ be defined as

Ã = multiple particles occupy a cell;
B̃ = the first cell is not empty;
C̃ = both Ã and B̃ occur.

How many sample points are there in events Ã, B̃, and C̃ respectively?

2.5∗ Probability assignment to the coin tossing experiment. Consider the coin
tossing experiment of Problem 2.1. If the coin tossing is fair, what is the appropri-
ate probability measure for this experiment? Find the probability of event Ei (i =
0, 1, 2, 3).

2.6∗ Probability assignment to the coin tossing experiment in Problem 2.2. Con-
sider the coin tossing experiment described in Problem 2.2. Assume that the coin is a
fair coin; i.e., “h” and “t” appear with probability 1/2 each.

(a) Find the appropriate probability assignment for each sample point in �.
(b) What is the probability that the experiment ends before the sixth toss?
(c) What is the probability that an even number of tosses is required?

2.7 Placing distinguishable particles in cells: Maxwell–Boltzmann statistics. Con-
sider the experiment of Problem 2.3. Assume that a particle is equally probable to be in
any of the cells.

(a) What should be the appropriate probability measure for this experiment?
(b) What is then the probability p that each of the three cells contains exactly one

particle?
(c) Generalize the experiment and consider r distinguishable particles and n distin-

guishable cells, where n ≥ r . Show that the probability that, in each of r preselected
cells, one and only one particle is found is given by

r !
nr
. (2.69)

In statistical mechanics, this is called the (classical) Maxwell–Boltzmann statistics.

2.8 Placing indistinguishable particles in cells: Bose–Einstein statistics. Consider
the experiment of Problem 2.4. Assume that all distinguishable arrangements are
equally likely.

(a) What should be the appropriate probability measure in this case?
(b) What is then the probability p that each of the three cells contains exactly one

particle?
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(c) Generalize the experiment and consider r indistinguishable particles and n distin-
guishable cells, where n ≥ r . Show that the probability that, in each of r preselected
cells, one and only one particle is found is given by(

r + n − 1

r

)−1

. (2.70)

In statistical mechanics, this is called the Bose12 – Einstein statistics.

2.9 Placing at most one particle in a cell: Fermi–Dirac statistics. Consider again
the experiment of placing r indistinguishable particles in n distinguishable cells.
Assume that (i) it is not possible for two or more particles to be in the same cell (this
constraint is called the “Pauli13 exclusion principle” in quantum mechanics) and (ii) all
distinguishable arrangements satisfying the above constraint have equal probabilities.

Show that the probability that, in each of r preselected cells, one and only one particle
is found is given by (

n

r

)−1

, (2.71)

which is known as Fermi14–Dirac15 statistics.

Section 2.3: Bernoulli trials and Bernoulli’s theorem

2.10∗ Distribution laws and Venn diagram. Prove the distribution laws (2.16) using
Venn diagrams.

2.11∗ DeMorgan’s law. Show that (A ∩ B)c = Ac ∪ Bc; i.e., (2.18).

2.12 Axiom 3. Derive (2.22) using mathematical induction. Show

(a) the basis step: (2.22) is true for M = 2;
(b) the induction step: if (2.22) is true for M = N (≥ 2), then it also holds for M =

N + 1.

2.13 Closure property of σ -field. Show that a σ -field is closed under the operation
of taking countable intersections:

12 Satyendra Nath Bose (1894–1974) was an Indian mathematical physicist, best known for his work on
quantum mechanics in the early 1920s, providing the foundation for Bose–Einstein statistics and the theory
of the Bose–Einstein condensate. He is honored as the namesake of the boson.

13 Wolfgang Ernst Pauli (1900–1958) was an Austrian theoretical physicist noted for his work on the theory
of spin, and in particular the discovery of the exclusion principle.

14 Enrico Fermi (1901–1954) was an Italian physicist, noted for his work on the development of the first
nuclear reactor and for his contributions to the development of quantum theory, nuclear and particle
physics, and statistical mechanics. Fermi was awarded the Nobel Prize in Physics in 1938 for his work
on induced radioactivity.

15 Paul Adrien Maurice Dirac (1902–1984) was a British theoretical physicist and a founder of the field
of quantum mechanics. Dirac shared the 1933 Nobel Prize in Physics with Erwin Schrödinger, “for the
discovery of new productive forms of atomic theory.”
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if A1, A2, . . . ∈ F then
⋂∞

m=1 Am ∈ F .

2.14∗ Derivation of (2.48). Derive (2.48).

2.15 Multinomial coefficient. Let k1, k2, . . . , kr be a set of nonnegative integers such
that

n1 + n2 + . . .+ nr = n.

Now consider the problem of partitioning n items into r groups. Show that the number
of different ways of partitioning n items in such a way that ki items are placed in group
i (i = 1, 2, . . . , r ) is given by

n!
k1!k2! · · · kr ! . (2.72)

This number is referred to as the multinomial coefficient. Needless to say, for r = 2,
we have the binomial coefficient (2.37).

Section 2.4: Conditional probability, Bayes’ theorem, and statistical independence

2.16∗ Joint probabilities. Interpret Eq. (2.54) in terms of the relative frequencies of
compound results (Am, Bn).

2.17∗ Proof of Bayes’ theorem. Derive (2.63) of Bayes’ theorem.

2.18∗ Independent events. Let A and B be two independent events such that with
probability 1

12 they will occur simultaneously, and with probability 1
3 neither of them

will occur. Obtain P [A] and P [B].
2.19∗ Medical test. Consider the medical test discussed in Example 2.10.

(a) Suppose

p = 0.999, α = 0.95, β = 0.99.

Then what is the probability that a positive result is a false positive?
(b) Change the parameters to

p = 0.999, α = 0.99, β = 0.95.

What is the probability that a positive result is a false positive?

2.20 Birthday problem.16 In a group of r persons, what is the probability that
each person has a distinct birthday? We assume that birth rates are constant through-
out the year, and ignore complications due to leap years. Evaluate (approximately) this
probability for r = 23 and r = 56.
Hint: Use the approximation ln(1− x) ≈ −x for |x | � 1.

16 Feller [99] notes that this problem was first discussed by R. von Mises, “Über Aufteilungs- und
Besetzungs-Wahrscheinlichkeiten,” Revue de la Faculté des Sciences de l’Université d’Istanbul, N.S. vol. 4
(1938–1939), pp. 145–163.
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2.21 Web access pattern. Consider a web server that receives web access requests
from a large number of users. We assume that the request arrival mechanism is charac-
terized by the following simple model. We divide the time axis into contiguous segments
of 
 seconds, and 
 is chosen sufficiently small that the probability of receiving more
than one request is negligibly small. We also assume that the arrivals in different seg-
ments are statistically independent events. Let p be the probability that a randomly
chosen segment interval observes an arrival of a request.

(a) Assume an observation interval of T = 5
, and let p = 0.2. What is the probability
that at least two requests arrive during this observation interval?

(b) For any integer n = 1, 2, 3, . . ., find the probability that T = n
 will be the
observation interval required to see the first arrival.

(c) Suppose that you are informed that there are k successes in n Bernoulli trials. Obtain
the conditional probability that any particular trial resulted in a success.



3 Discrete random variables

3.1 Random variables

In Section 2.2 we defined a sample space, sample points, events, and a probability mea-
sure assigned to the events. Recall that an event is a set of sample points. Now we
introduce the notion of a random variable.1 A real-valued function X (ω) defined on a
sample space � of points ω is called a random variable2, which we abbreviate as RV.3

That is, the RV is an association of a real number with each sample point in the sample
space. Thus, X (ω) may be regarded as a function that maps � into the real line: given
any sample point ω, the function X (·) specifies a finite real number of X (ω). A simple
example of such a mapping is illustrated in Figure 3.1.

For example, in the coin-tossing experiment, � contains only two sample points, the
head and tail. Now we wish to associate 1 with the head and 0 with the tail. Then the
mapping

X (ω) =
{

1, if ω = head,
0, if ω = tail,

is clearly a random variable. In our example of measuring the response time of a request
to a web server, � itself is the real line (the positive half-line). The function X (ω) = ω
is clearly a legitimate RV. So are X (ω) = 1/ω, X (ω) = ω2, etc.

Two RVs X and Y defined on a probability space (�,F, P) are said to be equal
(everywhere), written X = Y , if X (ω) = Y (ω) for all ω ∈ �; i.e., X and Y are equal
if they are identical as functions mapping the sample space � to the real line. In prob-
ability theory and applications, a weaker type of equivalence between two RVs arises
frequently. The RVs X and Y are said to be equal almost surely (a.s.) or with probabil-
ity one if P[{ω : X (ω) = Y (ω)}] = 1. Another way of expressing this is that the event
that X and Y differ has zero probability; i.e., P[{ω : X (ω) �= Y (ω)}] = 0. We denote
almost sure equivalence of X and Y by X

a.s.= Y or write simply, X = Y , a.s. More gen-
erally, an event A is said to occur almost surely, or with probability one, if P[A] = 1.

1 Although we discuss primarily discrete RVs in the present chapter, the definitions and properties we present
in this section are applicable to both discrete and continuous RVs.

2 Although we limit ourselves to real-valued functions here, we can generalize our treatment to complex-
valued functions.

3 The notation “RV” should be pronounced as “random variable.” To avoid possible confusion, however, we
write “a random variable” instead of “a RV.”
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Ω

ω2

X(ω3) X(ω2) X(ω1) X(ω5) X(ω6) X(ω4)

ω4

ω5

ω6

ω3
ω1

Figure 3.1 A random variable X (ω) as a mapping from � to the real line.

When a relation holds between two RVs almost surely, e.g., X = Y or X ≤ Y , it is
common practice to omit the explicit designation “a.s.,” and we will often follow this
convention in this textbook.

Since many readers may find this kind of mathematical abstraction unexciting at best,
we hasten to point out that it is sufficient here to think of a random variable as a symbol
for a number that is going to be produced by a random experiment. Once produced, the
number is, of course, no longer random and is called a realization or instance of the RV.

The word random applies to the process that produces the number, rather than to
the number itself. Hereafter, in referring to these functions, we often delete empty
parentheses and simply write X to denote the function X (·).

3.1.1 Distribution function

A random variable X is characterized by its distribution function FX (x):

FX (x) � P [{ω : X (ω) ≤ x}], (3.1)

or simply

FX (x) = P [X ≤ x]. (3.2)

The properties of distribution functions listed below follow directly from the definition
in (3.1) or (3.2).

Property 1. FX (x) ≥ 0, for −∞ < x <∞.
Property 2. FX (−∞) = 0.

Property 3. FX (∞) = 1.

Property 4. If b > a, FX (b)− FX (a) = P [a < X ≤ b] ≥ 0.

(3.3)

The first three properties follow, respectively, from the following facts: FX (x) is a
probability, P [∅] = 0, and P [�] = 1. Property 4 follows from the fact that

{ω : X (ω) ≤ a} ∩ {ω : a < X (ω) ≤ b} = ∅.
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and

{ω : X (ω) ≤ a} ∪ {ω : a < X (ω) ≤ b} = {ω : X (ω) ≤ b}

(see Problem 3.1).

3.1.2 Two random variables and joint distribution function

Now we proceed to the case of two RVs. Given functions X (ω) and Y (ω) defined on
the sample space �, we define the joint distribution function FXY (x, y) of the RVs X
and Y by

FXY (x, y) � P [{ω : X (ω) ≤ x, Y (ω) ≤ y}] = P [X ≤ x, Y ≤ y]. (3.4)

Thus, FXY (x, y) is the probability assigned to the set of all points ω that are associated
with the region of the two-dimensional Euclidean space that is shaded in Figure 3.2.

The properties of joint distribution functions listed below follow directly from the
definition in (3.4).

Property 1. FXY (x, y) ≥ 0; for −∞ < x <∞, −∞ < y <∞.
Property 2. FXY (x,−∞) = 0; for −∞ < x <∞,

FXY (−∞, y) = 0; for −∞ < y <∞.
Property 3. FXY (∞,∞) = 1.

Property 4. If b > a and d > c,

FXY (b, d) ≥ FXY (b, c) ≥ FXY (a, c).

Property 5. FXY (x,∞) = FX (x),

FXY (∞, y) = FY (y).

(3.5)

ω2

ω1
ω3

(x2, y2)

(x1, y1)

(x3y3)

Y

X

Figure 3.2 RVs X (ω) and Y (ω) as mappings from � to the two-dimensional Euclidean space.
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Properties 1 through 4 are obvious extensions of the corresponding properties in (3.3).
Property 5 is a consequence of the fact that

{ω : X (ω) ≤ x} ∩ {ω : Y (ω) <∞} = {ω : X (ω) ≤ x} ∩�
= {ω : X (ω) ≤ x}.

Thus, FXY (x,∞) and FXY (∞, y) are both ordinary one-variable distribution functions.
They are, respectively, the distributions of X and Y alone, and are usually designated as
the marginal distribution functions. In summary, FXY (x, y) is a nondecreasing function
of both arguments and is always bounded by zero and one.

These definitions and results are extendable in a more or less obvious manner to
the case of multidimensional RVs: let X1, X2, . . . , Xm be RVs defined on �, and
let X denote the m-tuple (X1, X2, . . . , Xm). We then define the m-dimensional joint
distribution function FX (x) as

FX(x) = P [{ω : X1(ω) ≤ x1, X2(ω) ≤ x2, . . . , Xm(ω) ≤ xm}]
= P [X1 ≤ x1, X2 ≤ x2, . . . , Xm ≤ xm ], (3.6)

where x = (x1, x2, . . . , xm). We refer to X as an m-dimensional vector of RVs or,
simply, as a random vector.

3.2 Discrete random variables and probability distributions

Random variable X is called a discrete random variable (discrete RV) if the range of
the function X (ω) consists of isolated points on the real line; that is, if X can take on
only a finite or countably infinite number of values {x1, x2, x3, . . . }. For example, the
number of heads appearing in N tosses of a coin is a discrete RV.

For a discrete RV X , we denote by pX (xi ), the probability that X takes the value xi :

pX (xi ) � P[X = xi ], i = 1, 2, . . . (3.7)

The complete set of probabilities {pX (xi )} associated with the possible values xi of X
is called the probability distribution of the discrete RV X . The probability distribution
and the distribution function defined by (3.1) are related by

FX (x) =
∑
xi≤x

pX (xi ). (3.8)

Therefore, the distribution function is often referred to as the cumulative distribution
function (CDF). The function, pX : R → [0, 1], defined by

pX (x) = P[X = x], x ∈ R, (3.9)

is called the probability mass function (PMF). Since pX (x) = 0 whenever x �∈
{x1, x2, . . .}, the PMF provides an equivalent characterization of the discrete RV X as
its probability distribution {pX (xi )}.
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Alternatively, we can write

FX (x) =
∑

i

pX (xi )u(x − xi ), −∞ < x <∞, (3.10)

where u(t) is the unit step function defined by

u(x) =
{

1, for x ≥ 0,
0, for x < 0.

(3.11)

The formal derivative of this last equation is

fX (x) = d FX (x)

dx
=
∑

i

pX (xi )δ(x − xi ), −∞ < x <∞, (3.12)

where δ(t) is the Dirac delta function [81] or the impulse function defined by

δ(x) � du(x)

dx
= 0, for x �= 0, (3.13)

and ∫ ∞

−∞
δ(x) dx =

∫ ε

−ε
δ(x) dx = 1 (3.14)

for any ε > 0. A formal definition of the delta function is given in terms of its sampling
property with regard to an arbitrary continuous function g(t):∫ ∞

−∞
g(x)δ(x − a) dx � g(a). (3.15)

The function fX (x) of (3.12) is called the probability density function (PDF) of the dis-
crete RV X . As we shall see in Section 4.1, continuous RVs are characterized naturally
by their PDFs. Hence, the representation (3.12) allows both discrete and continuous
RVs to be considered in terms of their PDFs. By letting x go to infinity in (3.10), we
find that

FX (∞) =
∑
all i

pX (xi ) = 1. (3.16)

An example of a probability distribution and the corresponding distribution function is
shown in Figure 3.3.

3.2.1 Joint and conditional probability distributions

In a similar manner we define the joint probability distribution of two discrete RVs
X and Y as the set of probabilities {pXY (xi , y j )} for all possible values of the pairs
(xi , y j ):

pXY (xi , y j ) � P[X = xi , Y = y j ]. (3.17)
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Figure 3.3 (a) The probability distribution and (b) the distribution function of a discrete RV.
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Figure 3.4 (a) The joint probability distribution and (b) the joint distribution function.

The corresponding joint distribution function defined by (3.4) is given by

FXY (x, y) =
∑
xi≤x

∑
y j≤y

pXY (xi , y j ). (3.18)

Therefore,

FXY (∞,∞) =
∑
all i

∑
all j

pXY (xi , y j ) = 1. (3.19)

An example of the joint probability distribution and the associated joint distribution
function of two discrete RVs is illustrated in Figure 3.4.

The set of values that a discrete RV (or a random vector) takes on can be regarded as
the set of distinct sample points or distinct simple events. The various results obtained
in Section 2.4 for a sample space and events are therefore directly translatable to the
case of discrete RVs. Thus, (3.19) follows directly from (2.54).

Similarly, we define the conditional probability distributions:

pY |X (y j |xi ) � P[Y = y j |X = xi ] and pX |Y (xi |y j ) � P[X = xi |Y = y j ]. (3.20)



48 Discrete random variables

Then, the relations among the joint probability distribution, the conditional probability
distribution, and the marginal distributions for discrete RVs are now self-evident:

pXY (xi , y j ) = pX (xi )pY |X (y j |xi ) = pY (y j )pX |Y (xi |y j ), (3.21)∑
all j

pY |X (y j |xi ) =
∑
all i

pX |Y (xi |y j ) = 1, (3.22)

pX (xi ) =
∑
all j

pXY (xi , y j ) and pY (y j ) =
∑
all i

pXY (xi , y j ), etc. (3.23)

The conditional distribution function of X given Y is defined by

FX |Y (x |y) � P[X ≤ x |Y = y] =
∑
xi≤x

pX |Y (xi |y), (3.24)

when P[Y = y] > 0; i.e., y = y j for some j .
The notion of statistical independence of two events is also directly applicable to two

discrete RVs.

D E FI N I T I O N 3.1 (Independent random variables). We say that random variables X
and Y are independent or statistically independent if and only if

pXY (xi , y j ) = pX (xi )pY (y j ), for all values (xi , y j ), (3.25)

or, equivalently, if and only if

FXY (xi , y j ) = FX (xi )FY (y j ), for all values of xi and y j . (3.26)

�

Equivalence between (3.25) and (3.26) can be shown easily by using the relations
(3.8) and (3.18) (Problem 3.3).

Similarly, the discrete RVs X, Y, . . . , Z are said to be independent RVs if and
only if

pXY ···Z (xk, yl , . . . , zm) = pX (xk)pY (yl) · · · pZ (zm) (3.27)

is satisfied for all values (xk , yl , . . . , zm) or, equivalently,

FXY ···Z (xk, yl , . . . , zm) = FX (xk)FY (yl) · · · FZ (zm) (3.28)

for all values of xk, yl , . . . , zm .
Consider, for instance, an experiment in which we toss an ordinary die n times. Let

Xn denote the result of the nth toss, n = 1, 2, . . . , N . Clearly, Xn is a discrete RV that
takes on only integers between 1 and 6. The empirical average (also called the sample
mean) of the N results, denoted by X N , is

X N = 1

N

N∑
n=1

Xn. (3.29)
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Let N (i) denote the number of tosses that result in the integer i , 1 ≤ i ≤ 6, then the
summation of (3.29) can be rewritten as

X N = 1

N

6∑
i=1

i N (i) =
6∑

i=1

i fN (i), (3.30)

where fN (i) = N (i)/N is the relative frequency of the outcome i (cf. (2.1) of
Chapter 2). Since the Xn are RVs, so is their sample mean X N .4 But when N becomes
sufficiently large, fN (i) will tend to the probability pX (i). Thus, for large N , we expect
X N to stabilize at the value E[X ] defined by

E[X ] �
∑

1≤i≤6

i pX (i). (3.31)

We call E[X ] the expectation of X . We often write the expectation of X as μX for
conciseness.

D E FI N I T I O N 3.2 (Expectation). The expectation, the expected value, or the mean
of a discrete RV X with probability distribution {pX (xi )} is defined as

μX = E[X ] �
∑
all i

xi pX (xi ), (3.32)

provided the sum converges absolutely.5 �

The notation E[X ], E(X), or μX is commonly used in mathematics and statis-
tics. In physics, 〈X〉, 〈X〉Av, or X are common substitutes for E[X ]. The definition of
expectation extends straightforwardly to a function h(X) of the RV X (Problem 3.6):

E[h(X)] �
∑
all i

h(xi )pX (xi ). (3.33)

Discrete RVs X and Y are independent if and only if

E[h(X)g(Y )] = E[h(X)]E[g(Y )] (3.34)

for arbitrary real-valued functions h(·) and g(·) (see Problem 3.7).
Most of the RVs we deal with have a finite expectation or mean. There are, however,

some exceptions, as we shall see later in this chapter (cf. Zipf’s distribution, Cauchy
distribution). If E[X ] = ∞, we usually say that X does not possess an expectation;
we may say, instead, that X has an infinite expectation. One important property of the
expectation is that E[ · ] is a linear operator. Therefore, the expectation of a weighted
sum of many RVs is the weighted sum of their expectations:

4 In general, a function Y = f (X) of an n-tuple X(ω) = (X1(ω), X2(ω), . . . , X N (ω)) is a random variable,
since Y can be written as a function of ω ∈ �; i.e., Y = Y (ω). See Chapter 5 for further details.

5 A series
∑

n an is said to converge absolutely if and only if
∑

n |an | <∞. Absolute convergence implies
that the value of the sum is independent of the order in which the sum is performed.
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E

[∑
i

ai Xi

]
=
∑

i

ai E[Xi ]. (3.35)

This is true whether the RVs Xi are independent or not.
Given a conditional probability distribution {pX |Y (xi |y j )}, the conditional expecta-

tion of X conditioned on the event {Y = y j } is defined by

E[X |Y = y j ] �
∑
all i

xi pX |Y (xi |y j ). (3.36)

It is often of interest to consider the conditional expectation of a random variable X
with respect to alternative realizations of the RV Y . The conditional expectation of X
given Y , denoted E[X |Y ], can be thought of as a random variable that takes the value
E[X |Y = y j ] with probability P[Y = y j ] = pY (y j ).

D E FI N I T I O N 3.3 (Conditional expectation). Let {pX |Y (xi |y j )} be the conditional
probability distribution of a discrete RV X conditioned on another discrete RV Y to
be equal to y j and define a function ψ : {y j } → R, by ψ(y j ) = E[X |Y = y j ]. Then
the conditional expectation of X given Y is given by

E[X |Y ] � ψ(Y ). (3.37)

�

It should be emphasized that E[X |Y ] is a function of the RV Y . Since E[X |Y ] is itself
a (discrete) RV, we can take its expectation. We can easily show (Problem 3.8) that

E[E[X |Y ]] = E[X ]. (3.38)

This basic property of conditional expectation is called the law of iterated expectations
and is also known as the law of total expectation, or the tower property.

3.2.2 Moments, central moments, and variance

If X is a random variable, so are its kth power Xk and (X − μX )
k . We now define the

expectation of these random variables.

D E FI N I T I O N 3.4 (Moments and central moments). For a positive integer k,

E[X k] =
∑
all i

xk
i pX (xi ), (3.39)

is called the kth moment of X, provided the series converges absolutely. Similarly,

E
[
(X − μX )

k
]
=
∑
all i

(xi − μX )
k pX (xi ) (3.40)

is called the kth central moment of X. �
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Clearly, the first moment is equal to the expectation μX . The second central moment
is given the special name variance, and is usually denoted as σ 2

X .

D E FI N I T I O N 3.5 (Variance and standard deviation). Let X be a RV with finite
second moment E[X 2] and mean μX . We define the variance of X as

σ 2
X = Var[X ] � E[(X − μX )

2] = E[X2] − μ2
X . (3.41)

The square root of the variance, σX , is called the standard deviation. �

The concept of conditional variance can be defined in terms of the conditional
expectation.

D E FI N I T I O N 3.6 (Conditional variance). Let X and Y be discrete RVs. The condi-
tional variance of X given Y is defined as

Var[X |Y ] � E[(X − E[X |Y ])2|Y ]. (3.42)

�

3.2.3 Covariance and correlation coefficient

Let X and Y be two RVs, and define another RV Z by

Z = X + Y. (3.43)

Then its mean or expectation is

μZ = E[Z ] = E[X ] + E[Y ] = μX + μY . (3.44)

The variance of Z is

Var[Z ] = E[(Z − μZ )
2] = E[(X − μX + Y − μY )

2]
= E[(X − μX )

2] + E[(Y − μY )
2] + 2E[(X − μX )(Y − μY )] (3.45)

= σ 2
X + σ 2

Y + 2σX,Y , (3.46)

where

σX,Y � Cov[X, Y ] � E[(X − μX )(Y − μY )] (3.47)

is called the covariance between X and Y . Expanding the above expression gives

σX,Y = Cov[X, Y ] = E[XY ] − μXμY . (3.48)

Let us normalize X and Y by their standard deviations:

X∗ = X

σx
and Y ∗ = Y

σY
. (3.49)
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The covariance between X∗ and Y ∗ is called the correlation coefficient of X and Y , and
is denoted by ρ(X, Y ):

ρ(X, Y ) � Cov[X∗, Y ∗] = σX,Y

σXσY
. (3.50)

By the well-known Cauchy–Schwarz inequality, the correlation coefficient can be seen
to satisfy the following inequality (see Problem 3.10):

|ρ(X, Y )| ≤ 1,

where equality holds if and only if X∗ a.s.= cY ∗ for some scalar c �= 0; i.e., if and
only if X∗ and Y ∗ are linearly dependent in the almost sure sense.6 In particular, if
ρ(X, Y ) = 1, the constant c > 0, and X and Y are said to have perfect positive cor-
relation, whereas if ρ(X, Y ) = −1, we then have c < 0 and X and Y are said to have
perfect negative correlation (see Problem 6.17). In this sense, ρ(X, Y ) is a measure of
the degree of correlation between X and Y .

D E FI N I T I O N 3.7 (Uncorrelated random variables). We say X and Y are uncorre-
lated if

Cov[X, Y ] = ρ(X, Y ) = 0. (3.51)

�

Suppose that variables X and Y are independent; i.e.,

pXY (xi , y j ) = pX (xi )pY (y j ), for all xi , y j . (3.52)

Then

E[XY ] =
∑

i

∑
j

xi y j pXY (xi , y j ) =
(∑

i

xi pX (xi )

)⎛⎝∑
j

y j pY (y j )

⎞⎠ = μXμY ,

(3.53)

where the rearrangement from the second expression to the third can be justified since
the series converges absolutely. We state this as a theorem.

THEOREM 3.1 (Expectation of the product of independent random variables). If
random variables X and Y are statistically independent with finite expectations μX and
μY , their product XY is a random variable with expectation μXμY :

E[XY ] = E[X ]E[Y ] = μXμY . (3.54)

�

Then in view of Definition 3.7 and (3.47), we readily have the following theorem.

6 The concept of almost sure equivalence of two RVs is discussed in Section 3.1.
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THEOREM 3.2 (Independence implies uncorrelatedness). If X and Y are indepen-
dent, then they are uncorrelated. However, the converse is not true. �

Furthermore, we readily have the following theorem from (3.46).

THEOREM 3.3 (Variance of sum of independent variables). If X and Y are
independent, the variance of Z = X + Y is given by

σ 2
Z = σ 2

X + σ 2
Y . (3.55)

�

We generalize the above results to the sum of n > 2 variables in Theorem 3.4.

THEOREM 3.4 (Sum of n random variables). Let X1, X2, . . . , Xn be random vari-
ables with finite means μ1, μ2, . . . , μn and variances σ 2

1 , σ
2
2 , . . . , σ

2
n . Consider the

sum variable

Sn = X1 + X2 + . . .+ Xn.

Then

E[Sn] = μ1 + μ2 + . . .+ μn, (3.56)

Var[Sn] =
n∑

i=1

σ 2
i + 2

∑
i< j

Cov[Xi , X j ], (3.57)

where the last sum extends over the n(n − 1)/2 pairs (Xi , X j ) with i < j . In particular,
if all Xi are pairwise independent, then

Var[Sn] = σ 2
1 + σ 2

2 + . . .+ σ 2
n . (3.58)

Proof. Equation (3.56) is immediate from the definition of E[ · ], which is a linear
operation (cf. (3.35)). Write E[Sn] = μS . Then Sn − μS =∑n

i=1(Xi − μi ) and

(Sn − μS)
2 =

[
n∑

i=1

(Xi − μi )

]⎡⎣ n∑
j=1

(X j − μ j )

⎤⎦
=

n∑
i=1

(Xi − μi )
2 + 2

∑
i< j

(Xi − μi )(X j − μ j ). (3.59)

Taking the expectation, we get (3.57).

3.3 Important probability distributions

In this section we will discuss several important probability distributions: the binomial,
geometric, hypergeometric, Poisson, negative-binomial (or Pascal) and Zipf (or zeta)
distributions.
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3.3.1 Bernoulli distribution and binomial distribution

We already defined and discussed the Bernoulli and binomial distributions in
Section 2.3, so we only briefly summarize them here.

Let p and q = 1− p be the probabilities of success and failure in a Bernoulli trial. A
Bernoulli random variable B is defined by

B =
{

1, if success occurs,
0, if failure occurs.

(3.60)

Then the probability distribution of Y is given by the Bernoulli distribution (cf. (2.34)
and (2.35)) defined by

P[B = 1] = p, P[B = 0] = q. (3.61)

It is easy to show that E[B] = p and Var[B] = pq.
Next, consider a random variable X defined by

X = Number of successes in n independent Bernoulli trials.

Then the probability distribution of X is given by the binomial distribution defined by
(2.38):

P[X = k] = B(k; n, p) �
(

n

k

)
pkqn−k, k = 0, 1, 2, . . . , n. (3.62)

The expectation of the RV X can be computed as

E[X ] =
n∑

k=0

k

(
n

k

)
pkqn−k =

n∑
k=1

np

(
n − 1

k − 1

)
pk−1qn−k, (3.63)

where we used the identity

k

(
n

k

)
= n!
(k − 1)!(n − k)! = n

(
n − 1

k − 1

)
.

Then, by setting k − 1 = i and n − 1 = m, and using the identity

m∑
i=0

(
m

i

)
piqm−i = (p + q)m = 1,

we find

μX = E[X ] = np. (3.64)

In order to find E[X2] we first note the following relation:

k2
(

n

k

)
= [k(k − 1)+ k]

(
n

k

)
= n(n − 1)

(
n − 2

k − 2

)
+ n

(
n − 1

k − 1

)
.
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Thus,

E[X2] =
n∑

k=1

k2
(

n

k

)
pkqn−k

= n(n − 1)p2
n∑

k=2

(
n − 2

k − 2

)
pk−2qn−k + np

n∑
k=1

(
n − 1

k − 1

)
pk−1qn−k

= n(n − 1)p2 + np = n2 p2 + np(1− p) = npq + (np)2. (3.65)

Since the variance of X is Var [X ] = E[X2] − (E[X ])2, we find

σ 2
X = Var[X ] = npq. (3.66)

We could have obtained the above mean μX and variance σ 2
X more readily by noting

that X is the sum of n independent Bernoulli RVs Bi , i = 1, . . . , n (Problem 3.11):

X = B1 + B2 + · · · + Bn. (3.67)

The binomial distribution can easily be generalized to what is called the multinomial
distribution associated with an experiment where each trial can have one of r(≥ 2)
outcomes (see Problem 3.12).

3.3.2 Geometric distribution

Consider a sequence of Bernoulli trials with probability of success p. Let

X = Number of trials needed to achieve the first success.

Then, the probability distribution of X is given by the following geometric distribution:

P [X = k] = qk−1 p, k = 1, 2, . . . , (3.68)

where q = 1− p is the probability of failure per trial. The probability that more than k
trials are needed to get the first success is given by

P [X > k] = qk, k = 0, 1, 2, . . . . (3.69)

Suppose that m trials have resulted in all failures. What is the probability that more
than k additional trials will be needed to achieve the first success? This conditional
probability is readily found to be

P [X > m + k|X > m] = P [X > m + k]
P [X > m] = qk+m

qm
= qk . (3.70)

The last probability is independent of m, the number of failures in the past. This property
is called the memoryless property of the geometric distribution. This is an immediate
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result of the property of Bernoulli trials in which the outcomes of the trials are inde-
pendent of each other; i.e., success or failure in the past does not influence possible
outcomes of the present or future trials.

The expectation of X can be evaluated as

E[X ] =
∞∑

k=1

kqk−1 p = p
∞∑

k=1

kqk−1. (3.71)

Recall the following formula for a geometric series:

∞∑
k=1

xk = x

1− x
, for |x | < 1. (3.72)

Differentiating both sides, we have

∞∑
k=1

kxk−1 = 1

(1− x)2
. (3.73)

By setting x = q = 1− p in the above and substituting it into (3.71), we find

E[X ] = 1

p
. (3.74)

Similarly, we can compute the variance of X (Problem 3.13):

Var[X ] = q

p2 . (3.75)

The expectation (3.74) can be obtained somewhat more quickly, if we use a special
formula for nonnegative random variables (Problem 3.5) and the result (3.69):

E[X ] =
∞∑

k=0

P[X > k] =
∞∑

k=0

qk = 1

1− q
. (3.76)

3.3.3 Poisson distribution

As we remarked in Chapter 1, Siméon-Denis Poisson (1781–1840) derived this distri-
bution to approximate the binomial distribution when the probability of occurrence p
is small. In 1898 Bortkiewicz7 published “Das Gesetz der kleinen Zahlen (The law
of small numbers),” in which he analyzed data of the number of soldiers in the Prus-
sian cavalry corps who were killed by being kicked by a horse, and showed that those
numbers followed a Poisson distribution.

7 Ladislaus Josephovich Bortkiewicz (1868–1931) was a Russian economist and statistician of Polish
descent.
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Let us consider the limiting case of the binomial distribution B(k; n, p) of (2.38)
when n →∞ and p → 0, while keeping

np = λ,
where λ is a fixed parameter. Then, as will be shown below, the limit distribution
becomes

P(k; λ) � λk

k! e−λ, k = 0, 1, 2, . . . , (3.77)

which is the Poisson distribution with mean λ.
In order to derive the above distribution, let Sn denote the total number of successes

in n Bernoulli trials:

Sn = X1 + X2 + · · · + Xn, (3.78)

where Xi is a binary RV such that

Xi =
{

1, if the i th trial is success,
0, otherwise.

(3.79)

Then for given p and finite n, the RV Sn has the binomial distribution, as discussed
in Section 2.3:

P [Sn = k] = B(k; n, p) =
(

n

k

)
pk(1− p)n−k , (3.80)

which can be rearranged, using p = λ/n, as

B(k; n, p) = n!
k!(n − k)! pk(1− p)n−k

= 1

k!
(

1− 1

n

)(
1− 2

n

)
· · ·
(

1− k − 1

n

)
λk(1− p)n−k . (3.81)

Substituting the relation p = λ
n in the last term, we have

(1− p)n−k =
[(

1− λ

n

)n](n−k)/n

. (3.82)

Then using the formula limδ→0(1− aδ)1/δ = e−a , we have

lim
n→∞(1− p)n−k = e−λ. (3.83)

Thus, in the limit

lim
n→∞ B(k; n, p) = λk

k! e−λ, k = 0, 1, 2, . . . . (3.84)
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Therefore, the two-parameter binomial distribution becomes the one-parameter distri-
bution of (3.77), which we often write as P(k; λ). The expectation, the second moment,
and variance of the Poisson RV can be obtained (Problem 3.18) as

E[X ] = λ,
E[X2] = λ2 + λ,

Var[X ] = λ.
(3.85)

In Figure 3.5 we plot the Poisson distribution for λ = 0.5, 1, 2, 4, 8, and 16. As λ
increases, the distribution appears to become normal (or Gaussian) distribution-like
in shape, but of course this distribution is defined for nonnegative discrete integers,
whereas the normal distribution is a continuous distribution defined over (−∞,∞).

The cumulative Poisson distribution is often denoted as Q(k; λ):

Q(k; λ) =
k∑

i=0

P(i; λ), k = 0, 1, 2, . . . . (3.86)

The following set of formulas relating P(k; λ) and Q(k; λ) are useful (Problem 3.20):

k∑
k′=0

P(k − k ′; λ1)Q(k
′; λ2) = Q(k; λ1 + λ2); (3.87)
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Figure 3.5 The Poisson distribution with different values of λ.
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Q(k; λ) =
∫ ∞

λ

P(k; y) dy; (3.88)

Q(k; λ) = λQ(k − 1; λ)+ (k + 1)Q(k + 1; λ)
k + λ+ 1

; (3.89)

k−1∑
j=0

Q( j; λ) = k Q(k; λ)− λQ(k − 1; λ); (3.90)

∫ ∞

λ

Q(k − 1; y) dy = k Q(k; λ)− λQ(k − 1; λ). (3.91)

Since the binomial distribution is an approximation to the hypergeometric distribution
(see Problems 3.15 and 3.16) for large N , and the Poisson distribution is an approxima-
tion to the binomial distribution for large n and small p, one might expect the Poisson
distribution to be an approximation to the hypergeometric distribution under certain
conditions. As a matter of fact, roughly speaking, this is the case if (i) n is large, (ii) p
is small (with np = λ), and (iii) N is much larger than n.

Like the binomial distribution, the Poisson distribution is a very important one and
has been applied to many problems. For instance, the number of defective items in
industrial products, the number of telephone calls initiated per unit time, the distribu-
tion of bacterial colonies per unit volume of a culture, the number of bomb fragments
striking a target per unit area, etc. In all these situations we have a large number n
of independent or nearly independent “trials,” a small probability p of a “success” in
any given trial, and we ask for the probability of getting k successes in n trials [353].
Feller [99] discusses several application examples in which observed data fit the Poisson
distribution.

3.3.4 Negative binomial (or Pascal) distribution

Consider a succession of Bernoulli trials. How many trials are needed to achieve r
successes (r ≥ 1)?

Let us define a random variable Yr :

Yr � Number of trials needed to achieve r successes. (3.92)

Then we readily find

P [Yr = k] = P [r − 1 successes in k − 1 trials and a success at the kth trial]
=
(

k − 1

r − 1

)
pr−1qk−r p =

(
k − 1

r − 1

)
pr qk−r , (3.93)

where q = 1− p. Thus, we have

P [Yr = k] =
(

k − 1

r − 1

)
pr qk−r , k ≥ r. (3.94)
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The last expression could have been obtained directly, by observing that
(k−1

r−1

) = (k−1
k−r

)
and that the event Yr = k is obtained if and only if k − r failures occur in the first k − 1
trials (hence r − 1 successes), immediately followed by a success. Since (3.94) defines
the probabilities, they should add up to one; i.e.,

∞∑
k=r

(
k − 1

r − 1

)
pr qk−r = 1, (3.95)

from which we obtain the following identity:

∞∑
k=r

(
k − 1

r − 1

)
qk−r = p−r = (1− q)−r . (3.96)

It is suggested that the reader prove the above identity directly (Problem 3.21).
Using the identity(−n

i

)
= (−n)!

i !(−n − i)! = (−1)i
n(n + 1) · · · (n + i − 1)

i !
= (−1)i

(
n + i − 1

i

)
, (3.97)

we may write (3.94) as

P [Yr = k] =
( −r

k − r

)
pr (−1)k−r (1− p)k−r =

( −r

k − r

)
pr (−q)k−r , k ≥ r,

(3.98)

where q = 1− p. Therefore, the above distribution (3.94) or (3.98) is called the neg-
ative binomial distribution with parameters (r , p). It is also known as the Pascal
distribution or sometimes referred to as the binomial waiting time distribution [353].
When r = 1, this distribution becomes the geometric distribution.

Recall that the binomial distribution is concerned with the distribution of the num-
ber of successes r in a specified number k of trials, whereas the negative binomial
(or Pascal) distribution is concerned with the number of trials k needed to achieve a
specified number of successes r .

Alternatively, we could derive the above distribution, observing that Yr is the sum of
r geometrically distributed RVs:

Yr = X1 + X2 + · · · + Xr , (3.99)

where each Xi (1 ≤ i ≤ r) is distributed according to (3.68). In order to show that Yr

defined above has the distribution (3.94), we need to study additional properties of the
sum of independent RVs, so we defer this derivation until a later section.

Yet another derivation of the negative binomial distribution is as follows. Note that k
or fewer trials are needed to achieve r successes, if and only if the number of successes
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achieved in k Bernoulli trials is at least r . Therefore, the probabilities of the above two
equivalent events are equal; i.e.,

P [Yr ≤ k] =
k∑

i=r

B(i; k, p), (3.100)

where B(i; k, p) = (ki )pi (1− p)k−i . Then

P [Yr = k] = P [Yr ≤ k] − P [Yr ≤ k − 1] (3.101)

=
k∑

i=r

(
k

i

)
pi qk−i −

k−1∑
i=r

(
k − 1

i

)
pi qk−1−i . (3.102)

It is left for an exercise to show that the above expression is equivalent to (3.94)
(Problem 3.22).

The j th moment of Yr can be computed as

E[Y j
r ] =

∞∑
k=r

k j
(

k − 1

r − 1

)
pr qk−r = r

p

∞∑
k=r

k j−1
(

k

r

)
pr+1qk−r

= r

p

∞∑
i=r+1

(i − 1) j−1
(

i − 1

r

)
pr+1qi−(r+1)

= r

p
E
[
(Yr+1 − 1) j−1

]
, (3.103)

where Yr+1 is a negative binomial RV, i.e., the number of trials needed to achieve r + 1
successes. Setting j = 1 in the last expression yields

E[X ] = r

p
. (3.104)

Similarly, by setting j = 2,

E[Y 2
r ] =

r

p
E[Yr+1 − 1] = r

p

(
r + 1

p
− 1

)
. (3.105)

Thus,

Var[Yr ] = rq

p2 . (3.106)

3.3.4.1 Shifted negative binomial distribution
Analogous to the shifted geometric distribution defined in Problem 3.14, let us define a
random variable Zr by

Zr = Number of failures needed to achieve r successes,
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which is related to Yr simply by

Zr = Yr − r. (3.107)

The probability distribution of Zr is given by (Problem 3.23)

f (k; r, p) � P [Zr = k] =
(

r + k − 1

r − 1

)
pr qk, k = 0, 1, 2, . . . . (3.108)

This distribution is obtained by shifting the negative binomial distribution of Yr to
the left by r . Thus, the support of this distribution is [0,∞) in contrast to [r,∞) of
the distribution (3.94). This shifted form of negative binomial distribution is useful in
modeling count data like the Poisson distribution discussed in the previous example. It
is more flexible than the Poisson distribution in fitting empirical count data, because the
negative binomial is a two-parameter distribution (i.e., p and r ), whereas the Poisson
distribution involves only one parameter (i.e., λ).

The distribution (3.108) can be generalized for a noninteger parameter r . Then the
distribution (3.108) takes the following form:

f (k; r, p) = �(r + k)

�(r)�(k + 1)
pr (1− p)k, k = 0, 1, 2, . . . , (3.109)

where �(r) is the gamma function:

�(r) =
∫ ∞

0
xr−1e−x dx, (3.110)

which will be discussed in detail in Section 4.2.3.
Figure 3.6 is a plot of the distribution (3.109) for r = 0.5, 1, 2, 4, 8, 16, and 32,

while p is set to p = 0.5. We can also show (Problem 3.24) that this distribu-
tion approaches the Poisson distribution in the limit r →∞ and (1− p)→ 0, while
keeping (1− p)r = λ.

3.3.5 Zipf’s law and zeta distribution

In the 1930s, the American linguist Zipf8 examined the frequency of occurrences of
words in various natural languages (English, Chinese, etc.) and found that while a small
number of words are used very often, there are many words that are rarely used. By rank-
ing the words based on their frequency of occurrences,9 he found that fn , the frequency
of the nth ranked word, can be expressed as

fn ∝ 1

nα
, n = 1, 2, 3, . . . , (3.111)

8 George Kingsley Zipf (1902–1950) was a linguist and philologist at Harvard University.
9 In English, the top ranked words are “the,” “of,” “and,” and “to.”
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Figure 3.6 The shifted negative binomial distribution (3.108) or (3.109); i.e., the probability distribution of the
number of failures needed to achieve r successes in Bernoulli trials with p = 0.5 and for
r = 0.5, 1, 2, 4, 8, 16, 32.

where the power exponent α (> 1) is close to unity.10 Later, many empirical distribu-
tions encountered in economics and other realms have been found to exhibit a similar
“power-law” behavior, which is called Zipf’s law. For example, consider request traffic
to a certain website or a web proxy server, and let X = n denote the nth most frequently
accessed web page. Some recent studies ([37] and references therein) show that the gen-
eralized Zipf law fits the empirical data obtained at several proxy server sites. Zipf’s law
can be verified by plotting log fn versus log n. If the scatter diagram is close to a single
straight line of slope −α, the distribution of (3.111) may apply.

We define the Zipf distribution with parameter α, often referred to as the zeta distri-
bution, for a discrete random variable X which takes on integers (that often represent
the rank orders in occurrences) 1, 2, 3, . . ., as follows:

pn = P [X = n] = n−α

ζ(α)
, n = 1, 2, 3, . . . , (3.112)

10 When α = 1, the series becomes the so-called harmonic series and does not converge (Problem 3.25).
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where ζ(s) is defined by

ζ(s) =
∞∑

n=1

n−s, s > 1, (3.113)

which is known as the Euler11 zeta function, which was extended in 1859 to the
complex numbers s (s �= 1) by Riemann.12 Thus, the function (3.113) is often called
the Riemann zeta function.

3.3.5.1 Euler and Riemann zeta functions
We list some interesting results about the Euler and Riemann zeta function.

• Euler discovered the connection between the zeta function and prime numbers p:

ζ(s) =
∏

p≥2:prime

1

1− p−s

=
(

1+ 1

2s
+ 1

4s
+· · ·

)(
1+ 1

3s
+ 1

9s
+· · ·

)
· · ·
(

1+ 1

ps
+ 1

p2s
+· · ·

)
· · ·,
(3.114)

which can be alternatively expressed by the identity

1+ 1

2s
+ 1

3s
+ 1

4s
+ 1

5s
+ · · · = 2s

2s − 1

3s

3s − 1

5s

5s − 1

7s

7s − 1
· · · . (3.115)

• The harmonic series, obtained when s = 1 in the left-hand side of the Euler formula
(3.114) or (3.115), diverges (Problem 3.25 (a)). This implies that there are infinitely
many prime numbers.

• The zeta function ζ(α) is a decreasing function for real values α > 1 and is convex.
Except for α = even integer, the value of ζ(α) must be approximated, since it is a
transcendental function.13

ζ(1) = ∞, ζ(1.5) ≈ 2.612,

ζ(2) = π2

6 ≈ 1.645, ζ(2.5) ≈ 1.341,
ζ(3) ≈ 1.202, ζ(3.5) ≈ 1.127,

ζ(4) = π4

90 ≈ 1.0823,
limα→∞ ζ(α) = 1.

11 Leonhard Euler (1707–1783) was a Swiss mathematician and physicist who spent most of his life in
Saint Petersburg, Russia, and Berlin, Germany. Euler’s contributions are in the fields of number theory,
calculus, geometry, graph theory, mechanics, optics, astronomy, etc. Euler’s work on Latin squares laid the
groundwork for today’s Sudoku puzzles.

12 Georg Friedrich Bernhard Riemann (1826–1866) was a German mathematician who studied under Gauss.
He made important contributions to complex analysis, differential geometry, and mathematical physics.

13 A transcendental function is a function which is not an algebraic function. Examples include the
exponential function, the trigonometric functions, and their inverse functions.
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3.3.5.2 Mean, variance, and moments of the zeta distribution
The mth moment of the random variable X with the probability distribution (3.112) can
be obtained as follows:

E[Xm] =
∞∑

n=1

nm pn =
∞∑

n=1

nm n−α

ζ(α)
. (3.116)

Thus,

E[Xm] = ζ(α − m)

ζ(α)
, α > m + 1. (3.117)

The mean and variance are given as

E[X ] = ζ(α − 1)

ζ(α)
, if α > 2; (3.118)

Var[X ] = ζ(α − 2)

ζ(α)
−
[
ζ(α − 1)

ζ(α)

]2

, if α > 3. (3.119)

3.4 Summary of Chapter 3

(Cumulative) distribution function
(CDF):

FX (x) � P [{ω : X (ω) ≤ x}] (3.1)

Probability distribution, {pX (xi )} pX (xi ) � P[X = xi ], i = 1, 2, . . . (3.7)
Probability mass function (PMF): pX (x) � P[X = x], x ∈ R (3.9)
Dirac delta function δ(x):

∫∞
−∞ g(x)δ(x − a) dx � g(a) (3.15)

Probability density function
(PDF):

fX (x) =∑i pX (xi )δ(x − xi ) (3.12)

Joint probability distribution: pXY (xi , y j ) = P[X = xi , Y = y j ] (3.17)
Conditional probability

distribution:
pY |X (y j |xi ) = P[Y = y j |X = xi ] (3.20)

Independent RVs: pXY (xi , y j ) = pX (xi )pY (y j ) (3.25)
Independent RVs: E[h(X)g(Y )] = E[h(X)]E[g(Y )] (3.34)
Expectation: μX = E[X ] �

∑
alli xi pX (xi ) (3.32)

E[h(X)] =∑alli h(xi )pX (xi ) (3.33)
Conditional expectation: E[X |Y ]=ψ(Y ), ψ(y j )= E[X |Y = y j ] (3.37)

E[X |Y = y j ] =∑alli xi pX |Y (xi |y j ) (3.36)
Variance: σ 2

X = Var[X ] � E[(X − μX )
2] (3.41)

Conditional variance: Var[X |Y ] = E[(X − E[X |Y ])2|Y ] (3.42)
Covariance: σX,Y � Cov[X, Y ] =

E[(X − μX )(Y − μY )] (3.47)
Correlation coefficient: ρ(X, Y ) � σX,Y

σXσY
(3.50)
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Uncorrelated RVs: Cov[X, Y ] = ρ(X, Y ) = 0 (3.51)
Bernoulli distribution: P[B = 1] = p, P[B = 0] = q (3.61)
Binomial distribution: B(k; n, p) �

(n
k

)
pkqn−k , 0 ≤ k ≤ n (3.62)

Geometric distribution: P[X = k] = qk−1 p, k = 1, 2, . . . (3.68)

Poisson distribution: P(k; λ) � λk

k! e
−λ, k = 0, 1, 2, . . . (3.77)

Cumulative Poisson dist.: Q(k; λ) =∑k
i=0 P(i; λ), k = 0, 1, 2, . . . (3.86)

Negative binomial dist.: P [Yr = k] = (k−1
r−1

)
pr qk−r , k ≥ r (3.94)

Negative binomial dist.: P [Yr = k] = ( −r
k−r

)
pr (−q)k−r , k ≥ r (3.98)

Zipf’s law: 1/nα, n ≥ 1 (3.111)
Zeta distribution: pn = n−α/ζ(α), n ≥ 1 (3.112)
Zeta function: ζ(s) =∑∞

n=1 n−s, s > 1 (3.113)

3.5 Discussion and further reading

In this chapter we introduced the notion of a random variable as a mapping from the
sample space � to the real line R, or in the case of two joint variables as a mapping
from � to R× R. We then discussed several important discrete RVs, most of which
are also found in other textbooks on probability, such as Feller [99], Grimmett and
Stirzaker [131], Gubner [133], Nelson [254], Papoulis and Pillai [262], and Ross [289].
We discussed Zipf’s law (zeta distribution) more than typical textbooks owing to its
increasing importance in recent years, such as its use in the stochastic modeling of web
server systems.

3.6 Problems

Section 3.1: Random Variables

3.1∗ Property 4 of (3.3). Derive Eq. (3.3).
Hint: Use Axiom 3 in Section 2.2.4.

Section 3.2: Discrete random variables and probability distributions

3.2∗ A nonnegative discrete RV. Consider a discrete RV X whose range is the set of
nonnegative integers. Let the probability distribution of X be of the form

pi = P[X = i] = kρi , i = 0, 1, 2, . . . ,

where ρ is a given parameter, 0 < ρ < 1.

(a) Determine the constant k.
(b) Obtain the distribution function of X .

3.3∗ Statistical independence. Show that (3.25) and (3.26) are equivalent. Prove also
the equivalence of (3.27) and (3.28).
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3.4 Discrete RVs, distribution function, and conditional probability. A sample
space � consists of the four points

� = {ω1, ω2, ω3, ω4}

and the probabilities of the simple events are

P [{ω1}] = 1
2 , P [{ω2}] = 1

4 , P [{ω3}] = 1
8 , P [{ω4}] = 1

8 .

Define RVs X and Y by

X (ω1) = 1, X (ω2) = 1, X (ω3) = 2, X (ω4) = 3;
Y (ω1) = 3, Y (ω2) = 3, Y (ω3) = 1, Y (ω4) = 1.

(a) Find the probability distribution and the distribution function of X . Do the same
for Y .

(b) Find the conditional probability P [Y = y j |X = xi ] for all possible pairs X = xi ,
Y = y j .

(c) Are the RVs X and Y statistically independent?

3.5 Expectation of nonnegative random variable. Let X be a random variable that
takes on integers 0, 1, 2, . . . Show that the following formula holds:

E[X ] =
∞∑

k=0

P [X > k]. (3.120)

3.6 Expectation of a function of a random variable. Show that (3.33) holds by
defining a random variable Z = h(X).

3.7 Statistical independence and expectation. Show that two discrete RVs X and Y
are independent if and only if (3.34) for arbitrary functions h(·) and g(·).
3.8∗ Properties of conditional expectation. Let X and Y be discrete RVs. Show the
following:

(a) E[E[X |Y ]] = E[X ] (cf. (3.38)).
(b) E[h(Y )g(X)|Y ] = h(Y )E[g(X)|Y ], where h and g are scalar functions.
(c) E[ · |Y ] is a linear operator.

3.9 Conditional variance. Show that

E[Var[X |Y ]] = Var[X ] − Var[E[X |Y ]].
3.10∗ Correlation coefficient and Cauchy–Schwarz inequality. For random vari-
ables X and Y , a version of the Cauchy–Schwarz inequality states the following (see
also Problem 10.21):
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(E[XY ])2 ≤ E[X2]E[Y 2],

with equality holding if and only if X∗ = X − E[X ] and Y ∗ = Y − E[Y ] are linearly
dependent; i.e., X∗ a.s.= cY ∗ for some constant c. Show that the Cauchy–Schwarz
inequality implies that the correlation coefficient satisfies |ρ(X, Y )| ≤ 1 and fur-
thermore that ρ(X, Y ) = 1 implies perfect positive correlation of X and Y , while
ρ(X, Y )= − 1 implies perfect negative correlation.

Section 3.3: Important probability distributions

3.11∗ Alternative derivation of the expectation and variance of binomial distribu-
tion. Derive μX and σ 2

X by using the representation of X as in (3.67).

3.12∗ Trinomial and multinomial distributions.

(a) Suppose that the outcome of a trial is one of three different events E1, E2, and E3.
Let the probability of these outcomes be p, q, and 1− p − q, respectively. Suppose
that we make n independent trials. Show that the probability that E1 will occur k1

times, E2 will occur k2 times, and E3 will occur n − k1 − k2 times is

n!
k1!k2!(n − k1 − k2)! pk1 qk2(1− p − q)n−k1−k2 . (3.121)

This distribution is called a trinomial distribution.
(b) Generalize the above result to the case where the outcome of a trial is one of m

different events {Ei : 1 ≤ i ≤ m}, which are mutually exclusive. Let the probabil-
ity of event Ei be pi , with

∑m
i=1 pi = 1. Suppose that we make n independent

trials. Show that the probability that Ei will occur ki times (1 ≤ i ≤ m), where∑m
i=1 ki = n is given by

pk = n!
k1!k2! · · · km ! pk1

1 pk2
2 · · · pkm

m , (3.122)

where k stands for the vector [k1, k2, . . . , km]. This distribution is called a multino-
mial distribution.

3.13 Variance of geometric distribution. Show that the variance of the geometric RV
is given by (3.75).

3.14 Shifted geometric distribution. Referring to the experiment in Section 3.3.2 on
the geometric distribution, define the random variable Y = X − 1, which represents the
number of failures before the first success is achieved. Show that

P[Y = k] = pqk , k = 0, 1, 2, . . . , (3.123)

which is often called the shifted geometric distribution, because Y starts from 0, while
X starts from 1. Find the mean and variance of Y .
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3.15 Hypergeometric distribution. Assume that there are N items contained in a
box, out of which N1 items are from class-1 (e.g., “good”) and the remainder N2 =
N − N1 are from class-2 (e.g., “bad”). Suppose that we take at random a sample of
n items without replacement (i.e., we do not return the selected item to the box) and
without regard to order. Let

X = Number of class-1 items selected.

(a) Show that the probability pk = P[X = k] is given by

pk � P[X = k] =
(N1

k

)( N2
n−k

)(N
n

) , (3.124)

where k must be in the range

max{0, n − N2} ≤ k ≤ min{n, N1}.
The probability distribution is known as the hypergeometric distribution, and is
often used in the study of the quality control problem in production systems.

(b) Derive the following alternative expression of the hypergeometric distribution:

pk =
(n

k

)( N−n
N1−k

)( N
N1

) . (3.125)

(c) Show that the mean is given by

E[X ] = nN1

N

n−1∑
k=1

(N1−1
k−1

)( N2
n−k

)(N−1
n−1

) . (3.126)

(d) Suppose that the population sizes N and N1 are both decreased by one to N − 1 and
N1 − 1 respectively and the sample size is also decreased by one to n − 1. Let X∗
be the number of class-1 items that are selected. Find the distribution {p∗k } of X∗.

(e) Show that E[X ] of (3.126) can be simplified to

E[X ] = nN1

N
= np. (3.127)

Here, the ratio p = N1/N represents the fraction of class-1 items in the population
before sampling is done. The formula (3.127) says that the expected number of
class-1 items when we take n samples without replacement is given by np.

(f) Show that the j th moment E[X j ] can be given as

E[X j ] = nN1

N
E
[
(X∗ + 1) j−1

]
, (3.128)

where X∗ is the hypergeometric RV defined in part (d).
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(g) Show that the variance of X is given by

Var[X ] = N − n

N − 1
npq, (3.129)

where p = N1/N is defined in part (e), and similarly, q = 1− p = N2/N .

3.16 Relation between hypergeometric and binomial distributions.

(a) Limit of the hypergeometric distribution. Show that the hypergeometric distribu-
tion converges to the binomial distribution in the limit N1, N2 →∞ while keeping
N1/N → p and N2/N → 1− p.

(b) Generalization of the hypergeometric distribution. Assume that the population
of size N contains R = 3 classes of sizes N1, N2, and N3(= N − N1 − N2) respec-
tively. Suppose that a size n sample is taken. What is the probability that it contains
k1 from class-1, k2 from class-2, and n − k1 − k2 from class-3?

3.17 Bridge game. The 52 cards consist of four classes: club, diamond, heart, and
spade. Find the probability that a hand of 13 cards consists of five clubs, four diamonds,
two hearts, and two spades.

3.18∗ Mean, second moment, and variance of the Poisson distribution. Show that
the mean, second moment, and variance of the Poisson RV X are given by (3.85).

3.19 Tail of the Poisson distribution.

(a) For the Poisson-distributed variable S, show that

λk

k! e−λ < P [S ≥ k] < λk

k! e−λ
1

1− λ
k+1

. (3.130)

(b) Show further for sufficiently large k that


k

√
2πk

< P [S ≥ k] < 
k

√
2πk

1

1− λ
k+1

, (3.131)

where 
 = λ
k e1−(λ−k). Thus, as long as 
 < 1, the probabilities such as P [S = k]

and P [S ≥ k] can be evaluated accurately.
Hint: Use Stirling’s formula: k! ≈ √2πkkke−k , as k →∞.

3.20∗ Identities relating P(k;λ) and Q(k;λ). Derive the identities (3.87) through
(3.91).

Hint: To show (3.88), write P(k; y) = d
dy

(−e−y
)yk

k! , apply the integration by parts, and

express the left-hand side in terms of
∫∞
λ

P(k − 1; y) dy and P(k; λ).
3.21∗ Derivation of the identity (3.96). Show the identity (3.96) without making use
of the binomial distribution.
Hint: Consider f (x) = (1− x)−r and expand it into a series in powers of x .
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3.22∗ Equivalence of two expressions for the negative binomial distribution. Show
that the probability distributions (3.94) and (3.101) are equivalent.

3.23 Another negative binomial distribution. By referring to the negative-binomial
variable Yr defined in the text, let us define Zr = Yr − r , which represents the number
of failures that precede the r th success. Show that the probability distribution of the RV
is given by

P [Zr = k] =
(

r + k − 1

r − 1

)
pr (1− p)k, k = 0, 1, 2, . . . . (3.132)

This distribution is sometimes also referred to as the negative binomial distribution.

3.24 Negative binomial and Poisson distribution. Show that the negative binomial
distribution of the form (3.109) approaches the Poisson distribution with mean λ if we
let r →∞ and (1− p)→ 0 in such a manner that (1− p)r = λ. Hint: r ln(1/p) also
converges to λ.

3.25 Zipf’s law with α = 1. The simplest case of Zipf’s law may be the case α = 1.

(a) Show, however, that the harmonic series does not converge; i.e.,

ζ(1) =
∞∑

n=1

1

n
= ∞.

Hint: Consider a continuous function f (x) = 1/x, x > 0, and use the fact∫ y
1 f (x) dx = ln y.

(b) So, let us limit the maximum value that X takes on to be finite, say N , and consider
the probability distribution

pn = n − 1

zN
, n = 1, 2, 3, . . . , N , (3.133)

where zN is the normalization constant

zN =
N∑

n=1

1

n
. (3.134)

Show that

ln(N + 1) < zN < ln N + 1. (3.135)

3.26 Generalized Zipf’s law.

(a) Show that

ζ(α) =
∞∑

n=1

1

nα
= ∞, for 0 < α < 1.

(b) Limit the range of the distribution to N . Find the upper bound and lower bound of
the normalization constant zN .
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4.1 Continuous random variables

Many RVs that we encounter in mathematical models of real-world problems are con-
tinuous. For example, the inter-arrival times of packets from terminals to a server may
assume any value between 0 and ∞. Similarly, the response time of a web request sent
over the Internet may take on any positive value. A random variable is called a con-
tinuous RV if its range is a continuum or, equivalently, if its distribution function is
everywhere continuous.

4.1.1 Distribution function and probability density function

For a given continuous RV X , the probability that X lies in a small interval (x, x +
] is

P [x < X ≤ x +
] = FX (x +
)− FX (x) = 
 [FX (x +
)− FX (x)]



. (4.1)

If 
 is small and the distribution function FX (x) is differentiable everywhere except
possibly a finite set of points, then the following approximation holds:

P [x < X ≤ x +
] ∼= 
F ′X (x), (4.2)

in which the prime denotes the derivative of FX . Whenever it exists, the derivative of
FX is called the probability density function (PDF) of X and is denoted by fX . Thus,

fX (x) = d FX (x)

dx
, (4.3)

or, in differential notation, we write formally

fX (x) dx = d FX (x) = P [x < X ≤ x + dx]. (4.4)

Therefore, given the PDF of X , its distribution function is computable as

FX (x) =
∫ x

−∞
fX (u) du. (4.5)

Since the distribution function is a nondecreasing function, the PDF is always nonneg-
ative:

fX (x) ≥ 0. (4.6)
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Figure 4.1 (a) The PDF and (b) the distribution function of a unit normal RV.

Figure 4.1 shows an example of the distribution function and the corresponding PDF of
a continuous RV, in particular a unit normal random variable; i.e., a normally distributed
random variable with zero mean and unit variance (see Section 4.2.4).

From Property 4 of (3.3) and (4.5) it follows that the probability P [a < X ≤ b] is
given by the integral of the PDF over that interval:

P [a < X ≤ b] =
∫ b

a
fX (x) dx . (4.7)

In particular, when a = −∞ and b = ∞, we obtain∫ ∞

−∞
fX (x) dx = 1. (4.8)

This result simply reflects the fact that the probability of the sure event is unity (see
Property 2 in Section 2.2.4).

4.1.2 Expectation, moments, central moments, and variance

The notions of expectation, moments, central moments, and variance that we defined
for discrete RVs in the previous chapter carry over directly to continuous RVs in a
straightforward manner. The PMF should be replaced by the PDF and summation by
integration.

Let μX denote the expectation of a continuous RV X , with PDF fX (x):

μX = E[X ] =
∫ ∞

−∞
x fX (x) dx, (4.9)
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Figure 4.2 The expectation of the RV X is the difference of the shaded regions.

provided the integral exists. We may also write

μX =
∫ ∞

0
x fX (x) dx +

∫ 0

−∞
x fX (x) dx

=
∫ ∞

0
[1− FX (x)] dx −

∫ 0

−∞
FX (x) dx . (4.10)

The last expression was obtained (see Problem 4.1) by applying integration by parts and
by assuming that E[|X |] <∞.1 The result (4.10) says that the mean value of the RV X
is equal to the difference of the right-hand and left-hand shaded areas in Figure 4.2.

If X is a nonnegative RV, the second term of (4.10) disappears and we obtain the
following formula:

μX =
∫ ∞

0
Fc

X (x) dx, (4.11)

where

Fc
X (x) = 1− FX (x), x ≥ 0, (4.12)

is called the complementary distribution function or the survivor function of the
RV X . The formulas (4.10) and (4.11) hold for a discrete random variable as well
(Problem 4.2).

The mth moment and mth central moment of a continuous RV X are defined as

E[Xm] =
∫ ∞

−∞
xm fx (x) dx, (4.13)

E[(X − μX )
m] =

∫ ∞

−∞
(x − μX )

m fX (x) dx . (4.14)

The first moment is the expectation E[X ] = μX and the second central moment is the
variance Var[X ] = σ 2

X , just like in the discrete RV case:

1 An example of a distribution that does not satisfy this condition is the Cauchy distribution defined
by (8.103):

f (x) = 1

πα
[
1+ (x−μ)2

α2

] , −∞ < x <∞.
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σ 2
X = Var[X ] =

∫ ∞

−∞
(x − μX )

2 fX (x) dx

= E[X2] − μ2
X . (4.15)

If we think of a one-dimensional PDF fX (·) as a mass distribution along a rod, the
moments E[Xn] have direct physical analogs. The expectation μX corresponds to the
center of gravity, E[X2] is the moment of inertia around the origin, and σ 2

X is the central
moment of inertia. Another type of analogy is found in electrical circuits. If the RV X
represents a voltage or current, the mean μX gives the dc (direct current) component,
the second moment E[X2] gives the average power carried by X , and σX is the root-
mean-square value of the ac (alternating current) component.

We saw that the expression for the expectation μX is somewhat simplified when X is
a nonnegative RV. The expression for the second moment may also be simplified for a
nonnegative RV:

E[X2] = 2
∫ ∞

0
x Fc

X (x) dx . (4.16)

Therefore, the variance of a positive RV is given by

σ 2
X = E[X2] − μ2

X = 2
∫ ∞

0
x Fc

X (x) dx − μ2
X . (4.17)

The notions and properties of covariance and the correlation coefficient between
two continuous RVs are exactly the same as those for discrete RVs. We will review
these subjects in Section 4.3, where we give a formal discussion of joint PDF and
conditional PDF.

4.2 Important continuous random variables and their distributions

4.2.1 Uniform distribution

A continuous RV X is said to be uniformly distributed on [a, b] if

FX (x) =
⎧⎨⎩

0, if x < a,
x−a
b−a , if a ≤ x ≤ b,
1, if x > b.

(4.18)

The corresponding PDF is given by

fX (x) =
{ 1

b−a , if a ≤ x ≤ b,
0, elsewhere.

(4.19)
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The expectation, second moment, and variance can be readily found (Problem 4.9) as

μX = b + a

2
, (4.20)

E[X 2] = b2 + ba + a2

3
, (4.21)

σ 2
X =

(b − a)2

12
. (4.22)

The unit uniform RV U defined over the unit interval [0, 1] has distribution and PDF
given, respectively, by

FU (u) = u, 0 ≤ u ≤ 1,

fU (u) = 1, 0 ≤ u ≤ 1.
(4.23)

4.2.2 Exponential distribution

Consider a nonnegative RV X that has the distribution function

FX (x) = 1− e−λx , x ≥ 0, (4.24)

and the density function

fX (x) = λ e−λx , x ≥ 0. (4.25)

This distribution is called the exponential distribution function with rate λ and is
shown in Figure 4.3. It frequently appears in many applications, including queueing
models and reliability theory.

The exponential distribution is the continuous counterpart of the geometric distribu-
tion discussed in Section 3.3.2, which is associated with a Bernoulli trial sequence, a
Bernoulli sequence for short. A random process that is associated with the exponential
distribution is a Poisson process, which we will study in more detail in later chapters.

(a) (b)

1
a

x

1
afx(x) = e–x/a

1

x

Fx(x) = 1–e–x/a

Figure 4.3 (a) The PDF and (b) the distribution function of an exponential RV.
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Similar to the property (3.70) of the geometric distribution, the exponential RV X
also possesses the memoryless property:

P [X > t + s|X > s] = P [X > t + s]
P [X > s] = e−λ(t+s)

e−λs

= e−λt = P [X > t]. (4.26)

Suppose that X represents the lifetime that is exponentially distributed. Then λ [s−1] is
the death rate in the sense that the probability that the life will end in the next δt [s]
is λδt , and λ−1 is the life expectancy. The above memoryless property implies that
whatever the present age s is, the residual lifetime t is unaffected by the current age
and has the same distribution of the lifetime itself; i.e., the exponential distribution with
mean λ−1.

As another example, suppose that X represents the interval between successive
arrivals of buses in some city and assume that this RV is exponentially distributed with
rate λ [min−1], which is to say that buses arrive according to a Poisson process with
rate λ. You have already waited for s [min], and a bus has not arrived yet. Then the
conditional probability that you have to wait for at least t more minutes is the same as
the original distribution; i.e., the exponential distribution with mean λ−1 [min]. In other
words, the probability distribution of the additional waiting time does not depend on
how long you have already waited! This counterintuitive property is called the “waiting
time paradox of the Poisson process” (e.g., see Feller [99], pp. 10–15).

The expectation can be computed by applying (4.11) to the complementary distribu-
tion Fc

X (x) = e−λx :

μX =
∫ ∞

0
Fc

X (x) dx =
∫ ∞

0
e−λx dx = 1

λ
. (4.27)

Similarly, the second moment can be found by using (4.17):

σ 2
X = 2

∫ ∞

0
x e−λx − μ2

X =
2

λ2 −
1

λ2 =
1

λ2 . (4.28)

Thus, the standard deviation σX is the same as the mean μX .
The ratio of the standard deviation σX to the mean μX ,

cX = σX

μX
, (4.29)

is called the coefficient of variation of the RV X , and indicates in a rough way the
degree of departure from the exponential distribution. For an exponential distribution
we have cX = 1 from (4.27) and (4.28).
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4.2.3 Gamma distribution

By generalizing the exponential distribution of rate λ to a distribution with two positive
parameters (λ, β), we define the gamma distribution2 by its PDF

fY (y; λ, β) � λ(λy)β−1e−λy

�(β)
, y ≥ 0;β, λ > 0, (4.30)

where �(β) is the gamma function

�(β) =
∫ ∞

0
tβ−1e−t dt = (β − 1)�(β − 1), (4.31)

and the last recursive expression was obtained by applying integration by parts
(Problem 4.13). This recursion is analogous to that of factorials; i.e., n! = n(n − 1)!

The case where λ = 1 is called the standard gamma distribution:

fX (x;β) � xβ−1e−x

�(β)
, x ≥ 0;β > 0. (4.32)

The gamma function can be viewed as the normalization constant for the gamma PDF
(4.32) (and for (4.30), as well). The cumulative distribution function (CDF) of the
standard gamma distribution is given by

FX (x;β) =
∫ x

0
fX (t; γ ) dt = 1− �(β, x)

�(β)
= γ (β, x)

�(β)
, (4.33)

where �(β, x) and γ (β, x) are called the upper incomplete gamma function and the
lower incomplete gamma function, respectively, defined by

�(β, x) =
∫ ∞

x
tβ−1e−t dt, (4.34)

γ (β, x) =
∫ x

0
tβ−1e−t dt. (4.35)

It should be apparent that

γ (β, x)+ �(β, x) = �(β), for all x ≥ 0,

and �(β, 0) = �(β), �(β,∞) = 0, γ (β, 0) = 0, and γ (β,∞) = �(β).
The mean of the standard gamma variable X of (4.32) is

E[X ] = 1

�(β)

∫ ∞

0
λx e−x xβ−1 dx = �(β + 1)

�(β)
= β, (4.36)

where the last expression was obtained using the recursive relation (4.31). Similarly,
we find

E[X2] = β(β + 1). (4.37)

2 Some authors use the parameters (α, β) or (β, α) instead of (λ, β).
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Thus, the variance is

Var[X ] = E[X2] − (E[X ])2 = β. (4.38)

Then the mean, second moment, and variance of the RV Y defined by (4.30) are readily
obtainable from the simple relation X = λY :

E[Y ] = β

λ
, E[Y 2] = β(β + 1)

λ2 , and Var[Y ] = β

λ2 . (4.39)

Figure 4.4 shows a family of the gamma distributions of (4.30) for three different
cases, while the mean β/λ is kept to be unity. The parameter λ is just a scaling factor,
but the shape of the PDF critically depends on the value of β, as seen in the figure:

• β < 1. The PDF fY (y; γ, λ) with β < 1 is suitable when we want to fit a distribution
with a long tail, as illustrated by the dashed curve that corresponds to the case β =
0.2. However, it goes to infinity as y → 0.

• β = 1. The special case β = 1 reduces to the exponential distribution with mean
1/λ.

• β > 1. The PDF (4.32) is zero at the origin and has a single maximum (i.e., its mode
at X = β − 1) and then decreases towards zero as x →∞. In general, the mode of
a probability distribution is defined as the value at which its PMF or PDF takes its
maximum value. The mode of (4.30) is, therefore, at Y = (β − 1)/λ.
If β = k, a positive integer, the random variable Y with the PDF (4.30) is equiva-
lent to the sum of k i.i.d. exponential variables with mean 1/λ; hence, E[Y ] = k/λ.
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Figure 4.4 Gamma distributions for different parameters (λ, β), where the mean is kept constant (=1); i.e.,
β/λ =1.
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This distribution is known as the k-stage Erlang distribution (see Problem 4.11) and
is widely used in queueing and teletraffic theory. Thus, the gamma variable can be
viewed as the sum of β i.i.d. exponential random variables, where β is not necessar-
ily an integer. Then, by virtue of the central limit theorem (CLT) (see Section 8.2.5),
as β becomes large, the gamma distribution should approach the normal (or Gaussian)
distribution (see Section 4.2.4) with mean β/λ and variance β/λ2. Thus, if a positive
RV exhibits a bell-shape distribution, a gamma distribution with suitable β and λmay
provide a good fit.
If β = n/2 for an integer n in (4.32) (i.e., λ = 1), then it becomes the chi-squared
distribution with n degrees of freedom, which will be discussed in Section 7.1.

The gamma distribution has been applied to many fields, including waiting time in
queueing systems, the lifetime of devices as in reliability theory, the load on web servers,
etc. It has also been applied to fit the distribution of rainfall in climatology and the
distribution of insurance claims in finance services.

4.2.4 Normal (or Gaussian) distribution

A real RV X having the PDF

fX (x) = 1√
2πσ 2

exp

[
− (x − μ)

2

2σ 2

]
(4.40)

is called a normal or Gaussian random variable3 with mean μ and variance σ 2.
Often, the distribution is denoted by N (μ, σ 2).

Many RVs in physical situations are distributed in such a way as to have (at least
approximately) the normal distribution. The main rationale for the prevalent use of the
normal distribution in stochastic modeling is the CLT, which states that, under very
weak restrictions, the sum of independent samples from any distribution with finite
mean and variance tends, with proper scaling, to the normal distribution as the sample
size becomes large.

The most convenient form of the normal distribution for tabulation is the one that
corresponds to a random variable U defined by U = (X − μ)/σ . The PDF of U , usually
denoted φ(u),

φ(u) � 1√
2π

exp

(
−u2

2

)
, (4.41)

is called the standard (or unit) normal distribution, and this distribution is often
denoted N (0, 1), where the arguments 0 and 1 represent the mean and variance
respectively.

3 Although the normal distribution is often called the Gaussian distribution, it was used in probability theory
earlier by De Moivre and Laplace [99].
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In order to verify that the functions (4.40) and (4.41) are indeed the PDFs with spec-
ified mean and variance (see Problem 4.15), we need first to show that (4.41) is a bona
fide PDF; i.e., we must show that

I �
∫ ∞

−∞
e−u2/2 du (4.42)

is equal to
√

2π . Toward this end, we consider I 2:

I 2 =
∫ ∞

−∞
e−u2/2 du

∫ ∞

−∞
e−v2/2 dv

=
∫ ∞

−∞

∫ ∞

−∞
e−(u2+v2)/2 du dv. (4.43)

Changing the variables (u, v) to polar coordinates (r, θ):

u = r cos θ, v = r sin θ; hence, du dv = r dθ dr. (4.44)

Then

I 2 =
∫ ∞

0

∫ 2π

0
e−r2/2r dθ dr = 2π

∫ ∞

0
r e−r2/2 dr

= −2π e−r2/2
∣∣∣∞
0
= 2π. (4.45)

Thus, I = √2π , and we have proved that φ(u) is a PDF. To show that its mean and
variance are indeed zero and one is rather straightforward; thus, it is left to the reader as
an exercise (see Problem 4.15). The distribution function of U ,

�(u) =
∫ u

−∞
φ(t) dt = 1√

2π

∫ u

−∞
exp

(
− t2

2

)
dt, (4.46)

is widely tabulated, and is available in MATLAB, Mathematica, and other program-
ming libraries. The PDF of (4.40) can be written as φ

( x−μ
σ

)
and the corresponding

distribution function is FX (x) = �
( x−μ
σ

)
.

As we saw earlier in this chapter, Figure 4.1 shows the density and distribution func-
tions of the standard normal distribution. The following properties of the distribution
function �(x) are important:

1. For any ∞ < x <∞,

�(−x) = 1−�(x). (4.47)

2. For any x > 0,

e−x2/2

√
2π

(
1

x
− 1

x3

)
< 1−�(x) < e−x2/2

√
2π

1

x
. (4.48)
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3. For large x ,

1−�(x) ≈ e−x2/2

√
2πx

, x � 1. (4.49)

Property 1 is due to the fact that φ(x) is symmetric around x = 0. In order to prove the
second inequality in Property 2, we verify by differentiation the following identity [99]:

e−x2/2

√
2πx

= 1√
2π

∫ ∞

x
e−y2/2

(
1+ 1

y2

)
dy. (4.50)

The integrand on the right side is greater than the integrand of

1−�(x) = 1√
2π

∫ ∞

x
e−y2/2 dy, (4.51)

which proves the second inequality. The first inequality can be derived by using the
following identity:

e−x2/2

√
2π

(
1

x
− 1

x3

)
= 1√

2π

∫ ∞

x
e−y2/2

(
1− 3

y4

)
dy. (4.52)

The integrand is smaller than e−y2/2. Property 3 readily follows from Property 2. This
approximation is quite accurate for x � 4.

4.2.4.1 Moments of the unit normal distribution
Since the density function of the standard normal distribution is an even function of u,
the nth moment is zero for odd values of n:

E[U n] = 0 (n odd). (4.53)

When n ≥ 2 is even, we obtain

E[Un] = 1× 3× 5 · · · (n − 1) (n even), (4.54)

either by direct evaluation of the integral or through the characteristic function (see
Section 8.2). In particular,

E[U ] = 0 and σ 2
U = E[U 2] = 1. (4.55)

The normal RV X with the density function (4.40) can be written as

X = σU + μ. (4.56)

Therefore, its expectation and variance are given by

E[X ] = σ E[U ] + μ = μ and σ 2
X = E[(X − μ)2] = σ 2 E[U 2] = σ 2. (4.57)

One important property of the normal variable is its reproductive property. Suppose
Xi , i = 1, 2, . . ., n, are independent RVs having distributions N (μi , σ

2
i ), and let Y

be a random variable defined by



4.2 Important continuous random variables and their distributions 83

Y =
n∑

i=1

ai Xi , (4.58)

where the ai are real constants. Then the distribution of Y is also normal:

N

(
n∑

i=1

aiμi ,

n∑
i=1

a2
i σ

2
i

)
.

4.2.4.2 The normal approximation to the binomial distribution and the De Moivre–Laplace
limit theorem4

In The Doctrine of Chances, published by Abraham de Moivre in 1733, Bernoulli’s
theorem was sharpened by introducing the normal distribution approximation to the
binomial distribution for the special case p = 1

2 . Subsequently, in 1812, de Moivre’s
result was generalized to any p by Laplace. Their result, known as the De Moivre–
Laplace limit theorem, is a special case of the CLT. It states that the binomial
distribution of the number of “successes” Sn in n independent Bernoulli trials with
probability p of success on each trial converges to a normal distribution as n goes to
infinity.

We are interested in the probability of the event that the number of successes lies
between α and β (α < β); i.e.,

P [α ≤ Sn ≤ β] = B(α; n, p)+ B(α + 1; n, p)+ · · · + B(β; n, p), (4.59)

where B(k; n, p) is defined in (2.38).
It is convenient to introduce the new variable δk = k − np. Then

k = np + δk, n − k = nq − δk . (4.60)

By applying Stirling’s approximation formula5 to the factorials, we obtain

B(k; n, p) ∼
[

n

2πk(n − k)

]1/2 (np

k

)k
(

nq

n − k

)n−k

=
[

n

2π(np + δk)(nq − δk)

]1/2 1

(1+ δk/np)np+δk (1− δk/nq)nq−δk
,

(4.61)

where the symbol ∼ means here that the ratio of both sides tends to unity. If we assume
δ3

k/n2 = (k − np)3/n2 → 0, then it can be shown (e.g., see Feller [99], p. 169) that
(4.61) takes on the simpler form

B(k; n, p) ∼
[

n

2π(np + δk)(nq − δk)

]1/2

e−δ2
k /2npq . (4.62)

4 Readers may skip the remainder of this subsection at their first reading.
5 Stirling’s approximation for a factorial n! is given by

n! ∼ √2π nn+(1/2)e−n .

See Section 4.2.3 for a similar approximation to the gamma function �(x).
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However, np + δk ∼ np and nq − δk ∼ nq, which further simplify (4.62), yielding

B(k; n, p) ∼ 1√
2πnpq

e−δ2
k /2npq = 1√

npq
�

(
k − np√

npq

)
. (4.63)

This is the desired asymptotic formula.
Now let

σ � √
npq (4.64)

and define xk , which is a function of the variable k:

xk = k − np

σ
= δk√

npq
. (4.65)

Then we can rewrite (4.63) in the form

B(k; n, p) ∼ σ−1φ(xk), (4.66)

provided that (i) δkn−1 → 0 and (ii) δ3
k n−2 → 0, as n →∞ and k →∞. Condi-

tion (ii) implies condition (i), and is equivalent, in view of (4.65), to assuming that
x3

k n−1/2 → 0.
Thus, if

x3
α

σ
→ 0, and

x3
β

σ
→ 0, (4.67)

then (4.66) holds for all terms in (4.59), and thus

P [α ≤ Sn ≤ β] ∼ σ−1[φ(xα)+ φ(xα+1)+ · · · + φ(xβ)]. (4.68)

By interpreting the right side as a Riemann sum approximating an integral, we can
derive the following theorem.6

THEOREM 4.1 (De Moivre–Laplace limit theorem). If α and β are such that
σ−1x3

α → 0 and σ−1x3
β → 0, then

P[α ≤ Sn ≤ β] ∼ �(xβ+ 1
2
)−�(x

α− 1
2
), (4.69)

where σ = √npq and xt = t−np
σ

. �

If we normalize Sn and define

S∗n =
Sn − np√

npq
, (4.70)

then the inequality α ≤ Sn ≤ β is the same as xα ≤ S∗n ≤ xβ , and (4.69) implies

P [xα ≤ S∗n ≤ xβ ] ∼ �
(

xβ + 1

2σ

)
−�

(
xα − 1

2σ

)
. (4.71)

6 See Feller [99], pp. 171–172 for details. An alternative proof is to use the characteristic function (CF) used
in proving Theorem 8.2 of page 201.
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Since 1
σ
= 1√

npq → 0 as n →∞, the right side tends to �(xβ)−�(xα). Thus, we
have the following corollary.

COROLLARY 4.1 (Corollary to the limit theorem). For any a < b,

P

[
a ≤ Sn − np√

npq
≤ b

]
→ �(b)−�(a) (4.72)

as n →∞. �

Example 4.1: This example is taken from Feller [99], p. 174.

(a) Let

p = 1

2
, n = 200, α = 95, β = 105.

The probability P [95 ≤ S200 ≤ 105] may be interpreted as the probability that, in
200 tosses of a coin, the number of heads deviates from the expectation E[S200] =
100 by at most 5. We have

σ−1 = 1√
npq

= 0.141 421 . . . and − x
α− 1

2
= x

β+ 1
2
= 0.777 82 . . .

From a table7 of the normal distribution, we find �(x
β+ 1

2
)−�(x

α− 1
2
) =

0.563 31 . . . . The true value (obtainable from a table of the binomial distribution) is
0.563 25. . . . The error is surprisingly small.

(b) Let

p = 1

10
, n = 500, α = 50, β = 55.

The correct value is P[50 ≤ S500 ≤ 55] = 0.317 573 . . . We have σ−1 =
(45)−1/2 = 0.149 071 2 . . ., and we get the approximation �(5.5σ−1)−
�(−0.5σ−1) = 0.3235 . . . Hence, the error is about 2%.

�

The two-dimensional and multidimensional Gaussian distributions are often referred
to as the bivariate and multivariate normal distributions respectively. We shall fur-
ther discuss the normal distribution in Section 4.3.1. A number of other important
distributions are derived from, or reduced to, the normal distribution, as we discuss
throughout this book, especially in Chapter 7.

7 Or the normal CDF function in MATLAB.
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4.2.5 Weibull distributions

The Weibull8 distributions are often used in reliability engineering. There are three
different, but related, distributions under the name Weibull distribution.

The three-parameter Weibull distribution is defined by

FX (x) =
{

0, x ≤ γ,
1− e−[(x−γ )/β]α , x > γ,

(4.73)

where α > 0 determines the shape or the slope of the distribution; β > 0 is the scale
parameter; and γ is the shifting or translation parameter.

The corresponding PDF fX (x) is given by

fX (x) =
{

0, x ≤ γ,
α
β

(
x−γ
β

)α−1
e−[(x−γ )/β]α , x > γ.

(4.74)

The two-parameter Weibull distribution is defined by setting the shifting parameter
γ = 0 in the above distribution:

FX (x) = 1− e−(x/β)α , x > 0, (4.75)

and its PDF is given by

fX (x) = α

βα
xα−1e−(x/β)α , x ≥ 0. (4.76)

If α = 1, then the above PDF reduces to

fX (x) = 1

β
e−x/β, x ≥ 0, (4.77)

which is the exponential distribution discussed in Section 4.2.2.

The standard Weibull distribution is a one-parameter distribution, obtained by
setting the scaling parameter β = 1:

FX (x) = 1− e−xα , x > 0, (4.78)

and its PDF is given by

fX (x) = αxα−1e−xα , x ≥ 0. (4.79)

When α = 1, the standard Weibull distribution reduces to the exponential distribution
with mean one. For α = 2, the distribution function and the PDF become

FX (x) = 1− e−x2
and fX (x) = 2x e−x2

. (4.80)

8 Ernst Hjalmar Waloddi Weibull (1887–1979) was a Swedish engineer, scientist, and mathematician.
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Figure 4.5 (a) The PDF of the standard Weibull distributions for α = 0.5, 1, and 2. (b) The hazard function (see
Problem 6.10 part (d)) of the standard Weibull distributions.

This distribution is equivalent to the Rayleigh distribution with σ = 1/
√

2, which will
be discussed in Section 7.5.

Figure 4.5 (a) plots the PDF for α = 0.1, 0.5, 1, 2, and 5 for the standard Weibull
distribution. When α � 1, the tail of the distribution decays very slowly. Therefore, a
Weibull distribution with α � 1 is a heavy-tailed distribution. The expectation, second
moment, and variance of the standard Weibull distribution are given respectively by
(Problem 4.17)

E[X ] = �
(

1

α
+ 1

)
, (4.81)

E[X2] = �
(

2

α
+ 1

)
, (4.82)

σ 2
X =

[
�

(
2

α
+ 1

)
− �2

(
1

α
+ 1

)]
, (4.83)

where �(·) is the gamma function defined in (4.31). Similarly, it is not difficult to
calculate other statistics of interest, such as the median and the mode (Problem 4.18).
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Once we have found the expectation and variance for the standard Weibull distribu-
tion, the corresponding statistics for the two-parameter and three-parameter distribu-
tions are easy to obtain, since it is a matter of scaling and shifting (Problem 4.19).

4.2.6 Pareto distribution

In Section 3.3.5 we discussed Zipf’s law or the zeta distribution, which decays accord-
ing to a power law n−α , where α > 1. The Pareto9 distribution is also a power law
distribution found in the distribution of incomes (before modern industrial capitalism
created the vast middle class) and in a large number of real-world situations. In fact,
Zipf’s distribution can be viewed as the discrete version of the Pareto distribution.

The Pareto distribution is a two-parameter distribution with α > 0 and β > 0, and
defined by

FX (x) =
{

0, 0 ≤ x < β,

1− (x/β)−α, β ≤ x <∞. (4.84)

The PDF is readily computed as

fX (x) =
{

0, 0 ≤ x < β,

α
β

(
x
β

)−(α+1)
, β ≤ x <∞. (4.85)

Noting that the survivor function is given by

Fc
X (x) =

{
1, 0 ≤ x < β,(

x
β

)−α
, β ≤ x <∞, (4.86)

we can readily calculate the expectation as

E[X ] =
∫ ∞

0
Fc

X (x) dx = β + βα
∫ ∞

β

x−α dx = αβ

α − 1
, for α > 1, (4.87)

whereas E[X ] does not exist for α ≤ 1. Similarly, we find the second moment as

E[X2] = 2
∫ ∞

0
x Fc

X (x) dx = 2
∫ β

0
x dx + 2βα

∫ ∞

β

x−α+1 dx = αβ2

α − 2
, for α > 2.

(4.88)
Thus, E[X2] does not exist for α ≤ 2. The variance is then given by

Var[X ] = σ 2
X =

αβ2

α − 2
− α2β2

(α − 1)2
= αβ2

(α − 1)2(α − 2)
, for α > 2. (4.89)

9 Vilfredo Federico Damaso Pareto (1848–1923) was a French–Italian sociologist and economist.
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Figure 4.6 (a) The PDFs of the Pareto distributions with β = 1, α = 1.5 and 3, together with the PDF of the
exponential distribution λ = 1. (b) The log-survivor function log Fc

X (x) versus log x of the Pareto
distributions and the exponential distribution.

For 1 < α ≤ 2, the variance is infinite, although the mean is finite. Proceeding in a
similar manner, we find the nth moment:

E[Xn] =
{

αβn

α−n , if α > n,
∞, if α ≤ n.

(4.90)

Figure 4.6 (a) shows some plots of the PDF of the Pareto distributions. The tail of
the distribution decays much more slowly than that of an exponential distribution. Their
difference is more pronounced if we plot the log-survivor function, i.e., log Fc

X (x)
versus log x , as given in Figure 4.6 (b). For the Pareto distribution it is a straight line
with slope −α, whereas the exponential distribution grows exponentially in the nega-
tive direction. This is because the log-survivor of the exponential distribution with rate
parameter λ is ln e−λx = −λx = −λ eln x . Thus, the Pareto distribution, which follows
a power law is said to have a long or heavy-tailed distribution.

If we translate the variable X to Y by Y = X − β, then we have

FY (y) = 1−
(

β

y + β
)α
, y ≥ 0, (4.91)

which is called the translated Pareto distribution.
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4.3 Joint and conditional probability density functions

The various definitions and results given above can be extended to the case of two
RVs X and Y . If the joint probability distribution FXY (x, y) is everywhere continuous
and possesses a second partial derivative everywhere (except possibly on a finite set of
curves), we define the joint PDF by

fXY (x, y) = ∂2 FXY (x, y)

∂x∂y
. (4.92)

Then

FXY (x, y) =
∫ x

−∞

∫ y

−∞
fXY (u, v) du dv. (4.93)

Thus, fXY (x, y) dx dy may be interpreted as the probability that the point (X, Y ) falls in
an incremental area dx dy about the point (x, y) in a two-dimensional Euclidean space.
Since the joint probability distribution is a nondecreasing function of its arguments, it
follows that

fXY (x, y) ≥ 0. (4.94)

By letting x and y both approach infinity in (4.93), we obtain∫ ∞

−∞

∫ ∞

−∞
fXY (x, y) dx dy = 1. (4.95)

If we instead let only one of the upper limits approach infinity, we obtain, on application
of Property 5 in (3.5), the marginal distribution of X :∫ x

−∞

∫ ∞

−∞
fXY (u, v) du dv = FX (x) (4.96)

Similarly, the marginal distribution of Y is obtained as∫ ∞

−∞

∫ y

−∞
fXY (u, v) du dv = FY (y). (4.97)

By differentiating both sides of (4.96) and (4.97), we obtain the following relation
between the joint PDF and the marginal PDFs of X and Y :∫ ∞

−∞
fXY (x, v) dv = fX (x) (4.98)

and ∫ ∞

−∞
fXY (u, y) du = fY (y). (4.99)

Let us consider now the probability that the RV Y is less than or equal to y, subject
to the hypothesis that the RV X has a value falling in (x, x +
]. It follows from the
definition of conditional probability that
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P [Y ≤ y|x < X ≤ x +
] = P [x < X ≤ x +
, Y ≤ y]
P [x < X ≤ x +
]

=
∫ x+


x

∫ y
−∞ fXY (u, v) du dv∫ x+

x fX (u) du

. (4.100)

The denominator can be replaced by fX (x)
 and the numerator by


∫ y
−∞ fXY (x, v) dv, as 
→ 0. Thus, we get

FY |X (y|x) =
∫ y
−∞ fXY (x, v) dv

fX (x)
, (4.101)

which is the conditional distribution function of the RV Y subject to the hypothesis
X = x . Assuming that the usual continuity requirements are met for FY |X (y|x), we
define the conditional PDF fY |X (y|x) by

fY |X (y|x) � ∂FY |X (y|x)
∂y

= fXY (x, y)

fX (x)
. (4.102)

Then

FY |X (y|x) =
∫ y

−∞
fY |X (v|x) dv. (4.103)

The concept of conditional expectation for continuous RVs is analogous to that for
discrete RVs (see Section 3.2). Let X and Y be continuous RVs. The conditional
expectation of X given Y is defined by

E[X |Y ] � ψ(Y ), (4.104)

where

ψ(y) = E[X |Y = y] =
∫ ∞

−∞
x fX |Y (x |y)dx . (4.105)

The basic properties of conditional expectation in the case of discrete RVs also hold
for continuous RVs (see Problem 4.8). In particular, the law of iterated expectations
holds:

E[E[X |Y ]] = E[X ]. (4.106)

The definition of conditional variance for continuous RVs X and Y is formally the
same as (3.42) for discrete RVs, namely

Var[X |Y ] � E[(X − E[X |Y ])2|Y ]. (4.107)

As we shall discuss in Section 22.1.3, the conditional expectation E[X |Y ] has an impor-
tant interpretation as the best estimate of X as a function of Y in the minimum mean
square error (MMSE) sense.
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4.3.1 Bivariate normal (or Gaussian) distribution

By extending the standard normal distribution (4.41) of Section 4.2.4, we define the
standard bivariate normal (or Gaussian) distribution as follows. Two normal RVs
U1 and U2 that have the joint PDF given by

φρ(u1, u2) � 1

2π
√
(1− ρ2)

exp

[
− 1

2(1− ρ2)
(u2

1 − 2ρu1u2 + u2
2)

]
(4.108)

are called standard bivariate normal variables, where ρ is the correlation coefficient
between U1 and U2, i.e.,

ρ � Cov[U1,U2] =
∫ ∞

−∞

∫ ∞

−∞
u1u2φρ(u1, u2) du1 du2, (4.109)

and −1 ≤ ρ ≤ 1. However, when ρ = 1, or ρ = −1, the joint PDF cannot be used:
when ρ = 1, the two RVs are completely correlated; i.e., U2 = U1. Similarly, ρ = −1
implies that U2 = −U1. Thus, the two RVs degenerate to a single variable; hence, the
joint PDF (4.108) does not exist for ρ = ±1. Figure 4.7 shows φρ(u1, u2) when ρ =
−0.75. The contour lines (or level curves) of this surface are all ellipses (Problem 4.21).

When ρ = 0, the RVs U1 and U2 are said to be uncorrelated and (4.108) reduces to

φ0(u1, u2) = 1√
2π

exp

(
−u2

1

2

)
1√
2π

exp

(
−u2

2

2

)
= φ(u1)φ(u2), (4.110)

where φ(u1) and φ(u2) are the marginal PDFs of the variables U1 and U2 respectively
and are both the standard normal distribution of (4.41). Equation (4.110) also implies
that U1 and U2 are independent, since the joint PDF is the product of the marginal
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Figure 4.7 The standard bivariate normal distribution φρ(u1, u2) of (4.108) with ρ = −0.75.
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PDFs. Therefore, bivariate normal variables are independent when they are uncorre-
lated. Note that two RVs that are uncorrelated are not necessarily independent, unless
they are normal RVs.

The conditional PDF of U2 given U1 = u1 can be easily computed as

fU2|U1(u2|u1) = φρ(u1, u2)

φ(u1)
= 1√

2π(1− ρ2)
exp

[
− (u2 − ρu1)

2

2(1− ρ2)

]
, (4.111)

which is also a normal distribution, but its mean is ρu1, not zero, and the variance is
reduced from unity to 1− ρ2.

Let us define RVs X1 and X2 that are related to the above U1 and U2 according to the
following linear transformations:

U1 = X1 − μ1

σ1
and U2 = X2 − μ2

σ2
. (4.112)

Then, we find that the joint PDF of (X1, X2), sometimes denoted as
N (μ1, μ2, σ

2
1 , σ

2
2 , ρ), is given by

fX1,X2(x1, x2) = 1

2πσ1σ2

√
1− ρ2

exp

[
−Q(x1, x2)

2

]
, (4.113)

where the function Q(x1, x2) is

Q(x1, x2) = 1

1−ρ2

[(
x1−μ1

σ1

)2

− 2ρ

(
x1−μ1

σ1

)(
x2−μ2

σ2

)
+
(

x2−μ2

σ2

)2
]
.

(4.114)

If we adopt a matrix and vector representation, the PDF of the vector variable

X �
[

X1

X2

]
(4.115)

is given as

fX (x) = 1

2π |det C|1/2 exp

[
−1

2
(x − μ)�C−1(x − μ)

]
, (4.116)

where� denotes matrix transpose, x = (x1, x2)
� and μ = (μ1, μ2)

� are 2× 1 column
vectors, C is a 2× 2 matrix called the covariance matrix, given by

C =
[

σ 2
1 ρσ1σ2

ρσ1σ2 σ 2
2

]
, (4.117)

and |det C| is the determinant of C:

|det C| = σ 2
1 σ

2
2 (1− ρ2). (4.118)
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By noting that the inverse of C is given as

C−1 = 1

|det C|
[

σ 2
2 −ρσ1σ2

−ρσ1σ2 σ 2
1

]
= 1

1− ρ2

⎡⎣ 1
σ 2

1
− ρ
σ1σ2

− ρ
σ1σ2

1
σ 2

2

⎤⎦ , (4.119)

we can readily see that the PDF (4.116) is equivalent to the joint PDF (4.113).

4.3.2 Multivariate normal (or Gaussian) distribution

The PDF (4.116) applies more generally to the case of a multivariate normal (or
Gaussian) variable X = (X1, · · · , X M)

�, for which the corresponding mean vector
μ = E[X] is also M-dimensional, and the covariance matrix C is an M × M matrix,
defined by

C = E[(X − μ)(X − μ)�]. (4.120)

In this case, we write X ∼ N (μ,C).
A multivariate normal variable X has the property that the conditional distribution

of a subset of the component random variables given the remaining random variables
is also a multivariate normal distribution. For example, suppose that X is partitioned as
follows:

X =
[

Xa

Xb

]
, (4.121)

where Xa = (X1, . . . , Xm)
�, Xb = (Xm+1, . . . , X M)

�, and 1 ≤ m < M . Assume that
the mean vector μ and covariance matrix C of X are partitioned correspondingly as
follows:

μ =
[

μa

μb

]
, C =

[
Caa Cab

Cba Cbb

]
, (4.122)

where μa = (μ1, . . . , μm)
�, μb = (μm+1, . . . , μM )

�, and Cxy = E[(X x −
μx )(X y − μy)

�] for all x, y ∈ {a, b}. Let xa = (x1, . . . , xm)
� and xb =

(xm+1, . . . , xM )
� denote realizations of Xa and Xb respectively. Then the conditional

density of Xa given Xb = xb is also given by a multivariate normal distribution:

fXa |Xb(xa|xb) = 1

2π |det C̃|1/2 exp

[
−1

2
(xa − μ̃)�C̃

−1
(xa − μ̃)

]
, (4.123)

where

μ̃ = μa + CabC−1
bb (xb − μb), (4.124)

C̃ = Caa − CabC−1
bb Cba. (4.125)

In other words, Xa|Xb = xb ∼ N (μ̃, C̃) (see Problem 4.22).
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4.4 Exponential family of distributions

A family of PDFs (or PMFs in the case of discrete RVs) parameterized by a vector η,
representable in the form

fX (x; θ) = h(x) exp
[
η�(θ)T (x)− A(θ)

]
, (4.126)

with x ∈ R
n and θ ∈ R

M , is called an exponential family. Here, the functions A(θ) and
h(x) are scalar valued, whereas η(θ) and T (x) may both be vector-valued functions of
dimension M . The function T (x) is called the sufficient statistic, which will be further
discussed in Section 18.1. If the dimension of θ is smaller than that of η, the family is
called a curved exponential family.

If, by means of a mapping η(θ) = η, an exponential family of the form (4.126) can
be transformed into the form

fX (x; η) = h(x) exp[η�T (x)− A(η)], (4.127)

then η is called the canonical or natural parameter, and an exponential family of the
form (4.127) is called a canonical exponential family or natural exponential family.
The canonical form of an exponential family is often more convenient than the form
(4.126).

The exponential family of distributions contains a large class of distributions, includ-
ing many of the standard ones we have already seen, including the exponential, gamma,
normal, Poisson, binomial, etc. Example 4.2 shows that Poisson distributions belong to
the exponential family, while Example 4.3 shows that normal distributions also belong
to the exponential family. On the other hand, the family of uniform distributions does
not belong to the exponential family (Problem 4.27). The three-parameter Weibull dis-
tributions with PDF given by (4.74) belongs to the exponential family if and only if the
shape parameter α is assumed known (Problem 4.28). Similarly, the Pareto distributions
with PDF given by (4.85) belong to the exponential family if and only if the parameter
β is fixed (Problem 4.29).

Example 4.2: M independent Poisson variables. Let X = (X1, X2, . . . , X M )
�

represent M independent Poisson variables X1, . . . , X M , with corresponding means
θ1, θ2, . . . , θM . The PMF takes the product form:

pX (x; θ) =
M∏

i=1

P(xi ; θi ) =
M∏

i=1

θi
xi

xi ! e−θi , xi = 0, 1, 2, . . . , i = 1, 2, . . . ,M,

which can be written as

pX (x; θ) =
(

M∏
i=1

1

xi !

)
exp

(
M∑

i=1

xi log θi −
M∑

i=1

θi

)
. (4.128)
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Defining η = (η1, η2, . . . , ηM)
� by

ηi = log θi or θi = eηi , (4.129)

we can write the PDF of X as

pX (x; η) =
(

M∏
i=1

1

xi !

)
exp

(
M∑

i=1

xiηi −
M∑

i=1

eηi

)
. (4.130)

Thus, we see that this distribution belongs to the canonical exponential family with

h(x) =
M∏

i=1

1

xi ! , T (x) = x, and A(η) =
M∑

i=1

eηi . (4.131)

�

Example 4.3: Normal distribution. Consider a normal RV X ∼ N (μ, σ 2). With
θ = (μ, σ ) we write the PDF of each sample xi (i = 1, 2, . . .) as

f (xi ; θ) = 1√
2πσ

exp

[
− (xi − μ)2

2σ 2

]
= 1√

2π
exp

(
− x2

i

2σ 2
+ xiμ

σ 2
− μ2

2σ 2
− log σ

)
, i = 1, 2, . . . , n.

As in the previous example, we can present the normal distribution in the canonical
exponential family form by identifying

η =
[
η1

η2

]
=
[

1
σ 2
μ

σ 2

]
, T (x) =

[
− x2

2
x

]
,

h(X) = 1√
2π
, A(η) = μ2

2σ 2
+ log σ.

We can write the original parameter as θ = (μ, σ 2), where μ = η2/η1 and σ 2 = 1/η1.
Hence,

A(η) = η2
2

2η1
− log η1

2
.

We will return to this example in Chapter 18 (see Example 18.4), where we discuss
maximum-likelihood estimation. �
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4.5 Bayesian inference and conjugate priors

In Bayesian statistics, probability distributions are used to describe unknown quanti-
ties of interest. Suppose, for example, that an observed sample X is assumed to be
drawn from a certain family of distributions specified in terms of some parameter.
In the frequentist approach to inference, this parameter is assumed to take on a fixed
value θ . By contrast, the Bayesian paradigm treats this parameter as a random variable
�, which is assigned a prior PDF π(θ) = f�(θ), if � is a continuous RV, or a prior
PMF π(θ) = p�(θ), if � is a discrete RV, before observing the data x . We adopt the
notation π(θ) for the prior PDF or prior PMF for notational brevity and its popular use
in the Bayesian statistics literature.

Recall Bayes’ theorem (2.63) discussed in Section 2.4.2:

P [A | B] = P [B | A] P [A]
P [B] . (4.132)

By setting A = {� = θ} and B = {X = x}, we have for discrete RVs X and �

π(θ |x) = p(x |θ)π(θ)
p(x)

, (4.133)

where p(x) =∑θ p(x |θ)π(θ).10 If � is a continuous RV and X is a discrete RV,
(4.133) still holds formally, but in this case, p(x) = ∫

θ
p(x |θ)π(θ)dθ . If � and X are

both continuous RVs, the analog of (4.133) is

π(θ |x) = f (x |θ)π(θ)
f (x)

, (4.134)

where f (x) = ∫
θ

f (x |θ)π(θ) dθ . If � is discrete and X is continuous, (4.133) holds
formally, but in this case f (x) =∑θ f (x |θ)π(θ). Equations (4.133) and (4.134) are
the basis of Bayesian statistics.

When the conditional PDF f (x |θ) is viewed as a function of θ with x given, it is
called the likelihood function and is denoted as

L x (θ) = f (x |θ) or Lx (θ) = p(x |θ), (4.135)

according to whether X is continuous or discrete, respectively. The likelihood function
Lx (θ) is defined similarly in the frequentist paradigm, namely

Lx (θ) = f (x; θ) or Lx (θ) = p(x; θ), (4.136)

but here θ is viewed as an unknown but fixed parameter.
Of central interest in Bayesian inference is the calculation of the posterior distribu-

tion π(θ |x), given by (4.133) or (4.134). Note that the frequentist approach does not
postulate the existence of a posterior distribution, since θ is assumed to be a constant.

10 We write p(x) and p(x |θ) instead of pX (x) and pX |�(x |θ) to simplify the notation.
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When the likelihood Lx (θ) is given, the form of the posterior distribution depends on
the prior distribution π(θ). Since the denominator of (4.133) or (4.134) is independent
of θ , we can write the posterior distribution as

π(θ |x) ∝ Lx (θ)π(θ). (4.137)

Thus, the posterior PDF or PMF π(θ |x) has the same shape as the likelihood function
times the prior π(θ), and this information may be sufficient, if, for instance, we are
interested in finding θ that maximizes π(θ |x). In general, computation of the posterior
distribution requires numerical integration or summation of the product Lx (θ)π(θ) over
the range of values of the parameter θ .

For certain choices of the prior distribution, the posterior distribution has the same
mathematical form as the prior distribution. In this case, the prior distribution is known
as a conjugate prior distribution or simply a conjugate prior of the given likelihood
function. The use of conjugate priors can lead to convenient closed-form expressions
for the posterior distribution.

Example 4.4: The Bernoulli distribution and its conjugate prior, the beta distri-
bution. Consider the Bernoulli trials discussed in Section 2.3. Here we write the
probability of success as θ instead of p defined there. Defining the binary variable Xi

as taking on Xi = 1 when the i th trial succeeds and Xi = 0 when it fails, we have

P[Xi = 1|θ ] = p(1|θ) = θ and P[Xi = 0|θ ] = p(0|θ) = 1− θ.
Since the result of the i th trial, xi , is either 1 or 0, we can write

p(xi |θ) = θ xi (1− θ)1−xi . (4.138)

For n independent trials, we observe the data x � (x1, x2, . . . , xn)
� and the likelihood

function of θ given x is

Lx(θ) = p(x|θ) =
n∏

i=1

p(xi |θ) =
n∏

i=1

θ xi (1− θ)1−xi

= θ
∑n

i=1 xi (1− θ)n−
∑n

i=1 xi . (4.139)

To complete the specification of this experiment from the Bayesian point of view, we
need a prior PDF π(θ). The prior distribution π(θ) should allow θ to take any value in
the interval [0, 1], and not outside. A possible choice is the beta distribution

π(θ) = Beta(θ;α, β) � θα−1(1− θ)β−1

B(α, β)
, 0 ≤ θ ≤ 1, α > 0, β > 0, (4.140)

where

B(α, β) =
∫ ∞

0
θα−1(1− θ)β−1 dθ (4.141)
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is the beta function, which is related to the gamma function by

B(α, β) = �(α)�(β)

�(α + β) , (4.142)

where α and β are called prior hyperparameters to distinguish them from the model
parameter θ . Its mean and variance are given by

E[�] = α

α + β and Var[�] = αβ

(α + β)2(α + β + 1)
. (4.143)

A nice thing about the beta distribution is that it can produce an enormous variety of
distribution shapes depending on the choice of α and β. In Figure 4.8 (a) we plot the
beta PDF with four different values 0.5, 1, 5, 10, for α = β, and in Figure 4.8 (b) for
four different pairs for α �= β; i.e., (α, β) = (1, 2), (1, 4), (1, 10), (10, 5), and (5, 2).
From these curves and (4.143) we see that, when α = β, the beta PDF is symmetric
around 0.5, giving more weight to the region around 0.5, as the common value α = β
increases; for α > β, the PDF is skewed towards one; and the variance decreases as α
and/or β increase.

With the conjugate prior π(θ) of (4.140) associated with the likelihood function
(4.138) of the Bernoulli trials, we evaluate the posterior probability after the trial data
x = (x1, x2, . . . , xn) is obtained, as

π(θ |x) ∝ p(x|θ)π(θ) ∝ θ
∑n

i=1 xi (1− θ)n−
∑n

i=1 xi θα−1(1− θ)β−1

∝ θ(α+
∑n

i=1 xi )−1(1− θ)(β+n−∑n
i=1 xi)−1, (4.144)

where the normalization constant B(α, β) of the beta distribution given by (4.141) is
subsumed into the proportionality constant, because it does not depend on θ . Thus,
we have found that the posterior distribution is also a beta distribution Beta(θ;α1, β1),
where

α1 = α +
n∑

i=1

xi and β1 = β + n −
n∑

i=1

xi , (4.145)

which may be termed the posterior hyperparameters. The mean of the posterior
distribution can be readily found from (4.143) and (4.145) as (Problem 4.30)

E[�|x] =
(

α + β
α + β + n

)
α

α + β +
(

n

α + β + n

)
xn,

=
(

α + β
α + β + n

)
E[�] +

(
n

α + β + n

)
θ̂MLE(x), (4.146)

where E[�] is the prior estimate of the probability of success as defined in (4.143) and

θ̂MLE(x) = xn � x1 + x2 + · · · + xn

n
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Figure 4.8 The PDF of beta distribution Beta(θ;α, β) of (4.140) for (a) α = β = 0.5, 1.0, 5, and 10; (b)
(α, β) = (1, 2), (1, 4), (1, 10), (10, 5), and (5, 2).

is the maximum-likelihood estimate (MLE)11 of θ , which is defined as the value of
θ that maximizes the likelihood function L x(θ) of (4.139), and is simply the sample
mean in this case. Expression (4.146) shows how the prior distribution and the data
x contribute to determine the mean of the posterior distribution. As the sample size n
increases, the weight on the prior mean diminishes, whereas the weight on the MLE
approaches one; i.e., E[�|x] → θ̂MLE(x) as n →∞. This behavior illustrates how
Bayesian inference generally works. �

11 See Section 18.1.2 for a detailed discussion on the MLE.
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Conjugate priors can be determined for most of the well-known families of distribu-
tions. For a likelihood function belonging to the regular exponential family, i.e.,

Lx(θ) = h(x) exp[η�(θ)T (x)− A(θ)], (4.147)

a family of conjugate prior distributions can be constructed as follows:

f (θ;α, β) ∝ exp[η�(θ)α − βA(θ)], (4.148)

where α and β are prior hyperparameters. In this case, the posterior distribution has the
form

f (θ |x;α, β) ∝ exp{η�(θ)[α + T (x)] − (1+ β)A(θ)}, (4.149)

which clearly also belongs to the regular exponential family. Here, α1 = α + T (x) and
β1 = 1+ β are the posterior hyperparameters corresponding to the prior hyperparam-
eters α and β respectively.

Example 4.5: Conjugate prior for the exponential distribution. The likelihood
function for the exponential distribution has the form (cf. (4.25))

Lx (λ) = λ exp(−λx), x ≥ 0, (4.150)

where λ is the model parameter. We choose a conjugate prior having the form of a
gamma distribution (cf. (4.30)):

f (λ;α, β) = α(αλ)β−1e−αλ

�(β)
, λ ≥ 0, (4.151)

where α and β are the prior hyperparameters. Using (4.137), the posterior distribution
is computed as

f (λ|x;α, β) = α(αλ)βe−(α+x)λ

�(β + 1)
, λ ≥ 0, (4.152)

which is a gamma distribution such that the posterior hyperparameters are α1 = α + x
and β1 = β + 1. If M independent samples x1, . . . , xM , are drawn from an exponential
distribution, the likelihood function for the vector x = (x1, . . . , xM)

� has the form

L x(λ) = λM exp

(
−λ

M∑
i=1

xi

)
, x ≥ 0. (4.153)

Using the conjugate prior given by (4.151), we find that the posterior distribution
is a gamma distribution with posterior hyperparameters α1 = α + M and β1 = β +∑M

i=1 xi . �

Example 4.6: Conjugate prior for a normal distribution with fixed variance σ 2.
The likelihood function for a normal family of distributions with fixed variance σ 2 has
the form (cf. (4.25))
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Lx (μ) = 1√
2πσ 2

exp

[
− (x − μ)

2

2σ 2

]
, (4.154)

where μ is the model parameter. Choosing a normal distribution as the conjugate prior,
we have

f (μ;μ0, σ
2
0 ) =

1√
2πσ 2

0

exp

[
− (μ− μ0)

2

2σ 2
0

]
, (4.155)

with prior hyperparameters μ0 and σ 2
0 . Applying (4.137), we find that the posterior

distribution has the form

f (λ|x;μ0, σ
2
0 ) ∝ exp

{
−1

2

[
(μ− x)2

σ 2
+ (μ− μ0)

2

σ 2
0

]}
. (4.156)

After some algebraic manipulations, we obtain

f (λ|x;μ0, σ
2
0 ) ∝ exp

⎡⎢⎣−1

2

(
1

σ 2 +
1

σ 2
0

)⎛⎝μ− x
σ 2 + μ0

σ 2
0

1
σ 2 + 1

σ 2

⎞⎠2
⎤⎥⎦ . (4.157)

Hence, the posterior hyperparameters are

μ1 =
x
σ 2 + μ0

σ 2
0

1
σ 2 + 1

σ 2
0

and σ 2
1 =

(
1

σ 2
+ 1

σ 2
0

)−1

.

Generalizing to the case of n independent samples, i.e., x = (x1, x2, . . . , xn)
�, we can

show that the posterior hyperparameters are given by

μ1 =
∑n

i=1 xi

σ 2 + μ0

σ 2
0

n
σ 2 + 1

σ 2
0

and σ 2
1 =

(
n

σ 2
+ 1

σ 2
0

)−1

. (4.158)

The second posterior hyperparameter σ 2
1 in the last expression is the harmonic mean

of the prior σ 2
0 and the variance of data. For notational conciseness, the inverse of the

variance, h � σ−2, called the precision, is often used in the Bayesian statistics litera-
ture. From the last expression, for instance, the posterior precision is simply given by
h1 = nh + h0, where h0 = σ−2

0 is the precision of the prior distribution. Use of pre-
cision instead of variance eliminates most of the inversions in the equations presented
above. �
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4.6 Summary of Chapter 4

Probability density function: fX (x) = d FX (x)/dx (4.3)
Expectation of continuous

RV:
E[X ] = ∫∞−∞ x fX (x) dx (4.9)

Unit uniform dist.: FU (u) = u, 0 ≤ u ≤ 1 (4.23)
Exponential dist.: FX (x) = 1− e−λx , x ≥ 0 (4.24)
Memoryless property: P[X > t + s|X > s] = P[X > t] (4.26)
Mean of exponent. dist.: μX = 1/λ (4.27)
Variance of exponent. dist.: σ 2

X = 1/λ2 (4.28)
Coeff. of variation: cX = σX/μX (4.29)

Gamma distribution: fλ,β(y) � λ(λy)β−1

�(β)
e−λy (4.30)

Gamma function: �(β) = ∫∞0 xβ−1e−x dx = (β − 1)�(β − 1) (4.31)

PDF of the unit normal
variable:

φ(u) � 1√
2π

exp
(
− u2

2

)
(4.41)

Moments of U : E[U n] = 1× 3× 5 · · · (n − 1) (n even) (4.54)

Normal approx. of binomial
dist.:

B(k; n, p) ∼ 1√
npq�

(
k−np√

npq

)
(4.63)

Standard Weibull
distribution:

FX (x) = 1− e−xα , x > 0 (4.78)

Pareto distribution: FX (x) =
{

0, 0 ≤ x < β

1− (x/β)−α, β ≤ x <∞ (4.84)

Joint PDF: fXY (x, y) = ∂2 FXY (x,y)
∂x∂y (4.92)

Conditional dist. function: FY |X (y|x) =
∫ y
−∞ fXY (x,v) dv

fX (x)
(4.101)

= ∫ y
−∞ fY |X (v|x) dv (4.103)

Conditional PDF: fY |X (y|x) = fXY (x,y)
fX (x)

(4.102)

Conditional expectation: E[X |Y ] � ψ(Y ) (4.104)
ψ(y) = E[X |Y = y] = ∫∞−∞ x fX |Y (x |y) (4.105)

Standard bivariate normal
dist.:

1
2π
√
(1−ρ2)

exp
[
− 1

2(1−ρ2)
(u2

1 − 2ρu1u2 + u2
2)
]

(4.108)

Conditional PDF of U2: fU2|U1(u2|u1) = 1√
2π(1−ρ2)

exp
[
− (u2−ρu1)

2

2(1−ρ2)

]
(4.111)

Bivariate normal dist.: 1
2π |det C|1/2 exp

[
− 1

2 (x − μ)�C−1(x − μ)
]

(4.116)

where C =
[

σ 2
1 ρσ1σ2

ρσ1σ2 σ 2
2

]
(4.117)

Exponential family: fX (x; θ) = h(x) exp[η�(θ)T (x)− A(θ)] (4.126)
Canonical exponential

family:
fX (x; η) = h(x) exp[η�T (x)− A(η)] (4.127)

Posterior dist. (discrete x): π(θ |x) = p(x |θ)π(θ)
p(x) (4.133)

Posterior dist. (continuous x): π(θ |x) = f (x |θ)π(θ)
f (x) (4.134)

Likelihood function: Lx (θ) = f (x |θ) or Lx (θ) = p(x |θ) (4.135)
Posterior dist. calculation: π(θ |x) ∝ Lx (θ)π(θ) (4.137)
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4.7 Discussion and further reading

In this chapter we focused on continuous RVs and the associated concept of PDFs.
We then discussed several important examples of continuous RVs, most of which are
also found in other textbooks on probability such as Feller [99], Grimmett and Stirza-
ker [131], Gubner [133], Nelson [254], Papoulis and Pillai [262], and Ross [289]. Our
treatment of the Weibull distribution and Pareto distribution is more substantial, because
these so-called heavy-tailed distributions are increasingly used in stochastic modeling
today. Exponential families of distributions are important in statistical inference, which
we will discuss in more detail in Chapter 18. The material of Section 4.5 forms the basis
for Bayesian statistics, which is covered in more depth in books such as Berger [18],
Bernardo and Smith [19], and Gelman et al. [117].

4.8 Problems

Section 4.1: Continuous random variables

4.1∗ Expectation of a nonnegative continuous RV. Show the derivation of (4.10).
Hint: Use the following property: if the kth absolute moment of X is finite, then

lim
x→∞ xk [1− FX (x)] = 0.

4.2∗ Properties of discrete RVs. Show that (4.10) and (4.11) hold for a discrete RV as
well.

4.3 Mixture models and mixed RVs. In a mixture model, the distribution function
of a random variable Z is defined as a mixture of a set of RVs {X1, X2, . . . , Xn} in the
sense that Z takes on the value of Xi with probability pi , where pi ≥ 0, i = 1, . . . , n
and

∑n
i=1 pi = 1.

(a) Show that the distribution function of Z is given by

FZ (z) =
n∑

i=1

pi FXi (z).

(b) Show that the expectation of Z is given by

E[Z ] =
n∑

i=1

pi E[Xi ].

(c) Verify the following statements:
(i) If all of the Xi are continuous RVs, then Z is a continuous RV.

(ii) If all of the Xi are discrete RVs, then Z is a discrete RV.
(iii) If some of the Xi are continuous RVs and some are discrete RVs, Z is neither
a continuous RV nor a discrete RV. In this case, Z is said to be a mixed random
variable.
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4.4∗ Expectation and the Riemann–Stieltjes integral. The concept of expectation
for a discrete RV X is defined by (3.32) in terms of the PMF pX (x) and for a continuous
RV X by (4.9) in terms of the PDF fX (x).

(a) For a discrete RV X , show that the definition (4.9) is equivalent to (3.32) when the
PDF of X is expressed in terms of the Dirac delta function as in (3.12). Thus, the
definition (4.9) is applicable to mixed RVs if the PDF fX (x) is allowed to include
Dirac delta functions.

(b) A definition of expectation for mixed RVs that avoids the use of Dirac delta func-
tions can be formulated using the Riemann–Stieltjes integral (also called Stieltjes
integral)12 a generalization of the standard Riemann integral:

E[X ] =
∫ ∞

−∞
x d FX (x), (4.159)

where FX (x) is the distribution function of the RV X .
(i) Show that (4.159) is equivalent to (3.32) if X is a continuous RV.

(ii) Show that (4.159) is equivalent to (4.9) if X is a discrete RV.
(iii) Using integration by parts for the Stieltjes integral, show that (4.10) and (4.11)

follow from (4.159).

4.5 Expectation of functions of RVs. Let X and Y be continuous RVs.

(a) Show that

E[h(X)] =
∫ ∞

−∞
h(x) fX (x) dx, (4.160)

where h(·) is an arbitrary function.
(b) Show that X and Y are independent if and only if

E[h(X)g(Y )] = E[h(X)]E[g(Y )], (4.161)

for arbitrary functions h(·) and g(·).
4.6 Second moment of a continuous RV. Show that the second moment of a
continuous RV X is given by

E[X2] = 2
∫ ∞

0
x Fc

X (x) dx − 2
∫ 0

−∞
x FX (x) dx .

4.7 Joint PDF of two continuous RVs. Consider a pair of continuous RVs (X, Y )
that have a joint PDF of the form

fXY (x, y) =
{

k exp(−λx − μy), x ≥ 0, y ≥ 0,
0, elsewhere,

where λ > 0, μ > 0.

12 Thomas Joannes Stieltjes (1856–1894) was a Dutch mathematician whose main contributions were in
analysis, number theory, and continued fractions.
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(a) Obtain the joint distribution function FXY (x, y) and determine the normalization
constant k.

(b) Find the distribution functions FX (x) and FY (y) and the conditional distribution
function FY |X (y|x).

4.8 Conditional expectation of two RVs. Show the following properties of condi-
tional expectation for two continuous RVs X and Y :

(a) E[E[X |Y ]] = E[X ] (cf. (4.106)).
(b) E[h(Y )g(X)|Y ] = h(Y )E[g(X)|Y ], where h and g are scalar functions.
(c) E[ · |Y ] is a linear operator.

Section 4.2: Important continuous random variables and their distributions

4.9∗ Expectation, second moment, and variance of the uniform RV. Derive (4.20)
through (4.22).

4.10∗ Moments of uniform RV. Consider a random variable X that is uniformly
distributed in the interval [a, b].
(a) Find its nth moment E[Xn].
(b) Find its nth central moment E[(X − μX )

n].
4.11 Erlang distribution.13 Consider the continuous-time analog of the negative
binomial distribution. Let RV Yr be the sum of r independent RVs Xi :

Yr = X1 + X2 + · · · + Xr , (4.162)

where each Xi (1 ≤ i ≤ r) is an exponential variable with mean 1/λ.

(a) Find the mean and variance of the RV Yr .
(b) The distribution function of Yr is given by

FYr (y) = 1− e−λy
r−1∑
j=0

(λy) j

j ! , y ≥ 0, (4.163)

Find the corresponding PDF.
(c) Define a random variable Sr by the sample mean of the r RVs Xi ; i.e.,

Sr = 1

r

r∑
i=1

Xi = Yr/r. (4.164)

Show that its distribution function is given by

FSr (t) = 1− e−rλt
r−1∑
j=0

(rλt) j

j ! , t ≥ 0. (4.165)

Find its PDF.

13 Also called Erlangian distribution.
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The distributions of Yr given by (4.163) and of Sr given by (4.165) are both referred
to as the r -stage Erlang distributions, and often denoted Er .

(d) Program the expression for the PDF of Sr for r = 1, 2, 4, 8, 16 and plot the curves.

4.12 Hyperexponential (or mixed exponential) distribution. Suppose that a random
variable S is drawn from k types of exponential distributions of mean 1/μi , with proba-
bility πi , i = 1, 2, . . . , k. Then the distribution function of S takes the following mixed
exponential distribution:

FS(t) =
k∑

i=1

πi (1− e−μi t ) = 1−
k∑

i=1

πi e
−μi t . (4.166)

This mixed exponential distribution is often referred to as the k-stage hyperexponential
distribution, and often denoted Hk .

(a) Find its PDF and its mean.
(b) Plot a two-stage hyperexponential distribution, FS(t) = 1− π1e−μ1t − π2e−μ2t

and its PDF, where π1 = 0.0526, μ1 = 0.1, and μ2 = 2.0. In the same figure plot
the exponential distribution with the same mean.

4.13∗ Recursive formula for the gamma function. Derive the recursive expression
(4.31).

4.14 Poisson distribution and the gamma distribution. Show that the Poisson dis-
tribution P(k; λ) can be written in terms of the gamma distribution fλ,β(y) of (4.30) as
follows:

P(k; λ) = f1,k+1(λ). (4.167)

4.15∗ Mean and variance of the normal distribution. Show that the mean and
variance of the normal distribution (4.40) are indeed μ and σ 2 given as the model
parameters.

4.16∗ �(1/ 2). Show

�

(
1

2

)
= √π.

Hint: Use that φ(u) of (4.41) is a PDF.

4.17 Mean, second moment, and variance of the Weibull distribution. Show that
the mean, second moment, and variance of the standard Weibull distribution are given
by (4.81) through (4.83).

4.18 Median and mode of the Weibull distribution.

(a) Show that the median of the Weibull distribution is given by

β (ln 2)1/α .
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(b) Show that the mode of the Weibull distribution is given by

β

(
1− 1

α

)1/α

.

4.19 Expectation and variance of two-parameter and three-parameter Weibull
distributions.

(a) Show that the mean and variance of the two-parameter Weibull distribution are
given by

E[X ] = β�
(

1

α
+ 1

)
and Var[X ] = β2

[
�

(
2

α
+ 1

)
− �2

(
1

α
+ 1

)]
.

(4.168)
(b) Show that the mean and variance of the three-parameter Weibull distribution are

given by

E[X ] = β�
(

1

α
+ 1

)
+ γ and Var[X ] = β2

[
�

(
2

α
+ 1

)
− �2

(
1

α
+ 1

)]
.

(4.169)

4.20 Residual lifetime of Weibull distribution. Suppose that a standard Weibull RV
X with parameter α represents the lifetime of some item (e.g., an electric bulb). If it
has lasted already t [h], what is the probability that it will fail (or finish) in the next
infinitesimal interval [t, t + dt]?
Section 4.3: Joint and conditional probability density functions

4.21∗ Joint bivariate normal distribution and ellipses. Show that all level curves (or
contour lines) in Figure 4.7b are ellipses. Hint: An ellipse centered at the origin (0, 0)
and having its major axis parallel to the x-axis may be specified by the equation

x2

a2 +
y2

b2 = 1.

4.22∗ Conditional multivariate normal distribution. Derive (4.123).

4.23 Circularly symmetric and independent RVs [262]. We say that the joint PDF
fXY (x, y) of two RVs X and Y is circularly symmetric, if

fXY (x, y) = g(r), where r =
√

x2 + y2.

Show that if the RVs are not only circularly symmetric, but also independent, then
they are normal with zero mean and equal variance.
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4.24 Buffon’s needle problem.14 Suppose that we have a tabletop with a number of
parallel lines drawn on it, which are equally spaced, one inch apart. Suppose we have a
needle that is one inch long and drop the needle randomly on the table. Show that the
probability that the needle crosses or touches one of the lines is given by

2

π
≈ 0.636 619 7.

Hint: Let us introduce the (X, Y ) coordinates and let the parallel lines be represented
by Y = n (n = 0,±1,±2, . . .). Let the two ends of the needle be positioned at (X, Y )
and (X ′, Y ′). Let � be the angle of the needle from the X -axis; i.e.,

X ′ = X + cos�, Y ′ = Y + sin�;

hence,

tan� = Y ′ − Y

X ′ − X
.

Without loss of generality we assume that Y ′ ≥ Y ; if not, switch the labels of the two
ends of the needle. Thus, we need to consider the range 0 < � ≤ π . We also assume
without loss of generality that 0 < Y ≤ 1; we label the line just below the needle as
Y = 0. Figure 4.9 (a) shows a case where the needle does not touch any of the lines,
whereas Figure 4.9 (b) shows a case when it intersects the line Y = 1.

4.25 Modifications of Buffon’s needle experiment. Consider the following varia-
tions of the Buffon’s needle experiment of Problem 4.24.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

2

(X ,Y )

(X ’,Y ’)

(a)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−0.5

0

0.5

1

1.5

2

(X ,Y )

(X ’,Y ’)

(b)

Figure 4.9 “Buffon’s needle” experiment: (a) the needle does not touch any line; (b) the needle crosses the line
Y = 1.

14 Georges Louis Leclerc, Comte de Buffon (1707–1788) was a French mathematician and natural historian,
who discovered in 1777 this simple way to estimate π .
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(a) Let the line spacing be a [inches] and the needle length be � [inches], with � ≤ a.
Find the probability that the needle hits a line.

(b) Now consider a floor on which rectangular tiles of a [inches] by b [inches]
are placed. Thus, the vertical lines are at X = ma (m = 0,±1,±2, . . .) and the
horizontal lines are at Y = nb (n = 0,±1,±2, . . .). Let the needle length be
� ≤ min{a, b}. Find the probability that the needle will land within one tile.

Section 4.4: Exponential family of distributions

4.26∗ Exponential families of distributions. Show that the following families of
distributions belong to the exponential family in canonical form:

(a) exponential distributions with PDF given by (4.25), parameterized by λ;
(b) gamma distributions with PDF given by (4.30), parameterized by (λ, β);
(c) binomial distributions given by (3.62), parameterized by (n, p);
(d) negative binomial (Pascal) distributions given by (3.98), parameterized by (r, p).

4.27 Uniform distribution. Show that the family of uniform distributions with PDF
given by (4.19) does not belong to the exponential family.

4.28 Weibull distribution. Show that the family of three-parameter Weibull distribu-
tions with PDF given by (4.74) belongs to the exponential family if and only if the shape
parameter α is fixed.

4.29 Pareto distribution. Show that the family of Pareto distributions with PDF given
by (4.85) belongs to the exponential family if and only if the parameter β is fixed.

Section 4.5: Bayesian inference and conjugate priors

4.30∗ Posterior hyperparameters of the beta distribution associated with the
Bernoulli distribution in Example 4.4.

(a) Derive the posterior mean (4.146).
(b) Find the posterior variance Var[�|x].
4.31 Conjugate prior for a geometric distribution. Consider a random variable X
that is geometrically distributed (cf. (3.68)):

pX (x |p) = px−1(1− p), x ∈ Z+ = {1, 2, . . .}, (4.170)

where p ∈ [0, 1] is the model parameter. Choose a beta distribution Beta(α0, β0) as the
conjugate prior π(p). Suppose that you have a vector of n independent data samples,
xi ∈ Z+, given by x = (x1, x2, . . . , xn). Show that the posterior distribution π(p|x) is
also a gamma distribution. Find the posterior hyperparameters.

4.32 Conjugate prior for a multinomial distribution. Consider a random vec-
tor X = (X1, . . . , Xn) that is distributed according to a multinomial distribution (cf.
(3.68)):
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p(x| p) = n!
n1!n2! · · · nm ! pn1

1 pn2
2 · · · pnm

m , (4.171)

where x = (x1, . . . , xn), p = (p1, . . . , pm) is a probability vector such
∑m

i=1 pi = 1,
and the ni are nonnegative integers satisfying

∑m
i=1 ni = n. An appropriate con-

jugate prior for the likelihood function L x( p) = p(x| p) is the so-called Dirichlet
distribution:15

π( p) = 1

B(α)

m∏
i=1

pαi−1
i , (4.172)

where p = (p1, . . . , pm) is a probability vector, α = (α1, . . . , αm) with αi > 0, i =
1, . . . ,m, and B(α) is the multinomial beta function defined in terms of the gamma
function by

B(α) =
∏m

i=1 �(αi )

�
(∑m

i=1 αi
) . (4.173)

Show that the posterior distribution π( p|x) is also a Dirichlet distribution and find
the corresponding posterior hyperparameters.

15 Johann Peter Gustav Lejeune Dirichlet (1805–1859) was a German mathematician credited with the
modern formal definition of a function.



5 Functions of random variables
and their distributions

In many engineering applications, the input X to a given system (e.g., a receiver) is a
random variable, and thus the corresponding output Y is also a random variable. The
input–output relation is characterized by a known deterministic function Y = g(X).
Then, given the PDF fX (x) (or PMF if X is a discrete RV), we wish to find the PDF
fY (y) (or PMF) of the output RV. In a more general setting of multiple-input, multiple-
output (MIMO) system, we may have a set of RVs denoted as (X1, X2, . . . , X M ) that
are related to another set of RVs (Y1, Y2, . . . ,YN ) through the N known functions:

Yn = gn(X1, X2, . . . , X M), n = 1, 2, . . . , N . (5.1)

We start with the case in which a random variable Y is a single-valued function of
another RV X .

5.1 Function of one random variable

Let X be a random variable with PDF fX (x) and let g(·) be a function that maps from
R to R. Then Y = g(X) is also a random variable. One way to find the PDF is first to
calculate the distribution function FY (y):

FY (y) = P[Y ≤ y] = P[g(X) ≤ y]
= P[X ∈ Dy], (5.2)

where Dy is the domain in the real line R = {−∞ < x <∞} that is mapped to the
range {−∞ < g(x) ≤ y}; i.e.,

Dy = {x : g(x) ≤ y}. (5.3)

Then we can write the last expression of (5.2) as

FY (y) =
∫ ∞

−∞
I (x ∈ Dy) fX (x) dx, (5.4)

where I (A) is the indicator function; i.e.,

I (A) =
{

1, if A is true,
0, otherwise.

(5.5)
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Example 5.1: Linear transformation of a random variable. Let us consider the
simplest mapping; i.e., a linear transformation Y = g(X) = aX + b. Then

Dy =
⎧⎨⎩
(
−∞, y−b

a

]
, if a > 0,[

y−b
a ,∞

)
, if a < 0.

(5.6)

Therefore, we have

FY (y) =
⎧⎨⎩ FX

(
y−b

a

)
, if a > 0,

1− FX

(
y−b

a

)
, if a < 0.

(5.7)

By differentiating the above expression, we find

fY (y) =
⎧⎨⎩

1
a fX

(
y−b

a

)
, if a > 0,

− 1
a fX

(
y−b

a

)
, if a < 0,

(5.8)

or equivalently

fY (y) = 1

|a| fX

(
y − b

a

)
for a �= 0. (5.9)

If a = 0, then Y = b with probability one; therefore,

FY (y) = u(y − b) and fY (y) = δ(y − b), (5.10)

where u(·) and δ(·) are the unit step function and the Dirac delta function, respectively
(see Section 3.2).

�

Example 5.2: Square-law detector. Next, let us consider a simple nonlinear mapping
Y = g(X) = X2, which is sometimes called a square-law detector, in which X repre-
sents the input signal and Y represents the detector output. Noting that g(x) = x2 and
Dy = [−√y,

√
y ], we find

FY (y) = P[X2 ≤ y] = P[−√y ≤ X ≤ √y] = FX (
√

y)− FX (−√y) for y ≥ 0.
(5.11)

By differentiating the above equation with respect to y, we obtain

fY (y) = 1

2
√

y
[ fX (

√
y)+ fX (−√y)]. (5.12)

An alternative way to derive the above fY (y) is as follows. Note that y = g(x)
has two solutions x1 = √y and x2 = −√y for each y > 0. Then the RV Y falls in
the interval (y, y + δy) if and only if X falls in either of the following two mutually
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Y

y + δy

x2 + δx2 x2 x1 + δx1x1 X

y

Figure 5.1 The nonlinear function Y = X2 and mapping of the interval (y, y + δy) into the two disjoint
intervals (x1, x1 + δx1) and (x2 + δx2, x2) (δx2 < 0).

exclusive intervals: (x1, x1 + δx1) and (x2 + δx2, x2). Hence, for a given δy(> 0) and
the corresponding δx1(> 0) and δx2(< 0) (see Figure 5.1) we have

P[y < Y ≤ y + δy] = P[x1 < X ≤ x1 + δx1] + P[x2 + δx2 ≤ X < x2]. (5.13)

For sufficiently small δy and δxi (i = 1, 2), we can write the above as

fY (y)δy ≈ fX (x1)δx1 + fX (x2)(−δx2). (5.14)

By dividing both sides by δy and taking the limit δy → 0, we find

fY (y) = fX (x1)

g′(x1)
+ fX (x2)

−g′(x2)
. (5.15)

Because g′(x) = 2x , g′(x1) = 2
√

y and g′(x2) = −2
√

y, the last equation reduces to
(5.12).

�

We can easily extend the result of the last example to a general class of functions g(x).
Suppose that, for given y, the mapping y = g(x) has multiple solutions x1, x2, . . . , xm ,
where the integer m, in general, depends on y, and thus it may be more appropriate to
write it as m(y).

xi = g−1(y), i = 1, 2, . . . ,m(y), (5.16)
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Assuming that g(x) is continuous at all these m(y) points, we find that the PDF of
Y = g(X) is given by

fY (y) =
m(y)∑
i=1

fX (xi )

| g′(xi ) | . (5.17)

5.2 Function of two random variables

Let us now consider the case where Z is a function of two RVs X and Y , which have
joint PDF fXY (x, y):

Z = g(X, Y ). (5.18)

How should we go about obtaining the PDF of Z? As discussed in the previous
section, one way to solve this problem is to find the distribution function first and then
differentiate it to obtain the PDF. So we begin with

FZ (z) = P[g(X, Y ) ≤ z] = P[(X, Y ) ∈ Dz]
=
∫ ∫

I ((x, y) ∈ Dz) fXY (x, y) dx dy, (5.19)

where Dz represents the domain in the (X, Y ) plane that is mapped to the range
g(X, Y ) ≤ z,

Dz = {(x, y) : g(x, y) ≤ z}, (5.20)

and I (·) is the indicator function defined in (5.5).

Example 5.3: Sum of two random variables. Consider the simplest example of a two-
variable function; i.e., Z = X + Y . Then the region Dz = {(X, Y ) : X + Y ≤ z} can
be represented as Dz =⋃−∞<y<∞Hy , where Hy = {(X, Y ) : y < Y < y + dy,∞ <

X < z − Y } is a horizontal strip of width dy (see Figure 5.2). Thus, we can rewrite the
integration (5.19) as

FZ (z) =
∫ ∫

I (x + y ≤ z) fXY (x, y) dxdy =
∫ ∞

−∞

[∫ z−y

−∞
fXY (x, y) dx

]
dy.

(5.21)
By differentiating the above with respect to z, we obtain

fZ (z) =
∫ ∞

−∞

[
∂

∂z

∫ z−y

−∞
fXY (x, y) dx

]
dy. (5.22)

By applying Leibniz’s rule (5.94) (see Problem 5.6) to the expression inside the square
brackets, we find
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Y

X

y
y + dy

X + Y = z

z − y

0

Dz

Figure 5.2 The region Dz = {(X, Y ) : X + Y ≤ z} and a horizontal strip of width dy extending horizontally
over the interval {−∞ < X < z − y}.

∂

∂z

∫ z−y

−∞
fXY (x, y) dx = fXY (z − y, y)× 1− fXY (−∞, y)× 0

+
∫ z−y

−∞
∂ fXY (x, y)

∂z
dx

= fXY (z − y, y). (5.23)

Thus,

fZ (z) =
∫ ∞

−∞
fXY (z − y, y) dy. (5.24)

Since X and Y are symmetrical, we can interchange the roles of X and Y . Thus, an
alternative procedure is to integrate the joint PDF over the vertical strip of width dx
extending over the interval {−∞ < Y ≤ z − x} first, followed by the integration along
the x-axis. Then we arrive at the formula

fZ (z) =
∫ ∞

−∞
fXY (x, z − x) dx . (5.25)

If, in particular, X and Y are statistically independent, i.e.,

fXY (x, y) = fX (x) fY (y), (5.26)

then the formulas (5.24) and (5.25) reduce to

fZ (z) =
∫ ∞

−∞
fX (z − y) fY (y) dy =

∫ ∞

−∞
fX (x) fY (z − x) dx . (5.27)

The above integration formula is called the convolution (or convolution integral)
of functions fX (·) and fY (·). Thus, we have shown that if two RVs are statistically
independent, the PDF of their sum is equal to the convolution of their PDFs, and we
write
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fZ (z) = fX (z)� fY (z). (5.28)

The above result will be derived again in Section 8.2.2, but using the characteristic
function approach.

In the case where X and Y are independent, we can express the CDF of Z in terms of
the CDFs of X and Y by rewriting (5.21) using the Stieltjes integral:

FZ (z) =
∫ ∫

I (x + y ≤ z)d FX (x)d FY (y) =
∫ ∞

−∞

∫ z−y

−∞
d FX (x) d FY (y),

where we obtained the first equality by formally replacing fX (x)dx by d FX (x) and
fY (Y )dy by d FY (y). Hence, we have

FZ (z) =
∫ ∞

−∞
FX (z − y) d FY (y) =

∫ ∞

−∞
FY (z − x) d FX (x), (5.29)

where the second equality is due to the symmetry between X and Y . In (5.29), if we
formally replace d FY (y) by fY (y)dy and d FX (x) by fX (x)dx , we obtain convolution
formulas for the CDF FZ (z); i.e.,

FZ (z) = FX (z)� fY (z) = fX (z)� FY (z). (5.30)

�

Example 5.4: Z = X2 + Y 2. Given the joint PDF fXY (x, y) of RVs X and Y , let us
find the PDF of Z = X2 + Y 2. This type of problem arises, for instance, when a signal
of the form S(t) = X cos(ωt − φ)+ Y cos(ωt − φ) is received (usually corrupted with
noise) and the phase φ of the signal is not known to the receiver. It is known in signal
detection theory that the best strategy to detect such a signal is to compute the power of
the signal, which is defined as the sum of the squares of X and Y .

We first seek to find the distribution function

FZ (z) = P[X2 + Y 2 ≤ z] =
∫ ∫

I (x2 + y2 ≤ z) fXY (x, y) dx dy, (5.31)

where I (A) is the indicator function defined by (5.5). The region {(x, y) : x2 + y2 ≤ z}
represents the area surrounded by a circle with radius

√
z (see Figure 5.3); hence, we

can write

FZ (z) =
∫ √

z

−√z

[∫ √z−y2

−
√

z−y2
fXY (x, y) dx

]
dy. (5.32)
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Figure 5.3 The circle of radius
√

z and its decomposition into horizontal strips of width dy.

Differentiate FZ (z) with respect to z and exchange the order of differentiation and
integration. By applying Leibniz’s rule (5.94) again, the differentiation of the expression
in the square brackets yields

fXY (

√
z − y2, y)

1

2
√

z − y2
− fXY (−

√
z − y2, y)

(
− 1

2
√

z − y2

)
+ 0. (5.33)

We then finally obtain

fZ (z) = d

dz
FZ (z) =

∫ √
z

−√z

1

2
√

z − y2

[
fXY (

√
z − y2, y)+ fXY (−

√
z − y2, y)

]
dy.

(5.34)

An interesting case that often arises in signal detection problems, and for which we
have a closed-form solution, is when X and Y are independent normal variables with
zero mean and common variance (Problem 5.13). �

Example 5.5: R =
√

X2 + Y2. Let us set Z = R2 in the previous example. In the
context of detecting a signal of the form S(t) = X cos(ωt − φ)+ Y sin(ωt − φ), the
RV R = √X2 + Y 2 represents the envelope of the signal, i.e., S(t) = R cos(ωt − θ),
where θ − φ = tan−1 Y

X .
The distribution function of R is given by

FR(r) =
∫ r

−r

[∫ √r2−y2

−
√

r2−y2
fXY (x, y) dx

]
dy. (5.35)

Differentiation of the expression inside the square brackets leads, using Leibniz’s rule
again, to the following expression:
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fXY (

√
r2 − y2, y)

1

2

2r√
r2 − y2

− fXY (−
√

r2 − y2, y)

(
−1

2

2r√
r2 − y2

)
+ 0. (5.36)

Thus, we obtain

fR(r) = d FR(z)

dr
=
∫ r

−r

r√
r2 − y2

[
fXY (

√
r2 − y2, y)+ fXY (−

√
r2 − y2, y)

]
dy.

(5.37)

Again, an important and useful case is found when X and Y are independent normal
variables with common variance (see Section 7.5.1). �

5.3 Two functions of two random variables and the Jacobian matrix

Let us continue the discussion of the previous section and consider two functions of two
RVs. Let us denote, as before, the two RVs by X and Y and their joint distribution by
FXY (x, y). Now consider two functions g(x, y) and h(x, y) that transform (X, Y ) into
a pair of new RVs (U, V ) according to

U = g(X, Y ) and V = h(X, Y ). (5.38)

From the discussion of the previous section, we already know how to compute the
marginal distribution functions of U and V and their PDFs. But how should we find
the joint distribution function FU V (u, v) and the joint PDF fU V (u, v)?

Let us define domain Du,v as the region in the X–Y plane such that

Du,v = {(x, y) : g(x, y) ≤ u, h(x, y) ≤ v}. (5.39)

Then we have

FU V (u, v) = P[g(X, Y ) ≤ u, h(X, Y ) ≤ v] = P[(X, Y ) ∈ Du,v]
=
∫ ∫

I ((x, y) ∈ Du,v) fXY (x, y) dx dy, (5.40)

where I (A) is the indicator function defined earlier. Thus, the joint PDF is obtained by
differentiating the CDF FU V (u, v) (see Problem 5.16 for a special example of such a
procedure).

If g(x, y) and h(x, y) are continuous and differentiable functions, then, as in the
case of one function of one random variable, we can derive a closed-form formula for
the joint PDF directly. Let us set (U, V ) = (u, v) in (5.38). Then there are in general
multiple solutions (X, Y ) = (xi , yi ), i = 1, 2, . . . ,m, such that

u = g(xi , yi ) and v = h(xi , yi ), i = 1, 2, . . . ,m, (5.41)

where the number of solutions m generally depends on (u, v).
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Figure 5.4 (a) The rectangle ABC D at (u, v) in the U–V plane; (b) the i th parallelogram A′B′C ′D′ at
(xi , yi ) in the X–Y plane, where xi = pi (u, v) and yi = qi (u, v).

Let the inverse mapping of (5.41) be pi and qi i.e.,

xi = pi (u, v) and yi = qi (u, v). (5.42)

By referring to Figure 5.4 (a), the functions pi and qi accomplish the following
mapping:

A = (u, v) → A′ = (xi , yi );
B = (u + δu, v) → B ′ = (xi + ∂

∂u pi (u, v)δu, yi + ∂
∂u qi (u, v)δu

) ;
C = (u, v + δv) → C ′ = (xi + ∂

∂v
pi (u, v)δv, yi + ∂

∂v
qi (u, v)δv

) ;
D = (u + δu, v + δv) → D′ = C ′ + (B ′ − A′).

(5.43)
The probability that (U, V ) falls in the rectangle ABC D is given by

P[u < U ≤ u + δu, v < V ≤ v + δv] = fU V (u, v)δu δv, (5.44)

and this probability should be equal to the sum of probabilities that (X, Y ) falls in one
of the m corresponding parallelograms of sizes 
i , i = 1, 2, . . . ,m:

m∑
i=1

fXY (xi , yi )
i , (5.45)

where 
i corresponds to the area A′B′C ′D′ of Figure 5.4 (b), which can be calculated,
by using the well-known result in analytic geometry, as follows.

The area S of a triangle with vertices at P1 = (x1, y1), P2 = (x2, y2), and P3 =
(x3, y3) is given (Problem 5.17) by

S =
∣∣∣∣∣∣12 det

⎡⎣ 1 1 1
x1 x2 x3

y1 y2 y3

⎤⎦∣∣∣∣∣∣ . (5.46)
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If we set the point to be the origin, i.e., P1 = O = (0, 0), then the formula (5.47) is
simplified to

S =
∣∣∣∣∣∣12 det

⎡⎣ 1 1 1
0 x2 x3

0 y2 y3

⎤⎦∣∣∣∣∣∣ =
∣∣∣∣12 det

[
x2 x3

y2 y3

]∣∣∣∣ . (5.47)

Now in referring to Figure 5.4, let vectors
−−→
A′B ′ and

−−→
A′C ′ be interpreted as vectors−−→

P1 P2 = −−→O P2 and
−−→
O P3 respectively. Then, the area of triangle A′B′C ′, which is one

half of 
i that we are interested in, is given by


i

2
=
∣∣∣∣12 det

[
∂
∂u pi (u, v)δu

∂
∂v

pi (u, v)δv
∂
∂u qi (u, v)δu

∂
∂v

qi (u, v)δv

]∣∣∣∣
=
∣∣∣∣12 det

[
∂
∂u pi (u, v)

∂
∂v

pi (u, v)
∂
∂u qi (u, v)

∂
∂v

qi (u, v)

]
δu δv

∣∣∣∣ . (5.48)

We define a 2× 2 matrix

J
(

pi , qi

u, v

)
�
[

∂pi
∂u

∂pi
∂v

∂qi
∂u

∂qi
∂v

]
, (5.49)

which is called the Jacobian matrix1of the transformation functions pi (x, y) and
qi (x, y). Then we can write


i =
∣∣∣∣J ( pi , qi

u, v

)∣∣∣∣ , (5.50)

where we adopt a simplifying notation

|A| � |det A| . (5.51)

By equating (5.44) and (5.45) we find that

fU V (u, v) =
m∑

i=1

∣∣∣∣J ( pi , qi

u, v

)∣∣∣∣ fXY (xi , yi ). (5.52)

The determinant det J is called the Jacobian or Jacobian determinant2 of the
transformation. If we define the Jacobian matrix of the original mapping by

J
(

g, h

x, y

)
=
[

∂g
∂x

∂g
∂y

∂h
∂x

∂h
∂y

]
, (5.53)

1 Named after the German mathematician Carl Gustav Jacob Jacobi (1804–1851).
2 The term “Jacobian” is often a shorthand for the Jacobian matrix J as well as for its determinant.
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we can show (Problem 5.18) the following identity:

∣∣∣∣J ( pi , qi

u, v

)∣∣∣∣ = ∣∣∣∣J (g, h

x, y

)∣∣∣∣−1

. (5.54)

Example 5.6: Two linear transformations. Let the two transformations be linear
functions:

g(X, Y ) = aX + bY and h(X, Y ) = cX + dY, (5.55)

where ad − bc �= 0. Then we can write the above in matrix form:[
U
V

]
=
[

a b
c d

] [
X
Y

]
. (5.56)

For a given (U, V ) = (u, v), there is only one solution, hence m = 1 and the solution
(x1, y1) is readily found from the above matrix equation as[

x1

y1

]
= 1




[
d −b
−c a

] [
u
v

]
. (5.57)

Thus, we find the inverse mapping

p1(u, v) = 1



(du − bv) and q1(u, v) = 1



(−cu + av), (5.58)

where


 = ad − bc. (5.59)

The Jacobian is then found to be

J

(
p1, q1

u, v

)
=
[ d



−b

−c



a



]
, (5.60)

which gives ∣∣∣∣J ( p1, q1

u, v

)∣∣∣∣ = |
|−1. (5.61)

Therefore, we finally obtain the joint PDF of the transformed variables:

fU V (u, v) =
∣∣∣∣J ( p1, q1

u, v

)∣∣∣∣ fXY (x1, y1)

= |
|−1 fXY

(

−1(du − bv),
−1(−cu + av)

)
. (5.62)

We can verify the formula (5.54) by computing

J

(
g, h

x, y

)
=
[

a b
c d

]
. (5.63)
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As a special case, let a = b = c = 1 and d = 0. Then U = X + Y and V = X .
Noting that 
 = −1, we readily find the joint PDF of (U, V ) as

fU V (u, v) = | − 1| fXY (v, u − v). (5.64)

By integrating over v, we obtain

fU (u) =
∫ ∞

−∞
fXY (v, u − v) dv, (5.65)

which agrees with (5.25) of Example 5.3. If we set instead c = 0 and a = b = d, we
find that U = X + Y , V = Y , and 
 = 1. In this case we have

fU V (u, v) = fXY (u − v, v), (5.66)

from which we obtain

fU (u) =
∫ ∞

−∞
fXY (u − v, v) dv, (5.67)

which is equivalent to (5.22). �

5.4 Generation of random variates for Monte Carlo simulation3

Monte Carlo simulation usually refers to a numerical technique for solving a nonprob-
abilistic mathematical problem (e.g., a certain integration expression) by introducing a
random variable whose mean or distribution is related to the solution of the original
problem. A Monte Carlo simulation can be viewed as a way to estimate the expected
value of some response variable Y :

E[Y ] =
∫ 1

0
· · ·
∫ 1

0
Y (R) fR(r) d r,

where R is a random vector representing a stream of random numbers of length m,
which is the total number of uniform variates4 to be generated during a simulation
run: R = (R1, R2, . . . , Rm)

� (e.g., see [203]: Chapters 16 and 17). A Monte Carlo
simulation is usually adopted when the functional form Y (R) is not known explicitly;
otherwise a simulation would be unnecessary.

In Chapter 21 of this book, we will discuss a computationally efficient method,
MCMC, to numerically compute the probability distribution functions, PDFs or PMFs,
when analytic expressions are difficult to come by or too difficult to evaluate. As we
remarked in Chapter 1, MCMC is becoming a very important tool for Bayesian econo-
metricians, machine learning researchers, and researchers in the field of bioinformatics.

3 The reader may opt to postpone this section until the study of Chapter 21.
4 A particular outcome or sample value of a random variable is often called a variate.
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The term Monte Carlo simulation is also often used to mean self-driven simulation of
some stochastic system (e.g., a queueing system) (e.g., see [203]). In either case, Monte
Carlo simulation requires a mechanism for generating random variates whose PDF or
PMF is specified. Generation of variates from any specified distribution is possible once
we know how to generate a sequence of independent variates drawn from the uniform
distribution. This assertion will be demonstrated in Section 5.4.2 by using the results
we studied in this chapter. We will first concentrate on the generation of the uniform
variates; i.e., real numbers drawn from the uniform distribution U (0, 1).

5.4.1 Random number generator (RNG)

In a digital computer a real number is expressed with only finite accuracy, and thus
we normally generate integers Zi between zero and some positive integer m. Then, the
fraction

Yi = Zi/m (5.68)

lies between 0 and 1; i.e., Yi ∈ (0, 1). The most common method of generating such a
sequence of random numbers Zi is by means of a simple recurrence relation such as

Zi ≡ aZi−1 + c (mod m), (5.69)

where a, the multiplier, is a positive integer and c, the increment, is a nonnegative
integer, and m, the modulus, is also a positive integer. Two integers a and b are said
to be congruent modulo m if their difference is an integral multiple of m, and this
congruence relation is expressed as

a ≡ b (mod m). (5.70)

For instance, 5 ≡ 2 (mod 3), 13 ≡ 1 (mod 3), etc.
The generator of a sequence of numbers according to a congruence relationship

(5.69) is thus called the linear congruential generator (LCG). For the special case
when c = 0 is chosen, this RNG is called a multiplicative congruential generator, and
the case c �= 0 is said to give a mixed congruential generator. Advantages of using
such a simple recurrence formula of LCG are: (i) statistical properties of the resulting
sequence can be reasonably well understood, so that we can choose optimal values of
a, m, c, and the initial value Z0, called a seed; (ii) it requires little computational time
and memory space; and (iii) the sequence can be easily reproduced by just saving the
seed Z0. Similarly, the sequence generation process can be interrupted and restarted by
saving the last number.

The sequence {Zi } generated by (5.69) is not a random sequence in the true sense of
the word “random.” But for all practical purposes, we may be content with accepting
such sequences as random sequences if they appear to be sufficiently random; that
is, if no important statistical tests reveal a significant discrepancy from the behavior
that a truly random sequence is supposed to demonstrate. Thus, a sequence generated
in a deterministic way such as (5.69) is often called a pseudorandom sequence or
quasi-random sequence.
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Other methods for random number generation include lagged Fibonacci generator
(LFG), multiple recursive generator (MRG), combined generators, and Marsaglia–
Zamam’s AWC (add-with-carry) and SWB (subtract-with-borrow) algorithms.
For detailed discussions of these RNG algorithms, the reader is directed to [203]
(Chapter 16), for example, and references therein.

5.4.2 Generation of variates from general distributions

Anyone of the random number generation methods discussed above typically generates
integers {Zi } between 0 and m − 1 (or between 1 and m − 1 for the case of the mul-
tiplicative congruential method) with a uniform frequency. Thus, the fractions {Yi } of
(5.68) are uniformly distributed between zero and one. How can we then generate a
sequence of random observations from a given probability distribution?

5.4.2.1 Transform method
Let X be the RV of our concern and F(x) be the distribution function; that is,

F(x) = P[X ≤ x]. (5.71)

Set F(X) = Y ; then Y is defined over the range zero and one. Now we show that if Y is a
random variable uniformly distributed between zero and one, the variable X defined by

X = F−1(Y ), 0 ≤ Y ≤ 1, (5.72)

has the cumulative distribution F(x) (see Figure 5.5):

P[X ≤ x] = P[Y ≤ F(x)] = F(x). (5.73)

X

x

0 1 Y

X = F –1 (Y )

F(x)

Figure 5.5 Transformation of the uniform RV into RV X with the distribution F(x).
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The inverse mapping F−1(·) can be performed by writing the equation for this function,
or by developing a table giving the values of X for a finite (but sufficiently dense) set of
points of Y from zero to one.

Example 5.7: Transform method for exponential variates. Consider a random vari-
able X with the exponential distribution F(x) = 1− e−μx , x ≥ 0. Applying the proce-
dure outlined above, set this function equal to a random decimal number Y = 1− e−μx

so that

X = F−1(Y ) = −[ln(1− Y )]/μ. (5.74)

Since 1− Y is itself a random decimal number between zero and one, we can use a
simpler transformation

X = F−1(1− Y ) = −(ln Y )/μ. (5.75)

Thus, one can generate a sequence of random observations from an exponential
distribution by applying the transformation (5.74) or (5.75) to a random decimal
sequence.

�

Although the algorithm based on the logarithm transformation is easy to program, it
is not the fastest method. Other algorithms that do not use a natural logarithm subroutine
are often adopted; e.g., the rectangle-wedge-tail method (e.g., see [191, 203]).

5.4.2.2 Acceptance–rejection method
It is often possible to calculate the PDF fX (x) but difficult to evaluate its integral FX (x)
or the inverse F−1

X (x). A technique called the acceptance–rejection method5 has been
developed to deal with this situation. Let fX (x) be bounded by M and have a finite range
(or support), say a ≤ x ≤ b, as shown in Figure 5.6. This method can be described in
three steps as given in Algorithm 5.1.

The number of trials before an acceptable x is found is a random variable N with
geometric distribution: P[N = n] = ρ(1− ρ)n−1, n ≥ 1, where ρ is the probability
that the inequality (5.76) is satisfied for a given pair (u1, u2). It should simply be given
as the ratio of the white area under the function fX (x), which is unity since fX (x) is a
PDF, to the rectangle of size (b − a)× M . Hence, ρ is given by ρ = 1/M(b − a). The
mean value of N is E[N ] = 1/ρ = M(b − a). This implies that the method may not be
efficient for PDFs with large M(b − a).

5 This method is sometimes called the rejection method.
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a b X1

X1 = a + (b – a) R1

f (X1)

MR ′′2

X ′′1

MR ′2

X ′1

Figure 5.6 The acceptance–rejection method to generate a random variable with the PDF fX (x). (The point
“◦” is to be accepted, whereas the point “×” is to be rejected.)

Algorithm 5.1 Acceptance–rejection algorithm

1: Generate a uniform variate u1 ∈ [0, 1], and set x = a + (b − a)u1, which is in
[a, b].

2: Generate another uniform variate u2 ∈ [0, 1].
3: If

Mu2 ≤ fX (x), (5.76)

accept x , and reject otherwise.
4: Stop when the number of accepted variates x has reached a prescribed number.

The PDF corresponding to the accepted x will then be fX (x). Otherwise, return to
step 1.

The acceptance–rejection method described above, although simple, has two limita-
tions: first, the PDF fX (x) has to have finite support [a, b]; second, M(b − a) cannot be
too large. In order to overcome these restrictions, we generalize the method as follows.
For a given PDF fX (x), called the target density, we find another PDF fY (y), called the
proposal density, with readily available F−1

Y (y), and a constant c > 0 such that

fX (x) ≤ c fY (x), for all x . (5.77)

A generalized and improved algorithm takes the steps given in Algorithm 5.2. The
expected number of iterations to generate one acceptable x is E[N ] = c, whereas in
the original algorithm this quantity was E[N ] = M(b − a), which can be quite large.
The original acceptance–rejection method corresponds to choosing the proposal density
fY (y) = 1/(b − a) for y ∈ [a, b]. Thus, x = F−1

Y (u1) = a + (b − a)u1.
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Algorithm 5.2 Generalized and improved acceptance–rejection algorithm

1: Generate a uniform variate u1 ∈ [0, 1], and set x = F−1
Y (u1).

2: Generate another uniform variate u2 ∈ [0, 1], and set y = c fY (x)u2, which is
uniformly distributed over [0, c fY (x)].

3: If y ≤ fX (x), accept x . Otherwise, reject and go to step 1.
4: Stop when the number of accepted variates x has reached a prescribed number.

Otherwise, return to step 1.

Example 5.8: Acceptance–rejection method to generate a gamma variate. Consider
the gamma distribution discussed in Section 4.2.3. Choose the parameters λ = 1 and
β = 3/2:6

fX1,3/2(x) � x1/2e−x

√
π/2

, x ≥ 0. (5.78)

We choose an exponential distribution:

fYλ(y) = λ e−λy, y ≥ 0, (5.79)

where λ will be determined below. The ratio

fX1,3/2(x)

fYλ(y)
= 2√

πλ
x1/2e−(1−λ)x

is maximum when x = 1/2(1− λ); thus, we set

c = max

{
fX (x)

fY (x)

}
= 1

λ

√
2

π e(1− λ) .

E[N ] = c can be minimized by choosing λ = 2/3.
Thus, a gamma variate with (λ, β) = (1, 3/2) can be generated by Algorithm 5.3.

The expected number of iterations needed is

E[N ] = c = 3
√

3√
2π e

.

�

6 With the translation x = z/2, this distribution becomes the χ2 distribution with three degrees of freedom:

f
χ2

3
(z) = z1/2e−z/2

√
2π

, z ≥ 0.
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Algorithm 5.3 Acceptance–rejection algorithm to generate gamma variates

1: Generate a uniform variate u1 ∈ [0, 1] and set x = − 3
2 ln u1.

2: Generate a uniform variate u2 ∈ [0, 1].
3: If u2 <

√
2e
3 x1/2e−x/3, accept x . Otherwise, reject.

4: Stop when the number of accepted variates x has reached a prescribed number.
Otherwise return to step 1.

5.4.2.3 Composition methods
There are two types of “composition methods:” the first type applies to a case where the
desired distribution function is composed of simpler distribution functions; the second
is a case where the RV in question can be decomposed into simpler RVs.

Type 1: Suppose that the distribution F(x) is represented as the mixture of two
distributions F1(x) and F2(x):

F(x) = pF1(x)+ (1− p)F2(x). (5.80)

We can obtain a variate X drawn from the distribution F(x), by taking the following
two steps:

1. Generate a uniform variate u.
2. If u < p, set x equal to a variate drawn from the distribution F1(x); otherwise, draw

x from the other distribution F2(x).

This composite procedure is directly applicable to, for example, a mixed Gaussian
distribution and a hyperexponential distribution.

Type 2: Suppose that the distribution F(x) of RV X is such that the variable is repre-
sentable in terms of one or more independent RVs with simple distributions. A notable
example is a k-stage Erlang variate with mean 1/μ, which can be represented as the
sum of k independent exponential random variates with mean 1/kμ:

X = X1 + X2 + · · · + Xk . (5.81)

A more efficient procedure is obtained (Problem 5.20) by noting the following
representation of x :

x = −
ln

(
k∏

i=1
ui

)
kμ

, (5.82)

where u1, u2, . . . , uk are k independent uniform variates between zero and one. Neg-
ative binomial variates and chi-squared variates can be generated by this type of
composition method.
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5.4.3 Generation of normal (or Gaussian) variates7

Since the normal or Gaussian distribution is of sufficient importance in many simulation
studies, we will discuss two basic methods to generate normal variates.

5.4.3.1 Sum method
The distribution of the RV X of (5.81) approaches the normal or Gaussian distribution
by virtue of the CLT, as k →∞. This property of asymptotic normality holds for any
distributional forms of the component RVs {Xi } so long as their means and variances
are finite. Let us define a random variable S by

S = U1 +U2 + · · · +Un, (5.83)

where the Ui are independent RVs uniformly distributed in [0, 1]. Then, for large n,
the variable S is approximately normally distributed with mean n/2 and variance n/12.
Then the variable X defined by

X = (S − n
2 )σ√

n/12
+ μ (5.84)

approximates the normal variable with mean μ and variance σ 2. A convenient choice
is n = 12k2 with some integer k, since it eliminates the square-root term from the last
expression. However, this value of n truncates the distribution at ±6kσ = ±√3nσ lim-
its. Some of the old subroutine programs under the name “Gaussian random generator”
are based on this method with a fairly small size of n; thus, they are not appropriate
when one is concerned with the tail of the distribution.

5.4.3.2 Box–Muller method
As we shall show in Problem 5.22 (see also Section 7.5.1), if u1 and u2 are independent
uniform variates in [0, 1],

x = (−2 ln u1)
1/2 cos 2πu2 (5.85)

and

y = (−2 ln u1)
1/2 sin 2πu2 (5.86)

are independent normal variates sampled from the unit normal distribution N (0, 1).
The Box–Muller method is based on the above transformations and is much superior

to the simple sum method for generation of normal variates, but it takes considerably
more computation time, because of the logarithm, sine, and cosine functions involved.
A few clever techniques have been devised to reduce the computational steps required
of the original Box–Muller method. See [203] (pp. 653–657) for a further discussion on
improved methods for generation of normal variates and other general variates.

7 Some authors (e.g., Knuth [191]) use the term normal deviate instead of normal variate.
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5.5 Summary of Chapter 5

CDF of Y = g(X): FY (y) =
∫∞
−∞ I (x ∈ Dy) fX (x) dx (5.4)

where Dy = {x : g(x) ≤ y} (5.3)

PDF of Y = g(X): fY (y) =∑m(y)
i=1

fX (xi )|g′(xi )| (5.17)

where xi = g−1(y), i = 1, 2, . . . ,m(y) (5.16)
PDF of Z = X + Y : fZ (z) =

∫∞
−∞ fXY (z − y, y) dy (5.24)

= ∫∞−∞ fXY (x, z − x) dx (5.25)
Sum of independent RVs: fZ (z) = fX (z)� fY (z) (5.28)

FZ (z) =
∫∞
−∞ FX (z − y) d FY (y)

= ∫∞−∞ FY (z − x) d FX (x) (5.29)
FZ (z) = FX (z)� fY (z) = fX (z)�
FY (z)

(5.30)

Two functions of two RVs: U = g(X, Y ) and V = h(X, Y ) (5.38)
Inverse mapping: Xi = pi (U, V ) and Yi = qi (U, V ) (5.42)
Joint PDF of U and V : fU V (u, v) =∑m

i=1

∣∣∣J ( pi ,qi
u,v

)∣∣∣ fXY (xi , yi )

(5.52)

Jacobian matrix: J
(

pi ,qi
u,v

)
=
[

∂pi
∂u

∂pi
∂v

∂qi
∂u

∂qi
∂v

]
(5.49)

Jacobian of the inverse:
∣∣∣J ( pi ,qi

u,v

)∣∣∣ = ∣∣∣J ( g,h
x,y

)∣∣∣−1
(5.54)

Linear congruential generator: Zi = aZi−1 + c(mod m) (5.69)
Transform method for random

variate:
X = F−1(Y ), 0 ≤ Y ≤ 1 (5.72)

Acceptance–rejection method: Algorithm 5.1
Generalized A–R method: Algorithm 5.2
Box–Muller method for

N (0, 1):
x = (−2 ln u1)

1/2 cos 2πu2 (5.85)

y = (−2 ln u1)
1/2 sin 2πu2 (5.86)

5.6 Discussion and further reading

The topic of this chapter, namely the transformation of RVs, is treated to varying degrees
by different textbooks. Thomas [319] and Fine [105] devote one chapter as we do,
whereas Papoulis and Pillai [262] spend two chapters, and discuss more examples. A
majority of other books on probability treat this subject more tersely.

Discussion on random number generation can be found in [191] and many books
on simulation. Tezuka [318] provides a comprehensive introduction to this subject and
statistical tests that assess the quality of random number generation. The 1992 arti-
cle by Ferrenberg et al. [104] suggests that trinomial-type generators, which include a
large class of RNGs, are not adequate in large-scale simulation tasks. Some of these
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algorithms are used as “most advanced” generators. We should not overreact, how-
ever, to these findings, because the “defects” of the criticized generators may not be
a real problem in a small simulation task: a periodic pattern associated with such bad
generators may not appear in a small simulation because the simulation run may be
substantially shorter than such a period. Random number generation functions or pro-
grams available in MATLAB and other packages should be adequate for the majority of
simulation experiments.

5.7 Problems

Section 5.1: Function of one random variable

5.1∗ Half-wave rectifier. Let g(x) = x · u(x) represent the function of a half-wave
rectifier; i.e.,

g(x) =
{

x, x ≥ 0,
0, x < 0.

(5.87)

Find the distribution function FY (y) and the PDF fY (y) of the rectifier output Y = g(X)
in terms of the inputs FX (x) and fX (x).

5.2 Square law detector – continued. Continue to consider Example 5.2, in which
Y = g(X) = X2.

(a) Let X have a uniform distribution over [−1,+1]. Find the distribution function and
PDF of the square-law detector output Y .

(b) Let X be a Gaussian variable with zero mean and variance σ 2; i.e.,

FX (x) = �
( x

σ

)
and fX (x) = 1

σ
φ
( x

σ

)
, (5.88)

where �(u) and φ(u) are the distribution function and PDF of the unit normal
variable U defined by (4.46) and (4.41) in Section 4.2.4. Show that the distribution
function of the square-law detector output Y is given by

FY (y) =
[

2�

(√
y

σ

)
− 1

]
, y ≥ 0, (5.89)

and the corresponding PDF is given by

fY (y) = 1

σ
√

y
φ(
√

y/σ) = 1√
2πyσ

exp
(
− y

2σ 2

)
, y ≥ 0. (5.90)

Further show that the PDF of the normalized output defined by χ2
1 = Y/σ 2 is

given by

fχ2
1
(x) = x−1/2e−x/2

√
2π

, x ≥ 0, (5.91)
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which is known as the chi-square distribution8 with degree of freedom n = 1, as
will be discussed in Section 7.1.

5.3 Exponential-law detector. Consider a nonlinear detector that follows an expo-
nential law; i.e., g(x) = ex .

(a) Find the distribution function FY (y) and the PDF fY (y) of the detector output in
terms of the distribution function and PDF of the input variable X .

(b) Let X have an exponential distribution

FX (x) =
{

1− e−λx , x ≥ 0,
0, x < 0.

Find FY (y) and fY (y).

5.4 Cauchy distribution. Let X be uniformly distributed between [−π
2 ,

π
2 ]. Let Y =

tan X . Show that the PDF of Y is given by

fY (y) = 1/π

y2 + 1
, −∞ < y <∞, (5.92)

which is known as the Cauchy distribution with parameter unity.

5.5 Inverse of a random variable and the Cauchy distribution. Consider the case
where Y is the inverse of X ; i.e., Y = g(X) = 1/X .

(a) Find the PDF fY (y) in terms of fX (x).
(b) Suppose that X is a random variable with the following Cauchy distribution with

parameter α:

fX (x) = 1

πα
(

1+ x2

α2

) = α/π

x2 + α2 , −∞ < x <∞. (5.93)

Derive the PDF of Y .

Section 5.2: Function of two random variables

5.6∗ Leibniz’s rule.9 In deriving (5.23), we used a special case of Leibniz’s rule for
differentiation under the integral sign.

THEOREM 5.1 (Leibniz’s rule). The following rule holds for differentiation of a definite
integral, when the integration limits are functions of the differential variable:

d

dz

∫ b(z)

a(z)
h(z, y) dy = h(z, b(z))b′(z)− h(z, a(z))a′(z)+

∫ b(z)

a(z)

∂

∂z
h(z, y) dy.

(5.94)

8 Treat χ2
n as one symbol that represents a nonnegative RV.

9 Gottfried Wilhelm Leibniz (1646–1716) was a German mathematician. His last name is occasionally
spelled as Leibnitz.
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In particular, if h is a function of y only, the rule reduces to

d

dz

∫ b(z)

a(z)
h(y) dy = h(b(z))b′(z)− h(a(z))a′(z). (5.95)

�

(a) Define ∫ y

−∞
h(x) dx � H(y).

Then prove (5.95).
(b) Define ∫ y

−∞
h(z, x) dx � H(z, y) and

∂H(z, y)

∂y
� g(z, y).

Then prove (5.94).
(c) Alternative proof of (5.94). Consider a function G(a, b, c), where a, b, and c stand

for a(z), b(z), and c(z) respectively. By applying the chain rule to the function G,
we have

dG(a, b, c)

dz
= ∂G

∂a
a′(z)+ ∂G

∂b
b′(z)+ ∂G

∂c
c′(z). (5.96)

Consider a special case

c(z) = z and G(a, b, c) �
∫ b

a
h(z, y) dy.

Then prove (5.94).

5.7 Sum of uniform variables. Let X and Y be independent uniform RVs.

(a) Let both RVs be uniformly distributed in the unit interval (0, 1]. Find the PDF of
Z = X + Y .

(b) Suppose that X is uniformly distributed over (0, a] and Y is uniformly distributed
over (0, b], 0 < a ≤ b. Find the PDF of Z .

5.8 Sum of exponential variables. Let X and Y be independent exponential variables
with rate parameters λ and μ, respectively:

fX (x) = λ e−λx u(x) and fY (y) = μ e−μy · u(y),

where u(·) is the unit step function defined earlier.

(a) Find the PDF of Z = X + Y .
(b) What form does fZ (z) take when λ = μ?

5.9 Difference of two RVs. Let Z = X − Y . Express the PDF of Z in terms of
the joint PDF fXY (x, y). How can this be simplified when X and Y are statistically
independent?
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5.10 Ratio of two RVs. Given two RVs X and Y with the joint PDF fXY (x, y), define
Z = X/Y .

(a) Show that the PDF of Z is given by

fZ (z) =
∫ ∞

−∞
|y| fXY (yz, y) dy, −∞ < z <∞. (5.97)

(b) Assume that X and Y are both nonnegative variables. Show that the PDF of Z =
X/Y is given by

fZ (z) =
{ ∫∞

0 fX,Y (yz, y) dy, z > 0,
0, z ≤ 0.

(5.98)

5.11 Product of two RVs. Show that Z = XY has the PDF given by

fZ (z) =
∫ ∞

−∞
|x |−1 fXY (x, z/x) dx . (5.99)

5.12 Bivariate normal distribution and Cauchy distribution. Consider the bivariate
normal variables X = (X1, X2) defined by (4.113) of Section 4.3.1:

fX1,X2(x1, x2) = 1

2πσ1σ2

√
1− ρ2

exp

[
−1

2
Q(x1, x2)

]
, (5.100)

where

Q(x1, x2)= 1

1− ρ2

[(
x1−μ1

σ1

)2

− 2ρ

(
x1−μ1

σ1

)(
x2−μ2

σ2

)
+
(

x2−μ2

σ2

)2
]
.

(5.101)

(a) Show that the PDF of Z = (X1 − μ1)/(X2 − μ2) is given by the Cauchy
distribution

fZ (z) = 1

πα
[
1+ (z−μ)2

α2

] , −∞ < z <∞, (5.102)

whereμ = ρσ1/σ2 and α = σ1
√

1− ρ2/σ2. See also Problem 5.4 and Section 8.2.5
for a discussion on the above Cauchy distribution.
Hint: Start with the simplest case first and then generalize the result to more general
cases; i.e., (i) μ1 = μ2 = ρ = 0 and σ1 = σ2 = σ ; (ii) μ1 = μ2 = ρ = 0 and σ1 �=
σ2; (iii) μ1 = μ2 = 0, ρ �= 0, and σ1 �= σ2; (iv) no restriction.

(b) Show that the distribution function is given by

FZ (z) = 1

2
+ 1

π
tan−1 z − μ

α
. (5.103)

5.13 Independent normal distribution and exponential distribution. Let X1 and
X2 be independent normal variables with zero mean and common variance σ 2. Show
that Z = X2

1 + X2
2 is exponentially distributed with mean 2σ 2:
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fZ (z) = 1

2σ 2 e−z/2σ 2
u(z). (5.104)

5.14 Maximum of two RVs. Let

Z = max{X, Y } =
{

X, if X ≥ Y,
Y, otherwise.

(5.105)

(a) Find the domain Dz and sketch the region in the X–Y plane.
(b) Show that the distribution function of Z is given by

FZ (z) = FXY (z, z). (5.106)

(c) Show that if X and Y are independent, the PDF of Z is

fZ (z) = FX (z) fY (z)+ fX (z)FY (z). (5.107)

5.15 Minimum of two RVs. Let

Z = min{X, Y } =
{

X, if X ≤ Y,
Y, otherwise.

(5.108)

(a) Find the domain Dz and sketch the region in the X–Y plane.
(b) Show that the distribution function of Z is given by

FZ (z) = FX (z)+ FY (z)− FXY (z, z). (5.109)

(c) Find the PDF fZ (z) when X and Y are independent.
(d) Let X and Y be both exponentially distributed with rate parameters λ and μ

respectively. Show that Z is also exponentially distributed.

Section 5.3: Two functions of two random variables and the Jacobian matrix

5.16∗ Maximum and minimum of two RVs. Let U = min{X, Y } and V =
max{X, Y }.
(a) Find the domain Du,v and sketch the region in the X–Y plane.
(b) Show that

FU V (u, v) =
{

FXY (u, v)+ FXY (v, u)− FXY (u, u), v ≥ u,
FXY (v, v), v < u.

(5.110)

(c) Find the marginal distribution functions FU (u) and FV (v) from the above and verify
the solutions obtained in Problems 5.14 and 5.15.

(d) Assume X and Y are statistically independent and are uniformly distributed in the
intervals (0, a) and (0, b) respectively. Find the PDF fU V (u, v).

5.17 Area of a triangle. Derive the formula (5.47).
Hint: Consider the simpler case first by setting P1 = (0, 0), and represent the area of
the triangle O P2 P3 as that of a rectangle minus three triangles.
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5.18 Inverse of Jacobian matrix. Prove the relationship (5.54) between the Jacobian
matrices of the forward mapping and the inverse mapping.

Section 5.4: Generation of random variates for Monte Carlo simulation

5.19∗ Use of a rejection method. Consider the following PDF:

fX (x) =
{

2x, 0 ≤ x ≤ 1,
0, elsewhere.

Use the acceptance–rejection method to generate variates according to this distribution.

5.20∗ Erlang variates. Show that the relation (5.82) holds. Write a program to generate
Erlang variates.

5.21 Poisson variates. Suppose that we generate a sequence of uniform variates
U1,U2, . . . . Let X be defined as an integer variable such that

X+1∏
i=1

Ui < e−λ ≤
X∏

i=1

Ui .

Show that X is Poisson distributed with mean λ.

5.22∗ The polar method for generating the Gaussian variate. Derive formulas (5.85)
and (5.86) by following the following steps. Transform the pair (X1, X2) into the polar
coordinates (R,�) according to

X1 = R cos�, X2 = R sin�,

where X1 and X2 are independent RVs, both of which are from N (0, 1).

(a) Show that the distribution function of R is given by

FR(r) = 1− exp

(
−r2

2

)
and � is a uniform RV from U [0, 2π).

(b) Set

Y1 = 1− exp

(
− R2

2

)
, Y2 = �

2π
.

What are the distributions of the RVs Y1 and Y2?



6 Fundamentals of statistical
data analysis

The theory of statistics involves interpreting a set of finite observations as a sample
point drawn at random from a sample space. The study of statistics has the following
three objectives: (i) to make the best estimate of important parameters of the popula-
tion; (ii) to assess the uncertainty of the estimate; and (iii) to reduce a bulk of data to
understandable forms. In much the same way as an examination of the properties of
probability distribution functions forms the basic theory of probability, the foundation
of statistical analysis is to examine the empirical distributions and certain descriptive
measures associated with them. This chapter provides basic concepts of statistical data
analysis.

6.1 Sample mean and sample variance

Let us consider a situation where we select randomly and independently n samples from
a population whose distribution has mean μ and variance σ 2. The set of such samples,
denoted as (x1, x2, . . . , xn), is referred to as a random sample of size n. Random sam-
ples are an important foundation of statistical theory, because a majority of the results
known in mathematical statistics rely on assumptions that are consistent with a random
sample. Let us start with a simple question: How can we estimate the population mean
μX and population variance σ 2

X from the random sample (x1, x2, . . . , xn)?
The sample mean (also called the empirical average) x is defined as

x = 1

n

n∑
i=1

xi . (6.1)

Each sample xi can be viewed as an instance or realization of the associated RV Xi .
Thus, the sample mean x is an instance of the sample mean variable X defined by

X = 1

n

n∑
i=1

Xi . (6.2)

In fact the term “sample mean” is often used in statistical theory to describe the variable
X , but the quantity we can actually observe is its instance x .
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Taking the expectation of both sides in (6.2), we have

E[X ] = 1

n

n∑
i=1

E[Xi ]. (6.3)

Since X1, X2, . . ., Xn are independent and identically distributed (i.i.d.) RVs, we have
E[X1] = E[X2] = · · · = E[Xn] = μX . Substituting these values into (6.3), we find
that the expectation of the sample mean variable satisfies

E[X ] = μX , (6.4)

which asserts that x of (6.1) is an unbiased estimate of μX . An unbiased estimate is
one that is, on the average, right on target.

Consider the variance of X :

Var [X ] = E[(X − E[X ])2], (6.5)

where X − E[X ] = X − μX can be rewritten as

X − E[X ] = 1

n

n∑
i=1

(Xi − μX ) = 1

n

n∑
i=1

Yi , (6.6)

where

Yi � Xi − μX , i = 1, 2, . . . , n.

Therefore,

Var [X ] = E

⎡⎣(1

n

n∑
i=1

Yi

)2
⎤⎦ = 1

n2

n∑
i=1

E[Y 2
i ] +

1

n2

n∑
i=1

n∑
j=1( j �=i)

E[Yi Y j ]. (6.7)

Since the random variables {Yi ; 1 ≤ i ≤ n} are statistically independent with zero mean
and variance σ 2

X , we have

Var [X ] = σ 2
X

n
. (6.8)

Thus, the variance of the sample mean variable is the population variance divided by
the sample size.

The deviations of the individual observations from the sample mean provide infor-
mation about the dispersion of the xi about x . We define the sample variance
s2

x by

s2
x � 1

n − 1

n∑
i=1

(xi − x)2. (6.9)
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This quantity can be viewed as an instance of the sample variance variable

S2
X � 1

n − 1

n∑
i=1

(Xi − X)2, (6.10)

which is also commonly called the sample variance. We find, after some rearrangement
(Problem 6.1),

S2
X =

1

n

n∑
i=1

Y 2
i −

1

n(n − 1)

n∑
i=1

n∑
j=1( j �=i)

Yi Y j . (6.11)

Taking expectations, we have

E[S2
X ] =

1

n

n∑
i=1

E[Y 2
i ] = σ 2

X . (6.12)

The reason for using n − 1 rather than n as the divisor in (6.9) is to make E[S2
X ] equal

to σ 2
X ; that is, to make s2 an unbiased estimate of σ 2

X . The positive square root of the
sample variance, sx , is called the sample standard deviation.

6.2 Relative frequency and histograms

When the observed data takes on discrete values, we can just count the number of occur-
rences for the individual values. Suppose that the sample size n is given and k(≤ n)
distinct values exist. Let n j be the number of times that the j th value is observed,
1 ≤ j ≤ k. Then the fraction

f j = n j

n
, j = 1, 2, . . . , k, (6.13)

is, as defined in (2.1), the relative frequency of the j th value.
When the underlying random variable X is a continuous variable, we often adopt the

method of “grouping” or “classifying” the data: the range of observations is divided
into k intervals, called class intervals, at points c0, c1, c2, . . ., ck . Let us designate the
interval (c j−1, c j ] as the j th class, 1 ≤ j ≤ k. Note that the lengths of the class intervals


 j � c j − c j−1, j = 1, 2, . . . , k,

need not be equal. Let n j denote the number of observations that fall in the j th class
interval. Then the relative frequency of the j th class takes the same form as (6.13).
The grouped distribution may be represented graphically as the following “staircase
function” in an (x, h)-coordinate system:

h(x) = f j


 j
= n j

n
 j
, for x ∈ (c j−1, c j ], j = 1, 2, . . . , k. (6.14)



6.3 Graphical presentations 141

Such a diagram is called a histogram and can be regarded as an estimate of the PDF
of the population. If the class lengths 
 j are all the same, the shape of the histogram
remains unchanged whether we use the relative frequency of the classes { f j } or the
frequency counts of the classes {n j } as the ordinate. Such diagrams are also called
histograms.

The choice of the class intervals in the histogram representation is by no means trivial.
Certainly, we should choose them in such a way that the characteristic features of the
distribution are emphasized and chance variations are obscured. If the class lengths
are too small, chance variations dominate because each interval includes only a small
number of observations. On the other hand, if the class lengths are too large, a great deal
of information concerning the characteristics of the distribution will be lost.

Let {xk : 1 ≤ k ≤ n} denote n observations in the order observed and let {x(i) : 1 ≤
i ≤ n} denote the same observations ranked in order of magnitude. The frequency H(x)
of observations that are smaller than or equal to x is called the cumulative relative
frequency, and is given by

H(x) =
⎧⎨⎩

0, for x < x(1),
i
n , for x(i) ≤ x < x(i+1), i = 1, 2, . . . , n − 1
1, for x ≥ x(n),

, (6.15)

which is the empirical analog of the CDF FX (x). If we use the unit step function

u(x) =
{

1, for x ≥ 0,
0, for x < 0,

(6.16)

the above H(x) can be more concisely written as

H(x) = 1

n

n∑
i=1

u(x − x(i)) = 1

n

n∑
k=1

u(x − xk), −∞ < x <∞. (6.17)

Interestingly enough, use of the unit step function makes it unnecessary to obtain the
rank-ordered data in order to find H(x). The graphical plot of H(x) is a nondecreasing
step curve, which increases from zero to one in “jumps” of 1/n at points x = x(1),
x(2), . . ., x(n). If several observations take on the same value, the jump is a multiple
of 1/n.

When grouped data are presented as a cumulative relative frequency distribution, it
is usually called the cumulative histogram. The cumulative histogram is far less sensi-
tive to variations in class lengths than the histogram. This is because the accumulation is
essentially equivalent to integration along the x-axis, which filters out the chance vari-
ations contained in the histogram. The cumulative relative frequency distribution or the
cumulative histogram is, therefore, quite helpful in portraying the gross features of data.

6.3 Graphical presentations

Reducing primary data to the sample mean, sample variance, and histogram can reveal
a great amount of information concerning the nature of the population distribution. But
sometimes important features of the underlying distribution are obscured or hidden by
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the data reduction procedures. In this section we will discuss some graphical methods
that are often valuable in an exploratory analysis of measurement data. They are: (a) his-
tograms on the probability or log-normal probability papers; (b) the survivor functions
on log-linear and log-log papers; and (c) the dot diagram and correlation coefficient.

6.3.1 Histogram on probability paper

6.3.1.1 Testing the normal distribution hypothesis
As we stated in Section 4.2.4, RVs occurring in physical situations often have the nor-
mal (or Gaussian) distribution, or can at least be treated approximately as normal RVs.
As we shall see in subsequent sections, most statistical analysis techniques are based on
the assumption of normality of measured variables. Thus, when we collect measurement
data and obtain some empirical distribution, the first thing we might do is to exam-
ine whether the underlying distribution is normal. A fractile diagram1 (Hald [139]) is
useful for this purpose. For a given distribution function F(x)

P = F(x) (6.18)

provides the dependence of the cumulative distribution on the variable x . The inverse
function

xP = F−1(P) (6.19)

gives the value of the variable x that corresponds to the given cumulative probability
P . The value xP is called the P-fractile. Some authors use the terms percentile or
quantile instead of the term fractile.

The distribution function of the standard normal distribution N (0, 1) is often
denoted by �(·) as defined in (4.46):

�(u) = 1√
2π

∫ u

−∞
exp

(
− t2

2

)
dt. (6.20)

Then the fractile, u P , of the distribution N (0, 1) is derived as

u P = �−1(P). (6.21)

Suppose that for a given cumulative relative frequency H(x) we wish to test whether
this empirical distribution resembles a normal distribution; that is, to test whether

H(x) ∼= �
(

x − μ
σ

)
(6.22)

holds for some parametersμ and σ , where the symbol∼=means “to have the distribution
of.” Testing this relation is equivalent to testing the relation

uH(x) ≈ x − μ
σ

. (6.23)

1 This term should not be confused with a similar term “fractal diagram” known in fractal geometry.
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According to the definition of H(x), the plot of u H(x) versus x forms a step (or staircase)
curve:

u H(x) =
⎧⎨⎩
−∞, for x < x(1),
ui/n, for x(i) ≤ x < x(i+1), i = 1, 2, . . . , n − 1,
∞, for x ≥ x(n).

(6.24)

Therefore, the staircase function plot

u = u H(x) (6.25)

provides an estimate of the straight line

u = x − μ
σ

(6.26)

in the same way that the cumulative frequency distribution y = H(x) forms an estimate
of the CDF y = F(x). The graphical plot of the function (6.25) in an (x, u)-coordinate
system is called the fractile diagram.

Instead of plotting (x, u P) on ordinary graph paper, we may plot (x, P) directly on
special graph paper called probability paper. On the ordinate axis of a probability
paper, the corresponding values of P = �(u) are marked, rather than the u values.
Probability paper is used in the same manner as other special graph papers, such as
logarithmic paper. Figure 6.1 (a) shows a probability paper with step curve u = uH(x),
based on n = 50 sample points drawn from a normal distribution with zero mean and
unit variance. Instead of the step curve, we often plot n points (x(i), (i − 1

2 )/n) which
are situated at the midpoints of the vertical parts of the step curve. The advantages are
that it is easier to plot n points than to draw a step curve, and that possible systematic
deviations from a straight line are more easily detected from this dot diagram. The result
of this procedure is shown in Figure 6.1 (b).

If the distribution in question is normal, the points of the fractile diagrams should
vary randomly about a straight line. In a small sample, say n < 20, the permissible
random variation of points in the fractile diagram is so large that it is generally difficult
to examine whether systematic deviations from a straight line exist.

6.3.1.2 Testing the log-normal distribution hypothesis
Some random variables we deal with are often modeled by a log-normal distribution
(see Section 7.4). In order to test whether a log-normal distribution fits given empir-
ical data, we should plot the step curve or dot diagram on log-normal paper, which
is a simple modification of the above probability paper. The ordinate axis is the same
as in the probability paper, i.e., u P = �−1(P), whereas the horizontal axis is changed
from the linear scale (in the probability paper) to the logarithmic scale, i.e., log10 x =
log x/ log 10.2 If the empirical data exhibits a straight line on this log-normal probabil-
ity paper, then a log-normal distribution should be a good candidate to represent this
variable. In Figure 6.2 (a) and (b) we plot the step curve and dot diagram respectively

2 We use log to mean the natural logarithm; i.e., loge or ln.
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Figure 6.1 The fractile diagram of normal variates: (a) step curve; (b) dot diagram.

of a simulated set of n = 50 sample points xi , where xi = eyi and yi is drawn from
N (2, 4); i.e., μY = 2 and σY = 2. From the results to be discussed in Section 7.4, we

find that μX = eμY+(σ 2
Y /2) = e4 and σ 2

X = e2μY+σ 2
Y

(
eσ

2
Y − 1

)
= e8(e4 − 1).

6.3.2 Log-survivor function curve

Suppose that a random variable X represents the life of some item (e.g., light-bulb) or
the interval between failures of some machine. Given the distribution function FX (x) of
the RV X , the probability that X survives time duration t ,

SX (t) � P[X > t] = 1− FX (t), (6.27)
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Figure 6.2 The fractile diagram of log-normal variates: (a) step curve; (b) dot diagram.

is often called the survivor function, or the survival function in reliability theory. It
is equivalent to the complementary distribution function Fc

X (t) defined earlier.
The natural logarithm of (6.27) is known as the log-survivor function or the log-

survival function (Cox and Lewis [71]):

log SX (t) = log(1− FX (t)). (6.28)

The log-survivor function will show the details of the tail end of the distribution more
effectively than the distribution itself.
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If, for instance, FX (x) is an exponential distribution with mean 1/α, then its log-
survivor function is a straight line: SX (t) = log e−αx = −αx .

If FX (x) is a mixed exponential distribution (or hyperexponential distribution)

FX (x) = π1(1− e−α1x )+ π2(1− e−α2x ), α1 > α2, π1 + π2 = 1, (6.29)

then its log-survivor function has two asymptotic straight lines, since

log SX (t) = log(π1e−α1t + π2e−α2t )

≈
{ −α1t + logπ1, for small t,
−α2t + logπ2, for large t.

(6.30)

The sample log-survivor function or empirical log-survivor function is similarly
defined as

log[1− H(t)], (6.31)

where H(t) represents the cumulative relative frequency (ungrouped data) or the
cumulative histogram (grouped data). In the ungrouped case we find from (6.15) that

log

(
1− i

n

)
, 1 ≤ i ≤ n, (6.32)

should be plotted against x(i), where the subscript (i) represents the rank as in (6.15).
In order to avoid difficulties at i = n, we may sometimes modify (6.32) into

log

(
1− i

n + 1

)
, 1 ≤ i ≤ n. (6.33)

As an example, Figure 6.3 plots the log-survivor function using a sample of size 1000
drawn from the above hyperexponential distribution with parameters

π1 = 0.0526, π2 = 1− π1, α1 = 0.1, and α2 = 2.0. (6.34)

Out of the 1000 samples taken, 18 sample points that exceed x = 10 fall outside the
scale of the figure; hence they are not shown. The asymptotes of (6.30) can be easily
recognized from this log-survivor function.

Characteristically, the log-survivor function of the mixed exponential distribution
(6.29) is convex with a linear tail. Observations of (or departures from) such char-
acteristic shapes are used to postulate a functional form for a distribution. See Gaver
et al. [115] and Lewis and Shedler [225].

6.3.2.1 Testing the Pareto distribution hypothesis
As discussed in Section 4.2.6, a simple way to examine whether the tail of an empirical
distribution fits the power law of the Pareto distribution is to plot the log-survivor
function on paper with the log-log scale, whereas the log-survivor function curve
discussed above is plotted in the log-linear scale.



6.3 Graphical presentations 147

0 2 4 6 8 10
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

t

lo
g

[1
−H

(t
)]

Figure 6.3 The log-survivor function of a mixed-exponential (or hyperexponential) distribution with π1 = 0.0526,
π2 = 1− π1, α1 = 0.1, and α2 = 2.0.
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Figure 6.4 The log-survivor function of a mixed Pareto distribution, β1 = β2 = 1, π2 = 1− π1,
α1 = 1.5, α2 = 5, and π1 = 0.2.

Analogous to the mixed exponential distribution, a mixed Pareto distribution is
considered:

SX (t) = π1
β
α1
1

tα1
+ (−π1)

β
α2
2

tα2
, 0 < max{β1, β2} ≤ t. (6.35)

As an example, Figure 6.4 plots the log-survivor function of 500 samples drawn from
the mixed Pareto distribution with β1 = β2 = 1, α1 = 1.5, α2 = 5, and π1 = 0.2.
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6.3.3 Hazard function and mean residual life curves

Other graphical plots that can be derived from the histogram or distribution function are
the hazard function curve and the mean residual life curve. These notions are also
related to reliability theory and renewal process theory, which will be briefly discussed
in Section 14.3.

Suppose that X represents the life of some item, with the distribution function FX (x).
The function defined by

hX (t) = fX (t)

SX (t)
= fX (t)

1− FX (t)
(6.36)

is called the hazard function or the failure rate, because hX (t) dt represents the prob-
ability that the life will end in the interval (t, t + dt], given that X has survived up to
age t ; i.e., X ≥ t . If X represents the service time of a customer, as in queueing theory,
hX (t) is called the completion rate function.

The hazard functions of the exponential, Weibull, Pareto, and log-normal distribu-
tions are given as follows:

h X (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ, t ≥ 0, for exponential,
α
β

(
t
β

)α−1
, t ≥ 0, for Weibull,

α
t , t ≥ β, for Pareto,

t−1 exp

[
− (log t−μY )

2

2σ2
Y

]
∫∞

log t exp

[
− (u−μY )

2

2σ2
Y

]
du
, t > 0, for log-normal,

(6.37)

where in the log-normal distribution the parameters μY and σY are given as

μY = logμX − 1

2
log

(
1+ σ 2

X

μ2
X

)
and

σ 2
Y = log

(
1+ σ 2

X

μ2
X

)
.

From (6.36) we can express the survivor function in terms of the hazard function:

SX (x) = e−
∫ x

0 hX (t) dt , x ≥ 0, (6.38)

from which we have

h X (t) = −d log SX (t)

dt
, t ≥ 0. (6.39)

The last equation, of course, could have been readily derived from (6.36).
Given that the service time variable X is greater than t , we call the difference

R = X − t (6.40)
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Figure 6.5 The mean residual life curves of a Pareto distribution with α = 3.0 and β = 1.0, and a Weibull
distribution with α = 1.5 and β = 1.0.

the residual life conditioned on X > t . Then the mean residual life function is
given by

RX (t) = E[R|X > t] =
∫∞

t SX (u) du

SX (t)
. (6.41)

At t = 0, the mean residual life becomes

RX (0) =
∫ ∞

0
SX (u) du = E[X ], (6.42)

as expected. Figure 6.5 shows mean residual life curves of a Pareto distribution and a
Weibull distribution.

6.3.4 Dot diagram and correlation coefficient

In analyzing a simulation model or an operational system, we usually measure a number
of variables, and we wish to find possible statistical associations among them. Thus, the
search for correlations between two or more quantities is one of the most important
functions in the output analysis of the measurement and evaluation process. A typical
method of graphically examining correlations between two variables X and Y based on
n observations of the pair

(xi , yi ), 1 ≤ i ≤ n, (6.43)

is to plot the points (xi , yi ) one by one as coordinates. Such a diagram is called a dot
or scatter diagram. The density of dots in a given region is proportional to the relative
frequency of the pairs (X, Y ) in the region.
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Example 6.1: Scatter diagram of Internet distances [134, 364]. The approximate geo-
graphic distance between a pair of Internet hosts can be inferred by sending probe
packets between the two hosts and measuring the round-trip delays experienced by the
probes. The relationship between geographic distance g and round-trip delay d from a
given Internet host to Internet hosts can be characterized by a scatter diagram consist-
ing of points (g, d). Owing to the inherent randomness in round-trip delays over the
Internet, delay measurements taken between a given pair of hosts separated by a fixed
geographic distance g at different times yield different delays d.

The scatter diagram in Figure 6.6 was obtained by sending probe packets from a
host at Stanford University to 79 other hosts on the Internet across the USA [364]. The
line labeled baseline provides a lower bound on the d as a function of g based on the
observation that the packet propagation speed over the Internet is at most the speed
of light through an optical fiber. If the refractive index of the fiber is denoted by η,
the propagation speed of the optical signal is v = c/η, where c is the speed of light in
vacuo. Typically, the value of η is slightly less than 1.5, so we make the approxima-
tion v ≈ 2c/3. If the round-trip delay between a pair of hosts is measured to be d, the
corresponding (one-way) geographical distance is upper bounded by ĝ = vd/2 ≈ cd/3.
When the unit of time is milliseconds and the unit of geographical distance is kilometers,
c ≈ 300 km/ms, so d and ĝ can be related approximately by

d ≈ 1

100
ĝ, (6.44)

which is the equation of baseline in Figure 6.6.
Since packets generally traverse multiple hops between two hosts and experience

queueing and processing delays at each hop, the measured round-trip delay will
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Figure 6.6 Scatter diagram of delay measurements from Internet host at Stanford University to 79 other
hosts across the USA [364].
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typically be much larger than the delay predicted by the equation of the baseline
in (6.44). Gueye et al. [134] propose a tighter linear bound determined by solving a
linear programming problem that minimizes the slope and y-intercept of the line subject
to the constraints imposed by the set of scatter points. This deterministic bound corre-
sponds to the line labeled bestline in Figure 6.6. An alternative approach that retains
more of the statistical information captured by the scatter points is discussed in [364].

The most frequently used measure of statistical association between a pair of vari-
ables is the correlation coefficient. For a given pair of random variables X and Y , the
covariance of X and Y , written Cov[X, Y ] or σXY , is defined as

σXY � Cov[X, Y ] = E[(X − μX )(Y − μY )] = E[XY ] − μXμY . (6.45)

We say X and Y are uncorrelated if σXY = 0.
If X and Y are statistically independent, then they are uncorrelated, but the converse

is not true: the condition σXY = 0 does not imply that X and Y are independent (see
Problem 6.15). The correlation coefficient ρXY between X and Y is defined as

ρXY = σXY

σXσY
. (6.46)

The correlation coefficient always satisfies the condition

− 1 ≤ ρXY ≤ 1. (6.47)

We say that X and Y are properly linearly dependent if there exist nonzero
constants a and b such that aX − bY is a constant c; that is,

P[aX − bY = c] = 1. (6.48)

Therefore,

Var[aX − bY − c] = 0, (6.49)

from which we have

ρXY = +1 or − 1 (6.50)

depending on whether ab is positive or negative. Conversely, if ρ = ±1, then it implies
(Problem 6.17) that

P

[
∓ (X − μX )

σX
+ Y − μY

σY
= 0

]
= 1. (6.51)
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The sample covariance of the two variables based on observations {(xi , yi ); 1 ≤ i ≤ n}
is defined as

sxy = 1

n − 1

n∑
i=1

(xi − x)(yi − y)

= 1

n − 1

n∑
i=1

xi yi − nx y

n − 1
,

(6.52)

where x and y are the sample means of {xi } and {yi } respectively. The sample
correlation coefficient is defined accordingly:

rxy = sxy

sx sy
, (6.53)

where s2
x and s2

y are the sample variances of {xi } and {yi } respectively.

6.4 Summary of Chapter 6

Sample mean: x = 1
n

∑n
i=1 xi (6.1)

Variance of the sample mean: Var[X ] = σ 2
X

n (6.8)
Sample variance: s2

x � 1
n−1

∑n
i=1(xi − x)2 (6.9)

Unbiasedness of the sample variance: E[S2
X ] = σ 2

X (6.12)
Relative frequency: f j = n j/n, j = 1, 2, . . . , k (6.13)

Histogram: h(x) = f j

 j
, for x ∈ (c j−1, c j ] (6.14)

Fractile diagram: (x, u HX (x)) (6.24)
Log-survivor function: log SX (t) = log(1− FX (t)) (6.28)
Sample log-survivor: log(1− HX (t)) (6.31)
Hazard function: h X (t) = fX (t)

SX (t)
= fX (t)

1−FX (t)
(6.36)

Mean residual life function: RX (t) = E[R|X > t] =
∫∞

t SX (u) du
SX (t)

(6.41)

Dot diagram: (xi , yi ); 1 ≤ i ≤ n (6.43)
Covariance: σXY = E[XY ] − μXμY (6.45)
Uncorrelated if: σXY = 0
Correlation coefficient: ρXY = σXY

σXσY
(6.46)

Sample correlation coefficient: rxy = sxy
sx sy

(6.53)

6.5 Discussion and further reading

Most textbooks on probability theory and mathematical statistics do not seem to deal
with graphical presentations of real data. We consider that this is an unfortunate state
of affairs. Various types of graphical presentations of collected data should be explored
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before we can narrow down proper directions of mathematical modeling or analysis of
the system in question.

Hald [139] seems to be one of the few textbooks that discusses the fractile diagram.
A monograph by Cox and Lewis [71] presents several empirical log-survivor functions
as well as scatter diagrams. Much of the material given in this chapter is taken from the
first author’s earlier book [197] on system modeling and analysis, in which additional
examples of graphical plots based on computer performance data are found.

The exploratory data analysis (EDA) approach developed by Tukey [328] and oth-
ers indeed exploits various graphical techniques as well as quantitative techniques in
analyzing data to formulate plausible hypotheses. Two graphical techniques introduced
by Tukey are the box plot and the stem-and-leaf diagram. A box plot, also known
as a box-and-whiskers plot, graphically depicts the sample minimum, lower quartile,
medium, upper quartile, and sample maximum, and may also indicate outliers of a data
set. A stem-and-leaf plot, also called a stemplot, tabulates the data in ascending order in
two columns. The first consists of the stems of the data set in ascending order, while the
second consists of the leaves corresponding to each stem. Typically, a leaf contains the
last digit of the associated sample value while the stem contains the remaining digits.
Exploratory data analysis complements the conventional statistical theory, which places
more emphasis on formal testing of a hypothesis and estimation of model parameters,
two subjects to be studied in Chapter 18.

6.6 Problems

Section 6.1: Sample mean and sample variance

6.1∗ Derivation of (6.11). Derive (6.11)

6.2 Recursive formula for sample mean and variance. Let xi and s2
i be the sample

mean and sample variance based on data (x1, x2, . . . , xi ), where i ≤ n. Then the last
value of the sequence – that is, xn and s2

n – are the desired quantities:

x = xn and s2 = s2
n .

(a) Derive the following recursive formula for the sample mean:

xi = xi−1 + xi − xi−1

i
, i ≥ 1

with the initial value

x0 = 0.

(b) Similarly, show the recursive formula for the sample variance:

s2
i =

(
i − 2

i − 1

)
s2
i−1 +

(xi − xi−1)
2

i
, i > 1,
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with the initial values

s2
0 = s2

1 = 0.

Section 6.2: Relative frequency and histograms

6.3 Expectation and variance of the histogram. Consider the histogram value h(x)
in the j th class interval x ∈ (c j−1, c j ] given by (6.14), which we denote as h j (x), where
x = (x1, x2, . . . , xn) is the n random samples. Then h j (X) is a random variable, where
the argument x is replaced by the corresponding RV X = (X1, X2, . . . , Xn).

(a) Show that the expectation of the RV h j (X) is given by

E[h j (X)] = FX (c j )− FX (c j−1)


 j
≈ fX (c j ).

(b) Show that the variance of h j (X) is

Var[h j (X)] = [FX (c j )− FX (c j−1)][1− FX (c j )+ FX (c j−1)]
n
2

j

≈ fX (ci )

n
 j
.

6.4 Expectation and variance of the cumulative histogram. Find expressions for
the expectation and variance of Hj (the cumulative histogram in the j th interval) in
terms of the underlying distribution function FX (x). Explain why the shape of the
cumulative histogram is rather insensitive to the choice of class lengths {
 j }.
Section 6.3: Graphical presentations

6.5 Log-survivor function curve of Erlang distributions. Plot the sample log-
survivor function by generating 1000 values of a random variable X that has the
two-stage Erlang distribution of mean one. Do the same for the four-stage Erlang
distribution.
Hint: To generate samples drawn from the k-stage Erlang distribution, apply the trans-
form method of Example 5.7 in Section 5.4.2 to generate k samples drawn from an
exponential distribution.

6.6∗ Log-survivor functions and hazard functions of a constant and uniform RVs.
Find the expression for the log-survivor function and the completion rate function, when
the service time is

(a) constant a;
(b) uniformly distributed in [a, b].

6.7 Hazard function and distribution functions. Show that the distribution function
FX (x) is given in terms of the corresponding hazard function hX (x) as follows:

FX (x) = 1− e−
∫ x

0 h X (t) dt , x ≥ 0, (6.54)
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and hence

fX (x) = h X (x)e
− ∫ x

0 h X (t) dt . (6.55)

6.8 Hazard function of a k-stage hyperexponential distribution. Consider the
k-stage hyperexponential (or mixed exponential) distribution defined in (4.166) of
Chapter 4. Show that its hazard function h X (t) is monotone decreasing. Find
limt→∞ h X (t).

6.9 Hazard function of the Pareto distribution. Find the hazard function of the
Pareto distribution.

6.10 Hazard function of the Weibull distribution. The Weibull distribution is often
used in modeling reliability problems.

(a) Find the hazard function h X (t) of the standard Weibull distribution. What functional
form does hX (t) take for α = 1 and α = 2?

(b) Plot the hazard function of the standard Weibull distribution for α = 0.1, 0.5, 1, 2,
and 5, and confirm that they agree with the curves of Figure 4.5.

6.11∗ Mean residual life function and the hazard function. Show that the mean
residual life function RX (t) is a monotone-decreasing function if and only if the hazard
function hX (t) is monotone increasing.
Hint: Consider the conditional survivor function of R = X − t , given that X is greater
than t , defined by

SX (r |t) � P[R > r |X > t], (6.56)

and find its relations with the hazard function hX (t) and the mean residual life function.

6.12∗ Conditional survivor and mean residual life functions for standard Weibull
distribution.

(a) Find the conditional survivor function SX (r |t) (see Problem 6.11) of the standard
Weibull distribution.

(b) Find the mean residual life function RX (t) for the standard Weibull distribution.

6.13 Mean residual life functions.

(a) For the hyperexponential distribution (6.29), show that

lim
t→∞ RX (t) = 1

α2
.

(b) Consider the standard gamma distribution defined in (4.32):

fX (x;β) � xβ−1e−x

�(β)
, x ≥ 0;β > 0.

Show that RX (t) is a monotone-increasing (decreasing) function if β < 1 (β > 1).
Find RX (0) and limt→∞ RX (t).
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6.14 Mean residual life functions – continued. Find an expression for the mean
residual life function RX (t) for each of the following distributions:

(a) Pareto distribution with parameters α > 1 and β > 0.
(b) Two-parameter Weibull distribution with parameters α and β.

6.15∗ Covariance between two RVs. Suppose that RVs X and Y are functionally
related according to

Y = cos X.

Let the probability density function of X be given by

fX (x) =
{ 1

2π , − π < x < π,

0, elsewhere.

Find Cov[X, Y ].
6.16 Correlation coefficient. Given two RVs X and Y , define a new RV

Z =
[

t

(
X − μX

σX

)
+ Y − μY

σY

]2

,

where t is a real constant.

(a) Compute E[Z ].
(b) Show that −1 ≤ ρXY ≤ 1, where ρXY is the correlation coefficient between X

and Y .

6.17 Correlation coefficient – continued. Show that if ρ = ±1, then (6.51) holds.

6.18∗ Sample covariance. Show that the sample covariance sXY defined by (6.52) is
an unbiased estimate of the covariance σXY .

6.19 Recursive formula for sample covariance. Generalize the recursive computa-
tion formula of Problem 6.2 to the sample covariance.



7 Distributions derived from the
normal distribution

In Sections 4.2.4 and 4.3.1 we defined the normal (or Gaussian) distributions for both
single and multiple variables and discussed their properties. The normal distribution
plays a central role in the mathematical theory of statistics for at least two reasons.
First, the normal distribution often describes a variety of physical quantities observed
in the real world. In a communication system, for example, a received waveform is
often a superposition of a desired signal waveform and (unwanted) noise process, and
the amplitude of the noise is often normally distributed, because the source of such
noise is usually what is known as thermal noise at the receiver front. The normality of
thermal noise is a good example of manifestation in the real world of the CLT, which
says that the sum of a large number of independent RVs, properly scaled, tends to be
normally distributed. In Chapter 3 we saw that the binomial distribution and the Poisson
distribution also tend to a normal distribution in the limit. We also discussed the CLT
and asymptotic normality.

The second reason for the frequent use of the normal distribution is its mathematical
tractability. For instance, sums of independent normal RVs are themselves normally
distributed. Such reproductivity of the distribution is enjoyed only by a limited class of
distributions (that is, binomial, gamma, Poisson). Many important results in the theory
of statistics are founded on the assumption of a normal distribution.

7.1 Chi-squared distribution

An important distribution that is derived from the normal distribution is what is known
as the chi-squared distribution, often denoted χ2-distribution. Let Ui , 1 ≤ i ≤ n, be n
i.i.d. RVs with the standard normal distribution defined by (4.40) in Section 4.2.4.
Denote the sum of n independent standard normal variables squared by χ2

n :

χ2
n =

n∑
i=1

U 2
i . (7.1)

The distribution of the RV χ2
n is solely determined by n, which is called the degree of

freedom (d.f.) of this distribution. The notation χ2, introduced by K. Pearson (1900)
[266], may be somewhat confusing when the reader encounters this notation for the first
time, since χ2 instead of χ represents the RV defined above.
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The derivation of the PDF of χ2
n is left to the reader as an exercise (Problem 7.2). It

is given by

fχ2
n
(x) = x(n/2)−1e−x/2

2n/2�
( n

2

) dx, 0 ≤ x <∞, (7.2)

where �(z) denotes the gamma function defined by

�(z) =
∫ ∞

0
t z−1e−t dt. (7.3)

For the argument z = n/2, where n is a positive integer, we find

�(1) = 1, �

(
1

2

)
= √π; (7.4)

and for n > 2,

�
(n

2

)
=
{ (n

2 − 1
)!, for n even,(n

2 − 1
) ( n

2 − 2
) · · · 3

2 × 1
2

√
π, for n odd.

(7.5)

Figure 7.1 gives the PDF curves for several values of n. For n = 1, we have

fχ2
1
(x) = x−1/2e−x/2

√
2π

, x > 0. (7.6)

The PDF curve is monotonically decreasing, the abscissa axis forming the asymptote,
as shown in Figure 7.1. For n = 2, we have

fχ2
2
(x) = e−x/2

2
, x ≥ 0, (7.7)
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Figure 7.1 The χ2
n distribution with degree of freedom n.
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which is the exponential distribution with mean E[χ2
2 ] = 2. For n = 3, we have

fχ2
3
(x) = x1/2e−x/2

√
2π

, x ≥ 0. (7.8)

The PDF curve originates at the point (0, 0) and increases until x = 1, beyond which it
decreases monotonically. For values n > 3, the distribution curve takes a course similar
to that for n = 3. The expectation of χ 2

n is equal to the number of d.f.:

E[χ2
n ] = n, (7.9)

which is immediate from the definition of the χ2 variable. The mode, the abscissa of the
maximum of the curve, is equal to n − 2 and the variance

Var[χ2
n ] = 2n. (7.10)

The χ2 distribution is related to a number of well-studied distribution functions: the
gamma, Erlang, Poisson, and Rayleigh distributions. In order to demonstrate this, we
make the change of variable

Yn = χ2
n

2
(7.11)

in the PDF of the χ2
n distribution. We then obtain

fYn (y) =
y(n/2)−1e−y

�
( n

2

) , (7.12)

which is a special case of the gamma distribution

f (y) =
{

e−λy

�(β)
λ(λy)β−1, y ≥ 0,

0, y < 0,
(7.13)

in which the parameters λ and β are

λ = 1 and β = n

2
. (7.14)

If we consider the case in which n is an even integer, i.e.,

n = 2k, (7.15)

then (7.12) is reduced to

fY2k (y) =
yk−1e−y

(k − 1)! , (7.16)

which is the k-stage Erlang distribution with mean k. The above result is easily
understood if we recognize that the sum of the squares of two independent standard
normal variables is distributed exponentially with mean two (see Problem 5.13). Hence,
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Y of (7.11) is equivalent to the sum of k independent exponential variables, each of
which has mean unity.

From the set of results shown above, we find the following relation between the chi-
squared distribution and the Poisson distribution:

P[χ2
2k > 2λ] =

∫ ∞

λ

yk−1e−y

(k − 1)! dy

=
∫ ∞

λ

P(k − 1; y)dy = Q(k − 1; λ), (7.17)

where the function {P(k; λ); k = 0, 1, 2, . . .} is the Poisson distribution with mean λ
and {Q(k; λ); k = 0, 1, 2, . . .} is its cumulative distribution, as defined in (3.77) and
(3.86) respectively.

Example 7.1: Independent observations from N (μ, σ 2). Let X1, X2, . . ., Xn be
independent observations from a population distributed according to N (μ, σ 2).
Case 1: Suppose that the population mean μ is known, which is very seldom the case.
Then an estimate of σ 2 should be given, not by the sample variance, but by

s̃2 = 1

n

n∑
i=1

(Xi − μ)2. (7.18)

The n variables X1 − μ, X2 − μ, . . ., Xn − μ are independent and identically dis-
tributed (i.i.d.) with the common distribution N (0, σ 2). By normalizing these variables
by σ , we find

s̃2 = σ 2

n

n∑
i=1

U 2
i , (7.19)

where

Ui = Xi − μ
σ

, 1 ≤ i ≤ n, (7.20)

are i.i.d. RVs with the standard normal distribution N (0, 1). Thus, s̃2 may be written as

s̃2 = σ 2

n
χ2

n . (7.21)

Case 2: Suppose the population mean μ is unknown, as in most cases. Then an estimate
of σ 2 should be given by the sample variance s2 we defined earlier, i.e.,

s2 = 1

n − 1

n∑
i=1

(Xi − X̄)2. (7.22)

If we write s2 in a manner similar to s̃2, we have

s2 = σ 2

n − 1
χ2, (7.23)
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where

χ2 =
n∑

i=1

(
Xi − X̄

σ

)2

. (7.24)

However, the n variables {(Xi − X̄)/σ ; 1 ≤ i ≤ n} are linearly dependent, since they
must satisfy the relation

n∑
i=1

Xi − X̄

σ
= 0. (7.25)

Thus, the above χ2 is not the χ2
n RV with n d.f. Instead, it can be transformed to a sum

of n − 1 independent standard normal variables (Problem 7.1). In other words, χ2 turns
out to be χ2

n−1. Hence,

s2 = σ 2

n − 1
χ2

n−1. (7.26)

�

Let X1, X2, . . . , Xn be independent RVs, with Xk being distributed according to
N (μk , 1); i.e., Xk = Uk + μk , where the Uk are independent standard normal variables.
Let us define a new RV χ2

n (μ
2) by

χ2
n (μ

2) �
n∑

k=1

X2
k =

n∑
k=1

(Uk + μk)
2, (7.27)

which is referred to as the noncentral chi-square variable with n d.f. and noncentrality
parameter μ2, where

μ2 =
n∑

k=1

μ2
k . (7.28)

The characteristic function (to be discussed in Section 8.2) of χ2
n (μ

2) is given
(Problem 8.20) by

φχ2
n (μ

2)(u) =
1

(1− 2iu)n/2
exp

(
iuμ2

1− 2iu

)
, (7.29)

where i = √−1.

7.2 Student’s t-distribution

From the reproductive property of the normal distribution, we can show that the sample
mean X̄ of n independent observations {X1, X2, . . . , Xn} from the population N (μ, σ 2)

is normally distributed according to N (μ, σ 2/n). Thus, the variable U defined by
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U = (X̄ − μ)√n

σ
(7.30)

is a standard normal variable.
If σ is known and μ is to be estimated from the sample mean, then we can use tables

of the standard normal distribution to test whether U is significantly different from zero.
In practice, however, we may not know the population variance σ 2 either. Hence, we
must replace σ 2 by its estimate s2; i.e., the sample variance defined by (7.22). Thus,
the statistic we should use, instead of U , for a significance test is the following variable
defined by the sample mean and sample variance:

tn−1 = (X̄ − μ)√n

s
. (7.31)

By using the relation between s2 and χ2
n−1 given by (7.26), we can write

tn−1 = (X̄ − μ)√n/σ

s/σ
= U√

χ2
n−1/(n − 1)

. (7.32)

Thus, the distribution of tn−1 depends only on n − 1 (the d.f. for s2), not on the popu-
lation mean μ nor on the variance σ 2. The distribution of the variable tn−1 is called the
Student’s t-distribution (or simply the t-distribution) with (n − 1) d.f. “Student” is the
pseudonym of Gosset1 in his 1908 paper [314].

We can obtain (Problem 7.6) the PDF of the t-distribution for k degrees of freedom as

ftk (t) =
�
(

k+1
2

)
�
( k

2

)√
πk

(
1+ t2

k

)−(k+1)/2

, −∞ < t <∞. (7.33)

For k = 1, the distribution reduces to

ft1(t) =
1

π(1+ t2)
, (7.34)

which is called Cauchy’s distribution. For k = 2, we have

ft2(t) = (2+ t2)−3/2, (7.35)

which has zero mean but infinite variance. As one may expect, the t-distribution is more
dispersed than the normal distribution is, since the use of s rather than σ introduces
additional uncertainty. Moreover, while there is one standard normal distribution, there
is a whole family of t-distributions. With a small sample size, this distribution is con-
siderably more spread out than the normal distribution; but as the sample size increases,
the t-distribution approaches the normal distribution. Figure 7.2 shows the distribution
curves for various values of k.

1 William S. Gosset (1876–1937) was a statistician of the Guinness brewing company.



7.3 Fisher’s F -distribution 163

–5 –4 –3 –2 –1 0

1
2
5
∞

1 2 3 4 5

0.1

0.2

0.3

0.4

t

f t
k
(t

)

Figure 7.2 Student’s t-distribution with k degrees of freedom (k = 1, 2, 5,∞).

Since the t-distribution is symmetric around t = 0, all odd moments of the distri-
bution (7.33) that exist are zero. As for the even moments that exist, we have from
(7.32)

E[t2r
k ] = E[(χ2

1 )
r ]E

[(
χ2

k

k

)−r]
, (7.36)

since U 2 is equivalent to the χ2
1 variable. Then using the result of Problem 7.3 (b),

we find

E[t2r
k ] =

kr�
(

1
2 + r

)
�
( k

2 − r
)

�
(

1
2

)
�
( k

2

) , (7.37)

which shows that the 2r th moment exists if and only if −1 < 2r < k. The mean
and variance of the tk-distribution can, therefore, be defined for k > 1 and k > 2
respectively and have values

E[tk] = 0, Var [tk] = k

k − 2
. (7.38)

The t-distribution will be further discussed in Chapter 9 with respect to the confidence
interval of an estimate based on simulation or real experimental data.

7.3 Fisher’s F -distribution

Suppose that RVs V1 and V2 are statistically independent, having the chi-squared
distributions with n1 and n2 d.f., respectively. We define the variable Fn1,n2 , or
simply F , by

F = V1/n1

V2/n2
. (7.39)
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Then we can show that the probability that F falls in the interval (x, x + dx) is
given by

fF (x)dx =
�
( n1+n2

2

) ( n1
n2

)n1/2

�
( n1

2

)
�
( n2

2

) x(n1/2)−1
(

1+ n1x

n2

)−(n1+n2)/2

dx, x > 0, (7.40)

which is called the F-distribution (F stands for Fisher2) with (n1, n2) d.f. The
F-distribution is often referred to as the variance-ratio distribution or the Snedecor
distribution.3 The above distribution can be derived in a manner similar to the deriva-
tion of the t-distribution: start with the joint PDF of V1 and V2; then obtain the joint
PDF of F and V2, and take the marginal distribution of F.

The r th moment of the F-distribution is given by (Problem 7.7)

E[Fr ] =
(

n2
n1

)r
�
( n1

2 + r
)
�
( n2

2 − r
)

�
( n1

2

)
�
( n2

2

) , (7.41)

which exists only for −n1 < 2r < n2. Thus, the mean and variance of F are given by

E[F] = n2

n2 − 2
for n2 > 2 (7.42)

and

Var [F] = 2n2
2(n1 + n2 − 2)

n1(n2 − 2)2(n2 − 4)
for n2 > 4. (7.43)

The mode, the value for which F is maximum, is given by

mode F = n2(n1 − 2)

n1(n2 + 1)
. (7.44)

Figure 7.3 shows the F-curves for several pairs of (n1, n2). Suppose that we have two
normal populations N (μi , σ

2
i ), i = 1, 2. Assume that we have independent observations

of sample size ni , with s2
i as their sample variances. In a previous section we have seen

that s2
i /σ

2
i is χ2-distributed with (ni − 1) d.f., i = 1, 2. Then the ratio of the sample

variances is

s2
1

s2
2

= σ 2
1

σ 2
2

Fn1−1,n2−1. (7.45)

Therefore, the F-distribution is used to test the equality of two sample variances. It is
extensively used in the analysis of variance (ANOVA).

2 However, the RV originally proposed by Fisher [106] was z defined by z = 1
2 ln F .

3 George Waddel Snedecor (1881–1974) was an American statistician.
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Figure 7.3 The F-distributions for various degrees of freedom (n1, n2).

7.4 Log-normal distribution

The log-normal distribution is often used by economists in modeling; e.g., the distri-
bution of incomes. In mathematical finance, the price movement of a stock is often
characterized by geometric Brownian motion, which exhibits a log-normal distribution
(see Section 17.4.2). The log-normal distribution has a long or heavy-tailed distribution,
like some other distributions such as the gamma (with β � 1), Pareto, and Weibull dis-
tributions. The log-normal distribution is also used in reliability engineering and in
radio communication modeling. The latter example is associated with the so-called
shadowing effect on signal propagation over a wireless channel. At the end of this
section we will present a physical argument to justify use of the log-normal distribu-
tion in modeling radio signal propagation. But we first give its mathematical definition
and discuss key properties of the distribution. As the name indicates, a positive RV X is
said to have the log-normal distribution if its logarithm

Y = ln X

has the normal distribution; i.e.,

fY (y) = 1√
2πσY

exp

[
− (y − μY )

2

2σ 2
Y

]
, −∞ < y <∞. (7.46)

Then, by using dy = dx/x , and fY (y) dy = fX (x) dx , we readily find the PDF of the
log-normal RV X :
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fX (x) = 1√
2πσY x

exp

[
− (ln x − μY )

2

2σ 2
Y

]
, x > 0. (7.47)

In order to obtain the expected value of X , we make use of the moment-generating
function (MGF) (see Section 8.1 of Chapter 8) of the normal RV Y given by

MY (t) = E[etY ] = exp

(
μY t + σ 2

Y t2

2

)
. (7.48)

Then

μX = E[X ] = E[eY ] = MY (1) = exp

(
μY + σ 2

Y

2

)
. (7.49)

Similarly, the second moment of X is

E[X2] = E[e2Y ] = MY (2) = exp
(

2μY + 2σ 2
Y

)
= μ2

X eσ
2
Y . (7.50)

Therefore, the variance of the log-normal variable is given by

σ 2
X = exp

(
2μY + 2σ 2

Y

)
−
[

exp

(
μY + σ 2

Y

2

)]2

= exp
(

2μY + σ 2
Y

) [
exp

(
σ 2

Y

)
− 1

]
= μ2

X

[
exp

(
σ 2

Y

)
− 1

]
. (7.51)

From (7.49) and (7.51) we find expressions for the mean and variance of Y in terms of
those of X :

μY = lnμX − 1

2
ln

(
1+ σ 2

X

μ2
X

)
, (7.52)

and

σ 2
Y = ln

(
1+ σ 2

X

μ2
X

)
. (7.53)

Now let us discuss how the log-normal RV appears in the signal propagation in a radio
channel. Consider the signal power (or signal strength) at the receiver. It should be the
signal power sent from the transmitter divided by the attenuation or loss factor L (>1)
due to propagation loss. If the propagation is in free space, then L = 4πd2, where d is
the distance between the transmitter and the receiver. In practice, there are additional
components such as absorption of signals in trees, buildings, and other objects, and
these lossy components will vary. Thus, it is proper to treat L as a random variable.
Furthermore, if we divide the path between the transmitter and receiver into contiguous
and disjoint segments, then the overall loss L is the product of the loss within each
segment:

L =
n∏

i=1

Li (7.54)
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It is reasonable to assume that in most cases these RVs’ Li are statistically indepen-
dent. Of course, the mean values of the Li may be commonly affected by such factors as
the temperature, precipitation, and so forth, but the variation of Li from its mean should
be unrelated to that of L j ; hence, Li and L j are statistically independent for j �= i .
Taking the logarithm of (7.54), we have

Y =
n∑

i=1

Yi , (7.55)

where we set

Y = ln L and Yi = ln Li , for i = 1, 2, . . . , n.

The transformed RVs Y1, Y2, . . . ,Yn are statistically independent because Li are inde-
pendent. We do not require the assumption that they are statistically identical to
each other, because a generalized version of the CLT, as stated in Theorem 11.23 of
Section 11.3.4, does not require the identical distribution assumption. Assume that
the Yi have finite mean μi and variance σ 2

i . Then, from the CLT, we can show that
Y is asymptotically (i.e., as n →∞) normally distributed according to N (μY , σ

2
Y ),

where μY =∑n
i=1 μi and σ 2

Y =
∑n

i=1 σ
2
i , as long as none of the σ 2

i represent a signif-
icant portion of their sum σ 2

Y . Therefore, the overall attenuation factor is log-normally
distributed.

It is common practice in communication engineering to use the so-called decibel (dB)
representation; i.e., use

Z = 10 log10 L = 10
ln L

ln 10
= (10 log10 e)Y [dB]. (7.56)

Then its expected value is, using (7.52), given as

E[Z ] = 10

ln 10
μY = 10

ln 10

[
lnμL − 1

2
ln

(
1+ σ 2

L

μ2
L

)]

= 10

[
log10 μL − 1

2
log10

(
1+ σ 2

L

μ2
L

)]
[dB]. (7.57)

The standard deviation of the log-normal variable Z is

σZ = 10

ln 10
σY = 10

√√√√log10 e log10

(
1+ σ 2

L

μ2
L

)
[dB]. (7.58)

7.5 Rayleigh and Rice distributions

The Rayleigh and Rice distributions are primarily used by communication engineers,
and they can be viewed as special cases of the chi-squared and non-central chi-
squared distributions, respectively. The Rayleigh distribution is also a special case of
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the Weibull distribution defined earlier. Because of their prevalent use in communication
engineering, we provide some discussion of these distributions.

7.5.1 Rayleigh distribution

Let us assume that X and Y are independent normal variables with zero mean and
common variance σ 2. We define a new RV

R =
√

X2 + Y 2, R ≥ 0. (7.59)

Then the PDF of the RV R is

fR(r) = r

σ 2 e−r2/2σ 2
, r ≥ 0. (7.60)

This is known as the Rayleigh distribution.4

The derivation of the above expression is as follows. By writing X = σU1 and
Y = σU2, where Ui are from N (0, 1), we readily recognize R2 = σ 2χ2

2 . Then from
the general expression of the PDF of χ2

n , we readily have

fχ2
2
(x) = e−x/2

2�(1)
= 1

2
e−x/2, x ≥ 0. (7.61)

Then from the relation r2 = σ 2ν (r and ν are the values that the RVs R and χ2 take
respectively), we have 2r dr = σ 2 dν. Then equating fχ2

2
(ν) dν = fR(r) dr , we readily

obtain (7.60).
The variable S = R2 = σ 2χ2

2 is exponentially distributed. This can be shown by
applying the transformation s = σ 2ν to the formula fχ2

2
(ν) = 1

2 e−ν/2:

fS(s) ds = fχ2
2
(ν) dν = 1

2σ 2 e−s/2σ 2
ds, s > 0. (7.62)

A direct way to derive the Rayleigh distribution, without recourse to the chi-squared
distribution, is to transform the bivariate normal RVs (X, Y ) into the polar coordinate
variables (R,�) by

X = R cos� and Y = R sin�, R ≥ 0, � ∈ [0, 2π ]. (7.63)

The joint PDF of (X, Y ) is given by

fXY (x, y) = 1

2πσ 2
exp

(
− x2 + y2

2σ 2

)
= 1

2πσ 2
exp

(
− r2

2σ 2

)
. (7.64)

4 John W. Strutt, 3rd Baron Rayleigh (1842–1919) was an English physicist who won the Nobel Prize in
Physics in 1904 for co-discovering the element argon.
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Since the Jacobian of the above transformation is given by∣∣∣∣J ( x, y

r, θ

)∣∣∣∣ =
∣∣∣∣∣ det

[
∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

]∣∣∣∣∣ =
∣∣∣∣det

[
cos θ −r sin θ
sin θ r cos θ

]∣∣∣∣ = r, (7.65)

we find

fR�(r, θ) = J

(
x, y

r, θ

)
fX,Y (x, y) = 1

2π

r

σ 2
exp

(
− r2

2σ 2

)
= f�(θ) fR(r), (7.66)

from which it is apparent that R and � are independent, and the marginal PDF of R is
given by (7.60) and that of � is

f�(θ) = 1

2π
, 0 ≤ θ < 2π, (7.67)

which is the uniform distribution.
The MGF of the RV R2 is readily obtainable from that of χ2

2 derived in an exer-
cise of this section, but the MGF of R does not have a simple closed-form expression.
Thus, expressions for the mean and higher moments of the Rayleigh distribution are
also complicated (Problem 7.10).

Let us define a new RV T by

T = Y

X
, −∞ < T <∞. (7.68)

By using (7.63), we find

T = tan�. (7.69)

But the mapping from � to T is a two-to-one mapping, because for any real number
t there are two θ : if tan θ1 = t , then so is tan(θ1 + π). Thus, we change (7.67) to the
uniform distribution within the interval (−π

2 ,
π
2 ):

f�(θ) = 1

π
, − π

2
< θ <

π

2
. (7.70)

Then, from the relation fT (t) dt = f�(θ) dθ , and dt = sec2 θ dθ = (1+ tan2 θ) dθ ,
we have

fT (t) = f�(θ)
1

1+ t2 =
1

π(t2 + 1)
, −∞ < t <∞, (7.71)

which is the Cauchy distribution defined earlier.

7.5.1.1 Rayleigh distribution and the Weibull distribution
As we remarked in Section 4.2.5, the Rayleigh distribution can be derived as a special
case of the two-parameter Weibull distribution. By setting α = 2 and β = √2σ in the
Weibull PDF of (4.76), and denoting the random variable X as R, we obtain the PDF

fR(r) = 1

σ 2
r e−r2/2σ 2

, r ≥ 0, (7.72)

which is indeed the Rayleigh distribution.
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It is instructive to note that if we modify the variable R of (4.76) to

R = (X2 + Y 2)1/α, (7.73)

then the bivariate normal distribution (7.64) leads to

fR(r) = αrα−1

2σ 2 e−rα/2σ 2
, r ≥ 0, (7.74)

which is the two-parameter Weibull distribution with parameters α and β = (2σ 2)1/α .

7.5.2 Rice distribution

Now let us assume that the independent normal RVs X and Y have nonzero means μX

and μY . We still retain the assumption that they have a common variance σ 2. Then the
PDF of R = √X2 + Y 2 is given by

fR(r) = r e−(r2+μ2)/2σ 2

2πσ 2 I0

(rμ

σ 2

)
, r ≥ 0, (7.75)

which is known as Rice distribution or Rician distribution because it was originally
derived by S.O. Rice5 [280]. The parameter μ is the distance between the center of the
bivariate normal distribution (X, Y ) = (μX , μY ) and the origin (0, 0), i.e.,

μ =
√
μ2

X + μ2
Y , (7.76)

and the function I0(x) is

I0(x) = 1

π

∫ π

0
ex cosφ dφ, −∞ < x <∞, (7.77)

which is the modified Bessel function of the first kind and zeroth order.
The Rice distribution (7.75) can be derived by transforming the (X, Y ) into the polar

coordinates defined by (7.63). Using the Jacobian given by (7.65), we find the joint PDF
of (R,�) given by

fR�(r, θ) = r fXY (x, y) = r

2πσ 2 exp

[
− (x − μX )

2 + (y − μY )
2

2σ 2

]
= r

2πσ 2 exp

[
−r2 + μ2

2σ 2 − r(μX cos θ + μY sin θ)

σ 2

]
= r

2πσ 2 exp

[
−r2 + μ2

2σ 2 − rμ cos(θ − ψ)
σ 2

]
, (7.78)

whereψ = tan−1(μY /μX ). Then by writing θ − ψ = φ, and integrating the above joint
PDF with respect to the RV �, which is uniformly distributed over [0, 2π ], we find the
marginal PDF of the RV R as

5 Stephen O. Rice (1907–1986) was an American communication theorist.
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fR(r) =
∫ 2π

0
fR�(r, θ) dθ

= r

σ 2 exp

(
−r2 + μ2

2σ 2

)
1

2π

∫ 2π

0
exp

[
−rμ

σ 2 cos(θ − ψ)
]

dθ. (7.79)

Since cos(θ − ψ) is a periodic function of θ , we can write

1

2π

∫ 2π

0
exp

[
−rμ

σ 2 cos(θ − ψ)
]

dθ = 1

2π

∫ 2π

0
exp

(
−rμ

σ 2 cosφ
)

dφ

= 1

π

∫ π

0
exp

(
−rμ

σ 2 cosφ
)

dφ, (7.80)

where we used the property that cosφ is a symmetric function around φ = π . Then
using the definition of the modified Bessel function of order zero given in (7.77), the
Rice distribution (7.75) follows.

An alternative way to derive this is to use the formula we obtained for the noncentral
chi-squared distribution (7.112) (Problem 7.11). If we set σ = 1, i.e., we normalize the
amplitude by σ , the distribution of this normalized amplitude RV V = R/σ is

fV (v) = v e−(v2+m2)/2

2π
I0(vm), v ≥ 0, (7.81)

where m = μ/σ .
Figure 7.4 shows the plot of this normalized Rice distribution for m = 0, 1, 2, 4, and

6. The case m = 0 corresponds to the normalized Rayleigh distribution. When m > 2,
the distribution resembles a normal distribution with mean slightly larger than m. But
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Figure 7.4 The normalized Rice distribution for m = 0, 1, 3, 4, and 6.
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the RV V (and R as well) is a nonnegative RV, whereas a normal variable can take
on negative values. The above result is not difficult to see, once we recognize that the
joint variable (X, Y ) has a circular normal distribution around the mean (μX , μY ). If we
rotate the coordinates (X, Y ) by −ψ , where ψ = tan−1(μY /μX ), the joint PDF under
these new coordinates is given by (Problem 7.12)

fX ′Y ′(x
′, y′) = 1√

2πσ
e−(x ′−μ)2/2σ 2 1√

2πσ
e−y′2/2σ 2

. (7.82)

By applying the Taylor series expansion to ex cosφ in the integration formula (7.77),
and noting the fact that I0(x) is an even function, we obtain the following series
representation:

I0(x) =
∞∑

m=0

[
(x/2)m

m!
]2

. (7.83)

If x � 1, then

I0(x) ≈ 1+ x2

4
, for x ≈ 0, (7.84)

For large values of x � 1, we have the following asymptote:

I0(x) ≈ ex

√
2πx

, for x � 1. (7.85)

7.6 Complex-valued normal variables6

7.6.1 Complex-valued Gaussian variables and their properties

Let Z be a complex-valued RV

Z = X + iY, (7.86)

where X and Y are real-valued RVs. Then

E[Z2] = E[X2] − E[Y 2] + 2i E[XY ]. (7.87)

It is apparent that

E[Z2] = 0 if and only if E[X2] = E[Y 2] � σ 2 and E[XY ] = 0, (7.88)

and if this condition is met, then

E[Z Z ] = E[Z∗Z∗] = 0 and E[Z Z∗] = E[X2] + E[Y 2] = 2σ 2. (7.89)

6 The reader may skip this section on first reading.
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If in addition the RVs X and Y are normal and E[X ] = E[Y ] = 0, then we can write
the joint PDF as

fXY (x, y) = 1

2πσ 2 e−(x2+y2)/2σ2
. (7.90)

The normal RVs X and Y with this joint PDF are called circularly symmetric. If we
transform the coordinates (X, Y ) into the polar coordinates (R,�) by

X = R cos�, Y = R sin�,

then we obtain, as we did in earlier sections, the joint PDF

fR�(r, θ) = fR(r) f�(θ), (7.91)

where

fR(r) = r e−r2/2σ 2

σ 2 , r ≥ 0, (7.92)

f�(θ) = 1

2π
, 0 ≤ θ ≤ 2π; (7.93)

i.e., fR(r) is the Rayleigh distribution discussed in Section 7.5.1.
Transformation of the RVs (X, Y ) to (Z , Z∗) yields its Jacobian∣∣∣∣J ( z, z∗

x, y

)∣∣∣∣ = ∣∣∣∣det

[
1 1
i −i

]∣∣∣∣ = | − 2i | = 2. (7.94)

Therefore,

dx dy = 1

2
dz dz∗.

Thus, the joint PDF of Z and Z∗ is given by

fZ Z∗(z, z∗) = 1

4πσ 2 e−(zz∗)/2σ 2
. (7.95)

7.6.2 Multivariate Gaussian variables

Let us now consider a multidimensional case of the circularly symmetric Gaussian
variables. Possible applications include (i) a sequence of complex-valued RVs and (ii)
multiple complex-valued signals received by an array of multiple antennas.

Let X = (X1, X2, . . . , X M )
� and Y = (Y1, Y2, . . . ,YM)

� be real-valued multivari-
ate Gaussian variables (see Section 4.3.1) that satisfy

E[X] = E[Y ] = 0,

E[X X�] = E[YY�] = A,

E[Y X�] = −E[XY�] = B,

A = A�, B = −B�.

(7.96)
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We define a 2M-dimensional normal variable W by

W �
[

X
Y

]
= (X1, X2, . . . , X M , Y1, Y2, . . . ,YM )

�. (7.97)

Then, it satisfies the following properties:

E[W ] = 0,

E[W W�] =
[

A −B
B A

]
� �.

(7.98)

We now define an M-dimensional complex-valued normal variable Z:

Z � X + iY , (7.99)

which satisfies

E[Z] = 0,

E[ZZ�] = E[X X�] − E[TY�] + i E[Y X�] + i E[XY�]
= A− A+ i B + i(−B) = 0,

E[Z∗ZH] = 0,

E[ZZH] = 2[A+ iB] � 2C,

(7.100)

where the superscript operator H, called Hermitian conjugate or conjugate transpose,
represents the transpose of the complex conjugate of a complex-valued matrix; i.e.,
ZH = Z∗�

Then we can establish the following relations between the 2M × 2M matrix � of
(7.98) and the M × M matrix C of (7.100).

1. The multiplication of matrices � is isomorphic to the multiplication of complex-
valued matrices C; i.e.,

[
A1 −B1

B1 A1

]
·
[

A2 −B2

B2 A2

]
=
[

A1 A2 − B1 B2 −(A1 B2 + B1 A2)

A1 B2 + B1 A2 A1 A2 − B1 B2

]
[A1 + i B1] · [A2 + i B2] = [A1 A2 − B1 B2 + i(A1 B2 + B1 A2)]

(7.101)

2. The matrix � is symmetric, if and only if the sub-matrix A is symmetric and B is
skew-symmetric. The matrix C is Hermitian, if and only if � is symmetric.

3. The determinants of � and C are related by

det � = | det C|2. (7.102)
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4. If the matrix C is nonsingular, with the inverse

C−1 = [A+ i B]−1 � P + i Q, (7.103)

then � is also nonsingular, with the inverse

�−1 =
[

P −Q
Q P

]
, (7.104)

and conversely.
5. If � is symmetric (hence C is Hermitian7), then the corresponding quadratic forms

involving x, y and z = x + i y are related by

[x� y�]�−1
[

x
y

]
= z�C−1 z∗. (7.105)

The PDF of W is given by

fW (w) = 1

(2π)M | det �|1/2 exp

(
−1

2
w��−1w

)
. (7.106)

Thus, the joint PDF of X and Y is given by

fXY (x, y) = 1

(2π)M | det �|1/2 exp

(
−1

2
[x� y�]

[
P −Q
Q P

] [
x
y

])
. (7.107)

We now transform (X,Y ) to (Z, Z∗). Then its Jacobian is obtained, similar to
(7.94), as ∣∣∣∣J ( z, z∗

x, y

)∣∣∣∣ = ∣∣∣∣det

[
I I

i I −i I

]∣∣∣∣ = | − 2i |M = 2M , (7.108)

where I is the M × M identity matrix. Then, by using (7.102), (7.105), (7.107), and
(7.108), the joint PDF of (Z, Z∗) is obtained as

fZZ∗(z, z∗) = 1

(4π)M | det C| exp

(
−1

2
zTC−1 z∗

)
. (7.109)

In Section 8.2.6 we will discuss the characteristic function of the multivariate
complex-valued normal distribution.

7 A complex-valued square matrix C is called Hermitian or self-adjoint if its conjugate transpose C∗T,
sometimes written as CH, is equal to C.
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7.7 Summary of Chapter 7

Chi-squared χ2
n =

∑n
i=1 U 2

i (7.1)

PDF fχ2
n
(x) = x(n/2)−1e−x/2

2n/2�( n
2 )

dx (7.24)

Gamma function �(z) = ∫∞0 t z−1e−t dt (7.3)
Expectation, variance E[χ2

n ] = n, Var[χ2
n ] = 2n (7.9), (7.10)

Noncentral chi-squared χ2
n (μ

2) =∑n
k=1(Uk + μk)

2,

μ2 =∑n
k=1 μ

2
k

(7.27)

Student’s t tn−1 = (X̄−μ)√n
s = U√

χ2
n−1/(n−1)

(7.31), (7.32)

PDF ftk (t) =
�
(

k+1
2

)
�
(

k
2

)√
πk

(
1+ t2

k

)−(k+1)/2
(7.33)

Moments E[t2r+1
k ] = 0, E[t2r

k ] =
kr�

(
1
2+r

)
�
(

k
2−r

)
�
(

1
2

)
�
(

k
2

) (7.37)

E[tk] = 0, k>1; Var [tk] = k
k−2 , k>2 (7.38)

Fisher’s F Fn1,n2 = F = V1/n1
V2/n2

, V1 ∼ χ2
n1
,

V2 ∼ χ2
n2

(7.39)

Moments E[Fr ] =
(

n2
n1

)r
�
(

n1
2 +r

)
�
(

n2
2 −r

)
�
(

n1
2

)
�
(

n2
2

) (7.41)

Var[F] = 2n2
2(n1+n2−2)

n1(n2−2)2(n2−4)
, n2>4 (7.43)

Mode mode F = n2(n1−2)
n1(n2+1) (7.44)

Log-normal Y = ln X, Y ∼ N (μY , σ
2
Y ) (7.46)

Moments μX = E[X ] = exp

(
μY + σ 2

Y
2

)
(7.49)

σ 2
X = exp

(
2μY + 2σ 2

Y

)−[
exp

(
μY + σ 2

Y
2

)]2
(7.51)

μY = lnμX − 1
2 ln

(
1+ σ 2

X
μ2

X

)
(7.52)

σ 2
Y = ln

(
1+ σ 2

X
μ2

X

)
(7.53)

Rayleigh R=√X2+Y 2, X, Y ∼N (0, σ 2) (7.59)

PDF fR(r) = r
σ 2 e−r2/2σ 2

(7.60)

Rice R=√X2+Y 2, X∼N (μX , σ
2),

Y ∼N (μY , σ
2)

PDF fR(r) = r e−(r2+μ2)/2σ2

2πσ 2 I0

(
rμ
σ 2

)
(7.75)

Bessel function I0(x) = 1
π

∫ π
0 ex cosφ dφ (7.77)

Complex-valued Gaussian Z = X + iY ; X, Y ∼ N (0, σ 2)

Joint PDF fZ Z∗(z, z∗) = 1
4πσ 2 e−(zz∗)/2σ 2

(7.95)
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7.8 Discussion and further reading

The χ2, Student’s t , and F distributions are discussed in most textbooks on probability
theory and statistics, although the depth of their coverage differs significantly from book
to book.

The Rayleigh and Rice (sometimes written as Ricean or Rician) distributions are
seldom discussed by authors who are not electrical engineers. These distributions
and the Nakagami distribution (see Problem 7.13) are especially important to com-
munication engineers in characterizing wireless (i.e., radio and optical) channels.
These three distributions, and the Weibull distribution as well, are used in char-
acterizing fast fading (or rapid fading), which is caused by reflections of radio
signals at local surfaces and motion of objects. If the receiver’s position is on a
line of sight (LOS) vis-à-vis the transmitter, there will be an LOS signal com-
ponent in the received signal. Then the Rice distribution is appropriate, whereas
the Rayleigh distribution applies when there is no LOS component in the received
signal.

The log-normal distribution also increasingly appears in the literature on wire-
less communications, because so-called slow fading, which occurs due to shadow-
ing by buildings, mountains, trees, and other objects, is often a limiting factor in
recovering information at the receiver end. The log-normal distribution is applied to
non-communication areas as well, where its heavy-tailed distribution aptly represents
an empirically obtained distribution, since its two-parameter characterization is easy to
deal with.

The complex-valued normal variables are also predominantly used by communica-
tion engineers. In digital communications, complex-valued representations of signals
and/or noise are often adopted because they are more concise than the real-valued
representations. There are two situations where complex-valued RVs or processes
will be useful. One is when a signal (typically with additive Gaussian noise) goes
through a narrowband filter at the receiver. The filtered signal can be conveniently
characterized as the real part of a complex-valued process [150]. The other situa-
tion occurs, as remarked above with regard to the Rayleigh and Rice distributions,
when a signal is sent over a radio (i.e., wireless) channel. In a typical situation, how-
ever, there are many reflecting and scattering objects between the transmitter and
the receiver. Then, the received signal consists of an LOS component, if any, plus a
myriad of tiny replicas of the transmitted signal, where their amplitudes and phases
vary randomly. By virtue of the CLT, the sum of these NLOS (non-line-of-sight)
components can be represented as the real part of a complex-valued process with
Gaussian amplitude.

As for multivariate complex-valued normal RVs and their application, see, for
example, Wooding [360], Turin [329], Grettenberg [130], Wainstein and Zubakov [343],
and Kobayashi [192] and references therein. We will discuss the characteristic function
of the complex-valued normal distribution in Section 8.2.6.
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7.9 Problems

Section 7.1: Chi-squared distribution

7.1∗ Sample variance and chi-squared variable. Show that χ2 of (7.24) is a sum of
(n − 1) independent standard normal variables.

7.2 Derivation of the χ2
n distribution. The region consisting of U =

(U1,U2, . . . ,Un)
� such that

χ <

√
U 2

1 +U 2
2 + · · · +U 2

n < χ + dχ, χ > 0,

is a hypershell with inner radius χ and outer radius χ + dχ . The volume dV of such a
shell is proportional to its thickness dχ and to the (n − 1)th power of its radius χ :

dV = Aχn−1 dχ,

where the constant A will be determined below.

(a) Show that the PDF of χn is given by

fχn (χ) dχ = A

(2π)n/2
χn−1e−χ2/2 dχ, χ > 0.

(b) Show that the PDF of χ2
n is given by

fχ2
n
(ν) dν = A

2(2π)n/2
√
ν
ν(n−1)/2e−ν/2 dν, ν > 0.

(c) Show that the constant A is given by

A = 2(2π)n/2

�
( n

2

)
2n/2

.

7.3∗ Moments of gamma and χ2-distributions.

(a) Consider the gamma distribution

fX (x) = xβ−1e−x

�(β)
.

Show that the mth moment is

E[X m] = �(β + m)

�(β)
, m = 1, 2, 3, . . .

(b) Show that the χ2
n has the mth moment

E[(χ2
n )

m] = 2m�
( n

2 + m
)

�
( n

2

) , m = 1, 2, 3, . . .
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7.4 χ2 distribution and exponential distribution. Show (without having recourse
to (7.7)) that if X1 and X2 are independent standard normal variables, their squared sum

Y = X2
1 + X2

2

is exponentially distributed with mean 2.

7.5 Noncentral chi-squared distribution.

(a) Show that the PDF fχ2
n (μ

2)(x) can be expressed in terms of the following weighted
sum of the PDFs of the regular chi-squared distributions fχ2

n+2 j
(x), j = 0, 1, 2, . . .,

with the weights being equal to the Poisson distribution with parameter μ2/2:

fχ2
n (μ

2)(x) = e−μ2/2
∞∑
j=0

(μ2/2) j

j ! fχ2
n+2 j

(x). (7.110)

(b) Show that for n = 2, the (7.110) reduces to

fχ2
2 (μ

2)(x) = e−μ2/2
∞∑
j=0

(μ2/2) j

j ! fχ2
2+2 j

(x). (7.111)

(c) Show that (7.111) can further be expressed as

fχ2
2 (μ

2)(y) = e−μ2/2−y I0(μ
2 y), (7.112)

where I0(x) is the modified Bessel function of the first kind with zero d.f., and is
defined by (7.83).

Section 7.2: Student’s t-distribution

7.6 Derivation of the t-distribution.

(a) Show that the joint PDF of U and χ2
n−1 is given by

fU,χ2
n−1
(u, ν) = 1

2
√

2π�
(

n−1
2

) (ν
2

)(n−3)/2
e−(u2+ν)/2.

(b) By applying the transformation (7.32) and noting that the Jacobian of this transfor-
mation is

√
ν/n − 1, show that the joint PDF of tn−1 and χ2

n−1 is

ftn−1χ
2
n−1
(t, ν) = 1

2
√
π(n − 1)�

(
n−1

2

) (ν
2

)(n−2)/2
e−(ν/2)[1+t2/(n−1)].

(c) Taking the marginal distribution of t , show that the distribution of tn−1 is

ftn−1(t) =
�
( n

2

)
√
π(n − 1)�

(
n−1

2

) (1+ t2

n − 1

)−n/2

.
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Section 7.3: Fisher’s F-distribution

7.7∗ Moments of the F-distribution. Show that the r th moment of the F-distribution
is given by (7.41). Hint: Use the result of Problem 7.3 on the χ2-distribution.

7.8 The F-distribution and the t-distribution. Show that when the d.f. in the
numerator of F is one, the F- and t-distributions have a simple relation.

Section 7.4: Log-normal distribution

7.9∗ Median and mode of the log-normal distribution.

(a) Show that the median of the log-normal distribution FX (x), where Y = ln X is
N (μY , σ

2
Y ), is given by

eμY = μX√
1+ σ 2

X
μ2

X

.

(b) Show that the mode of the log-normal distribution FX (x) is

eμY−σ 2
Y = μX(

1+ σ 2
X
μ2

X

) 3
2

.

Section 7.5: Rayleigh and Rice distributions

7.10∗ MGF of R2 and R variables in the Rayleigh distribution.8

(a) Derive the MGF of a random variable Z � X2 + Y 2, where X and Y are indepen-
dent normal RVs from N (0, σ 2). Obtain the mean and variance of Z .

(b) Show that the MGF of the Rayleigh variable R = √Z is given by

MR(t) = 1+√2πσ t�(σ t)e(σ
2t2)/2. (7.113)

(c) Show that the mean and variance are

E[R] =
√
π

2
σ and Var[R] =

(
2− π

2

)
σ 2.

7.11 Alternative derivation of the Rice distribution. Derive the Rice distribution
(7.75) using the result on the noncentral chi-squared distribution.

7.12 Rotation of the Rice distribution. Derive Eq. (7.82).

8 This exercise should be tried after studying Chapter 8.
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7.13∗ Nakagami m-distribution. Consider a random variable Z as the sum of m
independent Rayleigh variables Ri :

Z =
m∑

i=1

R2
i , (7.114)

or equivalently

Z =
2m∑
i=1

X2
i , (7.115)

where the Xi are independent normal variables from N (0, σ 2).

(a) Show that the PDF of Z is given by

fZ (z) = mm

�m�(m)
zm−1e−mz/�, z ≥ 0, (7.116)

where � = 2mσ 2 and �(m) is the gamma function defined in (4.31), and �(m) =
(m − 1)! when m is an integer.

(b) Define the envelope of the signal as its square root; i.e.,

R = √Z =
(

m∑
i=1

R2
i

)1/2

, R ≥ 0. (7.117)

Show that the PDF of R is given by

fR(r) = 2mm

�m�(m)
r2m−1e−

mr2
� , r ≥ 0, (7.118)

which is known as the Nakagami-m distribution. The parameter m is referred
to as the fading figure. The Nakagami distribution, like the Rice and Weibull
distributions, can be seen as another generalization of the Rayleigh distribution.

(c) Show that the expectation and the variance of the envelope R are given by

E[R] = �(m + 1
2 )

�(m)

(
�

m

)1/2

, (7.119)

Var[V ] = �

⎧⎪⎨⎪⎩1− 1

m

⎡⎣�
(

m + 1
2

)
�(m)

⎤⎦2
⎫⎪⎬⎪⎭ . (7.120)

7.14 The CDF of the Nakagami-m distribution.

(a) Show that when m is a positive integer, the Nakagami-m CDF is given by

FR(r) = 1− Q

(
m − 1; r2

2σ 2

)
, r ≥ 0, (7.121)
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where Q(k; λ) is the cumulative Poisson distribution:

Q(k; λ) = Q(k − 1; λ)+ P(k; λ), k = 0, 1, 2, . . . (7.122)

(b) By differentiating (7.121), verify that the Nakagami PDF obtained is equivalent to
(7.118).

(c) Show that when m is a positive real number, the Nakagami-m CDF is given by

FR(r) = 1

�(m)

∫ mr2/�

0
ym−1e−y dy =

γ
(

m, mr2

�

)
�(m)

, (7.123)

where γ (β, λ) is the lower incomplete gamma function defined by

γ (β, λ) �
∫ λ

0
yβ−1e−y dy. (7.124)

Hence, show that

FR(r) = 1−
�
(

m, mr2

�

)
�(m)

, r ≥ 0. (7.125)

7.15 Upper incomplete gamma functions.

(a) Define the upper incomplete gamma function by

�(β, λ) �
∫ ∞

λ

yβ−1e−y dy. (7.126)

Show that we can alternatively write the CDF of R as

FR(r) = 1−
�
(

m, mr2

�

)
�(m)

, r ≥ 0. (7.127)

(b) Show that, for an integer m = k, the upper incomplete gamma function and the
cumulative Poisson distribution are related by

Q(k; λ) = �(k + 1; λ)
k! , (7.128)

which implies

�(k; λ) = (k − 1)!Q(k − 1; λ). (7.129)

Section 7.6: Complex-valued normal variables

7.16 Relations between � and C. Show Properties 1–5.

7.17∗ Joint PDF of (Z, Z∗). Derive (7.109).
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8 Moment-generating function
and characteristic function

In this chapter and the next we will discuss four different types of transforms (or
functions) that we can apply to probability distributions or PDFs. They are the MGF,
the characteristic function (CF; equivalent to the Fourier transform), the probability-
generating function (PGF; equivalent to the Z -transform), and the Laplace transform
(LT). They are closely related to each other, as shown in Table 8.1. It is often more
convenient to deal with one of these transforms than to work directly with the original
probability distributions or PDFs, when we wish to calculate the moments of a given
RV or obtain the probability distribution of the sum of two or more RVs.

8.1 Moment-generating function (MGF)

8.1.1 Moment-generating function of one random variable

For a given RV X , its MGF MX (t) is defined by

MX (t) = E[et X ] =
∫ ∞

−∞
etx d FX (x), t ∈ I, (8.1)

where I ⊆ R = (−∞,∞) is an interval in which MX (t) is finite. As for the argument
of the MGF, we may use another symbol, say ξ , lest t be confused with the time index.
The exponential function etx has the following Taylor series expansion:

etx = 1+ t x + t2x2

2! + · · · + tn xn

n! + · · · (8.2)

Thus, we may rewrite (8.1) as

MX (t) = 1+ t E[X ] + t2

2! E[X
2] + · · · + tn

n! E[X
n] + · · · (8.3)

If we differentiate the above equation n times with respect to t , all terms involving
E[Xk] for k < n disappear. If we then set t = 0 in the resultant expression, all terms
involving E[Xk] for k > n will disappear, leaving only one term, i.e., E[Xn]. Thus,

dn

dtn
MX (t)

∣∣∣∣
t=0

= n!
n! E[X

n]; (8.4)
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Table 8.1. Four different types of transform methods

Transform Definition Inverse transform

MGF MX (t) = E
[
et X

]
E
[
Xn] = M(n)

X (0)

CF φX (u) = E
[
eiu X

]
fX (x) = F{φX (u)}

PGF PX (z) = E
[
zX
]

pk = P (k)X (0)
k!

LT �X (s) = E
[
e−s X

]
fX (x) = L−1{�X (s)}

i.e.,

E[Xn] = M (n)
X (0), n = 0, 1, 2, . . . , (8.5)

where the case n = 0 should be interpreted as MX (0) = 1. Thus, the function MX (t)
generates all the moments of X simply by its differentiation, hence the name moment-
generating function (MGF).

The natural logarithm of MX (t) is denoted by mX (t):

m X (t) = ln MX (t), t ∈ I, (8.6)

which is referred to as the logarithmic MGF (log-MGF) or the cumulant MGF. It is
easy to show that (Problem 8.1)

m ′
X (0) =

M ′
X (t)

MX (0)

∣∣∣∣
t=0

= E[X ] (8.7)

and

m′′
X (0) =

M ′′
X (t)MX (t)− (M ′

X (t))
2

M2
X (t)

∣∣∣∣
t=0

= E[X2] − (E[X ])2 = σ 2
X . (8.8)

The last two formulas are sometimes simpler to deal with than the MGF MX (t).

Example 8.1: MGF of the binomial distribution. Consider the binomial distribution
defined in (2.38):

B(k; n, p) =
(

n

k

)
pkqn−k, k = 0, 1, 2, . . . , n, (8.9)

where q = 1− p. The corresponding MGF is

MX (t) =
n∑

k=0

etk
(

n

k

)
pkqn−k = (p et + q

)n
,−∞ < t <∞; (8.10)
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where the interval of convergence is I = R. The log-MGF is

m X (t) = n ln
(

p et + q
)
,−∞ < t <∞. (8.11)

We can readily find the expectation

E[X ] = M ′
X (0) = n(p et + q)n−1 p et

∣∣∣∣
t=0

= np (8.12)

and the second moment

E[X2] = M ′′
X (0) = n2 p2 + npq. (8.13)

Thus, the variance of X is found as

Var[X ] = E[X2] − E2[X ] = npq. (8.14)

Alternatively, we can use the log-MGF, obtaining

E[X ] = m ′
X (0) = n

p et

p et + q

∣∣∣∣
t=0

= np (8.15)

and

σ 2
X = m′′

X (0) = n
p et(p et + q)− (p et )2

(p et + q)2

∣∣∣∣
t=0

= npq. (8.16)

�

Example 8.2: MGF of Poisson distribution. Suppose that X is a Poisson RV whose
distribution is defined by (3.77):

P(k; λ) = λk

k! e−λ, k = 0, 1, 2, . . . . (8.17)

Its MGF is

MX (t) = E[et X ] = e−λ
∞∑

k=0

(λet)k

k! = eλ(e
t−1). (8.18)

Then, the log-MGF is readily given as

m X (t) = λ(et − 1),−∞ < t <∞, (8.19)

from which we find

E[X ] = m ′
X (0) = λ et

∣∣∣∣
t=0

= λ (8.20)
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and

Var[X ] = m′′
X (0) = λ et

∣∣∣∣
t=0

= λ. (8.21)

�

Example 8.3: MGF of the normal distribution. Let RV U be the unit normal RV:

fU (u) = 1√
2π

e−u2/2,−∞ < u <∞. (8.22)

Its MGF is

MU (t) = E[etU ] = 1√
2π

∫ ∞

−∞
etue−u2/2 du = et2/2

[
1√
2π

∫ ∞

−∞
e−(u−t)2/2 du

]
.

(8.23)

The last term in square brackets has a value of unity, as is readily seen if the change of
variables x = u − t is made. Thus, we have

MU (t) = et2/2 (8.24)

and the log-MGF is given by

mU (t) = t2

2
,−∞ < t <∞, (8.25)

from which we confirm

E[U ] = m′
U (0) = 0 (8.26)

and

Var[U ] = m′′
U (0) = 1. (8.27)

By applying the transformation U = (X − μ)/σ or

X = μ+ σU, (8.28)

we find the MGF of the normal (or Gaussian) distribution N(μ, σ 2) as

MX (t) = E
[
et (μ+σU )

]
= etμE[etσU ] = etμMU (tσ) = exp

[
tμ+ (tσ)2

2

]
. (8.29)

The log-MGF is

m X (t) = tμ+ (tσ)2

2
,−∞ < t <∞, (8.30)

from which it is apparent that E[X ] = m ′
X (0) = μ and Var[X ] = m ′′

X (0) = σ 2.
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The nth central moment of the normal RV X is given by

E[(X − μ)n] = σ n E[U n], n = 1, 2, . . . . (8.31)

By applying the Taylor-series expansion to MU (t) = et2/2, we have

MU (t) = 1+ t2

2
+ t4

8
+ · · · + 1

2kk! t
2k + · · · . (8.32)

Similarly, the Taylor series of the MGF is given, from (8.3), as

MU (t) = 1+ t E[U ] + E[U2]
2

t2 + · · · + E[U n]
n! tn + · · · . (8.33)

By equating the coefficients of like powers of t in these equations, we find

E[U n] =
{

0, n odd,
n!

2n/2(n/2)! , n even,
(8.34)

or

E[Un] =
{

0, n odd,
1× 3× 5 · · · (n − 3)(n − 1), n even.

(8.35)

In particular, we find from (8.31) and the last equation,

E[(X − μ)4] = 3σ 4 and E[(X − μ)6] = 15σ 6. (8.36)

�

8.1.2 Moment-generating function of sum of independent random variables

Consider the sum of two independent RVs, say, Y = X1 + X2. The MGF of Y is

MY (t) = E[etY ] = E[et X1 ]E[et X2] = MX1(t)MX2(t), (8.37)

where we use the property that the expectation of the product of functions of indepen-
dent RVs is equal to the product of the expectations of these functions (see (3.34) and
(4.161)). By mathematical induction, we can generalize the result (8.37) to more than
two RVs.

Let Xi , i = 1, 2, . . . , m, be m independent RVs with corresponding MGFs MXi (t).
Define the RV Y to be the sum of the Xi ’s:

Y =
m∑

i=1

Xi . (8.38)
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Then the MGF of Y is given by the product of MXi (t)’s

MY (t) =
m∏

i=1

MXi (t), t ∈ I, (8.39)

where I is an interval where all the MGFs MXi (t) exist.

8.1.3 Joint moment-generating function of multivariate random variables

Suppose that X = (X1, X2, . . . , Xm)
� is an m-dimensional vector RV or random

vector. We define the joint MGF MX (t):

MX(t) � E
[
et1 X1+t2 X2+···+tm Xm

]
= E

[
e〈t,x〉

]
, for t ∈ I, (8.40)

where I ∈ R
m is a region for which MX(t) is finite and 〈t, x〉 represents the inner

product (scalar product) of the two vectors.
The joint moment E[Xn1

1 · · · Xnm
m ], if it exists, can be obtained by differentiating the

joint MGF n1 times with respect to t1, n2 times with respect to t2, . . ., nm times with
respect to tm , and setting t1 = t2 = · · · = tm = 0:

E
[
Xn1

1 · · · Xnm
m

] = ∂n1+···+nm MX (t)

∂tn1
1 · · · ∂tnm

m

∣∣∣∣
t=0
. (8.41)

It should be observed that the joint MGF of any subset of the components of the
random vector X is obtained by setting equal to zero those ti that correspond to the RVs
not included in the subset. For example, the joint MGF of the random vector (X1, X2)

�
is given by MX (t1, t2, 0, . . . , 0).

Example 8.4: Joint MGFs of bivariate and multivariate normal distributions. Let
us consider the bivariate normal variables X = (X1, X2)

� whose PDF is given by
(4.108) of Section 4.3.1. Define a scalar variable Y by

Y = t1 X1 + t2 X2 = t�X � 〈t, X〉. (8.42)

Since X1 and X2 are both normal RVs, so is Y with mean

μY = t1μ1 + t2μ1 = 〈t,μ〉 (8.43)

and variance

σ 2
Y = E[(Y − μY )

2]
= t2

1 E[(X1 − μ1)
2] + 2t1t2 E[(X1 − μ1)(X2 − μ2)] + t2

2 E[(X2 − μ2)
2]

= t2
1σ

2
1 + 2ρt1t2σ1σ2 + t2

2σ
2
2 = 〈t, tC〉 = t�Ct, (8.44)
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where t� = (t1, t2), ρ is the correlation coefficient between X1 and X2, defined by

ρ = E[(X1 − μ1)(X2 − μ2)]
σ1σ2

, (8.45)

and C is the covariance matrix of the bivariate normal distribution defined by (4.117):

C =
[

σ 2
1 ρσ1σ2

ρσ1σ2 σ 2
2

]
. (8.46)

By writing Y = σY U + μY , with U being the unit normal variable, the MGF of Y
can be expressed1 as

MY (ξ) = E[eξY ] = eξμY E[eσY ξU ]
= eξμY MU (σY ξ) = eξμY e(σY ξ)

2/2, (8.47)

where we used the formula (8.24). If we set ξ = 1 in the last equation, we have

MY (1) = E[eY ] = eμY+(σ 2
Y /2). (8.48)

From the definition of joint MGF of X , we have

E[eY ] = E[e〈t,X〉] = MX (t). (8.49)

Thus, we find the MGF of X :

MX (t) = eμY+(σ 2
Y /2) = exp

(
t�μ+ t�Ct

2

)
. (8.50)

We can generalize the results of the bivariate normal distribution to a general
multivariate normal distribution, where the vector RV X is now

X = (X1, X2, . . . , Xm)
�, (8.51)

which has the joint PDF (cf. (4.116))

fX (x) = 1

(2π)m/2| det C|1/2 exp

[
− (x − μ)�C−1(x − μ)

2

]
, (8.52)

where the covariance matrix C is now an m × m matrix:

C = E[(X − μ)(X − μ)�] =

⎡⎢⎢⎢⎣
σ 2

1 ρ12σ1σ2 · · · ρ1mσ1σm

ρ21σ2σ1 σ 2
2 · · · ρ2mσ2σm

...
...

. . .
...

ρm1σmσ1 ρm2σmσ2 · · · σ 2
m

⎤⎥⎥⎥⎦ . (8.53)

1 We use ξ instead of t for fear the latter might be confused as t .
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The corresponding joint MGF is obtained (Problem 8.7) as

MX (t) = exp

(
t�μ+ t�Ct

2

)
, t ∈ R

m . (8.54)

�

8.2 Characteristic function (CF)

Another function that we find useful for characterizing random variables is the
characteristic function (CF). We begin with the CF of a single RV.

8.2.1 Characteristic function of one random variable

If X is a random variable and u is a real parameter, eiu X = cos(u X) + i sin(u X) is a
complex-valued RV, where i = √−1. This interpretation requires that we extend our
definition of RV to include mappings from � into the complex plane. The expectation
of eiu X ,

φX (u) = E[eiu X ] =
∫ ∞

−∞
eiux d FX (x),−∞ < u <∞, (8.55)

is called the CF of the RV X . In the terminology of Fourier analysis, φX (u) is the
Fourier–Stieltjes transform of FX (x). If FX (x) is a continuous function and its
derivative F ′X (x) = fX (x) exists, the above definition can be replaced by

φX (u) = E[eiu X ] =
∫ ∞

−∞
eiu X fX (x) dx, (8.56)

which means that φX (u) is the Fourier transform2 of the PDF fX (x).
For a discrete RV,

φX (u) = E[eiu X ] =
∑

k

eiuxk pX (xk). (8.57)

Formally, the CF φX (u) is obtained from the MGF MX (t) by the substitution t = iu,
where i = √−1. There are two main advantages in working with the CF instead of the
MGF.

1. The MGF MX (t) may not exist, since the integral of (8.1) may not converge abso-
lutely, whereas the absolute convergence of the CF φX (u) is guaranteed, as shown in
(a) of Theorem 8.1.

2 In most engineering books, the Fourier transform of a function s(t) is defined as S̃(ω) = ∫∞−∞ s(t)e−iωt dt ,
with the minus sign in the exponent of the integrand. But this is just a matter of definition. We may call the
complex conjugate S̃∗, instead, the Fourier transform of s(t), if we so wish.
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2. The CF may be inverted to obtain the corresponding distribution function FX (x)
(or PDF fX (x)) by using the Fourier transform method. Knowledge of either the
CF or the distribution function is equivalent to the knowledge of the other. Such a
relationship does not exist between the MGF and the distribution function.

Theorem 8.1 lists the main properties of the CF.

THEOREM 8.1 (Properties of the CF). The CF satisfies the following:

(a) Absolute convergence. The CF φ(u) always exists and its absolute magnitude is
less than or equal to one:

|φ(u)| ≤ φ(0) = 1. (8.58)

(b) Uniform continuity. The CF is uniformly continuous on the real line
−∞< u<∞.

(c) Fourier inversion. Let φ(u) be the CF of the distribution function F(x) and sup-
pose that φ(u) is absolutely integrable over (−∞,∞). Then F(x) has a bounded
continuous PDF given by

f (x) = 1

2π

∫ ∞

−∞
φ(u)e−iux du,−∞ < x <∞. (8.59)

(d) Self-adjoint property.

φ(−u) = φ∗(u), (8.60)

where ∗ indicates the complex conjugate.
(e) Nonnegative definiteness. For any set of real numbers u1, u2, . . . , un and complex

numbers z1, z2, . . . , zn:

n∑
j=1

n∑
k=1

φ(u j − uk)z j z
∗
k ≥ 0. (8.61)

Proof.

(a)

|φ(u)| ≤
∫ ∞

−∞
|eiux | d F(x) =

∫ ∞

−∞
d F(x) = 1

(b) We need to show that, for given ε > 0, there exists a δ > 0 such that whenever
|u1 − u2| < δ, then |φ(u1)− φ(u2)| < ε.

|φ(u + δ)− φ(u)| = |E[ei X (u+δ) − ei Xu]|
≤ E[|eiu X (eiδX − 1)|] ≤ E[|h(δ)|],
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where h(δ) = eiδX − 1. From the identity |eiδx − 1| = 2
∣∣ sin δx

2

∣∣ ≤ 2, we have
|h(δ)| ≤ 2, almost surely.3 Therefore, h(δ)→ 0, as δ→ 0, and so E[|h(δ)|] → 0
by applying Lebesgue’s dominated convergence theorem (see Theorem 11.10).

(c) This is the inverse Fourier transform theorem, and the reader is referred to an
advanced textbook on the Fourier transform (e.g., [45, 323, 349]). A sufficient, but
not necessary condition for a function φ(u) to be the CF of a continuous RV is∫ ∞

−∞
|φ(u)| dx <∞.

(d) This property is due to the fact that the distribution function is real-valued:

φ(−u) =
∫ ∞

−∞
e−iux d F(x) = φ∗(u).

(e) This property comes from the fact that the distribution function is nonnegative.∑
j

∑
k

φ(u j − uk)z j z∗k =
∑

j

∑
k

∫ ∞

−∞

(
z j e

iu j x
) (

z∗k e−iuk x
)

d F(x)

= E

⎡⎣∣∣∣∣∑
j

z j e
iu j X

∣∣∣∣2
⎤⎦ ≥ 0.

We can generalize the result to a complex function z(u):∫ ∞

−∞

∫ ∞

−∞
φ(u1 − u2)z(u1)z

∗(u2) du1 du2 ≥ 0,

if the integral exists.

Another important property is that the CF can also be used for moment generation.
We will discuss this and other properties after the next example.

Example 8.5: Characteristic function of the normal distribution. Consider first the
unit normal RV X defined by (8.22):4

fX (x) = 1√
2π

e−x2/2, −∞ < x <∞. (8.62)

Then one may be tempted to find its CF by the simple substitution t = iu in the MGF
(8.24). Although it would yield the same result φX (u) = e−u2/2, a mathematically cor-
rect derivation of this result should involve the use of complex analysis; note that the
CF is defined in terms of the real parameter u.

3 The concept of almost sure equivalence is discussed in Section 3.1.
4 We use X here instead of U , since the lower case u is used as the argument of the the characteristic function.
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φX (u) = E[eiu X ] =
∫ ∞

−∞
eiux e−x2/2

√
2π

dx = e−u2/2

√
2π

∫ ∞

−∞
exp

[
− (x − iu)2

2

]
dx .

(8.63)

We make the change of variable s = x − iu and integrate in the complex plane,
obtaining

φX (u) = e−u2/2

√
2π

∫ ∞−iu

−∞−iu
e−s2/2 ds, (8.64)

where the integration should be made along a line parallel to the real axis.
In order to obtain the line integral of (8.64), we consider integration of e−s2/2 along

the rectangular contour sketched in Figure 8.1 (a) for the case u > 0 and in Figure 8.1 (b)
for the case u < 0. Since the function e−s2/2 is analytic (i.e., possessing no poles),
the integral around the entire contour of Figure 8.1 (a) is zero. This is known as the
Cauchy–Goursat integral theorem in complex analysis; i.e., the theory of functions
of complex variables (e.g., see [243, 302]):∫ α−iu

−α−iu
e−s2/2 ds +

∫ α

α−iu
e−s2/2 ds +

∫ −α

α

e−x2/2 dx +
∫ −α−iu

−α
e−s2/2 ds = 0

(8.65)

The second and fourth terms approach zero as α→∞, because the integral in both
cases contains a factor e−α2/2, which will exponentially approach zero as α→∞.5

(a)

Im

Re

Im

–iu

–iu

–α α

Re–α α

(b)

Figure 8.1 Contours for complex integral to obtain the CF of the normal distribution: (a) for u > 0;
(b) u < 0.

5 For s = α + iy;−u < y < 0, we have e−s2/2 = e−α2/2e−iαy+(y2/2). Similarly, for s = −α + iy;−u <

y < 0, we have e−s2/2 = e−α2/2eiαy+(y2/2).
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Then by letting α go to infinity and reversing the direction of integration in the third
term, we find ∫ ∞−iu

−∞−iu
e−s2/2 ds −

∫ ∞

−∞
e−x2/2 dx = 0. (8.66)

From the definition of the PDF of the unit normal distribution, we know that the second
term is

√
2π ; thus, the first term in (8.66) must also be

√
2π . Substituting this result

into (8.64), we find

φX (u) = e−u2/2, u > 0. (8.67)

For the case u < 0, the contour integral in Figure 8.1 (b) will lead to the same result
(Problem 8.14). Thus, (8.67) holds for for both u > 0 and u < 0. Clearly the above
expression holds for u = 0 as well, since φY (0) = 1. Hence, (8.67) holds for −∞ <

u <∞.
By applying the transformation Y = (X − μ)/σ we find the CF of the normal

distribution N (μ, σ 2) to be

φX (u) = E[eiu(μ+σY )] = eiuμE[ei(uσ)Y ]

= eiuμφY (uσ) = exp

[
iuμ− (uσ)2

2

]
,−∞ < u <∞, (8.68)

which again could have been found, in a short cut, by formally substituting t = iu into
the MGF of N (μ, σ2) given by (8.29), although it is not a mathematically allowable
derivation. There is, however, a mathematically acceptable derivation of the above CF
that does not involve complex integration (see Problem 8.13).

As is the case with the MGF discussed in Section 8.1, it is convenient to define
the logarithm of the characteristic function, sometimes referred to as the cumulant
generating function (CGF), given by

ψX (u) � lnφX (u) = iuμ− (uσ)2

2
. (8.69)

By differentiating the above expression, we obtain

μX = (−i)ψ ′X (0) = μ and σ 2
X = (−i)2ψ ′′X (0) = σ 2. (8.70)

�

8.2.2 Sum of independent random variables and convolution

In Example 5.3 of Section 5.2, the notion of convolution was introduced and discussed.
We will derive here the same result by using CFs. Consider the sum of two independent
RVs, say, Y = X1 + X2. The CF of Y is

φY (u) = E[eiuY ] = E[eiu X1 ]E[eiu X2 ] = φX1(u)φX2(u),−∞ < u <∞, (8.71)
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where we use the property that the expectation of the product of functions of indepen-
dent RVs is equal to the product of the expectations of the functions. Thus, by inverting
the above result, we have

fY (y) = 1

2π

∫ ∞

−∞
φX1(u)φX2(u)e

−iuy du. (8.72)

By substituting φX1(u) of (8.56) into the above, and rearranging the order of integration,
we obtain

fY (y) =
∫ ∞

−∞
fX1(x)

[
1

2π

∫ ∞

−∞
φX2(u)e

−iu(y−x) du

]
dx, (8.73)

which, with (8.59), leads to

fY (y) =
∫ ∞

−∞
fX1(x) fX2(y − x) dx . (8.74)

This expression is the convolution integral (or simply convolution) of fX1(·) and
fX2(·), as we defined in (5.27). Using the symbol � for convolution, we write

fY (y) = fX1(y)� fX2(y). (8.75)

The results (8.71) and (8.75) can be generalized by mathematical induction to many
RVs. Let {Xk; k = 1, 2, . . . ,m} be m independent RVs with CFs φk(u). Define the RV
Y to be the sum of Xk :

Y =
m∑

k=1

Xk . (8.76)

Then the CF of Y is given by the product of the φXk (u):

φY (u) =
m∏

k=1

φXk (u). (8.77)

Correspondingly, the PDF of Y is given by the m-fold convolution

fY (y) = fX1(y)� fX2(y)� · · ·� fXm (y). (8.78)

Example 8.6: Sum of independent normal variables. Let X1 and X2 be indepen-
dent normal variables with distributions N (μ1, σ

2
1 ) and N (μ2, σ

2
2 ) respectively. Let

Y = X1 + X2. Then, the CF of the RV Y is found from (8.68) as

φY (u) = φX1(u)φX2(u) = exp

[
iu(μ1 + μ2)− u2(σ 2

1 + σ 2
2 )

2

]
. (8.79)

Thus, we see that the RV Y is also a normal variable with distribution N (μ, σ 2), with

μ = μ1 + μ2 and σ 2 = σ 2
1 + σ 2

2 .
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The reproductive property of normal variables or distributions holds for the sum of
any number of independent normal variables defined by (8.76). �

8.2.3 Moment generation from characteristic function

As we stated earlier, the CF is related to the MGF by φX (u) = MX (iu). Thus, it is
apparent that we should be able to generate moments E[Xn] using the CF. By taking
the nth derivative of the CF (8.55) with respect to u, we have

φ
(n)
X (u) � dnφX (u)

dun =
∫ ∞

−∞
(i x)neiux fX (x) dx,−∞ < u <∞. (8.80)

Evaluating (8.80) at u = 0, we find

E[Xn] = (−i)nφ(n)X (0), for n = 1, 2, . . . (8.81)

Suppose that the Taylor-series expansion of the CF exists throughout some interval
in u that contains the origin. We may then write

φX (u) =
∞∑

n=0

φ
(n)
X (0)un

n! . (8.82)

It then follows, using (8.81) and the property that i2 = −1, that

φX (u) =
∞∑

n=0

E[Xn] (iu)
n

n! ,−∞ < u <∞. (8.83)

Therefore, the CF is uniquely determined in this interval by the moments of the RV.
The logarithm of the CF φX (u), as defined in (8.69), is the CGF and is denoted

ψX (u):

ψX (u) = lnφX (u). (8.84)

We may also expand ψX (u) as follows:

ψX (u) =
∞∑

n=0

κn
(iu)n

n! . (8.85)

The quantities κn are called cumulants. Note that any cumulant κn is a polynomial in
the moments, and vice versa. In particular, the first two cumulants are the mean μ and
the variance σ 2 respectively:

κ1 = (−i)ψ ′X (0) = μ and κ2 = (−i)2ψ ′′X (0) = σ 2. (8.86)
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8.2.4 Joint characteristic function of multivariate random variables

Suppose that X = (X1, X2, . . . , Xm)
� is an m-dimensional random vector having the

joint PDF fX (x). Analogous to the joint MGF defined in Section 8.1.3, we define the
joint CF φx(u):

φX (u) = E
[
ei(u1 X1+u2 X2+···+um Xm )

]
=
∫ ∞

−∞

∫ ∞

−∞
· · ·
∫ ∞

−∞
exp(i〈u, x〉) fx(x) dx1 dx2 · · · dxm, (8.87)

where 〈u, x〉 represents the inner product of the two vectors. The joint CF always exists,
and it assumes its greatest magnitude (which is unity) at the origin u = 0. The joint
moment E

[
Xn1

1 · · · Xnm
m
]
, if it exists, can be obtained by differentiating the CF n1 times

with respect to u1, n2 times with respect to u2, . . ., nm times with respect to um , and
setting u1 = u2 = · · · = um = 0:

E
[
Xn1

1 · · · Xnm
m

] = (−i)n1+···+nm

[
∂n1+···+nmφX (u)

∂un1
1 · · · ∂unm

m

]
u=0

. (8.88)

It should be observed that the joint CF of any subset of the components of the random
vector X is obtained by setting equal to zero those u that correspond to the RVs not
included in the subset. For example, the CF of (X1, X2) is φX (u1, u2, 0, . . . , 0).

The extension of the inverse transform (8.59) to the case of random vectors is
straightforward and may be given as follows:

fX (x) =
(

1

2π

)m ∫ ∞

−∞

∫ ∞

−∞
· · ·
∫ ∞

−∞
exp(−i〈u, x〉)φx (x) du1 du2 · · · dum . (8.89)

Note that the joint CF can be defined for discrete random vectors as well. The
joint CF for the multinomial distribution given in Table 8.2 is such an example (see
Problem 8.26).

Example 8.7: Bivariate normal distribution. Let us consider a vector of bivariate
normal variables, X = (X1, X2)

�, whose PDF is given by (4.108) of Section 4.3.1,
also referred to in Example 8.4. Because of the similarity of the CF to the MGF, the
following argument exactly parallels that of Example 8.4. Define a scalar variable Y by

Y = 〈u, X〉. (8.90)

Since X1 and X2 are both normal RVs, so is Y , with mean

μY = 〈u,μ〉 (8.91)

and variance

σ 2
Y = u�Cu, (8.92)
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where C is the covariance matrix of the bivariate normal distribution defined by (4.117)
and (8.46), and u� is the transpose of the row vector u. By writing Y = σY V + μY ,
where V is the standard normal variable,6 the CF of Y can be expressed as

φY (u) = E
[
eiuY

]
= eiuμY E

[
eiuσY V

]
= eiuμY e−(uσY )

2/2, (8.93)

where we used φV (v) = e−v2/2. If we set u = 1 in the last equation, we have

φY (1) = E
[
eiY
]
= eiμY−(σ 2

Y /2). (8.94)

But

E
[
eiY
]
= E

[
ei〈u,X〉] = φX (u). (8.95)

Thus, we have found the joint CF of the two-dimensional RV X as

φX (u) = exp

(
i〈u,μ〉 − u�Cu

2

)
. (8.96)

�

The generalization of the bivariate normal distribution to a general multivariate nor-
mal distribution is straightforward. In Table 8.2 we show the multivariate normal
distribution and its characteristic function.

Table 8.2. Some joint characteristic functions

1. Multinominal

P[X = k] = n!
k1!k2!···km ! pk1

1 pk2
2 · · · pkm

m ,

where ki ≥ 0 for all i and k1 + k2 + · · · + km = n.

φX (u) =
[
1+ p1(e

iu1 − 1)+ p2(e
iu2 − 1)+ · · · + pm (eium − 1)

]n

2. Bivariate normal

fX (x) = 1
2πσ1σ2

√
1−ρ2

exp
[
− 1

2 Q(x1, x2)
]
,

where Q(x1, x2) = 1
1−ρ2

[
(x1−μ1)

2

σ 2
1

− 2ρ (x1−μ1)(x2−μ2)
σ1σ2

+ (x2−μ2)
2

σ 2
2

]
φX (u) = exp

[
i(μ1u1 + μ2u2)− 1

2

(
σ2

1 u2
1 + 2ρσ1σ2u1u2 + σ2

2 u2
2

)]
3. Multivariate normal

fX (x) = 1
(2π)m/2| det C|1/2 exp

[
− 1

2 (x − μ)�C−1(x − μ)
]

φX (u) = exp
(

iu�μ− 1
2 u�Cu

)
,

where C = E[(X − μ)(X − μ)�]: covariance matrix
μ� is the transpose of a column vector μ, etc.

6 We use V here instead of U , since the symbol u is used as the variable of the CF.
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8.2.5 Application of the characteristic function: the central limit theorem (CLT)

Now we are ready to discuss the central limit throrem (CLT), which will explain
why the normal distribution appears in many circumstances. Suppose that we have a
population with an arbitrary distribution function F(x), but with finite mean μ and
variance σ 2. Let {Xi ; 1≤ i ≤ n} be n independent samples from the population. Then
we can make the following statement about the manner in which the distribution of the
sample average

Xn = 1

n

n∑
i=1

Xi (8.97)

behaves as n →∞.

THEOREM 8.2 (The central limit theorem). If Xn is the average of n independent
samples from a distribution having finite variance σ 2 and mean μ, then

lim
n→∞ P

[√
n

σ
(Xn − μ) ≤ x

]
= 1√

2π

∫ x

−∞
e−u2/2 du . (8.98)

Thus, Xn is asymptotically normally distributed according to N (μ, σ 2/n).

Proof. Let φn(u) be the CF of the RV
√

n(Xn − μ)/σ :

φn(u) = E[eiu
√

n(Xn−μ)/σ ] = E

[
exp

[
iu

n∑
i=1

(Xi − μ)√
nσ

]]
= (φ(u))n , (8.99)

where φ(u) (without the subscript n) is the CF of (Xi − μ)/√nσ , common to all Xi ,
i = 1, 2, . . . , n. By applying the Taylor expansion formula (8.83) to φ(u), we have

φ(u) = 1+ i E

[
X − μ√

nσ

]
u − 1

2
E

[(
X − μ√

nσ

)2
]

u2 + o

(
u2

n

)
, (8.100)

where o(u2/n) represents the sum of all terms with higher order than u2, which
approaches zero at least as fast as u2/n, as u2/n → 0. Therefore, for any given u, we
have

lim
n→∞φn(u) = lim

n→∞

[
1− u2

2n
+ o

(
u2

n

)]n

= e−u2/2, (8.101)

where we used the formula limx→0(1− x)1/x = e−1, in which we set x = u2/2n. We
know from (8.62) that e−u2/2 is the CF associated with the unit normal distribution
N (0, 1). Therefore, the distribution function of

√
nσ−1(Xn − μ) converges to that of

the distribution N (0, 1) as n →∞; i.e.,

lim
n→∞ P

[√
n

σ
(Xn − μ) ≤ x

]
= 1√

2π

∫ x

−∞
e−u2/2 du. (8.102)
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Thus, according to Lévy’s continuity theorem [27], Xn is asymptotically normally
distributed according to N (μ, σ 2/n).7

Note that the CLT does not imply that the PDF of the sample average Xn (or its
normalized quantity) approaches the normal PDF. If the original variables {Xi } are
discrete variables (e.g., binomial), then the PDF of Xn will be a collection of impulses
(i.e., delta functions) no matter how large the sample size n is. In such a case the PDF of
Xn never approaches the continuous function of a normal PDF. As is implied by (8.102),
however, the integral of the PDF over any fixed interval approaches an integrated value
of the normal density function.

The above stated theorem is known as the equal component case of the CLT that
holds under weaker restrictions. For discussions of various forms of the CLT, the reader
is directed to Feller [99, 100], Chung [53], and Gnedenko and Kolmogorov [123].
However, we will further discuss various versions of the CLT in Section 11.3.4.

While the limiting distribution of the sample mean (8.97) is normal, we sometimes
find that the normal limit gives a relatively poor approximation for the tail of the actual
distribution of Xn when n is finite. See Feller [99] (Chapter 7) and [100] (Chapter 8) for
further details. The well-known example of a probability distribution to which the CLT
does not apply is the Cauchy–Lorentz distribution (or simply Cauchy distribution)
defined by

f (x) = 1

πα
[
1+ (x−μ)2

α2

] = α

π
[
α2 + (x − μ)2] , −∞ < x <∞. (8.103)

It is not difficult to show that the variance of the Cauchy distribution is infinite (Problem
8.17(b)). In fact, the sum of any number of independent Cauchy RVs has the same
distribution as any one of them; hence, the average of n independent observations is no
better than a single observation in this case (Problem 8.27).

8.2.6 Characteristic function of multivariate complex-valued normal variables

Now let us find the CF of the multivariate normal variables discussed in Section 7.6.2.
We use real-valued vector parameters α and β, instead of u, in expressing the CF of the
circular symmetric multivariate normal variables X and Y :

φXY (α,β) =
[
ei(〈α,X〉+〈β,Y 〉)]

= exp

(
−1

2
[α�,β�]

[
A −B
B A

] [
α

β

])
= exp

(
−1

2

[
α�Aα + β�Aβ + α�Bβ − β�Bα

])
. (8.104)

7 Lévy’s continuity theorem states that if a sequence of characteristic functions converges pointwise to a
function φ(u), which is continuous at u = 0, then the sequence of the corresponding CDFs converges to a
CDF F(x) and the characteristic function associated with F(x) is φ(u).
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By defining

Z � X + iY and γ � α + iβ, (8.105)

and defining the inner product8

〈γ , Z〉 � γ�Z∗, (8.106)

we have

〈γ , Z〉 + 〈Z, γ 〉 = 2(〈α, X〉 + 〈β,Y 〉), (8.107)

γ�Cγ ∗ = α�Aα + β�Aβ + α�Bβ − β�Bα, (8.108)

where we used α�Bα = β�Bβ = 0 because B is skew symmetric. We define the CF
of the complex-valued RV Z (not necessarily Gaussian) by

φZ(γ ) � E
[
e(i/2)(〈γ ,Z〉+〈Z,γ 〉)

]
= E

[
ei {〈γ ,Z〉}] .

Then, from (8.104), (8.107), and (8.108), we find that the CF of Z = X + iY (where
X and Y are circularly symmetric normal variables) is given by

φZ(γ ) = exp

(
−1

2
γ�Cγ ∗

)
. (8.109)

We write

γ = (γ1, . . . , γm, . . . , γM), (8.110)

γ ∗ = (γ ∗1 , . . . , γ ∗m, . . . , γ ∗M ). (8.111)

Then, the CF defined by (8.109) satisfies the following moment generation properties:

φZ(0) = 1, (8.112)

∂φZ(γ )

∂γ m

∣∣∣∣
γ=0

= i

2
E[Z∗m ], 1 ≤ m ≤ M, (8.113)

∂φZ(γ )

∂γ ∗m

∣∣∣∣
γ=0

= i

2
E[Zm ], 1 ≤ m ≤ M, (8.114)

∂2φZ(γ )

∂γmγ ∗n

∣∣∣∣
γ=0

= −1

4
E[Zm Z∗n ], 1 ≤ m, n ≤ M, (8.115)

∂4φZ(γ )

∂γm∂γ ∗n ∂γp∂γ ∗q

∣∣∣∣∣
γ=0

= 1

16
E[Z∗m Zn Z∗p Zq ], 1 ≤ m, n, p, q ≤ M. (8.116)

8 We can alternatively define the inner product by 〈γ , Z〉 � γ ∗T Z, yet (8.107) and (8.108) remain
unchanged.
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In particular, for the circularly symmetric normal variables, we obtain the following
results (Problem 8.28):

E[Zm] = E[Z∗m] = 0,

E[Zm Z∗n ] = 2Cmn,

E[Zm Z∗n Z p] = 0,

E[Zm Z∗n Z p Z∗q ] = 4[CmnCpq + C pnCmq ].

(8.117)

The derivation of the last property (8.117) makes use of the following property that
holds for complex-valued normal variables:

∂4φ(0)
∂γm∂γ ∗n ∂γp∂γ ∗q

= ∂2 Q(0)
∂γp∂γ ∗q

∂2 Q(0)
∂γm∂γ ∗n

+ ∂2 Q(0)
∂γp∂γ ∗n

∂2 Q(0)
∂γm∂γ ∗q

, (8.118)

where

Q(γ ) = −1

2
γ�Cγ ∗ and

∂2 Q(0)
∂γp∂γ ∗q

� ∂2 Q(γ )

∂γp∂γ ∗q

∣∣∣∣∣
γ=0

,

etc., and we use the following properties in arriving at (8.118):

Q(0)=0,
∂Q(γ )

∂γm

∣∣∣∣
γ=0
=0,

∂2 Q(γ )

∂γm∂γ ∗n
=−1

4
E[Zm Z∗n ], and

∂3 Q(γ )

∂γm∂γ ∗n ∂γp
=0.

(8.119)

8.3 Summary of Chapter 8

MGF: MX (t)= E[et X ]= ∫∞
−∞ etx dFX (x) (8.1)

The nth moment: E[Xn]=M(n)
X (0), n= 0, 1, 2, . . . (8.5)

Logarithmic MGF: m X (t)= ln MX (t),−∞ < t <∞ (8.6)
The expectation of X : E[X ]=m′

X (0) (8.7)
The variance of X : σ 2

X =m ′′
X (0) (8.8)

MGF of the binomial: MX (t)= ∑n
k=0 etk

(n
k

)
pkqn−k = (

p et + q
)n (8.10)

log-MGF of Poisson: m X (t)= λ(et − 1),−∞ < t <∞ (8.19)

log-MGF of N (μ, σ 2): m X (t)= tμ+ (tσ)2

2 ,−∞ < t <∞ (8.30)

Central moments of
N (μ, σ 2):

E[(X − μ)n]=
{

0, n odd
1× 3 · · · (n − 1)σ n, n even

(8.35)

MGF of sum of
independent RVs:

MY (t)= ∏m
i=1 MXi (t) (8.39)

Definition of joint MGF: MX(t) � E
[
et1 X1+t2 X2+···+tm Xm

]
(8.40)

Joint moments: E
[
Xn1

1 · · · Xnm
m
] = ∂n1+···+nm MX (t)

∂t
n1
1 ···∂tnm

m

∣∣∣∣
t=0

(8.41)
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PDF of multivariate
normal:

fX (x)= 1
(2π)m/2| det C|1/2 e−[(x−μ)�C−1(x−μ)/2] (8.52)

MGF of multivariate
normal:

MX (t) = exp
(

t�μ+ t�Ct
2

)
(8.54)

Characteristic function: φX (u) = E[eiu X ] = ∫∞−∞ eiux d FX (x) (8.55)

CF of the unit normal
distribution:

φX (u) = e−u2/2,−∞ < u <∞ (8.67)

Moment generation by
CF:

E[Xn] = (−i)nφ(n)X (0) (8.81)

Joint CF: φX (u) = E
[
ei(u1 X1+u2 X2+···+um Xm )

]
(8.87)

Join moment generation: E
[
Xn1

1 · · · Xnm
m
]

= (−i)n1+···+nm

[
∂n1+···+nmφX (u)
∂u

n1
1 ···∂unm

m

]
u=0

(8.88)

CF of multivariate
normal:

φX (u) = exp
(

i〈u,μ〉 − u�Cu
2

)
(8.96)

CLT: limn→∞ P
[√

n
σ
(Xn−μ) ≤ x

]
= 1√

2π

∫ x
−∞ e−u2/2 du

(8.98)

CF of complex RVs: φZ(γ ) � E
[
e(i/2)(〈γ ,Z〉+〈Z,γ 〉)

] = E
[
ei {〈γ ,Z〉}] (8.109)

Circularly symmetric
Gaussian:

φZ(γ ) = exp
(
− 1

2γ�Cγ ∗
)

(8.109)

8.4 Discussion and further reading

The CF is discussed in virtually all graduate-level textbooks on probability theory, since
it is such an important concept and a useful mathematical device. Unfortunately, how-
ever, many authors incorrectly treat a complex integral as if it were an integration of a
function defined over the real line R. Even though this “malpractice” [131] yields cor-
rect answers in most cases, the right procedure is to integrate a given integrand along a
contour appropriately defined in the x–y plane, as demonstrated in Example 8.5. There
may sometimes be a way to avoid the use of complex analysis by an ad hoc method (e.g.,
Problem 8.13), but the orthodox method relies on the contour integral and Cauchy’s
residue theorem.

The MGF provides some advantages over the CF, especially for those who would
prefer to avoid complex integration. But the MGF does not always exist, and does not
allow us to recapture the PDF as the CF does: there is no inversion formula that cor-
responds to the Fourier inversion that applies to the CF. We make extensive use of the
MGF in the discussion of Chernoff’s bounds and large deviation theory in Chapter 10.

As we noted in Chapter 1, restrictive forms of what we now call the CLT were dis-
cussed by De Moivre and Laplace in 1718 and 1812 respectively. The task of perfecting
the proof and relaxing its assumptions was taken up by the Russian probability theorists
Chebyshev and his students Markov and Lyapunov. Chebyshev and Markov proved the
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CLT under conditions weaker than Laplace’s using moments, and Lyapunov later proved
the same theorem using the CF.

Lindeberg proved the CLT under less restrictive assumptions in 1922; i.e., inde-
pendent but not identically distributed Xi (as opposed to the equal components case
assumed in Theorem 8.2 of the present chapter). His streamlined proof that uses the CF
was discussed by Lévy in his 1925 book. We will further discuss the CLT in Chapter 11.

8.5 Problems

Section 8.1: Moment-generating function (MGF)

8.1∗ Properties of logarithmic MGF. Show that the logarithmic (or cumulant) MGF
satisfies the following properties

m′
X (0) = E[X ] = μX

and

m′′
X (0) = E[X2] − (E[X ])2 = σ 2

X .

8.2 Uniform distributions.

(a) Show that the MGF of the uniform distribution

fX (x) = 1

a
, 0 < x < a,

is given by

MX (t) =
{

eat−1
at , t �= 0,

1, t = 0.

(b) Derive the MGF of the uniform distribution

fX (x) = 1

2a
, |x | < a.

8.3∗ Exponential distribution. Find the MGF of the exponential distribution

fX (x) = μ e−μx , 0 ≤ x <∞.

8.4 Bilateral exponential distribution. Find the MGF of a bilateral exponential
distribution defined by

fX (x) = μ

2
e−μ|x |,−∞ < x <∞,

Under what condition does the MGF exist?
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8.5 Triangular distribution. Find the MGF of a triangular distribution defined by

fX (x) = 1

a

(
1− |x |

a

)
, |x | < a.

8.6 Negative binomial distribution. The negative binomial distribution with
parameters (r, p) discussed in Section 3.3.4 takes three different forms:

P[X = i] = P[r − 1 successes in i − 1 trials and a success at the i th trial]
=
(

i − 1

r − 1

)
pr (1− p)i−r =

(
i − 1

i − r

)
pr qi−r

=
( −r

i − r

)
pr (−1)i (1− p)i−r , i = r, r + 1, r + 2, . . . . (8.120)

Show that the MGF is given by

MX (t) =
[

p et

1− (1− p)et

]r

,−∞ < t < ln

(
1

1− p

)
. (8.121)

8.7∗ Multivariate normal distribution. Show that the MGF of the multivariate
normal distribution is given by (8.54).

8.8 Multinomial distributions. Consider the multinomial distribution defined in
Problem 3.12:

P[(X1, X2, . . . , Xm) = (k1, k2, . . . , km)] = n!
k1!k2! · · · km ! pk1

1 pk2
2 · · · pkm

m ,

where
∑m

i=1 pi = 1 and
∑m

i=1 ki = n. Show that the joint MGF of this distribution is
given by

MX (t) =
(

p1et1 + p2et2 + · · · + pmetm
)n
, t ∈ R

m . (8.122)

8.9∗ Erlang distribution. Consider the r -stage Erlang distribution defined by (4.165),
with PDF given by

fSr (x) =
rλ(rλx)r−1

(r − 1)! e−rλx , x ≥ 0.

Show that the MGF is given by

MSr (t) =
(

rλ

rλ− t

)r

, for t < rλ. (8.123)

8.10 Gamma distribution. Consider the Gamma distribution with parameter (λ, β)
defined by (4.30):

fYλ,β (y) =
λβ

�(β)
yβ−1e−λy, y ≥ 0. (8.124)
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Show that the MGF of this distribution is given by

MYλ,β (t) =
(

λ

λ− t

)β
, t < λ. (8.125)

Section 8.2: Characteristic function (CF)

8.11∗ CF of the binomial distribution. Show that the CF of the binomial distribution
B(k; n, p), k = 0, 1, 2, . . . , n, is given by

φ(u) =
(

p eiu + 1− p
)n
,−∞ < u <∞.

8.12 CF of the Poisson distribution. Show that the Poisson distribution with mean
λ has the CF given by

φ(u) = eλ(e
iu−1),−∞ < u <∞.

8.13 Alternative derivation of (8.67). Obtain (8.67) by taking the following steps.

(a) Show that d
duφY (u) = −uφY (u).

(b) Then show φY (u) is given by (8.67).

8.14 Contour integration. Referring to Example 8.5, the integration in the complex
plane must be done along the contour of Figure 8.1 (b) for u < 0. Obtain an equation
for this case that is comparable to (8.66).

8.15∗ CF of the exponential distribution. Using contour integration in the complex
domain, show that the CF of the exponential distribution with mean a is given by

φ(u) = 1

1− iau
,−∞ < u <∞. (8.126)

8.16 CF of the bilateral exponential distribution. The bilateral exponential density
function is defined by

f (x) = e−|x |

2
,−∞ < x <∞. (8.127)

Find its CF.

8.17 CF of the Cauchy distribution. The Cauchy distribution (see Problem 5.4 and
Section 7.5.1) is defined by

f X (x) = 1

π(1+ x2)
,−∞ < x <∞. (8.128)
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(a) Show that the distribution function is given as

FX (x) = tan−1 x

π
+ 1

2
. (8.129)

(b) Does the mean μX exist? What about the second moment E[X2] and higher
moments? Does the Cauchy distribution possess an MGF?

(c) Show that the CF of the Cauchy distribution exists and is given by

φX (u) = e−|u|,−∞ < u <∞. (8.130)

8.18 Alternative derivation of the CF of the Cauchy distribution. Using the Fourier
inverse formula of Theorem 8.1 (c) and the result of Problem 8.16, obtain the CF of the
Cauchy distribution.

8.19 CF of the gamma and χ2 distributions.

(a) Consider the gamma distribution

fX (x) = xβ−1e−x

�(β)
.

Show that its CF is

φX (u) = 1

(1− iu)β
.

(b) Show that the CF of the χ2
n -distribution is

φχ2
n
(u) = 1

(1− 2iu)n/2
.

8.20 CF of the noncentral χ2 distribution. Show that the CF of the noncentral
chi-squared variable χ2

n (μ
2) defined by (7.28) is given by (7.29):

φχ2
n (μ

2)(u) =
1

(1− 2iu)n/2
exp

(
iuμ2

1− 2iu

)
.

8.21 Independent RVs. Let X and Y be independent RVs. Show that the CF of Z =
X + Y is given by (8.71).

8.22 CF of a symmetric distribution. If a PDF fX (x) is symmetric about x = 0,
show that the CF φX (u) takes on only real values.

8.23 Sum of independent unit normal variables. Let U1,U2, . . . ,Un be indepen-
dent RVs all having the unit (or standard) normal distribution. Find the PDF of the RV
(1/
√

n)(U1 +U2 + · · · +Un).
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8.24 Poisson distribution. The Poisson distribution with parameter λ is defined by

pk = P(k; λ) = λk

k! e−λ, k = 0, 1, 2, . . . .

(a) Find the CF of the Poisson distribution.
(b) Compute the mean and variance.
(c) Let Xi be independent Poisson RVs with corresponding parameters λi , i =

1, 2, . . . , n. Find the distribution of the RV Y = X1 + X2 + · · · + Xn .

8.25 Bernoulli trials. Consider a sequence of Bernoulli trials with probability of suc-
cess p, and that of failure q = 1− p. The number of trials that precede the first success
is a discrete RV, which we denote by X .

(a) Find the probability distribution of X .
(b) Find the mean and variance of X using the CF of this distribution.

8.26 The joint CF of a multinomial distribution. In Problem 3.12 we defined the
following multinomial distribution as a generalization of the binomial distribution:

pk = n!
k1!k2! · · · km ! pk1

1 pk2
2 · · · pkm

m . (8.131)

(a) Find the joint CF of the above m-dimensional random vector k = [k1, k2, . . . , km].
(b) Apply the moment-generation formula (8.88) and find the mean and variance of ki

and the covariance of ki and k j defined by

Cov[ki , k j ] = E
[
(ki − E[ki ])(k j − E[k j ])

]
.

8.27 Sample mean of the Cauchy variables. Show that the sample mean of indepen-
dent Cauchy variables has the same Cauchy distribution as the component variables.

8.28 Moments of complex-valued multivariate normal variables. Derive the four
equations in (8.117).



9 Generating functions and
Laplace transform

In addition to the moment generating function (MGF) and characteristic function (CF)
methods discussed in the preceding chapter, there are two other related methods that
are frequently used in the study of probability theory. They are the generating function
and the Laplace transform (LT).

Discrete RVs often assume integers or integral multiples of some unit, as is the case in
counting applications and discrete-time systems. Then, the generating function method
will be found to be a convenient device in probability analysis. When a random variable
is continuous but nonnegative (e.g., waiting time and service time in a queueing system),
we can make use of the rich theory of LTs in the analysis.

Since the CF exists for all distribution functions, both discrete and continuous, why
should we study all these other transform methods that seem redundant? Certainly the
CF should suffice in most situations, but generating functions and LTs are preferred
whenever they are applicable, partly because their notation is somewhat simpler than
that of the CF, and partly because there is a rich theory behind the generating function
and LT methods, both of which have been widely used as operational methods in system
theory that involves differential and integral equations. Thus, it is important for us to be
sufficiently familiar with these transform methods to study the literature on probability
theory and its applications.

9.1 Generating function

The notion of generating function can be more general than the probability generating
function (PGF) that we will primarily discuss in this section. For a given sequence
{ fk; k = 0,±1,±2, . . . }, the generating function is defined as a power series in zk

having as coefficients the values fk . If the sequence { fk} is bounded, then its generating
function converges at least for |z| < 1 (Problem 9.1):

F(z) =
∞∑

k=0

fk zk , |z| < 1. (9.1)

In the field of system analysis, the name “Z -transform” has gained wide acceptance in
which usually a transformation based on power series in z−k is used (e.g., see Freeman
[112]):
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F̃(z) =
∞∑

k=0

fk z−k, |z| > 1. (9.2)

If the summation is over a finite number of terms, say 0 ≤ k ≤ N , then F(z) is a
polynomial in z of order N . This type of representation is used, for instance, for digital
filters with finite impulse response (FIR). In coding theory, a codeword of length N ,
c= (c0, c1, . . . , cN−1) is compactly represented by a polynomial C(D) =∑N−1

k=0 ck Dk .
Thus, the generating functions and polynomial representations are used in a variety of
scientific and engineering applications, and the PGF to be discussed is just one example
of these widely practiced mathematical techniques.

9.1.1 Probability-generating function (PGF)

Consider a random variable that takes on values from a countable (but possibly infinite)
set, which we label by nonnegative integers 0, 1, 2, . . . . Let the probabilities associated
with this nonnegative integer variable, denoted X , be

P[X = k] = pk, k = 0, 1, 2, . . . . (9.3)

We define the PGF PX (z) by E[zX ]:

PX (z) � E
[
zX
]
=

∞∑
k=0

pk zk, |z| ≤ 1. (9.4)

PX (z) is clearly a function of the “parameter” z only, since it is obtained by summing
over the index k. But it is also a single quantity that represents the entire probability
distribution {p0, p1, p2, . . .}. We can recover (or generate) the values p0, p1, p2, . . .

from the function PX (z) assuming that the infinite sum in (9.4) exists for some values
of z. The use of generating functions gives us an extremely powerful technique when
we deal with certain operations involving RVs or their probabilities.

Example 9.1: Shifted geometric distribution. Consider a sequence of Bernoulli trials
with probability of success p and that of failure q = 1− p. Let X represent the number
of failures until the first success occurs. Then X has the shifted geometric distribution
defined in (3.123):

pk = qk p, k ≥ 0. (9.5)

The corresponding PGF is then

P(z) = p
∞∑

k=0

qk zk = p

1− qz
, |z| < q−1. (9.6)
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The region |z| < q−1 is called the region of convergence of (9.6), and the number q−1

is called the radius of convergence. �

Example 9.2: PGF of Poisson distribution. The Poisson distribution with mean λ is
defined by

pk = λk

k! e−λ, k ≥ 0. (9.7)

Using the formula ex =∑∞
k=0

xk

k! , we obtain

P(z) =
∞∑

k=0

(λz)k

k! e−λ = eλ(z − 1), |z| <∞. (9.8)

Thus, the radius of convergence is infinite. �

Table 9.1 summarizes the distributions and the PGFs discussed in the above
examples and some other distributions. The reader is suggested to derive these PGFs
(Problem 9.2).

9.1.1.1 Generating function of the complementary distribution
Let X be a random variable that assumes integer k with probability pk and let qk be the
distribution for its tails:

qk � P[X > k] = pk+1 + pk+2 + . . . . (9.9)

Table 9.1. Some probability distributions and their PGFs

No. Name
Probability
distribution Range PGF

1. Binomial
(n
k
)

pkqn−k k = 0, 1, 2, . . . , n (pz + q)n

2. Poisson λk

k! e−λ k = 0, 1, 2, . . . eλ(z−1)

3. Geometrica q j p j = 0, 1, 2, . . . p
1−qz

4. Geometric qk−1 p k = 1, 2, 3, . . . pz
1−qz

5. Negative binomial
(shifted)

(−r
j
)

pr (−q) j = (r+ j−1
j

)
pr q j j = 0, 1, 2, . . .

(
p

1−qz

)r

a j is the number of failures before the first success is attained in a
sequence of Bernoulli trials; i.e. a shifted geometric distribution.
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We denote the PGF of {pk} by P(z) and the generating function of {qk} by Q(z). Then
it is not difficult to find the following simple relation (Problem 9.3):

Q(z) = 1− P(z)

1− z
. (9.10)

9.1.1.2 Expectation and factorial moments
Recall that the MGF MX (t) and the CF φX (θ) were used to generate the moments of X .
Analogous results that we can obtain from the PGF are the expectation and the factorial
moments, as shown below.

First we examine

P ′(z) =
∞∑

k=1

kpk zk−1, |z| < 1. (9.11)

If we set z = 1, the right-hand side reduces to
∑

k kpk = E[X ]. Whenever the expec-
tation exists, P ′(z) will be continuous in the closed interval −1 ≤ z ≤ 1 on the real
line. If

∑
k kpk diverges, then P ′(z)→∞ as z → 1. In this case, we may write

P ′(1)= E[X ] =∞ and we say the expectation does not exist, or X has infinite
expectation.

By applying the mean value theorem to the relation (9.10), we see that Q(z) = P ′(w),
wherew is a point lying between z and 1. The function Q(z) increases monotonically as
z → 1, and Q(z) approaches P ′(1) = E[X ]; thus, we have the following two different
expressions for the expectation:

E[X ] =
∞∑

k=1

kpk =
∞∑

k=0

qk (9.12)

or

E[X ] = P ′(1) = Q(1). (9.13)

We obtained an expression equivalent to E[X ] = Q(1) in (4.11).
Differentiate (9.11) once more and use the relation P ′(z) = Q(z)− (1− z)Q′(z).

Then you will find

E[X (X − 1)] =
∑

k

k(k − 1)pk = P ′′(1) = 2Q′(1). (9.14)

The variance of X is thus expressed as

Var[X ] = P ′′(1)+ P ′(1)− P ′2(1) = 2Q′(1)+ Q(1)− Q2(1). (9.15)

If P ′′(1) = ∞, we say that X has infinite variance, or the variance of X does not exist.
The formulas (9.13) and (9.15) provide a quicker way to calculate the mean and variance
of X .
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Taking the nth derivative with respect to z of (8.89) and setting z = 1, we find

P(n)X (1) =
∞∑

k=0

k(k − 1) · · · (k − n + 1)pk

= E[X (X − 1) · · · (X − n + 1)]. (9.16)

The right-hand side expression is referred to as the nth factorial moment.

Example 9.3: Moments of Poisson distribution. For the Poisson distribution of
Example 9.2, substituting (9.8) into the above formulas yields

E[X ] = λ, E[X 2] − E[X ] = λ2. (9.17)

Therefore, the variance is given by

σ 2
X = E[X2] − E2[X ] = λ2 + λ− λ2 = λ. (9.18)

�

9.1.2 Sum of independent variables and convolutions

In Section 8.2.2 we observed that the PDF of the sum of two statistically independent,
continuous RVs is given by the convolution integral of the individual PDFs. We now
consider the discrete analog of the convolution formula (8.74). Let X and Y be inde-
pendent RVs with probability distributions p = {pk; 0 ≤ k <∞} and q = {qk; 0 ≤
k<∞} respectively, and let their PGFs be denoted by PX (z) and PY (z) respectively.
Then the sum

W = X + Y (9.19)

has PGF PW (z), which is the product of the individual PGFs PX (z) and PY (z):

PW (z) = E[zW ] = E[z X zY ] = E[zX ]E[zY ] = PX (z)PY (z). (9.20)

Let the probability distribution of the new variable W be denoted by r = {rk; 0 ≤
k<∞}. Then (9.20) can be written as

∞∑
k=0

rk zk =
( ∞∑

i=0

pi z
i

)⎛⎝ ∞∑
j=0

q j z j

⎞⎠ . (9.21)

By equating the coefficients of the terms zk of both sides, we obtain

rk = p0qk + p1qk−1 + · · · + pkq0 =
k∑

i=0

pi qk−i , (9.22)
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or, equivalently,

rk = pkq0 + pk−1q1 + · · · + p0qk−1 =
k∑

j=0

pk− j q j . (9.23)

Equation (9.21) or (9.22) is known as the convolution summation or simply con-
volution of the distributions {pk} and {qk}. We may simply write the above relation,
analogously to (8.75), as

r = p � q or {rk} = {pk}� {qk}. (9.24)

We can generalize the foregoing results to the case of an arbitrary number of RVs.
Let Xi , i = 1, 2, . . . , n, be statistically independent nonnegative RVs with PGFs Pi (z).
A random variable W defined by

W = X1 + X2 + · · · + Xn =
n∑

i=1

Xi (9.25)

has a PGF that is the product of the Pi (z) (see Problem 9.8):

PW (z) = P1(z)P2(z) · · · Pn(z) =
n∏

i=1

Pi (z). (9.26)

The probability distribution r of W is given by the n-fold convolution:

r = p1 � p2 � · · ·� pn, (9.27)

where pi is the probability distribution of the variable Xi , n = 1, 2, . . . , n.
The summation of RVs given by (9.25) and the product of their PGFs expressed

by (9.26) are both associative and commutative operations. Thus, the convolution
operation is also associative and commutative.

If the Xi have a common distribution p = {pk}, and hence a common PGF PX (z),
then the distribution of W will be denoted by

r = pn� or {rk} = {pk}n�. (9.28)

It is apparent that

pn� = p(n−1)� � p or {pk}n� = {pk}(n−1)� � {pk}. (9.29)

Example 9.4: Convolution of binomial distributions. Consider n independent
Bernoulli trials and let X be the number of success. We can write the binomial variable
X as

X = B1 + B2 + · · · + Bn, (9.30)

where Bi is the result of i th trial, which takes on 1 with probability p and 0 with
probability q = 1− p. Thus, its PGF is given by PBi (z) = E

[
zBi
] = pz + q for all

i = 1, 2, . . . , n. Thus, we have
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PX (z) =
n∏

i=1

PBi (z) = (pz + q)n, (9.31)

as expected (see Table 9.1 and Problem 9.2 (a)). Thus,

{B(k; n, p)} = {B(k; 1, p)}n�. (9.32)

The multiplicative property (pz + q)m(pz + q)n = (pz + q)m+n implies

{B(k;m, p)}� {B(k; n, p)} = {B(k;m + n, p)}, (9.33)

from which we find the following formula for binomial coefficients:(
m

0

)(
n

k

)
+
(

m

1

)(
n

k − 1

)
+ · · · +

(
m

k

)(
n

0

)
=
(

m + n

k

)
. (9.34)

�

9.1.3 Sum of a random number of random variables

We are often interested in the sum of i.i.d. discrete RVs X j , j = 1, . . . , N :

SN = X1 + X2 + . . .+ X N , (9.35)

where the number N itself is also a random variable, independent of the X j . Let {qn}
be the probability distribution of N and let PN (z) be its PGF:

P[N = n] � qn, n = 0, 1, 2, . . . , and PN (z) � E
[
zN
]
=

∞∑
n=0

qnzn. (9.36)

Suppose the probability distribution of X j , denoted by {pk}, is common to all j , and let
its PGF be denoted by PX (z); i.e.,

P[X j = k] � pk, k ≥ 0, for all j ≥ 1, and PX (z) � E
[
zX j
]
=

∞∑
k=0

pk zk . (9.37)

We are interested in the probability distribution {rs} of SN , where rs = P[SN = s],
s = 0, 1, 2, . . .. Towards this end we first seek its PGF PS(z), which can be expressed,
using the law of iterated expectations (cf. (3.38) and (4.106)), as

PS(z) = E
[
zSN
]
= E

[
E
[
zSN |N

]]
, (9.38)

where the outer expectation is taken with respect to the random variable N , whereas the
inner conditional expectation is with respect to the RV SN , given N . From the result of
the previous section, it is apparent that

E
[
zSN |N = n

]
= [PX (z)]

n , n = 1, 2, 3, . . . . (9.39)
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By substituting this into (9.38), we find

PS(z) = E
[
(PX (z))

N
]
= PN (PX (z)) � (PN ◦ PX )(z). (9.40)

Thus, the PGF PS = PN ◦ PX is the compound function of PN and PX .

Example 9.5: N ∼ Poisson and X j ∼ Bernoulli. When the RV N is a Poisson
variable with mean λ, i.e., qn = λn

n! e
−λ, n = 0, 1, 2, . . ., then PN (z) = e−λ(1−z). If

each X j is a Bernoulli variable with P[X j = 1] = p and P[X j = 0] = 1− p, then
PX (z) = pz + 1− p. Then by substituting these into (9.40), we find

PS(z) = e−λ[1−(pz+1−p)] = e−λp(1−z). (9.41)

Thus, the corresponding probability distribution is another Poisson distribution with
mean λp. Hence,

rs = P [SN = s] = (λp)s

s! e−λp, s = 0, 1, 2, . . . . (9.42)

�

9.1.4 Inverse transform of generating functions

A number of methods exist for finding the probability p = {pk} for a given PGF P(z).
Table 9.2 lists five different methods. An obvious inversion method is to find by inspec-
tion the coefficient of each power term zk of P(z). The second approach is to obtain the
Taylor-series expansion of P(z) around z = 0:

pk = P (k)(0)

k! . (9.43)

The transform pairs given in Table 9.3 will be useful in the inspection method for the
inverse transform, as well as in computing the PGF of a given distribution. Note that
the transform pairs in Table 9.3 are more broadly applicable to generating functions or
polynomial methods in general, not just PGFs.

In some cases P(z) is given in a rather complicated form, and the inspection method
or Taylor expansion may not be practical. By treating z as a complex variable, we can
apply Cauchy’s residue formula:

pk = 1

2π i

∮
P(z)

zk+1
dz, (9.44)

where the integration to be performed is a contour integral in the complex plane. We
used this technique in Section 8.2, Example 8.5, and Problem 8.17. This requires us to
find all poles of P(z), and the amount of computation involved will be comparable to
the partial-fraction method when P(z) is a rational function of z.
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Table 9.2. Properties of PGF P(z)

1. Definition:P(z) = E[zX ] =
∞∑

k=0
pk zk

2. Factorial moment:E[X (X − 1) · · · (X − n + 1)] = lim
z→1

dn

dzn P(z) = P(n)(1)

3. Inversion of P(z) to find {pk }:
(a) Inspection: pk = coefficient of zk term in P(z)
(b) Taylor series expansion around z = 0: pk = 1

k! P(k)(0)
(c) Contour integral in the complex plane: pk = 1

2π i

∮ P(z)
zk+1 dz

(use Cauchy’s residue theorem )
(d) Partial-fraction method: see Section 9.1.4.1
(e) Recursion method: see Section 9.1.4.3

4. Use of complementary distribution (or survivor function) {qk},
qk = P[X > k] =∑ j>k p j .

Q(z) �
∞∑

k=0
qk zk = 1−P(z)

1−z

(a) Mean: E[X ] = P ′(1) = Q(1)
(b) Second factorial moment: E[X (X − 1)] = P ′′(1) = 2Q′(1)
(c) Variance: Var[X ] = P ′′(1)+ P ′(1)− P ′2(1)

= 2Q(1)(1)+ Q(1)− Q2(1)

Table 9.3. Some important transform pairs of generating functions

No. fk F(z) =
∞∑

k=0
fk zk

1. αk 1
1−αz

2. (k + 1)αk 1
(1−αz)2

3.
(k+n−1

k
)
αk 1

(1−αz)n

4. 1 (for all k ≥ 0) 1
1−z

5. δk,0 1

6. k z
(1−z)2

7. k2 z(1+z)
(1−z)3

8. k3 z(1+4z+z2)

(1−z)4

9. kn
(

z d
dz

)n 1
1−z

In terms of numerical inversion by a computer program, the fifth method, i.e., the
recursion method will probably be more practical than the partial-fraction method or
the Cauchy integral method. In the remainder of this section we will discuss the latter
two methods.
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9.1.4.1 Partial-fraction expansion method
One method of finding {pk; k = 0, 1, 2, . . .} for a given rational function P(z) is to
carry out a partial-fraction expansion of P(z). The partial-fraction expansion is a purely
algebraic operation for expressing a rational function of z as sum of simple recognizable
terms.

Consider a PGF P(z) that is given as a ratio of two polynomials in z:

P(z) = N (z)

D(z)
= anzn + an−1zn−1 + · · · + a1z + a0

bd zd + bd−1zd−1 + · · · b1z + b0
. (9.45)

If n ≥ d, we divide N (z) by D(z) until a remainder polynomial Ñ (z) of degree d − 1
or less is obtained:

P(z) =
n−d∑
k=0

ck zk + Ñ (z)

D(z)
. (9.46)

First, we assume that D(z) = 0 has d distinct roots (real or complex), which we
denote as {zi ; i = 1, 2, . . . , d}:

D(z) = bd(z − z1)(z − z2) · · · (z − zd). (9.47)

Then it is known from algebra that Ñ (z)/D(z) can be expanded into partial fractions

Ñ (z)

D(z)
= f1

z1 − z
+ f2

z2 − z
+ · · · + fd

zd − z
, (9.48)

where f1, f2, . . . , fd are constants to be determined. To determine f1, for instance, we

multiply (9.48) by (z1 − z) and let z → z1. Then the product (z1 − z) Ñ (z)
D(z) tends to1 f1.

Thus,

f1 = lim
z→z1

(z1 − z)
Ñ (z)

D(z)
= −Ñ (z1)

bd(z1 − z2)(z1 − z3) · · · (z1 − zd)
. (9.49)

Now we observe that the denominator, (z1 − z2)(z1 − z3) · · · (z1 − zd), is equal to
−D′(z1). This can be shown by writing

D(z) = (z1 − z)D̃(z);

differentiating, we have

D′(z) = −D̃(z)+ (z1 − z)D̃′(z),

which leads to D̃(z1) = −D′(z1). Thus, we find f1 = − Ñ (z1)
D′(z1)

. The same argument
applies to the other roots, as well. Thus,

1 Note that (z1 − z)P(z) also tends to f1, as z → z1. Thus, we can write f1 = limz→z1 (z1 − z)P(z).
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fi = − Ñ (zi )

D′(zi )
, 1 ≤ i ≤ d. (9.50)

By writing

1

zi − z
= αi

1− αi z
,where αi = z−1

i , (9.51)

we expand each partial-fraction term into a geometric series

1

1− αi z
= 1+ αi z + (αi z)2 + (αi z)

3 + . . . , |z| < |zi |, 1 ≤ i ≤ d. (9.52)

By substituting this into (9.46), we find the coefficient pk of the zk term in P(z):

pk = ck + f1α
k+1
1 + f2α

k+1
2 + · · · + fdα

k+1
d , (9.53)

where ck = 0 for k ≥ n − d + 1.
Next, we consider the case where there are only r(< d) distinct roots and the i th

root zi = α−1
i has multiplicity mi (≥ 1) (i = 1, 2, . . . , r ). The set of mi must satisfy∑r

i=1 mi = d, which is the degree of D(z). Then, we can write

D(z) = bd(z − z1)
m1(z − z2)

m2 · · · (z − zr )
mr . (9.54)

Then the partial-fraction expansion of Ñ (z)
D(z) takes the following form:

Ñ (z)

D(z)
=
[

f1,1

z1 − z
+ f1,2

(z1 − z)2
+· · ·+ f1,m1

(z1 − z)m1

]
+
[

f2,1

z2 − z
+ f2,2

(z2 − z)2
+ · · ·

+ f2,m2

(z2 − z)m2

]
+ · · · +

[
fr,1

zr − z
+ fr,2
(zr − z)2

+· · ·+ fr,mr

(zr − z)mr

]
. (9.55)

To find fi,mi , first observe that we can write

D(z) = (zi − z)mi D̃(z), (9.56)

where the polynomial D̃(z) does not have zi as a root. We multiply Ñ (z)
D(z) by (zi − z)mi

and let z tend to zi . Then

fi,mi =
Ñ (zi )

limz→zi
D(z)

(zi−z)mi

= (−1)mi mi !Ñ (zi )

D(mi )(zi )
, (9.57)
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where we used l’Hôpital’s rule,2 whereby we differentiate both D(z) and (zi − z)mi in
the above expression mi times and then set z = zi .

To find fi,mi−1, after multiplying (9.55) by (zi − z)mi , we differentiate both sides and
let z tend to z1, obtaining

(−1)mi mi ! lim
z→zi

d

dz

[
Ñ (z)

D(mi )(z)

]
= − fi,mi−1, (9.58)

where we observe that the denominator of (zi − z)mi Ñ (z)
D(z) = Ñ (z)

D̃(z)
and D(mi )(z) are

related by

D(mi )(z) = (−1)mi mi !D̃(z)+ Ri (z), (9.59)

where the polynomial Ri (z) contains a factor (zi − z), and thus will vanish when we set
z = zi . Thus, we have

fi,mi−1 = (−1)mi−1mi ! d

dz

[
Ñ (z)

D(mi )(z)

]
z=zi

= (−1)mi−1mi !
[

Ñ ′(zi )

D(mi )(zi )
− Ñ (zi )D(mi+1)(zi )(

D(mi )(zi )
)2

]
. (9.60)

By extending the above argument, we can determine the partial expansion coefficients
fi, j for 1 ≤ i ≤ r and 1 ≤ j ≤ mi as follows:

fi, j = (−1)mi−j

(mi− j)!

[
dmi−j

dzmi−j

(
Ñ (z)

D̃(z)

)]
z=zi

= (−1) j mi !
(mi− j)!

[
dmi−j

dzmi− j

(
Ñ (z)

D(mi )(z)

)]
z=zi

,

(9.61)

where we use the relation (9.59) in the last step.
Since zi − z = α−1

i − z = α−1
i (1− αi ), we can write

fi j

(zi − z) j =
fi jα

j
i

(1− αi z) j , (9.62)

and using the formula from Table 9.3, we find

1

(1− αi z) j
=

∞∑
k=0

(
k + j − 1

k

)
αk

i zk . (9.63)

2 The rule is named after the seventeenth-century French mathematician Guillaume de l’Hôpital
(1661–1704), who published the rule in his book (1696), but the rule is believed to be the work of his
teacher, the Swiss mathematician Johann Bernoulli (1667–1748).
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Thus, we obtain

pk = ck zk +
r∑

i=1

mi∑
j=1

fi j

(
k + j − 1

k

)
α

j+k
i , (9.64)

where ck = 0 for k ≥ n − d + 1.
If we define coefficients gi, j by

g0,k � c j , 1 ≤ k ≤ n − d, (9.65)

gi, j � fi, j α
j
i , 1 ≤ i ≤ r, 1 ≤ j ≤ mi , (9.66)

then we have the following alternative expression:

pk = g0,k zk +
r∑

i=1

mi∑
j=1

gi, j

(
k + j − 1

k

)
αk

i , k = 0, 1, 2, . . . , (9.67)

where g0,k = 0 for k > n − d, and

gi j = 1

(mi − j)!(−αi )mi− j

dmi− j

dzmi− j

[
(1− αi z)mi

Ñ (z)

D(z)

]
z=α−1

i

, (9.68)

where i = 1, 2, . . . , r and j = 1, 2, . . . ,mi .

Example 9.6: Partial-fraction expansion. Consider a PGF P(z) given by

P(z) = 66− 69z + 3z2 + 16z3 − 4z4

12(18− 33z + 20z2 − 4z3)
.

The numerator has a higher degree than the denominator; hence we divide D(z) into
N (z), obtaining

P(z) = 1+ z

12
+ 24− 27z + 8z2

6(18− 33z + 20z2 − 4z3)
.

We find that D(z) = 0 has roots z1 = 2 and z2 = 3
2 with m1 = 1 and m2 = 2. Thus,

Ñ (z) = 24− 27z + 8z2, Ñ ′(z) = 16z − 27,

D(z) = −24(z − z1)(z − z2)
2, D̃(z) = −24(z − z1), D̃′(z) = −24. (9.69)

The partial-fraction expansion of P(z) is

P(z) = 1+ z

12
+ f1,1

z1 − z
+ f2,1

z2 − z
+ f2,2

(z2 − z)2
. (9.70)
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The expansion coefficients are given, from the above formulas, as

c00 = c01 = 1

12

and

f1,1=− Ñ (z1)

D′(z1)
= 1

3
, f2,2= Ñ (z2)

D̃(z2)
= 1

8
, and f2,1= d

dz

Ñ (z)

D̃(z)

]
z=3

2

= 1

4
− 1

4
=0,

which lead to the result

P(z) = 1

12
+ z

12
+

1
3

2− z
+

1
8

( 3
2 − z)2

= 1

12
+ z

12
+

1
6

1− 1
2 z
+

1
18

(1− 2
3 z)2

.

Thus, we obtain

pk = δk,0

12
+ δk,1

12
+ 1

6

(
1

2

)k

+ (k + 1)

18

(
2

3

)k

,

where δi, j is the Kronecker delta; that is, δi, j = 1 for i = j and δi, j = 0 for i �= j . The
first few terms are calculated as

p0 = 1

12
+ 1

6
+ 1

18
= 11

36
,

p1 = 1

12
+ 1

12
+ 4

54
= 13

54
,

p2 = 1

6

(
1

2

)2

+ 3

18

(
2

3

)
2 = 25

216
, etc.

�

9.1.4.2 Asymptotic formula in partial-fraction expansion
In (9.53) we have exact expressions for the probability pk . The effort involved in cal-
culating all d roots may be too laborious. In such a case, we may be content with an
approximate solution for pk . Suppose that z1 is the smallest in absolute value among all
the d distinct roots. Then,

α1 ≥ αi , for i = 2, 3, . . . , d.

As k increases, the term αk
1 becomes dominant compared with the other terms in (9.53):

pk ∼ f1α
k+1
1 = g1α

k
1,where g1 � f1α1. (9.71)

Here, the sign ∼ means that the ratio of the two sides tends to one, as k →∞.
This asymptotic formula provides surprisingly good approximations even for relatively
small k.

Now let us consider the case when the smallest root z1 is a double root; i.e., m1 = 2.
Then the term αk

1 in (9.67) has the coefficient

g1,1 + g1,2(k + 1) = g1,1 + g1,2 + g1,2 k.
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Thus, we have an asymptotic expansion

pk ∼ g1,2 kαk
1, for k � 1. (9.72)

By generalizing the above argument, we obtain the following asymptotic expression,
when the smallest root z1 is of multiplicity m1:

pk ∼ g1,m1

(
k + m1 − 1

k

)
αk

1, for k � 1, (9.73)

where α1 = z−1
1 and the constant g1,m1 = f1,m1α

m1
1 , and

f1,m1 =
(−1)m1 m1!Ñ (z1)

D(m)(z1)
. (9.74)

9.1.4.3 Recursion method
In the partial-fraction method, it is necessary to find the zeros of the denominator D(z).
This is not a simple task when the degree d is not small. An alternative technique is to
return to the original equation (9.45):

∞∑
k=0

pk zk =
∑n

i=0 ai zi∑d
j=0 b j z j

. (9.75)

On multiplying the denominator on both sides, we obtain

∞∑
k=0

d∑
j=0

pkb j zk+ j =
n∑

i=0

ai z
i . (9.76)

Comparison of the terms zi on both sides leads to the following set of linear difference
equations:

min{d,i}∑
j=0

pi− j b j =
{

ai , for i = 0, 1, . . . , n,
0, for i > n.

(9.77)

We can then solve for {pi ; i = 0, 1, 2, . . .} in a recursive manner:

pi = 1

b0

⎡⎣ai −
min {d,i}∑

j=1

b j pi− j

⎤⎦ , i = 0, 1, 2, . . . , (9.78)

where ai = 0 for i > n. The recursion method is useful if the numerical evaluation is to
be performed on a computer, since the above formula is extremely simple to program.

Table 9.2 gives the various inversion methods discussed above. One method that we
did not elaborate in this section is the “Contour integral in the complex plane” method
(item 3(c) in Table 9.2). This is similar to what we discussed in Section 8.2 for the
Fourier inversion of the CF. Also shown in Table 9.2 are some useful formulas that relate
moments to P(z) and Q(z), the generating function of the complementary distribution
defined in (9.10).
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9.2 Laplace transform method

9.2.1 Laplace transform and moment generation

For continuous RVs, the Laplace transform (LT) method plays a role similar to what
the PGF method does for discrete variables. Although the LT method can be applied to
continuous RVs that take on values in (−∞,∞),3 we limit our discussion in this section
to the case where the RV in question is defined only over [0,∞).

Let X be a random variable assuming values only on the nonnegative real line, with
the PDF fX (x). We define the LT of fX (x) by

�X (s) = E[e−s X ] =
∫ ∞

0
fX (x)e

−sx dx, (9.79)

where s is a complex parameter. It is not difficult to show that

|�X (s)| ≤ �X (0) = 1 for  (s) > 0, (9.80)

where  (s) means the real part of the complex-valued parameter s. Note the simi-
larity between this transform and the CF defined earlier. The CF exists for any PDF,
whereas the LT defined here applies only to nonnegative random variables. We can
compute moments of the variable X by differentiating �X (s) in much the same way as
we generate the moments from the CF:

E[Xn] = (−1)n�(n)X (0), (9.81)

which is quite similar to (8.81).

Example 9.7: Exponential random variable. Consider the PDF of the exponentially
distributed RV X :

fX (x) = λ e−λx . (9.82)

The LT of fX is thus evaluated as

�X (s) =
∫ ∞

0
λ e−λx e−sx dx = λ

s + λ. (9.83)

On taking the natural logarithm4 of �X (s) and differentiating it with respect to s, we
obtain

�′X (s)
�X (s)

= − 1

s + λ, (9.84)

3 In such a case we often call the method the bilateral or double-sided LT.
4 Direct differentiation of �X (s) is straightforward in this case. If �X (s) is a rational function of s, the

logarithmic transformation significantly simplifies the computation.



9.2 Laplace transform method 227

which immediately leads to

E[X ] = −�′X (0) =
�X (0)

λ
= 1

λ
. (9.85)

By differentiating (9.84) again and setting s = 0, we find

�′′X (0)− (�′X (0))2 =
1

λ2 , (9.86)

which yields

E[X2] = �′′X (0) =
2

λ2 . (9.87)

�

Example 9.8: Consider RV Y , which is also exponentially distributed, but with
parameter μ:

fY (y) = μ e−μy . (9.88)

Hence, its LT is

�Y (s) = μ

s + μ. (9.89)

Let us further assume that the variable X of Example 9.7 and Y are statistically
independent, and consider their sum

W = X + Y. (9.90)

The LT of the PDF of the new random variable W is then

�W (s) = E[e−sW ] = E[e−s X ]E[e−sY ]
= �X (s)�Y (s) = λμ

(s + λ)(s + μ). (9.91)

By a simple algebraic manipulation we can write �W (s) as

�W (s) = λμ

μ− λ
(

1

s + λ −
1

s + μ
)
. (9.92)

Then by applying (9.83), we can find the PDF:

fW (x) = λμ

μ− λ
(
e−λx − e−μx) u(x), (9.93)

where u(x) is the unit step function. �

Table 9.4 lists some important PDFs and their LTs, together with means and vari-
ances of these distributions. The various LT pairs and important properties of the LT are
tabulated in Tables 9.5 and 9.6.
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Table 9.4. Some PDFs and their LTs

Name PDF LT Mean Variance

Exponential μ e−μx , x ≥ 0 μ
μ+s

1
μ

1
μ2

k-stage Erlang (kμx)k x−1

(k−1)! e−kμx , x ≥ 0 (
kμ

kμ+s )
k 1

μ
1

kμ2

Deterministic δ
(

x − 1
μ

)
e−s/μ 1

μ 0

Uniform 1
a , 0 < x < a eas−1

as
a
2

a2

12

Uniform 1
b−a , a < x < b ebs−eas

(b−a)s
a+b

2
(b−a)2

12

Hyperexponential
∑n

i=1 πiμi e−μi x , x ≥ 0
n∑

i=1

πiμi
μi+s

n∑
i=1

πi
μi

2
n∑

i=1

πi
μ2

i
−
(

n∑
i=1

πi
μi

)2

Table 9.5. Important LT pairs

No. Name Function LT

1. A function f (x)u(x) �(s) = ∫∞0 f (x)e−sx dx

2. Unit impulse δ(x) 1

3. Shifted impulse δ(x − a) e−as

4. Unit step u(x)
1

s

5. Shifted unit step u(x − a)
e−as

s

6. Ramp xu(x) = ∫ x
0 u(t) dt

1

s2

7. (n − 1)st power function
xn−1

(n − 1)!u(x)
1

sn

8. αth power function xαu(x)

⎧⎪⎪⎨⎪⎪⎩
�(α + 1)

sα+1
, α > −1

α!
sα+1

, α is a positive integer

9. Negative exponential e−ax u(x)
1

s + a

10. x e−ax u(x)
1

(s + a)2

11.
xn−1e−ax

(n − 1)! u(x)
1

(s + a)n

12. Cosine (cos bx)u(x)
s

s2 + b2

13. Sine (sin bx)u(x)
b

s2 + b2

14. Exponential cosine (e−ax cos bx)u(x)
s + a

(s + a)2 + b2

15. Exponential sine (e−ax sin bx)u(x)
b

(s + a)2 + b2



9.2 Laplace transform method 229

Table 9.6. Properties of the LT

No. Name Function LT

1. Shift f (x − a)u(x − a) e−as�(s)

2. Truncation f (x)u(x − a) �(s)− ∫ a
0 f (x)e−sx dx

3. Scaling f
( x

a
)

u(x) a�(as)(a > 0)

4. Exponential decay e−ax f (x)u(x) �(s + a)(a > 0)

5. Linear growth window x f (x)u(x) − d�(s)
ds

6. nth power window xn f (x)u(x) (−1)n dn�(s)
dsn

7. 1/x window f (x)
x u(x)

∫∞
s �(s1)ds1

8. 1/xn window f (x)
xn u(x)

∫∞
s ds1

∫∞
s1

ds2 · · ·
∫∞

sn−1
dsn�(sn)

9. Differentiation d f (x)
dx u(x) s�(s)− f (0+)

10. dδ(x)
dx s

11. Multiple differentiation dn f (x)
dxn u(x)

sn�(s)− sn−1 f (0+)− sn−2 f (1)(0+)
· · · − f (n−1)(0+)

12. dnδ(x)
dxn sn

13. Integration
∫ x

a f (t) dt �(s)
s + 1

s
∫ 0+

a f (t) dt

14. Integration
∫ x
−∞ f (t) dt �(s)

s + 1
s
∫ 0+
−∞ f (t) dt = �(s)

s + f (−1)(0+)
s

15. Multiple integration f (−n)(x)
�(s)

sn + f (−1)(0+)
sn + f (−2)(0+)

sn−1 +
· · · + f (−n)(0+)

s

9.2.2 Inverse Laplace transform

The Laplace transform of a real-valued function f (t) (not necessarily a PDF) is
defined as

�(s) =
∫ ∞

0
e−st f (t) dt. (9.94)

If f (t) is a piecewise continuous function of exponential order α (i.e., | f (t)| ≤ Meαt ),
the transform function �(s) is defined for  (s) > α. Here, the parameter α is often
called the abscissa of convergence.
Conversely, for a given function �(s) of the Laplacian variable s, the inverse transfor-
mation to obtain the corresponding f (t) is given by the formula

f (t) = 1

2π i

∫ c+i∞

c−i∞
�(s)est ds, (9.95)

where i = √−1 and c can be any real number greater than α. This integral formula is
analogous to the inverse formula (8.59) for the CF and the inverse formula (9.44) for
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Table 9.7. Other properties of the LT

No. Name Property

1. Linearity a f1(x)+ b f2(x)⇔ a�1(s)+ b�2(s)

2. Convolution f1(x)⊗ f2(x)⇔ �1(s)�2(s)

3. Integral property
∫∞

0 f (x)dx = �(0)
If fX (x) is a PDF, �X (0) = 1

4. Initial value theorem lim
x→0

f (x) = lim
s→∞ s�(s)

5. Final value theorem lim
x→∞

f (x) = lim
s→0

s�(s)

if s�(s) is analytic for  {s} ≥ 0

6. Mean E[X ] = − d�X (s)
ds |s=0 = −�′

X (0)

7. nth moment E[Xn] = (−1)n�(n)X (0)

8. �(s) = s�(s) $⇒ g(x) = d
dx f (x)

9. �(s) = �(s)
s $⇒ g(x) = ∫ x

0 f (t)dt

10. �(s) = �(s + a) $⇒ g(x) = e−ax f (x)

11. �(s) = e−as�(s) $⇒ g(x) = f (x − a)u(x − a)

12. �(s) = d�(s)
ds $⇒ g(x) = −x f (x)

13. �(s) = ∫∞s �(s)ds $⇒ g(x) = f (x)
x

the PGF. A straightforward evaluation based on this inversion formula would require a
contour integral in the complex s-domain, and involves proper use of Cauchy’s residue
theorem as we remarked earlier in reference to the inverse transform of PGF (see
Table 9.2, item 3(c)). In practice, however, one should attempt to represent a given
�(s) in terms of the well-studied functions such as those listed in the right column of
Table 9.5, together with useful properties summarized in Tables 9.6 and 9.7. If such
an inspection method for the inversion cannot be successfully carried out, one needs to
explore an alternative approach.

In this section, we discuss two different methods of carrying out the inverse LT: (1)
the partial-fraction method and (2) the numerical-inversion method.

A remark is in order concerning the LT of a PDF of some nonnegative RV X .
Although most of the results to be presented below apply to any piecewise continuous
function of exponential order, we are primarily interested in the case where f (·) is the
PDF of some nonnegative RV X . For this class of functions, the LT�X (s) always exists
for any positive value α (the exponential order defined in the sentence that followed
(9.94)), since it is bounded according to

|�X (s)| ≤
∫ ∞

0
|e−sx fX (x)| dx ≤

∫ ∞

0
fX (x) dx = 1 for  (s) > 0. (9.96)

In fact, the transform function could exist even for a negative value of α.
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9.2.2.1 Partial-fraction expansion method
This method is a continuous counterpart of the partial-fraction expansion method dis-
cussed earlier for the z-transform or the PGF. Let us assume that �X (s) is a rational
function of s:

�X (s) = N (s)

D(s)
= ansn + an−1sn−1 + · · · + a1s + a0

bd sd + bd−1sd−1 + · · · + b1s + b0
. (9.97)

Since �X (s) is the LT of a PDF fX (x), the degree of N (s) cannot exceed that of D(s)
(see Problem 9.21); that is,

n ≤ d. (9.98)

Furthermore, the property �X (0) = 1 immediately implies

a0 = b0. (9.99)

If n = d, we divide N (s) by D(s) and obtain the expression

�X (s) = ad

bd
+ Ñ (s)

D(s)
, (9.100)

where Ñ (s) is a polynomial of degree d − 1 or less. We then determine the zeros
{−λi , i = 1, 2, . . . , r} of D(s), obtaining an expression similar to (9.54),

D(s) =
r∏

i=1

(s + λi )
mi , (9.101)

which leads to the following partial-fraction expansion of �X (s):

�X (s) = ad

bd
+

r∑
i=1

mi∑
j=1

fi, j

(s + λi ) j , (9.102)

where the coefficients { fi, j } are given by

fi, j = 1

(mi − j)!
dmi− j

dsmi− j

[
(s + λi )

mi
N1(s)

D(s)

]
s=−λi

. (9.103)

Then by applying the formula (see Problem 9.17; also Table 9.4)∫ ∞

0

x j−1

( j − 1)!e
−λx e−sx dx = 1

(s + λ) j
, (9.104)

we obtain the PDF

fX (x) = ad

bd
δ(x)+

r∑
i=1

mi∑
j=1

fi, j x j−1

( j − 1)! e
−λi x , (9.105)
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where δ(x) is the unit-impulse function or the Dirac delta function. The corresponding
distribution function is

FX (x) = ad

bd
+

r∑
i=1

mi∑
j=1

fi, j

λi

⎡⎣1− e−λi x
j−1∑
k=0

(λi x)k

k!

⎤⎦ . (9.106)

Example 9.9: Let �X (s) be given by

�X (s) = s3 + 8s2 + 22s + 16

4(s3 + 5s2 + 8s + 4)
.

By noting D(s) = 4(s + 1)(s + 2)2, we readily find the zeros: −λ1 = −1 with m1 =
1 and −λ2 = −2 with m2 = 2. Thus, we can have the following partial-fraction
expansion:

�X (s) = 1

4
+ 1

4(s + 1)
+ 1

2(s + 2)
+ 1

(s + 2)2
.

The corresponding PDF and the distribution function can be readily found using the
formulas in Table 9.4 (or No. 9 and No. 10 in Table 9.5) as

fX (x) = δ(x)

4
+ e−x

4
+ e−2x

2
+ x e−2x , 0 ≤ x <∞,

and

FX (x) = 1

4
+ 1− e−x

4
+ 1− e−2x

4
+ 1− e−2x (1+ 2x)

4

= 1− e−x + e−2x + e−2x (1+ 2x)

4
, 0 ≤ x <∞. (9.107)

�

As discussed in the section on partial-fraction expansion of the PGF, an asymptotic
expression can be very useful: it requires us to find the root whose real part is smallest
in absolute value. Let −λ1 be such a smallest root with multiplicity m1. Then for large
x , we have the asymptotic expression

fX (x) ∼ f1,m1

(m1 − 1)! x
m1−1e−λ1x , x � 1, (9.108)

because other terms in (9.105) decay faster as x increases. In the above example
problem, an asymptotic expression is given by

fX (x) ∼ e−x

4
, x � 1.
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9.2.2.2 Numerical-inversion method
Use of the partial-fraction method will become difficult when the degree of D(s)
becomes large. A computer program for finding the roots of a polynomial may be
available in many scientific program libraries, but the computation of the coefficients
ci j is a rather cumbersome task even if we are given a set of λi . Another method
frequently discussed in the literature is the evaluation of the integral by the residue
theorem, as is well studied in the theory of complex variables. When calculating
residues, however, one faces essentially the same type of difficulty as that pointed out
for the partial-fraction method. An alternative approach is to adopt one of numerical
inversion methods. The literature on numerical inversion of the LT abounds (e.g., see
Valkó [335]).

The method to be outlined below is essentially to replace a contour integral by the
finite Fourier transform, or to be more specific, by the discrete cosine transform. It is
easy to understand and a fast Fourier transform (FFT) program can be used in numerical
evaluations. By setting the complex variable s as

s = c + iω, (9.109)

where i = √−1, and using the fact that fX (x) is a real-valued function and fX (x) = 0
for x < 0, we can rewrite (9.95) in terms of the cosine transform (Problem 9.22):

fX (x) = 2ecx

π

∫ ∞

0
cos(ωx)  {�(c + iω)} dω, x ≥ 0. (9.110)

Here, the constant c, as discussed earlier, is a number greater than α, the abscissa of
convergence. In other words, all poles of the complex function �X (s) must have their
real parts strictly less than c. In the numerical evaluation of fX (x), choice of a suitable
parameter c is an important consideration.

Suppose we wish to evaluate fX (x) over a finite range 0 ≤ x ≤ T , and at (N + 1)
regularly spaced points x = 0, δ, 2δ, . . . , Nδ(= T ). First we approximate the integra-
tion of (9.110) along the ω by the following summation:

fX (x) ≈ ecx

T

[
1

2
 {�(c)} +

∞∑
k=1

 
{
�

(
c + π ik

2T

)}
cos

(
πkx

2T

)]
. (9.111)

The above summation formula is nothing more than a trapezoidal rule applied to the
integral (Problem 9.23). Using the periodic property of the cosine function, the value of
fX (x) at x = jδ = j (T/N ) can be rewritten as

fX ( jδ) ≈ e jcδ

T

[
1

2
g0 +

2N−1∑
k=1

gk cos
π jk

2N
+ (−1) j

2
g2N

]
, j = 0, 1, . . . , N , (9.112)

where

g0 =  {�(c)} + 2
∞∑

m=0

 
{
�X

(
c + 2π im

δ

)}
(9.113)
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and

gk =
∞∑

m=0

[
 
{
�X

[
c + 2π i

δ

(
k

4N
+ m

)]}
+  

{
�X

[
c + 2π i

δ

(
1− k

4N
+ m

)]}]
, k = 1, 2, . . . , 2N . (9.114)

Since the above formula involves only  {�X (s)}, it is easy to program on a computer.
An appropriate choice of the parameters c, N , and δ is a rather involved question. The

interested reader is directed to the literature: e.g., see Dubner and Abate [83], Cooley
et al. [65], and IBM [156] for the error analysis and further details of this numerical
approximation method. Crump [75] and Abate and Whitt [2] also discuss the numerical
inversion method outlined above. It should be noted that the choice of c = 0 reduces the
problem to the Fourier transform (or the CF if f (t) is a PDF), and this selection may be
quite acceptable provided the other parameters are appropriately specified.

For other work on the numerical methods for inversion of the LT, see the list of
references in [335]. Jagerman [160, 161] presents error analysis of a numerical inversion
technique for the LT. Abate et al. [1] discuss another numerical inversion method that
involves the Laguerre polynomials.

9.3 Summary of Chapter 9

PGF: PX (z) � E
[
zX
] =∑∞

k=0 pk zk, |z| ≤ 1 (9.4)

PGF of Poisson
distribution:

P(z) =∑∞
k=0

(λz)k

k! e−λ = eλ(z−1), |z| <∞ (9.8)

Generating func. of
P[X > k]:

Q(z) = 1−P(z)
1−z (9.10)

PGF of sum of RVs: PW (z) = P1(z)P2(z) · · · Pn(z) =∏n
i=1 Pi (z) (9.26)

Inverse transform of
PGF:

pi = 1
b0

[
ai −∑min{d,i}

j=1 b j pi− j

]
, i = 0, 1, . . . (9.78)

LT of a nonnegative RV: �X (s) = E[e−s X ] = ∫∞0 fX (x)e−sx dx (9.79)
LT of the exponential

dist.:
�X (s) =

∫∞
0 λ e−λx e−sx dx = λ

s+λ (9.83)

Initial value theorem: lim
x→0−

f (x) = lim
s→∞ s�(s) Table 9.7

Final value theorem: lim
x→∞ f (x) = lim

s→0
s�(s) Table 9.7

nth moment: E[Xn] = (−1)n�(n)X (0) Table 9.7

Inverse LT: f (t) = 1
2π i

∫ c+i∞
c−i∞ �(s)est ds (9.95)

Numerical inversion
of LT:

fX ( jδ) ≈ e jcδ

T

[
1
2 g0+∑2N−1

k=1 gk cos π jk
2N + (−1) j

2 g2N

] (9.112)
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9.4 Discussion and further reading

Feller [99] devotes one chapter to generating functions, and we follow much of his dis-
cussion. Grimmett and Stirzaker [131] discuss the PGF, CF, and MGF under the general
title “Generating functions and their applications.” Our treatment of the inversion meth-
ods for the PGF and the LT, especially that of the partial-fraction expansion method and
its asymptotic formula, is perhaps more comprehensive than found in other textbooks.

Queueing theory is a major branch of applied probability, and the random variables
associated with queueing models are nonnegative integers (such as the number of cus-
tomers in a queue) or nonnegative continuous random variables (e.g., waiting time), thus
both generating functions and LTs are extensively used (e.g., see Kleinrock [189, 190],
Kobayashi [197], and Kobayashi and Mark [203]), where a number of formulas and
applications that involve generating functions and LTs will be found. See Feller [100]
for comprehensive discussions on LTs and applications, many of which, however, are
beyond the scope of this textbook.

9.5 Problems

Section 9.1: Generating function

9.1∗ Region of convergence for PGF, generating function, and Z-transform.
Suppose a given sequence { fk} is bounded.

(a) Show that its generating function F(z) defined by (9.1) converges at least for |z|< 1.
(b) Show that its z-transform F̃(z) defined by (9.2) converges at least for |z| > 1.
(c) Show that if the sequence { fk} is a probability distribution {pk}, then its PGF

converges at least for |z| ≤ 1.

9.2∗ Derivation of PGFs in Table 9.1. Derive the PGFs given in Table 9.1.

(a) Binomial distribution: show that the PGF of the binomial distribution is given by
P(z) = (pz + q)n .

(b) Geometric distribution: show that the PGF of the unshifted geometric distribution is
given by P(Z) = pz/(1− qz).

(c) Shifted negative binomial distribution: as defined in Section 3.3.4, the shifted neg-
ative binomial distribution is defined as the distribution of the number of failures
before the r th success is attained in a sequence of Bernoulli trials. Show that the

PGF of this distribution is given by P(z) =
(

p
1−qz

)r
.

9.3 Derivation of (9.10). Prove the formula (9.10).

9.4 Moments of binomial distribution. Compute the mean and variance of the
binomial distribution using its PGF.
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9.5 Examples of a generating function. Find the generating function F(z) for the
following sequence fk :

(a) fk = 1 for all k = 0, 1, . . . .
(b) fk = 0 for k = 0, 1, . . . , n and fk = 1 for all k ≥ n + 1.
(c) fk = 1

k! for all k ≥ 0.
(d) fk =

(n
k

)
, for k = 0, 1, . . . , n.

9.6 Some properties of the PGF. Let P(z) be the PGF of the probability distribution
{pk; k = 0, 1, 2, . . .}. Show the following properties:

(a) P(1) = 1,
(b) P(0) = p0.

9.7 Generating function of a sequence. Let F(z) be the generating function of a
sequence or vector { fk; k = 0, 1, 2, . . .} defined by

F(z) =
∞∑

k=0

fk zk .

Find { fk; k = 0, 1, 2, . . .} for the following F(z):

(a) F(z) = 1
1−αz ;

(b) F(z) = 1
(1−αz)2

;

(c) F(z) = αz
(1−αz)2

.

9.8 PGF of a sum of RVs. Show that the PGF of the sum of independent RVs is given
by (9.26).

9.9 Convolution of Poisson distributions. Consider Poisson distributions of means
λ1 and λ2. What is the convolution of the two distributions?

9.10∗ Shifted negative binomial distributions. Consider the Bernoulli trials.

(a) Let X be the number of failures until the first success; i.e., the waiting time for the
first success. What is the mean and variance of X?

(b) Let Zr denote the number of failures needed to achieve r successes as defined in
(3.3.4.1). Find the PGF of Zr and find its mean and variance.

(c) The PGF of Zr obtained in (b) can also be written as

PZr (z) = pr
∞∑
j=0

(−r

j

)
(−qz) j , |z| < q−1. (9.115)

Hint: Use the following binomial expansion formula (also known as Newton’s
generalized binomial formula):
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(1+ t)a = 1+
(

a

1

)
t +

(
a

2

)
t2 +

(
a

3

)
t3 + · · · =

∞∑
j=0

(
a

j

)
t j , (9.116)

where |t | < 1 and a is any number (real or complex).
(d) Show that the probability distribution of Zr is

f ( j; r, p) �
(−r

j

)
pr (−q) j =

(
r + j − 1

j

)
pr q j , j = 0, 1, 2, . . . , (9.117)

which equals the shifted negative binomial distribution obtained in (3.108).
(e) Show that the shifted negative binomial distribution possesses the following repro-

ductive property:

{ f (k; r1, p)}� { f (k; r2, p)} = { f (k; r1 + r2, p)} (9.118)

9.11 Formula (9.63). Prove the formula (9.63). What does this equation mean for the
case j = 1?

9.12 Final value theorem. Refer to Problem 9.7. Show that

lim
z→1

(1− z)F(z) = lim
k→∞ fk .

9.13 Joint PGF. Suppose X = (X1, X2, . . . , Xm)
� is an m-dimensional random

vector with probability distribution pk = P[X = k], where k = (k1, k2, . . . , km). The
joint PGF is defined by

PX (z) � E
[
z X1

1 zX2
2 · · · zXm

m

]
=
∑
k1

∑
k2

· · ·
∑
km

zk1
1 zk2

2 · · · zkm
m pk. (9.119)

(a) Show that the inversion formula is given by

pk = 1

k1!k2! · · · km !
∂k1+k2+···km PX (z)

∂zk1
1 ∂zk2

2 · · · ∂zkm
m

∣∣∣∣∣
z=0

,

where 0 is the vector whose components are all zeros.
(b) Find the joint PGF of the multinomial distribution defined in Problem 3.12.

9.14 Negative binomial (or Pascal) distribution. Recall the negative binomial
distribution (or Pascal distribution):

P[Yr = k] =
(

k − 1

r − 1

)
pr qk−r , k = r, r + 1, r + 2, . . . , (9.120)

which represents the probability that r th success occurs at the kth trial in a series of
Bernoulli trials.
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(a) In the Bernoulli trials, let X (i) be the number of additional trials necessary to achieve
the i th success, counting from the trial just after the (i − 1)th success. Let Sr be the
sum of the variables

Sr = X (1) + X (2) + · · · + X (r),

Show that the probability Sr = k is equivalent to P[Yr = k] given above.
(b) Find the PGF of the binomial distribution and calculate the mean and variance of

the distribution.

9.15∗ Derivation of the binomial distribution via a two-dimensional generating
function C(z,w). Derive the binomial distribution B(k; n, p) using the following
steps:

(a) In order to obtain exactly k successes after n trials, either we must have already
k successes after (n − 1) trials and then fail on the nth trial, or we must have
(k− 1) successes after (n − 1) trials and then succeed on the nth trial. Based on
this observation, find a linear difference equation for B(k; n, p), 0 ≤ k ≤ n.

(b) Define the PGF G(z; n, p) by

G(z; n, p) =
n∑

k=0

B(k; n, p)zk .

Find a recursive equation which {G(z; , n, p), n = 0, 1, . . .} must satisfy.
(c) Define a two-dimensional generating function C(z, w) by

C(z, w; p) =
∞∑

n=0

G(z; n, p)wn .

Find closed-form expressions for C(z, w; p) and G(z; n, p). Then obtain the
binomial distribution B(k; n, p).

9.16 Example of the recursion method. Apply the recursion method to the P(z)
considered in Example 9.6 and obtain {p0, p1, p2, . . .}.
Section 9.2: Laplace transform method

9.17 Derivation of the Erlang distribution. Let X1, X2, . . . , Xk be i.i.d. RVs with
the exponential distribution of parameter λ (see Section 4.2.3). Let Y be their sample
mean defined by

Y = 1

k

k∑
i=1

Xi .

(a) Find the LT of the PDF of Y .
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(b) Show that the PDF of Y is given by

fY (y) = kλ(kλx)k−1

(k − 1)! e−kλy, y ≥ 0, (9.121)

which is the k-stage Erlang distribution, as defined in Problem 4.11.
(c) Find the mean and variance of the above distribution.

9.18∗ Convolution and the LT. Let f1(x) and f2(x) be two PDFs defined in the range
x ∈ [0,∞) and let g(x) be their convolution of the form

g(x) =
∫ ∞

0
f1(x − y) f2(y) dy.

Find the LT of g(x).

9.19 LTs of the distribution function and survivor function. Given a PDF f (x) and
the corresponding distribution function F(x), let �(s) be the LT of f (x). Show that:

(a) the LT of the distribution function is∫ ∞

0
e−sx F(x) dx = �(s)

s
; (9.122)

(b) the LT of the survivor function is∫ ∞

0
e−sx [1− F(x)] dx = 1−�(s)

s
. (9.123)

9.20 The n-fold convolutions of the uniform distribution. Let Xi , i = 1, 2, . . . , n,
be i.i.d. RVs with the uniform distribution over the interval [0, 1]; that is,

FX (x) =
⎧⎨⎩

0, x < 0,
x, 0 ≤ x ≤ 1,
1, x > 1.

Let Y be their sum Y = X1 + X2 + · · · + Xn . Show that the distribution of Y is given
by

FY (y) = 1

n!
n∑

k=0

(−1)k
(

n

k

)
([y − k]+)n ,

where

[x]+ = max{x, 0}.
Hint: ∫ ∞

0
e−sx ([x − k]+)n−1

(n − 1)! dx = s−ne−ks .
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9.21∗ Discontinuities in a distribution function. Show that the magnitude of the
discontinuity of FX (x) at the origin x = 0 is obtained by

lim
x→0+

FX (x) = lim
s→∞�X (s).

Generally, if FX (x) contains discontinuities of magnitudes pk at points x = xk , �X (s)
contains the corresponding terms pke−sxk .

9.22 Derivation of the cosine transform of (9.110). Show that the inverse LT formula
(9.95) can be reduced to (9.110) of the cosine transform.
Hint: Use the fact that fX (x) is a real-valued function and that fX (x) = 0 for x < 0.
The latter condition leads to the following equation that the real and imaginary parts of
�(c + iω) must satisfy:∫ ∞

−∞
[ {�(c + iω)} cosωt + % {�(c + iω)} sinωt] dω = 0.

9.23 Trapezoidal approximation of an integral. Derive the trapezoidal approxima-
tion given by (9.112).
Hint: A trapezoidal approximation of a definite integral∫ b

a
f (x) dx

works as follows. Divide the area under the curve y = f (x) into n strips, each of equal
width h = (b − a)/n. Then the shape of each strip is approximated by a trapezoid. The
kth strip is approximately

h

2
[ f (a + (k − 1))+ f (a + kh)], k = 1, 2, . . . , n.

Thus, the above definite integral is∫ b

a
f (x) dx ≈

n∑
k=1

h

2
[ f (a + (k − 1))+ f (a + kh)]

= h

[
1

2
f (a)+

n−1∑
k=1

f (a + kh)+ 1

2
f (b)

]
.



10 Inequalities, bounds, and large
deviation approximation

In this chapter we will discuss some important inequalities used in probability and
statistics and their applications. They include the Cauchy–Schwarz inequality, Jensen’s
inequality, Markov and Chebyshev inequalities. We then discuss Chernoff’s bounds,
followed by an introduction to large deviation theory.

10.1 Inequalities frequently used in probability theory

10.1.1 Cauchy–Schwarz inequality

The Cauchy–Schwarz1 inequality is perhaps the most frequently used inequality in
many branches of mathematics, including linear algebra, analysis, and probability the-
ory. In engineering applications, a matched filter and correlation receiver are derived
from this inequality. Since the Cauchy–Schwarz inequality holds for a general inner
product space, we briefly review its properties and in particular the notion of orthogo-
nality. We assume that the reader is familiar with the notion of field and vector space
(e.g., see Birkhoff and MacLane [28] and Hoffman and Kunze [153]). Briefly stated, a
field is an algebraic structure with notions of addition, subtraction, multiplication, and
division, satisfying certain axioms. The most commonly used fields are the field of real
numbers, the field of complex numbers, and the field of rational numbers, but there is
also a finite field, known as a Galois field. Any field may be used as the scalars for a
vector space.

D E FI N I T I O N 10.1 (Inner product and the norm). An inner product on a vector space
V with a field F is a function that assigns to each ordered pair of vectors x, y ∈ V a
scalar 〈x, y〉 ∈ F such that

(a) 〈x + y, z〉 = 〈x, z〉 + 〈y, z〉 ,
(b) 〈cx, y〉 = c〈x, y〉 ,
(c) 〈y, x〉 = 〈x, y〉, the bar denoting complex conjugation,2

1 Karl Hermann Amandus Schwarz (1843–1921) was a German mathematician.
2 In this chapter we adopt the notation x instead of x∗ for complex conjugate of x, since β∗ is used for an

optimal value of β. In other chapters, however, the symbol x∗ may be used, because Xn denotes the average
of variables Xi , i = 1, 2, . . . , n (e.g., see Chapter 11).
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(d) 〈x, x〉 > 0, if x �= 0.

The positive square root of 〈x, x〉 denoted by

‖x‖ = √〈x, x〉
is called the norm of x with respect to the inner product. �

The conditions (a), (b), and (c) imply

(e) 〈x, c y + z〉 = c〈x, y〉 + 〈x, z〉.
With (c), we have, for instance,

〈i x, i x〉 = −i〈i x, x〉 = −i2〈x, x〉 = 〈x, x〉 = ‖x‖2.

Since we can define the distance or metric between any elements x and y by d(x, y) =
‖x − y‖, the inner product space is a metric space. Note that when we are dealing with
the real number field, the complex conjugates appearing in (c) and (e) are superfluous.

D E FI N I T I O N 10.2 (Orthogonality). Let x and y be vectors in an inner product
space V . We say that x and y are orthogonal if 〈x, y〉 = 0. �

With these preliminaries, we are ready to state the Cauchy–Schwarz inequality.

THEOREM 10.1 (Cauchy–Schwarz inequality). Let x and y be arbitrary vectors in an
inner-product space V over a field F. Then we have

|〈x, y〉|2 ≤ ‖x‖2‖y‖2, or equivalently |〈x, y〉| ≤ ‖x‖‖y‖, (10.1)

where the equality holds if and only if x and y are linearly dependent; i.e., x = c y for
some scalar constant c ∈ F.

Proof. Consider ‖x − c y‖ > 0. This metric becomes minimum when x − c y is orthog-
onal to y (see Figure 10.1); i.e.,

〈x − c y, y〉 = 0,

x
x–cy

cyy c*y

Figure 10.1 Geometric interpretation of the Cauchy–Schwarz inequality: the norm of vector x − c y is
minimal when it is orthogonal to vector y.



10.1 Inequalities frequently used in probability theory 243

which gives

c∗ = 〈x, y〉
‖y‖2 . (10.2)

Then from Pythagoras’3 theorem,

‖x − c∗ y‖2 = ‖x‖2 − ‖c∗ y‖2 = ‖x‖2 − |c∗|2‖y‖2 ≥ 0.

By substituting c∗ of (10.2) into this, we readily find

‖x‖2 − |〈x, y〉|2
‖y‖2

≥ 0,

which leads to (10.1). It should be clear that the equality holds if and only if x − c∗
y = 0; i.e., x and y are linearly dependent.

Note that both the notion of orthogonality and the Pythagorean theorem are applicable
to any inner-product space, although our sketch is for the two-dimensional case.

From the Cauchy–Schwarz inequality, we have for any pair of vectors

|〈x, y〉|
‖x‖‖y‖ ≤ 1. (10.3)

Thus, we define the angle φ between the two vectors by

cosφ = 〈x, y〉
‖x‖‖y‖ . (10.4)

Thus, we say that x and y are orthogonal if the angle between them is π/2. This
definition is consistent with the definition we already gave in Definition 10.2.

10.1.1.1 Alternative proofs
1. The inequality can be derived immediately using the following Lagrange identity

(Problem 10.1):

‖x‖2‖y‖2 − |〈x, y〉|2 =
∑
i< j

|xi y j − x j yi |2, (10.5)

where xi and yi are the components of vectors x and y respectively. For n-
dimensional vectors, we can write the above identity as(

n∑
i=1

|xi |2
)(

n∑
i=1

|yi |2
)
−
∣∣∣∣∣

n∑
i=1

xi yi

∣∣∣∣∣
2

=
n−1∑
i=1

n∑
j=i+1

∣∣xi y j − x j yi
∣∣2 .

2. First, let us consider the case of real vectors x, y and for a real scalar c:

f (c) = ‖x − c y‖2 = ‖y‖2
(

c − 〈x, y〉
‖y‖2

)2

+ ‖x‖2 − 〈x, y〉2
‖y‖2

.

3 Pythagoras of Samos (circa 570–circa 495 BC) was an Ionian Greek philosopher.
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In order for the function f (c) to be nonnegative for any real number c, it is necessary
and sufficient that

‖x‖2 − 〈x, y〉2
‖y‖2

≥ 0,

from which (10.1) results. This proof and an equivalent argument given in many
textbooks that the discriminant D of the quadratic equation f (c) = 0 must be
nonnegative are valid only for the real number field.
The above algebraic proof can be generalized to the complex-number field as
follows:

f (c) = ‖x − c y‖2 = ‖y‖2
∣∣∣∣c − 〈x, y〉

‖y‖2

∣∣∣∣2 + ‖x‖2 − |〈x, y〉|2
‖y‖2

≥ 0,

where the equality holds if and only if ‖x − c y‖ = 0. This, together with the
property (d) of the inner-product space, implies that x = c y.

10.1.1.2 The Cauchy–Schwarz inequality in an integral form
For the inner product space4 of square-integrable complex-valued functions, we define
the inner product of two functions by

〈 f, g〉 =
∫

f (x)g(x) dx .

Then the Cauchy–Schwarz inequality becomes∣∣∣∣∫ f (x)g(x) dx

∣∣∣∣2 ≤ ∫ | f (x)|2 dx
∫
|g(x)|2 dx . (10.6)

Needless to say, the above inequality holds even if g(x) is replaced by g(x), because
|g(x)| = |g(x)|.

10.1.1.3 The Cauchy–Schwarz inequality for random variables
Before we state the Cauchy–Schwarz inequality in the probabilistic context, we need to
define the inner product space of random variables.

D E FI N I T I O N 10.3 (Inner product and orthogonality of random variables). We define
the inner product of complex-valued random variables X and Y by

〈X, Y 〉 � E[XY ]. (10.7)

The norm of the RV X is defined by

‖X‖ = √〈X, X〉 =
√

E[|X |2]. (10.8)

We say the RVs X and Y are orthogonal if 〈X, Y 〉 = E[XY ] = 0. �

4 Such a space is often denoted as L2 or L2 space.



10.1 Inequalities frequently used in probability theory 245

The reader is suggested to check that all the properties (a) through (e) of the inner
product space specified in Definition 10.1 are satisfied by the inner product defined
by (10.7).

The above definition can be generalized for random vectors X and Y .

〈X,Y 〉 � E[X�Y ], (10.9)

where X� is a row vector and Y is a column vector.
Then the Cauchy–Schwarz inequality can be stated for RVs∣∣E[XY ]∣∣2 ≤ E

[
|X |2

]
E
[
|Y |2

]
(10.10)

and for random vectors ∣∣∣E[X�Y ]
∣∣∣2 ≤ E

[
X�X

]
E
[
Y�Y

]
. (10.11)

From (10.10) we can derive (Problem 10.3)

|Cov[X, Y ]|2 ≤ Var[X ]Var[Y ]. (10.12)

Thus, the correlation coefficient satisfies the inequality

|ρXY | =
∣∣∣∣ Cov[X, Y ]√

Var[X ]√Var[Y ]
∣∣∣∣ ≤ 1. (10.13)

The Cauchy–Schwarz inequality is generalized to Hölder’s inequality and
Minkoswki’s inequality (see Problem 11.6 of Chapter 11).

10.1.2 Jensen’s inequality

Jensen’s inequality applies to a convex or concave function, which we define below for
the one-dimensional case.

D E FI N I T I O N 10.4 (Convex and concave functions). A real-valued function g(x) is said
to be convex if, for any x1, x2 ∈ R and for any p such that 0 ≤ p ≤ 1,

g(p x1 + (1− p)x2) ≤ p g(x1)+ (1− p)g(x2). (10.14)

A function g(x) is said to be concave if −g(x) is convex. �

It can be shown (Problem 10.5) that, for a convex function g(x), the right and left
derivatives exist and thus g(x) is continuous at all points in the open interval where
g(x) is defined. We can also show (Problem 10.7) that if a continuous function has its
second derivative g′′(x), then g(x) is convex if and only if

g′′(x) ≥ 0, for all x .
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THEOREM 10.2 (Jensen’s inequality). For a convex function g(x) and a finite set
of points x1, x2, . . . , xn in an open interval in which g(x) is defined, the following
inequality holds with nonnegative weights p1, p2, . . . , pn such that

∑n
i=1 pi = 1:

g

(∑
i

pi xi

)
≤

n∑
i=1

pi g(xi ). (10.15)

Proof. For n = 2 the above equation reduces to the definition of convexity given in
(10.14). So it is clear that the finite form of Jensen’s inequality can be proved by the
method of mathematical induction (Problem 10.2). The equality in (10.15) holds if and
only if all the n points degenerate to a single point or g(x) is constant.

10.1.2.1 Jensen’s inequality for random variables
Since the set of weighting coefficients {pi } defines the probability distribution, we can
interpret the above inequality in terms of a discrete RV X whose probability distribution
(or PMF) is {pi }:

g(E[X ]) ≤ E
[
g(X)

]
. (10.16)

The above inequality holds for a continuous RV X as well, if we express it in terms of
the distribution function or PDF. Suppose that the function g(x) is convex in the interval
(a, b) and a random variable X has the PDF in the same interval, where a may be −∞
and/or b may be ∞. Then we have

g

(∫ b

a
x fX (x) dx

)
≤
∫ b

a
g(x) fX (x) dx . (10.17)

Example 10.1: Simple examples of Jensen’s inequality.

1. g1(x) = x2 is a convex function. Thus, we find

E[X2] ≥ (E[X ])2 .
2. g2(x) = log x is a concave function for x > 0. Thus, we have

E[log X ] ≤ log(E[X ]),
3. g3(x) = |x | is a convex function. Thus,

E[|X |] ≥ |E[X ]| .
�

10.1.3 Shannon’s lemma and log-sum inequality

In this section we discuss two inequalities that are often used in information theory and
related fields. The first inequality is a lemma in Shannon’s seminal paper [300]. This
inequality is sometimes called Gibbs’ inequality.
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THEOREM 10.3 (Shannon’s lemma). Let f = [ f1, f2, . . . , fn] and g = [g1,

g2, . . . , gn] be two probability distributions. Then

n∑
i=1

fi log gi ≤
n∑

i=1

fi log fi , i.e.,
n∑

i=1

fi log
fi

gi
≥ 0, (10.18)

where the equality holds if and only if g = f ; i.e.,gi = fi , for all i .

Proof. Consider the following inequality,5 frequently used in information theory:

ln x ≤ x − 1, for x > 0, (10.19)

where the equality holds only at x = 1. Then for the logarithm of x with any base,
we have

log x ≤ (log e)(x − 1).

Thus,

−
n∑

i=1

fi log gi = −
n∑

i=1

fi log
gi

fi
fi ≥ −

[
log e

n∑
i=1

fi

(
gi

fi
− 1

)
+

n∑
i=1

fi log fi

]

= −
n∑

i=1

fi log fi ≥ 0, (10.20)

where−∑i fi log fi is the entropy of a random variable whose probability distribution
is f , and denoted as H( f ). Equality holds when g1/ fi = 1 for all i . The left-hand
side of the second inequality in (10.18),

∑n
i=1 fi log( fi/g1), is the Kullback–Leibler

divergence (KLD), denoted as D( f ‖g), which will be discussed in Chapter 19.
There are other ways to prove this lemma (Problem 10.9).

Next, we will introduce the log-sum inequality, which is frequently used also in
information theory (e.g., see Cover and Thomas [69]) and related fields. We will exten-
sively use this inequality in the expectation-maximization (EM) algorithm and hidden
Markov model to be discussed in Chapters 18 and 20.

THEOREM 10.4 (The log-sum inequality). Let a = (a1, a2, . . . , an) and b =
(b1, b2, . . . , bn) be such that ai , bi ≥ 0, for all i = 1, 2, . . . , n,

∑n
i=1 ai � a and∑n

i=1 bi � b. Then

5 Apply Taylor’s expansion to log x at x = 1, obtaining

ln x = x − 1− (x − 1)2

2ξ2
,

where ξ is a point between 1 and x .
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n∑
i=1

ai log
ai

bi
≥ a log

a

b
, (10.21)

where the equality holds when bi/b = ai/a, for all i.

Proof. Set fi = ai/a and gi = bi/b in (10.18). Then

n∑
i=1

ai log bi ≤
n∑

i=1

ai log ai + a log

(
b

a

)
, (10.22)

which readily leads to (10.21). The condition for equality also readily follows from
fi = gi in Shannon’s lemma.

Note the similarity between this inequality and Shannon’s lemma or Gibbs’ inequal-
ity. As a matter of fact, the inequality formula in (10.18) holds even if f and g are
not probability distributions: all that is required is gi > 0, fi ≥ 0, and

∑
i fi =∑i gi

(Problem 10.10).

10.1.4 Markov’s inequality

We start with Markov’s inequality, which applies to the complementary distribution
function (also called the survivor function) of any nonnegative RV:

THEOREM 10.5 (Markov’s Inequality). Let X be a nonnegative RV with finite mean
E[X ]. Then for any a > 0, the following inequality holds:

P[X ≥ a] ≤ E[X ]
a

, (10.23)

which is called Markov’s inequality.6

Proof. For a nonnegative RV, the expectation is equivalent to the integration of the
complementary distribution Fc

X (x) = 1− FX (x) from zero to infinity:

E[X ] =
∫ ∞

0
[1− FX (x)] dx ≥

∫ a

0
[1− FX (x)] dx ≥ a[1− FX (a)]. (10.24)

Hence, we have

P[X ≥ a] = 1− FX (a) ≤ E[X ]
a

. (10.25)

Figure 10.2a shows a simple pictorial explanation of the above inequality. The shaded
area is equal to the expectation E[X ] and the rectangle has the area aFc

X (a), which is
clearly smaller than the former.

6 Some authors call this inequality Chebyshev’s inequality. But we reserve the latter for the next inequality,
which is a special case of Markov’s inequality.
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F c
X  (a) = P [X>a]

FX (x)

0 a ax

x /a

1x >a

x

(b)(a)

Figure 10.2 Illustration of proof of Markov’s inequality: (a) the shaded region is equal to E[X ] and the
rectangle’s area is a P[X ≥ a]; (b) second proof based on x/a ≥ 1x≥a .

An alternative proof of Markov’s inequality uses the following simple inequality as
sketched in Figure 10.2b:

1x≥a ≤ x

a
, (10.26)

where 1E is equal to unity if the event E is true, and is zero, otherwise. This indicator
function may alternatively be written as

1x≥a = u(x − a), (10.27)

where u(x) is the unit step function. Then multiplication of fX (x) on both sides of
(10.26) and integration over x ∈ [0,∞) yields∫ ∞

a
fX (x) dx = P[X ≥ a] ≤ a−1

∫ ∞

0
x fX (x) dx, (10.28)

from which (10.23) results.

This upper bound by Markov is rather loose, since it assumes only knowledge of
the mean of the distribution. However, it can be useful in quickly assessing the tail
distribution of a random variable when a is relatively large compared with the mean.
For instance, suppose that the expected response time of a web server is 2 s. Then what
is the probability that one will experience a response time greater than a minute? The
above inequality readily shows that at most 3.33% of the response times can be larger
than a minute.

10.1.5 Chebyshev’s inequality

Now let us proceed to the case where both the mean and variance of the distribution
exist and are known. Qualitatively speaking, the smaller the variance is, the less likely
it is that large deviations from the mean will occur. The following inequality due to
Cheyshev makes a precise statement about this qualitative observation.

THEOREM 10.6 (Chebyshev’s inequality). Let X be a random variable. Then for any
b > 0, we have

P[|X − E[X ]| ≥ b] ≤ σ 2

b2
. (10.29)
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Proof. Let Y = (X − E[X ])2 and a = b2, and substitute them into Markov’s inequality
(10.23). The above inequality immediately follows.

If we choose b to be n times the standard deviation, i.e., b = nσ , then the above
inequality shows

P[|X − E[X ]| ≥ nσ ] ≤ 1
n2 .

This suggests, for instance, that the probability that any RV deviates from its mean by
more than three standard deviations is less than 1

9 ≈ 0.11.

Example 10.2: A simple proof of Bernoulli’s theorem. Consider n repeated
Bernoulli trials, and let Sn be the number of successes, i.e.,

Sn = B1 + B2 + · · · + Bn,

where Bi is a 1–0 variable, depending on the i th trial being a success or a failure. Let
P[Bi = 1] = p, and P[Bi = 0] = 1− p = q, for all i = 1, 2, . . . , n. Define RV Xn by
Xn = Sn/n. Then we readily see that

E[Xn] = E[Sn]
n

= p and σ 2
Xn
= σ 2

Sn

n2 = npq

n2 = pq

n
.

Hence, by applying Chebyshev’s inequality to Xn , we obtain

P

[∣∣∣∣ Sn

n
− p

∣∣∣∣ ≥ ε] ≤ pq

nε2 , (10.30)

which is (2.45) of Bernoulli’s theorem discussed in Section 2.3. We will use Cheby-
shev’s inequality subsequently to establish the weak law of large numbers (WLLN)
that applies to the sample average or statistical average. �

10.1.6 Kolmogorov’s inequalities for martingales and submartingales

Kolmogorov and Doob generalized Markov’s inequality to martingales and submartin-
gales. We first give definitions of martingale and submartingale.

D E FI N I T I O N 10.5 (Martingale). A sequence of RVs {Sk} is called a martingale if
E[|Sk |] <∞ for all k and if

E[Sk |S1, S2, . . . , Sk−1] = Sk−1, for all k. (10.31)

�

A martingale is a mathematical description of a fair game. If we interpret Sk as a
player’s (i.e., gambler’s) fortune after the kth game, then (10.31) states that the player’s
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expected fortune after the (k + 1)st game is equal to his/her fortune after the kth game
regardless of what happened before.

Example 10.3: A random walk is a martingale. Consider an i.i.d RV Xi with
zero mean, i.e., E[Xi ] = 0, and let Sn =∑n

i=1 Xi . Then clearly Sn = Sn−1 + Xn , and
E[Sn |S1, S2, . . . , Sn−1] = Sn−1. Thus, Sn is a martingale. If we interpret each Xi as the
step size of a walk, then Sn is the position after n steps, staring from S0. This discrete-
time random process is called a (one-dimensional) random walk. We will discuss the
random walk model and its mathematical limit (as the step size becomes infinitesimally
small), called Brownian motion, in Chapter 17. �

D E FI N I T I O N 10.6 (Submartingale and supermartingale). A sequence of RVs {Yk}, with
E[|Yk |] <∞ for all k, is called a submartingale, if

E[Yk |Y1, Y2, . . . ,Yk−1] ≥ Yk−1, for all k, (10.32)

and is called a supermartingale, if

E[Yk |Y1, Y2, . . . ,Yk−1] ≤ Yk−1, for all k. (10.33)

�

So a submartingale embodies a game that is superfair to a player and subfair to
the house, because his/her expected fortune after the next game is no less than his/her
current fortune. A supermartingale is the opposite, i.e., more favorable to the house.

THEOREM 10.7 (Doob–Kolmogorov’s inequality for a nonnegative submartingale).
Let {Yk} be a submartingale and Yk ≥ 0 for all k. Then for any a > 0,

P [max{Y1, Y2, . . . ,Yn} ≥ a] ≤ E[Yn]
a

. (10.34)

Proof. [100].
For given a, denote ξ the smallest subscript 1 ≤ j ≤ k such that Y j ≥ a and set ξ = 0
if no such event occurs. Then ξ is a random variable with possible values 0, 1, . . . , n.
Then the expectation of Yn can be written as

E[Yn] =
n∑

j=0

E[Yn|ξ = j]P[ξ = j] ≥
n∑

j=1

E[Yn|ξ = j]P[ξ = j]. (10.35)

For j ≥ 1 the event {ξ = j} depends only on Y1, Y2, . . . ,Y j , and therefore

E[Yn|ξ = j] = E[E[Yn|Y1, Y2, . . . ,Yn]|ξ = j]
= E[E[Yn|Y1, Y2, . . . ,Y j ]|ξ = j]
≥ E[Y j |ξ = j]
≥ a. (10.36)
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The first two equalities use properties of conditional expectation. The first inequal-
ity uses the definition of submartingale. The second inequality follows from the
definition of ξ .

By substituting (10.36) into (10.35), it is evident that

n∑
j=1

P[ξ = j] ≤ E[Yn]
a

. (10.37)

However, the left-hand side can be written as

n∑
j=1

P[ξ = j] = P[Y j ≥ a for some j = 1, 2, . . . , n.]

= P[max{Y1, Y2, . . . ,Yn} ≥ a]. (10.38)

Thus, we have completed the proof.

Now let us consider a random variable sequence Xk such that E[Xk] = 0 for all
k ≥ 1. If we define a new sequence

Sk = X1 + X2 + · · · + Xk, (10.39)

then clearly the sequence Sk is a martingale.

THEOREM 10.8 (Kolmogorov’s inequality for a martingale). Let the sequence Sk be a
martingale. Then

P [max{|S1|, |S2|, . . . , |Sn|} ≥ b] ≤ E[S2
n ]

b2 . (10.40)

Proof. Set Yk = S2
k and a = b2 in the submartingale inequality (10.34). Then the

martingale inequality (10.40) readily ensues.

Note the almost identical structure between the above two inequalities. Indeed, we
can show that |Sk | is a submartingale when Sk is a martingale (Problem 10.15 (a)).
If we set |Sk | = Yk and b = a in the left-hand side of (10.40), the right-hand side of
this inequality becomes Y 2

n /a
2 in contrast with the right-hand side of the inequality in

(10.34). We can indeed generalize the inequality (10.34) (Problem 10.15 (b)) as follows:

P [max{Y1, Y2, . . . ,Yn} ≥ a] ≤ E[Y p
n ]

a p
, for any p ≥ 1. (10.41)

When we paraphrase Kolmogorov’s martingale inequality (10.40) in terms of the
original independent sequence Xk that defines the martingale Sn in (10.39), we have

P

[
max

k

{∣∣∣∣∣
k∑

i=1

Xi

∣∣∣∣∣
}
> b

]
≤
∑n

k=1 σ
2
k

b2
, (10.42)

where E[Xk] = 0 and σ 2
k = Var[Xk] = E[X2

k ].
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10.2 Chernoff’s bounds

We have shown the use of the MGF MX (t) in computing various moments of X . Now
we will show that by applying the MGF to Markov’s inequality we can obtain a much
tighter upper bound on the complementary distribution function than the ones given by
the Markov or Chebyshev inequalities. This improved bound, called Chernoff’s bound,7

is achieved when the MGF of the distribution is made available. Knowledge of the MGF
is equivalent to having information about all moments of the RV, which is a lot more
than what Chebyshev’s inequality requires. As will be shown, Chernoff’s bound is an
especially powerful technique when we deal with a sum of i.i.d. RVs. But we start with
a single RV.

10.2.1 Chernoff’s bound for a single random variable

For given X , define a new RV Y = eξ X , where ξ is a real-valued parameter.8 Then the
RV Y is nonnegative. Furthermore,

X ≥ b ⇐⇒ Y ≥ eξb, for ξ ≥ 0, (10.43)

and

X ≤ b ⇐⇒ Y ≥ eξb, for ξ ≤ 0, (10.44)

where ⇐⇒ stands for “if and only if.” Then by applying Markov’s inequality to Y in
(10.43), we obtain

P[X ≥ b] = P[Y ≥ eξb] ≤ E[Y ]
eξb

, ξ ≥ 0. (10.45)

From the definition of Y we can write

E[Y ] = E[eξ X ] = MX (ξ), (10.46)

where MX (ξ) is the MGF of X . Thus, we have

P[X ≥ b] = P[Y ≥ eξb] ≤ e−ξb MX (ξ), ξ ≥ 0. (10.47)

Since the inequality (10.47) holds for all ξ ≥ 0, we can obtain the best (i.e., tightest)
upper bound by selecting ξ∗ that gives the infimum9 of the upper bounds. Thus, we find
the following theorem.

7 Herman Chernoff (1923–present) is an American mathematician and statistician.
8 In this chapter we use the symbol ξ , instead of t , as the parameter of the MGF.
9 The infimum of a given set S is the greatest lower bound of S and is denoted as inf{S}. It is not necessarily

the case that inf{S} ∈ S. If S = (a, b), inf{S} = a. The “infimum” is equivalent to the “minimum” when
inf{S} ∈ S. In this chapter, inf is replaced by min since we are almost always dealing with cases where the
greatest lower bound is achievable within the set S. Similarly, sup, which stands for “supremum,” lowest
upper bound, is replaced by max in this chapter.
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THEOREM 10.9 (Chernoff’s bound). Let X be a real-valued RV whose moments all
exist. Then

P[X ≥ b] ≤ min
ξ≥0

{
e−ξb MX (ξ)

}
,where MX (ξ) = E[eξ X ]. (10.48)

If there exists the “best” ξ∗ such that

m′(ξ∗) = d(ln MX (ξ))

dξ

∣∣∣∣
ξ=ξ∗

= b, (10.49)

then

P[X ≥ b] ≤ e−ξ∗b MX (ξ
∗). (10.50)

Proof. The proof is rather straightforward. Consider a function

U (ξ) = e−ξb MX (ξ), (10.51)

which should be minimized. By taking its first derivative and setting it to zero we obtain
(10.49), which the optimum ξ� must satisfy. In order to show that this value gives the
minimum value of U (ξ) within the admissible interval Iξ , it suffices to show that U (ξ)
is a convex function by showing that

U ′′(ξ) = e−ξb[b2 MX (ξ)− 2bM ′
X (ξ)+ M ′′

X (ξ)] (10.52)

is nonnegative. Details are left to the reader as an exercise (Problems 10.20 and 10.21).

Note that the above Chernoff bound was derived by considering ξ > 0. If we choose
ξ < 0 instead, then eξ X ≥ eξb if and only if X ≤ b, thus yielding

P[X ≤ b] ≤ e−ξb MX (ξ), ξ < 0. (10.53)

Equation (10.47) can be used in a meaningful way only in bounding the “right-end
tail” (i.e., X ≥ b(> μX )) of the distribution (Problem 10.22). Similarly, the expression
(10.53) can be used in bounding the “left-end tail” (X ≤ b(< μX )) of the distribution.
These bounds are especially useful when a random variable is a sum of independent
RVs, as shown below.

10.2.2 Chernoff’s bound for a sum of i.i.d. random variables

Let X1, X2, . . . , Xn be a sequence of i.i.d. RVs, and form the sum

Sn =
n∑

i=1

Xi . (10.54)

Then the MGF of Sn is given by

MSn (ξ) = (MX (ξ))
n , (10.55)
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where MX (ξ) is the common MGF of the variables Xi . Then by applying the above
argument to the RV Sn , we obtain

P[Sn ≥ b] ≤ min
ξ≥0

{
e−ξb+nm X (ξ)

}
(10.56)

and

P[Sn ≤ b] ≤ min
ξ≤0

{
e−ξb+nm X (ξ)

}
, (10.57)

where m X (ξ) is the logarithmic MGF (or cumulant MGF) defined in (8.6):

mX (ξ) = ln MX (ξ). (10.58)

The value ξ∗ that achieves a minimum is a root of

m′
X (ξ) =

M ′
X (ξ)

MX (ξ)
= b

n
. (10.59)

Thus, we obtain

P[Sn ≥ b] ≤ e−n[ξ∗m′X (ξ∗)−m X (ξ
∗)], ξ∗ ≥ 0, (10.60)

and

P[Sn ≤ b] ≤ e−n[ξ∗m ′
X (ξ

∗)−m X (ξ
∗)], ξ∗ ≤ 0. (10.61)

The last two expressions are the Chernoff bounds for the sum variable.
If we define the “normalized” threshold β

β � b

n
, (10.62)

the last two equations can be rewritten as

P[Sn ≥ nβ] ≤ e−n[ξ∗β−m X (ξ
∗)], ξ∗ ≥ 0, (10.63)

and

P[Sn ≤ nβ] ≤ e−n[ξ∗β−m X (ξ
∗)], ξ∗ ≤ 0. (10.64)

Example 10.4: Coin tossing. Consider the experiment of tossing a fair coin n times
discussed in Problem 10.11, where

Sn = B1 + B2 + · · · + Bn, (10.65)

with P[Bi = 1] = P[Bi = 0] = 1
2 for all i = 1, 2, . . . , n.

The MGFs of the individual Bi and Sn are

MBi (ξ) =
1

2
e0·ξ + 1

2
e1·ξ = 1+ eξ

2
and MSn (ξ) =

(
1+ eξ

2

)n

. (10.66)
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Thus, the Chernoff bound is given as

P[Sn ≥ nβ] ≤ min
ξ≥0

{
e−ξnβ

(
1+ eξ

2

)n
}
. (10.67)

The optimum parameter ξ∗ should be the solution of

d

dξ
ln

(
1+ eξ

2

)n

= nβ, (10.68)

which leads to

eξ
∗

1+ eξ∗
= β or ξ∗ = ln

(
β

1− β
)
. (10.69)

Therefore, the bound (10.67) becomes

P[Sn ≥ nβ] ≤
(

β

1− β
)−nβ

(
1+ β

1−β
2

)n

=
[
2ββ(1− β)1−β

]−n
. (10.70)

By using the entropy function [300]

H(β) � −β log2 β − (1− β) log2(1− β), (10.71)

(10.70) can be more compactly expressed as

P[Sn ≥ nβ] ≤ 2−n(1−H(β)). (10.72)

Let us find the numerical value of the upper bound, for the same case discussed
in Problem 10.11; i.e., β = 0.8 and n = 100 and n = 1000. The entropy function for
β = 0.8 is H(0.8) = 0.7219. Hence, n(1−H(0.8)) = 0.2781n, and Chernoff’s bound
is 2−0.2781n , which yields

P[S100 ≥ 80] ≤ 2−27.81 ≈ 4.298× 10−9 and

P[S1000 ≥ 800] ≤ 2−278.1 ≈ 1.9589× 10−84. (10.73)

Thus, the upper bounds computed in Problem 10.11 using Chebyshev’s inequality (i.e.,
2.78× 10−2 for n = 100 and 2.78× 10−3 for n = 1000) are found too loose to be
useful. The reader is suggested to compute the Chernoff bound for a case where β is
much closer to the mean, say β = 0.51 (Problem 10.25).

10.2.2.1 The role of entropy function
Before we close this example, it will be instructive to discuss the role of the entropy
function H(β) in this biased coin tossing problem. The term 2−n(1−H(β)) that appeared
in (10.72), and later in (10.159) of Problem 10.28, can be written as

2−n[1−H(β)] = 2nH(β)

2n
, (10.74)
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where the denominator 2n is the total number of distinct outcomes in the experiment
of tossing any coin (fair or unfair) n times, whereas the numerator 2nH(β) can be inter-
preted, when n is sufficiently large, as the number of typical sequences [300] that will
be obtained when a biased coin (that lands on head with probability β) is tossed n times.
In a typical sequence, there are on average nβ heads and n(1− β) tails.

When the coin is fair, and n is large, any outcome that shows “head” nβ times or
more in n tossings will be extremely improbable when the threshold parameter β largely
deviates from 0.5. In other words, the event {Sn ≥ nβ} will be a rare event, making the
tail end distribution P[Sn ≥ nβ] extremely small.

When we change the experiment of fair coin tossing to that of an unfair coin that
lands on head with probability β, then a sequence that contains nβ heads becomes a
typical sequence, and the number of such typical sequences approaches 2nH(β) for large
n. Each typical sequence will occur with probability 2−nH(β). There are 2n possible
distinct sequences. The difference 2n − 2nH(β) is the number of nontypical sequences,
and the total probability of such sequences becomes negligibly small for sufficiently
large n.

In essence, the large deviation approximation method transforms the computation of
the probability of rare events to that of typical events, by exponentially twisting the
underlying probability measure.

10.3 Large deviation theory

As discussed in the previous section, Chernoff’s bound is very useful when we have the
sum of independent RVs as given in (10.54). We will now further improve Chernoff’s
bound, based on the theory of large deviations.

10.3.1 Large deviation approximation

We assume that the variables Xi are independent as before, but they are not necessarily
identically distributed. Before we consider the sum of independent RVs, let us start
with a single RV X with the distribution function FX (x). We define a random variable Y
whose distribution FY (y) is an exponentially tilted (or exponentially twisted) version
of FX (x), as defined by

d FY (x) = k eξ x d FX (x), (10.75)

where ξ is a positive real parameter, and k is a normalization constant. Here, d FX (x)
should be interpreted as d FX (x) = P[x < X ≤ x + dx]= FX (x + dx)− FX (x);
similarly, d FY (x) = P[x < Y ≤ x + dx] = FY (x + dx)− FY (x).10 By integrating
both sides over −∞ < x <∞, we have

10 Some authors write FX (dx) instead of d FX (x), etc.
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1 = k
∫ ∞

−∞
eξ x d FX (x) = k E[eξ X ] = k MX (ξ), (10.76)

where MX (t) is the MGF of X as defined earlier:

MX (t) = E[et X ] =
∫ ∞

−∞
etx d FX (x). (10.77)

Hence, the constant k is determined as k = MX (ξ)
−1. Thus,

d FY (x) = eξ x

MX (ξ)
d FX (x). (10.78)

If X is a continuous RV and its PDF fX (x) exists, the above relation reduces to

fY (x) = eξ x

MX (ξ)
fX (x), (10.79)

where

MX (t) =
∫ ∞

−∞
etx fX (x) dx . (10.80)

Equation (10.78) is preferred since it holds regardless of whether the RV X is discrete
or continuous. Of course, (10.79) can be properly interpreted for a discrete RV as well,
by using delta functions at those values xi where FX (x) is discontinuous.

The parameter ξ used in (10.78) must be chosen within the interval of convergence
of the MGF MX (t). The CDF FY (x) (or the PDF fY (x)) thus defined is called an
exponentially twisted CDF (or PDF) of the CDF FX (x) (or the PDF fX (x)). Some-
times the twisted CDF or PDF is referred to as the exponential change of measure
(ECM). By defining the logarithmic MGF m X (t) by

m X (t) = ln MX (t), (10.81)

we find the following important relations between the mean and variance of the RV Y
and m X (t) of the original RV X (Problem 10.27):

E[Y ] = dm X (t)

dt

∣∣∣∣
t=ξ

= m′
X (ξ) (10.82)

and

Var[Y ] = d2m X (t)

dt2

∣∣∣∣
t=ξ

= m′′
X (ξ). (10.83)
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With the above preparation, let us now turn our attention to the sum variable

Sn =
n∑

i=1

Xi .

Let FYi (x) be an exponentially tilted CDF of FXi (x); i.e.,

d FYi (x) =
eξ x

MXi (ξ)
d FXi (x), i = 1, 2, . . . , n, (10.84)

where the tilting parameter ξ is common to all i = 1, 2, . . . , n. Then consider the sum
of the twisted RVs:

Tn =
n∑

i=1

Yi . (10.85)

Then, the relationship between the distribution functions FTn (x) and FSn (x) should be
similar to that between FYi (x) and FXi (x) given by (10.84). Thus,

d FTn (x) =
eξ x

MSn (ξ)
d FSn (x), (10.86)

where MSn (t) is the MGF of Sn =∑n
i=1 Xi :

MSn (t) = E[et Sn ] =
n∏

i=1

MXi (t). (10.87)

The MGF of Tn can be derived from (10.86) as follows:

MTn (t) = E[etTn ] =
∫ ∞

−∞
etx eξ x

MSn (ξ)
d FSn (x)

= MSn (ξ + t)

MSn (ξ)
. (10.88)

The same relation holds between the MGFs of the individual element RVs Xi

and Yi ; i.e.,

MYi (t) =
MXi (ξ + t)

MXi (ξ)
, i = 1, 2, . . . , n. (10.89)

The probability that the sum variable Sn exceeds b is expressed as

P[Sn ≥ b] =
∫ ∞

b
d FSn (x) =

∫ ∞

b
MSn (ξ)e

−ξ x d FTn (x)

= e−ξb MSn (ξ)

∫ ∞

b
e−ξ(x−b) d FTn (x) = e−ξb MSn (ξ)A(ξ), (10.90)
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where

A(ξ) =
∫ ∞

b
e−ξ(x−b) d FTn (x). (10.91)

Recall that Sn is a sum of independent RVs. Then by virtue of the CLT it can be
shown that the distribution function will approach the normal distribution as n becomes
large, provided that any individual component is not big enough to appreciably influ-
ence the sum Sn . Even if such conditions for the CLT are satisfied, however, the tail
of the distribution of Sn approaches the normal distribution much more slowly than
the distributional form around the mean. For instance, if the X ′i s are all 1–0 variables,
then 0 ≤ Sn ≤ n, whereas the normal distribution ranges from −∞ to ∞. Thus, for
b � E[Sn], P[Sn ≥ b] cannot be accurately approximated by the tail end of the normal
distribution, unless n becomes really large.

Now we make use of the property that the exponential twisting, with proper choice of
the parameter ξ , can translate the tail end of the distribution FSn (x) to the main part of
the distribution FTn (x). Then, even for a moderately large n, the main part of the tilted
distribution function FTn (x) can be well approximated by the normal distribution with
mean m′

Sn
(ξ) and variance m′′

Sn
(ξ) (see (10.82) and (10.83) and Problem 10.27); i.e.,

d FTn (x) ≈
1√

2πm′′
Sn
(ξ)

exp

[
− (x − m′

Sn
(ξ))2

2m′′
Sn
(ξ)

]
dx . (10.92)

By following an argument similar to the derivation of Chernoff’s bound, we choose an
“optimum” tilting parameter ξ = ξ∗ that satisfies

m′
Sn
(ξ∗) = b = nβ, (10.93)

where b is the threshold parameter as defined in (10.90).
Therefore, for the tilting parameter ξ∗, A(ξ∗) corresponds to the integration of the

upper half of an approximately normal distribution N (b,m′′
Sn
(ξ∗)) multiplied by the

exponentially decaying function e−ξ∗(x−b), which takes on unity at x = b, the center
of the tilted distribution fTn (x). In Figure 10.3 (a) we show an example of the tilted
PDF fTn (x). Since the multiplication by e−ξ∗(x−b) ∝ e−ξ∗x is the reverse operation of
the tilting operation defined in (10.78), e−ξ∗(x−b)d FTn (x) results in a Gaussian-shape
function which is approximately proportional to the original distribution d FSn (x) as
sketched in Figure 10.3 (b). The shaded area corresponds to the integration A(ξ) of
(10.91) evaluated at ξ = ξ ∗. Since fTn (x) with ξ = ξ∗ has its center at x = b, and
e−ξ(x−b) ≤ 1 for x ≥ b, we readily see from Figure 10.3 (b) that A(ξ∗) is typically much
smaller than 1

2 . Note that Chernoff’s bound (10.72) corresponds to an approximation
where A(ξ∗) is replaced by unity.

An approximate evaluation of A(ξ∗) can be obtained by carrying out the integration
in (10.91) by
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(a)

0xb0 b

e−ξ (x – b)

fT(x) e −ξ (x – b)

fT  (x)
A(ξ)

x

(b)

1

Figure 10.3 (a) The tilted PDF fTn (x) and e−ξ(x−b); (b) the relation between the function e−ξ(x−b) fTn (x)
and A(ξ).

A(ξ∗) ≈
∫ ∞

b

1√
2πm ′′

Sn
(ξ∗)

exp

[
− (x − b)2

2m′′
Sn
(ξ∗)

− ξ∗(x − b)

]
dx

= ec2/2
∫ ∞

c

1√
2π

e−y2/2 dy = ec2/2 Q(c). (10.94)

Here, we changed the integration variable by y = (x − b)/
√

m′′
Sn
(ξ∗)+ c, where

c = ξ∗
√

m′′
Sn
(ξ∗) (10.95)

and Q(c) is the upper tail end of the unit normal distribution,

Q(c) =
∫ ∞

c

1√
2π

exp

(
− t2

2

)
dt, (10.96)

and is called the Q-function11 in digital communications (e.g., see [361]). It is related
to the complementary error function (e.g., see [3]) according to

Q(c) = 1

2
erfc

(
c√
2

)
,where erfc(c) = 2

π

∫ ∞

c
exp(−t2) dt. (10.97)

The Q-function is bounded by

exp
(
− c2

2

)
c
√

2π

(
1− 1

c2

)
< Q(c) <

exp
(
− c2

2

)
c
√

2π
. (10.98)

Thus, for large c � 1, we can approximate it by

Q(c) ≈ 1

c
√

2π
e−c2/2. (10.99)

11 This Q-function has nothing to do with the auxiliary function Q, used in maximum-likelihood estimation
by the EM algorithm discussed in Chapter 18.
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Hence, an approximate value of the integration is given by

A(ξ∗) ≈ 1

c
√

2π
= 1

ξ∗
√

2πm ′′
Sn
(ξ∗)

. (10.100)

Thus, we finally obtain the following approximation to evaluate the small probability of
the tail end of the distribution:

P[Sn ≥ b] ≈ A(ξ∗)e−ξ∗b MSn (ξ
∗) = 1

ξ∗
√

2πm′′
Sn
(ξ∗)

e−[ξ∗b−mSn (ξ
∗)], (10.101)

where in the last step we used M(t) = em(t).

Example 10.5: Large deviation approximation of a sum of normal RVs. Let us
consider a random variable X that has the N (0, 1) distribution. From Example 8.3
of Section 8.1 we have MX (t) = et2/2 and m X (t) = t2/2, which yield m′

X (t) = t and
m ′′

X (t) = 1. Then the associated RV Y has the exponentially twisted PDF

fY (x) = eξ x

eξ2/2

1√
2π

e−x2/2 = 1√
2π

e−(x−ξ)2/2, (10.102)

which is again the normal distribution with unit variance, but its mean gets shifted to ξ .
This confirms the formulas (10.82) and (10.83) that relate the mean and variance of the
twisted variable Y to the MGF of the original variable X ; i.e., E[Y ] = ξ = m ′

X (ξ) and
Var[Y ] = 1 = m ′′

X (ξ).
Now consider the sum of n independent unit normal variables Sn = X1 + X2 + · · · +

Xn . Take for instance n = 3 and b = 15. Then the exact value of P[S3 ≥ 15] can be
found, by using, for example, a MATLAB function, as

P[S3 ≥ 15] = P[X3 ≥ 5] = 2.35× 10−18, (10.103)

where X3 is the sample mean; i.e., X3 = (X1 + X2 + X3)/3 = S3/3.
Since the logarithmic MGF of the sum variable Sn is mSn (t) =

∑n
i=1 m Xi (t) =

nt2/2, the optimum tilting parameter is found from m′
Sn
(ξ∗) = b as ξ∗ = b/n = β = 5.

Thus, c of (10.95) is c = ξ∗
√

m′′
Sn
(ξ∗) = β√n = 5

√
3. Hence, A(ξ∗) ≈ 1/c

√
2π =

0.133, and we find from (10.101)

P[Sn ≥ b] = P[Xn ≥ β] ≈ 1

β
√

2πn
e−nβ2+nβ2/2 = 1

β
√

2πn
e−nβ2/2 (10.104)

= 1

5
√

6π
e−3×52/2 = 0.0461× 5.17× 10−17 = 2.38× 10−18. (10.105)
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which is very close to the exact value in (10.103). This small discrepancy between
2.35× 10−18 versus 2.38× 10−18 obtained here, however, is not due to the large devi-
ation approximation, but due to the approximation we adopted in computing A(ξ∗); i.e.,
approximating Q(c) by Q(c) ≈ 1/(c

√
2π)e−c2/2, assuming c � 1.

Since fTn (x) is exactly a normal distribution for any n in this particular case, A(ξ) of
(10.91) has an exact expression:

A(ξ) =
∫ ∞

b
e−ξ(x−b) 1√

2πn
e−(x−nξ)2/2n . (10.106)

Hence, for ξ = ξ∗ = b/n = β, we find A(ξ∗) = eb2/2n√
2πn

∫∞
b e−x2/2n dx =

enβ2/2 Q(
√

nβ). Substituting the above result into (10.90), we have

A(ξ∗)e−ξ∗b MSn (ξ
∗) = enβ2/2 Q(

√
nβ)e−nβ2

enβ2/2 = Q(
√

nβ), (10.107)

which is, not surprisingly, equal to P[Sn ≥ b]. �

10.3.2 Large deviation rate function

In this section we will further investigate large deviations theory by introducing the
notion of rate function. Let us consider again the sum Sn of i.i.d. RVs Xi :

Sn = X1 + X2 + · · · + Xn.

In Section 10.2 we found the probability that Sn exceeds some threshold b = nβ satisfies
Chernoff’s bound given by (10.56):

P[Sn ≥ nβ] ≤ min
ξ≥0

{
e−n[ξβ−m X (ξ)]

}
. (10.108)

Taking the natural logarithm of both sides and dividing them by n yields

1

n
ln P[Sn ≥ nβ] ≤ min

ξ≥0
{−[ξβ − m X (ξ)]} = −max

ξ≥0
{ξβ − m X (ξ)} . (10.109)

Using the optimum tilting parameter ξ∗ that satisfies

m ′
X (ξ

∗) = β, (10.110)

we have an alternative expression for the Chernoff bound (10.60):

1

n
ln P[Sn ≥ b] ≤ −[ξ∗β − m X (ξ

∗)], ξ∗ ≥ 0. (10.111)

In the last section we improved upon Chernoff’s bound and obtained the large
deviation approximation (10.101), which can be rewritten for the case of the sum of
identically distributed RVs as
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1

n
ln P[Sn ≥ b] ≈ −[ξ∗β − m X (ξ

∗)] − 1

n
ln

[
ξ∗
√

2πnm′′
X (ξ

∗)
]

= −[ξ∗β − m X (ξ
∗)] + O

(
ln n

n

)
, (10.112)

where O( ln n
n ) is the term that converges to zero as n grows at the same rate as ln n

n .
These results motivate us to define

I (β) � max
ξ≥0

{ξβ − m X (ξ)} = ξ∗β − mX (ξ
∗), (10.113)

which is referred to as the large deviation rate function. We can also express the rate
function as

I (β) = − ln

(
min
ξ≥0

{
e−ξβMX (ξ)

})
. (10.114)

It is not difficult to show that

1. I (β) is a convex function.
2. It takes its minimal value at β = E[X ] and I (E[X ]) = 0; hence, I (β) ≥ 0 for all β.

Chernoff’s bound can be expressed in terms of the rate function I (β) as

1

n
ln P[Sn ≥ nβ] ≤ −I (β); that is, P[Sn ≥ nβ]1/n ≤ e−I (β). (10.115)

Taking the limit of (10.115), we have

lim
n→∞max

1

n
ln P[Sn ≥ nβ] ≤ −I (β). (10.116)

Large deviation theory essentially shows that −I (β) is also a lower bound; i.e.,

lim
n→∞min

1

n
ln P[Sn ≥ nβ] ≥ −I (β). (10.117)

The last equation, combined with (10.116), yields

lim
n→∞

1

n
log P[Sn ≥ nβ] = −I (β). (10.118)

In order to show (10.117) we write

P[Sn ≥ nβ] =
∫

x1+···+xn≥nβ

fX (x1) · · · fX (xn) dx1 · · · dxn. (10.119)



10.3 Large deviation theory 265

Since the tilted RV Yi has the PDF given by

fY (y) = eξ
∗y fX (y)

MX (ξ∗)
, (10.120)

we find

P[Sn≥nβ] = MX (ξ
∗)n

∫
y1+···+yn≥nβ

e−ξ∗(y1+···+yn) fY (y1)· · · fY (yn) dy1· · ·dyn.

(10.121)

Let ε be an arbitrary positive constant, and let us restrict the integration range from
[nβ,∞) to [nβ, n(β + ε)]. Then we have the following lower bound expression:

P[Sn≥nβ]≥MX (ξ
∗)n

∫
nβ≤y1+···+yn≤n(β+ε)

e−ξ∗(y1+···+yn) fY (y1)· · · fY (yn) dy1· · ·dyn

≥MX (ξ
∗)ne−ξ∗n(β+ε)

∫
nβ≤y1+···+yn≤n(β+ε)

fY (y1)· · · fY (yn) dy1· · ·dyn.

(10.122)

Noting that the RVs Yi have the common mean β (Problem 10.29), i.e.,

E[Yi ] = β, (10.123)

we see that the distribution of Y1 + · · · + Yn will become concentrated around its mean
nβ as n increases. This property, called the strong law of large numbers, will be dis-
cussed Section 11.3.3. In other words, the integral in (10.122) converges to unity as
n →∞:

lim
n→∞

∫
β≤(y1+···+yn)/n≤β+ε

fY (y1) · · · fY (yn) dy1 · · · dyn = 1. (10.124)

Taking the logarithm of both sides of (10.122), dividing them by n, and letting n →∞,
we obtain (10.117).

A more rigorous, but somewhat more involved, derivation of the lower bound
(10.122) is found in, for example, Grimmett and Stirzaker [131].

Example 10.6: Large deviation approximation for Erlang distribution. Let Xi be
i.i.d. RVs with exponential distribution

FX (x) = 1− e−μx , fX (x) = μ e−μx , x ≥ 0.

Then their sum

Sn = X1 + X2 + · · · + Xn
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is distributed according to the n-stage Erlang distribution with mean n/μ (see Problem
4.11). We can readily find the following functions related to the large deviation
approximation:

MX (t) =
∫ ∞

0
μ e−μx etx dx = μ

μ− t
,

m X (t) = lnμ− ln(μ− t),

I (β) = ξ∗β − lnμ+ ln(μ− ξ∗).

Noting that

d I (β)

dξ∗
= β − 1

μ− ξ∗ = 0,

we find

ξ∗ = μ− 1

β
= μβ − 1

β
,

and thus

I (β) = μβ − 1− ln(μβ). (10.125)

Hence, the large deviation approximation for the tail of the n-stage Erlang distribution is

P[Sn ≥ nβ] = e−nI (β)+o(n) = e−n(μβ−1)+n ln(μβ)+o(n) = (μβ)ne−n(μβ−1)+o(n).

(10.126)

It will be of interest to derive the following approximate expression for the distribu-
tion function of the n-stage Erlang variable Sn . By substituting

β = x

n

into the result obtained above we have

FSn (x) = 1− P[Sn ≥ x] = 1−
(μx

n

)n
e−μx+n+o(n)

= 1− (μx)n

(n/e)n
e−μx+o(n) ≈ 1− (μx)n

n! e−μx
√

2πn eo(n),

where we used Stirling’s formula n! ≈ √2πn (n/e)n .
Then, in the limit n →∞, we find

FSn (x) ≈ 1− (μx)n

n! e−μx
√

2πn. (10.127)

�



10.4 Summary of Chapter 10 267

10.4 Summary of Chapter 10

Cauchy–Schwarz
inequality:

|〈x, y〉| ≤ ‖x‖‖y‖ (10.1)

Lagrange identity: ‖x‖2‖y‖2 − |〈x, y〉|2 =∑
i< j |xi y j − x j yi |2

(10.5)

Cauchy–Schwarz
inequality for random
vectors:

∣∣E[X�Y ]∣∣2 ≤ E
[‖X‖2

]
E
[‖Y‖2

]
(10.11)

Convex function: g(p x1 + (1− p)x2)

≤ p g(x1)+ (1− p)g(x2)

(10.14)

Jensen’s inequality: g
(∑

i pi xi
) ≤∑n

i=1 pi g(xi ) (10.15)
Jensen’s inequality for a

random variable:
g(E[X ]) ≤ E

[
g(X)

]
(10.16)

Shannon’s lemma:
∑n

i=1 fi log( fi/gi ) ≥ 0 (10.18)
Markov inequality: P[X ≥ a] ≤ E[X ]/a (10.23)
Chebyshev’s inequality: P[|X − E[X ]| ≥ b] ≤ σ 2/b2 (10.29)
Martingale: E[Sk |S1, S2, . . . , Sk−1] = Sk−1 (10.31)
Submartingale: E[Yk |Y1, Y2, . . . ,Yk−1] ≥ Yk−1 (10.33)
Supermartingale: E[Yk |Y1, Y2, . . . ,Yk−1] ≤ Yk−1 (10.33)
Doob–Kolmogorov’s ineq.

for a nonnegative
submartingale:

P [max{Y1, Y2, . . . ,Yn} ≥ a] ≤ E[Yn]/a (10.34)

Kolmogorov’s inequality
for a martingale:

P [max{|S1|, |S2|, . . . , |Sn|} ≥ b]
≤ E[S2

n ]/b2
(10.40)

Chernoff’s bound: P[X ≥ b] ≤ e−ξ∗b MX (ξ
∗) = e−ξ∗b MX (ξ

∗) (10.50)
where m ′(ξ∗)=b (10.49)
Chernoff’s bound for sum

of i.i.d. RVs:
e−n[ξ∗m′X (ξ∗)−m X (ξ

∗)] (10.60)

Chernoff’s bound for coin
tossing:

P[Sn ≥ nβ] ≤ 2−n(1−H(β)) (10.72)

Stirling’s approx. formula: n! ≈ √2πn (n/e)n (10.150)

Exponentially tilted
distribution:

d FY (x) = eξ x

MX (ξ)
d FX (x) (10.78)

MGF of Y : MY (t) = MX (ξ+t)
MX (ξ)

(10.89)

Q-function: Q(c) = 1
2 erfc

(
c/
√

2
)
, (10.97)

where erfc(c) = 2
π

∫∞
c exp(−t2) dt (10.97)

Large deviation
approximation:

P[Sn ≥ b] ≈= 1

ξ∗
√

2πm′′Sn
(ξ∗)

e−[ξ∗b−mSn (ξ
∗)] (10.101)

Large deviation rate
function:

I (β) � maxξ≥0 {ξβ − m X (ξ)}
= ξ∗β − mX (ξ

∗)
(10.113)
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10.5 Discussion and further reading

In engineering or other applications, inequalities or bounds may be useful, for instance,
when we want to be conservative in performance analysis of a given system, or to
provide a minimum performance guarantee in system design.

The proof we provided for the Cauchy–Schwarz inequality is more general than
the proof discussed in many textbooks that is applicable only to inner product spaces
over the real number field. Markov’s inequality is the basis for many other inequali-
ties, bounds, and approximations presented in this chapter. Chebyshev’s inequality will
be used in a streamlined proof of the weak law of large numbers to be discussed in
Section 11.3.2.

We introduced the concepts of martingale, submartingale, and supermartingale,
together with Kolmogorov’s inequalities. Although not discussed in most textbooks
written for engineering students, martingale theory, pioneered by Doob [82], is an
active research topic in applied probability theory. Its applications are diverse, includ-
ing random walks, Brownian motion, limit theorems, game theory, queueing theory
(e.g., see Asmussen [6]) and mathematical finance (e.g., see Shafer and Vovk [299]).
See Ross [289], Rogers and Williams [282], and Williams [354] for further study of
martingales.

Chernoff’s bound is a powerful technique when we deal with the computation of the
tail end of the distribution. For instance, the computation of the probability of decoding
error in communication systems (e.g., see Gallager [113] and Wozencraft and Jacobs
[361]) can be facilitated by proper use of this bounding method. In communication
networks, a simple expression for the probability of overflow (due to insufficient buffer
allocation) or the probability of call blocking (due to insufficient bandwidth allocation)
can be derived from Chernoff’s bound (e.g., see Hui [155]).

An approximation technique, such as the large deviations approximation, may be
preferred when an accurate evaluation of a performance metric is more important than
a conservative evaluation. Its application domains are essentially the same as those
for Chernoff’s bound; i.e., evaluation of the bit error rate in a digital communica-
tion system or that of the packet loss rate at routers or switches in a packet-switched
network.

The large deviation approximation is also useful when we must resort to a simula-
tion experiment in order to evaluate the probability of some rare event in a system
to be studied. If the probability of interest is as small as 10−8–10−10, the run time
required to obtain an accurate estimate of such a small probability in a brute-force
simulation would be too excessive to be practical. Use of the exponential change of
measure based on the large deviation theory leads to a fast simulation technique called
importance sampling. The interested reader is directed to, for example, Jeruchim et
al. [167], Ross [289], and Kobayashi and Mark [203]. For a further mathematical study
of large deviations theory, see, for example, Bucklew [42] and Shwartz and Weiss [304].
Ellis [90] discusses the large deviations theory developed in the field of statistical
mechanics.
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10.6 Problems

Section 10.1: Inequalities frequently used in probability theory

10.1 Lagrange identity. Verify the Lagrange identity given by (10.5).

10.2 Proof of Jensen’s inequality. Prove Jensen’s inequality (10.15) by using mathe-
matical induction.

10.3 Inequality for covariance. Derive the inequality (10.12).

10.4 Arithmetic mean and geometric mean. Prove that the arithmetic mean of xi

(all nonnegative) is not smaller than their geometric mean, i.e.,∑n
i=1 xi

n
≥ (x1x2 · · · xn)

1/n, xi ≥ 0, for all i. (10.128)

Hint: g(x) = log x is a concave function in (0,∞).
10.5 Convex function is continuous. Let x−1 < x0 < x1 < x2.

(a) If we write

x1 = px0 + (1− p)x2,

what is p?
(b) Show that for a convex function g(x),

g(x−1)− g(x0)

x−1 − x0
<

g(x1)− g(x0)

x1 − x0
≤ g(x2)− g(x0)

x2 − x0
, for x0 < x1 < x2.

Show that the right-hand derivative at x0, denoted f ′+(x0), exists; i.e.,

lim
x↓x0

g(x)− g(x0)

x − x0
= g′+(x0).

Similarly show that the left-hand derivative at x0, g′−(x0), exists and that
g′−(x0)≤ g′+(x0).

(c) Show that g(x) is continuous at all points.

10.6 A convex function is above its tangent. Show that if g(x) is a convex function,
it is above its tangent at every point x ; i.e.,

f (x) ≥ f (x0)+ a(x − x0), for some constant a. (10.129)

10.7 A twice-differentiable function and a convex function. Show that if a contin-
uous function g(x) has a second derivative g′′(x) ≥ 0 at all points, then it is a convex
function.

10.8 Another derivation of Jensen’s inequality. Show that if a function g(x) is
continuous and twice-differentiable, then Jensen’s inequality holds.
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10.9 Alternative derivation of Shannon’s lemma.

(a) Derive (10.18) from Jensen’s inequality.
Hint: − log x is a convex funtion.

(b) Derive (10.18) using the Lagrangian multiplier method.

10.10 Inequalities in information theory [278].

(a) Show that if ai , bi > 0 for all i and
∑

i ai =∑i bi , then∑
i

log
ai

bi
≥ 0, (10.130)

where the equality is attained if and only if ai = bi .
(b) In addition to the assumptions in (a), further assume that ai , bi ≤ 1 for all i . Then

show ∑
i

ai log
ai

bi
≥ 1

2

∑
i

ai (ai − bi )
2. (10.131)

Hint: Use the Taylor expansion of log x at x = 1.

10.11 Coin tossing and Markov and Chebyshev inequalities. Consider the experi-
ment of tossing a fair coin n times. Let Sn be the total number of “head (= 1)”:

Sn = B1 + B2 + · · · + Bn, (10.132)

where Bi are independent binary variables, with P[Bi = 1] = P[Bi = 0] = 1
2 for all

i = 1, 2, . . . , n. We assume the threshold value b > E[Sn] = n/2; i.e., 1
2 < β < 1,

where β = b/n.

(a) Apply Markov’s inequality and find an upper bound on the probability that Sn

exceeds b = βn. Compute the upper bound for cases where n = 100 and n = 1000
with β = 0.8 for both cases.

(b) Apply Chebyshev’s inequality and find an upper bound on the probability that Sn

exceeds b = βn. Compute the upper bound for cases where n = 100 and n = 1000
with β = 0.8 for both cases.

10.12 Bienaymé’s12 inequality.

(a) Let X be a random variable with E[|X |r ] <∞ for r > 0, where r is not necessarily
an integer. Show that for any b > 0 we have

P[|X | ≥ b] ≤ E[|X |r ]
br

. (10.133)

12 Irénée-Jules Bienaymé (1796–1878) was a French mathematician. Among his contributions was a
translation of Chebyshev’s (1821–1894) work, written in Russian, into French.
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(b) Show that if E[|X − E[X ]|r ] <∞, then

P[|X − E[X ]| ≥ b] ≤ E[|X − E[X ]|r ]
br

. (10.134)

10.13 Markov–Chebyshev–Bienaymé’s inequality. Let g(x) be an increasing non-
negative function defined on [0,∞). Show that for any b > 0,

P[|X | ≥ b] ≤ E[g(|X |)]
g(b)

, (10.135)

whenever the right side exists.

10.14 One-sided Chebyshev’s inequality [289].

(a) Let X be a random variable with E[X ] = 0 and Var[X ] = σ 2. Show that for any
a > 0

P[X ≥ a] ≤ σ 2

σ 2 + a2 .

Hint: For any b > 0,

X ≥ a if and only if X + b ≥ a + b(> 0).

(b) If E[X ] = μ and Var[X ] = σ 2. Show that

P[X ≥ μ+ a] ≤ σ 2

σ 2 + a2 ,

P[X ≤ μ− a] ≤ σ 2

σ 2 + a2 .

10.15 Submartingale derived from a martingale.

(a) Show that |Sk | is a submartingale when Sk is a martingale.
Hint: Use Jensen’s inequality.

(b) Prove the inequality (10.41).

10.16∗ Bernstein’s13 inequality [21, 131]. Let Bi , 1 ≤ i ≤ n, be a sequence of
Bernoulli trials; i.e., i.i.d. RVs with P[Bi = 1] = p and P[Bi ] = 1− p = q. Let
Sn =∑n

i=1 Bi ; that is, the number of successes in the Bernoulli trials. Then show the
following inequality, called Bernstein’s inequality:

P

[∣∣∣∣ Sn

n
− p

∣∣∣∣ ≥ ε] ≤ 2 exp

(
−nε2

4

)
, for ε > 0. (10.136)

Take the following steps to derive the above inequality.

13 Sergei Natanovich Bernstein (1880–1968) was a Soviet mathematician.
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(a) Show

P

[
Sn

n
− p ≥ ε

]
≤ exp(−λnε)

(
p eλq + q−λp)n ,

where m = )n(p + ε)* and λ > 0.
Hint: Use 1 ≤ eλk−m for k ≥ m.

(b) Show

P

[
Sn

n
− p ≥ ε

]
≤ exp(λ2n − λnε).

Hint: Use the following inequality:ex ≤ x + ex2
for any real number x .

(c) Find λ that gives a tightest upper bound.

10.17∗ Hoeffding’s14 inequality for a martingale [152, 288]. Let Yi : i = 1, 2, . . .
be a martingale, with mean E[Yi ] = μ and let Y0 = μ. Suppose that Yi have bounded
differences in the sense that

−ai ≤ Yi − Yi−1 ≤ bi ,where ai , bi ≥ 0.

Show that, for all positive integers n and t > 0, the following Hoeffding inequalities15

hold:

P[Yn − μ ≥ t] ≤ exp

(
− 2t2∑n

i=1(ai + bi )2

)
, (10.137)

P[Yn − μ ≤ −t] ≤ exp

(
− 2t2∑n

i=1(ai + bi )2

)
. (10.138)

(a) Assume first that μ = 0. Let Wi = eλYi with some λ > 0. Show that

P[Yn ≥ t] ≤ e−λt E[Wn] (10.139)

and

E[Wn|Yn−1] ≤ Wn−1
bne−λan + aneλbn

an + bn
. (10.140)

Hint: Let X be such that E[X ] = 0 and P[−a ≤ X ≤ b] = 1. Then, for a convex
function f ,

E[ f (X)] ≤ b f (−a)+ a f (b)

a + b
. (10.141)

(b) Obtain

P[Yn ≥ t] ≤ exp

(
−λt + λ2

∑n
i=1(ai + bi )

2

8

)
. (10.142)

14 Wassily Hoeffding (1914–1991) was an American statistician and probabilist.
15 Ross [288] credits this inequality to Kazuoki Azuma (1939–) [8], a Japanese mathematician.
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Hint: For 0 ≤ θ ≤ 1, the following inequality holds for any real x :

θ e(1−θ)x + (1− θ)e−θx ≤ ex2/8.

The derivation of this inequality is rather involved (see Ross [288] Lemma 6.3.2).
(c) Find an optimal value of λ and obtain the Azuma–Hoeffding inequality.

10.18∗ Upper bound on the waiting time in a G/G/1 queueing system [196].
Consider a single server queue in which the service time of the nth customer is denoted
as Sn and the interarrival time between the nth and n + 1st customer is denoted as Tn .
Assume that the Sn are i.i.d. and so are the Tn . Also Sn and Tn are mutually independent.

If we define a new RV by

Xn = Sn − Tn,

then E[Xn] < 0 for the queueing system to be stable. Furthermore, it is known (and
not difficult to show) that the sequence {Wn} of waiting times in the queue is given
recursively as

W0 = 0 and Wn+1 = max{0,Wn + Xn}, (10.143)

where we assume that the queue is initially empty.

(a) Define a sequence {Y j } by

Y0 = 1 and Y j = eθ(Xn−1+Xn−2+···+Xn− j ), 1 ≤ j ≤ n, (10.144)

where θ is a real-valued parameter to be determined. Show that if θ > 0, then

eθWn = max{Y0, Y1, . . . ,Yn}. (10.145)

(b) Show that Yn forms a submartingale when θ is suitably chosen.
Hint: Consider MX (θ), the MGF of the i.i.d. RVs Xn , and use its properties.

(c) Show the complementary distribution function of Wn has the exponential upper
bound

Fc
Wn
(t) = P[Wn > t] ≤ e−θ t+nmX (θ),

where m X (θ) is the logarithmic MGF or semi-invariant function, as defined in (8.6):

m X (θ) � ln MX (θ).

(d) For given n and t , find the value θ� that gives the tightest upper bound.
(e) Show that in the limit n →∞,

lim
n→∞ Fc

Wn
(t) = Fc

W (t) ≤ e−θ0 , (10.146)

where θ0 ∈ Iθ such that

m X (θ0) = 0, or equivalently MX (θ0) = 1. (10.147)

The inequality (10.146) for the equilibrium distribution is Kingman’s upper bound
[184, 185] which he obtained by using a martingale.
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Section 10.2: Chernoff’s bounds

10.19 Altenative derivation of (10.47). Obtain an alternative derivation of the
inequality (10.47) by using the indicator function as we did for the alternative derivation
of Markov’s inequality.

10.20 Derivation of the Chernoff bound (10.50). Derive the Chernoff bound (10.50).
Hint: Show that U (ξ) = e−ξb MX (ξ) is a convex function.

10.21 Alternative proof of Chernoff’s bound. Prove the convexity of U (ξ) =
e−bξ MX (ξ) using the following steps. Define a function f (b, ξ) = MX (ξ)b2 −
2bM ′

X (ξ)+ M ′′
X (ξ). Then (10.52) can be written as

U ′′(ξ) = e−ξb f (b, ξ). (10.148)

(a) What are the necessary and sufficient conditions for f (b, ξ) to be nonnegative for
all b?

(b) Show that the above conditions are satisfied.
Hint: Use the version of the Cauchy–Schwarz inequality for RVs.

10.22 When is the Chernoff bound meaningful? Sketch the upper bound func-
tion U (ξ) = e−ξb MX (ξ) versus ξ for the case (a) b > μX = E[X ] and for the case
(b) b<μX , and show that the Chernoff bound (10.47) can be meaningful only in
bounding the “right-end tail” (i.e., X ≥ b > μX ) of the distribution.

10.23 Chernoff’s bound for sum of normal RVs. Let S be a sum of n independent
unit (or standard) normal variables Ui ; i.e., Ui ∼ N (0, 1): S = U1 +U2 + . . .+Un .
Apply Chernoff’s bound and show that P[S ≥ nβ] ≤ e−nβ2/2.

10.24 Chernoff’s bound for the sum of Poisson variables. Let S = X1 + X2 +
· · · + Xn , where Xi are i.i.d. Poisson variables with mean 1/λ. Apply Chernoff’s bound
and show P[S ≥ nβ] ≤ e−nB , where B = β ln(β/λ)+ λ(1− β).
10.25 Numerical evaluation of the Chernoff bound. In the fair coin tossing exper-
iment discussed in Example 10.4, set β = 0.51. Then numerically evaluate the upper
bounds for P[Sn ≥ nβ] for n = 100, 1000, 104, 105, 106.

10.26 Assessment of Chernoff’s bound.
In order to assess the accuracy of the Chernoff bound, consider the coin tossing

experiment in Example 10.4.

(a) Find an exact expression for P[Sn ≥ b].
(b) Let Cb be the sum of the binomial coefficient from k = b to k = n. For β < 1/2,

show that Cb has the following upper and lower bounds:(
n

b

)
< Cb < (n − b + 1)

(
n

b

)
. (10.149)
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(c) The well-known Stirling approximation formula16 [98, 99] gives

n! ≈ √2πn
(n

e

)n
. (10.150)

Show that the binomial coefficient can be approximated as follows:(
n

k

)
≈
√

n

2πk(n − k)

nn

(n − k)n−kkk
. (10.151)

(d) The following simple upper and lower bounds are known to hold for all n (see
Feller [99] and Nelson [254]):

√
2πn

(n

e

)n
BL(n) < n! < √2πn

(n

e

)n
BU(n), (10.152)

where

BL(n) = exp

(
1

12n + 1

)
and BU(n) = exp

(
1

12n

)
. (10.153)

Show that upper and lower bounds for the binomial coefficient are obtainable from
(10.152) as√

n

2πk(n − k)

nnθL(n, k)

(n − k)n−kkk
<

(
n

k

)
<

√
n

2πk(n − k)

nnθU(n, k)

(n − k)n−kkk
, (10.154)

where

θL(n, k) = BL(n)

BU (k)BU(n − k)
and θU(n, k) = BU(n)

BL(k)BL(n − k)
. (10.155)

(d) Since Stirling’s approximation formula and the above bounds hold only for integer
k, we set b = )nβ* if nβ is not an integer. Then replace β by

β̃ = b

n
= )nβ*

n
. (10.156)

(
n

)nβ*
)
≈ (1− β̃)−n(1−β̃)β̃−nβ̃√

2πnβ̃(1− β̃)
= 1√

2πnβ̃(1− β̃)
2nH(β̃). (10.157)

Show that the following are upper and lower bounds of P[Sn ≥ nβ] for all n:

θL(n, b)√
2πnβ̃(1−β̃)

2−n(1−H(β̃))< P[Sn≥nβ]< (n−b+1)θU(n, b)√
2πnβ̃(1−β̃)

2−n(1−H(β̃)).

(10.158)
(e) The term 2−n(1−H(β̃)) of (10.72) now appears in both upper and lower bounds.

Thus, Chernoff’s bound is off from the exact value only by a certain factor, which is
insignificant in the sense that the exponential term 2−n(1−H(β̃)) largely determines
the behavior of P[Sn ≥ nβ̃] when n gets larger.

16 James Stirling (1692–1770) was a Scottish mathematician and surveyor.
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Numerically evaluate the upper and lower bounds given by (10.158) for the cases
of β = 0.8 and β = 0.51 with different values of n, and assess the Chernoff bounds
obtained in Example 10.4 (for β = 0.8) and in Problem 10.25 (for β = 0.51).

Section 10.3: Large deviations theory

10.27 Derivation of (10.82) and (10.83). Show that the expectation and variance of
the exponentially twisted variable Y are given by (10.82) and (10.83); i.e., the first and
second derivatives of the logarithmic MGF m X (t), evaluated at t = ξ .

10.28 Application of large deviation approximation to coin tossing. Consider the
coin tossing problem discussed in Example 10.4.

(a) Find the distribution function FBi (x) and its tilted counterpart FYi .
(b) We are again interested in estimating the probability P[Sn ≥ nβ]. For given β, what

is the optimum tilting parameter ξ∗?
(c) What is the the mean and variance of the sum variable Tn?
(d) Show that the large deviation approximation of P[Sn ≥ nβ] is given by

P[Sn ≥ nβ] ≈ 1

ln
(

β
1−β

)√
2πnβ(1− β)

2−n(1−H(β)). (10.159)

Compare this with the Chernoff bound.

10.29 Derivation of (10.123). Show that (10.123) holds.



11 Convergence of a sequence
of random variables and the
limit theorems

So far we have been somewhat imprecise or vague when we state that a sequence of RVs
Xn converges to some limit X , as n tends to infinity. In this chapter we discuss various
types (or modes) of convergence for a sequence of RVs. The types of convergence we
discuss in this chapter are:

1. Convergence in distribution.
2. Convergence in probability.
3. Almost sure convergence (also known as convergence with probability one, or

convergence almost everywhere).
4. Convergence in mean square.

We will begin with a brief review of convergence of a sequence of numbers and a
sequence of (nonrandom) functions.

11.1 Preliminaries: convergence of a sequence of numbers or functions

11.1.1 Sequence of numbers

Let {an} = {a1, a2, . . . , an, . . .} be a sequence of numbers.

D E FI N I T I O N 11.1 (Convergence of a sequence of numbers). We say that a sequence
{an} converges to a, written

lim
n→∞ an = a, or an → a,

if, for each ε > 0, there exists a number N (ε) such that

|an − a| < ε, for all n ≥ N (ε).

The above definition of convergence requires knowledge of the limit a. It is
sometimes convenient to use a criterion that does not rely on such knowledge.

D E FI N I T I O N 11.2 (Cauchy1 convergence). We say that a sequence {an} is Cauchy
convergent if, for any ε > 0, there exists a number N (ε) such that

1 Augustin-Louis Cauchy (1789–1857) was a French mathematician.
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|am − an| < ε, for all m, n ≥ N (ε).

We state the following theorem without proof, since the reader may well be familiar
with this.

THEOREM 11.1 (Cauchy criterion for convergence). A sequence {an} converges if and
only if it is Cauchy convergent.

11.1.2 Sequence of functions

We now consider a sequence of (real-valued) functions {gn(x)} defined over some inter-
val [a, b]. If x is fixed to some point x0 ∈ [a, b], then the sequence {gn(x0)} is just a
sequence of numbers.

D E FI N I T I O N 11.3 (Pointwise convergence). We say that a sequence {gn(x0)} con-
verges to g(x0) pointwise at point x = x0 if, for given ε > 0, there exists a number
N (ε, x0) such that

|gn(x0)− g(x0)| < ε for all n ≥ N (ε, x0).

D E FI N I T I O N 11.4 (Convergence everywhere). We say that a sequence {gn(x)} con-
verges to g(x) everywhere in [a, b] if it converges pointwise at every point; i.e., if for
given ε > 0 and x there exists a number N (ε, x) such that

|gn(x)− g(x)| < ε for all n ≥ N (ε, x) and x ∈ [a, b].

A stronger condition on the sequence {gn(x)} is the notion of uniform convergence.

D E FI N I T I O N 11.5 (Uniform convergence). We say that a sequence {gn(x)} converges
to g(x) uniformly in [a, b] if, for given ε > 0, there exists a number N (ε) such that

|gn(x)− g(x)| < ε for all n ≥ N (ε) and for all x ∈ [a, b].

It is clear that uniform convergence in [a, b] implies pointwise convergence at every
point in [a, b]. However, the converse is not true.

Example 11.1: Convergence everywhere, but not uniformly [319]. Consider the
following sequence of functions (see Figure 11.1)

gn(x) = n2x e−nx , 0 ≤ x <∞, n = 1, 2, . . .

For given x ∈ [0,∞), the term e−nx decays geometrically as n increases. Thus, despite
the increasing factor n2, gn(x) converges to zero everywhere in the interval x ∈ [0,∞)
as n →∞. However, this sequence does not converge uniformly in [0,∞).
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Figure 11.1 A sequence of functions gn(x) = n2x e−nx for n = 1, 2, 4, . . . in Example 11.1.

In order to show this, we observe that, for given n, the function gn(x) is an increasing
function in the interval x ∈ [0, n−1], and its maximum value is gn(n−1) = n e−1. If the
sequence were to converge uniformly, we would have to show that for arbitrary ε > 0,

|gn(x)− 0| = n2x e−nx < ε

for all x ∈ [0,∞) when n is larger than some number N (ε). Let us choose specifically
the value of x that maximizes gn(x), i.e., x = n−1, so that

|gn(n
−1)− 0| = n e−1 < ε.

Obviously there is no number N (ε) such that N (ε)e−1 < ε for arbitrary ε > 0. Thus,
the sequence does not converge uniformly in [0,∞).

It will be instructive to note that the above function is a special case of the PDF of
the gamma distribution

f (x) = e−αx

�(β)
α(αx)β−1, x ≥ 0,

in which α = n and β = 2. The mean is β/α = 2n−1 and the variance is β/α2 = 2n−2.
The mode of the distribution is n−1, as shown above. As n increases, the PDF gn(x)
approaches the impulse function at x = 0+. When β is an integer k, the gamma
distribution reduces to the k-stage Erlang distribution with the exponential rate param-
eter μ = α. Thus, the function gn(x) defined above is the PDF of the two-stage
Erlang distribution with the rate μ = n (i.e., the mean μ−1 = n−1) of the exponential
distribution.

Note also that we can replace the interval [0,∞) with any interval [a, b] (0 ≤ a <
b <∞) in the above argument. �
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11.2 Types of convergence for sequences of random variables

A sequence of RVs X1, X2, . . . can be viewed as a sequence of functions
X1(ω), X2(ω), . . . that map ω ∈ � into the real line (−∞,∞). Therefore, a direct
application of the concept given in Definition 11.4 for a sequence of nonrandom
function { fn(x)} to a sequence of RVs {Xn(ω)} is as follows.

D E FI N I T I O N 11.6 (Convergence everywhere). We say that a sequence of RVs {Xn}
converges to X everywhere if

Xn(ω)→ X (ω) as n →∞ for every ω ∈ �;
that is, if for any ε > 0 and for every ω ∈ �, there exists a number N (ε, ω) such that

|Xn(ω)− X (ω)| < ε for all n ≥ N (ε, ω).

If we define set A

A =
{
ω : lim

n→∞ Xn(ω) = X (ω)
}
, (11.1)

Then

A = �, if Xn converges to X everywhere.

Similarly, the concept of uniform convergence can be applied to Xn . But such modes
of convergence are not of much interest to us, since they contain no reference to proba-
bility. RVs are associated with some probability space (�,F, P); therefore, we will be
interested in interpreting, from probabilistic points of view, the statement Xn → X as
n →∞.

11.2.1 Convergence in distribution

D E FI N I T I O N 11.7 (Convergence in distribution). We say that a sequence of RVs {Xn}
converges to X in distribution, written

Xn
D→ X, or Xn

d→ X,

if the distribution function Fn(x) = P[Xn ≤ x] converges pointwise to FX (x) at all
continuity points of FX (x) = P[X ≤ x]; that is, if

lim
n→∞ Fn(x) = FX (x) (11.2)

at all points x where FX (x) is continuous. �

Example 11.2: A sequence of N(0, σ 2/n). Consider a sequence of RVs {Xn}, where
Xn is distributed according to N (0, σ 2/n):
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Fn(x) =
∫ x

−∞

√
n√

2π σ
e−nu2/2σ 2

du.

Then, in the limit n →∞, we have

lim
n→∞ Fn(x) =

⎧⎨⎩
0, x < 0,
1
2 , x = 0,
1, x > 0.

Thus, {Xn} converges in distribution to the RV X with distribution function

FX (x) =
{

0, x < 0,
1, x ≥ 0.

(11.3)

Note that FX (x) is a distribution function, so it must be right-continuous. There-
fore, FX (0) = 1, not 1

2 . Consequently, {Fn(x)} does not converge to FX (x) at this
discontinuity point x = 0. �

Example 11.3: Poisson distribution as a limit of binomial distributions. Let Xn be
a discrete RV that is binomially distributed according to B(x; n, p); i.e.,

Fn(x) =
n∑

k=0

(
n

k

)
pk(1− p)n−ku(x − k), x ≥ 0,

where u(x) is the unit step function. We take the limit n →∞ in such a way that

lim
n→∞ np = λ,

where λ is a fixed nonzero but finite number. Then, as discussed in Section 3.3.3, we
have

lim
n→∞ Fn(x) =

∞∑
k=0

λ

k!e
−λu(x − k), x ≥ 0,

which is the Poisson distribution with mean λ. Thus, the binomial RV converges in
distribution to a Poisson RV. �

Note that convergence in distribution is a condition on the probability distributions
Fn(x), not on the RVs Xn(ω). Thus, the sequence Xn(ω)may not converge to any fixed

point for given ω, although we write, somewhat confusingly, Xn
D→ X . For example,

consider a set {Xn(ω), ω ∈ �} at some n. Apply an arbitrary permutation to the set
{Xn(ω)}. Then Fn(x) should remain unchanged if all sample functions are equally
likely. If such shuffling is applied at every point n in sequence, Xn(ω) will not converge
to any fixed point X (ω).
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11.2.2 Convergence in probability

D E FI N I T I O N 11.8 (Convergence in probability). We say that Xn converges to X in
probability, written

Xn
P→ X, or Xn

p→ X,

if

lim
n→∞ P[ |Xn − X | > ε ] = 0 for any ε > 0, (11.4)

i.e., if for arbitrary ε > 0 and δ > 0 there exists a number N (ε, δ) such that

P[ |Xn − X | > ε ] < δ, for all n ≥ N (ε, δ). (11.5)

�

Let us define the set

An(ε) = {ω : |Xn(ω)− X (ω)| ≤ ε} ; (11.6)

hence,

Ac
n(ε) = {ω : |Xn(ω)− X (ω)| > ε} . (11.7)

Then convergence in probability is equivalent to claiming

lim
n→∞ P[Ac

n(ε)] = 0 for any ε > 0; (11.8)

i.e.,

lim
n→∞ P[An(ε)] = 1 for any ε > 0. (11.9)

From (11.5), we may state that Xn converges to X in probability if there exists N (ε, δ)
such that

P[An(ε)] ≥ 1− δ for all n ≥ N (ε, δ).

Convergence in probability is sometimes called stochastic convergence and we say
that {Xn} converges stochastically to X .

In Section 2.3 we discussed Bernuoulli’s theorem (Theorem 2.1 of Chapter 2),
in which the sequence Xn = k/n converges to p in probability (see (2.46)). This
is a degenerate case where the limit RV X is a constant p, i.e., P[X = p] = 1, or
equivalently,

FX (x) = u(x − p) =
{

0, x < p,
1, x ≥ p,

where u(x) is the unit step function.

Example 11.4: A sequence of Cauchy distributions. Recall the Cauchy distribution
discussed in Problem 5.4 of Section 5.1. Let the RV Xn have the PDF given by
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fn(x) = n

π

1

1+ n2x2 , −∞ < x <∞,

and the distribution function

Fn(x) = n

π

∫ x

−∞
1

1+ n2u2
du.

In the limit, the PDF fn(x) approaches Dirac’s delta-function δ(x):

lim
n→∞ fn(x) = δ(x),

and Fn(x) approaches the unit step function u(x):

lim
n→∞ Fn(x) = u(x) =

{
0, x < 0,
1, x ≥ 1.

Thus, the limit RV X is a constant; i.e., X = 0 with probability one. We see that Xn

indeed converges in probability to zero, because

lim
n→∞ P[ |Xn − 0| > ε ] =

∫ −ε

−∞
δ(x) dx +

∫ ∞

ε

δ(x) dx = 0.

�

We will further discuss the notion of stochastic convergence in Section 11.3.2,
where we introduce various weak laws of large numbers, one of which is Bernoulli’s
theorem stated earlier. We now state an important relationship between convergence in
probability and convergence in distribution.

THEOREM 11.2 (Stochastic convergence versus convergence in distribution). Conver-
gence in probability implies convergence in distribution; i.e.,

Xn
P→ X $⇒ Xn

D→ X. (11.10)

But the converse is not true.

Proof. Consider first the probability FXn (x) = P[Xn ≤ x]. The event {Xn ≤ x} may
occur either when X ≤ x + ε or when X > x + ε. Since the latter events are mutually
exclusive,

FXn (x) = P[Xn ≤ x, X ≤ x + ε] + P[Xn ≤ x, X > x + ε]. (11.11)

Similarly, we find

FX (x + ε) = P[X ≤ x + ε, Xn ≤ x] + P[X ≤ x + ε, Xn > x]. (11.12)

Subtraction yields

FXn (x)− FX (x + ε) = P[Xn ≤ x, X > x + ε] − P[X ≤ x + ε, Xn > x]. (11.13)
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The joint event {Xn ≤ x} ∩ {X > x + ε} implies |Xn − X | > ε. But this is one way
in which the event {|Xn − X | > ε} can occur. Therefore, on defining

δn � P[|Xn − X | > ε], (11.14)

we have

FXn (x) ≤ FX (x + ε)+ δn . (11.15)

Similarly,

FX (x − ε) = P[X ≤ x − ε, Xn ≤ x] + P[X ≤ x − ε, Xn > x]
≤ P[Xn ≤ x] + P[|Xn − X | > ε]. (11.16)

Thus, from the last two equations,

FX (x − ε)− δn ≤ FXn (x) ≤ FX (x + ε)+ δn. (11.17)

It is apparent that δn → 0 as n →∞, whenever Xn
P→ X . Therefore,

FX (x − ε) ≤ lim
n→∞ FXn (x) ≤ FX (x + ε) for every ε > 0. (11.18)

At every point of continuity of FX (x), we have

FX (x − ε) ↑ FX (x) and FX (x + ε) ↓ FX (x), as ε ↓ 0. (11.19)

Thus, we have shown that stochastic convergence

Xn
P−→ X

implies

lim
n→∞ FXn (x) = FX (x)

at all continuity points of FX (x). Thus, Xn
D−→ X .

Example 11.5: Xn
D→ X versus Xn

P→ X . Here, we provide a simple example [131]

that shows that Xn
D→ X does not imply Xn

P→ X . Let X be a Bernoulli variable such
that

P[X = 0] = P[X = 1] = 1

2
.

Let X1, X2, . . . , Xn, . . . be identical RVs such that

Xn = X for all n.

The Xn are certainly not independent, but Xn
D→ X .

Let us define variable Y by Y = 1− X . Clearly, Y is also a 1–0 variable, having

the same distribution as X ; i.e., P[Y = 0] = P[Y = 1] = 1
2 . Hence Xn

D→ Y . But Xn
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cannot converge to Y in any other mode (than convergence in distribution), because
|Xn − Y | = 1 for all n. �

Example 11.6: Xn
D→ X versus Xn

P→ X (continued). Here is another example that
will show that convergence in distribution does not imply convergence in proba-
bility. Consider the case where the Xn are i.i.d. RVs with a common distribution

function FX (x). Then clearly Xn
D→ X , since Fn(x) = FX (x) for all n. However,

P[|Xn − X | > ε] cannot be made arbitrarily small. In order to show this, define a
random variable Z :

Z = Xn − X = Xn + Y,

where Y = −X . Since Xn and Y are independent,

FZ (z) =
∫ ∞

−∞
FXn (z − y) fY (y) dy

=
∫ ∞

−∞
FX (z − y) fX (−y) dy

=
∫ ∞

−∞
FX (z + x) fX (x) dx . (11.20)

Thus,

P[ |Xn − X | ≤ ε] = FZ (ε)− FZ (−ε)
=
∫ ε

−ε

∫ ∞

−∞
fX (z + x) fX (x) dx dz. (11.21)

For small ε > 0, we can approximate the last equation by

P[ |Xn − X | ≤ ε ] ≈ 2ε
∫ ∞

−∞
f 2
X (x) dx . (11.22)

Therefore,

P[ |Xn − X | > ε ] ≈ 1− 2ε
∫ ∞

−∞
f 2
X (x) dx . (11.23)

This last expression is independent of n and cannot be zero for arbitrary ε. Thus, we
have shown that Xn does not converge to X in probability. �

11.2.3 Almost sure convergence

D E FI N I T I O N 11.9 (Convergence almost surely). We say that {Xn} converges almost
surely (or almost everywhere, or with probability one) to X, written

Xn
a.s.→ X, Xn

a.e.→ X, or Xn
w.p.1.−→ X,
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if the sequence of numbers {Xn(ω)} converges to X (ω) for all sample points ω ∈ � with
probability one; that is, if

P[ lim
n→∞ Xn = X ] = 1. (11.24)

�

Almost sure (a.s.) convergence is a rather strong type of convergence and implies
other modes of convergence. Before we show that a.s. convergence leads to convergence
in probability, we state the following condition for a.s. convergence that is equivalent
to (11.24).

L E M M A 11.1 (Conditions for a.s. convergence). Xn
a.s.→ X, if and only if, for arbitrary

ε > 0 and δ > 0, there exists a number M(ε, δ) such that

P

[ ∞⋂
n=m

{ω : |Xn(ω)− X (ω)| < ε}
]
≥ 1− δ (11.25)

for all m ≥ M(ε, δ).

Proof. The proof is somewhat long and involved, so, in the interest of space, it will be
provided in the material that will be made available in “Supplementary Materials” on
the book’s website.

Given arbitrary ε > 0 and δ > 0, convergence in probability as defined in Defini-
tion 11.8 means that, for each n ≥ N (ε, δ), |Xn(ω)− X (ω)| > ε for less than δ × 100%
of the sample points ω ∈ �. It is possible, however, that there is not even one ω∗ ∈ �
such that |Xn(ω

∗)− X (ω∗)| ≤ ε for all n ≥ N (ε, δ). Convergence almost surely, on
the other hand, requires that, for each m ≥ M(ε, δ), more than (1− δ)× 100% of the
sample points ω ∈ � satisfy |Xn(ω)− X (ω)| < ε for all n ≥ m. Figure 11.2 illustrates
the difference between these two types of convergence.

ε

N(ε, δ) M(ε, δ)

ω1

ω2

ω3
ω

ε
ω1

ω2

ω3

ω

n1

(a) (b)

If n  ≥ N(ε, δ) then |Xn – X | < ε
with probability  ≥ 1 – δ

|Xn – X | < ε, ∀n ≥ M(ε, δ)
with probability  ≥ 1 – δ

n2 n n

|Xn(ω) – X(ω)| |Xn(ω) – X(ω)|

Figure 11.2 Comparison of two types of convergence: (a) convergence in probability; (b) almost sure convergence.
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It will be convenient to define, for ε > 0 and m a positive integer, the following event:

Bm(ε) �
∞⋂

n=m

{ω : |Xn(ω)− X (ω)| < ε} =
∞⋂

n=m

An(ε), (11.26)

where An(ε) is as defined in (11.6).

THEOREM 11.3 (Almost sure convergence and convergence in probability). Almost
sure convergence implies convergence in probability; i.e.,

Xn
a.s.→ X $⇒ Xn

P→ X. (11.27)

Proof. The criterion (11.25) in the lemma can be restated, using (11.26), as

P [Bm(ε)] ≥ 1− δ. (11.28)

Thus, Xn
a.s→ X if and only if

lim
m→∞ P[Bm(ε)] = 1 for any ε > 0. (11.29)

Since Am(ε) ⊇ Bm(ε), it readily follows that

lim
m→∞ P[Am(ε)] = 1, for any ε > 0,

or

Xn
P→ X.

Although a.s. convergence implies convergence in probability as established in the
above theorem, the converse is not true, as the following example shows.

Example 11.7: P convergence does not imply almost sure convergence [131]. Let
us define an independent sequence {Xn} by

Xn =
{

1, with probability 1
n ,

0, with probability 1− 1
n .

Clearly Xn
P→ 0. However, Xn(ω)

a.s.= 0 does not hold, because P[Bm(ε)] does not
converge to one, as would be required due to (11.29). To prove this, first, we write
P[Bm(ε)], from (11.26), as

P[Bm(ε)] = P

[ ∞⋂
n=m

An(ε)

]
.
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Since the Xn are assumed to be independent,

P

[ ∞⋂
n=m

An(ε)

]
=

∞∏
n=m

P[An(ε)].

Since Xn is a discrete RV and takes on only zero or one, we find that for 0 < ε < 1 the
event An(ε) is given by

An(ε) = {ω : |Xn(ω)− 0| < ε} = {ω : Xn(ω) = 0}
and its probability is

P[An(ε)] = 1− 1

n
= n − 1

n
.

Clearly

lim
n→∞ P[An(ε)] = 1,

as it should, but

lim
m→∞ P[Bm(ε)] = 0,

because

P[Bm(ε)] = m − 1

m

m

m + 1

m + 1

m + 2
· · ·

= lim
M→∞

m − 1

m

m

m + 1

m + 1

m + 2
· · · M

M + 1

= lim
M→∞

m − 1

M + 1
= 0.

Therefore, (11.29) cannot be met; hence Xn does not converge a.s. �

Before we conclude this section, we restate the condition for almost sure convergence
(see (11.24)) and that for convergence in probability (see (11.4)):

P[ lim
n→∞|Xn − X | < ε] = 1 for any ε > 0 (almost sure convergence),

and

lim
n→∞ P[|Xn − X | < ε] = 1 for any ε > 0 (convergence in probability).

11.2.4 Convergence in the r th mean

D E FI N I T I O N 11.10 (Convergence in the rth mean). We say that Xn converges to X in
the r th mean (or in the mean of order r) (r ≥ 1), written

Xn
r→ X, or Xn → X (mean r),
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if E[|Xn|r ] <∞, E[|X |r ] <∞ and

lim
n→∞ E[|Xn − X |r ] = 0. (11.30)

When r = 1, {Xn} is said to converge in the mean toX. When r = 2, {Xn} is said to
converge in mean square or converge in the mean square sense. �

Mean square convergence is often written as

Xn
m.s.→ X, or l.i.m.

n→∞ Xn = X. (11.31)

The following two theorems are important to the notion of ergodicity that relates the
sample mean (or statistical average) to the expectation (or ensemble average).

THEOREM 11.4 (Markov’s theorem). Given a sequence of RVs {Xn}, denote its nth
arithmetic average by

Xn = X1 + X2 + · · · + Xn

n
.

If the expectation of Xn converges to a constant μ, and its variance converges to
zero,2 i.e.,

μn � E[Xn] −→ μ and σ 2
n � E[(Xn − μn)

2] −→ 0, as n →∞, (11.32)

then Xn converges to μ in mean square:

lim
n→∞ E[(Xn − μ)2] = 0. (11.33)

Proof. We write

(Xn−μ)2=(Xn − μn+μn−μ)2=(Xn−μn)
2+(μn−μ)2+2(Xn−μn)(μn−μ)

≤ 2(Xn−μn)
2+2(μn−μ)2, (11.34)

where the last expression was obtained by using a simple inequality 2ab ≤ a2 + b2.
Taking the expectation of both sides of this inequality, we obtain

E[(Xn − μ)2] ≤ 2E[(Xn − μn)
2] + 2E[(μn − μ)2] = 2σ 2

n + 2(μn − μ)2. (11.35)

Using the assumptions (11.32), the desired result (11.33) follows.

2 Note that both sequences {μn} and {σ 2
n} are sequences of numbers, not RVs. Thus, the notion of

convergence and limits discussed in Section 11.1.1 apply to these sequences.
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THEOREM 11.5 (Chebyshev’s condition for mean square convergence). If the RVs Xk

with finite variances σ 2
k , k = 1, 2, . . . , n are uncorrelated, and if

σ 2
1 + σ 2

2 + · · · σ 2
n

n2
−→ 0 as n →∞, (11.36)

then

Xn
m.s.→ μ, (11.37)

where

μ = lim
n→∞μn = lim

n→∞
1

n

n∑
k=1

E[Xk]. (11.38)

Proof. For uncorrelated RVs, the left side of (11.36) is equal to σ 2
n defined by (11.32).

Therefore, Markov’s theorem yields (11.37).

Now by returning to convergence in the r th mean for any integer r , we state the
following important theorem.

THEOREM 11.6 (Convergence in the rth mean and convergence in probability).
Convergence in the rth mean implies convergence in probability, i.e.,

Xn
m.s.→ X $⇒ Xn

P→ X. (11.39)

Proof. We make use of Bienaymè’s inequality (see Problem 10.12):

P[|Xn − X | > ε] ≤ E[|Xn − X |r ]
εr

for arbitrary ε > 0. Then if {Xn} converges in the r th mean to X , it immediately follows
that {Xn} converges to X in probability, since

lim
n→∞ P[|Xn − X | > ε] = 0.

The converse of the above theorem is not true, as shown in the next example.

Example 11.8: A sequence of Cauchy RVs, does not converge in m.s. Consider the
sequence of RVs with Cauchy’s distribution discussed in Example 11.4. Then

E[|Xn − 0|2] = E[X2
n] =

n

π

∫ ∞

−∞
x2

1+ n2x2
dx .
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This integral does not exist even for finite n. Thus, the sequence Xn does not con-
verge to zero in mean square, even though it converges in probability as shown in
Example 11.4. �

Now we wish to find the relationship between convergence in the mean of different
orders. Let us define a norm (Problem 11.6) of RV Y by

‖Y‖r =
(
E[|Y |r ])1/r

. (11.40)

Then the following inequality applies to the norm ‖Y‖r with different values of r .

THEOREM 11.7 (Lyapunov’s3 inequality). The norm ‖Y‖r is a nondecreasing function
of r , i.e.,

‖Y‖s ≤ ‖Y‖r , for 0 < s < r, (11.41)

which is known as Lyapunov’s inequality.

Proof. The proof is rather involved. The interested reader is suggested to follow the
steps provided in Problem 11.5.

Now we are ready to state the following theorem.

THEOREM 11.8 (Convergence in the mean of a lower order). Convergence in the
mean of order r implies convergence in the mean of a lower order; i.e.,

Xn
r→ X $⇒ Xn

s→ X, 1 ≤ s < r. (11.42)

Proof. We substitute

Y = Xn − X

into Lyapunov’s inequality (11.41), and take logarithms, obtaining

log E[|Xn − X |s]
s

≤ log E[|Xn − X |r ]
r

.

If {Xn} converges in the r th mean to X , then the right side of the above equation
approaches −∞ in the limit n →∞. Thus, the left side also approaches −∞, which
implies that Xn

s→ X .

Convergence in the r th mean does not imply almost sure convergence (see
Problem 11.7). Neither does almost sure convergence imply convergence in the r th
mean (see Problem 11.8).

3 Aleksandr Mikhailovich Lyapunov (1857–1918) was a Russian mathematician.



292 Convergence of a sequence of random variables and the limit theorems

D

Ω

conv. in
rth mean.

conv. in
sth mean.

conv. in
probab.

conv. in
distribut.

P

(r  > s)

almost sure conv.

a.s.

s

r

Figure 11.3 Relationships among various modes of convergence: D, in distribution; P, in probability; s, in sth mean
(s > 1); r, in r th mean (r > s); and a.s., almost surely.

11.2.5 Relations between the modes of convergence

The schematic diagram in Figure 11.3 summarizes the relations concerning the various
modes of convergence discussed above.

It is clear that convergence in distribution is the weakest, followed by conver-
gence in probability. Although convergence in distribution does not, in general, imply
convergence in probability, we can state the following theorem.

THEOREM 11.9 (Convergence in distribution to a constant). Convergence in distribu-
tion to a constant implies convergence in probability; i.e.,

Xn
D→ c $⇒ Xn

P→ c. (11.43)

Proof. Convergence in distribution means

lim
n→∞ Fn(x) = FX (x),

where FX (x) is in this case

FX (x) =
{

0, x < c,
1, x ≥ c.

Then, for any ε > 0

P[|Xn − c| ≤ ε] = P[c − ε ≤ Xn ≤ c + ε] = 1− 0 = 1.

Thus, {Xn} converges in probability to the constant c.

As shown in Figure 11.3, both a.s. convergence and convergence in the r th mean are
strong modes of convergence. In order to investigate the direct relation between these
two modes of convergence, we need the following theorem, which we state without
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proof. Interested readers are referred, for example, to Munroe [252], Royden [290],
Williams [354], and Billingsley [26].

THEOREM 11.10 (Lebesgue’s4 dominated convergence theorem). Let {Yn} be a
sequence of RVs that converges almost surely to RV Y , and let RV Z exist such that
|Yn| ≤ Z for all n. If E[Z ] <∞, then

lim
n→∞ E[Yn] = E[Y ], (11.44)

or equivalently

lim
n→∞ E[|Yn − Y |] = 0. (11.45)

�

This theorem says, in essence, that the expectation and limit commute (i.e., can be
changed in order), when all RVs |Yn| are all dominated by a common RV Z .

Then using Lebesgue’s dominated convergence theorem, we can derive the following
theorem asserting that, when some bounded condition is met on |Xn − X |r for all n, a.s.
convergence implies convergence in the mean square of order r .

THEOREM 11.11 (Conditions under which convergence a.s. implies convergence in
rth mean). Suppose that there exists a random variable Z such that E[Z ] <∞ and
|Xn − X |r ≤ Z for all n. Then a.s. convergence of the sequence Xn to X implies its
convergence in the rth mean; i.e.,

Xn
a.s.→ X $⇒ Xn

r→ X. (11.46)

Proof. Let Yn = |Xn − X |r and let Y = 0 with probability one. Then by using the above
Lebesgue dominated convergence theorem,

lim
n→∞ E[|Xn − X |r ] = 0;

that is, {Xn} converges in the r th mean to X .

11.3 Limit theorems

In Section 2.3 a limit theorem known as Bernuoulli’s theorem (Theorem 2.1) was
derived, and we remarked there that this theorem is a special case of a limit theorem
known as the weak law of large numbers (WLLN). In this section we derive several
limit theorems of general nature, including:

4 Henri Lon Lebesgue (1875–1941) was a French mathematician, most famous for his theory of integration.
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1. the weak law of large numbers (WLLN);
2. the strong law of large numbers (SLLN);
3. the central limit theorem (CLT).

11.3.1 Infinite sequence of events

Before developing these limit theorems, let us discuss some important results involv-
ing an infinite sequence of events. Let A1, A2, . . . , Ak, . . . be an infinite sequence of
events from some probability space (�,F, P). We start with a special case where {Ak}
is an “increasing” sequence of events.

THEOREM 11.12 (Limit of an increasing sequence of events). If A1 ⊂ A2 ⊂ · · · ,
then

P

[ ∞⋃
k=1

Ak

]
= lim

m→∞ P[Am]. (11.47)

Proof. Let B1 = A1, B2 = A2 ∩ Ac
1 = A2 \ B1, B3 = A3 \ (B1 ∪ B2), . . . , Bm =

Am \⋃m−1
k=1 Bk, . . . Then the Bk are mutually exclusive and their union is equal to⋃∞

k=1 Ak . Furthermore,

m⋃
k=1

Bk = Am . (11.48)

Hence,

P

[ ∞⋃
k=1

Ak

]
= P

[ ∞⋃
k=1

Bk

]
=

∞∑
k=1

P[Bk] = lim
m→∞

m∑
k=1

P[Bk]

= lim
m→∞ P

[
m⋃

k=1

Bk

]
= lim

m→∞ P[Am]. (11.49)

Note that a key step in (11.49) is to make use of Axiom 4 (2.29) to derive

P

[
lim

m→∞

m⋃
k=1

Bk

]
= lim

m→∞ P

[
m⋃

k=1

Bk

]
.

Now consider the opposite case; i.e., the sequence of events {Ak} is a “decreasing”
sequence.

THEOREM 11.13 (Limit of a decreasing sequence of events). If A1 ⊃ A2 ⊃ · · · , then
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P

[ ∞⋂
k=1

Ak

]
= lim

m→∞ P[Am]. (11.50)

Proof. Consider Ac
1 ⊂ Ac

2 ⊂ · · · and apply Theorem 11.12. Then

P

[ ∞⋂
k=1

Ak

]
= 1− P

[ ∞⋃
k=1

Ac
k

]
= 1− lim

m→∞ P[Ac
m ]

= lim
m→∞(1− P[Ac

m]) = lim
m→∞ P[Am]. (11.51)

Theorems 11.12 and 11.13 are summarized as follows.

THEOREM 11.14. If An is either an increasing or decreasing sequence of events, then

P
[

lim
n→∞ An

]
= lim

n→∞ P[An]. (11.52)

�

Now we derive the following important upper bound on the probability of countably
infinite union of events {Ak}, when the sequence is formed from arbitrary events.

THEOREM 11.15 (Boole’s5 inequality or the union bound). For arbitrary events
A1, A2, . . .,

P

[ ∞⋃
k=1

Ak

]
≤

∞∑
k=1

P[Ak ]. (11.53)

Proof. As in the proof of Theorem 11.12, we express
⋃∞

k=1 Ak as the union of mutu-
ally exclusive events B1, B2, . . ., where Bk ⊂ Ak . Therefore, P[Bk] ≤ P[Ak] for all
k. Taking the infinite sum of this inequality and using the relation P

[⋃∞
k=1 Ak

] =
P
[⋃∞

k=1 Bk
] =∑∞

k=1 P[Bk], we arrive at the above inequality.

Now let us consider an infinite sequence of events denoted as E1, E2, . . . , Ek, . . .We
are interested in finding how many of the En occur. Let An represent the event that at
least one of En, En+1, En+2, . . . occurs:

An =
∞⋃

k=n

Ek . (11.54)

Then {An} is a decreasing sequence.

5 George Boole (1815–1864) was an English mathematician and philosopher, well known as the inventor of
Boolean logic.
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Let A represent the event “infinitely many of events E1, E2, . . . occur.” A occurs if
and only if An occurs for every n. This is because:

1. If an infinite number of the Ek occur, then An occurs for each n; thus ∩∞n=1 An occurs.
2. Conversely, if ∩∞n=1 An occurs, then An occurs for each n. Thus, for each n at least

one of the events Ek, k ≥ n occurs; hence, an infinite number of the Ek occur.

Thus,

A =
∞⋂

n=1

An =
∞⋂

n=1

( ∞⋃
k=n

Ek

)
. (11.55)

For the event A thus defined, we have

P[A] = 0 ⇐⇒ With probability 1, only finitely many of the events En occur and

P[A] = 1 ⇐⇒ With probability 1, infinitely many of the events En occur.

Furthermore, A1 ⊃ A2 ⊃ · · · Hence, from Theorem 11.13 we have

P[A] = lim
n→∞ P[An], (11.56)

where P[An] is bounded from above due to Theorem 11.15:

P[An] ≤
∞∑

k=n

P[Ek]. (11.57)

With these preparations, we are now in a position to state one of the most important
theorems in probability theory, usually referred to as Borel6–Cantelli7 lemmas.

THEOREM 11.16 (Borel–Cantelli lemmas). Let {Ek} be an infinite sequence of events,
and let A be the event that infinitely many of the events Ek occur, as defined by (11.55).
Then:

• First lemma. Regardless of the events Ek being independent or not,

if
∞∑

k=1

P[Ek] <∞, then P[A] = 0; (11.58)

that is, with probability 1 only finitely many of the events E1, E2, . . . occur.
• Second lemma. Suppose that E1, E2, . . . are independent events. Then:

if
∞∑

k=1

P[Ek] = ∞, then P[A] = 1; (11.59)

that is, infinitely many of the events E1, E2, . . . occur with probability 1.

6 Félix Édouard Justin Émile Borel (1871–1956) was a French mathematician and politician.
7 Francesco Paolo Cantelli (1875–1966) was an Italian mathematician.
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Proof. If
∑

k P[Ek] converges, then (11.57) shows

lim
n→∞ P[An] ≤ lim

n→∞

∞∑
k=n

P[Ek] = 0. (11.60)

By applying (11.56) to this decreasing sequence {An}, we find

P[A] = P
[

lim
n→∞ An

]
= lim

n→∞ P[An] = 0.

This completes the proof of the first lemma.
Now we proceed to prove the second lemma. Take the complement of An of (11.54):

Ac
n =

∞⋂
k=n

Ec
k . (11.61)

Then using the relation

Ac
n ⊂

n+m⋂
k=n

Ec
k , for every m = 0, 1, 2, . . . , (11.62)

and the assumption of the second lemma that the Ek are mutually independent and
hence so are the Ec

k (Problem 11.10), we find

P[Ac
n] ≤ P

[
n+m⋂
k=n

Ec
k

]
= P[Ec

n] · · · P[Ec
n+m] = (1− P[En]) · · · (1− P[En+m])

≤ exp

(
−

n+m∑
k=n

P[Ek]
)
, for every m = 0, 1, 2, . . . , (11.63)

where we used the inequality 1− x ≤ e−x , x ≥ 0. If
∑∞

k=1 P[Ek] = ∞, then∑n+m
k=n P[Ek] → ∞ as m →∞. Hence, by taking the limit m →∞ in the last

equation, we have

P[Ac
n] = 0 for every n = 1, 2, . . . .

Take the complement of A of (11.55):

Ac =
∞⋃

n=1

Ac
n.

Thus,

P[Ac] ≤
∞∑

n=1

P[Ac
n] = 0. (11.64)

Therefore, we finally have P[A] = 1− P[Ac] = 1. This completes the proof of the sec-
ond lemma. Needless to say, when the En are independent, the first lemma still applies;
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that is,

∞∑
k=1

P[Ek ] <∞ $⇒ P[A] = 0.

Example 11.9: Sequences of RVs and constants. Consider a sequence of RVs {Xk}
and a sequence of constants {ck}. Define the event Ek by

Ek = {|Xk | > ck}.
Then the Borel–Cantelli lemmas imply that if

∑∞
k=1 P[|Xk | > ck] <∞, then with

probability one, only finitely many of the events Ek = {|Xk | > ck} occur. If the events
Xk are independent and

∑∞
k=1 P[|Xk | > ck] = ∞, then, with probability one, infinitely

many of the events Ek occur. �

11.3.2 Weak law of large numbers (WLLN)

Let {Xk} = (X1, X2, . . . , Xk, . . .) be a sequence of RVs with finite mean and variance:

E[Xk] = μk and Var [Xk] = σ 2
k , k = 1, 2, . . . .

Define a new sequence of RVs {Sn} by the nth partial sum

Sn =
n∑

k=1

Xk , n = 1, 2, . . . . (11.65)

The mean and variance of the RV Sn are given by

mn = E[Sn] =
n∑

k=1

μk (11.66)

and

s2
n = Var [Sn] = E[(Sn − mn)

2]. (11.67)

Define the nth arithmetic average8 Xn by

Xn = Sn

n
, (11.68)

8 This quantity is equivalent to the sample average or sample mean, if we interpret Xk as the kth sample of
a certain RV X . Here, we are assuming, up to this point, that the Xk are neither independent nor identically
distributed; thus, we avoid use of the term “sample.”
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whose mean and variance are given by

E[Xn] = mn

n
and Var [Xn] = E

[(
Xn − mn

n

)2
]
= s2

n

n
. (11.69)

We are interested in the asymptotic behavior of Sn and Xn as n →∞. A number
of convergence statements can be made about the asymptotic behavior of {Sn} and
{Xn}, depending on the properties of the original sequence {Xk}. The weak law of large
numbers (WLLN) is concerned about such convergence statements.

Suppose the variance of {Xk} approaches zero in the limit; i.e.,

lim
k→∞ σ

2
k = 0. (11.70)

By applying Chebyshev’s inequality to Xk , we have for any ε > 0

P[|Xk − μk | ≥ ε] ≤ σ 2
k

ε2
, (11.71)

which suggests, together with (11.70), that the sequence {Xk − μk} converges in
probability to zero:

lim
k→∞ P[|Xk − μk | ≥ ε] = 0. (11.72)

By applying a similar argument to the averaged sequence {Xn}, we find that

if lim
n→∞

s2
n

n2
= 0, then lim

n→∞ P
[∣∣∣Xn − mn

n

∣∣∣ ≥ ε] = 0; (11.73)

thus, the sequence {Xn − mn/n} converges in probability to zero.
If the Xk are independent and their variances are bounded – that is, if there exists a

positive number M such that σ 2
k ≤ M for all k – then (11.73) is satisfied because

lim
n→∞

s2
n

n2
= lim

n→∞
1

n2

n∑
k=1

σ 2
k ≤ lim

n→∞
M

n
= 0. (11.74)

If the Xk are, in addition, i.i.d. with common mean μ, then the condition in (11.73)
obviously holds and the result takes the form

lim
n→∞ P[|Xn − μ| ≥ ε] = 0. (11.75)

This last result involving i.i.d. RVs is often called the weak law of large numbers
(WLLN).

THEOREM 11.17 (Weak law of large numbers). Let X1, X2, . . . , Xk, . . . be inde-
pendent and also identically distributed RVs with finite mean E[Xk] = μ and finite
variance. Let Xn = 1

n

∑n
k=1 Xk. Then we have

Xn
P→ μ,
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which is equivalently stated as

lim
n→∞ P[|Xn − μ| ≥ ε] = 0 for any ε > 0. (11.76)

�

As discussed above, the WLLN is easily generalizable to cases where the Xk are
not identically distributed or even not independent, although the i.i.d. assumption is
commonly associated with the statement of the law.

Example 11.10: Bernoulli’s theorem. Recall Bernoulli’s theorem (2.45) discussed in
Section 2.3. It should be clear that this theorem is a special case of the WLLN. Let
RV Bk take on the value “1” or “0”, depending on whether the kth Bernoulli trial is a
“success” or a “failure.” Let p be the probability of success; i.e.,

Bk =
{

1, with probability p,
0, with probability 1− p.

(11.77)

Then μk = p and σ 2
k = p(1− p) for all k, and the partial sum Sn =∑n

k=1 Bk is the
number of successes in n trials and has mean mn = np and variance s2

n = np(1− p).
The nth arithmetic average

Bn = Sn

n
= 1

n

n∑
k=1

Bk

is the relative frequency of successes in n trials. Its mean and variance are mn/n = p
and s2

n/n2 = p(1− p)/n respectively. Thus, the condition in (11.73) is satisfied and
the relative frequency Bn converges in probability to p; i.e., for any ε > 0 we have

lim
n→∞ P[|Bn − p| < ε] = 1. (11.78)

�

11.3.3 Strong laws of large numbers (SLLN)

The WLLN discussed in the previous section stated the conditions under which the nth
arithmetic average Xn of a sequence {Xk} converges in probability to the average of

the means; i.e., Xn
P→ 1

n

∑n
k=1 μk . The strong law of large numbers (SLLN), to be

discussed below, is concerned with the almost sure convergence of the sequence {Xn}.
Since almost sure convergence implies convergence in probability, any sequence that
obeys an SLLN also obeys the corresponding WLLN. The SLLN was first formulated
and proved by Borel [34] in 1909.
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THEOREM 11.18 (Borel’s strong law of large numbers). Let {Bk} be a sequence of
Bernoulli trials with the probability of success p. Then the sequence {Bk} obeys the
strong law of large numbers; i.e.,

Bn
a.s.→ p, (11.79)

or equivalently,

P
[

lim
n→∞ |Bn − p| < ε

]
= 1. (11.80)

Proof. The proof provided by Borel is based on the number-theoretic interpretation.
First, consider the case p = 1/2 (fair coin tossing). Any real number ω taken at random
with uniform distribution in the interval (0, 1) can be converted into an infinite sequence
{Bk(ω)} by using the binary expansion

ω =
∞∑

k=1

Bk(ω)2
−k,

where the Bk(ω) assume zero and one with probability 1/2 each and are independent
RVs. The sum Sn(ω) =∑n

k=1 Bk(ω) is equal to the number of ones among the first
n digits in the binary expansion of ω and can be also interpreted as the number of
successes in n independent Bernoulli trials in which the probability of success is 1/2.
Borel showed that the portion of ones, Bn(ω) = Sn(ω)/n, tends to 1/2 for almost all
ω in (0, 1). In a similar manner, if we expand ω to the base 10, any one of the digits
0, 1, 2, . . . , 9 appears with probability 1/10, and any group of r digits appears with
probability r/10. The above argument extends to any rational number p ∈ (0, 1).

Another proof of Borel’s SLLN follows as a special case of Kolmogorov’s sufficient
criterion for the SLLN given below (Theorem 11.19).

Note that, compared with the weaker version, i.e., Bernoulli’s theorem (11.78), the
“limn→∞” moves inside the expression P[ ]. The SLLN makes a statement regarding
individual sample sequences or sample paths Bk(ω) that correspond to each sample
point ω ∈ � of this Bernoulli experiment. That is, for large n, the Bn(ω) computed
from any (except for those belonging to a set of probability measure zero) sample path
{Bk(ω)} approaches arbitrarily close to p. Thus, the SLLN suggests that we can estimate
the probability p with sufficient accuracy by conducting a single stream of Bernoulli
experiments of sufficient length n. In contrast, the WLLN (i.e., Bernoulli’s theorem)
makes a statement regarding the entire ensemble of such sample paths. That is, when
we consider all possible sample paths {Bk(ω)}, ω ∈ �, then, probabilistically speaking,
the RV Bn(ω) becomes arbitrarily close to the constant p as n is made sufficiently large.

In 1917 Cantelli derived sufficient conditions for the SLLN for independent RVs Xk

in terms of the second and fourth moments of the summands. A further extension of the
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condition for the SLLN was made by Khinchin,9 who introduced the term “strong law
of large numbers (la loi forte des grands nombres)” and derived a sufficient condition
applicable to correlated summands Xk .

For the case of independent (but not necessarily identical) summands, the best known
condition for the applicability of the SLLN was established in 1930 by Kolmogorov
[207], which is often referred to as Kolmogorov’s first theorem for the SLLN (cf. Rao
[278], Thomas [319]).

THEOREM 11.19 (Kolmogorov’s sufficient criterion for the SLLN when the Xk are
independent). Let {Xk} be a sequence of independent RVs such that E[Xk] = μk and
Var[Xk] = σ 2

k . Define

Xn =
∑n

k=1 Xk

n
and μn =

∑n
k=1 μk

n
.

Then,

if
∞∑

k=1

σ 2
k

k2 <∞, then Xn − μn
a.s.→ 0; (11.81)

that is, the sequence X1, X2, . . . obeys the SLLN.

Proof. See Feller [99] (pp. 243–244), in which he uses Kolmogorov’s inequality, a
generalization of Chebyshev’s inequality. Rao [278] uses the Hajek–Renyi inequality,
which is a generalization of Kolmogorov’s inequality.

If the summands Xk are i.i.d., the Kolmogorov criterion (11.81) is replaced by σ 2 <

∞ (or equivalently E[X2
i ] = σ 2 + μ2 <∞). Grimmett and Stirzaker [131] (pp. 294–

296) provide the proof for this case. They also show that Xn converges to μ in mean
square as well as almost surely:

THEOREM 11.20 (Sufficient condition for the SLLN when the Xk are i.i.d.). Let {Xk}
be a sequence of i.i.d. RVs with common mean μ = E[Xk]. Then,

if E[X2
k ] <∞, then Xn

a.s.→ μ and Xn
m.s.−→ μ. (11.82)

�

Subsequently, in 1933, Kolmogorov showed the necessary and sufficient condition
for the SLLN to hold in a sequence of i.i.d. RVs. The following theorem is sometimes
referred to as Kolmogorov’s second theorem for the SLLN.

9 Aleksandr Yakovlevich Khinchin (1894–1959) was a Russian mathematician who contributed to number
theory, probability theory, queueing theory, statistical mechanics, and information theory.
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THEOREM 11.21 (Strong law of large numbers when the Xk are i.i.d.). Let {Xk} be a
sequence of i.i.d. RVs. Then

Xn
a.s.→ μ if and only if E[|Xk |] <∞, (11.83)

where μ = E[X1].

Proof. This theorem is also referred to as “the necessary and sufficient condition for
the strong law" [319]. The proof involves use of the first lemma of the Borel–Cantelli
lemmas stated in Theorem 11.16. For example, see Feller [99] (pp. 244–245) and [100]
(p. 233), Rao [278] (pp. 94–96), and Grimmett and Stirzaker [131]).

11.3.4 The central limit theorem (CLT) revisited

The SLLN states that the sample average Xn = Sn/n converges in a strong sense (i.e.,
for individual sample paths) toμ = E[X ]. But the law does not provide any information
about the distribution of Xn other than its mean. The central limit theorem (CLT) stated
in Theorem 8.2 of Section 8.2.5 is concerned about this question. Specifically, Eq. (8.98)
can now be paraphrased as

√
n

σ
(Xn − μ) D→ U, (11.84)

where U is the standard normal variable. In this section we will discuss several
variations of the CLT.

Let us consider the case where {Xk} is a sequence of independent (but not neces-
sarily identical) RVs with means E[Xk] = μk and variance Var [Xk] = σ 2

k . Define the
normalized average Zn by

Zn = Sn − mn

sn
, (11.85)

where Sn , mn = E[Sn], and s2
n = Var [Sn] are given by (11.65), (11.66), and (11.67)

respectively. The new RV Zn has zero mean and variance of unity. We now discuss
several forms of the CLT under which Zn converges in distribution to the unit normal
variable.

Let us consider the simplest case where the Xk are not only independent but also
identically distributed with common mean μ and variance σ 2. Then (11.85) reduces to

Zn = Sn − nμ√
nσ

=
n∑

k=1

Xk − μ√
nσ

=
√

n

σ
(Xn − μ). (11.86)

We restate Theorem 8.2 as follows.
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THEOREM 11.22 (Lindeberg–Lévy’s CLT for i.i.d. RVs).10 Let {Xk} be a sequence of
i.i.d. RVs. Then,

if E[X1] = μ <∞, Var[X1] = σ 2 <∞, then Zn
D→ U, (11.87)

where Zn is defined in (11.86) and U is the unit normal variable.

Proof. Note that we write E[X1] instead of E[Xk ] for all k, since that would be redun-
dant, given the i.i.d. assumption. The proof has already been given, when we discussed
Theorem 8.2, where we used the characteristic function (CF) of the normalized average
Zn . The CF of Zn tends to e−u2/2, the CF of the unit normal distribution. To justify
the transition from the convergence of the CFs to convergence of the corresponding
distributions, we need the continuity theorem (often referred to as the Lévy continuity
theorem), which states that a sequence {Fn(x)} of probability distributions converges
to a probability distribution F(x) if and only if the sequence {φn(x)} of their CFs con-
verges to a continuous limit φ(u). In this case φ(u) is the CF of F(x), and the sequence
{φn(u)} converges to φ(u) uniformly. See Feller [100] (pp. 481, 487–491).

We could have used the moment generating function (MGF) instead of the CF
(Problem 11.12) in the proof. This i.i.d. RV version of the CLT is referred to as the
Lindeberg–Lévy theorem [278, 299, 319].

Now we return to a more general case where the Xk are independent but not neces-
sarily identically distributed. In order for the CLT to hold in this case, it is necessary
to add some condition to insure that no single term of Xk dominates. There are several
variations for the CLT to apply for nonidentical Xk .

Lyapunov [231, 232] provides a sufficient condition for the CLT in terms of the third
absolute central moments m3

k , as well as the means μk and variances σ 2
k . Let us define

m3
k � E

[
|Xk − μk |3

]
. (11.88)

THEOREM 11.23 (Lyapunov’s CLT for independent but nonidentical RVs). Let Xk

be independent RVs with E[Xk] = μk and Var[Xk] = σ 2
k , and let s2

n be as defined in
(11.67). Then,

if mk <∞ for all k and lim
n→∞

∑n
k=1 mk

sn
= 0, then Zn

D→ U, (11.89)

where Zn is defined in (11.86) and U is the unit normal variable.

Proof. Note that the term in the limit can be written as∑n
k=1 mk

sn
=
∑n

k=1

(
E
[|Xk − μk |3

])1/3(∑n
k=1 E

[|Xk − μk |2
]) .

10 Jarl Waldemar Lindeberg (1876–1932) was a Finnish mathematician known for his work on the CLT. Paul
Pierre Lévy (1886–1971) was a French mathematician, known for introducing martingales and the Lévy
process.
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The proof of this theorem involves expanding the CF of Zn and taking the limit as
n →∞, similar to the proof of the Lindeberg–Lévy theorem (Theorem 11.22; i.e.,
Theorem 8.2). The reader is referred to, for example, Cramér [74] and Billingsley [26]
for the proof of this theorem.

Lyapunov generalized the sufficient condition (11.89) and showed that if

lim
n→∞

∑n
k=1 E

[
(Xk − mk)

2+δ]
s2+δ

n
= 0 (11.90)

for some δ > 0, then the Zn converges in distribution to the unit normal variable U . The
condition (11.89) corresponds to the case δ = 1.

A stronger result of sufficient condition of the CLT was obtained by Lindeberg
in 1922 [226]. Subsequently Feller [97] proved the necessity of Lindeberg’s condi-
tion. Hence, the following version of the CLT is often referred to as Lindeberg–Feller
theorem [278, 353]. This is a stronger result, since it requires knowledge of the
distribution functions, not just the moments. They define the following quantities:

σ�2k (ε) �
∫
|x−μk |≤εsn

(x − μk)
2d FXk (x), k = 1, 2, . . . , n, (11.91)

s�2n (ε) �
n∑

k=1

σ�2k (ε). (11.92)

THEOREM 11.24 (Lindeberg–Feller’s CLT for independent but nonidentical RVs). Let
Xk be independent RVs with E[Xk] = μk , Var [Xk] = σ 2

k , and s�2n (ε) defined in (11.92).
Then,

Zn
D→ D, if and only if lim

n→∞ s2
n = ∞, and lim

n→∞
s�2n (ε)

s2
n

= 1 for every ε > 0,

(11.93)

where Zn is defined in (11.86) and U is the unit normal variable.

Proof. See Feller [100] pp. 256–257, 491–493. See also Billingsley [26].

The condition (11.93), called the Lindeberg condition, guarantees that the individ-
ual variances σ 2

k are all small in comparison to their sum s2
n . It can be shown that the

Lyapunov condition (11.90) satisfies Lindeberg’s condition (11.93), because the sum
in (11.90) is bounded by

1

s2
n

n∑
k=1

∫
|x−μk |>εsn

(x − μk)
2+δ

εδsδn
d FXk (x) ≤

1

εδ

∑n
k=1 E

[
(Xk − mk)

2+δ]
s2+δ

n
.

See Billingsley [26] for details.
Before closing this section, we should reiterate that the preceding results on the CLT

are concerned with convergence in distribution. In other words, the distribution of the
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normalized average Zn converges to that of the unit normal variable U . This does not
necessarily imply that the PDF of Zn converges to that of U . If the Xk are continuous
RVs, then, under some regularity conditions, the PDFs of Zn will converge to that of U .
But for a finite value of n, the normal distribution may well give a poor approximation
to the tails of the PDF, as we discussed in Chapter 10. In fact, the large deviations
approximation discussed in that chapter was motivated by this poor approximation of
tail end of the distribution by the normal distribution. If the Xk are discrete RVs, the
situation is more complicated. For example, the sum of independent Poisson RVs is
also a Poisson variable for any n, although the envelope of the density function of Zn

may converge to that of U .

11.4 Summary of Chapter 11

Convergence types:

Xn
D→ X limn→∞ Fn(x) = FX (x), x a continuity point (11.2)

Xn
P→ X limn→∞ P[|Xn − X | < ε] = 1, ε > 0 (11.4)

Xn
a.s.→ X P[limn→∞ Xn = X ] = 1 (11.24)

Xn
r→ X E[|Xn|r ] <∞, E[|X |r ] <∞

⇒ limn→∞ E[|Xn − X |r ] = 0 (11.30)

Xn
m.s.→ X Xn

r=2→ X (11.31)

Convergence to RV X : Xn
P→ X ⇒ Xn

D→ X (11.10)

Xn
a.s.→ X ⇒ Xn

P→ X (11.27)

Xn
r→ X ⇒ Xn

P→ X (11.39)
Markov’s theorem: E[Xn] → μ, E[(X n − μ)2] → 0

⇒ Xn
m.s.→ μ (11.33)

Chebyshev’s condition: Xk uncorrelated, σ 2
k <∞, σ

2
1+σ 2

2+···+σ 2
n

n2 → 0

⇒ Xn
m.s.→ limn→∞ 1

n

∑n
k=1 E[Xk] (11.37)

r th norm ||Y ||r = (E[|Y |r ])1/r (11.40)
Lyapunov’s Inequality: ||Y ||s ≤ ||Y ||r , 0 < s < r (11.41)

Convergence in r th versus
sth mean:

Xn
r→ X ⇒ Xn

s→ X , if 1 ≤ s < r (11.42)

Convergence in D to
constant:

Xn
D→ c ⇒ Xn

P→ c (11.43)

Convergence a.s. versus in
r th mean:

E[Z ] <∞, |Xn − X |r ≤ Z

Xn
a.s.→ X ⇒ Xn

r→ X (11.46)
Lebesgue dominated

convergence theorem:
|Yn| ≤ Z ⇒ limn→∞ E[Yn] = E[Y ] (11.44)

Limit of increasing
sequence:

P
[⋃∞

k=1 Ak
] = limm→∞ P[Am] (11.47)
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Limit of decreasing
sequence:

P
[⋂∞

k=1 Ak
] = limm→∞ P[Am] (11.50)

Limit of monotone
sequence:

P [limm→∞ Am] = limm→∞ P[Am ] (11.52)

Boole’s inequality: P
[⋃∞

k=1 Ak
] ≤∑∞

k=1 P[Ak] (11.53)
Borel–Cantelli A =⋂∞

n=1

(⋃∞
k=n Ek

)
Lemma 1:

∑∞
k=1 P[Ek] <∞⇒ P[A] = 0 (11.58)

Lemma 2:
∑∞

k=1 P[Ek] = ∞ ⇒ P[A] = 1 (11.64)
WLLN: {Xn} i.i.d., E[Xk] = μ, Var [Xk] <∞

⇒ Xn
P→ X (11.76)

Borel’s SLLN: {Bk} Bernoulli sequence, parameter p

⇒ Bn
a.s.→ p (11.80)

Kolmogorov criterion for
SLLN:

∑∞
k=1

σ 2
k

k2 <∞ (11.81)

Sufficient condition for
SLLN for i.i.d. RVs:

E[X2
k ] <∞ (11.82)

SLLN for i.i.d. RVs: X n
a.s.→ μ, if and only if E[|Xk |] <∞ (11.83)

Lindeberg–Lévy’s CLT for
i.i.d. RVs:

if E[Xk] = μ <∞, Var [Xk] = σ 2 <∞ for

all k then Zn
D→ U ,

(11.87)

Lyapunov’s CLT for
independent RVs:

if mk <∞ for all k and limn→∞
∑n

k=1 mk
sn

= 0,

then Zn
D→ U

(11.89)

Lindeberg–Feller’s CLT
for independent RVs:

Zn
D→ D, if and only if limn→∞ s2

n = ∞,
and limn→∞ s�2n (ε)

s2
n
= 1 for every ε > 0

(11.93)

11.5 Discussion and further reading

The limiting behavior of a sequence of RVs {Xn} plays a central role in probability the-
ory and statistical analysis. Indeed, in Chapter 2 the axiomatic definition of probability
was motivated by the empirical limit of a sequence of relative frequency values as the
number of repetitions of an experiment increases without limit (cf. (2.1), (2.2)). In this
chapter, we considered several types of convergence of a sequence of RVs {Xn} and
studied the relationships among them.

The laws of large numbers state various conditions under which the sample aver-
age Xn = 1

n

∑n
k=1 Xk converges to the average of the means μn = 1

n

∑n
k=1 μk of the

sequence {Xk; k = 1, 2, . . . , n}, as n →∞. These laws provide important justification
for the use of the sample average in statistical analysis (see Chapter 6). The WLLN
states that if {Xn} is i.i.d. with finite mean μ and finite variance, the sample average
converges in probability to μ. The SLLN establishes that a stronger type of conver-
gence, i.e., convergence a.s., holds if and only if the stronger condition E[|Xk |] <∞
for all k is satisfied.
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The different forms of the CLT give conditions for which a sequence {Xn} converges
in distribution to a normally distributed random variable. In particular, if {Xn} is an i.i.d.
sequence with finite mean and variance, it converges in distribution to a normal RV with
the same mean and variance. The CLT provides justification for the prevalent use of the
normal distribution in error analysis and for characterizing noise in physical systems.

Our presentation largely follows Thomas [319], including several examples and exer-
cise problems. For further study of the laws of large numbers and the CLT, the reader is
directed to advanced books on probability theory, e.g., Billingsley [26], Breiman [35],
Chung [54], Cramér [74], Doob [82], Feller [99, 100], Gnedenko [122], Grimmett and
Stirzaker [131], Loève [230], Rao [278], and Williams [354]. Shafer and Vovk [299]
provide useful historical notes on the subjects.

11.6 Problems

Section 11.2: Types of convergence for sequences of random variables

11.1∗ Example of D convergence [319]. Let {Xn} be a sequence of i.i.d. RVs with
common distribution function FX (x) given by

FX (x) =
⎧⎨⎩

0, x ≤ 0,
x, 0 < x ≤ 1,
1, x > 1.

Define two sequences {Yn} and {Zn} by

Yn = max{X1, X2, . . . , Xn}
and

Zn = n(1− Yn).

Show that {Zn} converges in distribution to a random variable Z with distribution

FZ (z) = 1− e−z.

11.2 Bernstein’s lemma. Let Xn , Yn and Zn be RVs such that

Zn = Xn + Yn.

Assume that Xn and Yn have a joint distribution function Fn(x, y) and Xn has a
distribution function Fn(x). Let the variance of Yn

Var [Yn] → 0, as n →∞,
and

Fn(x)
D→ FX (x).
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Show that the distribution of Zn converges to FX (x); that is,

Zn
D→ X.

Hint: Show that, for any ε > 0,

lim
n→∞ P[Zn ≤ z] ≤ FX (z + ε)

and

lim
n→∞ P[Zn ≥ z] ≥ FX (z − ε).

11.3∗ Convergence of sample average [319]. Define a random variable Xk by

Xk = c + Nk, k = 1, 2, . . . ,

where c is a constant and the Nk are i.i.d. RVs with zero mean.
Show that the sequence of sample averages {Xn}

Xn = 1

n

n∑
k=1

Xk, n = 1, 2, . . .

converges in probability to c.

11.4 P convergence and m.s. convergence [319]. Let {Xn} be a sequence of RVs
that converges in probability to a random variable X ; that is,

Xn
P→ X.

Assume that the PDFs fn(x) of Xn are such that, for some N > 0,

fn(x) = 0, for |x | > x0 for all n > N .

Show that {Xn} converges in mean square to X .

11.5 Proof of Lyapunov’s inequality. Prove Lyapunov’s inequality (11.41) by fol-
lowing the steps suggested below.

(a) Denote the r th absolute moment of Y by μr :

μr = E[|Y |r ].
Then show

μ2
r ≤ μr−sμr+s . (11.94)

Hint: Consider a new RV X defined by

X = a|Y |(r−s/2) + |Y |(r+s/2),

where a is a real parameter.
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(b) Define a function g(r) by

g(r) = logμr .

Show that g(r) is a convex function and is a nondecreasing function of r for
r > 0.

(c) Define a function h(r) by

h(r) = g(r)

r
. (11.95)

Show that h(r) is also a nondecreasing function.
(d) Using the result of part (c), show that (11.41) holds.

11.6∗ Properties of ‖Y‖r [131]. Consider ‖Y‖r defined by (11.40):

‖Y‖r =
(
E[|Y |r ])1/r

. (11.96)

Show the following properties:

(a) Hölder’s11 inequality. If r, s > 1 and r−1 + s−1 = 1, then

‖XY‖1 ≤ ‖X‖r‖Y‖s, or E[|XY |] ≤ (E[|X |r ])1/r (
E[|Y |s])1/s , (11.97)

with equality if and only if X ∝ Y r−1. The case r = s = 2 reduces to the Cauchy–
Schwarz inequality (see Section 10.1.1).

Hint: For any real numbers u and v, and 1
r + 1

s = 1,

exp
(u

r
+ v

s

)
≤ eu

r
+ ev

s
. (11.98)

(b) Hölder’s inequality for nonrandom vectors and functions. Show that for xi , yi ≥
0, i = 1, 2, . . . , n, and 1

r + 1
s = 1,

n∑
i=1

xi yi ≤
(

n∑
i=1

xr
i

)1/r ( n∑
i=1

, ys
i

)1/s

, (11.99)

with equality if and only if yi ∝ xr−1
i .

Similarly, show that for real-valued functions f (u), g(u) ≤ 0, and 1
r + 1

s = 1,∫
f (u)g(u) du ≤

(∫
f (u)r du

)1/r (∫
g(u)s du

)1/s

, (11.100)

with equality if and only if g(u) ∝ f (u) for all −∞ < u <∞.

11 Otto Ludwig Hölder (1859–1937) was a German mathematician.
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A different hint: Try the following hint that is different from that in (a). Consider
F(x) � xr

r + x−s

s , x > 0. Find x that minimize F(x) and prove

uv ≤ ur

r
+ vs

s
,

with equality when v = ur−1.
(c) Minkowski’s12 inequality. If r ≥ 1,

‖X + Y‖r ≤ ‖X‖r + ‖Y‖r ;
or equivalently,

E[|X + Y |r ]1/r ≤ E[|X |r ]1/r + E[|Y |r ]1/r .

Note: Because of the above “triangular property,” the quantity ‖Y‖r qualifies as a
norm.

11.7 Convergence in the rth mean versus almost sure convergence [319]. Consider
the following example to illustrate that convergence in the r th mean does not imply
almost sure convergence.

Let {Xn} be a sequence of independent RVs defined by

Xn =
{

n1/2r , with probability 1
n ,

0, with probability 1− 1
n .

Let X be the degenerate RV

X = 0, with probability one.

(a) Show that {Xn} converges in the r th mean to X = 0.
(b) Show that for ε > 0 and for arbitrary integer m > 0,

P

[ ∞⋂
n=m

{ω : Xn(ω) < ε}
]
= 0.

Hint: Follow the argument in Example 11.7.
(c) Show that {Xn} does not converge almost surely to X = 0.

11.8 Convergence in the rth mean versus almost sure convergence – continued
[319]. Consider the following example to prove that almost sure convergence does not
imply convergence in the r th mean, either.

Let {Xn} be a sequence of independent RVs defined by

Xn =
{

en, with probability 1
n2 ,

0, with probability 1− 1
n2 .

Let X be again the degenerate RV that is always zero.

12 Hermann Minkowski (1864–1909) was a German mathematician.
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(a) Show that {Xn} does not converge to zero in the r th mean for any r > 0.
(b) Show that for arbitrary ε > 0

P[
∞⋂

n=m

{ω : Xn(ω) < ε}] = 1.

Hint: Use the inequality

1

2
≤

∞∏
n=m

(
1− 1

n2

)
≤ 1, for m ≥ 2,

and

lim
m→∞

∞∏
n=m

(
1− 1

n2

)
= 1.

(c) Show that the sequence {Xn} converges almost surely to X .

Section 11.3: Limit theorems

11.9 Limits in Bernoulli trials. Consider an infinite series of independent Bernoulli
trials, where the probability of success in each trial is p (0 < p < 1).

(a) Let Ek represent a success in the kth trial. What is the meaning of An defined by
(11.55)? Find P[An] for n ≥ 1.

(b) Let Ek be the event that all trials up to the kth one are successful. Find P[A], where
A represents the event that infinitely many of the Ek occur.

11.10 Independence of complements of independent events. Show that if
E1, E2, . . . , En are independent, their complementary events Ec

1, Ec
2, . . . , Ec

n are also
independent.

11.11 Borel–Cantelli lemmas and Bernoulli trials. Apply the Borel–Cantelli lem-
mas to the two cases formulated in Problem 11.9.

11.12 Proof of the CLT. Prove the CLT for i.i.d. RVs (Theorem 11.22) by using the
MGF of the normalized average Zn .

11.13 Product of independent RVs. Let Yk; k ≥ 1 be independent positive RVs. We
form their product.

Rn = Y1Y2 · · ·Yn. (11.101)

(a) Can you find an approximate PDF of fRn (r) for sufficiently large n?
(b) What are the conditions for the above approximation to be valid? Can you state

these conditions in terms of the means and variances of the Yk?
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Random processes





12 Random processes

In this and following chapters, we will discuss random processes. After a brief intro-
duction to this subject in Section 12.1, we will give an overview of various random
processes in Section 12.2 and then discuss (strictly) stationary and wide-sense sta-
tionary random processes and introduce the notion of ergodicity. The last section
focuses on complex-valued Gaussian processes, which will be useful in the study of
communication systems and other applications.

12.1 Random process

There are many situations in which the time dependency of a set of probability func-
tions is important. One example is a noise process that accompanies a signal process
and should be suppressed or filtered out so that we can recover the signal reliably and
accurately. Another example is the amount of outstanding packets yet to be processed
at a network router or switch, which may lead to undesirable packet loss due to buffer
overflows if not properly attended to in time.

Such a process can be conveniently characterized probabilistically by extend-
ing the notion of a random variable (RV) as follows: we assign to each sample
point ω ∈ � a real-valued function X (ω, t), where t is the time parameter or
index parameter in some range T , which may be, for instance, T = (−∞,∞) or
T = {0, 1, 2, . . .} (see Figure 12.1). Imagine that we can observe this set of time
functions {X (ω, t);ω ∈ �, t ∈ T } at some instant t = t1. Since each point ω ∈ �
has associated with it both the number X (ω, t1) and its probability, the collection of
numbers {X (ω, t1);ω ∈ �} forms a random variable. By observing the time functions
at another time, say at t = t2, we will have another collection of numbers with a
possibly different probability measure. Indeed, this set of time-indexed functions
defines a separate RV for each choice of the time.

A probability system, which is composed of a sample space, a set of real-valued
time-indexed functions, and a probability measure, is called a random process or a
stochastic process and is usually denoted by a notation such as X (t); t ∈ T , or simply
as X (t), if T is implicitly understood. The individual time functions of the random
process X (t) are called sample functions, and the particular sample function associated
with a sample point ω ∈ � is denoted as X (ω, t); t ∈ T . The set of all possible sample
functions, together with a probability law, is called the ensemble. Naming a random
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X(ωn, t)

t = t1 t = t2

X(ω3, t)

X(ω2, t)

X(ω1, t)

Ω

ω1
ω2

ω3
ωn

Figure 12.1 A random process X (ω, t) as a mapping from a sample point ω ∈ � to a real-valued function.

process X (t) and denoting the sample function associated with the sample point ω as
X (ω, t) is consistent with our previous practice of naming a random variable X and
denoting the sample value associated with the sample point ω as X (ω).

By definition, a random process implies the existence of an infinite number of RVs,
one for each t in some range. Thus, we may speak of the PDF fX (t1)(·) of the random
variable X (t1) obtained by observing X (t) at time t1. Generally, for N time instants
{ti : i = 1, 2, . . . , N }, we define the N random variables Xi = X (ti ); i = 1, 2, . . . , N .
Then we can speak of the joint PDF of X1, X2, . . . , X N .

12.2 Classification of random processes

We saw in Chapter 3 that RVs can be classified into two types. For random processes we
have the time-index parameter t , so we can further classify them depending on whether t
takes on continuous or discrete values. In addition, we have a class of random processes,
point processes or counting processes, where the intervals between points of events are
RVs. In this section we give several dichotomies of random processes and at the same
time provide a brief and informal preview of some of the most frequently encountered
random processes, many of which will be more formally discussed in later sections in
the present and subsequent chapters.

12.2.1 Discrete-time versus continuous-time processes

When the time index takes on values from a set of discrete of time instants, say
T = {0, 1, 2, . . .}, the process is said to be a discrete-time random process or a ran-
dom sequence, and is often denoted as Xt ; t ∈ T or Xk; k ∈ T instead of X (t), which
is usually used for a continuous-time process, where the interval T for the time-index
is typically a real line T = (−∞,∞) or T = [0,∞). A sequence of random variables
{Xk}, discussed in Chapter 11, is indeed a discrete-time random process if the index
k can be interpreted as a time index. A random process may intrinsically be of the
discrete-time nature, but in many cases it is the result of observing or sampling a
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continuous-time process at discrete points in time, either at regular intervals or at some
suitably defined moments.

In statistics, signal processing, econometrics, and social sciences the term time series
is often used to represent a sequence of data points, measured typically at successive
times spaced at uniform time intervals. This term is also used often almost synony-
mously with discrete-time random process, when it is discussed in the context of certain
types of statistical analysis, such as spectral analysis, estimation, or prediction. In this
book we use capital letters, say {Xt } or {Xn}, to represent random variables and lower
cases for observed data, e.g., {xt } or {xn}, where the time index t or n is typically natural
numbers, i.e., Z+ = {1, 2, 3, . . .}. In most cases, underlying assumptions of a time series
are that it is both stationary and ergodic in the sense explained later in this section.

12.2.2 Discrete-state versus continuous-state processes

The set of possible values that X (t) may take on is called its state space, often denoted
S. For a Bernoulli trial sequence, S = {s, f} or S = {0, 1}, where s and f stand for
“success” and “failure.” Thus, the Bernoulli trial sequence is a discrete-time, discrete-
state random process. A simple random walk, which moves to the right or to the left by
a unit step (i.e., Xk − Xk−1 = ±1), is another example of a discrete-time, discrete-state
process.

If the set S is continuous, such as S = (−∞,∞) or S = [0,∞), the process X (t) is
called a continuous-state process. If X (t) represents the temperature (of a certain place
or object) at time t , it is a continuous-state process. If X (t), however, is the price of a
stock at time t , it is a discrete-state process. A Gaussian (or normal) process that we
will discuss in Section 12.3.2 is a continuous-time, continuous-state process. Brown-
ian motion or the Wiener process, which can be obtained as a limit of the random
walk – by making both time interval h = tk − tk−1 and the step size δ infinitesimally
small, while keeping δ2/h = σ 2 (constant) – is another example of a continuous-
time, continuous-state process. We will discuss Brownian motion and its generalization,
diffusion processes, in Chapter 17.

Quantization or digitization used in modern signal processing converts a continuous-
state process into a discrete-state process. For instance, digitized information stored
on an audio CD represents a discrete-time, discrete-state process, although the orig-
inal acoustic signal and the replayed signal from the speaker are continuous-time,
continuous-state processes.

12.2.3 Stationary versus nonstationary processes

As we will discuss in detail in Section 12.3, a stationary process is a process such that
its distribution function

FX (x; t) � P[X (t) ≤ x], t ∈ T , (12.1)

is invariant to shifts in time for all values of its arguments. In other words, the dis-
tribution functions FX (x; t) are independent of t . Otherwise, the process is called
nonstationary.
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For the case of discrete-time, discrete-state processes, we can easily think of a station-
ary random process. One example is an infinite series of Bernoulli trials that defines a
stationary random sequence Xk; k = 0, 1, 2, . . . . Gaussian processes, which are often
used to represent a noise process or a stochastic signal like a multi-path fading signal,
are usually modeled as stationary Gaussian processes. A random walk and Brownian
motion are examples of nonstationary processes: their variance increases in proportion
to the steps n or time t (hence, the standard deviation grows in proportion to

√
n or

√
t –

often referred to as the square-root law).
Many random processes of interest in real life are nonstationary. For instance, the

price of a stock or the Dow Jones’ index and the packet traffic in a network are both
nonstationary processes. But if we limit ourselves to a relatively short interval T , then
some of these processes may be well approximated as stationary processes. Somewhat
paradoxically, however, we often write a stationary process as X (t);−∞ < t <∞,
because a stationary process must have begun in the infinite past and will continue into
the infinite future: a process that has started only in a finite past must still be in its
transient state and require an infinite amount of time in order to reach its steady state
or equilibrium state. Thus, a stationary process assumption is, at best, a mathematical
idealization in modeling a real system.

12.2.4 Independent versus dependent processes

Suppose we arbitrarily choose n time instants and consider the joint distribution func-
tion FX (x, t) of the set of random variables X = (X1, X2, . . . , Xn), where Xi =
X (ti ); i = 1, 2, . . . , n. If this distribution function factors into the product

FX(x; t) � FX1 X2···Xn (x1, x2, . . . , xn; t1, t2, . . . , tn)

= FX1(x1; t1)FX2(x2; t2) · · · FXn (xn; tn), (12.2)

for any finite n and for any choice of the instants t , we say X (t) is an independent
process.

In the case of a discrete-time process, the independent random sequence Xk discussed
in Chapter 11 provides such an example.

In the case of a continuous-time, continuous-state process, a random process is com-
monly called white noise if its power spectral is flat for all frequencies f ∈ (−∞,∞).
Brownian motion, which can be viewed as an integration of white noise, is a depen-
dent process, and so are the random walk and its generalized versions. The random
step process Yk � Xk − Xk−1 of the random walk Xk , however, is usually treated as an
independent sequence.

12.2.5 Markov chains and Markov processes

12.2.5.1 Discrete-time Markov chain (DTMC)
In 1906 A. A. Markov [237] defined a simple chain as “an infinite sequence

X1, X2, . . . , Xk , Xk+1, . . .
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of variables connected in such a way that Xk+1 for any k is independent of

X1, X2, . . . , Xk−1

in case Xk is known.” (see Basharin et al. [14]). In his subsequent paper in 1908 (later
translated into German [239] and into English [240]) he extended the notion to complex
chains in which “every member is directly connected not with single but with several
preceding numbers.” A more common term used today is a high-order Markov chain.
A Markov chain of order h is defined as a sequence in which Xk depends on its past
only through its h previous values, Xk−1, Xk−2, . . . , Xk−h :

p(xk |xk−i ; i ≥ 1) = p(xk |xk−1, xk−2, . . . , xk−h). (12.3)

The case h = 1 reduces to a simple Markov chain and h = 0 to an independent
sequence. Any higher-order Markov chain with finite h defined over state space S
can be transformed into a simple Markov chain by defining the state space Sh =
S × S · · · × S, the h-times Cartesian product of S with itself. We apply this obser-
vation in Section 13.4.3 where we discuss an autoregressive process of order p, denoted
as AR(p). We shall discuss Markov chains, also called Markov proccess, and their
properties in Chapters 15, 16, and 20.

Markov [237] introduced the notion of Markov chain in order to extend the law of
large numbers and the central limit theorem to dependent sequences, but he also
applied the Markov chain model to the sequence of 20 000 letters in A. S. Pushkin’s
poem Eugene Onegin, computing the probability of a vowel, the probability of a vowel
following a vowel, the probability of a vowel following a consonant, etc. [14]. Today,
Markov chain models are used in a variety of fields, including linguistic models for
speech recognition, DNA and protein sequences, and network traffic, as we remarked in
Chapter 1 and shall discuss in Chapter 20.

The simple Markov chain {Xk} defined above is referred to as a discrete-time
Markov chain (DTMC). If there are M different states that the Makov chain can take
on, we can label them, without loss of generality, by integers, 0, 1, 2, . . . ,M − 1. We
denote this set of states by S:

S = {0, 1, 2, . . . ,M − 1}, (12.4)

where M may be infinite. We write Xn = i , when the DTMC {Xk} assumes state i ∈ S
at time n. We illustrate in Figure 12.2 (a) a sample path of a DTMC.

12.2.5.2 Continuous-time Markov chain (CTMC)
For a given DTMC {Xk}, we can construct a continuous-time Markov chain (CTMC)
X (t) as follows. Let X (t) make the kth state transition at time t = tk and enter state
i ∈ S, and stay in this state until the next epoch of transition at time tk+1; i.e.,

X (t) = i, for tk ≤ t < tk+1, where i = X (tk) and X (tk+1) = j (�= i), (12.5)

and let the interval τk � tk+1 − tk be exponentially distributed with mean λ−1
k . Figure

12.2 (b) shows a sample path of a CTMC.
Given the current time tn , the future behavior of the process X (t); t ≥ tn depends

on its past X (s);−∞ < s < tn only through its current state X (tn) = i ∈ S. How long
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Figure 12.2 (a) A discrete-time Markov chain (DTMC); (b) a continuous-time Markov chain (CTMC).

X (t) has been in its current state i is immaterial because of the memoryless property
of the exponential distribution, as discussed in Section 4.2.2. In a DTMC, the interval
that the chain remains in state i ∈ S before it moves to one of the other states in S
is geometrically distributed with parameter p = 1− Pi,i =∑ j �=i Pi, j , where Pi, j =
P[Xk+1 = j |Xk = i] is the transition probability from state i to state j �= i (i, j ∈ S).
The reader may recall that the geometric distribution also possesses the memoryless
property.

A Poisson process process is an example of CTMC, with λk = λ for all k, and the
number of states M = ∞; i.e., S = {0, 1, 2, . . .}. Here, X (t) represents the cumulative
number of arrivals (or births) up to time t . In this definition, the Poisson process is a
monotone nondecreasing function; thus, it is a counting process.

12.2.5.3 Continuous-time, continuous-space (CTCS) Markov process
A continuous-time, continuous-state (CTCS) Markov process is also known as a
diffusion process, and its state transition probability (or conditional probability)
distribution function FX (t1)|X (t0)(x0, x1; t0, t1) satisfies a partial differential equa-
tion known as a diffusion equation. We denote the corresponding transition PDF
by fX (t1)|X (t0)(x0, x1; t0, t1). We will further discuss these diffusion processes in
Chapter 17.

12.2.5.4 Discrete-Time, Continuous-Space (DTCS) Markov Process
Another class of Markov process, which is seldom discussed in the literature on Markov
chains and Markov processes, is what we term a discrete-time, continuous-state (DTCS)
Markov process. An autoregressive (AR) time series, discussed in Section 13.4.1,
is such an example. Similarly, the state sequence associated with an autoregressive
moving average (ARMA) time series, defined in Section 13.4.3, forms a multidimen-
sional DTCS Markov process (see (13.236)). If we observe a diffusion process X (t)
at discrete-time moments, t0, t1, t2, . . ., then the time series X0, X1, X2, . . . (where
Xi = X (ti )) defines a DTCS Markov process. In Section 21.7 we will introduce a sim-
ulation technique called Markov chain Monte Carlo (MCMC), whereby we generate
(dependent) random variates x0, x1, x2, . . . sampled from a target distribution π(x).
Such a sequence can be viewed as an instance of a DTCS Markov process {Xt}.
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12.2.5.5 Semi-Markov process and embedded Markov chain
If the interval τk = tk+1 − tk in (12.5) is not exponentially distributed, the process
X (t) does not possess the Markovian or memoryless property. Such a process is
called a semi-Markov process. Semi-Markov processes will be further discussed in
Section 16.1.

Conversely, for a given CTMC or semi-Markov process X (t), a DTMC {Xk} defined
by observing at the epochs of state transitions in X (t) (and the state Xk = i ∈ S is
entered at the kth transition) is said to be embedded (or imbedded) in the original process
X (t). In queueing theory, we often find ourselves in a situation where the embedded
Markov chain (EMC) {Xk} is amenable to analysis, even when the original process
X (t) is not.

12.2.6 Point processes and renewal processes

A point process is a random process that consists of a sequence of epochs

t1, t2, t3, . . . , tn, . . . ,

where “point events” occur. The point process is thought of as a sequence of events in
which only the times of their occurrence are of interest.

The one-dimensional point process can be represented by N (t),

N (t) = max{n : tn ≤ t}, (12.6)

which is the cumulative count of events in the time interval (0, t]. Thus, the process
{N (t)} is called a counting process. It is clearly an integer-valued process and is a
nondecreasing function of t . The difference of the event points

Xn = tn − tn−1 (12.7)

represents the interval between the (n − 1)st and the nth point events.
If we assume that the Xn are independent and identically distributed (i.i.d.) RVs with

a common distribution function FX (x), the corresponding point process N (t) is called
a renewal process. The event points tn are called renewal points and the intervals Xn

are the lifetimes.
The Poisson process is a point process, where the Xn(= tn − tn−1) are indepen-

dent. Thus, it is a renewal process. It is also a CTMC, since the Xn are exponentially
distributed.

Both point processes and renewal processes are extensively used in queueing theory,
reliability theory, risk analysis, and mathematical finance. Chapter 14 is devoted to these
processes.

12.2.7 Real-valued versus complex-valued processes

Although random processes we encounter are usually real-valued, it is often mathe-
matically convenient to deal with a complex-valued random process associated with a
real-valued random process in much the same way as we often deal with eiωt instead
of the sinusoidal function cosωt . In communication systems, for instance, the class



322 Random processes

of carrier-modulated data transmission systems that adopt linear modulation (e.g.,
see [193]) which include amplitude shift keying (ASK), phase shift keying (PSK),
amplitude–phase shift keying (APSK), quadrature amplitude modulation (QAM), as
well as conventional analog modulation schemes such as AM, PM, SSB (single-
sideband) and VSB (vestigial-sideband) modulation, can be concisely represented in
terms of complex-valued processes, known as analytic signals. Furthermore, Gaussian
noise that goes through a bandpass filter at the receiver can be compactly represented in
terms of a complex-valued Gaussian process.

In a radio channel with multi-path propagation, the amplitude and phase of the
received signal vary randomly. This phenomenon, called fading, introduces a mul-
tiplicative factor which can be compactly expressed by a complex-valued Gaussian
random variable (as discussed in Section 7.6.2) or complex-valued Gaussian process.
We will further discuss this topic in Section 12.4.

12.2.8 One-dimensional versus vector processes

Vector representation of a random process has two types. The first type occurs when
a scalar or one-dimensional random process is observed at multiple instants t =
(t1, t2, . . . , tn); the corresponding observations may be represented as a random vector,
i.e., X = (X (t1), X (t2), . . . , X (tn))�. The vector processes that we specifically refer
to in this section are the second type, where we deal with a multidimensional pro-
cess instead of a one-dimensional scalar-valued process. Such a situation occurs, for
instance, in diversity reception [329] where one attempts to detect or estimate sig-
nals using multiple antennas placed at different positions, as is the case in phased array
radars and large-aperture seismic array systems.

In statistics and econometrics, vector-valued time series, or simply, vector time
series, or multivariate time series are extensively used [141, 145]. Such vector-
valued processes will be denoted in this book as X t , where X t = (X1,t , X2,t , . . . , Xn,t );
t ∈ T = (1, 2, . . . , T ). Then an observed sample path {xt ; t ∈ T } of this time series
X t can be presented as a two-dimensional array and is often referred to as panel
data. In communication engineering, there has been an increasing level of research and
development activities lately concerning multiple-input, multiple-output (MIMO)
systems that are designed to improve signal recovery in the presence of multipath fad-
ing, interference, and noise. Such multiple signals can be compactly represented as
complex-valued vector processes.

We start with scalar real-valued random processes.

12.3 Stationary random process

In dealing with random processes in the real world, we often notice that statistical prop-
erties of interest are relatively independent of the time at which observation of the
random process is begun. A stationary random process is defined as one for which
all the distribution functions are invariant under a shift of the time origin.
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12.3.1 Strict stationarity versus wide-sense stationarity

D E FI N I T I O N 12.1 (Strictly stationary random process). A real-valued random process
X (t) is said to be strictly stationary, strict-sense stationary (SSS), or strongly station-
ary if for every finite set of time instants {ti ; i = 1, 2, . . . , n} and for every constant h the
joint distribution functions of Xi = X (ti ) and those of X ′i = X (ti + h); i = 1, 2, . . . , n
are the same:

FX1 X2···Xn (x1, x2, . . . , xn) = FX ′1 X ′2···X ′n (x1, x2, . . . , xn). (12.8)

�

The above condition for stationarity is often unnecessarily restrictive, and we define
below a weaker form of stationarity. We define the mean of a random process X (t) by

μX (t) = E[X (t)] (12.9)

and the autocorrelation function of X (t) by

RX (t1, t2) � E[X (t1)X (t2)]. (12.10)

If the joint density function exists, we can write

RX (t1, t2) =
∫ ∞

−∞

∫ ∞

−∞
x1x2 fX1 X2(x1, x2) dx1 dx2 (12.11)

Now we are ready to give a second type of stationarity.1

D E FI N I T I O N 12.2 (Wide-sense stationary random process). A random process X (t) is
said to be wide-sense stationary (WSS), weakly stationary, covariance stationary, or
second-order stationary if it has

1. a constant mean: E[X (t)] = μX for all−∞ < t <∞;
2. finite second moments E[X (t)2] <∞, for all−∞ < t <∞; and
3. a covariance

E[(X (s)− μ)(X (t)− μ)]
that depends only on the time difference |s − t |.

�

If X (t) is WSS, then the autocorrelation function RX (s, t) satisfies

RX (s, t) = RX (s − t, 0) = RX (0, t − s),

1 Some authors (e.g. [82, 263, 319]) drop the condition 1. E[X (t)] = μ, constant, of the definition below.
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indicating that it is also a function of the time difference |s − t | only.2

It is not difficult to see that if a random process is stationary in the strict sense and
has finite means and second moments, then it must also be stationary in the wide sense.
However, the converse does not hold true.

Example 12.1: An i.i.d. sequence. Let {Xn} be a sequence of i.i.d. real-valued RVs
with a common mean μX and variance σ 2

X . Then it is strictly stationary, and its
autocorrelation function is given by

RX (k) = E[Xn+k Xn] =
{
σ 2

X + μ2
X , k = 0,

μ2
X , k �= 0.

(12.12)

Thus, {Xn} is strictly stationary as well as WSS.
From the strong law of large numbers (SLLN), we can assert∑n

i=1 Xi

n
a.s.−→ μX . (12.13)

�

Example 12.2: An uncorrelated sequence with identical mean and variance. Let
{Yn} be a sequence of uncorrelated real-valued RVs, with a common mean μY and
variance σ 2

Y . Then, the process {Yn} is WSS, since E[Yn] = μY for all n and the auto-
correlation function takes the same form as (12.12). However, it is not strictly stationary,
unless all of the Yn are mutually independent and have a common distribution. Note,
however, that stationarity does not require independence or uncorrelatedness of the Yn .
If we pass the above stationary sequence into a time-invariant filter, the output sequence
is correlated, yet strictly stationary. �

We now consider a stationary process quite different from the two previous examples.

Example 12.3: Identical sequences [131, 175]. Let Z be a single RV with known
distribution, and set Z1 = Z2 = · · · = Z ; i.e.,

Zn = Z , for all n.

Then the process {Zn} is easily seen to be strictly stationary as well as being WSS. The
auto-covariance function is

RZ [k] � E[Zn Zn+k] = σ 2, for all k. (12.14)

2 If X (t) is a complex-valued process, the autocorrelation function is defined by RX (s, t) = E[X (s)X∗(t)].
If RX (s, t) is a function of the difference (s − t), X (t) is said to be WSS (see Section 13.1.3). The
autocorrelation function is no longer a symmetric function, but RX (−t) = R∗X (t).
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Similar to (12.13), we have ∑n
i=1 Zi

n
a.s.−→ Z , (12.15)

since each term Zi in the sum is the same as the limit Z . �

Example 12.4: Sinusoidal function with random amplitudes [131, 175, 262].
Consider a random process defined by

X (t) = A cosω0t + B sinω0t, (12.16)

where A and B are real-valued RVs. If A and B are time functions, representing
some information-carrying waveforms, then the process X (t) is what is known as a
quadrature-amplitude modulated (QAM) signal in communication systems.

Taking the expectation

E[X (t)] = E[A] cosω0t + E[B] sinω0t,

we find that, for the mean E[X (t)] to be constant, it is necessary that

E[A] = E[B] = 0. (12.17)

In order for the process X (t) to be WSS,

E[X (t)X (u)]
=E[A2 cosω0t cosω0u+B2 sinω0t sinω0u+AB(cosω0t sinω0U+sinω0t cosω0u)]

= E[A2]
2

[cosω0(t + u)+ cosω0(t − u)]− E[B2]
2

[cosω0(t + u)− cosω0(t − u)]

+ E[AB] sinω0(t + u) (12.18)

must be a function of t − u only. Suppose that

E[A2] = E[B2] = σ 2 (12.19)

and

E[AB] = 0 (12.20)

hold. Then it readily follows that

E[X (t)X (u)] = σ 2 cosω0(t − u) � RX (t − u). (12.21)

Hence, X (t) becomes WSS.
Conversely, suppose that X (t) is WSS. Then

E[X (t1)X (t1)] = E[X (t2)X (t2)] = RX (0) (12.22)
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for any t1 and t2. Letting t1 = 0 and t2 = π/2ω0, we have

X (t1) = X (0) = A and X (t2) = X

(
π

2ω0

)
= B.

Then (12.22) becomes

E[A2] = E[B2] = RX (0) = σ 2,

which is (12.19). Furthermore, we have

E[X (t)X (u)] = σ 2 cosω0(t − u)+ E[AB] sinω0(t + u).

The last expression is a function of t − u only if (12.20) is met. Thus, we have shown
that the above X (t) is WSS if and only if the conditions (12.17), (12.19), and (12.20)
are met. �

12.3.2 Gaussian process

An important class of random processes is that of Gaussian processes.

D E FI N I T I O N 12.3 (Gaussian process). A real-valued continuous-time process
X (t);−∞ < t <∞ is called a Gaussian process if, for every finite set of time instants

T = {t1, t2, . . . , tn},
the vector

X = (X1, X2, . . . , Xn)
�, where Xi = X (ti ), i = 1, 2, . . . , n,

has the multivariate normal distribution with some mean vector μ and covariance
matrix C , both of which may depend on T :

fX (x) = 1

(2π)n/2|detC|1/2 exp

[
−1

2
(x − μ)�C−1(x − μ)

]
. (12.23)

�

The covariance matrix

C = [Ci j
]

is related to the autocorrelation function RX (ti , t j ) as follows:

Ci j = E
[
(Xi − μi )(X j − μ j )

]
= E

[
(X (ti )− μ(ti ))(X (t j )− μ(t j ))

]
= RX (ti , t j )− μ(ti )μ(t j ). (12.24)
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Thus, a Gaussian process X (t) can be characterized by providing its mean func-
tion μX (t);−∞ < t <∞ and autocorrelation function RX (t1, t2);−∞ < t1, t2 <∞,
which then yield the required mean vectors μ and covariance matrices C for any finite
set of time instants T .

12.3.2.1 Stationary Gaussian process
If X (t) is a WSS Gaussian process, then μ(t) = μ and

RX (ti , t j ) = RX (0, ti − t j ) � RX (ti − t j ). (12.25)

Hence,

Ci j = RX (ti − t j )− μ2, (12.26)

which is a function of ti − t j only. Since the mean vector and covariance matrix com-
pletely specify the probability distribution of multivariate normal variables, a WSS
Gaussian process is also SSS, which we state as the following theorem.

THEOREM 12.1 (Stationary Gaussian process). A real-valued continuous-time process
X (t);−∞ < t <∞ is a stationary Gaussian process if

E[X (t)] = μ and E[X (t)X (s)] = RX (t − s), for −∞ < t, s <∞, (12.27)

with some constant μ and autocorrelation function RX (·) and if for every finite set of
time instants

T = {t1, t2, . . . , tn}
the vector

X = (X1, X2, . . . , Xn)
�, where Xi = X (ti ), i = 1, 2, . . . , n,

has the multivariate normal distribution with mean μ = (μ,μ, . . . , μ) and covariance
matrix C, whose (i, j) entry Ci j is given by (12.26). �

Both stationary and nonstationary Gaussian processes will appear repeatedly in the
rest of this volume. In Section 12.4 we will extend the Gaussian process to a multivariate
complex-valued Gaussian process.

12.3.3 Ergodic processes and ergodic theorems

Recall that the sequence {Xn} in Example 12.1 and the sequence {Zn} in Example 12.3
are both strictly stationary, but their behaviors are entirely different. Observing
X1, X2, . . . , Xn provides no information that could be used to predict Xn+1, whereas
observing only Z1 allows us to predict Z2, Z3, . . . exactly. Although the convergence
modes in (12.13) and (12.15) are both almost sure convergence, the sample average

Xn(=
∑n

i=1 Xi
n ) converges to the population mean μX , whereas in the nth sample

average Zn there is just as much randomness as in the first observation Z1.
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Most sequences of interest lie somewhere between the above two extreme cases,
in that the sequences are not uncorrelated but the covariance between Xn and Xn+k

approaches zero as the lag k increases. In such circumstances, the time average and
ensemble average can be shown to be equivalent under some regularity conditions. We
will address this problem in this subsection.

If sample averages formed from a single realization of a stationary process converge
to some underlying parameter of the process, the process Xi is said to be ergodic. In
other words, an ergodic process is a stationary process such that its time average (or
statistical average) is equivalent to the ensemble average (or population mean). In
order to make inference about the underlying laws that govern an ergodic process, one
need only observe a single sample path, but over a sufficiently long span of time. Thus,
it is important to determine conditions that lead to a stationary process being ergodic.
The ergodic theory addresses this question and an ergodic theorem specifies condi-
tions for a stationary process to be ergodic. Ergodic theorems, although mathematically
advanced concepts, have important practical implications. For instance, when we per-
form a simulation experiment of a stochastic system, the underlying assumption is that
the process to be observed is an ergodic process.

Laws of large numbers for sequences that are not uncorrelated are called ergodic
theorems. Just as there are strong and weak laws of large numbers, there are a variety of
ergodic theorems, depending on their assumptions and on modes of convergence. Recall
that the SLLN for an i.i.d. sequence states

P[ lim
n→∞ Xn = μX ] = 1.

Stationary processes, strong or weak, provide a natural setting to generalize the law of
large numbers, since for such processes the mean value is a constant independent of
time; i.e., μX (n) = μX for all n.

Let us digress for the moment and assume that we do not know whether the process
{Xn} we are concerned with is stationary or nonstationary, let alone about its possible
ergodicity. In order to estimate an unknown mean sequence μX (n), we must in general
observe a large number M of separate realizations of the process, say

{X (1)n ; n = 1, 2, . . . , N }, {X (2)n ; n = 1, 2, . . . , N }, . . . , {X (M)n ; n = 1, 2, . . . , N }.
We then compute the ensemble average at each time n:

X(n) � X (1)n + X (2)n + · · · + X (M)n

M
, n = 1, 2, . . . , N ,

which we will use as an estimate for μX (n).
If it were known (or judged on the observations) that μX (n) is constant, which would

be the case for a stationary process, we might obtain the grand average by computing

X = X(1)+ X(2)+ · · · + X(N )

N

=
∑N

n=1
∑M

m=1 X (m)n

M N
.
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If, in addition, we knew that the process X (t) was ergodic, the same estimation problem
could be simplified so that we would need to observe, as stated earlier, only a single
realization (or sample path) of the process over a sufficiently long period.

12.4 Complex-valued Gaussian process

The RVs and random processes we have discussed so far have been mostly real-valued,
except for the discussion on circularly symmetric Gaussian RVs given in Section 7.6.1.
But many of the definitions and properties discussed in the present chapter can be gener-
alized to the complex-valued RVs and random processes. The notion of complex-valued
Gaussian processes is very useful in analyzing communication systems. Many signal
processes that we deal with in communication systems, including radar, sonar, and
wireless systems, have a spectrum of finite bandwidth around some carrier frequency
ω0. The amplitude of a signal process S(t), at the receiving end, will often exhibit a
Gaussian distribution because of the multi-path fading effect. Then such a signal can be
represented as

S(t) =  {(X (t)+ iY (t))eiω0t } = X (t) cosω0t − Y (t) sinω0t,

where X (t) and Y (t) are jointly Gaussian and have their spectrum around ω = 0. The
process Z(t) � X (t)+ iY (t) is what we term a complex-valued Gaussian process or
complex Gaussian process, for short. The real component X (t) is often referred to as
the in-phase component, whereas Y (t) is called the quadrature component.

Even in the absence of such a fading effect, an additive noise process N (t), after
passing through a front-end amplifier, is often a Gaussian process with finite bandwidth
(typically a bandwidth comparable to that of the signal process). Such a bandpass noise
can be represented as

N (t) =  {(Nx (t)+ i Ny(t))e
iω0t } = Nx (t) cosω0t − Ny(t) sinω0t,

and Nz(t) = Nx (t)+ i Ny(t) is a complex Gaussian process.

12.4.1 Complex-valued Gaussian random variables

We define an M-dimensional complex Gaussian variable as a vector Z =
(Z1, Z2, . . . , Z M )

�, which is an M-tuple of complex Gaussian variables. We define
the 2M-dimensional Gaussian variable W by (7.97); i.e.,

W �
[

X
Y

]
= (X1, X2, . . . , X M , Y1, Y2, . . . ,YM )

�. (12.28)

Assuming that both X and Y have mean zero, we have E[W ] = 0, and its covariance
matrix is given by

K � E
[
W W�] = [ E[X X�] E[XY�]

E[Y X�] E[YY�]
]
=
[

A B�
B D

]
, (12.29)
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where A and D are symmetric; i.e., A� = A and D� = D. The joint PDF can be
written as

fXY (x, y) = 1

(2π)M | det K |1/2 exp

(
−1

2
[x� y�]K−1

[
x
y

])
. (12.30)

If, in particular, B� = −B and D = A, then the complex Gaussian variable Z is
circularly symmetric, and the matrix K of (12.29) reduces to the matrix � of (7.98)
defined in Section 7.6.2. There, we showed that the complex RVs Z and Z∗ have the
PDF (7.109):

fZZ∗(z, z∗) = 1

(4π)M | det C| exp

(
−1

2
z�C−1z∗

)
, (12.31)

where

C = A+ i B = 1

2
E
[
ZZH] , (12.32)

as defined in (7.100). We now state the following theorem due to Wooding [360].

THEOREM 12.2 (Complex-valued multivariate normal variables). The probability
distribution of (12.30) has the equivalent representation of (12.31) if and only if

E
[

X X�
]
= E

[
YY�

]
= A

E
[
Y X�

]
= −E

[
XY�

]
= B, (12.33)

or equivalently,

QZZ � E
[

ZZ�
]
= 0. (12.34)

Proof. The “if part” is clear on using (7.102), (7.105), and (12.32) with the following
relation:

dx d y = 2M d z d z∗, (12.35)

which is obtained from (7.108). The proof of the “only if part” is straightforward and
therefore is not given here.

Note that the matrix QZZ is different from the covariance matrix of Z, which should
be defined as RZZ = E

[
ZZH

]
. The matrix QZZ is sometimes called the pseudo-

covariance matrix. As we have seen, this matrix plays an important role in determining
circular symmetry of a complex Gaussian variable.

12.4.2 Complex-valued Gaussian process

Now we turn our attention to a complex-valued Gaussian process Z(t) = Z(t)+ iY (t),
in which the real and imaginary parts (X (t), Y (t)) are jointly Gaussian processes.
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For a given random process, we often find a random variable that is a linear
observable Z of the random process Z(t) defined by

Z =
∫
T

h(t)Z(t) dt, (12.36)

where h(t) is a nonrandom function and may be complex-valued. Typical examples of
a linear observable Z are:

1. Evaluation of Z(t) at some t = t0 ∈ T ; i.e.,

Z(t0) =
∫
T
δ(t − t0)Z(t) dt.

Similarly,

Z ′(t0) =
∫
T
δ′(t − t0)Z(t) dt.

2. The coefficient of an eigenfunction expansion as discussed in Section 13.2.2:

zk =
∫
T
v∗k (t)Z(t) dt, k = 1, 2, . . . ,

where vk(t) is an eigenfunction.
3. The value of a linear filter output at some instant t = t0 having Z(t) as the input.

If the integral of (12.36) exists in the Riemann sense for every sample function
Z(ω, t) of the random process Z(t), it defines a number z(ω), where ω is a simple
event over which a probability measure is defined. Thus, z is a random variable. It has
been shown (see Doob [82]) that the integral (12.36) exists for each sample function of
Z(t) if ∫

T
E[|h(t)Z(t)|] dt =

∫
T
|h(t)|E[|X (t)|] dt <∞. (12.37)

Even if the integral of (12.36) does not exist for each sample function Z(ω, t), it
will be sufficient for our purposes if the integrals can be defined as limits in the mean-
square sense. Let the interval T = [a, b] be partitioned by the set of points

a = t1 < t2 < · · · < tn+1 = b.

Let Sn be the approximating sum

Sn =
n∑

i=1

h(ti )Z(ti )(ti+1 − ti ). (12.38)

Clearly, Sn is a random variable, dependent on the particular partition. Now we consider
the limit of the above sum, by letting n →∞ and max{ti+1 − ti } → 0. We say that the
integral (12.36) converges in the mean-square sense (or in quadratic mean) to Z if

lim
n→∞ E

[
|Z − Sn |2

]
= 0. (12.39)
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It can be shown (Problem 12.3) that if the ordinary Riemann integral

Q =
∫ b

a

∫ b

a
h(t)RZ Z (t, s)h∗(s) dt ds, where RZ Z (t, s) = E[Z(t)Z∗(s)], (12.40)

exists, then mean-square convergence is insured.

12.4.2.1 Criteria for circular symmetry of a linear observable
We now consider the necessary and sufficient condition which a complex Gaussian
process Z(t) must satisfy so that any finite collection of linear observables generated
from the process are circularly symmetric and allow the representation of (12.31). Let
Z be an N -variate complex Gaussian variable consisting of linear observables of Z(t)
such that Z = (Z1, Z2, . . . , Z N )

�, where

Zk =
∫
T

fk(t)Z(t) dt (12.41)

for some function fk(t), k = 1, 2, . . . , N . Then it is not difficult to see that Z has the
representation of (12.31) if and only if

E[X (s)X (t)] = E[Y (s)Y (t)], (12.42)

E[X (s)Y (t)] = −E[Y (s)X (t)], (12.43)

or, equivalently,

Q Z Z (s, t) � E[Z(s)Z(t)] = 0, (12.44)

for all s, t ∈ T .
The function QZ Z (s, t) defined for the complex Gaussian process, which may be

aptly called the pseudo-covariance function, plays a role similar to the pseudo-
covariance matrix QZZ defined for a complex Gaussian variable. We have seen
QZZ = 0 and Q Z Z (s, t) = 0 are respectively the conditions for circular symmetry of
the complex Gaussian variable Z and the underlying complex Gaussian process Z(t).
Grettenberg [130] showed that the condition (12.44) holds if and only if the probabil-
ity distribution of Z(t) and Z(t)eiθ are the same; i.e, the distribution is invariant under
rotation (Problem 12.4).

The above results do not assume stationarity of the Gaussian processes involved. Now
let us focus on stationary Gaussian processes.

12.4.2.2 Wide-sense stationarity and strict-sense stationarity of complex Gaussian processes
We have shown earlier that, for real-valued Gaussian processes, wide-sense stationarity
and strict-sense stationarity are equivalent. Such is not the case, however, for complex
Gaussian processes.

THEOREM 12.3 (Strict-sense stationarity of a complex Gaussian process). For a com-
plex Gaussian WSS process Z(t) with E[Z(t)] = 0 to be strictly stationary, it is
necessary and sufficient that

Q Z Z (s, t) = E[Z(s)Z(t)] is a function of s − t . (12.45)
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Proof. Let Z(t) = X (t)+ iY (t). If Q(s, t) is a function of s − t , it follows that
E[X (s)X (t)], E[Y (s)Y (t)], and E[X (s)Y (t)] are all functions of s − t , since

E[X (s)X (t)] = 1

4
E[(Z(s)+ Z∗(s))(Z(t)+ Z∗(t))]

= 1

4
[QZ Z (s − t)+ Q∗

Z Z (s − t)+ RZ Z (s − t)+ R∗Z Z (s − t)],

etc. Thus, the covariance matrix of the 2M Gaussian RVs

X (t1), . . . , X (tM ), Y (t1), . . . , Y (tM )

depends only on the time difference ti − t j , so that the joint distribution of these vari-
ables is invariant under a time translation, and the process Z(t) is strictly stationary. The
proof of the converse statement is straightforward.

Example 12.5: Wide-sense stationarity and strict-sense stationarity. Let X (t) be a
real-valued stationary Gaussian process with

E[X (t)] = 0 and E[X (s)X (t)] = RX (s − t).

Then, Z(t) = X (t)eiω0t is WSS with

E[Z(t)] = 0 and E[Z(s)Z∗(t)] = RX (s − t)eiω0(s−t).

However, Z(t) is not strictly stationary, since

E[Z(s)Z(t)] = RX (s − t)eiω0(s+t),

which is not a function of s − t . �

It should be noted that (12.44) Q(s, t) = 0 is a sufficient condition for strict station-
arity. It will be shown in the next two sections that the analytic signal and the complex
envelope associated with a stationary Gaussian process X (t) are strictly stationary. In
fact, these processes satisfy (12.44).

12.4.3 Hilbert transform and analytic signal

Before we define the Hilbert transform we introduce the notion of the Cauchy principal
value.

D E FI N I T I O N 12.4 (Principal value integral). Let [a, b] be a real interval and g(t) be a
(real or complex) function defined over [a, b]. If g(t) is unbounded near t = u, where
u is an interior point of [a, b], and the limit

lim
ε→0+

(∫ u−ε

a
g(t) dt +

∫ b

u+ε
g(t) dt

)
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exists, it is called the principal value integral of g(t) from a to b and is denoted as

P
∫ b

a
g(t) dt.

Example 12.6: Integration of a real-valued function g(t) = 1/t from −a to a can be
written as ∫ a

−a

dt

t
= lim
ε1→0+

∫ −ε1

−a

dt

t
+ lim
ε2→0+

∫ a

ε2

dt

t
,

but these integrals cannot be evaluated separately because of the pole at t = 0. But if
we let ε1 = ε2 = ε, then

P
∫ a

−a

dt

t
= lim
ε→0+

(∫ −ε

−a

dt

t
+
∫ a

ε

dt

t

)
.

The first integral can be rewritten as follows by setting t = −u:∫ −ε

−a

dt

t
=
∫ ε

a

−du

−u
= −

∫ a

ε

du

u
.

Thus, it is clear that the principal value integral exists and

P
∫ a

−a

dt

t
= 0.

�

D E FI N I T I O N 12.5 (Hilbert transform). The Hilbert transform f̂ (t) of a (real or
complex) function f (t) is defined by

f̂ (t) = 1

π
P
∫ ∞

−∞
f (u)

t − u
du, (12.46)

if the principal value of the integral exists. �

Because of the pole at t = u, it is generally not possible to obtain the Hilbert trans-
form as an ordinary improper integral, so we assign the Cauchy principal value to the
integral.

Since the Hilbert transform f̂ (t), if it exists, can be viewed as the convolution integral
of f (t) and

h(t) � 1

π t
,

its Fourier transform is given by

F{ f̂ (t)} = F{ f (t)}F{h(t)}.
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If we denote the Fourier transform of h(t) by H(ω), we find

H(ω) =
∫ ∞

−∞
e−iωt

π t
dt =

∫ 0

−∞
e−iωt

π t
dt +

∫ ∞

0

e−iωt

π t
dt

=
∫ ∞

0

e−iωt − eiωt

π t
dt = −2i

∫ ∞

0

sinωt

π t
dt

= −isgn(ω) =
⎧⎨⎩
−i, ω > 0,
0, ω = 0,
i, ω < 0.

(12.47)

In deriving the last result, we used the formula∫ ∞

0

sinπx

πx
dx =

∫ ∞

0
sinc(x) dx = 1

2
, (12.48)

where the function

sinc(x) � sinπx

πx
(12.49)

is known as the sampling function or the sinc function (an abbreviation of “sine car-
dinal” function), and is the Fourier transform of the ideal brick-wall low-pass filter
(Problem 12.5).

As seen from (12.47) the system function H(ω) of Hilbert-transform filter, also
called the quadrature filter, is an all-pass filter with −90◦ phase shift. Therefore, its
response to cosωt equals cos(ωt − π/2) = sinωt and its response to sinωt is sin(ωt −
π/2) = − cosωt . It readily follows from (12.47) that

H(ω)2 =
{ −1, ω �= 0,

0, ω = 0.
(12.50)

So if we apply the Hilbert transform to f̂ (t), we should obtain − f (t), but its zero-
frequency component will be lost.

D E FI N I T I O N 12.6 (Analytic signal). For a given (real or complex) process X (t), the
complex-valued process Xa(t), defined by

Xa(t) = X (t)+ i X̂(t), (12.51)

is called the analytic signal (also called the pre-envelope) associated with X (t), where
X (t) and X̂(t) form a Hilbert transform pair; i.e.,

X̂(t) = 1

π

∫ ∞

−∞
X (u)

t − u
du = 1

π

∫ ∞

−∞
X (t − u)

u
du, (12.52)

X (t) = − 1

π

∫ ∞

−∞
X̂(u)

t − u
du = 1

π

∫ ∞

−∞
X̂(t + u)

u
du. (12.53)

�
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If we denote the Fourier transform of X (t) and Xa(t) by X̃(ω) and X̃a(ω)

respectively, we have from (12.51) that

X̃a(ω) = (1+ i H(ω))X̃(ω) = (1+ sgn(ω))X̃(ω) =
⎧⎨⎩

2X̃(ω), ω > 0,
X̃(ω), ω = 0,
0, ω < 0.

(12.54)

Thus, the analytic signal suppresses the negative frequency components of X̃(ω). The
main idea behind this representation is that the negative frequency components of the
Fourier transform of a real-valued function X (t) are superfluous and thus can be dis-
carded, with no loss of information, because of the property X̃(−ω) = X̃(ω)∗. The
analytic signal representation makes the derivation and analysis of some modulation and
demodulation in communication systems (e.g., single-sideband modulation) extremely
simple (e.g., see Schwartz et al. [295]). Note that the Hilbert transform and the com-
position of the analytic signal do not require X (t) to be real valued, so we assume
throughout this section that X (t) is complex valued, unless stated otherwise.

Example 12.7: Let X (t) = cosω0t for some ω0 > 0. Then X̂(t) = sinω0t . Thus,
Xa(t) = cosω0t + i sinω0t = eiω0t , often referred to as Euler’s formula. X (t) =
cosω0t = 1

2

(
eiω0t + e−iω0t

)
contains both positive and negative frequency compo-

nents, but Xa(t) = eiω0t has just the positive frequency. �.

Suppose that the real-valued process X (t) is WSS with zero mean and covariance
function

RX X (τ ) = E[X (t + τ)X (t)]. (12.55)

Then it is easily seen (Problem 12.6) that X̂(t) is also WSS with

RX̂ X̂ (τ ) = RX X (τ ), (12.56)

RX̂ X (τ ) = −RX X̂ (τ ). (12.57)

Furthermore,

RX̂ X (τ ) =
1

π

∫ ∞

−∞
RX X (u)

τ − u
du = R̂X X (τ ), (12.58)

and the analytic signal Xa(t) is WSS with

RXa Xa (τ ) = E[Xa(t + τ)X∗a(t)] = 2[RX X (τ )+ i R̂X X (τ )]. (12.59)
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As is shown below, Equations (12.52) and (12.53) imply (12.44) with Z(t) = Xa(t),
for a WSS process X (t):

Q Xa Xa (s, t) = E[Xa(t)Xa(s)] = 0. (12.60)

Conversely, if (12.60) holds, then X (t) must be WSS. Noting that a WSS real-valued
Gaussian process is strictly stationary, we have the following useful theorem.

THEOREM 12.4 (Criterion for an analytic signal to be circularly symmetric). Let
Xa(t) = X (t)+ i X̂(t) be the analytic signal associated with a real-valued Gaussian
process X (t) with zero mean, and let Z be an N-variate complex Gaussian variable
consisting of linear observables of Xa(t). Then Z is circularly symmetric if and only if
X (t) is stationary.

Proof. If X (t) is stationary, then X (t) and X̂(t) are jointly stationary. From (12.52), it
follows that

E[X̂(s)X̂∗(t)] = 1

π

∫ ∞

−∞
E[X̂(s)X∗(t − u)]

u
du = 1

π

∫ ∞

−∞
RX̂ X (s − t + u)

u
du.

Similarly, from (12.53),

E[X (s)X∗(t)] = 1

π

∫ ∞

−∞
E[X̂(s + u)X∗(t)]

u
du = 1

π

∫ ∞

−∞
RX̂ X (s − t + u)

u
du.

Therefore,

E[X̂(s)X̂∗(t)] = E[X (s)X∗(t)]. (12.61)

Similarly,

E[X̂(s)X∗(t)] = −E[X (s)X̂∗(t)]. (12.62)

Then, from our earlier result on the criterion for circular symmetry for a complex Gaus-
sian process, we see that Z is circularly symmetric. The converse statement is proved as
follows. From (12.52) and (12.53),

E[X̂(s)X∗(t)] = 1

π

∫ ∞

−∞
E[X (s)X∗(t)]

u
du

−E[X (s)X̂∗(t)] = − 1

π

∫ ∞

−∞
E[X (s)X∗(t − u)]

u
du

= 1

π

∫ ∞

−∞
E[X (s)X∗(t + u)]

u
du.

In order to satisfy (12.62), the following relation must hold:

E[X (s − u)X∗(u)] = E[X (s)X∗(t + u)], s, t ∈ T .

This last relation implies that the Gaussian process X (t) is WSS and hence SSS.
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12.4.4 Complex envelope

It is well known that, for bandpass (sometimes called passband) signals X (t) and X̂(t),
the function

A(t) = |Xa(t)| =
√

X2(t)+ X̂2(t) (12.63)

may be identified approximately with the amplitude envelope of the signal X (t) and the
function

φ(t) = � Xa(t) = tan−1 X̂(t)

X (t)
(12.64)

with the instantaneous phase. Let ω0 be the center frequency or carrier frequency of the
narrowband process. Thus, we have the polar coordinate representation of the analytic
signal:

Xa(t) = A(t)eiφ(t). (12.65)

If we shift, in the frequency domain, Xa(t) towards 0 Hz by ω0, we will have

E(t) = Xa(t)e
−iω0t = A(t)eiφ(t)−iω0t , (12.66)

which is called the complex envelope of X (t). Thus,

X (t) =  {Xa(t)} =  
{

E(t)eiω0t
}
. (12.67)

It is easy to see that

|E(t)| = |Xa(t)|, (12.68)

� E(t) = � Xa(t). (12.69)

Furthermore, it is seen from (12.66) that the following relations hold for the covariance
functions and pseudo-covariance functions between E(t) and Xa(t):

RE E (s, t) = RXa Xa (s, t)e−iω0(s−t), (12.70)

QE E (s, t) = Q Xa Xa (s, t)e−iω0(s+t). (12.71)

From (12.70), the complex envelope E(t) is WSS if and only if Xa(t) is WSS. From
(12.71) we see that QE E (s, t) = 0 if and only if Q X A Xa (s, t) = 0. We also see that
Xa(t) and E(t) are strictly stationary, when X (t) is a stationary Gaussian process.

Example 12.8: In many communication systems, signals are modulated in both
amplitude and phase.

S(t) = AS(t) cos[ωct + φS(t)].
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Then by defining the in-phase (I) and quadrature (Q) components

SI(t) = AS(t) cosφS(t),

SQ(t) = AS(t) sinφS(t),

we have an equivalent representation

S(t) = SI(t) cosωct − SQ(t) sinωct. (12.72)

Thus, we can represent the bandpass signal S(t) as

S(t) =  
{(

AS(t)e
iφS(t)

)
eiωct

}
=  

{
[SI(t)+ i SQ(t)]eiωct

}
=  

{
ES(t)e

iωct
}
.

Thus, ES(t) = SI(t)+ SQ(t) is the complex envelope of the bandpass signal S(t), or
the baseband equivalent signal of S(t). �

12.5 Summary of Chapter 12

Random process X (t): X (ω, t), ω ∈ � Fig. 12.1
Discrete- or

continuous-time:
T = {0, 1, 2, . . .} or T = (−∞,∞) Sec. 12.2.1

Discrete- or
continuous-state:

S = {0, 1, . . . ,M − 1} or S = {−∞,∞} Sec. 12.2.2

Stationary process: FX (x; t) is independent of t Sec. 12.2.3
Independent process: FX (x; t) =∏n

i=1 FXi (xi ; ti ) (12.2)
Markov chain of order h: p(xk |xk−i ; i ≥ 1) = p(xk |xk−1, . . . , xk−h) (12.3)
DTMC: Markov chain of order 1 Fig. 12.2
CTMC: τk = tk+1 − tk , exponentially distributed (12.5)
Semi-Markov process: τk = tk+1 − tk , not exponentially distributed (12.5)
Strictly stationary: FX1···Xn (x1, . . . , xn) = FX ′1···X ′n (x1, . . . , xn) (12.8)

Autocorrelation func.: RX (t1, t2) = E[X (t1)X (t2)] (12.10)
WSS: RX (t1, t2) = RX (t1 − t2) Def. 12.2
Gaussian process: (X (t1) . . . X (tn)) are Gaussian distributed Def. 12.3
Stationary Gaussian

process:
E[X (t)] = μ and E[X (t)X (s)] = RX (t − s)4 Thm. 12.1

Circularly symmetric Z: QZZ = E[ZZ�] = 0 (12.34)
Circularly symmetric

Z(t):
Q Z Z (s, t) = E[Z(s)Z(t)] = 0 (12.44)
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Strictly stationary Z(t): QZ Z (s, t)=QZ Z (s−t), RZ Z (s, t)= RZ Z (s−t) Thm. 12.3
Hilbert transform: f̂ (t) = 1

π
P
∫∞
−∞

f (u)
t−u du (12.46)

Hilbert transform filter: H(ω) = −isgn(ω) (12.47)
Analytic signal: Xa(t) = X (t)+ i X̂(t) (12.51)
Circularly symmetric

Xa(t):
Stationary X (t) Thm. 12.4

Complex envelope: E(t) = Xa(t)e−iω0t = A(t)eiφ(t)−iω0t (12.66)

12.6 Discussion and further reading

In this chapter we first gave an overview of a variety of random processes, some of
which will be further studied in subsequent chapters, especially Markov chains and
Markov processes, point processes, and diffusion processes.

We introduced the notions of (strict) stationarity and wide-sense stationarity and
ergodicity of random processes. In the last section we focused on complex-valued
Gaussian processes and discussed various criteria for linear observables to be circu-
larly symmetric complex Gaussian variables. The presentation of these materials draws
from Kobayashi [192]. The Hilbert transform is used in many physical science and engi-
neering disciplines. The recent two volumes by King [181, 182] are entirely devoted to
this subject and its applications. Among the earliest works that discuss analytic signals
are Arens [5], Dugundji [84], and Zakai [368]. Analytic signals are discussed in many
textbooks on communication systems, including e.g., Helstrom [150] and Schwartz
et al. [295]

12.7 Problems

Section 12.1: Random process

12.1 Sinusoidal functions with different frequencies and random amplitudes
[175]. Consider the following extension of Example 12.4. Let A0, A1, . . . , Am and
B0, B1, . . . , Bm be uncorrelated RVs having zero mean. Assume that Ai and Bi have
a common variance σ 2

i and let σ 2 =∑m
k=0 σ

2
i . Let ω0, ω1, . . . , ωm be independent

(angular) frequencies in [0, π ] and set

X (t) =
m∑

i=0

(Ai cosωi + Bi sinωi t) .

(a) Show that X (t) is WSS and its covariance function is given by

RX (τ ) = σ 2
m∑

i=0

fi cosωiτ, (12.73)

where fi = σ 2
i /σ

2; thus,
∑m

i=0 fi = 1.
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(b) In part (a) ω was a discrete variable. Now let ω be a continuous RV having
possible values in [0, π ] with the CDF F(ω). How do you suggest (without a
rigorous mathematical argument) to extend the expression (12.73) to this continuous
case?

(c) Consider the special case where F(ω) is a uniform distribution in [0, π ]. Find the
expression for the covariance function RX (τ ).

12.2 Moving average process [175]. Let {Xn;−∞ < n <∞} be uncorrelated RVs
having a common mean μ and variance σ 2. Let a0, a1, . . . , am−1 be arbitrary real
numbers. Consider a moving average process {Yn} defined by

Yn = a0 Xn + a1 Xn−1 + · · · + am−1 Xn−m+1 =
m−1∑
i=0

ai Xn−i . (12.74)

(a) Find E[Yn] and Var[Yn].
(b) Find the auto-covariance function of {Yn} and show that {Yn} is a WSS sequence.
(c) Let ai = 1/

√
m for i = 0, 1, . . . ,m − 1. Obtain the autocovariance function RY (k)

of {Yn} and sketch the curve.
(d) Consider the two extreme cases m = 1 and m = ∞ and identify similar sequences

among the examples given in the text.

Section 12.4: Complex-valued Gaussian process

12.3 Condition for integration in mean-square. Show that if the integral (12.40)
exists, mean-square convergence (12.39) is insured.

12.4 Circular symmetry criterion for a complex Gaussian process. Show that the
distribution of the complex Gaussian process Z(t)eiθ is invariant for all rotations 0 ≤
θ ≤ 2π if and only if the pseudo-covariance function Q Z Z (t, s) = E[Z(t)Z(s)] = 0.

12.5 Brick-wall filter and the sampling function. Consider the system function
H( f ) of an ideal brick-wall low-pass filter defined by

H( f ) =
{

1, | f | ≤ W,
0, | f | > W.

(12.75)

Find the impulse response function h(t). Also derive (12.48).

12.6 Properties of the Hilbert transform. Prove the following properties of the
Hilbert transform.

(a) Hermitian symmetry. Let the Fourier transform of a real-valued function f (t) and
its Hilbert transform f̂ (t) be denoted as F(ω) and F̂(ω). Show that both F(ω) and
F̂(ω) exhibit Hermitian symmetry; i.e., F(− f ) = F∗( f ) and F̂(−ω) = F̂∗(ω).

(b) Orthogonality of ĝ(t) and g(t). Show that g(t) (not necessarily real valued) and
its Hilbert transform are orthogonal; i.e.,
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〈g(t), ĝ(t)〉 �
∫ ∞

−∞
g(t)ĝ∗(t) dt = 0.

(c) Hilbert transform of a symmetric function. If g(t) is symmetric around t = 0,
i.e., g(−t) = g(t), then ĝ(t) is skew-symmetric, i.e., ĝ(−t) = −ĝ(t).

(d) Hilbert transform of a WSS process. Prove that X̂(t) is WSS when X (t) is WSS,
and derive (12.56) through (12.58).



13 Spectral representation of random
processes and time series

In this chapter we discuss spectral representations and eigenvector-based time-series
analysis. We begin our discussion with a review of the Fourier series and Fourier
transform of nonrandom functions, followed by the Fourier analysis of periodic WSS
processes. Then we introduce the power spectrums of non-periodic WSS random
processes, the Wiener–Khinchin formula, and the peoriodogram analysis of time-
series data. The eigenvector-based orthogonal expansion of random vectors and its
continuous-time analog, known as the Karhuenen–Loéve expansion, are discussed in
detail. Principal component analysis (PCA) and singular-value decomposition (SVD)
are two commonly used statistical techniques applicable to any data presentable in
matrix form, where correlation exists across its rows and/or columns. We also briefly
discuss algorithms being developed for Web information retrieval, and they can be
viewed as instances of general spectral expansion, the common theme of the present
chapter.

The chapter ends with discussion of an important class of time series known as autore-
gressive moving average (ARMA), which is widely used in statistics and econometrics.
Its spectral representation and state space formulation are also discussed.

13.1 Spectral representation of random processes and time series

In this section we consider the problem of representing a random process in terms of a
series or integral with respect to some system of deterministic functions, such that the
coefficients in this expansion are uncorrelated RVs. Such a representation is referred to
as spectral representation or spectral expansion. Before we pursue this subject, let us
briefly review the Fourier series expansion.1

13.1.1 Fourier series

Let g(t) be a real or complex-valued periodic function of a real variable t , which is
typically time in our applications.

1 Jean Baptiste Joseph Fourier (1768–1830) was a French mathematician and physicist who is best known
for his work on Fourier series and their application to problems of heat flow.
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If g(t) is absolutely integrable over a period T ,2 i.e.,∫ T

0
|g(t)| dt <∞, (13.1)

then g(t) has associated with it the following Fourier series expansion

g̃N (t) =
N∑

k=−N

gkei2πn f0t , where i = √−1, f0 � 1

T
, (13.2)

and gk is the kth Fourier coefficient

gk = 1

T

∫ T

0
g(t)e−i2πk f0t dt. (13.3)

If g(t) is of bounded variation3 in the interval 0 ≤ t ≤ T , then

lim
N→∞ g̃N (t) = g(t) (13.4)

at all t where g(t) is continuous.
If g(t) is square integrable over the period T ,4 i.e.,∫ T

0
|g(t)|2 dt <∞, (13.5)

then the sum (13.2) converges to g(t) in the mean-square sense:

lim
N→∞

∫ T

0
|g̃N (t)− g(t)|2 dt = 0, (13.6)

which we write

g(t) = l.i.m.
N→∞

N∑
n=−N

gne−i2πn f0t . (13.7)

One of the most important properties of the Fourier series expansion is the identity

∞∑
n=−∞

|gn|2 = 1

T

∫ T

0
|g(t)|2 dt, (13.8)

which is known as Parseval’s formula or Parseval’s identity.5 Note that the condition
(13.5) is equivalent to function g(t) having finite power, and the left and right sides of
(13.8) represent the power defined in the spectral and time domains respectively.

2 In functional analysis, we say such g(t) belongs to the L1(T ) space.
3 A function of bounded variation is a real-valued function whose total variation is bounded; i.e., finite. See

the online Supplementary Materials for details.
4 In functional analysis we say that g(t) ∈ L2(T ).
5 Marc-Antoine Parseval des Chênes (1755–1836) was a French mathematician.
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13.1.2 Fourier transform

Now let us assume g(t) is a real- or complex-valued nonperiodic function g(t). Then
it is known from the theory of Fourier transforms (e.g., Titchmarsh [324]) that:

1. If g(t) is square integrable on the whole line, i.e.,∫ ∞

−∞
|g(t)|2 dt <∞, (13.9)

then its Fourier transform G( f ) exists, which is also square integrable on the
whole line:

G( f ) = l.i.m.
A→∞

∫ A

−A
g(t)e−i2π f t dt (13.10)

and

g(t) = l.i.m.
B→∞

∫ B

−B
G( f )ei2π f t d f, (13.11)

where the notation l.i.m. means “limit in the mean,” and (13.10) should be inter-
preted as

lim
A→∞

∫ ∞

−∞

∣∣∣∣G( f )−
∫ A

−A
g(t)e−i2π f t dt

∣∣∣∣2 d f = 0. (13.12)

Using the notation for the Cauchy principal value of an integral (see Definition 12.4),
the above equations may be expressed as

G( f )
m.s.= P

∫ ∞

−∞
g(t)e−i2π f t dt (13.13)

and

g(t)
m.s.= P

∫ ∞

−∞
G( f )ei2π f t d f. (13.14)

2. If g(t) is absolutely integrable, i.e.,
∫∞
−∞ |g(t)| dt <∞, then (13.13) should be

replaced by

G( f ) =
∫ ∞

−∞
g(t)e−i2π f t dt, (13.15)

where the integral is the ordinary Riemann6 integral. Similarly, if the transform
G( f ) is absolutely integrable, then (13.11) becomes

g(t) =
∫ ∞

−∞
G( f )ei2π f t d f. (13.16)

6 Georg Friedrich Bernhard Riemann (1826–1866) was a German mathematician.
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The above results are due to Plancherel’s theorem,7 which states that if a function
g(t); t ∈ R � (−∞,∞) is in both L1(R) and L2(R), then its Fourier transform is
also in L2(R); moreover, the Fourier transform mapping is isometric (i.e., distance
preserving). Under the condition (13.9) we can show (Problem 13.1)∫ ∞

−∞
|G( f )|2 d f =

∫ ∞

−∞
|g(t)|2 dt, (13.17)

which is another form of Parseval’s identity. The condition (13.9) means that g(t) is a
function with finite energy, and the left and right sides of (13.17) represent its energy in
the frequency and time domains respectively.

13.1.3 Analysis of periodic wide-sense stationary random process

By generalizing the definition we gave for a real-valued WSS process, we say that a
complex-valued process X (t) is WSS if it has a constant mean and its autocorrelation
function E[X (s)X∗(t)] is a function of s − t only; i.e., if we can write it as

E[X (s)X∗(t)] = RX (s − t). (13.18)

Note that unlike in the real-valued process case, the argument is not |s − t |, since RX (·)
is not a symmetric function. Rather, it is self-adjoint: take the complex conjugate of
(13.18); then

R∗X (s − t) = [X (t)X∗(s)] = RX (t − s); i.e.,RX (−τ) = R∗X (τ ).

Now suppose that RX (τ ) is a periodic function with some period T :

RX (τ + T ) = RX (τ ), for all −∞ < τ <∞. (13.19)

Then, the WSS random process is said to be periodic with period T . Then we can show
(Problem 13.2) that for any t

E
[
|X (t)− X (t + T )|2

]
= 0; (13.20)

hence, the RVs X (t) and X (t + T ) are said to be equal in mean square or equiva-
lent in mean square. As we shall show at the end of this section, equivalence in mean
square implies equivalence with probability one (i.e., equivalence almost surely) and
vice versa. Thus, (13.20) implies that RVs X (t) and X (t + T ) are equivalent with prob-
ability one. If all the sample functions X (ω, t);ω ∈ � (possibly except for a set which
occurs with probability zero) are periodic, the process X (t) is periodic in the sense
defined above. Then if a sample function x(t) = X (ω, t) for some ω is periodic and can
be expanded in Fourier series, we will have

x(t) =
∞∑

n=−∞
xnei2π f0t , f0 = 1

T
, (13.21)

7 Michel Plancherel (1885–1967) was a Swiss mathematician.
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where

xn � 1

T

∫ T

0
x(t)e−i2πn f0t dt. (13.22)

For different sample functions, (13.22) yields different values for xn . It can be shown8

that under the condition ∫ T

0
E[|X (t)|] dt <∞, (13.23)

all the sample functions, except a set of probability zero, are absolutely integrable and,
in addition,

E

[∫ T

0
X (t) dt

]
=
∫ T

0
E[X (t)] dt. (13.24)

The condition (13.23), which is referred to as the measurability condition, can be
assumed to hold in practice. Thus, we are free to consider integrals of the sample
functions of a random process X (t) whenever the mean value of the process |X (t)| is
integrable. Further, we can calculate means involving these integrals by using (13.24).
Thus, the integral

Xn � 1

T

∫ T

0
X (t)e−i2πn f0t dt (13.25)

exists with probability one and it can be shown below that an expansion similar to
(13.21) exists, namely

X (t) = l.i.m.
N→∞

N∑
n=−N

Xnei2π f0t , 0 ≤ t ≤ T, (13.26)

where l.i.m. stands for “limit in the mean” as defined in (11.31) for mean square
convergence.

The Fourier series expansion of a periodic WSS process, as claimed in (13.26) with
(13.25), can be derived using the following double orthogonality (i.e., (13.27) and
(13.28)). Namely:

1. The set of trigonometric functions
{
ei2πn f0t ; n = 0,±1,±2, . . .

}
, where f0 = 1/T ,

forms an orthogonal basis for L2(T ), the space of square integrable functions over
the interval [0, T ]: ∫ T

0
e−i2πm f0t ei2πn f0t dt = δm,nT . (13.27)

2. The Fourier expansion coefficients {Xn} defined by (13.25) are RVs, which are
orthogonal to each other in the sense that any pair of RVs Xm and Xn(m �= n) are

8 See Doob [82], Chapter 2, Theorem 2.7.
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uncorrelated. Recall that we defined the orthogonality of RVs in Section 10.1.1 (cf.
Definition 10.3):

〈Xm, Xn〉 � E[Xm X∗n ] = rnδm,n, (13.28)

where 〈X, Y 〉 � E[XY ∗] is the inner product of the RVs X and Y , as defined in
Definition 10.3, where Y ∗ is the complex conjugate of Y .9 The reader is suggested
to prove the second orthogonality (Problem 13.4). Then, we can show that the Fourier
series expansion converges to the process X (t) in the mean square sense, as claimed in
(13.26), or equivalently

lim
N→∞ E

⎡⎣∣∣∣∣∣
N∑

n=−N

Xnei2πn f0t − X (t)

∣∣∣∣∣
2⎤⎦ = 0. (13.29)

When the process is nonstationary we cannot use the trigonometric functions as
a basis, and even when the process is WSS the second orthogonality (13.28) does
not hold for finite T unless X (t) is periodic in the sense of (13.19). Therefore, we
need to investigate a way to generalize the Fourier series expansion method. Before
we investigate the general case in Section 13.2, we will study the power spectrum in
Sections 13.1.4 and 13.1.5, which can be defined when the process is WSS and the
observation period is “infinite.”

Remark on the equivalence of random variables
The concept of equivalence of two RVs X and Y almost surely, or with probability one,
was first introduced in Section 3.1: X

a.s.= Y if P[X = Y ] = 1. Earlier in this section, the
notion of equivalence in mean square arose in (13.20): two RVs X and Y are defined to
be equivalent in mean square, X

m.s.= Y , if E[|X − Y |2] = 0. It is not difficult to show
that these two notions of equivalence of RVs are actually the same; i.e., X

a.s.= Y if
and only if X

m.s.= Y (Problem 13.3). Thus, we may write simply X = Y in most con-
texts without ambiguity. We remark that equivalence in mean square and equivalence
almost surely are analogous to certain notions of convergence discussed in Chapter 11.
However, the corresponding notions of convergence are not the same. In particular, we
saw in Chapter 11 that Xn

a.s.→ Y does not imply Xn
m.s.→ Y and Xn

m.s.→ Y does not imply
Xn

a.s.→ Y .

13.1.4 Power spectrum

With these preparations, we are in a position to discuss spectral analysis of WSS random
processes, when the observation period is (−∞,∞).

9 In Section 10.1.1 we used the notation Y instead.
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D E FI N I T I O N 13.1 (Power spectral density). The power spectral density (or simply
power spectrum) of a WSS random process X (t) is defined by

SX ( f ) � F{RX (τ )} =
∫ ∞

−∞
RX (τ )e

−i2π f τ dτ, (13.30)

where RX (τ ) is the autocorrelation function of X (t):

RX (τ ) = E[X (t)X (t − τ)]. (13.31)

�

Equation (13.30) implies that the inverse transform gives

RX (τ ) = F−1 [SX ( f )
] = ∫ ∞

−∞
SX ( f )ei2π f τ d f. (13.32)

This important property that the autocorrelation function and power spectrum form
a Fourier transform pair is often referred to as the Wiener–Khinchin10 formula or
Wiener–Khinchin theorem. We often use the the correlation function (or, more aptly,
the normalized autocovariance function) ρ(τ):

ρX (τ ) � Cov[X (t)X (t − τ)]
(Var[X (t)]Var[X (t − τ)])1/2 =

RX (τ )− μ2
X

σ 2
X

, (13.33)

which is related to the the autocorrelation function according to

RX (τ ) = σ 2
XρX (τ )+ μ2

X . (13.34)

Some authors (e.g., Grimmett and Stirzaker [131]) define the spectrum distribution
function F̃X (ω) in terms of the correlation function:

ρX (τ ) =
∫ ∞

−∞
eiωτ d F̃X (ω), (13.35)

where ω = 2π f is called, in electrical engineers’ terms, the angular frequency, as
opposed to the frequency f . In terms of the spectrum density function defined by
f̃ X (ω) � d F(ω)/dω, the Wiener–Khinchin formula is expressed as

ρX (τ ) = F−1{ f̃ X (ω)} =
∫ ∞

−∞
f̃ X (ω)e

iωτ dω (13.36)

and

f̃X (ω) = F{ρX (τ )} = 1

2π

∫ ∞

−∞
ρX (τ )e

−iωτ dτ. (13.37)

10 Aleksandr Yakovlevich Khinchin (1894–1959) was a Soviet mathematician. His name is often spelled as
Alexandre Khintchine (French spelling).
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The density function f̃X (ω) is similar to, but not quite the same as, the power spectral
density function SX ( f ) defined above. Since

ρX (τ ) � Cov[X (t)X (t − τ)]
(Var[X (t)]Var[X (t − τ)])1/2 =

RX (τ )− μ2
X

σ 2
X

, (13.38)

the autocorrelation function can be written as

RX (τ ) = σ 2
XρX (τ )+ μ2

X , (13.39)

which leads to the following relation between SX ( f ) and f̃ X (ω):

SX ( f ) = 2πσ 2
X f̃X (2π f )+ μ2

X δ( f ). (13.40)

Before we close this section we should note that the power spectrum method applies
only when a WSS process is observed over (−∞,∞). The assumption of infinite
observation period may be dropped in practice, if the correlation function ρ(τ) decays
to practically zero beyond |τ | > T for some finite T . However, if the autocorrelation
function decays according to a power law, i.e.,

ρ(τ) ∝ 1

|τ |β , as|τ | → ∞, (13.41)

with 0 < β < 1, then the autocorrelation function is not integrable; i.e.,∫ ∞

0
ρ(τ) dτ = ∞. (13.42)

A process with the property (13.42) is called a long-range dependent (LRD) process. It
can be shown that, for the LRD process with (13.42), the power spectrum takes the form

S( f ) ∝ | f |γ for f ≈ 0, (13.43)

where γ = 1− β. Therefore, the spectral density of an LRD process has a singularity
at f = 0; i.e., it diverges at zero frequency. For a discussion of LRD processes, see, for
example, [203] and references therein.

13.1.5 Power spectrum and periodogram of time series

In practice, we often deal with cases in which the time index is discrete. This situa-
tion occurs when either (i) the random process itself is a discrete-time process by its
own nature or (ii) the random process is a continuous-time process but is observed at
only discrete points in time. Thus, instead of the process {X (t);−∞ < t <∞}, we
must deal with a discrete-time random process {Xn;−∞ < n <∞}. The theory of
discrete-time processes is well developed in statistics and econometrics. Various sta-
tistical analysis techniques such as correlation analysis, spectral analysis, smoothing
and prediction are practiced in these applications. Such analysis is generally called
“time-series analysis.” A time series is a sequence of data points, measured typically at
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successive times, spaced at (often uniform) time intervals. Thus, we use the term time
series synonymously with discrete-time random process. When we discuss data, i.e., an
instance of the time series {Xn}, we use the lower case symbols {xn}, and sometimes a
vector notation x = (x1, x2, . . . , xT ).

Similar to Definition 12.2, we say that a time series {Xn} is WSS if

E[Xn] = μX for all n (13.44)

and

E[Xn Xn+k ] = RX [k] for all n and k. (13.45)

The function RX [k]11 is called the autocorrelation function of {Xn}. Similarly, the
autocovariance function of the WSS time series {Xn} is defined as

CX [k] � E[(Xn − μX )(Xn+k − μX )] = RX [k] − μ2
X for all n and k. (13.46)

For a given WSS {Xn} we define the serial correlation coefficient of lag k (or
order k) {ρX [k]} by

ρX [k] � CX [k]
RX [0] =

RX [k] − μ2
X

σ 2
X

,−∞ < k <∞. (13.47)

It can be shown (see (10.13)) that

− 1 ≤ ρX [k] ≤ 1 and ρX [0] = 1. (13.48)

The serial correlation coefficient of a time series corresponds to the correlation function
ρ(τ) defined in (13.33) for the continuous-time process.

13.1.5.1 Power spectrum and the Wiener–Khinchin formula
We define the Fourier transform of the autocovariance function CX [k]12 by

PX (ω) � 1

2π

∞∑
k=−∞

CX [k]e−ikω

= 1

2π

[
CX [0] + 2

∞∑
k=1

CX [k] cos(kω)

]
,−π ≤ ω ≤ π.

(13.49)

11 We write RX [k], instead of RX (t), to emphasize that the time index k is discrete. Similarly, we write the
covariance function as CX [k].

12 For a continuous-time process, we normally define the power spectrum SX ( f ), as given by (13.30), as the
Fourier transform of the autocorrelation function RX (τ ) instead of the autocovariance function CX (τ ).
This definition cannot be carried over to the discrete-time case when the mean μX is nonzero, because the
summation does not converge. For the continuous-time case, however, the nonzero mean results in a term
(μ2

X /2π)δ(ω) in the power spectrum.
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The inverse relationship is given by

CX [k] =
∫ π

−π
PX (ω)e

ikω dω =
∫ π

−π
PX (ω) cos kω dω. (13.50)

The transform pair (13.49) and (13.50) is a discrete-time version of the Wiener–
Khinchin formula defined by (13.30) and (13.32).

Let us set k = 0 in the last equation. By noting CX [0] = E[(Xk − μX )
2] = σ 2

X ,
we find

σ 2
X =

∫ π

−π
PX (ω) dω. (13.51)

Thus, the variance σ 2
X is made up of infinitesimal contributions PX (ω) dω in small

bands around each frequency ω. Therefore, the function PX (ω) is aptly called the
(power) spectrum. Its normalized version

PX (ω)

σ 2
X

= 1

2π

∞∑
k=−∞

ρX [k]e−ikω (13.52)

is called the (power) spectral density function.

13.1.5.2 Periodogram of a time series
For the observed sequence of finite length denoted as {xn; 0 ≤ n ≤ N − 1},13 let us
consider the Fourier transform:

X̃ (N )(ω) � 1√
N

N−1∑
n=0

(xn − x (N ))einω,−π < ω < π, (13.53)

where

x (N ) = 1

N

N−1∑
n=0

xn. (13.54)

We restrict our attention to values of ω of the form ω = 2πm/N , m = 0, 2, . . . , N − 1.
Although other values of ω may be considered, no additional information is obtained,
since CX (ω) can be interpolated with weighting functions of the form

sin[ω − (2πm/N )]
ω − (2πm/N )

.

This property is known as the sampling theorem in communication theory.14 The
theorem states that a continuous-time bandlimited signal x(t);−∞ < t <∞, can be

13 Here the time label n starts with zero, instead of one, so that we can use the convention of the discrete
Fourier transform notation.

14 This theorem is attributed to Kotelnikov [212], Shannon [300, 301], Someya [308], and others, but its
mathematical foundation on interpolation functions by Whittaker [348] and Ogura [258] predates the dis-
covery by communication theorists. Although Nyquist is often mentioned in the literature as one of the
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reconstructed from sampled data xn = x(n
t); n = 0,±1,±2, . . ., if the sample time
spacing 
t [s] satisfies 
t ≤ 1/2W , where W [Hz] is the maximum frequency compo-
nent in s(t) (e.g., see [301]). Observing the duality that exists between the time domain
and the frequency domain and between the Fourier transform and its inverse transform,
it is apparent that the sampling theorem also suggests that all information for the spec-
trum S( f ) of a time-limited signal (continuous time or discrete time) of duration T [s]
can be contained in the uniformly spaced samples of the spectrum Sn = S(n
 f ), if the
spectral spacing 
 f satisfies 
 f ≤ 1/T .

By denoting the Fourier transform X̃ (N )(ω) evaluated at ω = 2πm/N as X̃ (N )m , i.e.,

X̃ (N )m = X̃ (N )
(

2πm

N

)
, (13.55)

we have

X̃ (N )m = 1√
N

N−1∑
n=0

(xn − x (N ))ein2πm/N =
⎧⎨⎩ 1√

N

N−1∑
n=0

xnW mn, m = 1, 2, . . . , N − 1,

0, m = 0,

(13.56)

where W = ei2π/N . Note the constant term x (N ) disappears in X̃ (N )m for all
m= 0, 1, . . . , N − 1, because

∑N−1
n=0 ein2πm/N = δ0,m . The relation (13.56) is what is

commonly called the discrete Fourier transform (DFT) of {xn − x (N )}, and its inverse
discrete Fourier transform (IDFT) is

xn − x (N ) = 1√
N

N−1∑
m=1

X̃ (N )m W−mn, n = 0, 2, . . . , N − 1. (13.57)

The transformed sequence X̃ (N )m is generally complex valued. Take the absolute
square of the DFT:

P(N )m =
∣∣∣X̃ (N )m

∣∣∣2 = 1

N

∣∣∣∣∣
N−1∑
n=0

(xn − x (N ))W mn

∣∣∣∣∣
2

,m = 0, 1, 2, . . . , N − 1, (13.58)

which is called the periodogram . If we rearrange the double sum involved in (13.58),
we can show (Problem 13.5) that

P(N )m =
N−1∑

k=−N+1

(
1− |k|

N

)
Ĉ (N )

X [k]W mk,m = 0, 1, 2, . . . , N − 1, (13.59)

contributors to this theorem, his work [257] was concerned about the maximum transmission rate, i.e., the
so-called Nyquist rate of telegraph signals, but not a direct proof of the minimum sampling rate required
for the reconstruction of a bandlimited continuous-time waveform. For example, see Butzer et al. [44].
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where Ĉ (N )
X [k] is an estimate of the autocovariance function based on N samples:

Ĉ (N )
X [k]� 1

N−|k|
min(N−k,N )∑
n=max(1,k+1)

(xn−x (N ))(xn+k−x (N )), k = 0,±1,. . .,±(N−1).

(13.60)

We can show that Ĉ (N )
X [k] is an asymptotically unbiased estimate of CX [k]; i.e.,

lim
N→∞ E[Ĉ (N )

X [k]] = CX [k]. (13.61)

See Definition 18.1 of Chapter 18 for the definition of unbiasedness and other desired
properties of an estimator.

By taking the expectation of both sides in (13.59), we have

E[P (N )m ] = σ 2
X

N−1∑
k=−N+1

(
1− |k|

N

)
ρX [k] cos

(
2πmk

N

)
, (13.62)

where we used the property

E
[
ĈX [k]

]
= σ 2

XρX [k]

and the identity

W mk = ei2πmk/N = cos

(
2πmk

N

)
+ i sin

(
2πmk

N

)
.

By letting N →∞ (13.62), we find, for sufficiently large N ,

E[P(N )m ]≈
∞∑

k=−∞
CX [k] cos

(
2πkm

N

)
=2π PX

(
2πm

N

)
,m = 0, 1,. . ., N−1.

(13.63)

Thus, use of the periodogram has been practiced as an intuitively appealing way to
estimate spectral density PX (ω) of a time series defined by (13.49). For example, at
the top of Figure 13.1 we plot a signal {Sn; n = 0, 1, . . . , N − 1} generated from white
noise {Wn; n = 0, 1, . . . , N − 1} as follows:

Sn = αSn−1 + Wn, n = 0, 2, . . . , N − 1, (13.64)

with S−1 = 0. This random signal Sn is Gaussian, because Wn is Gaussian, and {Sn}
forms a simple Markov chain, because Sn depends on its past only through Sn−1, as
implied by (13.64). Thus, Sn is called a Gauss–Markov process (GMP). We chose
the parameters α = 0.7 and N = 1024. The second curve is the periodogram of this
GMP signal. Note that m = 0 and m = N in (13.58) correspond to ω = 0 and ω = 2π ,
although we define the spectral density function PS(ω) over −π ≤ ω ≤ π .



13.1 Spectral representation of random processes and time series 355

Gausss–Markov process

n

w

w

Periodogram

Normalized cumulative periodogram

5

–5

0

S
(n

)
P

(w
)

Q
(w

)

0

0

1

0.5

50

0 200 400 600 800 1000

0 200 400 600 800 1000

0 200 400 600 800 1000

Figure 13.1 A Gauss–Markov signal Sn , its peoriodogram, and its normalized cumulative periodogram.

As you see from the middle plot, the periodogram is not a smooth curve. So it seems a
rather questionable and unreliable estimate of the spectral density function. This appar-
ent shortcoming of the periodogram can be explained as follows. Let us write the term
X̃ (N )m of (13.55) as

X̃ (N )m = A(N )m + i B(N )m ,m = 1, 2, . . . , N − 1, (13.65)

where

A(N )m = 1√
N

N−1∑
n=0

xn cos

(
2πnm

N

)
and B(N )m = 1√

N

N−1∑
n=0

xn sin

(
2πnm

N

)
. (13.66)

Note we exclude the term m = 0, since X̃ (N )0 = 0, as shown in (13.56). It is not

difficult to show that both A(N )m and B(N )m have zero mean and variance σ 2
X/2.

Furthermore, they are uncorrelated because of the orthogonality between sin(2πnm/N )
and cos(2πnm/N ). Also, by virtue of the CLT, they are both asymptotically (that is, as
N →∞) normally distributed; consequently, they are asymptotically independent. The
individual components {P(N )m } for different values of m are asymptotically independent
(note that if the Xn are independent and normally distributed, so are {A(N )m } and {B(N )m }
for any sample size N ). Therefore, for a given index m, the variable

P (N )m = A(N )m
2 + B(N )m

2
,m = 1, 2, . . . , N − 1, (13.67)

has asymptotically (and exactly for the case of normal Xn) a distribution propor-
tional to the chi-squared distribution (Section 7.1) with two degrees of freedom; i.e.,
an exponential distribution. Thus, the coefficient of variation of the variable P (N )m



356 Spectral representation of random processes and time series

remains unity, no matter how large the sample size N becomes. In other words,
P (N )m does not converge to 2π PX (2πm/N ) in the mean-square sense. This property,
together with the asymptotic independence of P (N )m and P(N )m′ (m �= m′), implies that
the periodogram fluctuates highly erratically, when it is plotted as a function of m.
Therefore, the periodogram based on a single observation sequence will not provide
a reliable estimate of the spectrum, no matter how large the sample size N may be.
Multiple observation sequences {Xn} ought to be obtained and the corresponding mul-
tiple periodograms must be properly processed in order to obtain a smoothed estimate
of the spectral density.

However, the periodogram {P (N )m } is a convenient statistic to use in testing for
independence of the process {Xn}. If the variables {Xn} are independent, then the
variables {P(N )m ; 1 ≤ m ≤ )N/2*} are i.i.d. with an exponential distribution. Hence,
if we form a point process with interarrival times {P (N )m }, then it is a Poisson
process! A convenient way of testing for the uniformity of this associated Poisson
process (see Section 14.1.2) is done graphically through the normalized cumulative
periodogram:

Q(N )
m =

∑m
n=1 P(N )n∑M
n=1 P(N )n

,m = 1, 2, . . . ,M(= )N/2*). (13.68)

In Figure 13.2 we plot an example of white noise, its periodogram, and the normalized
cumulative periodogram Q(N )

m . We see clearly that this curve is a straight line, whereas
the corresponding curve in Figure 13.1 reveals no independence of the GMP.
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Figure 13.2 White noise Wn , its peoriodogram, and normalized cumulative periodogram.
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It will be worth noting that the periodogram was originally proposed to detect hidden
periodic tendencies in time series, as discussed by Schuster [294]15 in 1897. In the 1950s
and the early 1960s, however, a new power spectrum estimation method proposed by
Blackman and Tukey [30] became prevalent: the autocorrelation is first computed and
then the Fourier transformation of the autocorrelation is taken to produce an estimate
of the spectrum, as suggested by the Wiener–Khinchin formula. In order to obtain a
“smoother” estimate of the power spectrum, the autocorrelation function may be multi-
plied by a “weight function” (or window function) before the transformation is taken
(e.g., see Hannan [144]).

With the advent of the FFT discovered by Cooley and Tukey [66] to greatly speed up
calculation of DFT (as in (13.56)), the smoothed version of periodiogram has become
popular again. See Welch [347] and Chatfield [51].

13.2 Generalized Fourier series expansions

In the preceding section we extended the classical Fourier series to spectral representa-
tion of a periodic WSS random processes, and then the Fourier integral of nonperiodic
WSS random processes, where we assumed that the observation period is (−∞,∞). In
this section we will generalize these spectral representation methods and discuss decom-
position of a wide class of random processes and time series using eigenfunction-based
expansion, called the Karhunen–Loève expansion method. The set of eigenvalues λi

associated with the autocorrelation function RX (s, t) can be viewed as the generalized
“spectrum” of a (possibly nonstationary) random process X (t). We can assume nonsta-
tionary complex-valued processes, and the observation period may be finite. We begin
with a brief review of matrix theory that is relevant to the rest of this and succeeding
sections.

13.2.1 Review of matrix analysis

Let X be a complex-valued column vector of dimension n,

X =

⎡⎢⎢⎢⎣
X1

X2
...

Xn

⎤⎥⎥⎥⎦ , (13.69)

and

XH � X∗� = (X∗1 , X∗2, . . . , X∗n), (13.70)

15 Arthur Friedrich Schuster (1851–1934) was a German physicist known for his work in spectroscopy, and
the application of harmonic analysis to physics.
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where the superscript H, called Hermitian, is a compact notation for ∗�, “complex-
conjugate and transpose.”

The correlation matrix R is defined by

R = E[X XH] = [Ri j ], Ri j = E[Xi X∗j ], 1 ≤ i, j ≤ n. (13.71)

We list below the important properties of R and related quantities.16

1. R is a self-adjoint matrix (or a Hermitian matrix):17

RH = R. (13.72)

2. R is nonnegative definite, i.e.,

aH Ra = 〈a, Ra〉 ≥ 0, for any vector a, (13.73)

where 〈a, b〉 is the inner product (or scalar product) of complex-valued vectors a
and b:

〈a, b〉 � aHb =
n∑

j=1

a∗j b j . (13.74)

3. Let λ be an eigenvalue and u(�= 0) be its associated right-eigenvector:

Ru = λu or (R − λI) u = 0. (13.75)

Since a vector cu, where c is any nonzero scalar, is also an eigenvector associated
with λ, we can assume without loss of generality that u is normalized:

‖u‖ �
√〈u, u〉 = 1. (13.76)

From the second equation in (13.75), we see that an eigenvalue is a solution of the
following characteristic polynomial in λ of order N :

det [R − λI] = 0, (13.77)

where I is the n × n identity matrix.
4. Let λ j ( j = 1, 2, . . . , n) be the set of eigenvalues and u j be their associated

eigenvectors:

u j =

⎡⎢⎢⎢⎣
u j,1

u j,2
...

u j,n

⎤⎥⎥⎥⎦ , j = 1, 2, . . . , n. (13.78)

16 For a more comprehensive discussion of matrix theory, see the online Supplementary Materials.
17 If it is real, a self-adjoint matrix is called a symmetric matrix.
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The eigenvalues λ j are all real and nonnegative (Problem 13.7), which we order in
the decreasing order:

λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0. (13.79)

The set of eigenvalues is also called the spectrum of R. Since we can show
(Problem 13.9) that eigenvectors associated with different eigenvalues are orthogo-
nal to each other, we find for the normalized eigenvectors u j

〈ui , u j 〉 = uH
i u j = δi, j �

{
1, i = j,
0, i �= j,

(13.80)

where δi, j is called the Kronecker18 delta. The set of eigenvectors u j are said to be
orthonormal.

5. uH
j is the left-eigenvector associated with λ j :

uH
j R = λ j uH

j . (13.81)

6. R can be expanded as

R =
n∑

j=1

λ j u j uH
j =

n∑
j=1

λ j E j , (13.82)

where

E j = u j uH
j (13.83)

is called a projection matrix in the sense E2
j = E j . Furthermore, they are orthogo-

nal to each other:

Ei E j = δi, j E j . (13.84)

7. Define an n × n matrix U by

U = [u1, u2, · · · , un]; hence, UH =

⎡⎢⎢⎢⎢⎣
uH

1

uH
2
...

uH
n

⎤⎥⎥⎥⎥⎦ . (13.85)

Then

UHU = I $⇒ UH = U−1. (13.86)

A matrix U with this property is called a unitary matrix.

18 Leopold Kronecker (1823–1891) was a German mathematician and logician.
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8. We can write R as

R = U�UH = U�U−1, (13.87)

where

� =

⎡⎢⎢⎢⎣
λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...

0 0 . . . λn

⎤⎥⎥⎥⎦ (13.88)

and

� = U−1 RU = UH RU . (13.89)

This relation between R and � is called a similarity transformation.
9. Now we are ready to discuss the main topic of this section, namely, an eigenvector

expansion of a random variable vector X . Recall the Fourier series expansion of a
periodic WSS random process defined by (13.26) with the expansion coefficients
(13.25). Using the same line of argument, it can be shown that a random variable
vector X with the correlation matrix R can be expanded using the set of eigenvectors
of the matrix R as follows:

X
m.s.=

n∑
j=1

χ j u j , (13.90)

where
m.s.= is equivalence in mean square, as defined in the previous section

and is analogous to the notion of convergence in mean square discussed in
Section 11.2.4; i.e.,

E[‖X −
n∑

j=1

χ j u j‖2] = 0, (13.91)

where ‖Y‖2 = 〈Y ,Y 〉 is the norm square of a random vector Y as defined by (10.9).
The expansion coefficient

χ j = 〈u j , X〉 =
n∑

i=1

u∗j,i Xi (13.92)

can be geometrically interpreted as the projection of vector X onto the basis vec-
tor u j . The expansion coefficients χ j are RVs and are orthogonal to each other
(Problem 13.10):

〈χi , χ j 〉 = E[χiχ
∗
j ] = λ j δi, j , (13.93)

which is analogous to the orthogonality (13.28).
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When n is large or infinite, we may choose to approximate X by using only the first
k(< n) terms in (13.90):

X̂k =
k∑

j=1

χ j u j , k < n. (13.94)

Then the mean-squared error is given (Problem 13.11) by

E2 � E

[∣∣∣X̂k − X
∣∣∣2] = n∑

j=k+1

λ j , (13.95)

which may be made small enough with an appropriate choice of k because of the
ordering (13.79) of the spectrum {λi }. Equation (13.94) is the basis of the principal
component analysis (PCA), which is widely practiced in data compression, pattern
classification, and clustering analysis. We will discuss PCA in Section 13.3.1.

10. If the sequence {X j } is WSS, then its autocorrelation matrix R = [Ri, j ] satisfies the
following property:

Ri, j = E[Xi X∗j ] = Ri− j , 1 ≤ i, j ≤ n. (13.96)

Such a matrix is called a Toeplitz [124, 125, 129]19 matrix, which is defined by the
following structure:

T =

⎡⎢⎢⎢⎢⎢⎣
a0 a1 a2 · · · an−1

a−1 a0 a1 · · · an−2

a−2 a−1 a0 · · · an−3
...

...
...

. . .
...

a−n+1 a−n+2 a−n+3 · · · a0

⎤⎥⎥⎥⎥⎥⎦ . (13.97)

In the correlation matrix of a WSS process, ai = Ri ,−n + 1 ≤ i ≤ n − 1, and the
matrix-vector equation (13.75) becomes a set of convolution sum expressions:

n−1∑
k=0

Ri−kuk = λuk, i = 0, 1, 2, . . . , n − 1, (13.98)

where

u = (u0, u1, . . . , un−1)
�. (13.99)

19 Otto Toeplitz (1881–1940) was a German-born mathematician and worked on algebraic geometry and
spectral theory.
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11. A special class of Toeplitz matrices are the circulant matrices [124, 125] in which
each row vector is a cyclic shift of the row vector above:

C =

⎡⎢⎢⎢⎢⎢⎣
c0 c1 c2 · · · cn−1

cn−1 c0 c1 · · · cn−2

cn−2 cn−1 c0 · · · cn−3
...

...
...

. . .
...

c1 c2 c3 · · · c0

⎤⎥⎥⎥⎥⎥⎦ . (13.100)

Thus, a circular matrix is completely specified by one vector c = (c0, c1,

c2, · · · , cn−1)
�, which appears as the first row of C . Note that the last column of C

is the vector c in the reverse order, and the remaining columns are each a cyclic shift
of the last column. The j th eigenvalue is given by (Problem 13.12)

λ j =
n−1∑
k=0

ck W jk, j = 0, 1, 2, . . . , n − 1, (13.101)

where

W = ei2π/n, i = √−1.

The corresponding eigenvector is given by

u j = (1,W j ,W 2 j , . . . ,W (n−1) j )�, j = 0, 1, 2, . . . , n − 1. (13.102)

Equation (13.101) shows that the set of eigenvalues (λ0, λ1, . . . , λn−1) is the DFT
of (c0, c1, . . . , cn−1). Note that the correlation matrix R of a WSS discrete-time
process has the circulant structure of (13.100) if and only if the process is periodic
with a period that divides n (i.e., period n/k with some integer k).20

12. If the Toeplitz matrix is of infinite dimension, i.e., in the limit n →∞, we can
use the generating function method (i.e., a polynomial representation) instead of
vectors (Problem 13.13):

R(z) =
∞∑

i=−∞
Ri z

i , u(z) =
∞∑

i=0

ui z
i . (13.103)

Then (13.98) becomes

(R(z)− λ) u(z) = 0. (13.104)

By setting z = eiω, we find

λ = R(eiω) = 2π P(ω), (13.105)

20 See Section 13.1.3 for the definition of a periodic WSS process.
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where

P(ω) � 1

2π

∞∑
k=−∞

Rke−ikω (13.106)

is the power spectrum of the WSS discrete-time process X = (Xn; 0 ≤ n <∞),
as discussed in Section 13.1.5. The set of eigenvalues becomes the power spec-
trum P(λ). In this case the number of distinct eigenvalues is infinite, and not even
countable. This is because the observation period is infinite.

13.2.2 Karhunen–Loève expansion and its applications

Now we are in a position to generalize the Fourier series expansion to a random process
X (t) which is not periodic. It may not be even a WSS process. Even if the process is
WSS, the power spectrum discussed in Section 13.1.4 will not apply if the observation
period is finite.

The theory to be developed below applies to nonstationary processes as well as sta-
tionary processes, and the observation period can be finite or infinite. The method can
be viewed as a continuous-time analog of the eigenvalue and eigenvector analysis of a
correlation matrix reviewed in the preceding section.

Our objective is to find a set of (possibly, infinitely many) orthogonal functions
{ui (t); i = 1, 2, . . .} that allows us to expand a random process X (t) when we are given
its autocorrelation (matrix) function RX (t, s):

X (t)
m.s.=

∑
i

Xi ui (t), 0 ≤ t ≤ T . (13.107)

We want to have double orthogonality in the sense that the functions are orthonor-
mal; i.e.,

〈um, un〉 �
∫ T

0
u∗m(t)un(t) dt = δm,n (13.108)

and

〈Xm, Xn〉 � E[X∗m Xn] = λmδm,n, (13.109)

where λn are some constants yet to be determined. Suppose that the above three require-
ments (13.107), (13.108), and (13.109) are satisfied. Then the autocorrelation function
should be represented as21

21 We write R(t, s) instead of RX (s, t) for notational simplicity.
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R(t, s) = E[X (t)X∗(s)] = E

[∑
n

Xnun(t)
∑

m

X∗mu∗m(s)
]

=
∑

n

∑
m

λnδn,mun(t)u
∗
m(s) =

∑
n

λnun(t)u
∗
n(s), 0 ≤ t, s ≤ T . (13.110)

Then we find∫ T

0
R(t, s)uk(s) ds =

∑
n

λnun(t)
∫

u∗n(s)uk(s) ds

=
∑

n

λnun(t)δn,k = λkuk(t), 0 ≤ t ≤ T . (13.111)

This result implies that, in the language of integral equations, the λk must be eigenval-
ues (or characteristic values) and the functions uk(t) must be the eigenfunctions (or
characteristic functions) of the integral equation:

∫ T

0
R(t, s)u(s) ds = λu(t), 0 ≤ t ≤ T . (13.112)

In the theory of integral equations, R(t, s) is called the integral kernel (or simply ker-
nel). Thus, we have shown that when X (t) satisfies the properties (13.107), (13.108),
and (13.109), then its autocorrelation (13.110) satisfies the integral equation (13.112)
for λ = λn, n = 1, 2, . . . .

Conversely, for a random process with continuous R(t, s), we can construct an
orthogonal expansion method for X (t) by finding eigenvalues λn and the corresponding
eigenfunctions un(t) of the integral equation (13.111). We scale un(t) so that they form
an orthonormal set. Let

Xn =
∫ T

0
X (t)u∗n(t) dt = 〈un(t), X (t)〉. (13.113)

Then

E[Xn X∗m] =
∫ T

0

∫ T

0
R(t, s)u∗n(t)um(s) dt ds

=
∫ T

0
λmum(t)u

∗
n(t) dt = λmδm,n. (13.114)

Thus, the orthogonality of the expansion coefficients given by (13.109) is satisfied. The
orthogonality condition (13.108) for the functions un(t) is satisfied, because they are
constructed from the eigenfunctions of the integral equation (Problem 13.14). In order
to show that the property (13.107) is met, let

X N (t) =
N∑

n=1

Xnun(t). (13.115)
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Then it readily follows that

E[X (t)X∗N (t)] = E[X N (t)X
∗
N (t)] =

N∑
n=1

λnun(t)u
∗
n(t) (13.116)

and

E[‖X (t)− X N (t)‖2] = R(t, t)−
N∑

n=1

λnun(t)u
∗
n(t). (13.117)

From (13.110) we have

lim
N→∞

N∑
n=1

λnun(t)u
∗
n(t) = R(t, t). (13.118)

Hence,

l.i.m.
N→∞X N (t) = X (t). (13.119)

If we consider a linear vector space (of infinite dimension) spanned by the orthonor-
mal functions {un(t)}, the expansion coefficient Xn is a projection of X (t) onto the nth
coordinate un(t) of this linear space. Thus, the continuous-time random process X (t) is
mapped to a vector of infinite dimension:

X = (X1, X2, . . . , Xn, . . .). (13.120)

Conversely, for a given X in the vector space, we construct the corresponding
continuous-time process according to (13.107), or more precisely

X (t) = l.i.m.
N→∞

N∑
n=1

Xnun(t), 0 ≤ t ≤ T . (13.121)

The energy of the square integrable function X (t) is defined as

E

[∫ T

0
|X (t)|2 dt

]
= E

[∫ T

0

∞∑
n=1

Xnun(t)
∞∑

m=1

X∗mu∗m(t) dt

]

= E

[ ∞∑
n=1

|Xn|2
]
=

∞∑
n=1

λn. (13.122)

The expansion (13.107) or (13.121) is called the Karhunen–Loève expansion, because
this representation was proposed by Loève [229]22 and Karhunen [174].23 It can
be viewed as a generalization of the Fourier series expansion. By dividing equation
(13.122) by T we have

22 Michel Loève (1907–1979) was a French–American probabilist and mathematical statistician who taught
at UC Berkeley.

23 Kari Karhunen (1915–1992) was a Finnish mathematician.
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E

[
1

T

∫ T

0
|X (t)|2 dt

]
= 1

T

∞∑
n=1

λn, (13.123)

which may be referred to as the spectral expansion of power with respect to the
functions un(t).

Example 13.1: Signal detection problem. Consider two hypotheses:24 under the
first hypothesis, denoted H0, the received signal X (t) is noise alone, and under the
alternative hypothesis, denoted H1, it includes the signal S(t); i.e.,

H0 : X (t) = N (t), 0 ≤ t ≤ T ;
H1 : X (t) = S(t)+ N (t)0 ≤ t ≤ T .

(13.124)

We assume that the signal S(t) is a known deterministic function, whereas the noise
N (t) is a complex-valued Gaussian process (see Section 12.4) with mean zero and
autocovariance function RN (s, t), 0 ≤ s, t ≤ T . Let λk and uk(t) (k = 1, 2, . . .) be the
eigenvalues and eigenvectors of the integral kernel RN (s, t); i.e.,∫ T

0
RN (s, t)uk(t) dt = λkuk(s), 0 ≤ s ≤ T, k = 1, 2, . . . (13.125)

We then convert the continuous-time functions X (t), S(t), and N (t) into a set
of the first M coefficients, X = [X1, X2, . . . , X M ], S = [S1, S2, . . . , SM ], and N =
[N1, N2, . . . , NM ], where

Xk =
∫ T

0
u∗k (t)X (t) dt, Sk =

∫ T

0
u∗k(t)S(t) dt, and Nk =

∫ T

0
u∗k(t)N (t) dt.

Then, the hypothesis testing (13.124) can be represented in terms of the M-
dimensional vectors:

H0 :X = N,

H1 :X = S+ N.
(13.126)

The expanded noise coefficients Nk are the complex representation of circularly sym-
metric Gaussian variables discussed in Sections 7.6.1 and 12.4. They have zero mean
and covariances

E[N j N∗
k ] = λ j δ j,k or E[N NH] =

⎡⎢⎢⎢⎣
λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λM

⎤⎥⎥⎥⎦ � �. (13.127)

24 Hypothesis testing is discussed in Section 18.2.1.
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Then the conditional PDFs of the complex-valued random vector X under the hypothe-
ses H0 and H1 are given, respectively, by

fX (x|H0) =
M∏

k=1

1

2πλk
exp

(
−

M∑
k=1

|xk |2
λk

)
= 1

(2π)M | det �| exp
(
−xH�−1x

)
(13.128)

fX (x|H1) = 1

(2π)M | det �| exp
[
−(x − s)H�−1(x − s)

]
. (13.129)

As we will fully discuss in Chapter 18, an optimal choice between the two hypotheses
can be made on the basis of the likelihood ratio

L(x) = fX (x|H1)

fX (x|H0)
= exp

(
M∑

k=1

s∗k xk + x∗k sk − |sk |2
λk

)
, (13.130)

which is to be compared with some fixed critical value λα (see (18.65)).25 We declare
that there is no signal present if L(x) < λα , or equivalently if

TM(x) �
M∑

k=1

s∗k xk + x∗k sk

λk
< ln λα +

M∑
k=1

|sk |2
λk

. (13.131)

A larger M , the number of expansion terms, implies that more information is used about
the input process X (t). Therefore, we consider the limit M →∞:

T (x) �
∞∑

k=1

s∗k xk + x∗k sk

λk
= 2 

{ ∞∑
k=1

s∗k xk

λk

}
. (13.132)

If we set qk = sk/λk and define the function Q(t) by

Q(t) =
∞∑

k=1

qkuk(t), (13.133)

we can write the above test statistic T (x) as

T (x) = 2 
{ ∞∑

k=1

q∗k xk

}
= 2 

{∫ T

0
Q∗(t)X (t) dt

}
, (13.134)

which is a manifestation of Parseval’s identity. Using representation (13.110) of
RN (s, t), i.e.,

25 The symbol λ of λα has nothing to do with the eigenvalues λk .
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RN (s, t) =
∞∑

k=1

λkuk(s)u
∗
k(t), (13.135)

and (13.133) of Q(t), we can show (Problem 13.15) that Q(t) is the solution to the
following Fredholm integral equation of the first kind:

∫ T

0
RN (t, u)Q(u) du = S(t). (13.136)

The integration (13.134) is a linear operation on the random process X (t) and can be
realized by passing X (t) into a linear filter whose impulse response is

h(t) � Q∗(T − t), 0 ≤ t ≤ T, (13.137)

because the integration (13.134) can be represented as the convolution integral of X (t)
with h(t) evaluated at t = T (Problem 13.16):

∫ T

0
Q∗(t)X (t) dt =

∫ t

0
h(s)X (t − s) ds

∣∣∣∣
t=T

. (13.138)

The left side is the cross-correlation between Q(t) and X (t) and is referred to as the
output of the correlator or correlation receiver in communications engineering. The
filter h(t) is often referred to as a matched filter in the sense it is an optimum filter that
receives the signal S(t) in the presence of noise with autocorrelation function RN (t)
(Problem 13.17: see also Problems 18.11 and 18.12 of Section 18.2.4).

Thus, the signal detection problem can be summarized as follows:

1. Solve the integral equation (13.136) to obtain Q(t).
2. Cross-correlate the input process X (t) with Q(t) and obtain the test statistic T (x)

of (13.134). Alternatively, pass the input X (t) into the matched filter h(t) defined by
(13.137) and sample the output at t = T to obtain T (x).

3. Compare T (x) against some preset threshold T0. If T (x) ≥ T0, accept the hypothesis
H1 (i.e., the signal is present). Otherwise, accept the hypothesis H0 (i.e., the signal
is absent).

The lower the threshold T0 is set, the higher the false alarm probability; i.e., the prob-
ability of accepting H1 when H0 is indeed true. Conversely, the higher T0 is set, the
higher the signal miss probability, i.e., the probability of accepting H0 when H1 is true.
An optimum value of the threshold T0 is determined by proper balance between the
above two types of error. Both the false alarm probability and signal miss probability
can be expressed in terms of the parameter d defined by

d2 �
∞∑

k=0

|sk |2
λk

=
∫ T

0
Q∗(t)S(t) dt. (13.139)
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The quantity d2 represents the signal-to-noise ratio (SNR) at the output of the correla-
tor or matched filter. See Section 18.2.3 for a further discussion of this signal detection
problem, including the receiver operating characteristic (ROC). �

As far as the practicality of the above procedure is concerned, the most difficult part
will be to solve the Fredholm integral equation (13.136) in the first step.

Example 13.2: The Karhunen–Loève expansion when noise is white. Now let us
consider the case where the noise N (t) in the previous example is white; i.e.,

RN (s, t) = σ 2δ(s − t). (13.140)

Then the integral equation (13.125) reduces to

σ 2
∫ T

0
δ(s − t)u(t) dt = λu(s), 0 ≤ s ≤ T, (13.141)

which is simply

σ 2u(s) = λu(s), 0 ≤ s ≤ T . (13.142)

Then, the set of orthonormal basis functions uk(t) is any set of orthonormal set of func-
tions and their corresponding eigenvalues are all σ 2; i.e., λk = σ 2 for k = 1, 2, . . . .
For the binary hypothesis testing problem in the previous example, the most convenient
choice is

u1(t) = S(t)

‖S‖ , where ‖S‖2 =
∫ T

0
|S(t)|2 dt. (13.143)

The expansion coefficients of an observation x(t), an instance of the random process
X (t), and the deterministic signal S(t) in terms of u1(t) = S(t)/‖S‖ are

x1 = 1

‖S‖
∫ T

0
S∗(t)x(t) dt, s1 = 1

‖S‖
∫ T

0
S∗(t)S(t) dt = ‖S‖. (13.144)

We could find the other orthonormal basis functions uk(t), k ≥ 2, but the expansion
coefficients sk are all zero for k ≥ 2. Thus, as far as the signal detection problem is
concerned, the expansion coefficients xk for k ≥ 2 are irrelevant, because they do not
contribute to the likelihood ratio statistic, since the numerators and denominators for the
terms k ≥ 2 in (13.130) cancel with each other. The test statistic T1(x) is a sufficient
statistic26 for this binary hypothesis testing problem:

26 The notion of sufficient statistic will be formally defined and discussed in Section 18.1. Informally speak-
ing, when any information contained in data x, other than that summarized in statistic T (x), does not
provide additional information useful for a given decision or estimation problem, the statistic T (x) is
called a sufficient statistic.
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T1(x) = s∗1 x1 + s1x∗1
σ 2

= 2‖S‖ {x1}
σ 2

. (13.145)

The solution to the integral equation (13.136) becomes

Q(t) = S(t)

σ 2
∝ S(t) (13.146)

and the SNR is given by

d2 =
∫ T

0
Q∗(t)S(t) dt = ‖S‖2

σ 2 . (13.147)

�

Example 13.3: Signal space method for digital communications. Now we general-
ize the binary hypothesis testing problem. In a digital communication systems, there are
multiple signals. Let S1(t), S2(t), . . . SM (t) be M possible signals. Then the hypothesis
test is to select among the following multiple hypotheses:

H0 :X (t) = N (t),

Hi :X (t) = Si (t)+ N (t), i = 1, 2, . . . ,M,
(13.148)

where the noise N (t) is assumed again to be white noise. Unlike in the signal
detection problem of the previous example, the null hypothesis H0 is usually not
considered in the communication problem, because the observer at the receiving
end normally assumes one of the M signals is transmitted by the sender. Inclu-
sion of H0, however, is mathematically convenient, because the likelihood ratio of
f (x|Hi ) to f (x|H0) is well defined, even when the conditional PDFs f (x|Hi )

are not.
Note that not all the M signals may be linearly independent of each other. So let

m(≤ M) be the dimensionality of the functional space spanned by the signal set. For
instance, bipolar signals with plus and minus pulses have only m = 1; the quadrature
amplitude modulation (QAM) and PSK (phase-shift keying) signals both have a signal
space of m = 2; CDMA (code division multiple access) signals of n-chip code have the
dimension m = n, and so forth.

Then, it suffices to find a set of m orthonormal functions using the Gram–Schmidt
orthogonalization process;27 i.e.,

27 See the online Supplementary Materials of this textbook, or books on linear algebra or matrix theory;
e.g., [124].
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u1(t) � S1(t)

‖S1‖ ,

r2(t) = S2(t)− s2,1u1(t), where s2,1 =
∫ T

0
u∗1(t)S2(t) dt,

u2(t) � r2(t)

‖r2‖ ,
ri (t) = Si (t)− si,1u1(t)− si,2u2(t)− · · · − si,i−1ui−1(t),

where si, j =
∫ T

0
u∗j (t)Si (t) dt,

ui (t) � ri (t)

‖ri‖ , i ≥ 2.

In the above step, ri (t) represents the difference (or residue) of Si (t) and its projection
to the subspace spanned by all the preceding basis functions u1(t), . . . , ui−1(t). Thus,
ri (t) is orthogonal to all of u1(t), . . . ui−1(t), and should be added as a new basis, and
ui (t) is the normalized version of ri (t); i.e., ‖ui‖ = 1.

This special case of the Karhunen–Loève expansion method for R(t) ∝ δ(t) is appli-
cable to communication systems with additive white noise, and is known as the signal
space method (e.g., see Wozencraft and Jacobs [361]). The input signal X (t) is pro-
jected onto the m-dimensional subspace spanned by the set of signals Si (t); 1 ≤ i ≤
M , and m ≤ M . Then, as we have done in the above signal detection problem, the
observed process x(t), an instance of the random process X (t), is converted into the m-
dimensional vector x = [x1, x2, . . . , xm] and the conditional PDFs and the likelihood
ratio can be defined in the same manner.

Assuming that all the signals are equally likely, the optimum decision rule is the
maximum-likelihood decision rule. This decides on the signal Sj (t) for which the
likelihood ratio L(x|Hj ) is the largest among all L(x|Hi ), where

L(x|Hi ) � f (x|Hi )

f (x|H0)
= exp

(
m∑

k=1

s∗i,k xk + x∗k si,k − |si,k |2
σ 2

)
, i = 1, 2, . . . ,M,

(13.149)

with the vector elements defined by

xk =
∫ T

0
u∗k(t)X (t) dt, k = 1, 2, . . . ,m; (13.150)

si,k =
∫ T

0
u∗k(t)Si (t) dt, k = 1, 2, . . . ,m, and i = 1, 2, . . . ,M. (13.151)

�
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Solving the Karhunen–Loève integral equation is reduced to the problem of solving
the corresponding differential equation. Problem 13.18 on the Karhunen–Loève expan-
sion of the Wiener process, which is a nonstationary process, also deduces a differential
equation from the integral equation.

13.3 Principal component analysis and singular value decomposition

In this section we present two important statistical analysis techniques that can be
applied to data which contain some correlation among them, and we wish to capitalize
on it for the purpose of data compression, pattern classification, retrieval of information,
etc., depending on the nature of data and our objective. They are principal component
analysis (PCA) and Singular value decomposition (SVD).

We assume the data are presented in a two-dimensional array; i.e., as a matrix of
size m × n. We denote this data set (or panel data, as it is called in econometrics) by
X = [xi j ]; namely,

X =

⎡⎢⎢⎢⎣
x11 x12 · · · x1n

x21 x22 · · · x2n
...

...
. . .

...

xm1 xm2 · · · xmn

⎤⎥⎥⎥⎦ . (13.152)

In a multivariate time series, for instance, xi j may represent the value of the i th variate at
discrete-time j . In a gene expression data [344], xi j may represent the expression level
of the i th gene in the j th assay. In a pattern classification problem, xi j may represent
the value of the m feature of the j th object. In latent semantic analysis (LSA) used in
information retrieval (IR) [23], the data set X is called the keyword-document matrix,
in which xi j is the number of occurrences of the i th keyword in the j th document. In
Web information retrieval, such as Google’s search engine, X is an estimate of the state
transition probability matrix P or the adjacency matrix A defined over the web graph.
We will discuss the web information retrieval application in Section 13.3.3.

13.3.1 Principal component analysis (PCA)

Principal component analysis is a statistical procedure that transforms a set of correlated
data into a smaller number of uncorrelated variates called principal components. The
conception of PCA may be traced back to the 1901 paper by K. Pearson [267]. Its
mathematical basis is that the correlation matrix R can be expanded as in (13.82).

13.3.1.1 Correlation across the m variates
Suppose we interpret the data X as an m-variate time-series data. An estimate of the
correlation matrix across the m variates, based on n samples, is given by the following
m × m matrix:
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R = [Rii ′ ] � 1

n
XXH = 1

n

n∑
j=1

x· j xH· j , i.e.,Rii ′ = 1

n

n∑
j=1

xi j xi ′ j , 1 ≤ i, i ′ ≤ m,

(13.153)
where

x· j =

⎡⎢⎢⎢⎣
x1 j

x2 j
...

xmj

⎤⎥⎥⎥⎦ .
We find the eigenvalues and eigenvectors of R as discussed in Section 13.2.1:

Rui = λi ui , i = 1, 2, . . . ,m. (13.154)

By writing

� =

⎡⎢⎢⎢⎣
λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λm

⎤⎥⎥⎥⎦ ,U = [u1u2 · · · um] , ui =

⎡⎢⎢⎢⎣
ui1

ui2
...

uim

⎤⎥⎥⎥⎦ , i = 1, 2, . . . ,m,

(13.155)
we can expand R as follows:

R = U�UH =
m∑

i=1

λi ui uH
i =

m∑
i=1

λi Ei , (13.156)

where

Ei = ui uH
i , i = 1, 2, . . . ,m,

are the projection matrices and are orthogonal to each other; namely,

Ei Ei ′ = Ei δi,i ′ and REi = λi Ei . (13.157)

We then decompose data X by projecting it to the new coordinates whose unit vectors
are given by u1, u2, . . . , um :

χ�i = uH
i X, i = 1, 2, . . . ,m, (13.158)

where each χ�i is an n-dimensional row vector. By forming an m × n matrix χ ,

χ =

⎡⎢⎢⎢⎣
χ�1
χ�2
...

χ�m

⎤⎥⎥⎥⎦ ,
we can write

χ = UHX = U−1X.
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Then, we can reconstruct X from the χ i as

X = Uχ =
m∑

i=1

uiχ
�
i . (13.159)

In other words, we transform the m × n array X into another m × n array χ , whose m
row vectors χ i are orthogonal to each other (Problem 13.19):

〈χ i ,χ i ′ 〉 � χ�i χ∗i ′ = μi δi,i ′, (13.160)

where μi = nλi are eigenvalues of the matrix XXH. We order the spectrums μi in
decreasing order; i.e., μ1 ≥ μ2 ≥ · · · ≥ μm .

Because of the relation ‖χ i‖2 = 〈χ i ,χ i 〉 = μi established in (13.160), we see that
the vector variable χ1 carries the largest amount of “information,” and χ2 is the next
largest, and so forth. Instead of keeping all the χ i , we may select only the k largest
spectral components, where k is a suitably chosen number. In other words, we use the k
principal components to approximate the original variable X by

X̂ =
k∑

i=1

uiχ
�
i . (13.161)

In order to quantify the quality of this approximation, we need to define the inner
product and norm of matrices.

D E FI N I T I O N 13.2 (Inner product and the norm of matrices). For m × n matrices A
and B, we define their inner product by

〈A, B〉 = trace(ABH). (13.162)

Then the norm of A is defined as

‖A‖ =
√

trace(AH A) =
√√√√ m∑

i=1

n∑
j=1

|ai j |2 (13.163)

which is called the Frobenius28 norm. �

The reader is suggested to check that the above definition of inner product satisfies
the five properties of an inner product space defined in Definition 10.1.

Then we can show (Problem 13.20) that the approximation error given in terms of the
sum of squares of the differences can be expressed by using the Frobenius norm

Q = ‖X− X̂‖2 =
m∑

i=1

n∑
j=1

|xi j − x̂i j |2 =
∑
j>k

μ j , (13.164)

28 Ferdinand Georg Frobenius (1849–1917) was a German mathematician.
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where μ j are the eigenvalues of the matrix XXH, as defined earlier. Equation (13.161)
forms the basis of data compression or data reduction based on the principal compo-
nents. Since the principal components χ i , 1 ≤ i ≤ k, contain much of the information
of X, they can be also used for classification of data, and for feature extraction for
pattern recognition.

Example 13.4: Let us assume m = 2 and n = 3, and the data are given by

X =
[

2 1 0
4 3 0

]
; hence, X� =

⎡⎣ 2 4
1 3
0 0

⎤⎦ .
Then

XX� =
[

5 11
11 25

]
; hence, R = 1

n
XX� = 1

3

[
5 11

11 25

]
.

Then we have the characteristic equation

det

∣∣∣∣1n XX� − λI

∣∣∣∣ = 0 or det

∣∣∣∣ 5− μ 11
11 25− μ

∣∣∣∣ = 0,where μ = nλ = 3λ,

which gives

μ2 − 30μ+ 4 = 0,

from which we find

μ1 = 15+√221 ≈ 29.8661, μ2 = 15−√221 ≈ 0.1339.

Thus

λ1 = μ1

3
= 9.9537, λ2 = μ2

3
= 0.0446; hence, � =

[
9.9537 0

0 0.0446

]
.

Then, we find the orthonormal vectors u1 and u2 as

u1 =
[

0.4045
0.9145

]
, u2 =

[ −0.9145
0.4045

]
; hence, U =

[
0.4045 −0.9145
0.9145 0.4045

]
.

Thus, from (13.158), we find

χ1 =
⎡⎣ 2 4

1 3
0 0

⎤⎦[ 0.4045
0.9145

]
=
⎡⎣ 4.4670

3.1480
0

⎤⎦ and

χ2 =
⎡⎣ 2 4

1 3
0 0

⎤⎦[ −0.9145
0.4045

]
=
⎡⎣ −0.2110

0.2990
0

⎤⎦ .
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Thus, we can expand the data X using the eigenvectors as follows:

X = u1χ
�
1 + u2χ

�
2 .

If we set k = 1 in the approximation formula (13.161), we obtain

X̂ = u1χ
�
1 =

[
1.8069 1.2734 0
4.0851 2.8788 0

]
.

Thus, the difference is

X− X̂ =
[

0.1931 −0.2734 0
−0.0851 0.1212 0

]
. (13.165)

Alternatively, we can find

X− X̂ = u2χ
�
2 =

[
0.1930 −0.2734 0
−0.0853 0.1209 0

]
. (13.166)

If we use (13.165), the sum of the squares of the differences is

Q =
m∑

i=1

n∑
j=1

|xi j − x̂i j |2 = 0.1339,

which is equal to the eigenvalueμ2, confirming the formula (13.165). If we use (13.166)
instead, we obtain Q = 0.1338, which is slightly off, but this is due to the truncation
error in numerical computation.

Figure 13.3a shows the data as three points (x1 j , x2 j ); j = 1, 2, 3 and their transfor-
mations in the new coordinate axes u1 and u2, which are represented as (χ1 j , χ2 j );

x2

y2

y1

x2

χ22

–

u2

u2

u1 u1

χ21

χ12

χ11

χ11 = –1.9295

x1 x1

χ13 = χ23 = 0

x x(2,4)

x x

(1,3)

7/3

(0,0)

x x

(0,0)

(a) (b)

χ12 = –0.6088

χ22 = –0.2717
χ21 = –0.2340

χ13 = –2.5388
χ23 = –0.0376

Figure 13.3 Geometric interpretations of (a) PCA directly applied to the data X; (b) PCA applied to the mean
adjusted data Y = X− x 1�n .
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j = 1, 2, 3. It is clear that the variation of the three points in the direction of u1 is much
larger than that along the u2 axis. This is reflected in the enormous difference in eigen-
values λ1 = 9.9537 versus λ2 = 0.0446. We can interpret λi as the second moment of
the three data points in the direction of ui ; i = 1, 2.

�

13.3.1.2 Adjustment by the empirical means
When the variance (i.e., the central second moments) of data is believed to be more
informative than the second moments, we should subtract the sample means (or
empirical means) before we apply PCA. We denote the translated data by Y:

Y = X− x 1�n ,

where

x =

⎡⎢⎢⎢⎣
x1·
x2·
...

xm·

⎤⎥⎥⎥⎦ and xi· =
∑n

j=1 xi j

n
,

and 1n is an n-dimensional column vector whose elements are all one. Then we apply
PCA to Y using the eigenvectors, which we denote as ũi , of the correlation matrix of
Y, which corresponds to the covariance matrix of X. Then the PCA expansion of the
original data X can be presented as follows:

X = Y+ x 1�n =
m∑

i=1

ũi χ̃
H
i + x 1�n , (13.167)

where

χ̃ i = YHũi = (XH − 1 xH)ũi , i = 1, 2, . . . ,m. (13.168)

The reader is suggested to work on the data X used in Example 13.4 (Problem 13.21).
Generally, the eigenvalues will decrease, since they are the central second moment of the
expansion coefficients χ j which have zero mean. In Figure 13.3 (b) we give a geometric
illustration of PCA applied to the mean adjusted data. The directions of the eigenvectors
are slightly different from the original case presented in Figure 13.3 (a).

13.3.1.3 Correlation across n data points
If we expect that the correlation across the n data points exists, we should form the
following n × n correlation matrix:

R̃ = 1

m
XHX. (13.169)
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If n > m, as in Example 13.4, this matrix is singular, since the rank29 r of a matrix
cannot be larger than min(m, n). As will be proved below, the first m eigenvalues of
XHX are the same as those of XXH. Thus, the first m eigenvalues of R̃ are the eigenval-
ues of R multiplied by n/m, and the remaining (n − m) eigenvalues are all zeros. We
denote the eigenvector associated with the j th eigenvalue λ j as v j and the collection of
eigenvectors by V :

V = [v1v2 · · · vm]. (13.170)

Then, similar to (13.89) and (13.156), we have the following similarity transformation:

R̃ = V �̃V H = V �̃V−1, (13.171)

where �̃ is a diagonal matrix, whose left upper corner is � and the rest of diagonal
terms are all zeros.

Example 13.5: Example 13.4 continued. Let us illustrate the above procedure by
using the same data of Example 13.4. Then we have

X�X =
⎡⎣ 20 14 0

14 10 0
0 0 0

⎤⎦ .
The characteristic equation for eigenvalues is given by

det|X�X− μI | = 0; i.e., det

∣∣∣∣∣∣
20− μ 14 0

14 10− μ 0
0 0 −μ

∣∣∣∣∣∣ = 0,

where the eigenvalue μ is related to the eigenvalue λ̃ of R̃ simply by μ = mλ̃ = 2λ̃.
Eigenvectors of X�X and those of R̃ are the same as we already pointed out. The last
expression is reduced to

μ(μ2 − 30μ+ 4) = 0.

Thus, μ1 and μ2 are the same as those found in Example 13.4 and μ3 = 0:

μ1 = 29.8661, μ2 = 0.1339, and μ3 = 0.

Thus,

λ̃1 = 14.9331, λ̃2 = 0.0669, λ3 = 0; hence, �̃ =
⎡⎣ 14.9331 0 0

0 0.0669 0
0 0 0

⎤⎦ .
29 The rank of a matrix is the number of linearly independent columns or rows.
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The corresponding orthonormal eigenvectors are

v1 =
⎡⎣ 0.8174

0.5760
0

⎤⎦ , v2 =
⎡⎣ −0.5760

0.8174
0

⎤⎦ , v3 =
⎡⎣ 0

0
1

⎤⎦ .
Thus,

V =
⎡⎣ 0.8174 −0.5760 0

0.5760 0.8174 0
0 0 1

⎤⎦ .
Then, by projecting X to the orthonormal eigenvectors v1, v2, v3, we can obtain the new
coordinates χ1,χ2, and χ3, which are now two-dimensional vectors. They are found as

χ1 = Xv1 =
[

2.2108
4.9976

]
,χ2 = Xv2 =

[ −0.3346
0.1482

]
,χ3 = Xv3 =

[
0
0

]
.

Thus, the data set can be written as

X = χ1v
�
1 + χ2u�.

If we choose k = 1, then the PCA approximation is

X̂ = χ1v
�
1 =

[
1.8071 1.2734 0
4.0850 2.8786 0

]
.

Then the difference between the original data and the PCA approximation is

X− X̂ =
[

0.1929 −0.2734 0
−0.0850 0.1214 0

]
, (13.172)

which can be alternatively computed as

X− X̂ = χ2u� =
[

0.1927 −0.2735 0
−0.0854 0.1211 0

]
. (13.173)

If we use the latter approximation, the sum of squares of the difference between the data
and its approximation is

Q =
m∑

i=1

n∑
j=1

|xi j − x̂i j |2 = 0.1339,

which is again equal to the eigenvalue μ2, as expected. If we use the error (13.172), we
find Q = 0.1338 ≈ μ2. �
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13.3.2 Singular value decomposition (SVD)

In the previous section we established the following two similarity transformations for
the m × n data set X:

XXH = U MUH, (13.174)

XHX = VM̃V H, (13.175)

where M and M̃ are diagonal matrices of size m and n respectively. In the rest of this
section we assume m ≤ n, unless stated otherwise. Then we can write these matrices as

M =

⎡⎢⎢⎢⎣
μ1 0 · · · 0
0 μ2 · · · 0
...

...
. . .

...

0 0 · · · μm

⎤⎥⎥⎥⎦, M̃ =

⎡⎢⎢⎢⎣
M 0 · · · 0
0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

⎤⎥⎥⎥⎦ .

If m ≥ n, the structure of M and M̃ should be reversed, and the eigenvalues run from
μ1 through μn , and the rest of the arguments should remain unchanged.

From (13.174) we can write

XXH = U
√

M
√

MUH = U���UH, (13.176)

where
√

M is an m × m diagonal matrix with
√
μi as its diagonal elements:

√
M =

⎡⎢⎢⎢⎣
√
μ1 0 · · · 0
0

√
μ2 · · · 0

...
...

. . .
...

0 0 · · · √
μm

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...

0 0 · · · σm

⎤⎥⎥⎥⎦ (13.177)

and

�=
[√

MO(n−m)×m

]
, or �=

⎡⎢⎢⎢⎣
σ1 0 · · · 0 0 · · · 0
0 σ2 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · σm 0 · · · 0

⎤⎥⎥⎥⎦, with σi =√μi ,

(13.178)

and we readily find the following simple relations among �, M, and M̃:

��� = M and ��� = M̃. (13.179)

Now for any n × n unitary matrix A (i.e., a matrix such that AAH = I), we have from
(13.176)

XXH = U�AAH��UH = (U�A)(U�A)H. (13.180)
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Then we readily find that X can be written as

X = U�A; hence, XHX = AH��UHU�A = AHM̃ A.

By comparing the last expression with (13.175), we identify AH = V . Thus, we finally
obtain the following decomposition for X:

X = U�V H =
min(m,n)∑

i=1

σi uiv
H
i , (13.181)

which is called the SVD of X [124]. The SVD expression (13.181) can be also written as

X =
min(m,n)∑

i=1

σi Ei ,where Ei � uiv
H
i . (13.182)

Here, Ei are m × n matrices, satisfying the following orthogonality conditions:

Ei EH
j = ui uH

i δi, j and EH
j Ei = viv

H
i δi, j , (13.183)

which are similar to (13.157). We also find (Problem 13.22)

Xv j = σ j u j ,XHui = σivi , (13.184)

for 1 ≤ i ≤ m, 1 ≤ j ≤ n,whereσ j = 0,min(m, n) < j ≤ max(m, n). This last
expression resembles (13.154).

We should note that, when m ≤ n, the m × m matrix U can be obtained once the
n × n matrix V and the m × m eigenvalue matrix M are found (Problem 13.23) as

U = [XV ]m×m M−1/2, (13.185)

where [XV ]m×m is the first m columns of the m × n matrix XV . Needless to say, when
m ≥ n, V can be found once U is obtained.

Suppose that we select the k(< min(m, n)) largest singular values σ1 ≥ σ2 ≥ · · · ≥
σk and ignore the terms for i > k in the decomposition (13.181) or (13.181). Then we
have the following approximate reconstruction of X:

X̂ =
k∑

i=1

σi uiv
H
i =

k∑
i=1

σi Ei . (13.186)

THEOREM 13.1 (Frobenius norm and singular values). The Frobenius norm of an m ×
n matrix A, ‖A‖ defined in Definition 13.2, is given by
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‖A‖2 = trace(AAH) =
min(m,n)∑

i=1

σ 2
i , (13.187)

where σi are the singular values of A.

Proof. The proof is left to the reader as an exercise problem (Problem 13.24).

Then the sum of squares of differences between X and its approximation can be
expressed as

Q = ‖X− X̂‖2 =
m∑

i=1

n∑
j=1

|xi j − x̂i j |2 =
m∑

i=k+1

σ 2
i . (13.188)

Therefore, the SVD decomposition, similar to the PCA decomposition, may allow us
to substantially reduce or compress the data and yet retain much of information, if k is
appropriately chosen.

Example 13.6: Consider the same 2× 3 data X used in Examples 13.4 and 13.5. The
entries of the singular matrix are computed as σ1 = √μ1 = 5.4650 and σ2 = √μ2 =
0.3660. Then the SVD decomposition

X = U�V H =
m∑

i=1

σi uiv
H
i

is found for this data X as

[
2 1 0
4 3 0

]
=
[

0.4045 −0.9145
0.9145 0.4045

] [
5.4650 0 0

0 0.3660 0

]⎡⎣ 0.8174 0.5760 0
−0.5760 0.8174 0

0 0 1

⎤⎦
= 5.4650

[
0.4045
0.9145

] [
0.8174 0.5760 0

]
+ 0.3660

[ −0.9145
0.4045

] [
0.5760 0.8174 0

]
. (13.189)

We can confirm the formula (13.185) by computing

XV =
[

2 1 0
4 3 0

]⎡⎣ 0.8174 −0.5760 0
0.5760 0.8174 0

0 0 1

⎤⎦ = [ 2.2108 −0.3346 0
4.9976 0.1482 0

]
.
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Hence,

[XV ]2×2 M−1/2=
[

2.2108 −0.3346
4.9976 0.1482

][
5.465−1 0

0 0.3660−1

]
=
[

0.4045 −0.9142
0.9145 0.4049

]
=V .

If we set k = 1 in (13.186) and discard the second term in the SVD decomposition,
we have an approximation of X:

X̂ = σ1u1v
H
1 =

[
1.8069 1.2733 0
4.0852 2.8787 0

]
.

Thus, the sum of the squares of differences is

Q = ‖X− X̂‖2 =
∥∥∥∥ 0.1931 −0.2733 0
−0.0852 0.1213 0

∥∥∥∥2

= 0.19312 + 0.27332 + 0.08522 + 0.12132 = 0.1347,

which is practically equal to σ 2
2 = 0.1340. Thus, we confirmed the formula (13.188).

�

In the above example, we readily notice that the third row of V H (i.e., the third column
of V ) and the third row of �H are superfluous. Note that this is not because the third
column of X happens to be all zeros, but because the rank of the matrix X is two. We
can simplify the above decomposition to

X =
[

2 1 0
4 3 0

]
=
[

0.4045 −0.9145
0.9145 0.4045

] [
5.4650 0

0 0.3660

] [
0.8174 0.5760 0
−0.5760 0.8174 0

]
.

By generalizing this observation, we can have a reduced form of singular value
decomposition of an m × n matrix X with m ≤ n:

X = U
√

MṼ
H
, (13.190)

XH = Ṽ
√

MUH, (13.191)

where Ṽ is an n × m matrix, obtained by deleting the (n − m) columns of the right end
of V .

The formula (13.185) to derive U from V can be rewritten as

U = XṼ M− 1
2 .

13.3.2.1 Computation of pseudo-inverse
The SVD has a broad range of application in matrix algebra, such as computation of the
pseudo-inverse, in addition to the least-squares fitting of data, matrix approximation,
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and determining the rank, range, and null space of a matrix. Here, we briefly discuss the
pseudo-inverse.

The pseudo-inverse A† of an m × n matrix A (whose entries can be real or complex
numbers) is defined as the unique n × m matrix satisfying all of the following four
criteria:

1. AA† A = A (here AA† need not be the identity matrix, but it maps all column
vectors of A to themselves);

2. A† AA† = A†;
3. (AA†)H = AA† (i.e., AA† is Hermitian); and
4. (A† A)H = A† A (i.e., A† A is also Hermitian).

The SVD provides a way of computing the pseudo-inverse of X, denoted X†, as
follows

X† = V�†UH,

where�†, the pseudo-inverse of�, is obtained by taking the reciprocal of each nonzero
element on the diagonal in ��.

13.3.3 Matrix decomposition methods for Web information retrieval

Web information retrieval is of increasing importance and poses technical challenges
and opportunities different from traditional information retrieval because of its huge
size and its rapidly changing nature. Google’s PageRank algorithm (e.g., see Del
Corso et al. [79] and Langville and Meyer [218]) is a computationally effi-
cient procedure to find the stationary distribution vector π of the transi-
tion probability matrix (TPM) P =[pi j ; i, j = 1, 2, . . . , n] of the Markov chain
defined over a Web graph, where each of n nodes (or states in the chain)
represents a web page. The stationary distribution vector is given as the solu-
tion of π� = π�P , as discussed in Section 15.2.2; so the PageRank statistic π =
(πi ; i = 1, 2, . . . , n) is equivalent to the left eigenvector associated with the eigenvalue
λ1= 1 of P .

Another search engine algorithm, known as HITS (hypertext induced topics search)
(see Kleinberg [187]) is based on PCA applied to the n × n adjacency matrix A = [ai j ]
of the Web graph, which is a 1–0 matrix defined by ai j = 1 if there is a link from node
i to node j and ai j = 0 otherwise. In terms of the Markov chain defined above, it is
simply given as ai j = sgn pi j .

Computational procedures for such spectral expansion of the matrix should take
advantage of the sparsity of the matrix A or P ; namely, the number of links (i, j)
with ai j = 1 (i.e., pi j > 0) is much smaller than n2. An algorithmic study for a Web
graph as large as n = 24 million nodes with more than 100 million links is reported
in the aforementioned 2005 publication [79], and these numbers will continue to grow
rapidly.
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13.4 Autoregressive moving average time series and its spectrum30

In econometrics, signal processing (e.g., video data stream), computer network traffic
modeling, and other numerous applications, autoregressive moving average (ARMA)
time-series models are very frequently used to represent autocorrelated discrete-time
data.

13.4.1 Autoregressive (AR) time series

An autoregressive time series of order p, denoted AR(p), is defined by

Xn =
p∑

i=1

ai Xn−i + en, n = 1, 2, 3, . . . , (13.192)

where ai , 1 ≤ i ≤ p, are constants and en
31 is the error variable and is usually assumed

to be white noise, meaning

E[en] = 0 and E[enem] = σ 2δn,m . (13.193)

Although the time-series data {xn}may be first observed at time n = 1, we consider that
the underlying random process {Xn} has started at some point in the past. In order for
the process to be stationary or WSS, we must define Xn for−∞ < n <∞. We assume
the error or disturbance en is independent of Xn−1, . . . , Xn−p. You may want to add
a constant a0 to the right-hand side of (13.192), but it does not change the essential
structure of the model. It simply changes the expectation of Xn from zero to E[Xn] =
a0/(1−∑p

i=1 ai ) �= 0, provided
∑p

i=1 ai �= 1 (Problem 13.25).

Example 13.7: AR(1) process. Let us first examine the simplest model, i.e., AR(1).
Then, by denoting a1 = a, we have

Xn = aXn−1 + en,−∞ < n <∞. (13.194)

Since en are uncorrelated and the current disturbance en is independent of Xn−1, we see
that the AR(1) process is a simple Markov chain. Furthermore, if the white noise is
Gaussian, Xn is also Gaussian, and thus it becomes a Gauss-Markov process (GMP).
We plot a sample path of a GMP in Figure 13.1 (see also Figure 22.8 of Chapter 22).

30 The reader may skip this section at first reading.
31 Although we use the lower case e, this is a random variable. In order to be consistent with the rest of the

book, we should use some capital letter, but en or εn seems conventionally used in the time series literature.
So we follow this abused notation in this section.
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By substituting the above recursive expression successively, we find

Xn = aXn−1 + en = a(aXn−2 + en−1)+ en = · · ·

=
k−1∑
j=0

a j en− j + ak Xn−k , k = 1, 2, 3, . . . (13.195)

The first term consists of the lagged values of the white noise en− j that drives the time
series Xn , and the effect of past noise diminishes geometrically, provided |a| < 1. If
|a| > 1, the process is nonstationary, because the weighting coefficient a j will grow
infinity in its magnitude as j →∞. If a = 1, {Xn} is a random walk (see Section 17.1)
and is also a martingale (see Definition 10.5).

If Xn−k is the starting value of this time series, its influence becomes negligibly
small as k →∞. So, if the time series is considered as having started at some time in
the distant past, we can write

Xn = lim
k→∞

k−1∑
j=0

a j Xn− j =
∞∑
j=0

a j Xn− j , (13.196)

where the limit should be interpreted as the limit in mean square or l.i.m. (see
Section 11.2.4, and also Problem 13.26). The above result can be also found by taking
the double-sided Z -transform of (13.194), yielding

X (z) = az−1 X (z)+ E(z), (13.197)

where

X (z) =
∞∑

n=−∞
Xnz−n and E(z) =

∞∑
n=−∞

enz−n . (13.198)

From (13.197), we have

X (z) = E(z)

1− az−1
=
⎛⎝ ∞∑

j=0

a j z− j

⎞⎠ E(z), (13.199)

where the region of convergence is |az−1| < 1; i.e., |z| > |a|. By equating the coeffi-
cients of the z−n terms in both sides of the above equation, we have

Xn =
∞∑
j=0

a j en− j , (13.200)

which is (13.196). Note that the last equation expresses Xn as a moving average (of infi-
nite order) of the white noise en , where the weighting coefficients a j are exponentially
decaying.

Since E[Xn] = 0, we have

Var[Xn] = E[X2
n] = RX [0],
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where RX [k] = E[Xn Xn+k] is the autocorrelation function of the time series Xn . From
(13.196), we can obtain (Problem 13.27 (a))

RX [0] = σ 2

1− a2 . (13.201)

Multiplying (13.196) by Xn+k and taking the expectation we have (Problem 13.27 (b))

RX [k] = a RX [|k| − 1], k = 0,±1,±2, . . . , (13.202)

which leads to

RX [k] = a|k|σ 2

1− a2 , k = 0,±1,±2, . . . . (13.203)

Using the Wiener–Khinchin formula (13.49), we find the power spectrum

PX (ω) = 1

2π

∞∑
k=0

RX [k]e−ikω = σ 2

2π(1+ a2 − 2a cosω)
,−π ≤ ω ≤ π. (13.204)

This result could have been directly obtained by using the relation between the input
and output spectrum and the transfer function of a linear system. If we write H(z) =
1/(1− az−1), then (13.199) can be written as

X (z) = H(z)E(z), |z| > |a|,whereH(z) = 1

1− az−1
. (13.205)

As is well known in the linear system theory, the power spectrum of the output process
is found by multiplying the power spectrum by the magnitude square of the system
transfer function |H(eiω)|2:

PX (ω) = Pe(ω)|H(eiω)|2. (13.206)

By substituting the power spectrum of the white noise

Pe(ω) = σ 2

2π
,−π ≤ ω ≤ π, (13.207)

we obtain

PX (ω) = σ 2

2π

1

|1− a e−iω|2 , (13.208)

which equals (13.204). �

Now we return to the AR(p) time series defined by (13.192). By taking the double-
sided Z -transform, we obtain as in the case of AR(1) the following expression:
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X (z) = E(z)

1− A(z)
,whereA(z) =

p∑
i=1

ai z
−i . (13.209)

Let α1, α2, . . . , αp be the roots of the characteristic equation:

1− A(z) = 1− a1z−1 − a2z−2 − · · · − apz−p = 0. (13.210)

Then, we can write

1− A(z) = (1− α1z−1)(1− α2z−1) · · · (1− αpz−1). (13.211)

Then it is not difficult to see that (13.200) can be generalized to

Xn = c1

∞∑
j=0

α
j
1 en− j + c2

∞∑
j=0

α
j
2 en− j + · · · + cp

∞∑
j=0

α
j
pen− j , (13.212)

where c1, c2, . . . , cp are constants that can be uniquely determined when we find the
partial fraction expansion of 1/(1− A(z)), namely,

c−1
1 = (1− α2α

−1
1 ) · · · (1− αpα

−1
1 ), c−1

2 = (1− α1α
−1
2 ) · · · (1− αpα

−1
2 ), · · · ,

c−1
p = (1− α1α

−1
p ) · · · (1− αp−1α

−1
p ). (13.213)

This procedure is similar to the steps required in the inversion of the PGF discussed in
Section 9.1.4. Note, however, that we defined the PGF as a polynomial in z, whereas
here we represent a time series as a polynomial in z−1, as done in the conventional Z -
transform. The power spectrum of the AR(p) time series {Xn} can be easily obtained
from the formula (13.206):

PX (ω) = σ 2

2π

1∣∣1−∑p
i=1 ai e−iω

∣∣2 . (13.214)

We observed earlier that an AR(1) process is a simple Markov chain. Equation
(13.192) defines that an AR(p) process is a Markov chain of order p. We remarked
in Section 12.2.5 that a higher order Markov chain can be reduced to a simple Markov
chain by defining the state space that is a p-fold Cartesian product of the original state
space. An AR(3) process, for instance, can be expressed as⎡⎣ Xn

Xn−1

Xn−2

⎤⎦ =
⎡⎣ a1 a2 a3

1 0 0
0 1 0

⎤⎦⎡⎣ Xn−1

Xn−2

Xn−3

⎤⎦+
⎡⎣ en

0
0

⎤⎦ . (13.215)

By generalizing this observation, we write an AR(p) as a simple Markov chain in terms
of the p-dimensional time series {Xn}, where

Xn = (Xn, Xn−1, . . . , Xn−p+2, Xn−p+1)
�, (13.216)
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which satisfies

Xn = AXn−1 + en, (13.217)

where

A =

⎡⎢⎢⎢⎢⎢⎣
a1 a2 · · · ap−1 ap

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

⎤⎥⎥⎥⎥⎥⎦ (13.218)

and

en = (en, 0, . . . , 0, 0)�. (13.219)

This vector representation of a univariate AR(p) will be convenient when we later
discuss the problem of choosing optimal AR coefficients a1, a2, . . . , ap in the model
construction or the problem of predicting the value of Xn given the AR model. We
can readily apply results from the Kalman filter theory, when we represent the AR(p)
process in this form.

The state-space representation (13.217) suggests that we can formulate a multi-
variate autoregressive process or a vector autoregressive process of first-order by an
m × 1 vector

Xn = (X1,n, X2,n, . . . , Xm,n),−∞ < n <∞, (13.220)

and the matrix A is an arbitrary m × m matrix of autoregressive parameters, not
restricted to the structure of (13.218), and en is an m × 1 vector of serially uncorre-
lated RVs with mean 0 and covariance matrix C . Such vector-valued autoregressive
processes are used in econometrics (e.g., see Hamilton [141] and Harvey [145]).

13.4.2 Moving average (MA) time series

We defined a moving-average process in Problem 12.2 and showed that the AR(1) pro-
cess can be represented as a moving average of infinite order as shown in (13.200). We
define a moving-average process of order q, denoted MA(q), as

Xn =
q∑

j=0

b j en− j ,−∞ < n <∞, (13.221)

where b j ; 0 ≤ j ≤ q are constants and en are white noise, as defined in (13.193). The
MA(q) process Xn has zero mean and the autocorrelation function

RX [k] = σ 2
q−|k|∑
i=0

bi bi+|k|. (13.222)
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By defining B(z) by

B(z) =
q∑

j=0

b j z− j , (13.223)

the power spectrum of the MA(q) time series is given by

PX (ω) = σ 2

2π
|B(eiω)|2 = σ 2

2π

∣∣∣∣∣∣
q∑

j=0

b j e
−iω

∣∣∣∣∣∣
2

. (13.224)

13.4.3 Autoregressive moving average (ARMA) time series

By combining the AR(p) and MA(q), we define the ARMA process {Xn} of order
(p, q), denoted ARMA(p, q), by

Xn =
p∑

i=1

ai Xn−i +
q∑

j=0

b j en− j ,−∞ < n <∞. (13.225)

By taking the double-sided Z -transform, we find

X (z) = A(z)X (z)+ B(z)E(z), (13.226)

from which we have

X (z) = B(z)E(z)

1− A(z)
, (13.227)

where X (z) and E(z) are defined in (13.198) and A(z) and B(z) are as defined in
(13.209) and (13.223) respectively.

The power spectrum of ARMA(p, q) is readily obtained by generalizing the argu-
ment that led to (13.214) and (13.224):

PX (ω) = σ 2

2π

∣∣∣∑q
j=0 b j e−iω

∣∣∣2∣∣1−∑p
i=1 ai e−iω

∣∣2 . (13.228)

The representation of ARMA(p, q) suggests that we can write Xn as the output of a
feedback and feed-forward filter driven by white noise, as shown in Figure 13.4, where
the case q > p is shown. The case p ≥ q should be self-explanatory. There exists a large
body of literature of digital filters of this type. The feed-forward component B(D) cor-
responds to finite impulse response (FIR) and the feedback component (1− A(D))−1

provides infinite impulse response (IIR). The problem of how to choose the best coeffi-
cients ai , 1 ≤ i ≤ p, and b j , 0 ≤ j ≤ q, to allow the ARMA model to fit the observed
data is mathematically equivalent to an optimal filter design problem when the mean
square error (MSE) is a criterion for optimality.
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Figure 13.4 Representation of the ARMA(p, q) as a feedback/feed-forward filter driven by white noise.

We rewrite (13.227) in two steps:

X (z) = B(z)S(z), (13.229)

S(z) = E(z)

1− A(z)
, (13.230)

The second equation can be written as

S(z) = A(z)S(z)+ E(z). (13.231)

In terms of time series, (13.229) and (13.231) can be written as

Xn =
q∑

j=0

b j Sn− j , (13.232)

Sn =
p∑

i=1

ai Sn−1 + en. (13.233)

In order to obtain a vector-matrix representation similar to (13.217), let r = max{p, q}
and define the r -dimensional state vector

Sn = (Sn, Sn−1, . . . , Sn−r )
� (13.234)

and an r -dimensional parameter vector b

b =
{
(b1, b2, . . . , bq)

�, if r = q ≥ p,
(b1, b2, . . . , bq , 0, . . . , 0), if q < p = r .

(13.235)

Then we find the following state-space representation that is equivalent to (13.232) and
(13.233):

Xn = b�Sn,

Sn = ASn−1 + en,
(13.236)
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where A is an r × r matrix. If r = p ≥ q, then its structure is exactly the same as that
of (13.218). If r = q > p, then we add (r − p) columns to the right end of the matrix
A of (13.218) and (r − p) rows to the bottom of A. Obviously ap+1 = · · · = ar = 0,
but otherwise the structure of the expanded matrix A is the same as (13.218), hav-
ing unity in all (i + 1, i) entries. Note that the state sequence Sn is unobservable, or
hidden. If the driving noise is Gaussian, as is often assumed in the ARMA process, this
hidden Markov process (HMM), a subject fully discussed in Chapter 20, becomes
an r-dimensional GMP. Then the Kalman filter theory, which will be discussed in
Section 22.3), is directly applicable to estimation and prediction of the ARMA time
series.

13.4.4 Autoregressive integrated moving average (ARIMA) time series

Related to ARMA(p, q) is an autoregressive integrated moving average (ARIMA)
process, denoted ARIMA(p, d, q), when the characteristic equation (13.210) has d
multiple roots of z = 1; i.e.,

1−
p∑

i=1

ai z
−1 = (1− z−1)d

⎛⎝1−
p−d∑
i=1

a′i z−i

⎞⎠ , (13.237)

where a′i ; 1 ≤ i ≤ p − d are a set of parameters that can be uniquely determined by the
factorization. Thus, we can write

X (z) = B(z)E(z)

(1− z−1)d
(

1−∑p−d
i=1 a′i z−i

) . (13.238)

If we define a new process {Yn} by

Y (z) = (1− z−1)d X (z), (13.239)

then

Y (z) =
∑q

j=0 b j z− j

1−∑p−d
i=1 a′i z−i

, (13.240)

which implies that {Yn} is an ARMA(p − d, q). If d = 1, we have Y (z) =
(1− z−1)X (z), i.e.,

Yn = Xn − Xn−1,−∞ < n <∞; (13.241)

hence,

Xn = Yn + Xn−1 = Yn + Yn−1 + Xn−2 = · · · =
∞∑
j=0

Yn− j . (13.242)

Thus, Xn is an integration of the ARMA process Yn; hence, it is named an ARIMA
process. The ARIMA(p, 1, q) process can be viewed as a generalized random walk,
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where the step sizes Y j are not independent, but are correlated to according to
ARMA(p− 1, q). The ARIMA(p, 1, q) is a martingale because E[Yn] = 0.

If p − 1 = q = 0, then {Yn} reduces to white noise {en} and Xn is indeed a ran-
dom walk. Thus, ARIMA(1,1,0) is a random walk and ARIMA(p, 0, q) is equivalent
to ARMA(p, q). When d is a noninteger, it is called fractional ARIMA (FARIMA)
or autoregressive fractionally integrated moving average (ARFINA), and this model is
found to be flexible enough to represent a LRD process (i.e., self-similar process) as
well as a short-range-dependent (SRD) process. If d ∈ (−0.5, 0.5), FARIMA(p, d, q)
is a stationary process. For example, see [162] and references therein.

13.5 Summary of Chapter 13

Fourier series expansion: g(t) =∑∞
k=−∞ gkei2πn f0t , f0 = 1/T (13.4)

where gk = 1
T

∫ T
0 g(t)e−i2πk f0t dt (13.3)

Parseval’s formula:
∑∞

n=−∞ |gn|2 = 1
T

∫ T
0 |g(t)|2 dt (13.8)

Fourier transform: G( f ) = ∫∞−∞ g(t)e−i2π f t dt (13.15)

Fourier inverse transform: g(t) = ∫∞−∞ G( f )ei2π f t d f (13.16)

Parseval’s formula:
∫∞
−∞ |G( f )|2 d f = ∫∞−∞ |g(t)|2 dt (13.17)

Periodic WSS process: RX (τ + T ) = RX (τ ) (13.19)

Fourier series expansion: X (t) = l.i.m.N→∞
∑N

n=−N Xnei2πn f0t (13.26)

where Xn = 1
T

∫ T
0 X (t)e−i2πn f0t dt (13.25)

Orthogonality of coefficients: 〈Xm, Xn〉 = E[X∗m Xn] = rnδm,n (13.28)

Power spectral density: SX ( f ) = ∫∞−∞ RX (τ )e−i2π f τ dτ (13.30)

WSS time series: E[Xn] = μX and E[Xn Xn+k ] = RX [k] (13.45)

Power spectrum: PX (ω) = 1
2π

∑∞
k=−∞ CX [k]e−ikω,

− π ≤ ω ≤ π
(13.49)

where CX [k] = E[(Xn − μX )(Xn+k − μX )] (13.46)

Inverse relation: CX [k] =
∫ π
−π PX (ω)eikω dω (13.50)

Periodogram: P (N )m = 1
N

∣∣∣∑N
n=1(xn − x (N ))W mn

∣∣∣2 (13.58)

Limit of E[P(N )m ]: limN→∞ E[P(N )m ] = 2π PX (2πm/N ) (13.63)

Expansion of R: R =∑N
n=1 λn unuH

n =∑N
n=1 λn En (13.82)

Similarity transformation: R = U�UH = U�U−1 (13.87)

PCA: X =∑N
n=1 χn un (13.90)

where χn = 〈un, X〉 =∑N
i=1 u∗n,i Xi (13.92)

MSE of PCA: E2 � E[|X̂ M − X|2] =∑N
n=M+1 λn (13.95)

Karhunen–Loève expansion: X (t) = l.i.m.N→∞
∑N

n=1 Xnun(t) (13.121)

where Xn =
∫ T

0 X (t)u∗n(t) dt = 〈un(t), X (t)〉 (13.113)



394 Spectral representation of random processes and time series

Double orthogonality: 〈um, un〉 �
∫ T

0 u∗m(t)un(t) dt = δm,n (13.108)

〈Xm, Xn〉 � E[X∗m Xn] = λmδm,n (13.109)

Characteristic equation:
∫ T

0 RX (t, s)u(s) ds = λu(t) (13.112)

PCA expansion: X =∑m
i=1 uiχ

�
i (13.159)

where χ i = X�u∗i (13.158)

Frobenius norm of a matrix: ‖A‖ =
√

trace(AH A)

=
√∑m

i=1
∑n

j=1 |ai j |2
(13.163)

Sum of squared PCA errors: Q = ‖X− X̂‖2 =∑ j>k μ j (13.164)

SVD expansion: X = U�V H =∑min(m,n)
i=1 σi uiv

H
i (13.181)

where � = [√MO(n−m)×m] (13.178)

Frobenius norm and SVD: ‖A‖2 = trace(AAH) =∑min(m,n)
i=1 σ 2

i (13.187)

Sum of squared SVD errors: Q = ‖X− X̂‖2 =∑m
i=k+1 σ

2
i (13.188)

AR(p) process: Xn =∑p
i=1 ai Xn−i + en (13.192)

Z -transform of AR(1): X (z) = E(z)/(1− az−1)

=
(∑∞

j=0 a j z− j
)

E(z)

(13.199)

Autocorrelation of AR(1): RX [k] = a|k|σ 2/(1− a2) (13.203)

Spectrum of AR(1): PX (ω) = σ 2/(1+ a2 − 2a cosω)
− π ≤ ω ≤ π

(13.204)

State-space rep. of AR(1): Xn = AXn−1 + en (13.217)

MA(q): Xn =∑q
j=0 b j en− j (13.221)

ARMA(p, q): Xn =∑p
i=1 ai Xn−i +∑q

j=0 b j en− j (13.225)

Z -transform of ARMA(p, q): X (z) = B(z)E(z)/(1− A(z)) (13.227)

State-space representation Xn = b�Sn

of ARMA(p, q): Sn = ASn−1 + en (13.236)

ARIMA(p, d, q): X (z) = B(z)E(z)

(1−z−1)d
(

1−∑p−d
i=1 a′i z−i

) (13.238)

13.6 Discussion and further reading

The Karhunen–Loève representation is a general theory that extends the Fourier anal-
ysis to continuous-time nonstationary random processes. We discussed its application
to signal detection problems and showed that the signal space method widely practiced
in communication systems analysis can be viewed as a special case of the Karhunen–
Loève expansion. The Karhunen–Loève expansion is discussed in many textbooks on
random processes written for engineering students, including Davenport and Root [77],
Gubner [133], Papoulis and Pillai [262], and Thomas [319].

Although we interpreted data X in Section 13.3 primarily as a multivariate time series,
both PCA and SVD should be applicable to any data presentable in a matrix form.
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They are applied, for instance, to gene expression analysis in bioinformatics [344],
latent semantic analysis (LSA) in natural language processing in such applications as
information retrieval [23]. SVD has been shown effective in extracting signal from
noisy data, especially in space-diversity reception such as multiple-input, multiple-
output (MIMO) systems. For example, see Kung et al. [217], van der Veen [336], and
Zhang [370].

Jolliffe [169] devotes an entire volume to PCA, and Golub and Van Loan [124] is a
good source for matrix theory, including SVD. Skillicorn [306] discusses applications
of several matrix decompositions, including SVD and the PageRank algorithms, to data
mining. As remarked in Section 13.3.3, Web information is an active area of research
for algorithmic development. The matrix decomposition method applied to the Markov
transition matrix (as in the PageRank algorithm) or to the adjacency matrix (as in the
HITS algorithm) can be viewed as instances of general spectral expansion, the common
theme of this chapter. For example, see Kleinberg [187], Del Corso et al. [79], and
Langville and Meyer [218] for reading of Web information retrieval algorithms.

Econometricians extensively use ARMA and ARIMA models and their multivariate
versions. For example, see Hamilton [141] and Harvey [145]. Jagerman et al. [162]
report that autoregessive-type traffic models have been applied to model variable bit
rate (VBR) video traffic. They also review the literature of fractional ARIMA(p, d, q).

13.7 Problems

Section 13.1: Spectral representations of random processes and time series

13.1∗ Parseval’s identity. Prove the identity (13.17).
Hint: Use the following identity.∫ ∞

−∞
ei2π f t d f = δ(t).

13.2 Periodic WSS random process. Show that if the autocorrelation function RX (τ )

is periodic with period T , X (t) satisfies (13.20).

13.3 Equivalence of random variables. Show that X
m.s.= Y if and only if X

a.s.= Y .

13.4∗ Orthogonality of Fourier expansion coefficients of a periodic WSS process.
Show that (13.28) holds among the Fourier series expansion coefficients Xn’s.

13.5 Derivation of (13.59). Derive the expression for the periodogram given by
(13.59).

Section 13.2: Generalized Fourier series expansions

13.6 Nonnegative definite matrix. Show that the correlation matrix R satisfies the
property (13.73).

13.7 Nonnegativity of spectrum. Prove (13.79); that is, show that the spectrum (i.e.,
set of eigenvalues) is nonnegative.
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13.8 Left and right eigenvectors. Show that when u is a right eigenvector of R
associated with eigenvalue λ, uH is the left eigenvector. In other words, prove (13.81).

13.9∗ Orthogonality of eigenvectors. Prove that eigenvectors associated with different
eigenvalues are orthogonal; i.e.,

〈ui , u j 〉 = uH
i u j = 0, for i �= j.

13.10 Variance of expansion coefficients in the eigenvector expansion. Prove
(13.93); that is, the expansion coefficients obtained in the eigenvector expansion are
orthogonal to each other.

13.11 Mean square error of eigenvector expansion approximation. Show that the
mean square error of the approximation (13.94) is given by (13.95).

13.12∗ Eigenvectors and eigenvalues of a circulant matrix. Show that the eigenval-
ues and eigenvectors of the circulant matrix (13.100) are given by (13.101) and (13.102),
by taking the following steps.

(a) Let u = (u0, u1, . . . , u j , . . . , un−1)
� be an eigenvector and λ be the corresponding

eigenvalue; i.e., Cu = λu. Show that the following equations must be satsified:

n−k−1∑
k=0

ckuk+ j +
n−1∑

k=n− j

uk−n+ j = λu j , j = 0, 1, 2, . . . , n − 1. (13.243)

(b) Assume the solution form u j = α j with some constant α. Show that the above
difference equations are reduced to

n− j−1∑
k=0

ckα
k + α−n

n−1∑
k=n− j

ckα
k = λ, j = 0, 1, 2, . . . , n − 1. (13.244)

(c) Let α−n = 1; i.e., α is one of the n distinct complex nth roots of unity. Then derive
(13.101) and (13.102).

13.13 Generating function method. Derive (13.103).

13.14 Orthogonality of eigenfunctions. Show that eigenfunctions un(t) are orthogo-
nal to each other.

13.15 Derivation of the integral equation (13.136). Show that the function Q(t)
defined by (13.133) satisfies the integral equation (13.136).

13.16 Matched filter equivalent to a correlation receiver. Show that the output of
a linear filter matched to Q∗(T − t) sampled at time t = T , as shown in the right side
of (13.138), is equal to cross-correlation between the input X (t) and Q(t) given by the
left side of (13.138).

13.17∗ Matched filter and SNR. Let h(t) be the impulse response of an arbitrary
linear filter. Let S0(t) be the filter output when the signal alone S(t) is added to the
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filter. Similarly, let N0(t) be the filter output when the WSS noise N (t) alone is added
to the filter.

(a) Write down the expression for the signal power at time t = T ; i.e., PS = |S0(t)|2t=T .
Similarly, write down the expression for the noise power PN = E[|N0(t)|2], by
assuming that the noise is white; i.e., RN (s, t) = σ 2δ(s − t).

(b) Find a linear filter h(t) that maximizes the signal-to-noise-ratio SNR = PS/PN .
Hint: Use the Cauchy–Schwarz inequality.

(c) Find a linear filter h(t) that maximizes SNR when the the noise process N (t) is not
white, not even stationary, and the autocovariance function is given by RN (t, s).

13.18∗ Orthogonal expansion of Wiener process. The Wiener process32 W (t) has
the autocorrelation function

RW(t, s) = σ 2 min(t, s) =
{
σ 2t, t < s,
σ 2s, t > s.

(13.245)

Follow the following steps and find eigenfunctions ψ(t) and eigenvalues λ that satisfy∫ T

0
RW(t, s)ψ(s) ds = λψ(t). (13.246)

(a) Show that ψ(t) should satisfy a differential equation

λψ ′′(t)+ σ 2ψ(t) = 0. (13.247)

(b) Case 1. λ < 0: Show that no solution exists in this case.
(c) Case 2. λ > 0: Let σ 2/λ = ω2. Show that the solutions are given by

ωn = (2n + 1)π

2T
; thus, λn = σ 2

ω2
n
, n = 0,±1,±2, . . . ,

and

ψn(t) =
√

2

T
sinωnt.

(d) Hence the Wiener–Levy process can be expanded as

W (t) =
∞∑

n=−∞
Wnψn(t) =

√
2

T

∞∑
n=−∞

Wn sinωnt. (13.248)

Show that the coefficients {Wn} are uncorrelated and

E[W 2
n ] = 4

[
σT

(2n + 1)π

]2

, n = 0,±1,±2, . . . . (13.249)

32 In an earlier section we used W (t) to represent a white noise process, so the reader should not confuse the
two processes. The Wiener process is an integration of white noise.
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(e) An alternative expansion of W (t) is

W (t) =
√

2

T

∞∑
n=0

Un sinωnt, (13.250)

where

E[U2
n ] = 8

[
σT

(2n + 1)π

]2

, n = 0, 1, 2, 3, . . . .

Section 13.3: Principal component analysis and singular value decomposition

13.19 Orthogonality of the expansion coefficient vectors χ i . Show the orthogonal-
ity given in (13.160); i.e.,

〈χ i ,χ i ′ 〉 � χ�i χ∗i ′ = μiδi,i ′ .

13.20∗ Sum of squares of the difference.

(a) Let A be an m × n matrix; i.e., A = [ai j ]. We define ‖A‖2 �
∑m

i=1
∑n

j=1 |ai j |2.
Suppose A has the following structure:

A = bc�, i.e., ai j = bi c j ,

where b is an m-dimensional column vector and c� is an n-dimensional row vector.
Show that

‖A‖ = ‖b‖2‖c‖2,

where the norm squares of vectors b and c are

‖b‖2 =
m∑

i=1

|bi |2and‖c‖2 =
n∑

j=1

|c j |2.

(b) Suppose that A is given as

A = b(1)c(1)
� + b(2)c(2)

�
,

where the n-dimensional vectors c(1) and c(2) are orthogonal. Find the expression
for ‖A‖2.

(c) Prove (13.164) for the sum of squares of the differences; i.e.,

Q =
m∑

i=1

n∑
j=1

|xi j − x̂i j |2 =
∑
j>k

μ j .

13.21 The covariance matrix-based PCA.Consider the 3× 2 data X discussed in
Example 13.4. Apply the PCA method after adjusting the data by subtracting the
empirical average.
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13.22 Derivation of SVD (13.184). Show that the singular values σi and singular
vectors ui and v j satisfy the equations in (13.184).

13.23 Derivation of U from V . Derive (13.185).

13.24 Frobenius norm and singular values. Prove the formula (13.187).

Section 13.4: Autoregressive moving average time series and its spectrum

13.25 Inclusion of a constant a0 in AR( p) of (13.192). Consider modifying (13.192)
by adding a constant term a0:

Yn = a0 +
p∑

i=1

ai Yn−i + en, n = 1, 2, 3, . . . . (13.251)

Show that the effect is simply to have Yn shifted from Xn by some constant, provided∑p
i=1 ai �= 1.

13.26∗ Mean square convergence of (13.196). Show that the first term in the final
expression of (13.195) converges to Xn of (13.196) in mean square; i.e.,

Xn = l.i.m.
k→∞

k−1∑
j=0

a j Xn− j . (13.252)

13.27 Variance and autocorrelation function of the AR(1) time series.

(a) Show that the AR(1) sequence Xn has the variance given by (13.201).
(b) Show that the autocorrelation function satisfies the recursion (13.202) and is given

by (13.203).



14 Poisson process, birth–death
process, and renewal process

In Section 12.2.6 we briefly described point processes and renewal processes. The
Poisson process and birth-and-death (BD) process are the simplest examples of a point
process. A renewal process is a generalization of the Poisson process and is used in
a variety of applications, including queueing theory and reliability theory. Some of the
results discussed in this chapter will be extended in Chapter 23, which discusses various
queueing and loss system models.

14.1 The Poisson process

14.1.1 Derivation of the Poisson process

We have already informally referred to the Poisson process on several occasions in pre-
vious chapters without really providing its mathematical definition. One way to define
the Poisson process is to assume that the interarrival times Xn (cf. (12.7)) of a point
process N (t) (cf. (12.6)) are independent and identically distributed (i.i.d.) RVs with a
common exponential distribution (Problem 14.1).

FX (x) = 1− e−λx , x ≥ 0. (14.1)

Alternatively, the Poisson process can be derived as a limiting case of Bernoulli trials
(Problem 14.2). But a more formal definition of the Poisson process is given as follows.

D E FI N I T I O N 14.1 (Poisson process). A Poisson process of rate λ is a counting process
N (t), t ≥ 0, taking values in the set Z

+ = {0, 1, 2, . . .} such that

(a) N (0) = 0 and N (t) is nondecreasing; i.e., if t2 > t1, then N (t2) ≥ N (t1).
(b) Its transition probabilities

Pmn(h) � P[N (t + h) = n|N (t) = m]
are stationary (i.e., independent of t) and satisfy

Pmn(h) =
⎧⎨⎩

1− λh + o(h), if n = m,
λh + o(h), if n = m + 1,
o(h), if n ≥ m + 2,

(14.2)
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where o(h) represents a quantity that approaches zero faster than h as h → 0; i.e.,
limh→0 o(h)/h = 0.

(c) If t > s, then N (t)− N (s), the number of arrivals in (s, t], is independent of N (s),
the number of arrivals in (0, s]. �

The Poisson process has been shown to be a plausible representation of a num-
ber of physical phenomena; e.g., the occurrence of telephone calls, order arrivals at
a service facility, and random failures of equipment. The first two examples are typi-
cal of problems encountered in queueing theory. Simply put, the Poisson process is a
mathematical model of completely random arrival patterns.

THEOREM 14.1. The Poisson counting process N (t) is Poisson distributed with mean
λt; i.e.,

P[N (t) = n] = (λt)n

n! e−λt , n = 0, 1, 2, . . . (14.3)

Proof. Let

pn(t) � P[N (t) = n]. (14.4)

To calculate pn(t + h) we note that N (t + h) = n occurs if one of the following two
situations occurs:

(i) N (t) = n and no arrival in (t, t + h];
(ii) N (t) = n − 1 and one arrival in (t, t + h].
Then we have

pn(t + h) = (1− λh + o(h))pn(t)+ (λh + o(h))pn−1(t)+ o(h)

= (1− λh)pn(t)+ λhpn−1(t)+ o(h), n ≥ 1, (14.5)

where the last term o(h) reflects the fact that Pmn(h)pn−m(t) is negligibly small for
m ≤ n − 2 as seen from (14.2). For n = 0 the above equation reduces to

p0(t + h) = (1− λh)p0(t)+ o(h). (14.6)

By subtracting pn(t) from both sides in (14.5), dividing them by h, and letting h → 0
we obtain

dpn(t)

dt
= λpn−1(t)− λpn(t), n ≥ 1,

dp0(t)

dt
= −λp0(t).

(14.7)

The above equations are ordinary homogeneous differential-difference equations. The
initial condition N (0) = 0 gives the following boundary condition:



402 Poisson process, birth–death process, and renewal process

pn(0) = δn,0. (14.8)

There are two methods to solve (14.7): (a) the induction method and (b) the PGF
method.

(a) Induction method: From (14.7) we readily find

p0(t) = C0e−λt , (14.9)

and the constant C0 can be determined, from the initial condition p0(0) = 1, as C0 = 1:

p0(t) = e−λt . (14.10)

Substituting this result into (14.7) with n = 1 yields

p1(t) = λt e−λt + C1e−λt , (14.11)

where C1 = p1(0) = 0 so that

p1(t) = λt e−λt . (14.12)

We repeat the same procedure and find

pn(t) = (λt)n

n! e−λt , n = 0, 1, 2, . . . (14.13)

This result can be easily verified by direct substitution into (14.7).

(b) Probability generating function (PGF) method: Alternatively, let us consider the
PGF of N (t):

G(z, t) � E[zN (t)] =
∞∑

n=0

pn(t)z
n. (14.14)

Multiplying (14.7) by zn and summing it over n = 0, 1, 2, . . ., we have

∂

∂t
G(z, t) = λzG(z, t)− λG(z, t) = λ(z − 1)G(z, t). (14.15)

The boundary condition (14.8) becomes

G(z, 0) = 1. (14.16)

Then from the last two equations we find

G(z, t) = eλ(z−1)t = e−λt
∞∑

n=0

(λt)n

n! zn . (14.17)

By comparing the coefficients of zn in (14.14) and (14.17), we arrive at (14.13).

In Problem 14.1 the reader is asked to show that independent interarrival times of
exponential distribution lead to the Poisson processes. Now we show the argument of
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the reverse direction. Namely, from Definition 14.1 and Theorem 14.1 we can show that
the interarrival times of the Poisson process are indeed i.i.d. exponential RVs.

THEOREM 14.2 (Interarrival times of the Poisson process). The interarrival times
X1, X2, . . . , Xn, . . . of the Poisson process are independent exponential RVs with mean
1/λ; i.e.,

P[Xn ≤ x] = 1− e−λx , x ≥ 0, for all n. (14.18)

Proof. Let us consider first X1, the interval from t = 0. Noting that

X1 > x, if and only if no arrival in (0, x],
we find, with n = 0 in (14.3), that

P[X1 > x] = P[N (x) = 0] = p0(x) = e−λx . (14.19)

Now, conditioned on X1 = t1,

X2 > x, if and only if no arrival in (t1, t1 + x].
Thus, we find

P[X2 > x |X1 = t1] = P[No arrival in (t1, t1 + x]|X1 = t1]. (14.20)

The event “No arrival in (t1, t1 + x]” is independent of the event “X1 = t1” because of
property (c) in Definition 14.1. Thus,

P[X2 > x |X1 = t1] = P[No arrival in (t1, t1 + x]] = e−λx . (14.21)

Thus, X2 is independent of X1 and has the same exponential distribution. Similarly,

P[Xn > x |X1 = t1, X2 = t2 − t1, . . . , Xn−1 = tn−1 − tt−2]
= P[No arrival in (tn−1, tn−1 + x]] = e−λx . (14.22)

Hence, Xn is independent of X1, X2, . . . , Xn−1 and has the distribution function

FX (x) = P[Xn ≤ x] = 1− e−λx , for all n. (14.23)

14.1.2 Properties of the Poisson process

In this section we discuss several important properties of the Poisson process.

14.1.2.1 Memoryless property of Poisson process
The first property of the Poisson process has to do with the memoryless property of
the exponential variable as discussed in Section 4.2.2. Assume that Y time units have
elapsed since the last arrival. Let us define a random variable
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R = X − Y, (14.24)

which is the remaining time until the next arrival. By applying the definition of
conditional probability, we can write

P[R ≤ r |X ≥ Y ] = P[R ≤ r, X ≥ Y ]
P[X ≥ Y ] = P[Y ≤ X ≤ Y + r ]

P[X ≥ Y ]
= FX (Y + r)− FX (Y )

1− FX (Y )
= e−λY − e−λ(Y+r)

e−λY
= 1− e−λr . (14.25)

Thus,

P[R ≤ r |X ≥ Y ] = 1− e−λr = FX (r). (14.26)

Therefore, the conditional distribution of R is independent of Y and has the same distri-
bution as the interarrival time. Thus, the Poisson process is said to have the memoryless
property such that, in calculating the probability of the remaining time before the next
arrival, we do not need to consider when the last arrival took place.

14.1.2.2 Superposition of Poisson processes
Consider m independent sources that generate streams of arrivals and assume that each
stream is a Poisson process of rate λk, k = 1, 2, . . . ,m. If we merge these streams into
a single stream, then we again have a Poisson process of rate λ = λ1 + λ2 + · · · + λm .
This reproductive additivity of Poisson processes is analogous to the sum of indepen-
dent Gaussian RVs. This property can be proved by using the PGF method as follows.

Let Nk(t) be the number of arrivals from the kth source in the interval (0, t]. Since it
is Poisson distributed with mean λk t , its PGF is, as found in (14.17), given by

Gk(z, t) = E
[
zNk(t)

]
= e−λk t (1−z). (14.27)

Therefore, the total number of arrivals N (t) =∑m
k=1 Nk(t) in the interval (0, t] from

all m sources has the PGF

G(z, t) = E
[
z
∑m

k=1 Nk(t)
]
=

m∏
k=1

Gk(z, t) = e−λt (1−z), (14.28)

with λ =∑m
k=1 λk , where the product form for G(z, t) is due to statistical independence

of the RVs N1(t), . . . , Nk(t) for any t .
Thus, the total number of arrivals in the merged stream is Poisson distributed with

mean λt . This in turn implies that the combined stream forms a Poisson process with
rate λ. (See Problem 14.3 for different ways to derive this result.)

14.1.2.3 Decomposition of a Poisson process
Let us now consider the opposite situation. Given a Poisson arrival stream of rate λ, let
us split the stream into m output substreams. For each arrival, we place it into the kth
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output substream with probability rk , and such assignments are done independently for
all arrivals. Then, we will show that the kth output stream is a Poisson process with rate
rkλ, k = 1, 2, . . . ,m. Furthermore, these k streams are statistically independent.

Let N (t) denote, as before, the number of input arrivals in (0, t] and let Nk(t) be
the number of arrivals that are sent into the kth substream. Then, the conditional joint
distribution of Nk(t) (k = 1, 2, . . . ,m), given N (t) = n, is the following multinomial
distribution:

P[n1, n2, . . . , nm |n] = n!
n1!n2! · · · nm !r

n1
1 rn2

2 · · · rnm
m . (14.29)

By multiplying the probability distribution (14.13), we obtain

P[n1, n2, . . . , nm] = n!
n1!n2! · · · nm !r

n1
1 rn2

2 · · · rnm
m
(λt)n

n! e−λt

=
m∏

k=1

(rkλt)nk

nk ! e−rkλt =
m∏

k=1

P(nk; rkλt),
(14.30)

where P(i; a) is the Poisson distribution defined by (3.77). Since the joint probability
factors into m Poisson distributions, the random variables N1(t), N2(t), . . . , Nm(t) are
statistically independent for an arbitrarily chosen interval (0, t]. Therefore, the m output
substreams are independent of each other for an arbitrarily chosen interval (0, t]; hence,
we have proved that the substreams form independent Poisson processes.

14.1.2.4 Uniformity of Poisson arrivals
Another important property of the Poisson process is what is called its uniformity:
given that there is an arrival in the interval (0, T ], its arrival epoch τ is uniformly
distributed over the interval; i.e.,

P[t ≤ τ ≤ t + h| an arrival in (0, T ]] = h

T
+ o(h). (14.31)

We can prove (14.31) as follows.
Suppose there are n arrivals in the interval (0, T ]. The joint probability that there

are i arrivals in a subinterval (0, t], one arrival in (t, t + h], and n − i − 1 arrivals in
(t + h, T ] is the product of three Poisson distributions:[

(λt)i

i ! e−λt
] (
λh e−λh

){ [λ(T − t − h)]n−i−1

(n − i − 1)! e−λ(T−t−h)
}

= λnh e−λT

(n − 1)!
(

n − 1

i

)
t i (T − t − h)n−i−1. (14.32)

Summing the above expression over the possible values of i , we find that the joint
probability that there are n arrivals in (0, T ] with an arrival in (t, t + h] is
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λnh e−λT

(n − 1)!
n−1∑
i=0

(
n − 1

i

)
t i (T − t − h)n−i−1 = [λ(T − h)]n−1

(n − 1)! λh e−λT , (14.33)

where we used the binomial formula
∑k

i=0

(k
i

)
xi yk−i = (x + y)k , with k = n − 1.

Since h is an infinitesimal interval, we rewrite (14.33) as

P[n arrivals in (0, T ] with an arrival in (t, t + h]] = (λT )n−1

(n − 1)! λh e−λT + o(h),

(14.34)
obtaining the conditional probability

P[an arrival in (t, t + h]|n arrivals in (0, T ]] =
(λT )n−1

(n−1)! λh e−λT + o(h)
(λT )n

n! e−λT

= nh

T
+ o(h). (14.35)

Since the n arrivals are independent, any one of them will fall into the interval (t, t + h]
with equal chance, with probability h/T . This final result is independent of n. Thus, we
have proved (14.31).

14.1.2.5 Infinitesimal generator of Poisson process
The Poisson counting process N (t) is a Markov process defined over a countably infinite
set of states

S = {0, 1, 2, . . . , n, . . . }. (14.36)

The process N (t) in state n − 1 at time t makes a transition to state n in (t, t + h]
with probability λh irrespective of how the process has reached the current state, and
how long the sojourn time in this state has been. These are the properties of Markov
processes, but N (t) is a special Markov process in that transitions to states other than to
the immediate right in an infinitesimal interval (t, t + h] can be ignored. In other words,
the probability of transition from n − 1 to n + 1 or larger is o(h).

Let pn(t) = P[N (t) = n] and let p(t) be a column vector of infinite dimension
defined as

p(t) = (p0(t), p1(t), . . . , pn(t), . . .)
�. (14.37)

The infinitesimal generator or transition rate matrix (see (16.23)) of N (t) is given by

Q =

⎡⎢⎢⎢⎢⎢⎣
−λ λ 0 0 · · ·
0 −λ λ 0 · · ·
0 0 −λ λ · · ·
0 0 0 −λ · · ·
...

...
...

...
. . .

⎤⎥⎥⎥⎥⎥⎦ . (14.38)
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Then, the set of differential-difference equations (14.7) can be concisely represented by
a single equation:

d p(t)�

dt
= p(t)�Q, (14.39)

which is a variant of Kolmogorov’s forward equation defined in (16.34).

14.2 Birth–death (BD) process

In this section we study properties of the random process N (t) that takes the form

N (t) = A(t)− D(t), (14.40)

where A(t) is the arrival counting process and D(t) is the departure counting process.
If we view N (t) as the the number of alive individuals in some population, then A(t)
is the number of births in the interval (0, t] and D(t) is the number of deaths in (0, t].
Therefore, N (t) represents the cumulative effect of births and deaths, and is aptly called
a birth–death (BD) process. This process has a number of applications, including
population biology and queueing and loss system models (see Chapter 23).

The formal definition of a BD process applies to the following special class of point
processes.

D E FI N I T I O N 14.2 (BD process). A random process N (t) is called a BD process if its
transition probabilities

Pm,n(h) = P[N (t + h) = n|N (t) = m] (14.41)

are independent of t and satisfy

Pm,n(h) =

⎧⎪⎪⎨⎪⎪⎩
λmh + o(h), n = m + 1,
μmh + o(h), n = m − 1,
1− {λm + μm}h + o(h), n = m,
o(h), |n − m| ≥ 2.

(14.42)

�

The values m = 0, 1, 2, . . . that N (t) assumes are called the states of the process,
and the coefficients λm and μm represent, respectively, the birth rate and death rate
when the process is in state m. If λm and μm are independent of m, then N (t) is called
a homogeneous BD process. The Poisson process is a special case of the BD process,
and is referred to as a pure birth process, where the birth rate is homogeneous, i.e.,
λm = λ for all m ≥ 0, and no deaths occur, i.e., μm = 0 for all m ≥ 0. Like the Pois-
son process, the BD process is a special class of Markov process, in which transitions
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within an infinitesimal interval from a given state m are limited only to either m − 1
or m + 1.

Let pn(t) be, as before, the probability that the population size at time t is n:

pn(t) = P[N (t) = n]. (14.43)

To calculate pn(t + h) we note that the population size at time t + h is n only if one of
the following events occurs:

1. N (t) = n and neither birth nor death occurs in (t, t + h];
2. N (t) = n − 1 and one birth in (t, t + h];
3. N (t) = n + 1 and one death in (t, t + h];
4. N (t) is other than n − 1, n, n + 1, but two or more births/deaths occur in
(t, t + h], making N (t + h) = n.

From the definition of a BD process, Pm,n(h) = o(h) for |m − n| ≥ 2, and thus the
probability of event 4 is o(h). The first three events are mutually exclusive, so that their
probabilities add. Therefore,

pn(t + h) = pn(t){1− λnh − μnh + o(h)}
+ pn−1(t){λn−1h + o(h)}
+ pn+1(t){μn+1h + o(h)} + o(h), (14.44)

from which we obtain the following differential-difference equations:

dp0(t)

dt
= −λ0 p0(t)+ μ1 p1(t),

dpn(t)

dt
= −(λn + μn)pn(t)+ λn−1 pn−1(t)+ μn+1 pn+1(t), n = 1, 2, . . . ,

(14.45)
or in matrix notation

d p(t)�

dt
= p(t)�Q, (14.46)

where the matrix Q is the transition rate matrix or infinitesimal generator matrix
(see Definition 16.3) given by

Q =

⎡⎢⎢⎢⎢⎢⎣
−λ0 λ0 0 0 · · ·
μ1 −λ1 − μ1 λ1 0 · · ·
0 μ2 −λ2 − μ2 λ2 · · ·
0 0 μ3 −λ3 − μ3 · · ·
...

...
...

...
. . .

⎤⎥⎥⎥⎥⎥⎦ . (14.47)

The solution of the above equations is manageable with certain restrictions imposed
on the BD rates (see Problems 14.9–14.11). But the general time-dependent solution of
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(14.45) is difficult to come by, so we should content ourselves with the equilibrium-state
solution. Indeed, in many applications, the equilibrium-state (or steady-state) solution
may be all we want.

We define an equilibrium-state distribution as πn such that pn(t) = πn specifies a
(constant) solution to (14.45). If such a distribution exists, it is unique, and for each
state n

lim
t→∞ pn(t) = πn . (14.48)

Since we are interested only in the statistical equilibrium properties of the system, we
take limits as t →∞ in (14.45), and set limt→∞ dpn(t)/dt = 0, thus obtaining the
following linear difference equations:

μ1π1 − λ0π0 = 0, (14.49)

μn+1πn+1 − λnπn = μnπn − λn−1πn−1, n = 1, 2, 3, . . . (14.50)

From the above equations,

μnπn = λn−1πn−1, for all n = 1, 2, 3, . . . . (14.51)

The left-hand side of the above equation represents the rate of transition from state n
to state n − 1 and the right-hand side is the transition rate from state n − 1 to state
n, and these two quantities should balance out each other in the steady state. The
equations (14.51) are called detailed balance equations, which hold between every
pair of adjacent states n − 1 and n of the BD process, n = 1, 2, . . . They are shown
schematically in Figure 14.1. Detailed balance equations for general Markov processes
will be discussed in Section 16.3.

From the detailed balance equations we obtain the following recurrence relation:

πn = λn−1

μn
πn−1, for all n = 1, 2, 3, . . . . (14.52)

The above balance equations can be derived from (14.46) as well. Setting
limt→∞ d p(t)�/dt = 0�,

π�Q = 0�, (14.53)

where π� = (π0, π1, . . . , πn, . . .) and 0� is a row vector of size infinity whose
elements are all zeros. By extracting the nth element in the above vector expression,

. . . . . . 

λ0

π0

μ1 μ2 μ3

π1 π2

λ1 λ2 λn–2
λn–1 λn λn+1

μn–1 μn μn+1 μn+2

πn–1 πn πn+1 . . . . . . 

Figure 14.1 A schematic diagram of the balance equation in the BD process.
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πn−1λn−1 − πn(λn + μn)+ πn+1μn+1 = 0, (14.54)

which is, as expected, equivalent to (14.50).
By a simple recursion, (14.52) leads to

πn = λn−1

μn
πn−1 = π0

n−1∏
i=0

λi

μi+1
, (14.55)

where π0 is determined by the condition
∞∑

n=0
πn = 1 or

π0

∞∑
n=0

n−1∏
i=0

λi

μi+1
= 1. (14.56)

Therefore, if the series

G =
∞∑

n=0

n−1∏
i=0

λi

μi+1
(14.57)

converges, then

π0 = G−1 =
[ ∞∑

n=0

n−1∏
i=0

λi

μi+1

]−1

. (14.58)

This constant G of (14.57) is called the normalization constant or partition function.

14.3 Renewal process

As introduced in Section 12.2.6, a point process in one-dimensional space (i.e., the
time axis) is a random process that consists of a sequence of epochs {t1, t2, . . . , tn, . . .}
where “point events” occur. Examples of point events are births of babies, occurrences
of traffic accidents, and transmissions of data packets. The Poisson process discussed in
the preceding section is one of the simplest examples of a point process. A point process
is a sequence of events in which only the times of their occurrence are of interest.

The point process, just like the Poisson process, can be represented by N (t), the
cumulative count of events in the time interval (0, t]:

N (t) = max{n : tn ≤ t}, (14.59)

which is called a counting process. The difference of the event points

Xn = tn − tn−1 (14.60)



14.3 Renewal process 411

N(t)+1
N(t)

N(t)

3
2
1

X1 X2 X3

t3 tN(t)

t

tN(t)+1t2t1t0 = 0

Figure 14.2 Renewal process N (t) with renewal points {tn}.

represents the interval between the (n − 1)st and the nth point events. Conversely, we
can write

tn = tn−1 + Xn =
n∑

i=1

Xi , (14.61)

where t0 = 0.
If we assume that the Xi are i.i.d. RVs with a common distribution function FX (x),

the point process N (t) formed is called a renewal process. The event points ti are called
renewal points and the intervals Xi are the lifetimes. The distribution function FX (x)
is thus called the lifetime distribution function of this renewal process.

It should be instructive to note that the renewal process N (t) can be interpreted as a
special random walk in which the t-axis corresponds to the one-dimensional real line,
and all steps are positive (i.e., steps to the “right”) with variable sizes (see Section 15.1
for the simple random walk model and Section 17.1 for general random walk models).
The RV Xi represents the step size of the i th step and tn is the position after the nth step.

14.3.1 Renewal function and renewal equation

The expected number of renewal points in (0, t] is called the renewal function M(t):

M(t) = E[N (t)], t ≥ 0, (14.62)

and

m(t) = d M(t)

dt
, t ≥ 0, (14.63)

is called the renewal density.
Let us denote by Ftn (x) the distribution function of the nth renewal point tn:

Ftn (x) = P[tn ≤ x], x ≥ 0. (14.64)
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Since tn−1 and Xn in (14.61) are independent, we have (cf. (5.29))

Ftn (x) =
∫ x

0
Ftn−1(x − y) d FX (y), x ≥ 0. (14.65)

If the PDF fX (x) exists (and hence ftn (x), which is the nth convolution of fX (x), exists
as well), the above equation becomes

ftn (x) =
∫ x

0
ftn−1(x − y) fX (y) dy = ftn−1(x)� fX (x), x ≥ 0, (14.66)

where � denotes convolution (cf. (5.27) and (8.75)).
By noting that N (t) is at least k, if and only if the kth renewal point occurs before

time t , i.e.,

N (t) ≥ k ⇐⇒ tk ≤ t, (14.67)

we find

P[N (t) ≥ k] = P[tk ≤ t] = Ftk (t) < t ≥ 0. (14.68)

Consequently, it follows that

P[N (t) = k] = P[N (t) ≥ k] − P[N (t) ≥ k + 1]
= Ftk (t)− Ftk+1(t), t ≥ 0, k = 1, 2, . . . . (14.69)

Recall that the expectation of a nonnegative RV is the integral of its complementary
distribution function (see (4.11)), which reduces to a sum for discrete RVs (see (3.120)).
Applying this result, we have

M(t) = E[N (t)] =
∞∑

n=0

P[N (t) > n] =
∞∑

k=1

P[N (t) ≥ k]

=
∞∑

k=1

P[tk ≤ t] =
∞∑

k=1

Ftk (t), t ≥ 0. (14.70)

The mean lifetime,

m X = E[Xi ] =
∫ ∞

0
x d FX (x) for all i, (14.71)

is strictly positive. If m X is finite, then by applying the strong law of large numbers (see
Section 11.3.3), we can show that (Problem 14.14)

N (t)

t
a.s.−→ 1

m X
. (14.72)

We remark that, in general, almost sure convergence does not imply convergence in the
mean (see Section 11.2.5). Nevertheless, the expected value version of (14.72) holds
indeed; i.e.,

lim
t→∞

M(t)

t
−→ 1

m X
. (14.73)
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A proof of (14.73) can be found in, for example, Wolff [357, Section 2-14].
Consider the first renewal point t1 = X1. If the first lifetime X1 exceeds t , there are no

renewals in (0, t]. If X1 < t , there is clearly one renewal at t1 = X1, plus, on average,
additional M(t − X1) renewals occurring in the remaining interval (X1, t]. Thus, we
have the following conditional expectation of N (t), given X1:

E[N (t)|X1 = x] =
{

0, if x > t,
1+ M(t − x), if x ≤ t.

(14.74)

Then, the unconditional expectation is obtained as

M(t) = E[N (t)] =
∫ ∞

0
E[N (t)|X1 = x] d FX (x) =

∫ t

0
(1+ M(t − x)) d FX (x).

(14.75)

Thus, the renewal function M(t) satisfies

M(t) = FX (t)+
∫ t

0
M(t − x) d FX (x), t ≥ 0, (14.76)

which is called the renewal equation. The corresponding equation for the renewal
density function is given by

m(t) = fX (t)+ m(t)� fX (t), t ≥ 0. (14.77)

By taking the Laplace transform of (14.77), we have

m∗(s) = f ∗X (s)+ m∗(s) f ∗X (s), (14.78)

from which we obtain

m∗(s) = f ∗X (s)
1− f ∗X (s)

. (14.79)

14.3.2 Residual life in a renewal process

As we discussed earlier, a renewal process is a counting process in which the lifetimes
{Xi ; i = 1, 2, . . .} between successive renewal points are i.i.d. with a common distribu-
tion function FX (x). Consider a sufficiently long interval [0, T ) and randomly choose
an epoch τ ; that is, τ is uniformly distributed in [0, T ). Suppose that the point τ falls
between two renewal points tk−1 and tk . Let us denote by X∗ the lifetime between these
two renewal points:

X∗ = tk − tk−1.

What is the distribution function of this RV?
Since X∗ = Xk and the distribution function of Xk is FX (x), we may hasten to con-

clude that the distribution function of X∗ is also FX (x). But this answer is incorrect!
This is because, although the observation epoch τ is distributed uniformly in [0, T ),
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the probability that a given subinterval [ti , ti+1) happens to include the epoch τ is not
uniform. The longer the lifetime Xi = ti+1 − ti is, the more likely this lifetime contains
the point τ .

The expected number of lifetimes in the interval [0, T ) is N = T/m X , where
m X = E[X ]. Out of N such lifetimes, the number of lifetimes of length (x, x + dx]
should be on average N fX (x) dx = T fX (x) dx/m X , and the sum of these lifetimes is

I (x, x + dx) = T x fX (x) dx

m X
.

Thus, the ratio I (x, x + dx)/T is the probability that the RV X∗ falls in (x, x + dx]:

fX∗(x) dx = I (x, x + dx)

T
= x fX (x)

m X
dx . (14.80)

Therefore,

fX∗(x) = x fX (x)

m X
, (14.81)

which leads to

FX∗(x) = 1

m X

{∫ x

0
[1− FX (u)] du − x [1− FX (x)]

}
. (14.82)

For given X∗ = x , the current lifetime or age Y = τ − tk−1, as shown in
Figure 14.3, is uniformly distributed in [0, x). Then the residual lifetime (also called the
excess lifetime or forward recurrence time) R = x − Y is also uniformly distributed
in [0, x). Thus,

P[r < R ≤ r + dr |X∗ = x] =
{ dr

x , r < x,
0, r ≥ x .

(14.83)

Then the unconditional probability that R falls in (r, r + dr ] is

P[r < R ≤ r + dr ] =
∫ ∞

r

dr

x
fX∗(x) dx =

∫∞
r fX (x) dx

m X
dr

= 1− FX (r)

m X
dr, r ≥ 0. (14.84)

X1

0 t1 t2 tk–1 tk tN T
τ

X2 X*

Y R

Figure 14.3 A renewal process with renewal points {ti }. The point t = τ is an arbitrary observation point, R
is the residual (or excess) lifetime, and Y is the current lifetime or age.
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The left-hand side of the above expression is equal to fR(r) dr ; thus, the PDF of the
residual life is given as

fR(r) = 1− FX (r)

m X
, r ≥ 0. (14.85)

By integrating this PDF, we obtain the distribution function

FR(r) = 1

m X

∫ r

0
[1− FX (x)] dx . (14.86)

It is not difficult to see that the distribution of the age Y is the same as that of the residual
life R. For a given renewal process N (t), −∞ < t <∞, its time-reversed process
N (−t) is also a renewal process that is statistically identical to the original process;
then the current lifetime Y in the original process becomes the residual lifetime R in its
time-reversed version.

The Laplace transform (LT) of the PDF fR(x) is given by

f ∗R(s) =
1

m X

∫ ∞

0
[1− FX (r)] e−sr dr = 1

m X

1− f ∗X (s)
s

, (14.87)

where we used the formula

L{FX (x)} = L
{∫ x

0
fX (u) du

}
= f ∗X (s)

s
.

Then the mean residual life, m R = E[R], is obtained by

m R = − lim
s→0

d f ∗R(s)
ds

= − 1

m X
lim
s→0

−s f ∗(1)X (s)− (1− f ∗X (s))
s2

= − 1

m X
lim
s→0

− f ∗(1)X (s)− s f ∗(2)X (s)+ f ∗(1)X (s)

2s
= f ∗(2)X (0)

2m X
, (14.88)

where f ∗(1)X (s) and f ∗(2)X (s) are the first and second derivatives of f ∗X (s). Thus,

m R = E[X2]
2E[X ] . (14.89)
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Example 14.1: Hyperexponential lifetime. Consider the k-phase hyperexponential
(or mixed exponential) distribution described in Problem 4.12:

FX (x) =
k∑

i=1

πi (1− e−μi x ) = 1−
k∑

i=1

πi e
−μi x , (14.90)

which gives m X =∑k
i=1 πi/μi . Then the distribution of the residual lifetime is

FR(r) = 1

m X

∫ r

0
[1− FX (x)] dx = 1

m X

∫ r

0

k∑
i=1

πi e
−μi x dx

= 1

m X

k∑
i=1

πi

μi
(1− e−μi r ). (14.91)

By defining the probability pi = πi/μi m X , we find

FR(r) =
k∑

i=1

pi (1− e−μi r ), (14.92)

which is a k-phase hyperexponential distribution with the same set of exponential
distributions, but with different weights.

Thus, the mean residual life is

m R = E[R] =
k∑

i=1

pi

μi
= 1

m X

k∑
i=1

πi

μ2
i

. (14.93)

A more informative expression of m R can be found by using the formula (14.89):

m R = E[X2]
2m X

= m2
X + σ 2

X

2m X
, (14.94)

where σ 2
X = Var[X ] and is given, for this hyperexponential distribution, by

σ 2
X = m2

X +
k∑

i=1

k∑
j=1

πiπ j

(
1

μi
− 1

μ j

)2

. (14.95)

Therefore, we find

m R = m X + 1

2m X

∑
i

∑
j

πiπ j

(
1

μi
− 1

μ j

)2

≥ m X . (14.96)

Thus, the mean residual lifetime for a hyperexponential distribution is longer than
the expected lifetime! This is owing to the fact that the coefficient of variation
(cX = σX/m X ) of this distribution is greater than one, as shown in the above. For a
k-stage Erlang distribution we have a different result (see Problem 14.16). �
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As we discussed in Section 6.3.3, if the RV X represents service time, then

h(x) = fX (x)

1− FX (x)
(14.97)

is called the completion rate function or hazard function (see (6.36) and (6.37)). In
the language of renewal theory, this is the age-dependent failure rate: h(x) dx repre-
sents the probability that the life will terminate in (x, x + dx] given that it has already
attained the age of x .

We also discussed in Section 6.3.3 the mean residual life curve defined by

RX (t) = E[R|X > t] =
∫∞

t [1− FX (u)]du

1− FX (t)
. (14.98)

Plotting these curves is useful as a first step in determining whether an observed lifetime
distribution should be modeled by an exponential or other “short-tailed” distribution or
whether it warrants the use of a heavy-tailed distribution such as a Weibull, Pareto, or
log-normal distribution.

14.4 Summary of Chapter 14

Poisson process
N (t):

(a) nondecreasing

(b) Pmn(h)=
⎧⎨⎩

1−λh+o(h), n = m,
λh+o(h), n=m+1,
o(h), n≥m+2,

Def. 14.1

(c) for t > s, N (t)− N (s) is independent of N (s)

Distribution of
N (t):

P[N (t) = n] = (λt)n

n! e−λt , n ≥ 0 (14.3)

Interarrival time
dist.:

FX (x) = P[Xn ≤ x] = 1− e−λx (14.23)

Properties of PP: 1. memoryless, 2. reproductive additivity,

3. reproductive decomposition, 4. uniformity

Infini. generator: Q =

⎡⎢⎢⎢⎢⎢⎣
−λ λ 0 0 · · ·
0 −λ λ 0 · · ·
0 0 −λ λ · · ·
0 0 0 −λ · · ·
...

...
...

...
. . .

⎤⎥⎥⎥⎥⎥⎦ . (14.38)

BD process N (t): Pm,n(h)=

⎧⎪⎪⎨⎪⎪⎩
λmh+o(h), n=m+1,
μmh+o(h), n=m−1,
1−{λm+μm}h+o(h), n=m,
o(h), |n−m|≥2,

(14.42)
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Equations for
pn(t):

dp0(t)
dt = −λ0 p0(t)+ μ1 p1(t),

dpn(t)
dt = −(λn + μn)pn(t)+ λn−1 pn−1(t)

+ μn+1 pn+1(t), n = 1, 2, . . .

(14.45)

Equation for p(t): d p(t)�
dt = p(t)�Q (14.46)

where Q =

⎡⎢⎢⎢⎢⎢⎣
−λ0 λ0 0 0 · · ·
μ1 −λ1 − μ1 λ1 0 · · ·
0 μ2 −λ2 − μ2 λ2 · · ·
0 0 μ3 −λ3 − μ3 · · ·
...

...
...

...
. . .

⎤⎥⎥⎥⎥⎥⎦ (14.47)

Equilibrium
distribution:

πn = limt→∞ pn(t) (14.48)

Balance equations: μnπn = λn−1πn−1, for all n = 1, 2, 3, . . . (14.51)

Equation for π : π�Q = 0� (14.53)

Solution: πn = π0
∏n−1

i=0
λi
μi+1

(14.55)

where π0 =
[∑∞

n=0
∏n−1

i=0
λi
μi+1

]−1
(14.58)

Counting process
N (t):

N (t) = max{n : tn ≤ t} (14.59)

Renewal process: Xn are i.i.d., where Xn = tn − tn−1 (14.60)

Renewal function: M(t) = E[N (t)] (14.62)

Renewal density: m(t) = d M(t)/dt (14.63)

Laplace transform
of m(t):

m∗(s) = f ∗X (s)
1− f ∗X (s)

(14.79)

Renewal equation: M(t) = FX (t)+
∫ t

0 M(t − x) d FX (x) (14.76)

Residual life PDF: fR(r) = 1−FX (r)
mX

, r ≥ 0 (14.85)

Mean residual life: m R = E[X2]
2E[X ] (14.89)

Hazard function: h(x) = fX (x)
1−FX (x)

(14.97)

Mean residual life
curve:

RX (t) = E[R|X > t] =
∫∞

t [1−FX (u)]du
1−FX (t)

(14.98)

14.5 Discussion and further reading

Renewal processes may be viewed as a generalization of Poisson processes. Most
textbooks on probability and random processes written for electrical engineers and
computer scientists, however, discuss very little of the renewal theory, with a possi-
ble exception of Trivedi [327]. For a further study of renewal processes, the reader
is referred to Çinlar [57], Cox [70], Cox and Lewis [71], Feller [100], Grimmett and
Stirzaker [131], Kao [173], Karlin and Taylor [175], Nelson [254], Ross [288], and
Wolff [358].
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Birth–death processes have many applications in demography, queueing theory, and
stochastic models in biology (e.g., the evolution of bacteria). All books on queueing
theory discuss the BD process and its applications to various classes of queueing system
models. However, queueing processes are often non-Markovian and are more difficult
to analyze than the simple BD process models. For further reading on queueing theory,
the reader is referred to, for example, Kleinrock [189], Kobayashi [197], Kobayashi and
Mark [203], Nelson [254], Trivedi [327], and Wolff [358].

14.6 Problems

Section 14.1: The Poisson process

14.1∗ Alternative derivation of the Poisson process. Consider a point process N (t),
in which point events occur at t1, t2, . . ., and let each interarrival time (or lifetime)
Xn = tn − tn−1 have the exponential distribution

FX (x) = 1− e−λx , x ≥ 0, (14.99)

and the corresponding PDF

fX (x) = d

dx
FX (x) = λ e−λx , x ≥ 0. (14.100)

(a) A point event does not necessarily occur at time t = 0. Find Ft1(t) = P[t1 ≤ t].
(b) Show

ftn+1(t) =
∫ t

0
ftn (t − u) fX (u) du, t ≥ 0, n = 0, 1, 2, . . . (14.101)

(c) Derive

P[N (t) = n] = (λt)n

n! e−λt , n = 0, 1, 2, . . . (14.102)

Hint: Use (14.69).

14.2 Bernoulli process to Poisson process. Recall that we derived the Poisson dis-
tribution P(i; a) of (3.77) as the limit of the binomial distribution in Section 3.3.3.
Consider a semi-interval (0, t] and divide it into m disjoint and contiguous subintervals
of small length h (Figure 14.4), where

m = t/h� .

.. . . . . . .
0 h T = mh2h

Figure 14.4 Partitioning of the interval (0, t] into m subintervals.
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Let the arrival rate be a constant λ. For any subinterval,

1. The probability of one arrival is λh + o(h).
2. The probability of two or more arrivals is o(h).
3. The probability of no arrival is 1− λh + o(h).

o(h) represents a quantity that approaches to zero faster than h, as h → 0.

(a) Treat an arrival as a “success” in a Bernoulli trial. Find an expression for the
probability of i arrivals in the m subintervals.

(b) Take the limits h → 0 and m →∞ while keeping mh = t and find the probability
distribution of the RV N (t), the number of arrivals in the period (0, t].

14.3 Superposition of Poisson processes.

(a) Let {X j ; j = 1, 2, . . . ,m} be a set of independent RVs, exponentially distributed
with parameters λ j , j = 1, 2, . . . ,m, respectively. Find the distribution of the RV

Y = min{X1, X2, . . . , Xm}.
(b) Using the result of (a), show that the superposition of m independent Poisson

processes with rates λ j (1 ≤ m) generates a Poisson process with rate λ =∑m
i=1 λi .

14.4 Consistency check of the Poisson process. Demonstrate the consistency of
Definition 14.1 for the Poisson process as follows.

(a) Show from (14.13) that the probabilities of no arrival, one arrival, and multiple
arrivals in a small interval h are given by 1− λh + o(h), λh + o(h), and o(h)
respectively.

(b) Derive the same set of probabilities as that given in part (a) from (14.99) alone.

14.5 Decomposition of a Poisson process.

(a) Let {X j } be a sequence of i.i.d. variables with the exponential distribution (14.99).
Let SN = X1 + X2 + · · · + X N , where N has the following geometric distribution:

P[N = n] = (1− r)n−1r, n = 1, 2, 3, . . . ,

where 0 < r < 1. Show that SN has an exponential distribution.
(b) Consider the problem of decomposing a Poisson stream into m substreams, as dis-

cussed in the text. Using the result of part (a), show that the kth substream is a
Poisson process with rate λrk, k = 1, 2, . . . ,m.

14.6 Alternate decomposition of a Poisson stream. Refer again to the problem of
decomposing a Poisson stream into the m substreams: rather than the independent selec-
tion, each substream receives every mth arrival; i.e., the first arrival, (m + 1) arrival,
(2m + 1) arrival, . . . , go to substream 1, the second, (m + 2), (2m + 2), . . . , arrivals go
to substream 2, etc. Find the interarrival time distribution of the individual substreams.
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14.7 Derivation of the Poisson distribution. Obtain the Poisson distribution (3.77)
through the following steps.

(a) Solve first for p0(t) from the differential equation (14.7). Insert this result into the
case n = 1 in (14.7) and solve for p1(t). Continuing by induction, obtain pn(t) for
all n ≥ 0.

(b) Alternatively, define the Laplace transform

p∗n(s) =
∫ ∞

0
pn(t)e

−st dt.

Derive algebraic equations for p∗n(s) from the differential equations of part (a) and
solve for p∗n(s) and then apply the inverse Laplace transform to obtain pn(t).

14.8∗ Uniformity and statistical independence of Poisson arrivals. Suppose that
n (unordered) arrivals, U1, . . . ,Un , of a Poisson process occur in the interval (0, T ].
Equation (14.31) establishes that the PDF of Ui conditioned on {N (T ) = n} is given by
fUi (u|N (T ) = n) = 1/T , u ∈ (0, T ], for each i = 1, . . . , n.

(a) Show formally that the joint PDF of U1, . . . ,Un conditioned on {N (T ) = n} is
given by

fU1···Un (u1, . . . , un|N (T ) = n) = 1

T n
, (14.103)

for all u1, . . . , un ∈ (0, T ]. Hence, U1, . . . ,Un are independent, conditioned on
{N (T ) = n}.

(b) Based on (14.103), describe a way to generate a sequence of n Poisson arrivals on a
given interval (0, T ].

Section 14.2: Birth–death (BD) process

14.9 Pure birth process. A BD process is called a pure birth process if λn = λ for all
n ≥ 0 and μn = 0 for all n ≥ 0. Assuming N (0) = 0, solve the differential-difference
equations (14.45) for pn(t) of the pure birth process.

14.10 Time-dependent solution. Set μn = 0 for all n ≥ 0 as in the above problem
but permit state-dependent birth rates λn . Show that the time-dependent solution for
pn(t) satisfies

pn(t) = e−λnt
[
λn−1

∫ t

0
pn−1(x)e

λn x dx + pn(0)

]
.

14.11 Pure death process. Let us consider a pure death process; that is, λn = 0 for
all n ≥ 0 and μn = μ for all n ≥ 1. Let the initial population be N (0) = N0. Show that
the time-dependent solution for pn(t) is given by
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pn(t) = (μt)N0−n

(N0 − n)!e
−μt , for 1 ≤ n ≤ N0,

and

p0(t) = 1−
N0−1∑
i=0

(μt)i

i ! e−μt .

14.12 The time-dependent PGF. We extend the notion of PGF to the time-dependent
probability distribution

G(z, t) =
∞∑

n=0

pn(t)z
n.

Solve the pure birth problem of Problem 14.9 using this generating function.

14.13∗ Time-dependent solution for a certain BD process. Let λ(n) = λ for all n ≥ 0
and μ(n) = nμ for all n ≥ 1. Find the partial differential equation that G(z, t) must
satisfy. Show that the solution to this equation is

G(z, t) = exp

[
λ

μ
(1− e−μt )(z − 1)

]
.

Show that the solution for pn(t) is given as

pn(t) =
[
λ
μ
(1− e−μt )

] j

j ! exp

[
− λ
μ
(1− e−μt )

]
, 0 ≤ n <∞. (14.104)

This particular BD process represents the M/M/∞ queue, which we will discuss in
Chapter 23.

Section 14.3: Renewal process

14.14∗ Derivation of (14.72). Derive (14.72) as follows:

(a) Apply the SLLN to show that

N (t)

tN (t)

a.s.−→ 1

m X
. (14.105)

(b) Show that t/tN (t)
a.s.−→ 1 as t →∞.

(c) Hence, establish (14.72).

14.15 The Poisson process as a renewal process. Consider the Poisson process N (t)
with rate λ.

(a) Find the renewal function M(t) and the renewal density m(t).
(b) Find ftn (x); i.e., the PDF of the kth arrival time tn .
(c) Show that M(t) obtained in (a) satisfies the renewal equation (14.76).
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(d) Find the Laplace transform m∗(s) of m(t) using (14.79) and then obtain m(t).
(e) Obtain the residual life PDF fR(r).
(f) Obtain the mean residual lifetime m R .

14.16 Residual lifetime of an Erlang distributed lifetime. Consider the following
k-stage Erlang distribution for the lifetime (or the interval between consecutive renewal
points) X :

FX (x) = 1− e−λx
k−1∑
j=0

(λx) j

j ! .

(a) Find an expression for fR(r), the PDF of the residual lifetime.
(b) Find the Laplace transform f ∗R(s) of the above PDF.
(c) Find the mean residual life m R and compare it with m X , the mean lifetime.

14.17 Residual lifetime of a uniformly distributed lifetime. Consider a renewal
process where the lifetime is uniformly distributed over [0, L] for some constant L .

(a) Find the distribution function and the expectation of the age Y seen by a random
observer.

(b) Do the same for the residual lifetime R.

14.18 Moments of residual lifetime and age.Show that the nth moment of the age Y
and the residual lifetime R is given by

E[Y n] = E[Rn] = E[Xn+1]
(n + 1)E[X ] . (14.106)

Hint: Generalize the following formula for a nonnegative RV X :

E[X ] =
∫ ∞

0
(1− FX (x)) dx .



15 Discrete-time Markov chains

In Section 12.2.5 we introduced the notions of Markov chains, both discrete-time
Markov chains (DTMCs) and continuous-time Markov chains (CTMCs). In both the
DTMC and CTMC, a discrete state space is implicitly assumed, although the number
of states can be countably infinite. The term “Markov process” is more general than
Markov chain, in that the state space can be continuous, although some authors use the
two terms synonymously. Markov processes are extensively used in many stochastic
modeling and statistical analyses, because many real systems can be adequately rep-
resented in terms of a Markov process, and because of the Markov property (i.e., the
memoryless property) a Markov process is simple to analyze. Markov processes have
been successfully used in queueing system modeling and traffic modeling, as discussed
in Chapter 23. A special type of Markov process model, called a hidden Markov
model (HMM), has been successfully used in a variety of scientific and engineering
applications, including coding and decoding in communications, natural language pro-
cessing such as speech recognition, and computational biology (e.g., DNA sequencing).
Chapter 20 will be devoted to this important topic.

15.1 Markov processes and Markov chains

Let t0 be the present time. Then a Markov process X (t) is a process such that its evo-
lution in the future, i.e., {X (t); t0 < t}, depends on its past {X (s); s ≤ t0} only through
the present value X (t0). This property is called the Markovian property or Markov
property. It is also sometimes referred to as the memoryless property, since the future
behavior of X (t) does not depend on how the current value X (t0) has been reached. Let
us begin with a more precise definition.

D E FI N I T I O N 15.1 (Markov process). A random process X (t) is called a Markov
process if, for any t1 < t2,

P[X (t2) ≤ x |X (t);−∞ < t ≤ t1] = P[X (t2) ≤ x |X (t1)]. (15.1)

�

Consider a set of n arbitrarily chosen instants in time, denoted as t1 < t2 < · · · <
tn−1 < tn . Then, the above Markov property implies
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P[X (tn) ≤ x |X (ti ); i = 1, 2, . . . , n − 1] = P[X (tn) ≤ x |X (tn−1)]. (15.2)

Markov processes can be either discrete-time or continuous-time. Often, the time
index runs through the set of nonnegative integers, and in such a case we write
{Xn; n= 0, 1, 2, . . .}. A Markov process {Xn} of this type is often called a Markov
sequence. The points in time may be equally spaced, or their spacing may depend on
some events in the physical system with which the random process is associated – for
example, occurrences of customer arrivals or departures in a queueing system. When
the states that Xn takes on are finite or, at most, countably infinite, we may label the
states as 0, 1, 2, . . .; i.e.,

S � {0, 1, 2, . . .}. (15.3)

The states may be nonquantitative or quantitative values.

D E FI N I T I O N 15.2 (hth order Markov chain). A random sequence1 Xn is called a
Markov chain of order h (or an hth order Markov chain) when Xn takes a finite or
countably infinite number of states S = {0, 1, 2, . . .} and if the state of Xn depends only
on the last h states; i.e., if

P[Xn |Xk;−∞ < k ≤ n − 1] = P[Xn |Xn−h, . . . , Xn−1], for all n. (15.4)

A first-order Markov chain is called a simple Markov chain. �

An hth order Markov chain, with appropriate choice of h, has been found to be a
useful statistical model to represent a variety of processes or phenomena we encounter
in the real world; for instance, a syntactic structure of an English sentence (Shannon
[300]), a sequence of phonemes of human speech (Jelinek [164]), a DNA sequence, the
price changes in a stock market, etc.

If Xn is a second-order Markov chain, we define a new sequence {Yn} by

Yn = (Xn−1, Xn). (15.5)

Then {Yn} is a first-order Markov chain over the state space S × S(= S2). In general,
if Xn is an hth order chain, then

Yn = (Xn−h+1, Xn−h+2, . . . , Xn−1, Xn), (15.6)

where Yn ∈ Sh reduces to a simple Markov chain. Thus, we will discuss only simple
Markov chains in the rest of this chapter. The term DTMC usually means a first-order
Markov chain or simple Markov chain as defined above.

The term Markov chain is often defined more broadly to include a “continuous-time”
(as well as discrete-time) Markov process with a finite or countably infinite number of
states. Thus, a continuous-time, discrete-state Markov process is often referred to as a
CTMC.

1 One may write {Xn}, but for notational brevity we simply write Xn , just like we write W (t) for a
continuous-type process.
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D E FI N I T I O N 15.3 (Transition probabilities). The conditional probabilities of a
(simple) Markov chain

P[Xn+1 = j |Xn = i] = Pi j (n), i, j ∈ S, n = 0, 1, 2, . . . (15.7)

are called the (one-step) transition probabilities. The matrix

P(n) = [Pi j (n)
]

(15.8)

is called the transition probability matrix (TPM). �

Example 15.1: Random walk. Let X1, X2, . . . , Xn, . . . be an i.i.d. sequence of +1s
and −1s:

P[Xn = +1] = p, P[Xn = −1] = 1− p � q.

Let Sn denote the running sum:

Sn = X1 + X2 + · · · + Xn = Sn−1 + Xn .

Clearly, {Sn} is a Markov chain with the transition probabilities

Pi j (n) =
⎧⎨⎩

p, j = i + 1,
q, j = i − 1,
0, otherwise,

for all integers i, j ∈ Z = {0,±1,±2, . . .} and time index n. Such a Markov chain {Sn}
is often referred to as a random walk. �

We can write a simple recursion equation for the state probabilities of a Markov
chain. Consider the probability p j (n + 1) that Xn+1 assumes state j . Now at time n the
system may be in any state i with probability pi (n), i ∈ S. For each state i ∈ S, there
is a transition probability Pi j (n) that the system will make the transition from this state
to state j . Hence,

p j (n + 1) =
∑
i∈S

pi (n)Pi j (n), j ∈ S, (15.9)

or in matrix and vector representation

p�(n + 1) = p�(n)P(n), (15.10)

where p�(n) is a row vector of dimension2 |S| (possibly infinite) with elements
p j (n), j ∈ S, and P(n) is an |S| × |S| matrix as defined in (15.8). If all Pi j (n) are
independent of n, we have

2 |S| denotes the cardinality of the set S; i.e., the total number of states.
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Figure 15.1 An example of a state transition diagram.

p�(n + 1) = p�(n)P for all n = 0, 1, 2, . . . , (15.11)

and such a Markov chain is called a homogeneous or stationary Markov chain.
A Markov chain can be represented graphically by the corresponding state transi-

tion diagrams. It is a signal flow graph in which the nodes represent the states i and
the directed arcs represent the transition probabilities Pi j . Figure 15.1 shows the state
transition diagram of a homegeneous three-state Markov chain, whose set of states is
S = {0, 1, 2} and its TPM is given by

P =
⎡⎣ 0 1 0

1
4

1
4

1
2

0 1
2

1
2

⎤⎦ . (15.12)

It is clear from the definition of conditional probabilities that the elements of the
TPM P must satisfy the following properties, whether the process is stationary or non-
stationary:

Pi j (n) ≥ 0 for all i, j, and n = 0, 1, 2, . . . (15.13)

and ∑
j∈S

Pi j (n) = 1 for all i ∈ S, and n = 0, 1, 2, . . . . (15.14)

Matrices satisfying (15.13) and (15.14) are called stochastic. Any stochastic square
matrix may serve as a TPM.

Example 15.2: Discrete memoryless channel and its stochastic matrix. Examples
of a stochastic matrix that are not a Markov chain TPM are provided by discrete mem-
oryless channels (DMCs), which play an important role in information theory [300].
Let {r1, r2, . . . , rm} be the set of symbols that the channel input X takes on and let
{s1, s2, . . . , sn} be the set of discrete values that Y may take. Then the channel matrix is
defined by



428 Discrete-time Markov chains

C =

⎡⎢⎢⎢⎣
P11 P12 · · · P1n

P21 P22 · · · P2n
...

...
. . .

...

Pm1 Pm2 · · · Pmn

⎤⎥⎥⎥⎦ ,
where Pi j is the probability that the input symbol ri is delivered by the channel as the
output symbol s j , where 1 ≤ i ≤ m and 1 ≤ j ≤ n. The matrix C is not even a square
matrix (unless m = n), but is always stochastic.

A simple case is where m = n = 2, P12 = P21 = p, and P11 = P22 = q = 1− p.
Both channel input and output symbols are binary symbols: “1” and “0.” Such a DMC
is commonly referred to as a binary symmetric channel (BSC):

C =
[

q p
p q

]
(BSC).

Another often used channel model is a binary erasure channel (BEC) in which r = 2
and s = 3. The input symbols are “1” and “0,” but the output symbols are “1”, “ε,” and
“0,” where the intermediate symbol is called an erasure. The channel output may take
this value with probability p(< 1) when the channel is noisy. The channel matrix in this
case is a 2× 3 matrix given by

C =
[

q p 0
0 p q

]
(BEC).

�

From (15.11) we find

p�(n) = p�(0)P(0)P(1) · · · P(n − 1), (15.15)

if the Markov chain is nonhomogeneous, and

p�(n) = p�(0)Pn, (15.16)

if it is homogeneous. The latter equation shows that the state probabilities of a Markov
chain are completely determined for all n ≥ 1, if we know the TPM P and the initial
state probability vector p(0).

If we set n ← m + n in (15.16), we have

p�(m + n) = p�(0)Pm Pn = p�(m)Pn. (15.17)

By letting the (i, j) element of the matrix Pn be denoted P(n)i j , i.e.,

Pn =
[

P(n)i j

]
, i, j ∈ S, (15.18)

we have

p j (m + n) =
∑
i∈S

pi (m)P
(n)
i j ,where i, j ∈ S,m, n = 0, 1, 2, . . . . (15.19)
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We interpret P(n)i j as the conditional probability that the Markov chain, which is in state
i at a given step, will be in state j after exactly n steps. Therefore, we call Pn the
n-step TPM. Then we have the following fundamental equation, commonly called the
Chapman–Kolmogorov equations.

THEOREM 15.1 (Chapman–Kolmogorov equations). In a homogeneous Markov chain
the following equations hold for all states i, j, k ∈ S and time (or step) indices m, n =
0, 1, 2, . . .:

P(m+n)
ik =

∑
j∈S

P(m)i j P(n)jk . (15.20)

Proof. The above result is immediately obtainable from the matrix multiplication
formula applied to P :

Pm+n = Pm Pn. (15.21)

But let us derive the formula (15.20) from the original definition of the n-step transition
probabilities. Since the Markov chain is homogeneous, we can write

P(m+n)
ik = P[Xm+n = k|X0 = i]

=
∑
j∈S

P[Xm+n = k, Xm = j |X0 = i]

(a)=
∑
j∈S

P[Xm+n = k|Xm = j, X0 = i]P[Xm = j |X0 = i]

(b)=
∑
j∈S

P[Xm+n = k|Xm = j]P[Xm = j |X0 = i]

=
∑
j∈S

P (n)jk P(m)i j , (15.22)

where (a) is obtained using the formula P[A ∩ B|C] = P[A|B ∩ C]P[B|C] and (b)
makes use of the Markov property; i.e., P[Xm+n = k|Xm = j, X0 = i] = P[Xm+n =
k|Xm = j] for any i, j, k ∈ S and m, n = 0, 1, 2, . . .

15.2 Computation of state probabilities

The evaluation of the state probability vector p(n) of (15.16) for large n is most conve-
niently done by using one of the following two methods: (a) the generating function
method or (b) the spectral expansion method. We will first discuss the generating
function method.
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15.2.1 Generating function method

If we let g(z) denote the generating function of the vector sequence { p(n); n =
0, 1, 2, . . .}, i.e.,

g(z) =
∞∑

n=0

p(n)zn, (15.23)

then we have from (15.11)

g�(z)P =
∞∑

n=0

p�(n + 1)zn = z−1
∞∑

n=0

p�(n + 1)zn+1

= z−1 g�(z)− z−1 p�(0), (15.24)

and hence,

g�(z) = p�(0)[I − Pz]−1, (15.25)

where I is the M × M identity matrix, where M = |S|.

Example 15.3: Consider the Markov chain whose TPM is defined by (15.12). The
two-step TPM is given by

P2 =
⎡⎢⎣ 0 1 0

1
4

1
4

1
2

0 1
2

1
2

⎤⎥⎦ ·
⎡⎢⎣ 0 1 0

1
4

1
4

1
2

0 1
2

1
2

⎤⎥⎦ =
⎡⎢⎣

1
4

1
4

1
2

1
16

9
16

3
8

1
8

3
8

1
2

⎤⎥⎦ .
Similarly, the three-step TPM is calculated as

P3 =
⎡⎢⎣

1
4

1
4

1
2

1
16

9
16

3
8

1
8

3
8

1
2

⎤⎥⎦ ·
⎡⎢⎣ 0 1 0

1
4

1
4

1
2

0 1
2

1
2

⎤⎥⎦ =
⎡⎢⎣

1
16

9
16

3
8

9
64

25
64

15
32

3
32

15
32

7
16

⎤⎥⎦ .
It can be shown, as discussed below, that if Pn is calculated successively for
n= 4, 5, 6, . . ., it converges to the following limit:

lim
n→∞ Pn = P∞ =

⎡⎢⎣
1
9

4
9

4
9

1
9

4
9

4
9

1
9

4
9

4
9

⎤⎥⎦ .
Namely, all rows become identical. By substituting the above result into (15.16), we
obtain

lim
n→∞ p�(n) = (p0(0)p1(0)p2(0))P∞ =

(
1

9

4

9

4

9

)
.
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That is, the probability of being in state j after a large number of steps (i.e., n →∞)
approaches a certain definite value, independent of the initial state.

The same result can be obtained by using (15.25). From linear algebra, the inverse of
a matrix A can be expressed as

A−1 = adj(A)
det|A| ,

where adj (A) is the adjugate (sometimes called classical adjoint) matrix of A and
det |A| is the determinant of A. Applying this result to (15.25), we have

[I − Pz]−1 = B(z)

(z)

, (15.26)

where

B(z) � adj (I − Pz) =

⎡⎢⎢⎣
1− 3z

4 − z2

8 z
(
1− z

2

) z2

2
z
4

(
1− z

2

)
1− z

2
z
2

z2

8
z
2 1− z

4 − z2

4

⎤⎥⎥⎦
and


(z) � det |I − Pz| = (1− z)

(
1+ z

4
− z2

8

)
. (15.27)

Hence,

[I − Pz]−1 = 1


(z)

⎡⎢⎢⎣
1− 3z

4 − z2

8 z
(
1− z

2

) z2

2
z
4

(
1− z

2

)
1− z

2
z
2

z2

8
z
2 1− z

4 − z2

4

⎤⎥⎥⎦ .
Then by substituting this expression and

p�(0) = (p0(0)p1(0)p2(0))

into (15.25), we obtain

g�(z) = (g0(z)g1(z)g2(z)),

where

g0(z) = 1


(z)

[
p1(0)

(
1− 3z

4
− z2

8

)
+ p2(0)

z

4

(
1− z

2

)
+ p3(0)

z2

8

]
,

g1(z) = 1


(z)

[
p1(0)z

(
1− z

2

)
+ p2(0)

(
1− z

2

)
+ p3(0)

z

2

]
,

g2(z) = 1


(z)

[
p1(0)

z2

2
+ p2(0)

z

2
+ p3(0)

(
1− z

4
− z2

4

)]
.
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By applying one of the PGF inversion techniques discussed in Section 9.1.4, we can
obtain the sequence of probabilities {pi (n); i = 0, 1, 2, n = 0, 1, 2, . . .}. The limit-
ing probabilities limn→∞ pi (n) can be obtained, however, without going through the
inversion of the PGF. By applying the final value theorem (see Problem 9.12), we have

lim
n→∞ p0(n) = lim

z→1
(1− z)g0(z) = 1

9
.

Similarly, we find

lim
n→∞ p1(n) = lim

z→1
(1− z)g1(z) = 4

9

and

lim
n→∞ p2(n) = lim

z→1
(1− z)g2(z) = 4

9
.

�

We now generalize the approach of Example 15.3 (see [330, p. 391]). Setting
the determinant 
(z) of (15.27) equal to zero, we denote its distinct roots as λ−1

i ;
i = 0, 1, . . . , k − 1. The λi are the nonzero eigenvalues (see the next section) of P , since
they satisfy the characteristic equation det |P − λI | = |λ|M
(λ−1) = 0. By noting

(0) = 1, we can write


(z) =
k−1∏
i=0

(1− λi z)
mi , (15.28)

where mi is the multiplicity of the eigenvalue λi . The degree b(≤ M − 1) of
numerator (matrix) polynomial B(z) can be equal to or greater than the degree
d = ∑k−1

i=0 mi (≤M) of the polynomial 
(z) when some of the eigenvalues of P are
zero, as can be seen from (15.28). Then, we divide B(z) by
(z), resulting in a quotient
polynomial B0(z) of degree b − d or less and a remainder polynomial B1(z) of degree
d − 1 or less:

B(z)

(z)

= B0(z)+ B1(z)


(z)
.

By applying the partial-fraction expansion method discussed in Section 9.1.4 to (15.26)
(see also [196], pp. 64–65), we can write

[I − Pz]−1 =
b−d∑
n=0

B0nzn +
k−1∑
i=0

mi∑
j=1

C i j

(1− λi z) j
, (15.29)

where (cf. (9.61))

C i j = (−1)mi− j

(mi − j)!λmi− j
i

dmi− j

dzmi− j

[
B1(z)(1− λi z)mi


(z)

]
z=λ−1

i

. (15.30)
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Using the formal power series expansion

[I − Pz]−1 =
∞∑

n=0

Pnzn, (15.31)

the matrix Pn is seen to be coefficient of zn in the partial-fraction expansion (15.29).
Using the Taylor series expansion or the formula (9.63), we find

1

(1− λi z) j
=

∞∑
n=0

(
n + j − 1

n

)
λn

i zn.

Applying this in (15.29) together with (15.31), we obtain (cf. (9.64))

Pn = B0n +
k−1∑
i=0

mi∑
j=1

C i j

(
n + j − 1

j − 1

)
λn

i , (15.32)

where B0n = 0 for n > b − d. The reader is referred to [320], p. 391 for a slightly
different approach to this problem, where the formula [Iz − P]−1 =∑∞

n=0 Pnz−n−1

is used.

15.2.2 Spectral expansion method

An alternative method to evaluate the state probability vector p(n) is to use the eigenval-
ues and eigenvectors of the TPM P . This is often referred to as the spectral expansion
method, since the set of eigenvalues of a matrix is also called its spectrum. The spectral
expansion method is similar to the generalized Fourier series expansion or Karhunen–
Loève expansion method discussed in Chapter 12. In this case, however, P is not a
symmetric matrix.

Let λi be the i th eigenvalue and ui be the associated right-eigenvector of the
Markov TPM:

Pui = λi ui , i ∈ S = {0, 1, 2, . . . ,M − 1}, (15.33)

where M = |S| is the number of states and ui is a column vector, making its transpose
u�i a row vector. We assume that all eigenvalues are distinct; i.e., there is no multiplicity
of any of the eigenvalues. Let us form an M × M matrix U by

U = [u0u1 · · · uM−1
]

(15.34)

and a diagonal matrix � by

� =

⎡⎢⎢⎢⎣
λ0 0 · · · 0
0 λ1 · · · 0
...

...
. . .

...

0 0 · · · λM−1

⎤⎥⎥⎥⎦ . (15.35)

Then the TPM P can be expanded as

P = U�U−1 = U�V , (15.36)
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where

V = U−1. (15.37)

By multiplying V on the left of (15.36), we have

V P = �V . (15.38)

Defining a set of row vectors v�i by

V =

⎡⎢⎢⎢⎣
v�0
v�1
...

v�M−1

⎤⎥⎥⎥⎦ , (15.39)

we find from (15.38)

v�i P = λiv
�
i , i ∈ S. (15.40)

Therefore, v�i is the left-eigenvector associated with the eigenvalue λi . From (15.2.2)
we have

V U = I, (15.41)

which implies that vi and u j are bi-orthonormal; i.e.,

v�i u j = δi j , i, j ∈ S. (15.42)

From (15.36) we find

P2 = U�U−1U�U−1 = U�2U−1. (15.43)

By repeating the same procedure (n − 1) times, we have

Pn = U�nU−1 =
∑
i∈S

λn
i uiv

�
i =

∑
i∈S

λn
i Ei , (15.44)

where the matrices

Ei = uiv
�
i , i ∈ S, (15.45)

are the projection matrices. By taking the transpose of (15.41) and expanding
I =U V� =∑i∈S vi u�i =

∑
i∈S E�i , we find the following identity:∑

i∈S
Ei =

∑
i∈S

E�i = I, (15.46)

which corresponds to the case n = 0 in the expansion formula (15.44).
In reference to (15.18), we write the n-step transition probability from state i to state

j as

P (n)i j =
∑
k∈S

λn
k ukivk j , i, j ∈ S, n = 0, 1, 2, . . . . (15.47)
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The state probability vector at step n is given, from (15.16), as

p�(n) = p�(0)Pn =
∑
k∈S

λn
k p�(0)ukv

�
k . (15.48)

Thus, the probability that the Markov chain is in state i at time n is given by

pi (n) =
∑
k∈S

λn
k

(
p�(0)uk

)
vki , i ∈ S. (15.49)

Example 15.4: Let us discuss the same three-state Markov chain used in Example
15.3. The characteristic equation that determines the eigenvalues is given by

det |P − λI | = 0, (15.50)

which can be rearranged as

det |I − λ−1 P | = 
(λ−1) = 0, (15.51)

where
(z)was defined in (15.27). Since we find that there are three roots for
(z) = 0,
z0 = 1, z1 = −2, and z2 = 4, we readily find the three eigenvalues of P : λ0= z−1

0 = 1,
λ1 = z−1

1 = − 1
2 , and λ2 = z−1

2 = 1
4 . Then, the corresponding right-eigenvectors are

readily found as

u0 =
⎡⎣ 1

1
1

⎤⎦ , u1 =
⎡⎣ 4
−2

1

⎤⎦ , and u2 =
⎡⎣ 4

1
−2

⎤⎦ .
Thus, we find

U = [u0u1u2] =
⎡⎣ 1 4 4

1 −2 1
1 1 −2

⎤⎦
and its inverse

V = U−1 = 1

9

⎡⎣ 1 4 4
1 −2 1
1 1 −2

⎤⎦ = 1

9
U,

from which we find

v�0 =
1

9
(1, 4, 4), v�1 =

1

9
(1,−2, 1), v�2 =

1

9
(1, 1,−2).
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The projection matrices are

E0 = u0v
�
0 =

1

9

⎡⎣ 1 4 4
1 4 4
1 4 4

⎤⎦ ,
E1 = u1v

�
1 =

1

9

⎡⎣ 4 −8 4
−2 4 −2

1 −2 1

⎤⎦ ,
E2 = u2v

�
2 =

1

9

⎡⎣ 4 4 −8
1 1 −2
2 2 −4

⎤⎦ .
Then, the n-step TPM is readily computed as

Pn =
2∑

i=0

λn
i Ei

= 1

9

⎡⎣ 1 4 4
1 4 4
1 4 4

⎤⎦+ 1

9

(
−1

2

)n
⎡⎣ 4 −8 4
−2 4 −2

1 −2 1

⎤⎦+ 1

9

(
1

4

)n
⎡⎣ 4 4 −8

1 1 −2
2 2 −4

⎤⎦ .
Suppose that the Markov chain is initially at state 1; i.e., p�(0) = (1, 0, 0). Then,

p�(n) = p�(0)Pn = 1

9
(1, 4, 4)+ 1

9

(
−1

2

)n

(4,−8, 4)+ 1

9

(
1

4

)n

(4, 4,−8)

= (p(n)0 p(n)1 p(n)2 ),

where

p(n)0 = 1

9
+ 4

9

(
−1

2

)n

+ 4

9

(
1

4

)n

,

p(n)1 = 4

9
− 8

9

(
−1

2

)n

+ 4

9

(
1

4

)n

,

p(n)2 = 4

9
+ 4

9

(
−1

2

)n

− 8

9

(
1

4

)n

.

We can also verify that p(n)0 + p(n)1 + p(n)2 = 1 for all n as expected, because the n-step
TPM Pn is a stochastic matrix.

We also find that, in the limit n →∞, p(n)0 → 1
9 , p(n)1 → 4

9 , and p(n)2 → 4
9 . These

steady-state probabilities are independent of the initial probability p(0). The left-
eigenvector v0, associated with the eigenvalue λ0 = 1, determines the steady-state
solution. �

15.2.2.1 Multiplicity of eigenvalues
In the analysis and example given above we assumed that the eigenvalues of P were all
distinct. Suppose that there are only k distinct eigenvalues λi , i = 0, 1, . . . , k − 1, and
the degree of multiplicity of λi is mi (≥ 1). Clearly,
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k−1∑
i=0

mi = M,

where M = |S|, the number of states in the Markov chain. When the set of right-
eigenvectors, {u0, . . . , uM−1}, is linearly independent, the spectral decomposition of
P given by (15.36) still holds and the matrix P is said to be diagonalizable. In gen-
eral, a matrix is diagonalizable if and only if it has a set of M linearly independent
eigenvectors. However, if a matrix is not diagonalizable, i.e., if it has J (< M) linearly
independent eigenvectors, we can still express P using what is known as the Jordan
canonical form:

P = U�U−1 = U�V , (15.52)

where the matrix � is now a block diagonal matrix with the following structure:

� =

⎡⎢⎢⎢⎣
�1 0 · · · 0
0 �2 · · · 0
...

...
. . .

...

0 0 · · · �J

⎤⎥⎥⎥⎦ , (15.53)

where the submatrix � j ( j = 1, 2, . . . , J ) is an n j × n j super-diagonal matrix:

� j =

⎡⎢⎢⎢⎣
λi 1 0 · · · 0
0 λi 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · λi

⎤⎥⎥⎥⎦ . (15.54)

Here we assume that � j is associated with one of gi (≤ mi ) linearly independent eigen-
vectors associated with eigenvalue λi . If gi = mi , then all gi submatrices � j are simply
a scalar λi , which is a degenerate case of the structure (15.54). If gi < mi , there
exists at least one super-diagonal matrix of the form (15.54) of size n j × n j such that
1 < n j ≤ mi − gi + 1. The reader is referred to online Supplementary Materials for a
full discussion on how such super-diagonal matrices can be found.

Then, the n-step TPM is given as

Pn = U�nU−1, (15.55)

where

�n =

⎡⎢⎢⎢⎣
�n

1 0 · · · 0
0 �n

2 · · · 0
...

...
. . .

...

0 0 · · · �n
J

⎤⎥⎥⎥⎦ (15.56)
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and the submatrices �n
j , j = 1, 2, . . . , J , have the following structure:

�n
j =

⎡⎢⎢⎢⎢⎢⎣
λn

i

(n
1

)
λn−1

i · · · ( n
n j−1

)
λ

n−n j+1
i

0 λn
i · · · ( n

n j−2

)
λ

n−n j+2
i

...
...

. . .
...

0 0 · · · λn
i

⎤⎥⎥⎥⎥⎥⎦ . (15.57)

With this modification, the rest of the analysis techniques presented in this section can
be applied to find the state probability vector p(n) for any time index n.

15.3 Classification of states

In a Markov chain, each state can be classified into one of several categories (see
Figures 15.2 and 15.3), and these categories partition the Markov states. The notion
of first passage time plays an important role in the state classification.

All states

Recurrent Transient

Null Positive

Periodic Aperiodic Periodic Aperiodic

Ergodic

=

Figure 15.2 Classification of states in a Markov chain.
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Figure 15.3 An example of a Markov chain with various states.
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15.3.1 Recurrent and transient states

Consider a pair of states (i, j) in the state space S of a given Markov chain Xn , and
suppose the chain is initially in state i ; i.e., X0 = i . The number of transitions Ti j that
Xn takes in going from state i to reach state j for the first time is called the first-passage
time from i to j . In other words, XTi j = j but Xn �= j for all 1 ≤ n ≤ Ti j − 1. When
j = i , the RV Tii is the number of transitions required until Xn returns to the same state
i for the first time, and is called the recurrence time of state i .

Let f (n)i j be the probability that the first-passage time Ti j is equal to n:

f (n)i j � P[Ti j = n], i, j ∈ S, n = 1, 2, . . . . (15.58)

The sum

fi j =
∞∑

n=1

f (n)i j , i, j ∈ S, (15.59)

is the probability that Xn , starting from state i , ever reaches state j . Thus, if fi j < 1,

the process initially in state i may never reach state j . If fi j = 1, the set { f (n)i j :
n= 1, 2, . . .} represents the bona fide probability distribution of the first-passage time.
In particular, for j = i , in (15.59) the sum

fii =
∞∑

n=1

f (n)i i (15.60)

is the probability that the system ever returns to state i .

D E FI N I T I O N 15.4 (Recurrent state and transient state). State i ∈ S is called a
recurrent state (or a persistent state) if fii = 1. It is called a transient state if
fii < 1. �

If the state i is recurrent, then the Markov chain returns infinitely often to state i as
t →∞. If state i is transient, the chain returns to the state i only finitely often. For a
recurrent state i , the recurrence time Tii is a well-defined RV, and { f (n)i i ; n = 1, 2, . . .}
represents the probability distribution of the recurrence time.

Calculation of f (n)i j for all n may be generally difficult, but it is relatively simple to
obtain the mean first-passage time (or expected first-passage time). We define the
mean first-passage time μi j by

μi j = E[Ti j ] =
⎧⎨⎩

∞∑
n=1

n f (n)i j , if fi j = 1,

∞, if fi j < 1,
i, j ∈ S. (15.61)

When fi j = 1 for a given pair of states i and j , the mean first-passage time μi j satisfies
the equation
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μi j = Pi j +
∑
k �= j

Pik(μk j + 1), (15.62)

since the system in state i either goes to j in one step or else goes to intermediate step
k and then eventually to j .

When j = i , the mean first-passage time is called the mean recurrence time (or
expected recurrence time).

D E FI N I T I O N 15.5 (Null-recurrent state and positive-recurrent state). A recurrent state
i ∈ S is called a null-recurrent state if μi i = ∞ and is called a positive-recurrent (or
regular-recurrent) state if μi i <∞. �

It should be clear that in a finite Markov chain there are no null-recurrent states; that
is, there are only positive-recurrent states and transient states.

If P(n)i i = 0 for n �= di , 2di , . . ., then state i is called periodic with period di . In other
words, a return to state i is impossible except perhaps in n = di , 2di , . . . steps. We can
write di as

di = gcd
{

n : P(n)i i > 0
}
; (15.63)

i.e., the greatest common divisor of the epochs at which the return to state i is possible.
Thus, P (n)i i = 0, whenever n is not divisible by di .

D E FI N I T I O N 15.6 (Periodic state and aperiodic state). A state i ∈ S is called periodic
with period di if di > 1 and is called aperiodic if di = 1. �

In the random walk model of Example 15.1, all states of the Markov chain {Sn} are
periodic states, having a period di = 2 for all i ∈ S = Z, the set of all integers.

D E FI N I T I O N 15.7 (Ergodic state). State i ∈ S is called an ergodic state if it is positive-
recurrent and aperiodic; i.e., fii = 1, μi i <∞, and di = 1. �

D E FI N I T I O N 15.8 (Absorbing state). State i ∈ S is called an absorbing state if the
transition probability satisfies Pii = 1. �

An absorbing state is a special case of a positive-recurrent state since Pii = 1 implies
that fii = f (1)i i = 1. If a state is an absorbing state, the process will never leave the state,
once entered.

Figure 15.2 shows a summary of state classifications discussed above.

15.3.2 Criteria for state classification

In order to further investigate the relation between the n-step transition probabilities
Pn = [P (n)i j ] and the first-passage probabilities [ f (n)i j ], let us define generating functions
Gi j (z) and Fi j (z) by
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Gi j (z) �
∞∑

n=0

P(n)i j zn, i, j ∈ S, (15.64)

and

Fi j (z) �
∞∑

n=0

f (n)i j zn, i, j ∈ S. (15.65)

Then we have the following theorem.

THEOREM 15.2 (Generating functions of n-step transition and first-passage prob-
abilities). The generating functions Gi j (z) and Fi j (z) defined above are related
according to

Gi j (z) = δi j + Fi j (z)G j j (z), i, j ∈ S. (15.66)

Proof. Suppose that X0 = i ∈ S. Let An( j) represent the event Xn = j ∈ S and let
Bm( j) be the event that the first visit to state j occurs at time m(≤ n); i.e.,

Bm( j) = {Xt �= j; 1 ≤ t ≤ m − 1, Xm = j}.
Then the Bm( j) (m ≤ n) are disjoint events and B1( j) ∪ B2( j) ∪ · · · ∪ Bn( j) = �, i.e.,
the sure event, so

P[An( j)|X0 = i] =
n∑

m=1

P[An( j), Bm( j)|X0 = i]. (15.67)

Using the relation

P[An( j), Bm( j)|X0 = i] = P[An( j)|Bm( j), X0 = i]P[Bm( j)|X0 = i]
= P[An( j)|Xm = j]P[Bm( j)|X0 = i],

(15.67) can be interpreted as

P(n)i j =
n∑

m=1

f (m)i j P(n−m)
j j , n ≥ 1. (15.68)

By substituting the last equation into (15.64) and writing n − m = k, we obtain

Gi j (z) = P(0)i j +
∞∑

n=1

n∑
m=1

f (m)i j P(n−m)
j j zn = δi j +

∞∑
m=1

f (m)i j zm
∞∑
k

P(k)j j zk

= δi j + Fi j (z)G j j (z), (15.69)

where we use the convention P0 = I , or P(0)i j = δi j . The last equation makes use of the
well-known property of the generating function (or z-transform) that convolution in the
discrete-time domain (represented in the superscripts (n − m) and (m)) corresponds to
multiplication in the z-domain.
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For i = j , we obtain from (15.69)

Gii (z) = 1

1− Fii (z)
. (15.70)

The first-passage probability defined earlier is

fi j =
∞∑

n=1

f (n)i j = Fi j (1). (15.71)

The mean first-passage time is

μi j =
∞∑

n=1

n f (n)i j = F ′i j (1). (15.72)

Based on the above theorem, we find the following conditions that help us classify
states.

THEOREM 15.3 (Conditions for recurrent and transient states). The following criteria
apply to classify whether a given state is recurrent or transient:

1. State j ∈ S is recurrent if and only if

∞∑
n=0

P(n)j j = ∞. (15.73)

If this holds, then for all i ∈ S such that fi j > 0,

∞∑
n=0

P(n)i j = ∞. (15.74)

2. State j ∈ S is transient if and only if

∞∑
n=0

P(n)j j <∞. (15.75)

If this holds, then, for all i ∈ S,

∞∑
n=0

P(n)i j <∞. (15.76)

Proof. It suffices to show that state j is recurrent if and only if (15.73) holds. Let z ↑ 1
in (15.70):

lim
z↑1

G j j (z) = ∞, if and only if f j j = Fj j (1) = 1.
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Then we use Abel’s limit theorem3 to obtain

lim
z↑1

G j j (z) =
∞∑

n=0

P(n)j j ,

and we have shown that (15.73) is a necessary and sufficient condition for the state to
be recurrent. Any state that does not satisfy this condition must be transient, hence the
condition (15.75) must hold for a transient state. The remaining part of the theorem can
be proved by applying Abel’s theorem to (15.69) for i �= j .

THEOREM 15.5 (Conditions for null-recurrent, ergodic, or periodic states). The fol-
lowing criteria and properties apply, depending on whether a recurrent state is null,
ergodic, or periodic:

1. A recurrent state j is null-recurrent, if and only if

lim
n→∞ P(n)j j = 0. (15.79)

If this holds, then, for all states i ∈ S,

lim
n→∞ P(n)i j = 0. (15.80)

2. A recurrent state j is ergodic (i.e., positive-recurrent and aperiodic) if and only if

lim
n→∞ P(n)j j = 1

μ j j
> 0. (15.81)

If this holds, then, for all states i ∈ S,

lim
n→∞ P(n)i j = fi j

μ j j
. (15.82)

3 Abel’s limit theorem, to be stated below, allows us to find the limit of a generating function as z approaches
one from below, even when the radius of convergence R of the generating function is equal to one and we
do not know a priori whether the limit is finite or not.

THEOREM 15.4 (Abel’s limit theorem). Let A(z) =∑∞
n=0 anzn .

1. If
∑∞

n=0 an = S <∞, then
lim
z↑1

A(z) = S. (15.77)

2. If an ≥ 0 for all n and limz↑1 A(z) = S ≤ ∞, then

∞∑
n=0

an = lim
N→∞

N∑
n=0

an = S, (15.78)

whether the sum S is finite or infinite.

Proof. See, for example, Karlin and Taylor [175].
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3. If state j is periodic with period d, then

lim
n→∞ P(nd)

j j = d

μ j j
. (15.83)

Proof. Let us define

qn = P(n)j j − P (n−1)
j j , n ≥ 1, q0 = P(0)j j = 1.

Then,

P (n)j j =
n∑

k=0

qk .

Defining Q(z) =∑∞
k=0 qk zk , we have

Q(z) = (1− z)G j j (z) = 1− z

1− Fj j (z)
.

Therefore,

lim
z→1

Q(z) = lim
z→1

1

(Fj j (z)− 1)/(z − 1)
= 1

F ′j j (1)
= 1

μ j j
. (15.84)

But from Abel’s limit theorem, we have

lim
z↑1

Q(z) = lim
n→∞

n∑
k=0

qk = lim
n→∞ P(n)j j , (15.85)

which, together with (15.84), implies

lim
n→∞ P(n)j j = 1

μ j j
. (15.86)

Thus, state j is null-recurrent (μ j j = ∞) if and only if P(n)j j → 0. If j is ergodic, then
by definition μ j j <∞; hence, (15.81) must hold.

If we take the limit n →∞ in formula (15.68):

lim
n→∞ P(n)i j = lim

n→∞

n∑
m=1

f (m)i j P(n−m)
j j =

∞∑
m=1

f (m)i j

μ j j
= fi j

μ j j
, (15.87)

which is (15.82). If state j is null-persistent, then μ j j = ∞ so that (15.80) holds.
If state j is periodic with period d, then we can write

Fj j (z) = F(zd), (15.88)

for some function F(·). Then from (15.70)

G j j (z) = 1

1− Fj j (z)
= 1

1− F(zd)
=

∞∑
k=0

P(kd)
i j zkd . (15.89)
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Then,

G j j (z
1/d) = 1

1− F(z)
=

∞∑
k=0

P(kd)
i j zk . (15.90)

By repeating the argument that led to (15.86), and setting z = 1 in the relation F ′j j (z) =
dzd−1 F ′(zd), we obtain

lim
k→∞ P(kd)

j j = 1

F ′(1)
= d

μ j j
. (15.91)

This completes the proof.

15.3.3 Communicating states and an irreducible Markov chain

In the previous section we have classified states of a Markov chain into different cat-
egories, and the notion of communication among the states is closely related to the
classification of the states.

D E FI N I T I O N 15.9 (Reachable states and communicating states). We say that state
j ∈S is reachable (or accessible) from state i ∈ S if there is an integer n ≥ 1 such
that P(n)i j > 0. If state i is reachable from state j and state j is reachable from state i ,

then the states i and j are said to communicate,4 written as i ↔ j . �

THEOREM 15.6 (Reachable states from a recurrent state). Suppose state j is reachable
from a recurrent state i (i.e., j ← i ). Then state i is also reachable from state j (i ← j );
hence, states i and j communicate (i ↔ j ). Moreover, state j is also recurrent.

Proof. Since i → j , there exists some number m of steps such that

P(m)i j = p > 0. (15.92)

After this, the system would not return to i , if i were not reachable from j . Thus, starting
from state i , the probability that the system does not return to i would be at least p. Thus,

fii ≤ 1− p < 1.

This, however, contradicts the assumption that state i is recurrent. Thus, state i must be
reachable from j ; i.e., there should exist some � such that

P(�)j i = q > 0. (15.93)

Because of (15.20), we have

P(m+n)
i j =

∑
k∈S

P(m)ik P(n)k j ≥ P (m)ik P(n)k j for any k ∈ S. (15.94)

4 Some authors use the term “intercommunicate” to emphasize the communication is bidirectional.
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Then,

P (m+n+�)
i i ≥ P(m)i j P(n+�)j i ≥ P(m)i j P(n)j j P(�)j i = pq P(n)j j . (15.95)

Similarly,

P (m+n+�)
j j ≥ P(�)j i P(m+n)

i j ≥ P(�)j i P(n)i i P(m)i j = pq P(n)i i . (15.96)

Thus, the two series
∑∞

n=0 P(n)i i and
∑∞

j=0 P(n)j j converge or diverge together. Since

state i is recurrent, Theorem 15.3 implies that
∑∞

n=0 P(n)i i = ∞. Thus,
∑∞

n=0 P(n)j j =∞;
hence state j must be recurrent.

If two states i and j do not communicate, then either

P(n)i j = 0 for all n ≥ 1,

or

P (n)j i = 0 for all n ≥ 1,

or both relations are true. The relation of communications “↔” is an equivalence
relation; that is, the following three properties hold:

1. Reflexive property: i ↔ i for all i ∈ S.
2. Symmetric property: if i ↔ j , then j ↔ i .
3. Transitive property: if i ↔ j and j ↔ k, then i ↔ k.

(15.97)

Property 1 is a consequence of P(0)i j = δi j ; Property 2 is apparent, and Property 3 is easy
to verify (Problem 15.4).

D E FI N I T I O N 15.10 (Closed or open set and an irreducible set of states). A set C of
states is called closed if

Pi j = 0 for all i ∈ C, j /∈ C,

and is called open otherwise.
A set C is called irreducible if

i ↔ j for all i, j ∈ C.

If all the states S of a Markov chain are irreducible, the chain is called irreducible. �

Once the chain assumes a state in a closed set C of states, it never leaves C afterwards.
A closed set containing exactly one state is called an absorbing state.

We show below that the states of an irreducible Markov chain are either all recurrent
or all transient. Furthermore, if one state in an irreducible chain is periodic with period
d, all the states are periodic with period d. The following theorem summarizes the above
discussion.

THEOREM 15.7 (Property of an irreducible Markov chain). In an irreducible Markov
chain all states belong to the same class: they are all transient, all null-recurrent, or all
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positive-recurrent. Furthermore, they are either all aperiodic or all periodic with the
same period.

Proof. If the chain is irreducible, every state is reachable from any other state. As
discussed in the proof of Theorem 15.6 (see (15.95) and (15.96)),

∑∞
n=0 P(n)i i and∑∞

n=0 P(n)j j converge or diverge together. Thus, all states are either transient or recurrent.

If state i is null-recurrent, then P (n)i i → 0 as n →∞. Then, from (15.95),

P(n)j j → 0, as n →∞.
Hence, state j is also null-recurrent.

If state i is positive-recurrent and periodic with period d, then P(n)i i > 0 only when n
is a multiple of d. From (15.92), (15.93), and (15.94),

P(m+�)i i ≥ P(m)i j P(�)j i = pq > 0,

since states i and j communicate. This implies that (m + �) must be a multiple of d.
From (15.96) we have

P (m+n+�)
j j ≥ pq P(n)i i > 0,

only when n and hence (m + n + �) are multiples of d. Thus, state j also has the
period d.

THEOREM 15.8 (Decomposition of a Markov chain). If a Markov chain is not an
irreducible chain, its state space S can be uniquely partitioned as

S = T ∪ C1 ∪ C2 ∪ · · · ,
where T is the set of transient states and the Cr (r = 1, 2, . . .) are irreducible closed
sets of recurrent states.

Proof. Let the Cr be the recurrent equivalence classes induced by the relation ↔. It is
clear that equivalence classes defined by the relation↔ are irreducible. Thus, it suffices
to show that each Cr is closed. Suppose Cr is not closed, then there should exist i ∈ Cr

and j /∈ Cr such that Pi j > 0 (i.e., i → j). The assumption j /∈ Cr means that i and j
do not communicate, or i is not reachable from j . Then, we have

P[Xn �= i for all n ≥ 1|X0 = i] ≥ P[X1 = j |X0 = i] = Pi j > 0,

because once the system assumes state j , it can never return to i , and there might be
other events that prevent the system from returning to state i . But this conclusion that
Xn will never assume state i contradicts the assumption that i is a recurrent state. Hence,
Cr must be a closed (and irreducible) set.

Figure 15.3 illustrates an example of a reducible Markov chain, which can be decom-
posed into C1, a set of positive-recurrent and aperiodic (i.e., ergodic) states (States 1
through 3); T , a set of transient states (States 4 through 6); C2, a closed set of a single-
ton, i.e., an absorbing state (State 7); C3, a set of positive-recurrent and periodic states
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(States 8 through 11); and C4, a set of null-recurrent and aperiodic states (States 12, 13,
14, . . . ), assuming p > q, where p and q are the transition probabilities of shifting to
the right and to the left respectively.

15.3.4 Stationary distribution of an aperiodic irreducible chain

In this section we restrict our discussion to aperiodic irreducible chains. Thus, all states
of the chain must be either all positive-recurrent (hence, ergodic), all null-recurrent, or
all transient. A null-recurrent chain occurs only when the state space S is infinite in
its cardinality. An important question we want to address is that of stability. Does the
system, regardless of its initial state, converge to some limiting distribution?

Assume that the system is stable and let the limit of the probability distribution vector
be π :

lim
n→∞ p(n) = π . (15.98)

Then, by applying this limit to (15.11), we find that π must satisfy the equation

π� = π�P . (15.99)

D E FI N I T I O N 15.11 (Stationary distribution). A probability distribution π satisfying
(15.99) is called a stationary distribution or an invariant distribution: if the initial
probability p(0) is set to π , then p(n) = π for all n ≥ 0. �

The next question we may ask will be “Does a solution of (15.99) always exist?”

THEOREM 15.9 (Stationary distribution of an irreducible aperiodic Markov chain). In
an irreducible aperiodic Markov chain, one of the following two alternatives holds:

1. The states are all transient or all null-recurrent; in this case there exists no stationary
distribution and

lim
n→∞ P(n)i j = 0, for all i, j ∈ S. (15.100)

2. All states are ergodic; in this case there exists a unique stationary distribution and

lim
n→∞ P(n)i j = π j , for all i, j ∈ S. (15.101)

Furthermore, πi is equal to the reciprocal of the mean recurrence time for state i; i.e.,

πi = 1

μi i
, i ∈ S. (15.102)

Proof. In Theorem 15.3 it was shown that, for a transient state i ,
∑∞

i=0 P(n)i i <∞. Thus,
it is apparent that (15.100) must hold. From Theorem 15.5 we have shown (15.100) is a
necessary and sufficient condition for a recurrent state to be null. So we need to prove
the remaining half; i.e, the case where the chain is ergodic. Equation (15.102) results
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from (15.81) or (15.86) of Theorem 15.5. As we show below, this choice of π satisfies
(15.99): let n →∞ in the one-step transition formula

P(n+1)
i j =

∑
k

P(n)ik Pk j ,

leading to

fi j

μ j j
=
∑

k

fik

μkk
Pk j .

In an ergodic chain, all states communicate with each other, hence fi j = fik = 1, and
thus

1

μ j j
=
∑

k

1

μkk
Pk j .

Therefore, {πi = 1/μi i , i ∈ S} satisfies (15.99). This completes the proof.

The theorem assures us that (15.101) holds whenever the states are ergodic. There-
fore, for any initial probability assignment {pi (0); i ∈ S}, we have the following
asymptotic result:

lim
n→∞ p j (n) = lim

n→∞
∑
i∈S

pi (0)P
(n)
i j =

∑
i∈S

pi (0)π j

= π j , j ∈ S. (15.103)

Thus, the stationary distribution becomes the steady-state distribution. The stationary
distribution can be computed by solving a set of M (where M = |S|) linear equations
of (15.99) with the following linear constraint condition:

π�1 = 1, (15.104)

where 1 is an M-dimensional column vector of all unity elements.
Alternatively, a simple but useful computational formula can be found as follows: by

repeating (15.104) column-wise M times, we form the matrix equation

π�E = 1�, (15.105)

where E is an M × M matrix with all entries unity; i.e., E = 1 · 1�. From (15.99) and
(15.105) we obtain

π�(P + E − I) = 1�, (15.106)

where I is the M × M identity matrix. Note that matrix (P + E − I) is nonsingu-
lar, whereas (P − I) is singular. Thus, the stationary distribution vector is readily
obtained as

π� = 1�(P + E − I)−1. (15.107)

This formula can be further generalized (Problem 15.10).
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When all states of a given Markov chain Xn are ergodic, the chain is called an ergodic
Markov chain. As discussed in Section 12.3.3, a random process, not necessarily a
Markov chain, is said to be ergodic if the time average of any function f (·) of any
sample function {Xn(ω)} of the process converges almost surely, i.e., with probability
one, to the ensemble average or expectation; i.e.,

lim
N→∞

1

N

N∑
n=1

f (Xn(ω))
a.s.−→ E[ f (Xn)] =

∑
i∈S

πi f (i), (15.108)

that has S as its domain and [−∞,∞) as its range such that
∑

i∈S πi | f (i)| <∞.
In most physical applications, it is assumed that stationary processes are ergodic and

that time averages and expectations can be used interchangeably. A simulation study
of a stochastic system is based on the assumption that the process of our interest is
ergodic. By analyzing one realization {X (ω0, t)} of a random process for a sufficiently
long period, we can study properties of the ensemble {X (ω, t);ω ∈ �}, if the process
is ergodic.

15.4 Summary of Chapter 15

Markov process X (t): P[X (t2)≤ x |X (t); t≤ t1] =
P[X (t2)≤ x |X (t1)]

(15.1)

Markov chain of order h: P[Xn|Xk; k≤n−1] =
P[Xn|Xn−h,. . ., Xn−1]

(15.4)

Transition prob. matrix: P = [Pi j ] = P[Xn+1 = j |Xn = i] (15.7)

Homogeneous MC: p�(n + 1) = p�(n)P for all n ≥ 0 (15.11)

Chapman–Kolmogorov eq.: P(m+n)
ik =∑ j∈S P(m)i j P(n)jk (15.20)

Generating function method: g�(z) = p�(0)[I − Pz]−1 (15.25)

Spectral expansion method: pi (n) =∑k∈S λn
k

(
p�(0)uk

)
vki , i ∈

S
(15.49)

First-passage time distr.: f (n)i j = P[Ti j = n], n ≥ 1 (15.58)

Recurrent state: fii = P[Tii ≥ 1] = 1 Def. 15.4

iff
∑∞

n=0 P(n)i i = ∞ (15.73)

Transient state: fii < 1 Def. 15.4

iff
∑∞

n=0 P(n)i i <∞ (15.75)

Mean first-passage time: μi j = E[Ti j ] =⎧⎨⎩
∞∑

n=1
n f (n)i j , if fi j = 1

∞, if fi j < 1

(15.61)
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Null-recurrent state: μi i = ∞ Def. 15.5

iff limn→∞ P(n)i i = 0 (15.79)

Positive-recurrent state: μi i <∞ Def. 15.5

Period of state i : di = gcd
{

n : P(n)i i > 0
}

(15.63)

Periodic state: di > 1 Def. 15.6

Aperiodic state: di = 1 Def. 15.6

Ergodic state: fii = 1, μi i <∞, and di = 1 Def. 15.7

iff limn→∞ P(n)i i = 1/μi i (15.81)

Absorbing state: Pii = 1($⇒ fii = f (1)i i = 1) Def. 15.8

Communication relations: Reflexive, symmetric, and transitive (15.97)

Prop. of irreducible chains: All transient, null-recurrent, or
positive-recurrent

Thm. 15.7

Stationary distribution: π� = π�P (15.99)

π of an ergodic chain: πi = 1/μi i , 1 ∈ S (15.102)

Formula for π : π� = 1�(P + E − I)−1 (15.107)

Ergodic chain: limN→∞ 1
N

∑N
n=1 f (Xn(ω))

a.s.−→
E[ f (Xn)]

(15.108)

15.5 Discussion and further reading

Markov chains and Markov processes are among the core subjects of virtually all books
on probability and random processes (e.g., Çinlar [57], Doob [82], Feller [99, 100],
Nelson [254], Rosenblatt [286], Ross [288]), whereas they are often not adequately
discussed, in comparison with Gaussian processes, in traditional textbooks written for
electrical engineers.

Shannon in his 1948 seminal paper [300] introduced the concept of entropy through
Markov modeling of the English language that formed a foundation for HMM (cf.
Chapter 20), which has been successfully applied to modeling of natural languages,
algorithms for speech recognition, identification of DNA and protein sequences, etc.
Stochastic models, such as queueing and loss system models, make extensive use of
Markov processes (e.g., see Kleinrock [189], Kobayashi and Mark [203]). Markov
chains and Markov processes are increasingly important topics to modeling and analysis
of communication networks, including the Internet and its applications. The PageRank
of a web page as used by Google is defined by a Markov chain [218]. Hidden Markov
or semi-Markov models may be used to analyze web navigation behavior of users
(e.g., [366]). A user’s web link transition on a particular website can be modeled using
Markov models of some order.

Whereas this chapter focused on discrete-time Markov chains, the next chapter will
discuss continuous-time Markov chains and semi-Markov processes.



452 Discrete-time Markov chains

15.6 Problems

Section 15.2: Computation of state probabilities

15.1∗ Homogeneous Markov chain. Consider a homogeneous Markov chain whose
transition matrix is given by

P =
⎡⎣ 1

2
1
2 0

1
3 0 2

3
0 1

5
4
5

⎤⎦ .
(a) Draw the state transition diagram.
(b) The system is initially at state 1; i.e.,

p�(0) = (1 0 0).

Find p(1), p(2), p(3), . . . .
(c) Evaluate p(n) for an arbitrary positive integer n ≥ 0.

15.2 State probabilities. Consider a Markov chain whose transition matrix is
given by

P =
⎡⎣ 2

3
1
3 0

1
2 0 1

2
0 0 1

⎤⎦ .
(a) Draw the state transition diagram of P and classify the states.
(b) Find the roots of the characteristic equation

det |I − z P | = 0.

(c) Suppose that the system is in state 1 at n = 0. Find the probability vector

p(n) = [p1(n)p2(n)p3(n)] for n = 0, 1, 2, . . . .

15.3 Simple queueing problem. Consider the following simple queueing problem.
Let Xn be the number of customers awaiting service or being served at time n. We
make the following assumptions: (1) if the server is servicing a customer at time n, this
customer’s service will be completed before time n + 1 with probability β; (2) between
times n and n + 1, one customer will arrive with probability α, and with probability
1− α no customer will arrive. Show that Xn is a Markov chain. Find the transition
probabilities.

Section 15.3: Classification of states

15.4∗ Transitive property. Prove the transitive property of the communications
relation “↔.”
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15.5∗ Stationary distribution. Find the stationary distributions of the Markov chains
determined by the following TPMs using (15.107):

(a)

P =
⎡⎣ 0 1 0

1
4

1
4

1
2

0 1
2

1
2

⎤⎦ ;
(b)

P =
⎡⎣ 1

2
1
2 0

1
3 0 2

3
0 1

5
4
5

⎤⎦ .
15.6 Characteristic equation. Consider a Markov chain with the TPM

P =

⎡⎢⎢⎣
0 1 0 0
1
2 0 1

2 0
0 1

2 0 1
2

0 0 1 0

⎤⎥⎥⎦ .
(a) Draw the state transition diagram corresponding to P .
(b) Discuss the properties of this chain.
(c) Find the roots of the characteristic equation

det |I − z P | = 0.

15.7 Roots of a characteristic equation. Answer the following questions regarding
the roots of the characteristic equation

det |I − z P | = 0

of a Markov chain with TPM P .

(a) Show that none of the roots may have a magnitude less than unity.
(b) Show that at least one root is equal to unity. If there is more than one root equal to

unity, what does this imply?
(c) If the characteristic equation contains a factor (zk − 1), what does this mean?

15.8 Transition probability matrix of a certain structure. Consider a Markov chain
with the transition probability matrix

P =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
1
2 0 0 1

2
0 1

2
1
2 0

⎤⎥⎥⎦ .
(a) Draw the state transition diagram and classify the states.
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(b) Show that, when n is an odd integer,

Pn =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
∗ ∗ 0 1

2n

∗ ∗ 1
2n 0

⎤⎥⎥⎦ .
What will be the structure of matrix when n is even?

(c) Suppose that the matrix P is partitioned into the following form:

P =
⎡⎣ Q1 0 0

0 Q2 0
A B C

⎤⎦ .
What form does Pn take?

15.9 First-passage time matrix. Consider an N -state Markov chain P . Let M be the
matrix whose (i, j) component is the expected first-passage time μi j , 1 ≤ i, j ≤ N . Let
Mdg be a matrix that has the same diagonal entries as M and zeros elsewhere.

(a) Show that M satisfies the following matrix equation:

M = E + P(M − Mdg),

where E is an N × N matrix whose entries are all unity.
Hint: Start with (15.62).

(b) Derive (15.102), i.e., πi = 1/μi i , for all i = 1, 2, . . . , N .
Hint: Multiply the equation of part (a) by π ′.

(c) Find the first-passage time matrix of the two Markov chains defined in
Problem 15.5.

15.10 Computation formula for the stationary distribution.5 Let P be the TPM
of an M-state ergodic Markov chain, E an M × M matrix of all ones, and 1 an M-
dimensional column vector of all ones. Show that the stationary distribution can be
found from

π� = k1�(P + k E − I)−1, (15.109)

where k is any nonzero constant. For k = 1, we obtain (15.107).

15.11 Number of returns. Prove the following theorem

THEOREM 15.10 (Number of returns). Suppose a Markov chain Xn assumes state i at
some n0. If the state i is recurrent, then the Markov chain returns infinitely often to state
i as n →∞. If state i is transient, the chain returns to the state i only finitely often.

Hint: Use the Borel–Cantelli lemmas (Theorem 11.16).

5 This generalization of (15.107) is due to Yihong Wu.



16 Semi-Markov processes and
continuous-time Markov chains

In this chapter we focus on a class of continuous-time processes that may be con-
sidered generalizations of the discrete-time Markov chain (DTMC) discussed in the
previous chapter. We begin with a semi-Markov process (SMP) X (t), which can be
characterized by a DTMC {Xn} together with a sojourn time process {τn} which has a
distribution function that depends on the current and next states of the DTMC, Xn and
Xn+1 respectively. While X (t) is not itself a Markov process, the embedded process
{Xn} is a Markov process, hence the “semi-Markov” designation for X (t). By consid-
ering an SMP where the sojourn times τn are exponentially distributed, we obtain a
continuous-time Markov chain (CTMC) X (t), which is indeed a Markov process.

The concept of reversibility is particularly important in the study of Markov chains,
as reversible DTMCs and CTMCs have special structures that often can be exploited in
applications. In this chapter we also discuss some applications of the CTMC and SMP to
modeling ion currents in biology and to the study of evolutionary or phylogenetic trees.

16.1 Semi-Markov process

Before we extend Markov chains or discrete-time Markov processes to their continuous
counterparts, we discuss in this section a class of random processes called a semi-
Markov process (SMP). As its name indicates, an SMP is similar to a Markov process
but, in general, does not satisfy the Markovian or memoryless property of the Markov
process.

D E FI N I T I O N 16.1 (Semi-Markov process). A semi-Markov process {X (t), t ≥ 0} is a
right-continuous, piecewise constant process, which takes values in a finite or countably
infinite set of states S and transitions at times t1, t2, . . .We shall assume that t0 = 0 and
define the nth sojourn time by τn = tn − tn−1, n ≥ 1. An SMP is characterized by

(i) its TPM

P = [Pi j ], i, j ∈ S,
where Pi j = P[X (tn) = j | X (tn−1) = i] is the probability with which the process
makes a transition from state i to state j at time tn, n ≥ 1;

(ii) the set of distribution functions

Fi j (t) = P[τn ≤ t | X (tn+1) = j, X (tn) = i], i, j ∈ S,
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where Fi j (t) is the distribution function of the nth sojourn time τn given that the
states of the SMP at times tn and tn−1 (n ≥ 1) are i and j respectively.

�

An SMP X (t) may have the property that, upon reaching a state i , it remains in this
state with probability one. In this case, we call state i an absorbing state. For an SMP
X (t), we shall assume that each time instant tn (n ≥ 1) corresponds to an observable
jump from a state i to a different state j �= i , unless state i is an absorbing state. Between
any two time instants tn and tn+1, X (t) has a constant value; i.e.,

X (t) = X (tn) for tn ≤ t < tn+1, n = 0, 1, . . . . (16.1)

This assumption implies that the TPM P in Definition 16.1 satisfies Pii = 0 for all
states i ∈ S, unless i is an absorbing state, in which case Pii = 1. We shall refer to the
DTMC corresponding to this TPM P as the embedded Markov chain (EMC) asso-
ciated with the SMP X (t).1 Thus, the EMC, which we denote by {Xn}, is obtained by
sampling X (t) at its jump times t1, t2, . . . as follows:

Xn � X (tn), n = 1, 2, . . . . (16.2)

Figure 16.1 shows an example sample path of an SMP X (t). Note that the sample path
is piecewise constant and right-continuous, with jump discontinuities at t1, t2, . . . .

Although X (t) is not itself a Markov process, the pair process {(Xn, τn)} is a Markov
process. It is apparent from Figure 16.1 that the sample path of the SMP X (t) can be
completely specified by the sequence of pairs,

{(X0, t0), (X1, t1), . . . , (Xn, tn), (Xn+1, tn+1), . . .}.
The process X (t) stays in state Xn during the sojourn time [tn, tn+1), n = 1, 2, . . . . This
pair sequence {(Xn, tn)} is called a Markov renewal process (MRP). More generally,

t0 t1 t2 t3 t4 t5 t6

X(t)

t

τ1

τ2

τ3

τ4

τ5

τ6

τ7

x x x x x x

…

Figure 16.1 A sample path of a semi-Markov process.

1 Some authors refer to this specification of the EMC as the canonical representation of an SMP (e.g., see
[332]).
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an MRP {(Xn, tn)} consists of an arbitrary DTMC {Xn} together with a sequence of
renewal points, {tn}, such that the sojourn time τn = tn − tn−1 depends only Xn−1 and
Xn , n ≥ 1 (e.g., see [56, 58]). Given an MRP, {(Xn, tn)}, we can define an associated
continuous-time process X (t) as follows:

X (t) = Xn for tn ≤ t < tn+1, n = 0, 1, . . . . (16.3)

This associated process X (t) is an SMP in the sense of Definition 16.1.
For an MRP {(Xn, tn)}, we can define a counting process N (t) as the cumulative

count of state transitions up to time t ; i.e.,

N (t) = max{n : tn ≤ t}. (16.4)

Then the SMP X (t) specified in (16.3) can equivalently be expressed as follows:

X (t) = X N (t), t ≥ 0. (16.5)

Equations (16.3) and (16.5) show the close relationship between SMPs and MRPs.
Given an SMP X (t), we define the sojourn time variable Si j , between states i and

j , as the time between two successive jump points, say tn−1 and tn , given that Xn−1 = i
and Xn = j , n ≥ 1. Clearly, the distribution function of Si j is given by

Fi j (t) = P[τn ≤ t | Xn = j, Xn−1 = i] = P[Si j ≤ t]. (16.6)

Similarly, we define the sojourn time in state i , Si , as the time between two succes-
sive jump points, tn−1 and tn , such that Xn−1 = i , n ≥ 1. The variables Si and Si j are
related by

Si = Si j with probability Pi j , i, j ∈ S. (16.7)

The distribution function of Si is given by

Fi (t) = P[Si ≤ t] = P[τn−1 ≤ t | Xn−1 = i] =
∑
j∈S

Fi j (t)Pi j . (16.8)

Suppose that the EMC {Xn} associated with X (t) possesses a stationary distribution
π̃ = (π̃i , i ∈ S)�, given as the solution of

π̃� = π̃� P̃ and π̃�1 = 1, (16.9)

where 1 denotes a column vector all ones. Let π = (πi , i ∈ S)� denote the stationary
distribution of the SMP X (t). Then the stationary distributions of X (t) and its associated
EMC can be related as follows.

THEOREM 16.1 (Stationary distributions of SMP and EMC). Let X (t) be an SMP with
state sojourn times Si and let P̃ be the TPM of its associated EMC {Xn}. We further
assume that 0 < E[Si ] <∞ for all states i ∈ S. Then the stationary distribution of
X (t), π , is related to the stationary distribution of {Xn}, π̃ , by
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πi = π̃i E[Si ]∑
j∈S

π̃ j E[S j ] , i ∈ S, (16.10)

provided the sum on the right-hand side converges. Conversely, π̃ is given by

π̃i = πi/E[Si ]∑
j∈S

π j/E[Sj ] , i ∈ S, (16.11)

provided the sum on the right-hand side converges.

Proof. Let us consider a sample path of X (t) over the period [0, tN+1) in which X (t)
makes N jumps (excluding the one possibly at t0 = 0). Let ni be the number of times
state i is visited during this period. Clearly,∑

i∈S
ni = N .

The assumption that the EMC is positive recurrent implies that ni
a.s.→∞ as N →∞.

Let si (k) be the sojourn time in state i in its kth visit by X (t). Then the fraction of
time the process spends in state i is

fi (N ) =

ni∑
k=1

si (k)

∑
j∈S

n j∑
k=1

s j (k)

=
ni
N · 1

ni

ni∑
k=1

si (k)

∑
j∈S

n j
N · 1

n j

n j∑
k=1

s j (k)

. (16.12)

The strong law of large numbers implies that

1

ni

ni∑
k=1

si (k)
a.s.−→ E[Si ], as N −→∞. (16.13)

Similarly,

ni

N
a.s.−→ π̃i , as N −→∞. (16.14)

Thus, it follows that

fi (N )
a.s.−→ π̃i E[Si ]∑

j∈S
π̃ j E[S j ] , i ∈ S. (16.15)

From the definition of fi (N ), it is apparent that

fi (N )
a.s.−→ πi , as N →∞. (16.16)

Thus, (16.10) has been proved. Equation (16.11) then follows by rearranging (16.10).
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Similar to the classification of states of a DTMC (see Section 15.3), the states of an
SMP can be classified as being transient, null-recurrent, and positive-recurrent by
introducing analogous notions of first-passage time and mean recurrence time in terms
of the SMP. However, owing to the underlying role of the EMC in the definition of
an SMP, the states of an SMP can be classified more simply in terms of its associated
EMC. In particular, a state i of an SMP X (t) is transient, null-recurrent, or positive-
recurrent according to whether state i is transient, null-recurrent, or positive-recurrent
with respect to the EMC {Xn}.

Communication of states in an SMP also corresponds to communication of states
with respect to the EMC (cf. Section 15.3.3). For example, state i is reachable from
state j with respect to an SMP X (t) if i is reachable from j in the associated EMC.
Thus, states i and j of an SMP communicate (written as i ↔ j) if they communicate in
the associated EMC. Hence, an SMP is irreducible if its associated EMC is irreducible.
As mentioned earlier, state i of an SMP is an absorbing state if state i is absorbing with
respect to the EMC; i.e., Pii = 1. Owing to the random sojourn times between states of
an SMP, the notion of a periodic state in a DTMC does not generally have a counterpart
with respect to an SMP.

16.2 Continuous-time Markov chain (CTMC)

Now we are in a position to discuss the CTMC. Consider an SMP X (t) for which the
sojourn time distribution Fi j (t) is exponential with parameter νi > 0:

Fi j (t) = 1− eνi t , t ≥ 0, i, j ∈ S. (16.17)

Note that Fi j (t) depends only on i , and not on j . It then follows from (16.8) that the
distribution function of the sojourn time in state i is given by FSi (t) = Fi j (t) for all
i, j ∈ S. Then X (t) can be shown to be a Markov process in the sense of Definition 15.1
and hence is called a CTMC. The Markovian property of X (t) is essentially due to
the memoryless property of the exponentially distributed sojourn times as specified in
(16.17) (see Problem 16.5).

16.2.1 Infinitesimal generator and embedded Markov chain of a continuous-time
Markov chain

D E FI N I T I O N 16.2 (Transition probability matrix function (TPMF)). For a CTMC
X (t), the conditional probabilities

Pi j (t) = P[X (s + t) = j | X (s) = i], i, j ∈ S, 0 ≤ t <∞, (16.18)

are called transition probability functions, and

P(t) = [Pi j (t)] (16.19)

is called the transition probability matrix function (TPMF). It is clear that (16.18) and
(16.19) are continuous-time counterparts of (15.7) and (15.8) respectively. �
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The Chapman–Kolmogorov equation (15.20) of Theorem 15.1 takes the following
form:

Pik(s + t) =
∑
j∈S

Pi j (s)Pjk(t), s, t ≥ 0, i, k ∈ S, (16.20)

or in matrix form

P(s + t) = P(s)P(t). (16.21)

Thus, many results that were obtained for the DTMC can be carried over to the
CTMC, by replacing the TPM P of the discrete chain by the TPM function P(t) of the
continuous chain. The Chapman–Kolmogorov equation is such an example. However,
there is one important difference between discrete-time and continuous-time chains. In
the continuous-time case we cannot have a meaningful definition of transition proba-
bilities per unit time. Instead, we consider the transition rates and their matrix. The
infinitesimal generator matrix or transition rate matrix defined below plays a role
to fill this gap.

D E FI N I T I O N 16.3 (Infinitesimal generator matrix). The infinitesimal generator
(matrix) of a stationary Markov process with TPMF P(t) is defined by

Q = d P(t)
dt

∣∣∣∣
t=0

. (16.22)

�

Alternatively, we can define the matrix Q by

Q = [Qi j
]
,

where

Qi j = lim
h→0

P[X (t + h) = j | X (t) = i]
h

= lim
h→0

Pi j (h)

h
, for i �= j, (16.23)

and

Qii = −
∑
j �=i

Qi j = lim
h→0

Pii (h)− 1

h
. (16.24)

A CTMC X (t) is completely characterized by its infinitesimal generator Q. On the
other hand, X (t) is also an SMP with sojourn time distributions satisfying (16.17).
Thus, given an infinitesimal generator Q, the CTMC X (t) can be represented in terms
of the TPM of its EMC, P , together with a set of transition rates {νi , i ∈ S} (see
Problem 16.6). This representation is especially convenient for computer simulation
of a CTMC.

The states of a CTMC X (t) can be classified from its representation as an SMP; i.e.,
the states of X (t) are transient, positive-recurrent, and null-recurrent if the correspond-
ing states are transient, positive-recurrent, and null recurrent with respect to the EMC
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{Xn}. Further, state i is reachable from state j in X (t) if state i is reachable j in {Xn}.
Thus, i communicates with j in X (t) if i ↔ j in {Xn} and X (t) is called irreducible if
{Xn} is irreducible. We shall call a CTMC ergodic if it is irreducible and all states are
positive-recurrent. Note that the concept of ergodicity for a CTMC does not require the
states to be aperiodic as in the definition of an ergodic DTMC. Since the sojourn times
between state transitions are exponentially distributed, periodicity of the EMC does not
imply that the recurrence time of a state in X (t) has a periodic structure.

Suppose that the EMC {Xn} possesses a unique stationary distribution π̃ = (π̃i ; i ∈
S)�; i.e., π̃ satisfies (16.9). Let π = (πi ; i ∈ S)� denote the stationary distribution of
X (t). Then, by applying Theorem 16.1, we find that the stationary distribution of X (t)
is given by

πi = π̃i/νi∑
j∈S

π̃ j/ν j
, i ∈ S. (16.25)

THEOREM 16.2 (Stationary distribution of an ergodic CTMC in terms of its EMC).
Suppose X (t) is an ergodic CTMC with infinitesimal generator matrix Q. Let π̃ denote
the stationary distribution of the associated EMC {Xn}; i.e., π̃ is the solution to (16.9).
Then X (t) has a unique stationary distribution π given by (16.25).

Example 16.1: Ion channel model [62]. The endplate membrane of muscle fibers
contains ion-permeable channels that can open and close under the influence of cer-
tain drugs. Opening of an ion channel increases the membrane conductance and hence
increases the current through the channel. The signal produced by a single ion channel
is too small to be observed using conventional techniques. However, the variation in the
number of open channels over time causes fluctuations about the mean current that are
amenable to stochastic modeling.

The law of mass action in the context of drug action mechanisms implies that the
lifetime of each chemical species present in a system is a memoryless random variable
that does not depend on the age of the species. This suggests that the state of the system
can be modeled as a CTMC X (t) defined on the set S of kinetically distinguishable
states of the ion channel. Under the assumption of a constant drug concentration, the
CTMC will be time-homogeneous.

As a simple example (cf. [62]), consider the case of two states, S = {0, 1}, where
state 0 represents the ion channel being open and state 1 represents the ion channel
being closed. The classical theory of drug action states that, when a drug is combined
with a closed channel (state 1), an open channel (state 0) is formed at rate ημ1, where
μ1 ≥ 0 is a constant and η is the concentration of the drug in a closed channel. Given
an open channel, the rate of relaxation to the closed state is a constant μ0 ≥ 0. In this
case, the infinitesimal generator matrix of the CTMC is given by

Q =
[ −μ0 μ0

ημ1 −ημ1

]
. (16.26)
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The TPMF P(t) = [Pi j (t)] can be expressed as (see (16.35))

P(t) = e Qt = I + Qt + Q2t2

2
+ · · · . (16.27)

Thus, for small t , we have

P(t) = e Qt = I + Qt + o(t)E =
[

1− μ0t + o(t) μ0t + o(t)
ημ1 + o(t) 1− ημ1t + o(t)

]
, (16.28)

where E denotes the matrix of all ones.
The EMC {Xn} associated with X (t) has TPM given by

P =
[

0 1
1 0

]
(16.29)

and exponential sojourn time distributions with parameters ν0 = μ0 and ν1 = ημ1, cor-
responding to states 0 and 1 respectively (see Problem 16.6). It is apparent that states 0
and 1 are positive-recurrent with respect to {Xn} and that {Xn} is irreducible. The CTMC
X (t) is ergodic because it is irreducible and its states are positive-recurrent. However,
the EMC {Xn} is not ergodic, since states 0 and 1 have period two.

By solving (16.9), the stationary distribution of {Xn} is obtained as π̃ = (1/2, 1/2)�.
The transition rates of X (t) are given by D = diag{μ0, ημ1}. Applying (16.25), we
obtain the stationary distribution of X (t) as

π =
(

ημ1

μ0 + ημ1
,

μ0

μ0 + ημ1

)�
. (16.30)

�

16.2.2 Kolmogorov’s forward and backward equations

In the Chapman–Kolmogorov equation (16.20), let s be replaced by an infinitesimal
interval h:

Pik(t + h) =
∑
j �=k

Pi j (t)Pjk(h)+ Pik(t)Pkk(h). (16.31)

By subtracting Pik(t) from both sides and dividing them by h, we have

Pik(t + h)− Pik(t)

h
=
∑
j �=k

Pi j (t)
Pjk(h)

h
+ Pkk(h)− 1

h
Pik(t). (16.32)

By letting h → 0, we find

d Pik(t)

dt
=
∑
j �=k

Pi j (t)Q jk + Pik(t)Qkk =
∑
j∈S

Pi j (t)Q jk, (16.33)
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or in matrix form

d P(t)
dt

= P(t)Q, (16.34)

which is known as Kolmogorov’s forward (differential) equation. The solution to this
differential matrix equation is found as

P(t) = e Qt , (16.35)

using the identity Pi j (0) = δi j ; i.e., P(0) = I . The exponent of matrix A is defined by

eA � I + A+ A2

2
+ · · · + An

n! + · · · (16.36)

If we set t = h in (16.20), we have

Pik(h + u) =
∑
j �=i

Pi j (h)Pjk(u)+ Pii (h)Pik(u). (16.37)

A similar manipulation leads to

d P(t)
dt

= Q P(t), (16.38)

which is known as Kolmogorov’s backward (differential) equation. This differential
equation also leads to the same solution (16.35). If all entries of Q are bounded, then
Q is said to be uniform and

P(t) = e Qt =
∞∑

n=0

Qntn

n! , t ≥ 0. (16.39)

If Q is not uniform, then it is possible that the series in (16.39) may not converge (see
Problem 16.8).

The probability distribution p(t)� = (pi (t), i ∈ S) of the CTMC X (t) is given by

p�(t) = p�(0)P(t), t ≥ 0. (16.40)

The distribution p(t) does not depend on t if and only if p(0) = π , where π is the
invariant or stationary distribution that satisfies (Problem 16.9)

π�Q = 0�, (16.41)
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which is called the global balance equation,2 or simply the balance equation. By
writing the components of the above matrix equation separately, we have∑

j∈S
π j Q ji = 0, for all i ∈ S, (16.42)

which, using property (16.24), can be rewritten (Problem 16.10) as

∑
j �=i

π j Q ji = πi

⎛⎝∑
j �=i

Qi j

⎞⎠ , for all i ∈ S. (16.43)

The above set of balance equations states that the rate of transitions into any state i
and the rate of transitions out of this state are equal. In that case the process X (t) is
stationary; i.e., the distribution of X (t) does not depend on t ≥ 0 once we set p(0) = π .

Theorem 16.2 provides an expression for the stationary distribution of an ergodic
CTMC X (t), π , in terms of the stationary distribution, π̃ , of its associated EMC {Xn}.
On the other hand, from the above developments, we know that π must satisfy the global
balance equation (16.41). Thus, we have the following result.

THEOREM 16.3 (Stationary distribution of an ergodic CTMC). An ergodic CTMC with
infinitesimal generator matrix Q has a unique stationary distribution π satisfying the
global balance equation (16.41).

In Example 16.1, the stationary distribution of the CTMC X (t) was obtained from
the stationary distribution of the associated EMC {Xn}. Alternatively, the stationary
distribution of X (t) can be obtained without consideration of the EMC by solving the
global balance equation (16.41) together with the normalization constraint π�1 = 1.

16.2.3 Spectral expansion of the infinitesimal generator

Similar to the expansion of the TPM given in (15.33), we can expand the infinitesimal
generator Q as follows:

Q = U�U−1 = U�V =
∑
i∈S

γi Ei , (16.44)

where � = diag[γ0, γ1, γ2, . . .] and the γi ; i ∈ S are the eigenvalues of Q; i.e.,

det|Q − γi I | = 0, i ∈ S.

The i th column vector ui of the similarity matrix U = [ui ; i ∈ S] is the right-
eigenvector associated with γi . Similarly, the i th row vector vi of V = U−1 is the
left-eigenvector associated with γi . The matrices

2 We have seen different types of balance equations, called detailed balance equations, in Section 14.2,
which will be discussed further in Section 16.3.
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Ei = uiv
�
i , i ∈ S,

are the projection matrices as defined in (15.45). The similarity of U , i.e., V U = I ,
implies that vi and u j are biorthonormal; i.e.,

v�i u j = δi j , i, j ∈ S.

Then the TPM P(t) = e Qt has the spectral expansion given by

P(t) = U�(t)V =
∑
i∈S

λi (t)Ei ,

where λi (t) is the i th entry of the diagonal matrix �(t), and is simply related to the
eigenvalue γi by

λi (t) = eγi t . (16.45)

The state distribution p(t) of a CTMC X (t) at time t can thus be represented as

p(t)� = p(0)�P(t) =
∑
iS

eγi t uiv
�
i =

∑
i∈S

ai e
γi tv�i , (16.46)

where ai is the inner product of vectors p(0) and ui ,

ai = p(0)�ui , i ∈ S. (16.47)

The right-eigenvector associated with the eigenvalue γ0 = 0 is a column vector whose
entries are all ones; i.e., u�0 = (1, 1, 1, . . . , 1). Then the coefficient a0 of (16.47) is sim-
ply given by a0 = 1. Thus, we have the following expression for the state distribution
at time t :

p(t) = v0 +
∑

i∈S\{0}
ai e

γi tvi . (16.48)

We see that p(t) converges to v0 as t →∞. The maximum negative (smallest in
magnitude) eigenvalue, which we denote by γ1 (i.e., γn < γ1 < γ0 = 0 for all j ≥ 2),
determines the rate of convergence. That is, for sufficiently large t , we have

p(t) ≈ v0 + a1eγ1v1, for large t. (16.49)

The quantity |γ1|−1 is called the relaxation time of the system. As time tends to infinity,
we find

lim
t→∞ p(t) = v0; (16.50)

therefore, it must hold that

v0 = π , (16.51)

which is the equilibrium-state distribution of the ergodic Markov chain X (t).
Note that (16.41) implies that the stationary (or invariant) distribution π� is the left-

eigenvector of Q associated with eigenvalue γ0 = 0; thus, it confirms (16.51). Note also
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that the stationary distribution can be expressed as the result of the projection E0 acting
on the initial distribution:

π� = p(0)�E0. (16.52)

Example 16.2: Ion channel model – continued [62]. Consider the ion channel model
of Example 16.1. The eigenvalues of the infinitesimal generator Q of (16.26) can be
found from

det |Q − γ I | = det

∣∣∣∣ −μ0 − γ μ0

ημ1 −ημ1 − γ
∣∣∣∣ = 0,

which gives γ (γ + ημ1 + μ0) = 0. Thus, γ0 = 0 and γ1 = −(μ0 + ημ1). The corre-
sponding left- and right-eigenvectors are found as

v0 =
(

r

1+ r
,

1

1+ r

)�
= π, u0 = (1, 1)�,

v1 = (1, − 1)�, u1 = 1

1+ r
(1,−r)�,

where

r = ημ1

μ0
.

Thus, the projection matrices are

E0 = u0v
�
0 =

1

1+ r

[
r 1
r 1

]
, E1 = u1v

�
1 =

1

1+ r

[
1 −1
−r r

]
. (16.53)

Then, the TPM P(t) is given by

P(t) = E0 + e−μ0(1+r)t E1, for all t ≥ 0. (16.54)

For small t > 0, we have

P(t) ≈ E0 + [1− μ0(1+ r)t]E1

= 1

1+ r

[
r + [1− μ0(1+ r)t] 1− [1− μ0(1+ r)t]
r − r [1− μ0(1+ r)t] 1+ r − r [μ0(1+ r)t]

]
= I + Qt,

(16.55)

which confirms (16.28).
The time-dependent state distribution p(t) is given from (16.46) as

p(t)� = π� + p(0)�e−μ0(1+r)t E1, (16.56)

where p(0) is the state distribution before the drug is applied, since we can write the
eigenvalue γ1 = −μ0(r + 1). Hence, the probability that the Markov chain is in state 0
(i.e., the channel being open) at time t is

p0(t) = r

1+ r
+ p0(0)(1+ r)− r

1+ r
e−μ0(r+1)t , t ≥ 0,
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where p0(0) is the probability that the channel is initially open at time t = 0. The
probability that the channel is closed at time t is

p1(t) = 1− p0(t) = 1

1+ r
− p0(0)(1+ r)− r

1+ r
e−μ0(r+1)t , t ≥ 0.

�

16.3 Reversible Markov chains

The concept of a reversible process often arises in applications of Markov processes.
A continuous-time random process X (t) is said to be reversible if it has the same
finite-dimensional distributions as the process X (τ − t); i.e., X (t) and X (τ − t) are
statistically identical, for any real value τ . Note that since τ is an arbitrary time-shift,
a reversible process is necessarily stationary. The process X (−t) is also called the
reversed process of X (t). Similarly, a stationary discrete-time random process Xn is
reversible if it is statistically indistinguishable from its reversed process {X−n}.

16.3.1 Reversible discrete-time Markov chain

Consider an ergodic DTMC Xn defined on a state space S with TPM P = [Pi j ],
i, j ∈ S, and stationary distribution π = (πi ; i ∈ S)�. The following theorem charac-
terizes the relationship between Xn and its reversed process X̃n = {X−n}.

THEOREM 16.4 (Reversed balance equations for a DTMC). The reversed process X̃n

is an ergodic DTMC with the same stationary distribution π and its TPM P̃ = [P̃i j ]
satisfies the following reversed balance equations:

πi P̃i j = π j Pji , i, j ∈ S. (16.57)

Proof. To show that the reversed process X̃n is a Markov chain, we need to establish
that

P[X̃n = x0 | X̃n−1 = x1, . . . , X̃n−m = xm] = P[X̃n = x0 | X̃n−1 = x1], (16.58)

for any integer m ≥ 1 and x0, x1, . . . , xm ∈ S. Applying the definition of conditional
probability, the left-hand side (LHS) of (16.58) can be expressed as

LHS of (16.58) = P[X̃n = x0, X̃n−1 = x1, . . . , X̃n−m = xm]
P[X̃n−1 = x1, . . . , X̃n−m = xm ]

= P[X−n = x0, X−n+1 = x1, . . . , X−n+m = xm]
P[X−n+1 = x1, . . . , X−n+m = xm]

(a)= πx0 Px0x1 Px1x2 · · · Pxm−1xm

πx1 Px1x2 · · · Pxm−1xm

= πx0 Px0x1

πx1

, (16.59)
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where step (a) follows because Xn is a homogeneous DTMC. Similarly, the right-hand
side (RHS) of (16.58) can be expressed as

RHS of (16.58) = P[X̃n = x0, X̃n−1 = x1]
P[X̃n−1 = x1]

= πx0 Px0x1

πx1

. (16.60)

Since (16.59) and (16.60) imply (16.58), X̃n is a DTMC.
Letting x0 = i and x1 = j , (16.60) leads to the reversed balance equations (16.57).

From (16.57) we see that the transition probabilities, P̃x1x0 , of {X̃n}, are proportional to
the transition probabilities, Px0x1 , of {Xn}. Since Xn is an ergodic DTMC, so too must
be the reversed chain X̃n . Next, consider the j th component of the vector π� P̃ , j ∈ S:

[π� P̃] j =
∑
i∈S

πi P̃i j
(a)=
∑
i∈S

π j Pji
(b)= π j , (16.61)

where (a) follows from the reversed balance equations (16.57) and (b) follows because
P is a stochastic matrix. Hence, π� P̃ = π�, so π is the stationary distribution of the
reversed chain X̃n .

The converse of Theorem 16.4 also holds (Problem 16.12).

THEOREM 16.5 (Converse of reversed balance equations for DTMC). Let Xn be an
ergodic DTMC with TPM P . If we can find a TPM P̃ and a probability distribution
π = [πi ], i ∈ S, such that reversed balance equations (16.57) hold, then P̃ is the TPM
of the reversed process X̃n = {X−n} and π is the stationary distribution of both Xn

and X̃n. �

Note that the reversed balance equations (16.57) hold for a DTMC Xn and its reversed
chain X̃n whether or not Xn is reversible. Reversibility of Xn further requires the
transition probabilities of Xn and X̃n to be equal; i.e., Xn is reversible if and only if

Pi j = P̃i j , i, j ∈ S. (16.62)

Substituting (16.62) into (16.57), we obtain the following result.

THEOREM 16.6 (Detailed balance equations for DTMC). An ergodic DTMC Xn is
reversible if and only if the following detailed balance equations are satisified:

πi Pi j = π j Pji , i, j ∈ S. (16.63)

Theorems 16.5 and 16.6 imply the following result.

COROLLARY 16.1 (Converse of detailed balance equations for DTMC). Let Xn be an
ergodic DTMC with TPM P . If we can find a probability distribution π = [πi ], i ∈ S,
such that detailed balance equations (16.63) hold, then Xn is reversible and π is its
stationary distribution.
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Besides Theorem 16.6, a convenient test for the reversibility of a homogeneous
Markov chain is given by Kolmogorov’s criterion (Problem 16.13).

THEOREM 16.7 (Kolmogorov’s criterion for reversibility of a DTMC). An ergodic
DTMC Xn is reversible if and only if its transition probabilities satisfy

Px1x2 Px2x3 · · · Pxn−1xn Pxn x1 = Px1xn Pxn xn−1 · · · Px3x2 Px2x1

for any sequence of states x1, x2, . . . , xn in the state space S.

Kolmogorov’s criterion essentially states that a DTMC is reversible if and only if the
product of the transition probabilities along any sequence of states forming a cycle must
be the same when the cycle is traversed in either of the two directions.

16.3.2 Reversible continuous-time Markov chain

Analogous to Theorem 16.4, a CTMC and its reversed process satisfy a set of reversed
balance equations (Problem 16.14). Consider an ergodic CTMC X (t) defined on a
state space S with infinitesimal generator matrix Q = [Qi j ], i, j ∈ S, and stationary
distribution π = (πi ; i ∈ S).

THEOREM 16.8 (Reversed balance equations for CTMC). The reversed process
X̃(t) = X (−t) is an ergodic CTMC with the same stationary distribution π and its
infinitesimal generator Q̃ = [Q̃i j ] satisfies the following reversed balance equations:

πi Q̃i j = π j Q ji , i, j ∈ S. (16.64)

The converse of Theorem 16.64 also holds (Problem 16.15).

THEOREM 16.9 (Converse of reversed balance equations for CTMC). Suppose we can
find an infinitesimal generator matrix Q̃ and a probability distribution π = (πi ; i ∈
S)� such that the reversed balance equations (16.57) hold. Then Q̃ is the infinitesimal
generator of the reversed process X̃(t) = X (−t) and π is the stationary probability
distribution of both X (t) and X̃(t).

Conditions for reversibility of a CTMC can be stated in a similar manner to
Theorems 16.6 and 16.7 for a DTMC (Problem 16.16 and 16.17).

THEOREM 16.10 (Detailed balance equations for a reversible CTMC). An ergodic
CTMC X (t) is reversible if and only if its infinitesimal generator Q = [Qi j ], i, j ∈ S,
and stationary probability distribution π = (πi ; i ∈ S) satisfy the following detailed
balance equations:

πi Qi j = π j Q ji , i, j ∈ S. (16.65)
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Theorems 16.9 and 16.10 imply the following result.

COROLLARY 16.2 (Converse of detailed balance equations for CTMC). Let Xn be an
ergodic CTMC with infinitesimal generator Q. If we can find a probability distribu-
tion π = [πi ], i ∈ S, such that detailed balance equations (16.65) hold, then X (t) is
reversible and π is its stationary distribution.

Analogous to the discrete-time case, Kolmorogov’s criterion provides an alternative
test for reversibility of a CTMC.

THEOREM 16.11 (Kolmogorov’s criterion for a reversible CTMC). An ergodic CTMC
X (t) is reversible if and only if its infinitesimal generator Q = [Qi j ], i, j ∈ S, and
stationary probability distribution π = (πi ; i ∈ S) satisfy

Qx1x2 Qx2x3 · · · Qxn−1xn Qxn x1 (16.66)

for any sequence of states x1, x2, . . . , xn ∈ S.

16.4 An application: phylogenetic tree and its Markov chain representation

In the area of bioinformatics, a phylogenetic tree (also called an evolutionary tree)
provides a representation of evolutionary relationships between species. As an example,
the Tree of Life Web Project is a collaborative effort that aims at classifying all living
organisms in terms of a phylogenetic tree called the tree of life (TOL) (see [326]). The
structure of one instantiation of this tree near the root of the tree is shown in Figure 16.2.
We note that viruses are not included in this tree. The tree in Figure 16.2 consists of
one root node and three leaf nodes or leaves.3 The three leaves are labeled as follows:
Eubacteria, Eukaryotes, and Archaea. Each of these leaves is in turn the root node of a
subtree of the TOL.

Alternative instantiations of the part of the TOL shown in Figure 16.2 are given
in Figure 16.3 (a) and (b). In Figure 16.3 (a), the leaf labeled Archaea in the tree
of Figure 16.2 has been split into two separate leaves labelled Euryarchaeota and

Eubacteria (true bacteria, mitochondria, chloroplasts)

Eukaryotes (protists, plants, fungi, animals)

Archaea (methanogens, halophiles, sulfolobus)

Figure 16.2 Instantiation of subtree near the root of the tree of life.

3 Often trees are also drawn with the root at the top and leaves at the bottom.
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Eubacteria

Eukaryotes

(a) (b)

Euryarchaeota

Crenarchaeota

Eubacteria

Eukaryotes

Euryarchaeota

Crenarchaeota

Figure 16.3 Alternative instantiations at the root of the tree of life.

Crenarchaeota (or eocytes). These leaves share a common parent node, which in turn
shares a common parent with the leaf labeled Eukaryotes. Figure 16.3 (b) shows a sec-
ond alternative tree structure in which the leaf labeled Crenarchaeota is a sibling to the
leaf labelled Eukyarotes.

16.4.1 Trees and phylogenetic trees

We now discuss how phylogenetic trees can be modeled mathematically. The abstract
structure of a tree can be represented as a connected graph T = (V, E) with node set V
and edge set E that contains no cycles; i.e., each pair of nodes is connected by a single,
unique path. An edge e ∈ E consists of a pair of nodes; e.g., e = {i, j}, for some nodes
i, j,∈ V . In a directed graph, each edge is an ordered pair of nodes; e.g., e = (i, j).
Here, the edge is said to be directed from node i to node j , which are also referred to as
the head and tail of edge e.

A rooted tree is a tree that has one distinguished node called the root, which we shall
label as node 0. In this case, the tree is often denoted by T 0 and the edges are viewed as
being directed away from the root. Given an edge e = (u, v) in a rooted tree, node u is
said to be the parent of node v and, conversely, node v is a child of node u. We denote
the set of child nodes of a given node u in a rooted tree by

ch(u) = {v ∈ V : (u, v) ∈ E}. (16.67)

A rooted tree imposes a natural partial ordering of the nodes in T as follows: for u, v ∈
V , u ≤ v if the (directed) path from the root to node v contains node u. In this case,
node u is said to be an ancestor of node v and, conversely, node v is said to be a
descendant of node u. In particular, u ≤ v whenever (i, j) is an edge of the tree.

Any node of T incident on a single edge (i.e., of degree one) is called a leaf node
or simply a leaf, while every other node of T is called an interior node. For a rooted
tree T = (V, E), we denote the set of leaf nodes of T by Ṽ . Given a rooted tree T
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and a node u ∈ V , the subtree of T rooted at node u, denoted by T u , is the tree
rooted at node u consisting of all descendants of u and the associated edges. The set
of nodes of the subtree T u is denoted by Vu . The set of leaf nodes of the subtree T u is
denoted by Ṽu .

Formally, a phylogenetic tree consists of a tree T together with a mapping φ that
sets up a one-to-one correspondence between a set of labels, L, and the set of leaf nodes
Ṽ; i.e., φ : L −→ Ṽ is a bijective mapping. For example, the label set for the tree in
Figure 16.2 is given by L = {Eubacteria, Eukaryotes, Archaea} and the label set of the
tree in Figure 16.4 is {a, b, c}. The labels may represent different groups of organisms,
e.g., species, in accordance with some taxonomy or classification scheme.

Phylogenetic trees are used to characterize evolutionary relationships among a set of
such groups with respect to some property or characteristic. For example, a phyloge-
netic tree could be used to explain the evolutionary relationships among a set of species
{a, b, c} in terms of portions of a DNA sequence common to each species. Figure 16.4
depicts a phylogenetic tree and three DNA strands corresponding to the labels a, b, and
c. In this example, each DNA strand consists of ten sites, where a site indicates the loca-
tion of a nucleotide base within a given strand. The nucleotide bases are drawn from a
set of four elements, S = {A, G, C, T}, where the symbols A, C, G, and T represent
the four DNA nucleotide bases: adenine, cytosine, guanine, and thymine respectively.
If we are interested in protein sequences rather than DNA sequences, the set S would
correspond to a set of amino acids. At this point, it is useful to distinguish between
the set V of nodes in the tree, the set L of labels assigned to the leaf nodes of the
tree, and the set S of possible characteristics that may be associated with the labels in
the tree.

Referring again to Figure 16.4, we see that the three DNA strands are in alignment
with respect to sites labeled from 1 to 10. At site 1, species a is associated with the
nucleotide base A, species b is associated with C, and species c is associated with T. This
mapping between the labels of the tree to the elements of S is called a character, which
is defined formally as a one-to-one mapping χ : L −→ S. For example, the character
at site 1 is specified by

0

a

b

c

1

2

3

4

Phylogenetic Tree

A G C

χ
3

T A  G C A A C

C A T T C A A   G C T

T  G A C  G C T G C A

1 2

DNA Sequences

3 4 5 6 7 8 109

labels

subtree 

site #

χ
1
1

Figure 16.4 Example of a rooted phylogenetic tree.
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χ1(a) = A, χ1(b) = C, χ1(c) = T,

whereas the character associated with site 3 is specified by

χ3(a) = C, χ3(b) = T, χ3(c) = A.

It is often of interest to consider the restriction, χu , of a character χ to a particular
subtree of a tree. Figure 16.4 illustrates the restriction of the character χ1 to the subtree
T 1. This restriction, denoted by χ1

1 , is given by χ1
1 : L1 → S, where L1 = {a, b} and

χ1
1 (a) = A, χ1

1 (b) = C.

16.4.2 Markov process on a tree

A Markov process can be used to model the stochastic evolution of characters on a
rooted phylogenetic tree T .

Consider an abstract rooted tree T . Assume a total ordering of the nodes of T ; i.e.,
whenever (u, v) is a (directed) edge of T , u ≤ v. For example, the nodes in the tree
of Figure 16.4 are totally ordered by the labeling of the nodes from 0 to 4. A Markov
process on T is a set, {Xv, v ∈ V}, of RVs associated with the nodes V , taking values
in a state space S such that for any edge e = (u, v) in T

P[Xv = j | Xw; w ∈ V, w ≤ v] = P[Xv = j | Xu], j ∈ S. (16.68)

Let Pi j (e) = P[Xv = j | Xu = i]. The matrix P(e) = [Pi j (e)], i, j ∈ S is the TPM
corresponding to edge e.

In a Markov process defined on a tree, each node v has an associated (marginal) prob-
ability distribution πi (v) = P[Xv = i], i ∈ S, which can be expressed as a probability
vector π(v) = [πi (v)], i ∈ S. Note that a DTMC can be viewed as a Markov process
on a rooted tree T = (V, E) with root node 0, node set V = {0, 1, 2, . . . , v, . . .}, and
edge set E = {(v, v + 1) : v ≥ 0}; i.e., T is a path starting from node 0.

For a Markov process defined on a phylogenetic tree, it is of interest to determine
the probability that the variables Xv , v ∈ Ṽ , associated with the leaf nodes of the tree
assume values specified by a given character χ . This probability can be expressed as
follows [296]:

Pχ = P[Xφ(�) = χ(�); � ∈ L]. (16.69)

The probability Pχ can be interpreted as the probability that the character χ is realized
by the phylogenetic tree. This probability can be computed efficiently using the sum-
product algorithm (see Problem 21.4 of Chapter 21). Another quantity of interest, the
substitution probability of an edge e = (u, v), defined by

s(e) = P[Xu �= Xv],
indicates the probability that the state changes as the tree is traversed from node u to
node v.
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In this section, we have been considering a Markov chain model for the stochas-
tic evolution of a fixed site associated with an alignment of sequences, e.g., DNA
sequences, with respect to a phylogenetic tree. The model can be summarized by a
parameter θ , which consists of the tree T , the stationary probability distribution of the
root node, i.e., π(0), and the TPMs P(e) assigned to each edge e of T . To explicitly
show the dependence on the model parameter, the probability that a given character χ
is realized by the phylogenetic tree will be denoted by Pχ;θ .

If we are considering DNA sequences of length N , we can define a character align-
ment as a vector of characters across the sites: χ = (χs, 1 ≤ s ≤ N ). For reasons of
model tractability, it is commonly assumed that site evolution is independent across dif-
ferent sites. Hence, the probability that a character alignment χ is realized by a Markov
phylogenetic tree model parameterized by θ can be expressed as

Pχ;θ =
N∏

s=1

Pχs ,θ . (16.70)

In the language of statistics, Pχ;θ , is called the likelihood of the character χ with
respect to the model parameterized by θ . In terms of likelihoods, (16.70) can be
rewritten as

Lχ (θ) =
N∏

s=1

Lχs (θ), (16.71)

where Lχs (θ) denotes the likelihood of the character χs for site s and Lχ (θ) represents
the likelihood of the character alignment χ across all sites.

16.4.3 Continuous-time Markov chain model

The Markov process model of a tree defined in the previous section consists of a set
of node variables, {Xv; v ∈ V}, whose stochastic properties are determined by TPMs
P(e) = [Puv(e)], e = (u, v) ∈ E . This model is similar to a nonhomogeneous DTMC
model, except that the RVs are indexed by the nodes of V rather than by time. To capture
the element of time in a phylogenetic tree, the evolution of the node variables can be
characterized by a CTMC.

For each edge e = (u, v) ∈ E , we assume that node variable Xu evolves to the node
variable Xv in accordance with a CTMC with infinitestimal generator matrix Q(e) over
a time period of length τ(e) with intensity ρ(e), which is a dimensionless quantity. The
TPM P(e) and the generator matrix Q(e) are related by

P(e) = e Q(e)ρ(e)τ (e). (16.72)

Figure 16.5 illustrates the process of evolution from the state Xu = A to the state Xv =
T over the time period τ(e), where e = (u, v). We see that three so-called mutation or
substitution events occur over the time τ(e): A → C, C → A, A → T. The first two
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u v

Xu = A

A → C C → A A → T

τ (e) Xv = T

Figure 16.5 Substitution events along an edge e = (u, v) of a phylogenetic tree.

substitutions are said to be silent, since we only observe the start and end states; i.e.,
Xu = A and Xv = T respectively.

For reasons of tractability, it is often assumed that the CTMC is homogeneous, such
that the Markov process on the tree T is stationary. More precisely, a Markov process on
a rooted phylogenetic tree T is said to be stationary with probability distribution vector
π if there exists an infinitesimal generator matrix Q such that (i) π = π(0), where 0
denotes the root node, (ii) π� Q = 0, and (iii) (16.72) holds for all edges e.

A stationary Markov process on a phylogenetic tree T is said to be reversible if the
following detailed balance equations hold (cf. (16.65)):

πi Qi j = π j Q ji , i, j ∈ S. (16.73)

Define the diagonal matrix � = diag{πi , i ∈ C}. Then (16.73) is equivalent to requiring
that the matrix �Q be symmetric (Problem 16.21). The assumption of reversibility
is convenient because, in this case, changing the root node of T does not affect the
resulting TPMs P(e), e ∈ E . To see this, note that, for an edge e = (u, v),

Pi j (e) = P[Xu = i | Xv = j] (a)= P[Xv = j | Xu = i]P[Xu = i]
P[Xv = j] = Pi j ((u, v))πi

π j

(b)= Pji ((v, u))π j

π j
= Pji ((v, u)), (16.74)

where Bayes’ theorem is applied in step (a) and step (b) follows from reversibility of
the CTMC model (Problem 16.21).

For a reversible stationary process on T , the mean number of substitutions that occur
on an edge e ∈ E can be expressed as

κ(e) = −
∑
i∈S

πi Qiiρ(e)τ (e) = Tr{�Q}ρ(e)τ (e). (16.75)

Consider an arbitrary pair of nodes u, v in the tree. Since a tree does not contain cycles,
the nodes are connected by a unique path u = u1, u2, . . . , um = v. The evolutionary
distance between u and v is then defined by

κ((u, v)) =
m−1∑
n=1

κ((un, un+1)), (16.76)

which gives the mean number of substitutions that occur on the path between nodes
u and v. If we further assume that the intensity ρ(e) is constant, then the rate of
substitutions per unit time is also constant over all edges.
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Example 16.3: Felsensteins’s F81 model [41, 101]. Assume that the state set is C =
{A, C, G, T}. Felsenstein’s F81 model consists of a CTMC with infinitesimal generator
matrix given by

Q =

⎡⎢⎢⎣
−(πC + πG + πT) πC πG πT

πA −(πA + πG + πT) πG πT
πA πC −(πA + πC + πT) πT
πA πC πG −(πA + πC + πG)

⎤⎥⎥⎦ ,
(16.77)

where the states are ordered alphabetically and πA, πC, πG, and πT are probabilities
that sum to one. One can show that the stationary probability distribution is given by
(Problem 16.19)

π = (πA, πC, πG, πT)
�. (16.78)

Furthermore, the Markov process model specified by Q is reversible (Problem 16.22).
�

16.5 Summary of Chapter 16

Semi-Markov process: P = [Pi j ], Fi j (s), i, j ∈ S, s ≥ 0 Def.16.1
Counting process: N (t) = max{n : tn ≤ t} (16.4)
SMP X (t): X (t) = X N (t), t ≥ 0 (16.5)
Markov renewal process: {(Xn, tn)}
Distributions of SMP and EMC: πi = π̃i E[Si ]∑

j∈S
π̃ j E[S j ] , i ∈ S (16.10)

TPMF of a CTMC: P(t) = [Pi j (t)]
where: Pi j (t) = P[X (s + t) = j | X (s) = i] (16.18)
Chapman–Kolmogorov eq. for a

CTMC:
P(s + t) = P(s)P(t) (16.21)

Infinitesimal generator: Q = d P(t)
dt

∣∣∣
t=0

(16.22)

Kolmogorov’s forward eq.: d P(t)
dt = P(t)Q (16.34)

The solution: P(t) = e Qt (16.35)
Kolmogorov’s backward eq.: d P(t)

dt = Q P(t) (16.38)
Balance eq.: π�Q = 0� (16.41)
Reversed balance eqs (DTMC): πi P̃i j = π j Pji , i, j ∈ S (16.57)
Detailed balance eqs (DTMC): πi Pi j = π j Pji , i, j ∈ S (16.63)
Reversed balance eqs (CTMC): πi Q̃i j = π j Q ji , i, j ∈ S (16.64)
Detailed balance eqs (CTMC): πi Qi j = π j Q ji , i, j ∈ S (16.65)
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16.6 Discussion and further reading

A CTMC is a Markov process, in which the time parameter is continuous and the state
space is discrete or finite. In effect, the CTMC is the continuous-time counterpart of the
DTMC treated in the previous chapter. An SMP generalizes the DTMC by introducing
random, continuous-valued sojourn times in each state. As such, an SMP has sample
paths that are piecewise-constant and right-continuous. An SMP X (t) jumps at time
tn according to a DTMC Xn = {X (tn)} specified by a transition probability matrix P .
The sojourn time, τn = tn+1 − tn , in the state of X (t) attained at the nth jump point
depends only on the values of the current state Xn = j and the next state Xn+1 = i and
has distribution function Fi j (t). While the process X (t) does not satisfy the Markov
property in general, the pair process {(Xn, τn)} is a Markov process and {(Xn, tn)} is
commonly referred to as a Markov renewal process. If the sojourn time distribution
function Fi j (t) is exponentially distributed and does not depend on j , then X (t) satisfies
the Markov property and, hence, is a CTMC.

Many physical processes are inherently continuous time and are often most accurately
modeled by a CTMC or SMP, as opposed to a DTMC. In some applications, a process
is time-sampled and then approximated by a DTMC with some loss of accuracy. In
this case, a continuous-time model is often preferred provided the model is tractable,
since time sampling is avoided. For reasons of tractability, a CTMC is preferred over
an SMP model, but accuracy may be sacrificed in a CTMC-based model by assuming
exponential sojourn times between states.

The requirement of reversibility imposes a certain structure on a Markov process,
which often leads to a more tractable model in applications. A related concept in queue-
ing theory, called quasi-reversibility, was introduced by Kelly [177] to characterize a
class of queues having a product-form stationary distribution. Quasi-reversibility is also
discussed in the books by Wolff [357] and Kobayashi and Mark [203].

In this chapter we discussed an example application of a CTMC to modeling ion cur-
rent channels in biology. For further study of ion channel modeling, the reader is referred
to papers by Colquhoun and Hawkes [62–64] and Ball et al. [12, 13]. We also devoted
a subsection to Markovian modeling of phylogenetic or evolutionary trees. Bryant et
al. [41] provide a survey of likelihood calculation methods in phylogenetics based on a
Markov model. We remark that a phylogenetic tree is a special case of a more general
structure known as a phylogenetic network, which is represented by a general directed
graph. Such models are closely related to Bayesian networks pioneered by Pearl [264]
and probability trees used to study causality, e.g., Shafer [298]. Bayesian networks and
Pearl’s belief propagation algorithm are discussed in Section 21.5. More comprehensive
treatments of phylogenetics can be found in books by Felsenstein [102] and Semple and
Steel [296].

In-depth treatments of Markov renewal theory and SMP can be found in papers by
Çinlar [56, 58] and in his textbook [57]. For a further mathematical study of Markov
chains, the reader is referred to, for example, Chung [52], Kijima [180], and Rogers
and Williams [282] in addition to the books on stochastic processes cited above. It
goes without saying that the theory of Markov processes and applications originated
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in Markov’s work; thus, it is appropriate to record his papers and a review article
[14, 239, 240].

16.7 Problems

Section 16.1: Semi-Markov process

16.1 Alternating renewal process. Consider a machine which is either “up” or run-
ning, or is “down” and gets repaired. The random process Un represents a sequence of
intervals that the machine is up, and Dn represents a sequence of down periods. Assume
that the machine starts at t = 0, so this machine’s behavior can be characterized by
U1, D1,U2, D2, . . . . Let the Un be i.i.d. RVs with the distribution function FU (u) and
Dn be i.i.d. RVs with the distribution function FD(d).

(a) Show that we can define an SMP that characterizes this machine’s state as a function
of time.

(b) The state process for the machine can be defined by I (t), where

I (t) =
{

1, if the machine is up at time t ,
0, otherwise.

(16.79)

What is the relation between the process I (t) and the counting process N (t) defined
in (16.4)?

(c) What is the probability that the machine is up and running?

16.2∗ Conditional independence of sojourn times. Show that for any integer n ≥ 1
and numbers u1, . . . , un ≥ 0

P[τ1 ≤ u1,τ2 ≤ u2, . . . , τ j ≤ un | X0, X1, . . .]
= FX0,X1(u1)FX1,X2(u2) · · · FXn−1,Xn (un);

i.e., the sojourn times τ1, τ2, . . . are conditionally independent given the Markov chain
{Xn}.
16.3∗ Semi-Markovian kernel [58]. An SMP X (t) or the associated Markov renewal
process (Xn, tn) can be specified in terms of the family of probabilities

Qi j (t) = P[Xn+1 = j, tn+1 − tn ≤ t | Xn = i], i, j ∈ S, t ≥ 0,

which is called a semi-Markovian transition kernel. Determine the relationship between
the semi-Markovian kernel Q(t) = [Qi j (t)], i, j ∈ S, and the parameters of an SMP
given in Definition 16.1: P = [Pi j ] and F(t) = [Fi j (t)], i, j ∈ S.

16.4 Markov renewal process and renewal process [58]. Consider a Markov
renewal process (Xn, tn).

(a) Let i ∈ S be a fixed state and let S0(i), S1(i), . . . be the successive tn for
which Xn = i . Show that {Sn(i)} forms a (possibly delayed) renewal process (see
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Section 14.3). Hence, argue that a renewal process is a special case of a Markov
renewal process.

(b) Define

Qn
i j (t) = P[Xn = j, tn ≤ t | X0 = i].

Show that

Q0
i j (t) = δi j , (16.80)

Qn+1
ik (t) =

∑
j∈S

∫ t

0
Qi j (u)Q

n
jk(t − u)du. (16.81)

(c) Let Mi j (t) denote the mean number of renewal points tn for which Xn = j in (0, t],
given that X0 = i . The functions Mi j (t), i, j ∈ S, are called Markov renewal
functions and are analogous to the renewal function of renewal processes (see
Section 14.3.1). Show that

Mi j (t) =
∞∑

n=0

Qn
i j (t).

Section 16.2: Continuous-time Markov chain (CTMC)

16.5∗ Markovian property of an SMP. Consider an SMP X (t) with sojourn time
distribution functions satisfying (16.17). Show that X (t) is a Markov process.

16.6∗ CTMC as an SMP. Consider a CTMC X (t) defined on a state space S with
infinitesimal generator Q = [Qi j ], i, j ∈ S. Characterize X (t) as an SMP according to
Definition 16.1.

16.7 Semi-Markovian kernel of a CTMC. Consider a CTMC X (t) defined on a
state space S with infinitesimal generator Q = [Qi j ], i, j ∈ S. Determine the semi-
Markovian kernel Q(t) = [Qi j (t)] of X (t), as defined in Problem 16.3.

16.8 Nonuniform Markov chain [345]. Show that the series in (16.39) may not con-
verge if Q is not uniform.
Hint: Let S = {0, 1, 2, . . .} and Q0, j = j−2, Qi,0 = i , for all i, j ≥ 1. Show that Q2 is
not finite.

16.9 Invariant (or stationary) distribution of a CTMC. Show that the invariant
distribution of a CTMC with generator matrix Q is the solution of (16.41).

16.10∗ Balance equations. Derive the global balance equation (16.43).

16.11 Markov-modulated Poisson process. A Markov-modulated Poisson process
(MMPP) is a nonhomogeneous Poisson process N (t) whose rate is itself a random
process modulated by a finite-state CTMC X (t) with state space S = {1, . . . , r} such
that the rate of the Poisson process is λi when X (t) = i , i = 1, . . . , n. The λi are



480 Semi-Markov processes and continuous-time Markov chains

assumed to be distinct and nonnegative. The infinitestimal generator matrix is denoted
by Q = [Qi j ], i, j ∈ S.

(a) Let tn denote the time of the nth arrival event of the Markov-modulated Poisson
process and let Xn = X (tn). Show that (Xn, tn) is a Markov renewal process.

(b) Let � = diag(λ1, . . . , λr ). Let Q(t) = [Qi j (t)], i, j ∈ S denote the semi-
Markovian kernel for (Xn, tn). Define the semi-Markovian kernel density D(t) =
[Di j (t)], i, j ∈ S, by

D(t) = d Q(t)
dt

; (16.82)

i.e., Di j (t) is the probability density that a transition of Xn occurs from state i to
state j in time t . Show that Di j (t) satisfies the following equation:

Di j (t) = λi e
−λi t eQii t +

∫ t

0
e−λi s

∑
k �=i

Qik Dkj (t − s)ds, i, j ∈ S. (16.83)

(c) By differentiating (16.83) with respect to t , show that the semi-Markovian kernel
density is given by

D(t) = exp[(Q −�)t]�. (16.84)

(d) A Markov-modulated Poisson process for which r = 2 is sometimes called a
switched Poisson process. If, in addition, λ1 = 0, the Markov-modulated Poisson
process is called an interrupted Poisson process (IPP) (e.g., see [203]). Show that
the interrupted Poisson process is a renewal process.

Section 16.3: Reversible Markov chains

16.12∗ Converse of reversed balance equations for DTMC. Prove Theorem 16.5.

16.13 Kolmogorov’s criterion for DTMC. Show that Theorem 16.7 follows from
Theorem 16.6.

16.14∗ Reversed balance equations for CTMC. Prove Theorem 16.8 using the
following steps.

(a) For an arbitrary integer m ≥ 1, let t0 < t1 < · · · < tm be arbitrary time points and
let x0, x1, . . . , x0 ∈ S be arbitrary points in the state space. Show that

P[X̃(tm) = x0 | X̃(tm−1) = x1, X̃(tm−2) = x2, . . . , X̃(t0) = xm]
= P[X̃(tm) = x0 | X̃(tm−1) = x1] = πx0 Px0x1(tm − tm−1)

πx1

, (16.85)

where Px0x1(t) is the transition probability function for X (t). Hence, argue that X̃(t)
is an ergodic CTMC with transition probability functions given by

P̃i j (t) = π j Pji (t)

πi
, i, j ∈ S. (16.86)
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(b) Using the formula Q̃i j = d P̃i j
dt |t=0, show that the reversed balance equations (16.64)

hold.

16.15 Converse of reversed Balance equations for CTMC. Prove Theorem 16.9.

16.16∗ Detailed balance equations for CTMC. Prove Theorem 16.10.

16.17 Kolmogorov’s criterion for CTMC. Show that Theorem 16.7 follows from
Theorem 16.6.

16.18 Reversibility of a BD process. Consider the BD process N (t) discussed in
Section 14.2, with generator matrix Q defined by (14.47). Show that Q and the sta-
tionary distribution π satisfy the detailed balance equations (16.65). Hence, N (t) is a
reversible process.

Section 16.4: An application: phylogenetic tree and its Markov chain representa-
tion

16.19 Stationary probability distribution of F81 model. Show that the stationary
probability vector of the F81 model in Example 16.3 is given by (16.78).

16.20 Transition probabilities of F81 model. Show that the transition probabilities
of the F81 model with respect to an edge e ∈ E satisfy

Pcd(e) =
{
πd + (1− πd)e−μ(e), if c = d,
πd(1− e−μ(e)), if c �= d ,

(16.87)

where c, d ∈ S.
Hint: Apply (16.72) and diagonalize Q.

16.21∗ Reversibility and detailed balance equations.

(a) Show that the detailed balance equations (16.73) hold if and only if the matrix � Q
is symmetric.

(b) Show that a result analogous to that of part (a) holds for a DTMC with TPM P and
stationary probability vector π .

(c) Show that if a CTMC defined on a state space C with infinitesimal generator matrix
Q and stationary distribution vector π is reversible, then

πi Pi j (τ ) = π j Pji (τ ), i, j ∈ S,

for any τ > 0.

16.22 Reversibility of F81 model. Show that the F81 model in Example 16.3 is
reversible.

16.23∗ Numerical example of F81 model. Consider the F81 model with the following
parameter values:

πA = 0.1, πC = 0.2, πG = 0.2, πT = 0.5. (16.88)
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With respect to the phylogenetic tree illustrated in Figure 16.4, assume that the intensi-
ties λ(e) = 1 for each e ∈ E . Further assume that the time duration associated with each
edge is unity; i.e., τ(e) = 1, e ∈ E .

(a) Calculate the TPM P(e) associated with each edge e ∈ E .
(b) Calculate the mean number of substitutions κ(e) associated with each edge of the

tree.
(c) Calculate the likelihood of the character χ3.



17 Random walk, Brownian motion,
diffusion, and Itô processes

In this chapter we discuss three related topics that find important applications in many
science and engineering fields. They are random walks, Brownian motion, and diffusion
processes.

17.1 Random walk

A random walk model appears in the context of many real-world problems, such as a
gambling problem, the motion of a particle, the price change in the Dow Jones index,
and the dynamic change in network traffic.

Let us imagine that we make a one-dimensional random walk on the real line: we start
at some initial position X0 on the x-axis at time t = 0. At t = 1, we jump to position
X1, where the step size S1 = X1 − X0 is a random variable with some distribution1

F(s). At time t = 2, we jump by another amount S2, where S2 is independent of S1, but
has the same distribution F(s). The process continues and our position after n jumps,
or at time t = n, is thus given by2

Xn = X0 + S1 + S2 + · · · + Sn, (17.1)

where {Si } is a set of i.i.d. RVs with the common distribution F(s). This discrete time
sequence {Xn} is called a one-dimensional random walk. A random walk process is a
martingale (see Definition 10.5).

17.1.1 Simple random walk

A simple random walk is defined as a special case of the random walk model, in which
only two values are possible for each step Si ; i.e., either +1 or −1. The position at time
t = n is thus given by

Xn = X0 +
n∑

i=1

Si , n = 1, 2, 3, . . . . (17.2)

1 In this chapter we drop the subscript S of FS(s), etc. when the omission does not cause any confusion.
2 In the literature, the symbols Xn and Sn are often switched, where Sn signifies the “summed variable”

instead of the “step-size variable” as we define here.
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The simple random walk {Xn} has the following properties [131]:

1. Spatial homogeneity:

P[Xn = k|X0 = a] = P[Xn = k + b|X0 = a + b]; (17.3)

that is, the distribution of Xn − X0 does not depend on the initial value X0.
2. Temporal homogeneity:

P[Xn = k|X0 = a] = P[Xn+m = k|Xm = a]; (17.4)

that is, Xn+m − Xm has the same distribution as Xn − X0 for all m, n ≥ 0.
3. Independent increments: for a set of disjoint intervals (mi , ni ], i = 1, 2, . . ., the

increments (Xni − Xmi ) are independent.
4. Markov property: the sequence {Xn} is a simple Markov chain:

P[Xn+m = k|X0, X1, . . . , Xn] = P[Xn+m = k|Xn], for any m ≥ 0. (17.5)

The proof for each of the above properties is rather straightforward; hence, this is left
to the reader as an exercise (see Problem 17.2).

Because the simple random walk is spatially homogeneous, let us assume without
loss of generality that

X0 = a = 0.

Suppose that, out of n random steps, n1 steps are taken to the right (+1) and n2 steps
are to the left (−1). These steps are independent, and let us assume the following
probabilities:

Si =
{ +1 with probability p,
−1 with probability q = 1− p.

(17.6)

Let the position after the n steps be Xn = n1 − n2 � k. Since n1 + n2 = n, we
readily find n1 = (n + k)/2 and n2 = (n − k)/2. Then,

P[Xn = k] =
(

n
n+k

2

)
p(n+k)/2q(n−k)/2, k = −n,−n + 2, . . . , n − 2, n. (17.7)

Note that both (n + k) and (n − k) are even. Thus, for any state k, P[Xn = k] = 0 for
all n such that (n + k) is odd. Therefore, {Xn} is a Markov chain with period d = 2.

An alternative way to derive the probability distribution (17.7) is to solve the
following difference equations that pn(k) � P[Xn = k] must satisfy (Problem 17.1):

pn+1(k) = ppn(k − 1)+ qpn(k + 1), (17.8)

p0(k) = δk,0. (17.9)
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The mean, second moment, and variance of Xn are

E[Xn] =
n∑

i=1

E[Si ] = nE[Si ] = n(p − q), (17.10)

E[X2
n] =

n∑
i=1

E[S2
i ] +

∑
i �= j

∑
j

E[Si ]E[S j ] = n + (n2 − n)(p − q)2

= 4pqn + n2(p − q)2, (17.11)

Var[Xn] = E[X2
n] − (E[Xn])2 = 4pqn. (17.12)

As stated in property 3, the simple random walk is a process with independent
increments. The mean of the increment Xm − Xn is

E[Xm − Xn] = (m − n)(p − q). (17.13)

The autocorrelation function RX (m, n) = E[Xm Xn] for m ≥ n is obtained as

RX (m, n) = E[(Xm − Xn + Xn)Xn] = E[Xm − Xn]E[Xn] + E[X2
n]

= (m − n)n(p − q)2 + n2(p − q)2 + 4pqn

= mn(p − q)2 + 4pqn, m ≥ n. (17.14)

Since the autocorrelation function is symmetric, we obtain the general expression
whether m ≥ n or not:

RX (m, n) = mn(p − q)2 + 4pq min{m, n}. (17.15)

Thus, the covariance between Xm and Xn is

Cov[Xm, Xn] = RX (m, n)− E[Xm ]E[Xn] = 4pq min{m, n} (17.16)

and the variance of the increment is

Var[Xm − Xn] = Var[Xm] + Var[Xn] − 2Cov[Xm, Xn]
= 4pq(m + n − 2n) = 4pq(m − n), for m ≥ n. (17.17)

Example 17.1: Simple random walk with p = q = 1/2. Consider the case in which
the probability of our making one step to the right (i.e., Si = +1) is the same as that of
jumping to the left (Si = −1); i.e., p = q = 1

2 . Then our expected position after n steps
is still our starting position; i.e.,

E[Xn] = 0, n = 0, 1, 2, . . . , (17.18)

but the variance of our position is

Var[Xn] = n, n = 0, 1, 2, . . . . (17.19)
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Thus, the standard deviation of Xn is
√

n. This property of the random walk is often
referred to as the square-root law. The autocorrelation function, which is also the
autocovariance function, is found by setting p = q = 1

2 in (17.14) or (17.16), as

RX (m, n) = min{m, n}. (17.20)

The mean and variance of the increment Xm − Xn, m ≥ n, are given, from (17.13)
and (17.17), as

E[Xm − Xn] = 0 and Var[Xm − Xn] = m − n. (17.21)

�

17.1.2 Gambler’s ruin

Consider a game in which A plays against B. Suppose that in each trial A wins with
probability p, and gets one [dollar] from B, and A loses with probability q = 1− p
and gives one [dollar] to B. The game ends when either A or B has lost all their fortune;
i.e., gets ruined.

17.1.2.1 Opponent with infinite capital
Let us assume that A has the initial capital of a dollars and B is infinitely rich. This is a
good model when A is a gambler and B is the house at a casino. Let Xn represent A’s
fortune after n trials. Then the process {Xn} can be represented by a one-dimensional
random walk similar to the simple random walk model of (17.2); the only difference
is that it is restricted to Xn ≥ 0. Once A’s fortune becomes zero, this game (i.e., series
of trials) ends. This random walk model and its variants have been classically known
as “gambler ruin problems” (e.g., see Feller [99], Chapter 14). Figure 17.1 shows four
sample paths of the sequence of A’s fortune, assuming their initial capital is a = 5
[dollars] and p = 0.48 in all four cases.

The random walk can be viewed as a Markov chain with the state space S =
{0, 1, 2, . . .} with state 0 being an absorbing state. Suppose Xn = i and let

ri = P[Xn′ = 0 for some n′ > n|Xn = i];
i.e., the probability that A, with their fortune i dollars at some point in the game, will
ultimately get ruined.3After one more trial, A will possess i + 1 or i − 1 [dollars],
with probability p and q respectively. Therefore, we have the following difference
equation for ri :

ri = pri+1 + qri−1, i = 1, 2, . . . , (17.22)

3 To be consistent with the notation we adopt in (15.59) of Section 15.3, ri should be written as fi,0 =∑∞
n=0 f (n)i,0 .
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Figure 17.1 Player A’s fortune Xn after n trials of the game, with X0 = a = 5 and p = 0.48.

with the boundary condition

r0 = 1. (17.23)

In order to find ri for arbitrary i(> 0), define the generating function

R(z) =
∞∑

i=0

ri zi . (17.24)

By multiplying both sides of (17.22) by zi and summing over i = 1 to infinity, we have

R(z)− 1 = pz−1 (R(z)− r1z − 1)+ qz R(z), (17.25)

from which we have

R(z)(z − 1)(p − qz) = (1− pr1)z − p. (17.26)

By setting z = 1 in the above equation, we find

r1 = q

p
� γ. (17.27)

Then, we find that the right-hand side of (17.26) becomes (z − 1)p, obtaining

R(z) = 1

1− γ z
=

∞∑
i=0

γ i zi . (17.28)

Thus,

ri = γ i , i = 0, 1, 2, . . . , (17.29)

where γ = q/p is defined in (17.27).
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So, player A with initial capital a [dollars] will ultimately be ruined with probabil-
ity ra = γ a , while with probability 1− γ a A’s fortune will increase, in the long run,
without bound.

If p < q, A’s opponent B (i.e., the house) is decidedly in an advantageous position,
and will ruin the gambler with probability one. Even if the individual trial is fair, i.e.,
p = q = 1/2, the gambler will be ultimately ruined.

17.1.2.2 Opponent with finite capital
Let us now consider the case where the opponent B also starts with a finite capital b
[dollars]. Let

c = a + b = sum of the capitals of A and B.

Then we may model this game again as a random walk Xn , representing A’s fortune
after n games. So (c − Xn) is equal to B’s fortune after n trials, and Xn is now restricted
to {0, 1, 2, . . . , c}.

Define ri again as the probability that A gets ultimately ruined after having i [dollars]
at some point in the game. Then this game can be characterized by the same difference
equation (17.22), but the boundary condition (17.23) should be replaced by

r0 = 1 and rc = 0. (17.30)

Thus, the process {Xn} is a finite-state Markov chain with the state space S =
{0, 1, 2, . . . , c}, where states 0 and c are absorbing states. The solution is now given
(Problem 17.3) as follows:

for γ �= 1 (i.e., p �= q),

ri = γ c − γ i

γ c − 1
, 0 ≤ i ≤ c; (17.31)

for γ = 1 (i.e., p = q ),

ri = 1− i

c
= c − i

c
, 0 ≤ i ≤ c. (17.32)

The probability wi that A ultimately wins the game equals the probability that B gets
ruined. The latter is obtained from the above formulas by replacing p, q, and i by q, p,
and c − i respectively. Thus:

for γ �= 1 (i.e., p �= q),

wi = 1− γ i

1− γ c
, 0 ≤ i ≤ c; (17.33)

for γ = 1 (i.e., p = q = 1/2),

wi = 1− c − i

c
= i

c
, 0 ≤ i ≤ c. (17.34)

Then it is apparent that

ri + wi = 1,

so an unending game does not exist.
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From the last result we find that when the game is fair, i.e., p = q = 1/2, the
probability of getting ruined is proportional to the initial capital of the opponent; i.e.,

P[A gets ruined] = ra = b

a + b
, (17.35)

P[B gets ruined] = wa = a

a + b
. (17.36)

In other words, the probability of ultimately winning the game is proportional to their
own initial capital.

By letting c →∞ in (17.31) and (17.32), we find

lim
c→∞ ri =

{
1 if γ ≥ 1 (i.e., q ≥ p),
γ i if γ < 1 (i.e., q < p).

(17.37)

These limits are probabilities of the gambler’s ruin in a game against an infinitely rich
adversary as discussed in the first case: b = ∞ implies c = a + b = ∞.

17.2 Brownian motion or Wiener process

Now let us derive a “continuous” random walk model as a limit case of the simple
random walk discussed in the previous section.

17.2.1 Wiener process as a limit process

Assume that jumps of the random walk take place at time epochs h, 2h, 3h, . . ., where
the interval h is taken to be very small. The step size of each jump is δ; i.e., the binary
RV Si of (17.2) is now modified to

Si =
{ +δ, with probability 1

2 ,

−δ, with probability 1
2 .

For given time t > 0, there will be n jumps, where

n = t/h� . (17.38)

From (17.18) and (17.19) we see that the new RV Xn has mean zero and variance nδ2.
Furthermore, the central limit theorem (CLT) shows that Xn is asymptotically normally
distributed; i.e., Xn ∼ N (0, nδ2). Thus, as we will see below, the continuous analog of
simple random walk becomes a Gaussian process in addition to possessing properties
1–4 of {Sn} listed in (17.3) through (17.5).

As stated above, taking the limit h → 0 and δ→ 0 will transform the random walk
process {Xn} into a process that is continuous in both time and displacement. But if
we let h and δ approach zero in an arbitrary manner, we cannot expect to have a sensi-
ble limit process. Unless we keep h and δ in an appropriate ratio, the process {Xn} will
degenerate to the limit with its variance tending to zero or infinity. For instance, if we let
δ/h → 0, no motion would result, because the maximum possible displacement in time
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t is given by (t/h)δ→ 0. To find the proper ratio, we note that the total displacement
in time t is the sum of n = t/h� independent RVs, each having the mean (p − q)δ
and variance [1− (p − q)2]δ2 = 4pqδ2. Thus, the mean and variance of the total dis-
placement during (0, t] are t (p − q)δ/h and 4pqtδ2/h respectively. The finiteness of
the variance requires that δ2/h should remain bounded. Thus, we let h → 0 and δ→ 0,
as n →∞, in such a way that

δ2

h
→ α, (17.39)

for some constant α > 0.
In Figure 17.2 we plot Xt/h� versus t for two cases: (a) h = 1, δ = 1 (i.e., the original

simple random walk) and (b) h = 0.09, δ = 0.3. The variance rate parameter is α = 1
in both cases.

8

6

4

2

0

(a)

(b)

0 5 10 15 20
t

25 30 35 40

0 5 10 15 20
t

25 30 35 40

S
n

S
n

–2

–4

–6

–8

8

6

4

2

0

–2

–4

–6

–8

Figure 17.2 Two sample paths of the simple random walk Xn versus t , where n = t/h�: (a) h = 1, δ = 1;
(b) h = 0.09, δ = 0.3. (α = 1 in both cases).
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Figure 17.3 Standard Brownian motion or the Wiener process with α = 1.

We represent the above limit of the random walk Xn as a function of the continuous
time t using the scaling (17.38) and write it as W (t); i.e.,

lim
n→∞,h,δ→0

Xn = W (t), while t = nh and
δ2

h
= α. (17.40)

The distribution of the limit process W (t) approaches N (0, nδ2)→ N (0, αnh)→
N (0, αt). In Figure 17.3 we show a typical sample path of the limit process W (t), which
was obtained by setting h = 0.009 and δ = 0.03 in the simple random walk model with
α kept to one, as in Figure 17.2.

This limit process is called Brownian motion (originally called Brownian move-
ment), in deference to an early nineteenth century botanist, Robert Brown, who studied
in 1827 the irregular motion of pollen particles suspended in water. Brownian motion
was mathematically formulated independently by a French mathematician Louis Bache-
lier (1900) and Albert Einstein (1905), and was further investigated mathematically by
Norbert Wiener (1923), A. N. Kolmogorov (1931), William Feller (1936), Itô (1950)
and others. Brownian motion is often synonymously called a Wiener process and, thus,
denoted as B(t) or W (t); we adopt the latter notation in this chapter. Because of Bache-
lier’s pioneering work, Feller calls it the Bachelier–Wiener process. When α = 1, the
process is called the standard Brownian motion, which we denote by Ws(t).

17.2.2 Properties of the Wiener process

The process W (t) thus obtained as the limit process of a simple random walk satisfies
the four properties of simple random walk plus the Gaussian property:
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1. Spatial homogeneity:

P[W (t) ≤ w|W (0) = a] = P[W (t) ≤ w + b|W (0) = a + b]. (17.41)

2. Temporal homogeneity:

P[W (t) ≤ w|W (0) = a] = P[W (t + s) ≤ w|W (s) = a]; (17.42)

namely, W (t + s)− W (s) has the same distribution as W (t)− W (0) for all s, t ≥ 0.
3. Independent increments: for a set of disjoint intervals (si , ti ], i = 1, 2, . . ., the

increments W (ti )− W (si ), i = 1, 2, . . ., are independent.
4. Markov property: the process {W (t)} is a Markov process:

P[W (t + s) ≤ w|W (u), u ≤ t] = P[W (t + s) ≤ w|W (t)], for any s ≥ 0.
(17.43)

5. Gaussian property: any increment W (t)− W (t0) (t > t0) is normally distributed:

P[W (t) ≤ x |W (t0) = x0] = 1√
2πα(t − t0)

∫ x−x0

−∞
exp

{
− y2

2α(t − t0)

}
dy.

(17.44)

From properties 2 and 3 we can show that Var[W (t)] must be of the form
Var[W (t)] = αt with some constant α (Problem 17.5 (a)). Furthermore, we can show,
for any t, s ≥ 0, that

Var[W (t)− W (s)] = α|t − s| (17.45)

(Problem 17.5 (b)). Since W (t) has zero mean, the autocovariance function is the same
as the autocorrelation function. Letting s ≤ t , we have

RW (t, s) = E[W (t)W (s)] = E [W (s) {W (t)− W (s)+ W (s)}]
= E[W (s) {W (t)− W (s)}] + E[W (s)W (s)]
= E[W 2(s)] = αs for s ≤ t, (17.46)

where we used the property that W (s) and W (t)− W (s) are independent and have zero
mean. Therefore, we obtain

RW (t, s) = αmin{s, t}, s, t > 0. (17.47)

By equating t = s + h in (17.45) and letting h → 0, we have

lim
h→0

E
[
{W (s + h)− W (s)}2

]
= lim

h→0
α|h| = 0. (17.48)

Therefore, the Wiener process is continuous in the mean-square sense. Furthermore,
it can be shown (e.g., [82]) that the sample function of the Wiener process is, with
probability one, continuous; that is, sample functions of the Wiener process are almost
surely continuous.
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17.2.3 White noise

It is often convenient to consider a random process Z(t) with a constant spectral
density4 N0/2:

PZ ( f ) = N0

2
, −∞ < f <∞. (17.49)

Such a process is called white noise. In Figure 17.4 (a) we show a sample path of the
“standard” white noise with α = N0/2 = 1.

White noise is not physically realizable, since its mean-square value (power) would
be infinite:

RZ (0) = E[Z(t)2] = N0

2

∫ ∞

−∞
d f = ∞. (17.50)

The notion of white noise is found useful, however, in systems analysis, when the noise
spectral density is practically flat within the range that includes the signal bandwidth.
The autocorrelation function of white noise is given by the impulse function:

RZ (τ ) =
∫ ∞

−∞
PZ ( f )ei2π f τ d f = N0

2
δ(τ ), −∞ < τ <∞. (17.51)

It is clear that the Fourier transform of (17.51) gives the flat spectrum (17.49).
The Wiener process or Brownian motion can be formally represented as a stochas-

tic integral5 of white noise process Z(t). Figure 17.4 (b) shows a sample path of the
standard Brownian motion as an integration of white noise; i.e.,

W (t) =
∫ t

0
Z(u) du, (17.52)

where

E[Z(t)Z(s)] = RZ (t − s) = N0

2
δ(t − s). (17.53)

Hence, the autocorelation function of the Wiener process can be calculated as

4 Use of N0/2 instead of N0 is because of the double-sided frequency domain in the Fourier transform. Noise
power in the “physical” frequency band [0, B] [hertz] is given by PN = N0 B [watts] (or [joule·hertz]).

The corresponding “mathematical” frequency band in the Fourier analysis is [−B, B]; thus,
∫ B
−B

N0
2 d f =

N0 B.
5 A random process X (t) is said to be stochastically integrable if the limit

∫ b

a
X (t) dt = lim


ti→0

∑
i

X (ti )
ti

converges in the mean-square sense.
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Figure 17.4 (a) Standard white noise Zs(t) with α = N0/2 = 1; (b) standard Brownian motion W (t).

RW (t, s) = E[W (t)W (s)] = E

[∫ t

0
Z(u) du

∫ s

0
Z(v) dv

]
=
∫ t

0
du
∫ s

0
dvE[Z(u)Z(v)] =

∫ t

0
du
∫ s

0
dv

N0

2
δ(u − v)

= N0

2
min{t, s}, s, t > 0, (17.54)

which agrees with (17.47) if we set

N0

2
� α. (17.55)
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17.2.3.1 Thermal noise in a band-limited system
In communication systems, the dominating noise in a received signal is often thermal
noise that is introduced at the receiver front. Thermal noise is well approximated by
white noise with spectral density α = N0/2, where N0 = kBT ; kB is Boltzmann’s con-
stant6 and T is temperature of the thermal noise source in kelvin. If the bandwidth of a
signal is B [hertz], then the filter at the receiver should block the noise spectrum outside
[−B, B].

The filtered noise output Zout(t) is stationary but nonwhite. The output noise power
spectrum is

PZout( f ) =
{ N0

2 , | f | ≤ B,
0, | f | > B,

(17.56)

and its autocorrelation function is

RZout(τ ) =
N0

2

∫ W

−W
ei2π f τ d f = N0W

sin 2πWτ

2πWτ
, (17.57)

for −∞ < τ <∞.
Let the receiver input be

X (t) = s(t)+ Z(t), (17.58)

where s(t) is a known deterministic signal and Z(t) is white noise. Then the matched
filter that yields the maximum SNR at time t0 = 0 is (see Section 13.2.2) given by

hopt(t) = s∗(−t) and Hopt( f ) = S∗( f ), (17.59)

where S( f ) = F{s(t)}. Then the output noise

Zout(t) =
∫ ∞

∞
hopt(u)Z(t − u) du (17.60)

is stationary, but is nonwhite. The output noise power is

Var[Zout] = N0

2

∫ ∞

−∞
|Hopt( f )|2 d f = N0

2

∫ ∞

−∞
|S( f )|2 d f

= N0

2

∫ T

0
|s(t)|2 dt = N0 Es

2
, (17.61)

where [0, T ] is the signal duration interval and Es = ‖s(t)‖2 is the signal energy:

Es �
∫ T

0
|s(t)|2 dt =

∫ ∞

−∞
|S( f )|2 d f. (17.62)

6 kB = 1.3807× 10−23 [joules/kelvin]. Ludwig Boltzmann (1844–1906) derived the relation S = kB ln g,
where S is the entropy of a system and g is the number of ways in which the system’s microstates can be
arranged. It also defines the relation between the kinetic energy contained in each molecule of an ideal gas.
The Boltzmann constant is equal to the ratio of the gas constant to the Avogadro constant.
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If we adopt an equivalent correlation receiver technique (cf. Section 13.2.2) the
output noise power is

Var[Z̃out] = E

[∫ T

0
Z(t)s(t) dt

∫ T

0
Z∗(u)s∗(u) du

]
= N0

2

∫ T

0

∫ T

0
δ(t − u)s(t)s∗(u) dt du

= N0

2

∫ T

0
|s(t)|2 dt = N0 Es

2
, (17.63)

which is, as expected, the same as (17.61). This noise analysis confirms the equivalence
of the two techniques.

If, in particular, the signal waveform is a rectangular pulse

s(t) = 1 for 0 ≤ t ≤ T,

then the output noise of the correlation receiver is the Wiener process evaluated
at t = T :

Z̃out =
∫ T

0
Z(t) dt = W (T ).

17.3 Diffusion processes and diffusion equations

A diffusion process is defined as a continuous-time Markov process with a continu-
ous sample path, and is given as a solution to a stochastic differential equation, called
a diffusion equation. Brownian motion discussed in the previous section is a diffusion
process. In this section we will introduce a general class of diffusion processes.

17.3.1 Fokker–Planck equation for Brownian motion with drift

Let us return to Brownian motion or the Wiener process W (t) defined as the limit case of
the simple random walk {Xn}, but this time without imposing the symmetric condition
p = q = 1/2. Recall that the expectation and variance of Xn are

E[Xn] = (p − q)δn and Var[Xn] = 4pqδ2n. (17.64)

By denoting by h the time interval between two random steps, we consider the limit of
the random walk Wn , analogous to (17.40):

lim
n→∞,h,δ→0

Xn = X (t), while t = nh and
4pqδ2

h
= α, (17.65)

while we keep nh = t as we did in deriving the Wiener process (see (17.38)). Unlike the
symmetric random walk, however, E[Xn] is not zero, as implied by the first expression
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in (17.64). There is a drift proportional to nh = t . Thus, from (17.64) we define the
drift rate and variance rate, and denote them by β and α:

β � E[Xn]
nh

= (p − q)δ

h
,

α � Var[Xn]
nh

= 4pqδ2

h
.

(17.66)

If the random walk is symmetric, i.e., p = q = 1/2, then β = 0 and α = δ2/h, as
defined for a Wiener process. In general, the sign of β determines the direction of
the drift; hence, β is called the drift coefficient, whereas α is called the diffusion
coefficient. From (17.66) and p + q = 1, we find

p = 1

2

(
1+ βh

δ

)
, q = 1

2

(
1− βh

δ

)
. (17.67)

From this and (17.66) we have

α =
(

1− β2h2

δ2

)
δ2

h
→ δ2

h
, (17.68)

which is consistent with the limit condition (17.39).
From (17.66) we readily find for the limit process X (t) that

E[X (t)] = lim
n→∞,h,δ→0

E[Xn] = βt, (17.69)

Var[X (t)] = lim
n→∞,h,δ→0

Var[Xn] = αt. (17.70)

Because {Xn} is asymptotically normally distributed, the limit process X (t) is also
normally distributed:

F(x, t |x0, t0) = P[X (t) ≤ x |X (0) = 0] = 1√
2π

∫ y

−∞
e−u2/2 du, (17.71)

where

y = x − x0 − β(t − t0)√
α(t − t0)

. (17.72)

The limit process X (t) thus defined is called Brownian motion with drift.
Now we write the limit form of the difference equation (17.8) as

f (x, t + h) = p f (x − δ, t)+ q f (x + δ, t). (17.73)

Applying the Taylor series expansions

f (x, t + h) = f (x, t)+ ∂ f (x, t)

∂t
h + o(h), (17.74)

f (x − δ, t) = f (x, t)− δ ∂ f (x, t)

∂x
+ δ2

2

∂2 f (x, t)

∂x2
+ o(δ2), etc., (17.75)
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we obtain

h
∂ f (x, t)

∂t
= (q − p)δ

∂ f (x, t)

∂x
+ δ2

2

∂2 f (x, t)

∂x2 + · · · . (17.76)

Using the definitions (17.66) and (17.68), we have in the limit h, δ→ 0

∂ f (x, t)

∂t
= −β ∂ f (x, t)

∂x
+ α

2

∂2 f (x, t)

∂x2
. (17.77)

This partial differential equation is called the Fokker–Planck equation or Kol-
mogorov’s forward equation.

No equilibrium-state distribution exists (Problem 17.9 (a)), but we can show (Problem
17.9 (b)) the following time-dependent PDF of (17.71) satisfies (17.77):

f (x, t) = 1√
2παt

e−(x−βt)2/(2αt). (17.78)

We define the conditional distribution function and its density function:

F(x, t |x0, t0) = P[X (t) ≤ x |X (t0) = x0], (17.79)

f (t, t |x0, t0) = ∂

∂x
F(x, t |x0, t0). (17.80)

Then, the Chapman–Kolmogorov equation takes the following expression for the
conditional PDF:

f (x, t |x0, t0) =
∫ ∞

−∞
f (x, t |x1, t1) f (x1, t1|x0, t0) dx1. (17.81)

Analogous to (16.40), we also have

f (x, t) =
∫ ∞

−∞
f (x, t |x0, t0) f (x0, t0) dx0. (17.82)

It is not difficult to see that the forward diffusion equation (17.77) applies to the
conditional PDF (and the conditional distribution function as well):

∂ f (x, t |x0, t0)

∂t
= −β ∂ f (x, t |x0, t0)

∂x
+ α

2

∂2 f (x, t |x0, t0)

∂x2 . (17.83)

The solution is apparent from (17.78):

f (x, t |x0, t0) = 1√
2πα(t − t0)

exp

{
−[x − x0 − β(t − t0)]2

2α(t − t0)

}
. (17.84)

This Brownian motion with drift can be formally expressed by the following stochastic
differential equation that involves the standard Brownian motion Ws(t) that has the
distribution N (0, t):

d X (t) = β dt +√α dWs(t), (17.85)
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with E[(dWs(t))2] = dt . By assuming the initial values X (0) = 0 and Ws(0) = 0, the
above equation leads to

X (t) = βt +√αWs(t). (17.86)

17.3.2 Einstein’s diffusion equation for Brownian motion

For Brownian motion in which β = 0, the above diffusion equation equation becomes

∂ f (x, t)

∂t
= α

2

∂2 f (x, t)

∂x2
. (17.87)

Einstein [86, 88] showed that macroscopically the position of the particle X(t) =
(X1(t), X2(t), X3(t)) should satisfy the following differential equation:

ξ
d X(t)

dt
= F(t), (17.88)

where F(t) is the collision force and ξ is the coefficient of friction. The collision
force vector process F(t) can be represented as a (three-dimensional) white Gaussian
noise process with spectral density 2kBT ξ , where kB = 1.37× 10−23 [joules/degree]
is the Boltzmann constant and T is the temperature in kelvin. Thus, by denoting three-
dimensional white Gaussian noise with unit power spectral density as Zs(t), we have
the following stochastic differential equation:

d X(t) =
√

2kBT ξ

ξ
Zs(t) dt = √DZs(t) dt, (17.89)

where

D = 2kBT

ξ
(17.90)

is equivalent to the diffusion coefficient α (except for a factor of two) and is sometimes
called the “diffusivity.” Einstein furthermore showed the concentration density n(x, t)
of a large number of Brownian particles should satisfy the following partial differential
equation:

∂n(x, t)

∂t
= D

3∑
j=1

∂2n(x, t)

∂x2
j

. (17.91)

In the one-dimensional case, Einstein’s diffusion equation is equivalent to (17.87), since
the density function n(x1, t) is proportional to the PDF fX1(x1, t), and by equating
D = α/2.

By proper scaling, we may set D = 1
2 , obtaining the partial differential equation

∂ f (x, t)

∂t
= 1

2

3∑
i=1

∂2 f (x, t)

∂x2
i

, (17.92)
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which is known as the heat equation and its solution is given by

f (x, t) = 1

(2π t)3/2
exp

(
−‖x‖2

2t

)
, where ‖x‖2 =

3∑
i=1

x2
i , (17.93)

which corresponds to setting β = 0 and α = 1 in the three-dimensional version
of (17.78).

17.3.3 Forward and backward equations for general diffusion processes

We now investigate diffusion processes in general. A diffusion process, as stated earlier,
is a continuous-time, continuous-state Markov process. Consider the conditional
mean of X (t) given X (t0) = x0:

μ(t |x0, t0) = E[X (t)|X (t0) = x0] =
∫ ∞

−∞
x f (x, t |x0, t0) dx (17.94)

and the conditional variance

σ 2(t |x0, t0) = Var[X (t)|X (t0) = x0] =
∫ ∞

−∞
[x − μ(t |x0, t0)]

2 f (x, t |x0, t0) dx .

(17.95)
Clearly,

lim
t→t0

μ(t |x0, t0) = x0 and lim
t→t0

σ 2(t |x0, t0) = 0 for any x0. (17.96)

Assuming that these functions are differentiable from the right, we define the slopes
of these functions at t = t0:

β(x0, t0) � ∂μ(t |x0, t0)

∂t

∣∣∣∣
t=t0

,

α(x0, t0) � ∂σ 2(t |x0, t0)

∂t

∣∣∣∣
t=t0

,

which are called the drift rate and variance rate respectively.
By writing

X (t + dt)− X (t) = d X (t),

alternative definitions of β(x, t) and α(x, t) are given as

β(x, t) dt = E[d X (t)|X (t) = x], (17.97)

α(x, t) dt = Var[d X (t)|X (t) = x]
= E[(d X (t)− β(x, t)dt)2|X (t) = x]. (17.98)

Then, by generalizing the result of Fokker–Planck equation (17.77) and (17.87), we
state the following theorem due to Kolmogorov.
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THEOREM 17.1 (Diffusion equations). The conditional PDF f (x, t |x0, t0) satisfies the
forward diffusion equation

∂ f

∂t
= −∂(β(x, t) f )

∂x
+ 1

2

∂2(α(x, t) f )

∂x2 (17.99)

and the backward diffusion equation

∂ f

∂t0
= −β(x0, t0)

∂ f

∂x0
− α(x0, t0)

2

∂2 f

∂x2
0

, (17.100)

where f � f (x, t |x0, t0).

Proof. We derive the backward equation (17.100). We write t1 = t0 + h with t0 < t1 <
t in (17.81):

f (x, t |x0, t0) =
∫ ∞

−∞
f (x, t |x1, t0 + h) f (x1, t0 + h|x0, t0) dx1, (17.101)

where f (x1, t0 + h|x0, t0) is the conditional PDF of RV X1 = X (t0 + h) with condi-
tional mean, given x0 = X (t0),

μ(t0 + h|x0, t0) = E[X1|x0, t0] = x0 + β0h + o(h) (17.102)

and the conditional variance

σ 2(t0 + h|x0, t0) = Var[X1|x0, t0] = α0h + o(h), (17.103)

where α0 = α(x0, t0) and β0 = β(x0, t0). Note that the PDF f (y, t0 + h|x0, t0) can be
approximated by the following expression as h → 0 (Problem 17.10):

f (y, t0 + h|x0, t0) = δ(y − x0 − β0h)+ δ(2)(y − x0 − β0h)
α0h

2
+ o(h). (17.104)

By substituting this into (17.101) and using the property of the r th derivative of the delta
function (see the Supplementary Material for the derivation)∫ ∞

−∞
f (x)δ(r)(x − a) dx = (−1)r f (r)(a), (17.105)

we find

f (x, t |x0, t0) = f (x, t |x0 + β0h, t0 + h)+ ∂2

∂x2
0

f (x, t |x0 + β0h, t0)
α0h

2

= f (x, t |x0, t0)+ ∂ f

∂x0
β0h + ∂ f

∂t0
h + ∂2

∂x2
0

(
f + ∂ f

∂x0
β0h

)
α0h

2
,

(17.106)

where f = f (x, t |x0, t0). Then, taking the limit h → 0, we obtain the backward equa-
tion (17.100). The derivation of the forward equation (17.99) is left as an exercise
(Problem 17.11)
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17.3.4 Ornstein–Uhlenbeck process: Gauss–Markov process

A major deficiency of Brownian motion (with or without drift) as a model of a physical
phenomenon such as movement of a particle is that almost all sample paths are nowhere
differentiable functions of time t , although they are almost surely continuous functions
of t . This is consistent with the mathematical argument that dW (t)/dt is equivalent
to a white noise process that can be infinite. We know from Newton’s laws that only
particles with zero mass can move with infinite speed. Thus, the Brownian motion is
not an adequate model in characterizing the movement of a particle over a very short
time interval, although it may accurately capture physical movement of the particle over
a longer period.

A model that can improve the local behavior of Brownian motion is provided by
Uhlenbeck and Ornstein [334]. The basic idea is that the velocity

V (t) = d X(t)
dt

(17.107)

of the particle is modeled by the limit process of some random walk; and its integral
represents a sample path X(t) of the particle itself.

When the particle’s mass m is taken into account, the differential equation (17.88)
should be modified to

m
d2 X(t)

dt2
+ ξ d X(t)

dt
= F(t), (17.108)

which can be rewritten as the following differential equation:

dV (t)
dt

+ β1V (t) = √α0 Z(t), (17.109)

where

α0 � 2kB T ξ

m2 and β1 � ξ

m
. (17.110)

The differential equation (17.109) is called the Langevin equation in statistical physics.
Equations (17.107) and (17.109) are often written as the following stochastic differential
equations:

d X(t) = V (t) dt, (17.111)

dV (t) = √α0 Z(t) dt − β1V (t) dt, (17.112)

where Z(t) = (Z1(t), Z2(t), Z3(t)) is the three-dimensional white Gaussian process
with zero mean and unit variance. The velocity process V (t) is known as the Ornstein–
Uhlenbeck process, or the mean-reverting process. In the process V (t), a force
proportional to the displacement (i.e., β1V (t) dt) works as a central-restoring force;
thus, V (t) is a stable process and the steady-state exists.
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17.3.4.1 Analysis of one-dimensional Ornstein–Uhlenbeck process
Since the white noise components Z1(t), Z2(t), and Z3(t) are independent, we analyze
the one-dimensional case below. By writing the Fourier transforms of V (t) and Z(t) as
Ṽ ( f ) and Z̃( f ), the differential equation (17.109) is transformed to

(i2π f + β1)Ṽ ( f ) = √α0 Z̃( f ), (17.113)

where i = √−1. Thus,

Ṽ ( f ) =
√
α0

β1 + i2π f
Z̃( f ). (17.114)

Hence, the process V (t) can be viewed as the output process when white noise Z(t) is
passed into a linear filter with transfer function

H( f ) =
√
α0

β1 + i2π f
. (17.115)

Thus, V (t) is nonwhite (or colored) Gaussian noise with power spectral density

PV ( f ) = |H( f )|2 = α0

|β1 + i2π f |2

= α2

2β1

(
1

β1 + i2π f
+ 1

β1 − i2π f

)
. (17.116)

The autocorrelation function can be found by taking the inverse Fourier transform of
the power spectrum PV ( f ), which takes the form of the Cauchy distribution in the f
domain, as shown in (17.116). The method of contour integration in the complex plane
discussed in Section 8.2 can be applied, and we find

RV (τ ) = α0

2β1
e−β1|τ |. (17.117)

This bilateral (or double-sided) exponential function is characteristic of the Markov
property of the Ornstein–Uhlenbeck process. It can be shown that the Ornstein–
Uhlenbeck process is the only stationary Gaussian Markov process with a continuous
autocovariance function.

Since V (t) is the linear filter output of white Gaussian noise, it is obviously a Gaus-
sian process. So in order to find its first-order probability distribution, it is sufficient to
find its mean, which is clearly zero, and its variance

σ 2
V �

∫ ∞

−∞
|H( f )|2 d f = RV (0) = α0

2β1
;

hence, the PDF of V (t) for any t in steady state is

fV (v) = 1√
2πσV

exp

(
− v2

2σ 2
V

)
. (17.118)

Now we wish to find the conditional PDF f (v, t |v0, t0) of the Ornstein–Uhlenbeck
process. The RVs V (t) and V (t0) are jointly normally distributed with mean zero
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and common variance σ 2
V = RV (0) = α0/β1, and the correlation coefficient between

them is

ρ = RV (t − t0)

σ 2
V

= e−β1(t−t0), t ≥ t0.

Then using (4.111) concerning the bivariate normal distribution in Section 4.3.1, we
find that the conditional distribution of V (t) given V (0) is also normal with mean

E[V (t)|V (t0) = v0] = ρv0 = e−β1(t−t0)v0, t ≥ t0, (17.119)

and variance

Var[V (t)|V (t0) = v0] = σ 2
V (1− ρ2) = σ 2

V

[
1− e−2β1(t−t0)

]
, t ≥ t0. (17.120)

Thus, we can write explicitly the conditional PDF f (v, t |v0, t0) as

fV (v, t |v0, t0) = 1

σV

√
2π
[
1− e−2β1(t−t0)

] exp

{
− [v − v0e−β1(t−t0)]2

2σ 2
V

[
1− e−2β1(t−t0)

]} .
(17.121)

It will be worth noting (Problem 17.12) that the conditional expectation (17.119) is
equivalent to the optimal pure prediction of V (t) given V (u), u ≤ t0, of the Gaussian
process V (t) (see Chapter 22). Since V (t) is a Markov process, the predicted value
depends on the past history V (u) only through the most recent value V (t0) = v0. The
conditional variance is equal to the minimum variance or MSE of such predictor.

From the one-dimensional case of the stochastic differential equation (17.109), we
have

dV (t) = −β1V (t) dt +√α0dWs(t), (17.122)

where Ws(t) is the standard Brownian motion. Thus, the drift rate and variance rate of
process V (t) are found

βV (v, t) dt = E[dV (t)|V (t) = v0] = −β1v dt, (17.123)

αV (v, t) dt = Var[dV (t)|V (t) = v] = α0 dt, (17.124)

where we used the following property of the standard Brownian motion:

E[(dWs(t))
2] = dt. (17.125)

Thus, the process V (t) is subject to a drift towards the origin with magnitude pro-
portional to its displacement from the origin, and this creates the central restoring
tendency and leads to a stable distribution, as given by (17.118).

The forward diffusion equation (17.99) becomes

∂ fV

∂t
= β1

∂(v fV )

∂v
− α0

2

∂2 fV

∂v2
, (17.126)
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where fV = f (v, t |v0, t0), β1 = ξ/m, and α0 = 2kBT/m2. Similarly, the backward
equation is

∂ fV

∂t0
= β1v0

∂ fV

∂v0
− α0

2

∂2 fV

∂v2
0

. (17.127)

The first-order PDF fV (t)(v) in steady state, which we already obtained in (17.118),
can be alternatively obtained by setting the left-hand side of the forward equation
(17.126) to zero (Problem 17.13).

It is not difficult to solve (17.126) and obtain the time-dependent solution (17.121),
which we rewrite as

fV (v, t |v0, t0) = 1√
2πσ 2

V (t |v0, t0)
exp

{
−[v − μV (t |v0, t0)]2

2σ 2
V (t |v0, t0)

}
, (17.128)

whereμV (t |v0, t0) and σ 2
V (t |v0, t0) are the conditional mean and variance of the process

V (t) given V (t0) = v0:

μV (t |v0, t0) = v0e−β1(t−t0), (17.129)

σ 2
V (t |v0, t0) = σ 2

V

[
1− e−2β1(t−t0)

]
. (17.130)

As t →∞, the mean tends to zero and the variance to σ 2
V = α0/2β1

The position X (t) of the particle can be found by integrating the velocity pro-
cess V (t):

X (t) =
∫ t

0
V (u) du, (17.131)

where we assume X (0) = 0. This implies that X (t) is a Gaussian process with mean
zero and variance (Problem 17.15)

E[X2(t)] = 2σ 2
V

β1

(
t − 1− e−β1t

β1

)
= 2kBT

ξ

[
t − m

ξ

(
1− e−(ξ/m)t

)]
. (17.132)

If time t is sufficiently large, i.e., if ξ t � m, then, as was shown by Einstein,

lim
t→∞

E[X2(t)]
t

= 2kBT

ξ
= D = α

2
. (17.133)

This result can be obtained directly from the differential equation (17.88):

X (t) = 1

ξ

∫ t

0
F(u) du, (17.134)

where F(t) is white noise with spectral density 2kBT ξ . Then

E[X2(t)] = 2kBT ξ t

ξ2
= Dt. (17.135)
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17.4 Stochastic differential equations and Itô process

By generalizing the stochastic differential equations (17.85), Itô7 introduced the
following process, often referred to as the Itô process [159]:8

d X (t) = β(X (t), t) dt +√α(X (t), t) dWs(t). (17.136)

This equation is a shorthand expression of the following integral equation:

X (t + s)− X (t) =
∫ t+s

t
β(X (u), u)du +

∫ t+s

t

√
α(X (u), u) dWs(u), (17.137)

where∫ t+s

t

√
α(X (u), u) dWs(u) = lim

max
ui→0

n−1∑
i=0

√
α(X (ui ), ui )[Ws(ui+1)− Ws(ui )]

(17.138)
and the limit is in the mean square sense.

We often write (17.136) simply as

d X = β(X, t) dt +√α(X, t) dWs. (17.139)

The drift rate β(x, t) and the variance rate α(x, t) are functions of the underlying vari-
able X (t) = x and time t , and dWs � dWs(t) is the infinitesimal increment of the
standard Brownian motion defined by

dWs(t) = Ws(t + dt)− Ws(t) = Zs(t) dt, (17.140)

where Zs(t) is the standard white Gaussian noise defined earlier. The RV dWs(t) is
normally distributed with mean zero and variance

Var[dWs] = E[dW 2
s ] = dt. (17.141)

The fourth moment of dWs(t) is given from the moment formula (4.54) of a normal
variable as

E[dW 4
s ] = 3

(
E[dW 2

s ]
)2 = 3 dt2. (17.142)

Thus,

Var[dW 2
s ] = E[dW 4

s ] − (E[dW 2
s ])2 = 2 dt2 = o(dt). (17.143)

For any RV X such that Var[X ] = 0, we have X
m.s.= E[X ], where “

m.s.= ” stands
for “equivalent in mean square.” We remark that we also have X

a.s.= E[X ] (see

7 A Japanese mathematician. Kiyoshi Itô (1915–2008). Itô is sometimes spelled as Itō.
8 In the literature, μ(X (t), t) and σ(X (t), t) are more common than β(X (t), t) and

√
α(X (t), t) that we

adopt here. We avoid use of μ and σ , since they were used to define the conditional mean and conditional
variance (see (17.94) and (17.95)).
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Section 13.1.3). Therefore, dW 2
s converges to its mean dt as dt → 0. In other words, in

the limit dW 2
s is no longer stochastic:

dW 2
s

m.s.= dt. (17.144)

Similarly, we have E[dWs(t) dt] = E[dWs] dt = 0 and E[(dWs(t) dt)2] =
E[dW 2

s ]dt2 = (dt)3. Hence, in the limit dt → 0, dWs dt is not stochastic either, and

dWs dt
m.s.= 0. (17.145)

Then, for the Itô process X (t), we obtain the following properties:

d X dt = [β(X, t) dt +√α(X, t) dWs ] dt
m.s.= o(dt) (17.146)

and

d X2 = [β(X, t) dt +√α(X, t) dWs ]2 m.s.= α(X, t) dt + o(dt). (17.147)

17.4.1 Itô’s formula

Now, for a given Itô process X (t), consider a function of X (t) and t , which we denote by

Y = Y (X, t).

By applying the Taylor series expansion to this function, we have

dY = ∂Y

∂X
d X + ∂Y

∂t
dt + 1

2

∂2Y

∂X2
d X2 + 1

2

∂2Y

∂t2
dt2 + ∂2Y

∂X∂t
d X dt + · · · (17.148)

Substituting (17.146) for d X dt , (17.147) for d X2, and ignoring terms of order o(dt),
we obtain

dY = ∂Y

∂X
d X + ∂Y

∂t
dt + 1

2

∂2Y

∂X2 α(X, t) dt, (17.149)

which is often called Itô’s lemma or Itô’s formula. Using (17.139) for d X , the above
formula can be written as

dY =
(
∂Y

∂X
β(X, t)+ ∂Y

∂t
+ 1

2

∂2Y

∂X2 α(X, t)

)
dt + ∂Y

∂X

√
α(X, t) dWs. (17.150)

This last equation shows that Y (t) is also an Itô process with the drift rate ∂Y
∂X β(X, t)+

∂Y
∂t + 1

2
∂2Y
∂X2 α(X, t) and the variance rate

(
∂Y
∂X

√
α(X, t)

)2
.
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Example 17.2: Consider a special case, where

β(X, t) = 0 and α(X, t) = 1.

It follows that

d X = dWs.

Then the process Y (t) is simply a function of Ws(t) and t , and (17.150) reduces to

dY =
(
∂Y

∂t
+ 1

2

∂2Y

∂X2

)
dt + ∂Y

∂X
dWs. (17.151)

�

17.4.2 Geometric Brownian motion (GBM)

Consider an Itô process Y (t) where

β(Y (t), t) = βyY (t) and α(Y (t), t) = αY (t).9

Then the stochastic differential equation (17.136) takes the form

dY = βyY dt +√αY dWs, or
dY

Y
= βy dt +√α dWs, (17.152)

where Ws(t) is the standard Brownian motion. One might be tempted to think that
the above equation is equivalent to d X = β dt +√α dWs with X = ln Y so that the
problem might be reduced to simple Brownian motion. However, Y is a random pro-
cess and not differentiable in the ordinary sense; thus, we cannot apply the chain rule to
conclude d X (t) = dY (t)/Y (t). Instead, we need to apply the above Itô’s lemma.

Comparing (17.152) and (17.151) we find the following equations that Y (t) must
satisfy:

∂Y

∂t
+ 1

2

∂2Y

∂W 2
s
= βyY (17.153)

and

∂Y

∂Ws
= √αY. (17.154)

Solving this partial differential equation, we have

Y (t) = exp
[√
αWs(t)+ a(t)

]
, (17.155)

9 Note that we put the subscript y to the drift rate β but not to the variance rate α. The reason will become
clearer in (17.164).
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where a(t) is any function of t . By substituting (17.155) into (17.153), we obtain

Y (t)
(

a′(t)+ α

2
− βy

)
= 0. (17.156)

If Y (t) = 0 for any t , then dY (t) = 0, and consequently the process Y (t) = 0 for
all t . Thus, excluding this degenerated case, we have a′(t) = βy − (α/2), leading to

a(t) =
(
βy − α

2

)
t + c, (17.157)

where c is a constant. Substituting this into (17.155), we have

Y (t) = exp
[√
αWs(t)+

(
βy − α

2

)
t + c

]
. (17.158)

At t = 0 we have Ws(0) = 0 and Y (0) = ec; thus,

Y (t) = Y (0) exp
[(
βy − α

2

)
t +√αWs(t)

]
, (17.159)

or

ln Y (t) = ln Y (0)+
(
βy − α

2

)
t +√αWs(t). (17.160)

Since Ws(t) is normal, ln Y (t) is also normal with mean

E [ln Y (t)] = ln Y (0)+
(
βy − α

2

)
t (17.161)

and variance

Var [ln Y (t)] = αt. (17.162)

By setting Y (0) = 1, we can rewrite (17.159) as

Y (t) = eX (t), (17.163)

where

X (t) = βt +√αWs(t), with β � βy − α

2
. (17.164)

Since X (t) is Brownian motion with drift rate β = βy − (α/2) and diffusion coeffi-
cient α, the process Y (t) is called geometric Brownian motion (GBM), because of
the relation (17.163). In Figure 17.5 we plot a sample path of GBM Y (t) together with
the corresponding Brownian motion X (t) = ln Y (t), when β = 0 and α = 0.25 (hence
βy = 0.125).

The conditional expectation and variance of Y (t) given {Y (u); 0 ≤ u ≤ s}, where
s ≤ t , can be found (Problem 17.16) as

E[Y (t)|Y (u), 0 ≤ u ≤ s] = Y (s)e[β+(α/2)](t−s), s ≤ t, (17.165)

and

E[Y (t)2|Y (u), 0 ≤ u ≤ s] = Y (s)2e2(β+α)(t−s), s ≤ t. (17.166)
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Figure 17.5 (a) Brownian motion X (t) of (17.164); (b) GBM Y (t) = eX (t) of (17.163), β = 0, α = 0.25.

Thus, the conditional variance of Y (t) is

Var[Y (t)|Y (u), 0 ≤ u ≤ s] = Y (s)2e(2β+α)(t−s)
[
eα(t−s) − 1

]
, s ≤ t. (17.167)

The conditional PDF for Y (t) given Y (0) = y0 (hence X (0) = x0 = ln y0) is given by
the following log-normal distribution:

fY (y, t |y0, 0) = 1

y
√

2παt
exp

[
− (ln(y/y0)− βt)2

2αt

]
, y > 0. (17.168)

The log-normal distribution is discussed in Section 7.4.
The GBM is often used to model the stochastic behavior of stock prices, since stock

prices typically exhibit long-term exponential growth. Note also Y (t) is nonnegative,
although X (t) may take negative values. Let Yk denote the price of a stock at the kth
day (or any time index). Define the ratio

Rk = Yk

Yk−1
= 1+ εk , (17.169)

where εk × 100 represents the percentage change of the stock price from the previous
day. Then, we have

Yk = Rk Rk−1 · · · R1Y0, (17.170)
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or

ln

(
Yk

Y0

)
=

k∑
i=1

ln Ri =
k∑

i=1

ln(1+ εi ). (17.171)

Assuming that εi and ε j are uncorrelated for |i − j | � 1, a generalized CLT implies
that

∑k
i=1 ln(1+ εi ) is approximately normally distributed; hence, Yk is log-normally

distributed, justifying the use of GBM for stock price movement.

17.4.3 The Black–Scholes model: an application of an Itô process

The application example of this section is quite different from the rest of the examples
in this volume. The Black–Scholes theory10 [29] to be outlined below is considered
one of the most important developments in mathematical finance, and the best-known
application of the Itô process and Itô calculus. The main purpose of this section, there-
fore, is to provide the readers with some idea concerning how the random process theory
and stochastic models are applied in the field of finance.

Financial derivatives, as their name implies, are contracts that are based on, or
derived from, some underlying assets (e.g., stocks, bonds, commodity), reference rates
(e.g., interest rates or currency exchange rates), or indexes. Let Y (t) denote the price of
an underlying asset, say a stock, and Black and Scholes assume that Y (t) follows the
GBM given in (17.152):11

dY = βyY dt +√αY dWs. (17.172)

We showed there that X (t) = ln Y (t) is Brownian motion with the drift coefficient β =
βy − (α/2) and diffusion coefficient α.

Let V (Y (t), t) be the price of a derivative security12 contingent on the underlying
stock asset of value Y (t). We assume that V depends differentially on the two indepen-
dent variables Y and t . Then using the assumption that Y (t) is GBM, Itô’s lemma shows
(Problem 17.17) that V changes over the infinitesimal time interval dt according to

dV =
(
∂V

∂t
+ βY

∂V

∂Y
+ α

2
Y 2 ∂

2V

∂Y 2

)
dt +√αY

∂V

∂Y
dWs. (17.173)

Assume that we have a portfolio consisting of one option of the derivative security
of value V and N shares of the underlying stock, where the quantity N is yet to be
determined, with N > 0 for shares held long and N < 0 for shares held short. The
value of the portfolio at time t , denoted P(t), is the price of the derivative security plus
the price of the underlying asset:

10 Fischer Black (1938–1995) and Myron S. Scholes (1941): Scholes, together with Robert C. Merton (1944),
received the 1997 Nobel Prize in Economics.

11 Notation S(t) is often used instead of Y (t) in the literature. So are μ and σ2 instead of β and α. The
parameter σ , which corresponds to our

√
α, is called volatility in mathematical finance.

12 A derivative security is a financial security, such as an option or future, whose characteristics and value
depend on the characteristics and value of an underlying security.
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P(t) = V (Y, t)+ NY (t). (17.174)

Its gain over the interval dt is

d P = dV + NdY, (17.175)

which can be written, using (17.173) and (17.172), as

d P =
(
∂V

∂t
+ βY

∂V

∂Y
+ α

2
Y 2 ∂

2V

∂Y 2

)
dt +√αY

∂V

∂Y
dWs + N

(
βY dt +√αY dWs

)
.

(17.176)
If we set

N = −∂V

∂Y
, (17.177)

the stochastic term dWs will be eliminated from the above differential equation, yielding

d P =
(
∂V

∂t
+ α

2
Y 2 ∂

2V

∂Y 2

)
dt. (17.178)

If the gain in the value P(t) is deterministic, then it would be equivalent to investing
at some risk-free interest rate r . To exclude arbitrage opportunities,13 the following
relation must hold:

d P = r P dt = r (dV + N dY ) t = r

(
V − ∂V

∂Y
Y

)
dt. (17.179)

By equating d P in the last two equations, we find

∂V

∂t
+ rY

∂V

∂Y
+ α

2
Y 2 ∂

2V

∂Y 2 = r V, (17.180)

which is known as the Black–Scholes differential equation for option pricing. This
equation instructs how to buy or sell assets to maintain a portfolio that grows at the
riskless rate. Thus, it provides insurance against downturns in the value of assets held
long or protects against a rise in the value of assets held short. Therefore, the portfolio
is hedged against losses by having options serving as an insurance policy.

The solution of the differential equation depends on the initial and boundary
conditions determined by the specific option contract.

Example 17.3: European call option [173]. There are two types of options: call and put
options. A call option gives the holder the right to purchase the underlying stock by a
certain date, called the maturity, for a certain price, called the strike price. A put option

13 An arbitrage opportunity is the opportunity to buy an asset at a low price then immediately sell it on a
different market for a higher price. This is a riskless profit for the investor/trader.
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gives the right to sell the underlying stock by a maturity for a strike price. American
options can be exercised at any time up to the maturity, whereas European options
can be exercised only at the maturity. Most options traded on exchanges are American.
European options are easier to analyze, and some properties of an American option are
often deduced from those of its European counterpart.

Consider a European call option in which the holder of the option is entitled to pur-
chase a share of a given stock at an exercise price C at a future time T . The boundary
condition is given by

V (Y (T ), T ) = max{Y (T )− C, 0}. (17.181)

The price of the option at time t < T will be its expected price at time T discounted
back to t . Thus, the option price at time t is given by

V (Y (t), t) = e−r(T−t)E[V (Y (T ), T )]. (17.182)

A direct way to evaluate E[V (Y (T ), T )] is by solving the Black–Scholes partial
differential equation (17.180) using the boundary condition (17.181).

Another approach is to assume that there exist risk-neutral investors such that the
price of the stock follows GBM

dY = rY dt +√αY dWs; (17.183)

that is, with the risk-free interest rate r replacing βy in (17.172). Writing ln Y (t) = X (t)
as before, we find (Problem 17.18) X (T ) is normally distributed with

E[X (T )] = ln y(t)+
(

r − α

2

)
(T − t) and Var[X (T )] = α(T − t). (17.184)

Since Y (T ) = eX (T ) and

E[V (Y (T ), T )] = E
[
V
(

eX (T ), T
)]
= E

[
max

{
eX (T ) − C, 0

}]
=
∫ ∞

ln C

(
ex − C

)
fX (T )(x) dx, (17.185)

where

fX (T )(x) = 1√
2πα(T − t)

exp

{
−
[
x − ln y(t)− (r − α/2)(T − t)

]2
2α(T − t)

}
.

Thus, by substituting the above into (17.182), we obtain the following expression for
the option price at time t :

V (Y (t), t) = e−r(T−t)
∫ ∞

ln C

(
ex − C

)
fX (T )(x) dx = e−r(T−t)(I1 − I2), (17.186)
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where

I1 =
∫ ∞

ln C
ex fX (T )(x) dx

= et (T−t)
∫ ∞

ln C

1√
2πα(T − t)

exp

{
−
[
x − ln y(t)− (r + α

2

)
(T − t)

]2
2α(T − t)

}
dx

= et (T−t) [1−�(−u1)] = et (T−t)�(u1),

where �(u) is the distribution function of the unit normal variable U defined in (4.46)
and

u1 =
ln y(t)

C + (r + α
2

)
(T − t)√

α(T − t)
.

Similarly, I2 can be found as

I2 = C
∫ ∞

ln C
fX (T )(x) dx = C[1−�(−u2)] = C�(u2),

where

u2 =
ln y(t)

C + (r − α
2

)
(T − t)√

α(T − t)
.

Substituting these into (17.186), we finally obtain the solution for the option price:

V (Y (t), t) = Y (t)�(u1)− C e−r(T−t)�(u2). (17.187)

As a numerical example we consider a nondividend-paying stock whose current price
is $100. The exercise price of the option is $90. The risk-free interest is 10% per annum
and the volatility (

√
α) is 20% per annum. The option expires in 6 months. Then sub-

stituting r = 0.10, α = 0.04,Y (t) = 100,C = 90, and T − t = 0.5 into (17.187), we
find that the value of the call option is $15.29.

If we purchase the stock now, we pay $100. If we purchase the call option and acquire
the stock on the option’s expiration date, we pay $90 then. Thus, the stock price has
to rise by ($90+ $15.29)− $100 = $5.29 for the purchaser of the call to break even.
The reader is suggested to numerically calculate the option price by choosing different
values for volatility and risk-free interest rate (Problem 17.19). �

17.5 Summary of Chapter 17

Simple random walk,
properties:

(a) Spatial homogeneity (17.3)

(b) Temporal homogeneity (17.4)
(c) Independent increment
(d) Markov property (17.5)
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Autocorrelation func: RX (m, n) = min{m, n} (17.20)
Gambler ruin problem: ri = pri+1 + qri−1 (17.22)
Opponent with infinite

capital:
ri = αi , i = 0, 1, 2, . . . (17.29)

Opponent with finite
capital:

ri = αc−αi

αc−1 , 0 ≤ i ≤ c (17.31)

Wiener process: limn→∞,h,δ→0 Xn = W (t), t = nh, δ2/h = α (17.40)
Wiener process; 5th

property:
Gaussian property (17.44)

Autocorrelation of W (t): RW (t, s) = αmin{s, t} (17.47)
White noise spectrum: PZ ( f ) = N0/2, −∞ < f <∞ (17.49)
Wiener process vs. white

noise:
W (t) = ∫ t

0 Z(u) du (17.52)

Brownian motion with
drift:

limn→∞,h,δ→0 Xn= X (t), (p − q)δ/h=
β, 4pqδ2/h=α

(17.65)

Drift coefficient: β = E[X (t)]/t (17.69)
Diffusion coefficient: α = Var[X (t)]/t (17.70)

Distribution func. of X (t): F(x, t |x0, t0) = 1√
2π

∫ y
−∞ e−u2/2 du (17.71)

where y = x−x0−β(t−t0)√
α(t−t0)

(17.72)

Fokker–Planck equation: ∂ f (x,t)
∂t = −β ∂ f (x,t)

∂x + α
2
∂2 f (x,t)
∂x2 (17.77)

Relation to Ws(t): d X (t) = βdt +√α dWs(t) (17.85)

Forward diffusion eq.: ∂ f
∂t = − ∂(β(x,t) f )

∂x + 1
2
∂2(α(x,t) f )

∂x2 (17.99)

Backward diffusion eq.: ∂ f
∂t0
= −β(x0, t0)

∂ f
∂x0

− α(x0,t0)
2

∂2 f
∂x2

0
(17.100)

where f � f (x, t |x0, t0)

β(x0, t0) � ∂μ(t |x0,t0)
∂t

∣∣∣
t=t0

(17.97)

α(x0, t0) � ∂σ 2(t |x0,t0)
∂t

∣∣∣
t=t0

(17.97)

Itô process: d X = β(X, t) dt = √α(X, t) dWs (17.136)

Properties of Ws as t → 0: dW 2
s

m.s.= dt, dWs dt
m.s.= 0 (17.144)

Itô’s lemma: dY = ∂Y
∂X d X + ∂Y

∂t dt + 1
2
∂2Y
∂X2 α(X, t) dt (17.149)

GBM Y (t): dY = βyY dt +√αY dWs (17.152)

Y (t) = eX (t) (17.163)
where X (t) = βt +√αWs(t), with β � βy − (α/2) (17.164)

Log-normal dist. of GBM: fY (y, t |y0, 0) =
1

y
√

2παt
exp

{
− [ln(y/y0)−βt]2

2αt

}
, y > 0

(17.168)

Itô’s lemma for V (t): dV =
(
∂V
∂t +βY ∂V

∂Y + α
2 Y 2 ∂2V

∂Y 2

)
dt

+√αY ∂V
∂Y dWs (17.173)

Black–Scholes diff. eq.: ∂V
∂t + rY ∂V

∂Y + α
2 Y 2 ∂2V

∂Y 2 = r V (17.180)
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17.6 Discussion and further reading

Comprehensive discussions on random walks, Brownian motion, and diffusion pro-
cesses may be found in Breiman [35], Doob [82], Feller [100], Grimmet and Stirzaker
[131], Rogers and Williams [282], Ross [288], Wong and Hajek [359], and others. It
will be of historical interest to note that Bachelier [10] formulated Brownian motion
in 1900 in formulating the stock price movement, five years before Einstein’s famous
papers [86, 87] on Brownian motion.

A model that improves Brownian motion, as a model of a physical phenomenon such
as movement of a particle, is provided by the Uhlenbeck and Ornstein [334] (see also
Cox and Miller [72]). The basic idea is that the velocity of the particle is modeled by
the limit process of some random walk; and its integral represents a sample path of the
particle itself.

A diffusion process is sometimes adopted to approximate a discrete-state process
such as a queue-size process, since the partial differential equation for the diffusion pro-
cess is often mathematically more amenable than a differential-difference equation that
characterizes a typical queueing process. Various diffusion approximation techniques to
traffic and queueing problems have been discussed by Cox and Miller [72], Gaver [114],
and Newell [255]. See also [194, 195, 203].

Besides GBM and the Itô process [159] as a generalization of Browian motion is
fractional Brownian motion (FBM) introduced by Mandelbrot [236]. The FBM is not
a Markov process and possesses an autocorrelation function that is not summable or
integrable. It forms a mathematical basis for the LRD process and self-similar processes.
Gubner [133] devotes a chapter on long-range dependent (LRD) models. See also [203]
and references therein regarding FBM and its related subjects.

As for a rigorous treatment of stochastic differential equations, stochastic inte-
grals and Itô calculus, the reader is referred to Rogers and Williams [283] and the
aforementioned Wong and Hajek [359].

17.7 Problems

Section 17.1: Random walk

17.1 Alternative derivation of (17.7).

(a) Derive the equations (17.8) and (17.9).
(b) Verify that the probability distribution (17.7) is indeed a solution to (17.8) and

(17.9).

17.2∗ Properties of the simple random walk. Prove the four properties 1–4 of a
simple random walk {Xn} stated in (17.3) through (17.5).

17.3 Gambler ruin problem. Derive the expressions (17.31) and (17.32) for the prob-
ability that the gambler with the initial capital a gets ultimately ruined by playing
against the house with capital b.



17.7 Problems 517

17.4 Expected duration of the game. Consider the gambler ruin problem discussed
in Section 17.1.2 in which A with the initial capital a dollars plays a game against B
with the capital b dollars. Find the mean expected duration of the game; the game ends
when either A or B gets ruined.

Section 17.2: Brownian motion or Wiener process

17.5 Properties of the Wiener process.

(a) Let Var[W (t)] = g(t). Show that, from properties 2 and 3 alone, g(t)must be of the
form g(t) = αt .

(b) Show that Var[W (t)− W (s)] = α|t − s|.
17.6 Transformation of a Wiener process. Consider the Wiener process with
parameter α as discussed in this section.

(a) Define

X (t) = W (t2).

Show that X (t) is a Gaussian process with zero mean and

R(t, s) = αmin(t2, s2).

(b) We define

Y (t) = W 2(t).

Show that its autocorrelation function is given by

RY (t1, t2) = α2t1(2t1 + t2), for t1 < t2.

Hint: Note that W (t) is a normal RV.

Section 17.3: Diffusion processes and diffusion equations

17.7 Diffusion equations of Brownian motion with drift. Consider Brownian
motion with drift in which

β(x, t) = β and α(x, t) = α.
Write down the forward and backward diffusion equations.

17.8 Conditional PDFs of the standard Brownian motion. If 0 < t0 < t , then the
conditional PDF of Ws(t) given Ws(t0) = x0 is the normal distribution with mean x0

and variance t − t0, as seen from (17.44).

(a) Consider the case 0 < t < t0 and show that the conditional PDF of Ws(t) given
Ws(0) = 0 and Ws(t0) = x0 is the normal distribution with mean (x0/t0)t and
variance [(t0 − t)/t0]t .

(b) Show that the conditional PDF of Ws(t) for t1 < t < t2, given Ws(t1) = x1 and
Ws(t2) = x2, is a normal density with mean
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x1 + x2 − x1

t2 − t1
(t − t1)

and variance

(t2 − t)(t − t1)

t2 − t1
.

17.9 Solution of the Fokker–Plank equation (17.77).

(a) Show that the equation (17.77) does not have a steady-state solution.
Hint: Set the left-hand side of (17.77) to zero and try to find the solution in the limit
t →∞.

(b) Show that (17.78) is the time-dependent solution of the Fokker–Planck equation.

17.10∗ Derivation of (17.104) and (17.106).

(a) Let X be a random variable with PDF f (x) with mean μ and variance σ 2. Assume
that the support of f (x) is a very short interval around its mean, [μ− ε, μ+ ε];
i.e.,

f (x) = 0 for x /∈ [μ− ε, μ+ ε].
Then, for a random variable Y = g(X) with a continuous function g(X), its
expectation can be expressed as follows:

E[Y ] ≈ g(μ)+ g′′(μ)σ
2

2
, (17.188)

where g′′(x) is the second derivative of g(x). In other words,

f (x) = δ(x − μ)+ σ 2

2
δ(2)(x − μ). (17.189)

(b) Using the result of part (a), show the approximation (17.104) and (17.106) for
small h.

17.11∗ Derivation of the forward diffusion equation. Derive Kolmogorov’s forward
diffusion equation (17.99).
Hint: Start with the following Chapman–Kolmogorov equation:

f (x, t + h|x0, t0) =
∫

f (x, t + h|x ′, t) f (x ′, t |x0, t0) dx ′.

17.12 Conditional expectation and pure prediction. Using Theorem 22.4 and
results in Example 22.3 in Section 22.2.4, derive the expressions (17.119) and (17.120).

17.13 First-order PDF of the Ornstein–Uhlenbeck process. Derive the first-order
PDF fV (t)(v) in steady state given by (17.118), from the forward equation (17.126).

17.14 Time-dependent solution for the Ornstein–Uhlenbeck process [100, 315].
Derive (17.129) for the time-dependent conditional PDF f (x, t |x0, 0) of the Ornstein–
Uhlenbeck process X (t).
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17.15 Variance of the integration of the Ornstein–Uhlenbeck process. Show that
the variance of X (t) = ∫ t

0 V (u) du is given by (17.132), where V (t) is the Ornstein–
Uhlenbeck process.

Section 17.4: Stochastic differential equations and Itô process

17.16∗ Conditional mean and variance of the GBM. Derive the conditional mean,
the second moment, and the variance of Y (t) that are given by (17.165), (17.166), and
(17.167) respectively.

17.17 Itô’s lemma applied to GBM. Derive the stochastic differential equation
(17.173) for V (t), the price of the derivative security, when the price of the underlying
asset, Y (t), is a GBM process as in (17.172), with βy = β + (α/2).
17.18 Conditional mean and variance of X (T ), given Y(t). Show that the condi-
tional mean and variance of X (T ), given Y (t), are given by (17.184).

17.19∗ European call option. In reference to the model parameters assumed in
Example 17.3, how will the option price $15.29 change if we change one of the model
parameters as follows. Keep the other parameters intact.

(a) Suppose we change the risk-free interest from 10% to 5%. Which of the follow-
ing values is the closest to the option price: (i) $12.00, (ii) $13.50, (iii) $15.00,
(iv) $16.50, (v) $18.00?

(b) Change volatility from 20% to 30% per annum. Which is the closest option price:
(i) $14.00. (ii) $15.50, (iii) $17.00 (iv) $18.50, (v) $20.00?

(c) Change the expiration date from 6 months to 1 year. Which is the closest option
price: (i) $14.00, (ii) $15.50, (iii) $17.00, (iv) $18.50, (v) $20.00?





Part IV

Statistical inference





18 Estimation and decision theory

The study of statistics is concerned with effective use of numerical data available to us,
or collected by some experiments, and its theory relies on probability theory, decision
theory, and other branches of mathematics. In mathematical statistics, we interpret a
set of finite observations x = (x1, x2, . . . , xn) as a sample point of its underlying RV
X = (X1, X2, . . . , Xn) drawn at random from its sample space X .

In this chapter we are primarily concerned with fitting a statistical model to real
measurement data. A model is usually described by a set of probability distributions
that involve some unknown parameters. Thus, model fitting consists of estimating its
parameters from experimental data and assigning some measure of confidence to the
model. We will study statistical procedures to estimate such parameters and procedures
to test the goodness of fit of the model to the experimental data. We will also investigate
computational algorithms for these procedures.

18.1 Parameter estimation

We consider RV X with probability distributions F(x; θ) with parameter θ , which we
assume has dimension M :

θ = (θ1, θ2, . . . , θM ).

The value of parameter θ is unknown and we want to estimate it from observations

x = (x1, x2, ..., xn) ∈ X

drawn from the distribution F(x; θ). The number n is called the sample size, and the
parameter to be estimated is referred to as an estimand [143]. We want to find a function
T (·) such that θ̂ = T (x) is as close to θ as possible. Such an estimate is called a point
estimate. But a particular estimate T (x) is merely an instance (or a sample point) of
the transformed RV T (X). Therefore, we cannot assess the quality of an estimate just
based on one sample only. We ought to analyze the distribution of the RV T (X), which
is called a point estimator of the parameter.

A function of a sample x is called a statistic, where the function is independent of the
sample’s distribution. The objective of point estimation of parameter θ is to find an esti-
mator statistic θ̂(x) whose probability distribution, called the sampling distribution, is
as concentrated around θ as possible.
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We introduce three desirable properties of an estimator:

D E FI N I T I O N 18.1 (Unbiasedness, efficiency, and consistency of an estimator).

1. An estimator θ̂(X) is said to be unbiased if E[θ̂(X)] = θ ; otherwise, it is called
biased. The bias is defined as

b(θ) = E[θ̂(X)] − θ . (18.1)

2. An unbiased estimator θ̂
∗
(X) is said to be efficient if it is a minimum-variance

estimator; that is, Var[θ̂∗(X)] ≤ Var[θ̂(X)] for any other unbiased estimator θ̂(X).

3. A sequence of estimators is said to be consistent if the sequence converges in
probability to θ . �

The above matrix inequality Var[θ̂∗(X)] ≤ Var[θ̂(X)] means that Var[θ̂∗(X)] −
Var[θ̂(X)] is negative semidefinite. It is equivalent to

Var[a�θ̂
∗
(X)] ≤ Var[a�θ̂(X)] (18.2)

for any vector a �= 0 (of the same dimension as θ̂(X)) (Problem 18.2).

D E FI N I T I O N 18.2 (Sufficient statistic). A statistic T (X) is said to be sufficient for
parameter θ , if the conditional probability density (or mass) function of X , given
T (X) = t , does not depend on θ . �

This means that, given T (x) = t , full knowledge of the measurement x does not
bring any additional information concerning θ .

Example 18.1: Sufficient statistic for Bernoulli distribution parameter. Consider
Bernoulli trials of size n: we define variable Xi to be 1 when the i th trial is a success
and 0 when the trial is a failure, i = 1, 2, . . . , n. Let θ be the probability of success,
which is unknown and we wish to estimate. The probability distribution of the outcome
of n trials X = (X1, X2, . . . , Xn) is given by the Bernoulli distribution discussed in
Section 3.3.1:

pX (x; θ) =
n∏

i=1

θ xi (1− θ)1−xi = θ t (1− θ)n−t , for all x ∈ {0, 1}n, (18.3)

where t =∑n
i=1 xi � T (x) is the number of successes in the trials.

Recall that we also discussed the Bernoulli trials in Example 4.4 of Section 4.5, where
we treated the parameter as the random variable � and updated the estimate by using
Bayes’ theorem. Here, we assume θ is a fixed constant, so we are discussing the same
estimation problem from the frequentist’s point of view.

We will show that T (x) is a sufficient statistic; i.e., the conditional probability dis-
tribution pX|T (x|t; θ) does not involve θ . The Bernoulli distribution (18.3) represents,
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by definition, the probability distribution of the vector variable X , and can be viewed as
the joint probability distribution of X and T (X):

pX,T (x, t; θ) =
(

θ

1− θ
)t

(1− θ)n, for x ∈ {0, 1}n and t ∈ [0, n]. (18.4)

The marginal distribution of the variable T is computed as

pT (t; θ) =
∑

x:T (x)=t

pX,T (x, t; θ) =
(

n

t

)(
θ

1− θ
)t

(1− θ)n, (18.5)

which is the binomial distribution defined in (3.62) of Section 3.3.1. Then, the
conditional probability pX|T (x|t; θ) is given as

pX|T (x|t; θ) = pX,T (x, t; θ)
pT (t; θ) = 1(n

t

) , (18.6)

which does not involve θ . Thus, T (x) =∑n
i=1 xi is a sufficient statistic for estimating θ .

�

In the above example, we conjectured that T (x) =∑n
i=1 xi is a sufficient statistic and

proved it by computing the conditional probability. In general it is not so straightforward
to find a sufficient statistic. Fortunately, the following factorization theorem makes this
task simpler:

THEOREM 18.1 (Fisher–Neyman factorization theorem). Let fX(x; θ) be the PDF of
a continuous RV X , parameterized by θ . A statistic T (x) is sufficient for θ if and only if
there exist functions g(T (x); θ) and h(x) such that

fX (x; θ) = g(T (x); θ)h(x), (18.7)

for all x ∈ X .
For a discrete RV X , the above factorization should hold for the PMF pX (x; θ).

Proof. We consider the case where X is a discrete RV. Let the joint probability distri-
bution of (X, T (X)) be denoted as pX,T (x, t; θ). By substituting t = T (x) into this
probability, we find the probability distribution of X ; i.e.,

pX,T (x, T (x); θ) = pX (x; θ). (18.8)

If T (x) is a sufficient statistic for θ , then from the definition, we have

pX|T (x|t; θ) = pX|T (x|t). (18.9)

Then,

pX,T (x, t; θ) = pT (t; θ)pX|T (x|t; θ) = pT (t; θ)pX|T (x|t). (18.10)
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Then, by setting pT (t; θ) = g(t; θ) and pX|T (x|t) = pX|T (x|T (x)) = h(x), we have

pX (x; θ) = pX,T (x, T (x); θ) = g(t; θ)h(x). (18.11)

Conversely, let us assume that the probability distribution pX (x; θ) satisfies the
factorization (18.11) for some g(t; θ) and h(x). Then,

pT (t; θ) =
∑

x:T (x)=t

pX,T (x, t; θ) =
∑

x:T (x)=t

pX (x; θ)

=
∑

x:T (x)=t

g(t; θ)h(x) = g(t; θ)
∑

x:T (x)=t

h(x). (18.12)

Then the conditional PDF of X = x given T = t should be expressed as

pX|T (x|t; θ) = pX,T (x, t; θ)
pT (t; θ) = g(t; θ)h(x)

g(t; θ)∑x:T (x)=t h(x)

= h(x)∑
x:T (x)=t h(x)

, (18.13)

which does not depend on θ and represents the conditional PDF pX|T (x|t).
For the case where the random vectors X and T are continuous, the proof is much

more involved. The reader is directed to advanced books on mathematical statistics,
e.g., [25].

Example 18.2: Estimating the unknown mean of a normal distribution. Consider
a random variable X with the normal distribution N (θ, 1) whose variance σ 2 = 1 is
known. We want to estimate the unknown mean θ based on n independent samples,
x = (x1, x2, . . . , xn). We can write the PDF of x as

fX (x; θ) =
n∏

i=1

1√
2π

exp

[
− (xi − θ)2

2

]

= 1

(2π)n/2
exp

(
−1

2

n∑
i=1

x2
i

)
exp

(
θ

n∑
i=1

xi − nθ2

2

)
.

Then, from the factorization theorem, we readily find that Tn(x) =∑n
i=1 xi is a

sufficient statistic for θ .
Then define

θ̂ (x) = Tn(x)
n

= 1

n

n∑
i=1

xi ,

which is the sample mean Xn . We readily see that θ̂ (x) = Xn is an unbiased estimate
of θ , since E[θ̂ (X)] = 1

n

∑n
i=1 E[Xi ] = nθ/n = θ . The variance of this estimate is

Var[Xn] =
∑n

i=1 Var[Xi ]
n2

= 1

n
.
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Then from the weak law of large numbers (Theorem 11.27) (or by applying Chebysehv’s
inequality) we readily see that the sequence {Xn − θ} converges in probability to zero.
Thus, the estimator θ̂ (X) = X n is a consistent estimator. This estimators also turns out
to be efficient, but we defer its proof until Section 18.1.3.

In Example 4.6 of Section 4.5 we discussed the problem of estimating the mean
parameter from the Bayes inference point of view. �

18.1.1 Exponential family of distributions revisited

In Section 4.4 we introduced the notion of the canonical or natural exponential family
of distributions:

fX (x; η) = h(x) exp[η�T (x)− A(η)], (18.14)

We readily see, from the Fisher–Neyman factorization theorem, that T (x) is a sufficient
statistic for the parameter η. Since fX (x; η) is a PDF,∫

fX (x; η) dx =
∫

h(x) exp[η�T (x)− A(η)] dx = 1, (18.15)

which yields

exp[A(η)] =
∫

h(x) exp[η�T (x)] dx. (18.16)

Thus, A(η) is uniquely determined by h(x) and T (x).
The MGF for the RV T (X) is, from (8.40), given by

MT (u) �
∫

exp[u�T (x)] fX (x; η) dx

= exp[−A(η)]
∫

h(x) exp[η + u)�T (x)] dx

= exp[−A(η)] exp[A(η + u)], (18.17)

where we used the relation (18.16) to arrive at the last expression. Thus,

MT (u) = exp[A(η + u)− A(η)]. (18.18)

The logarithmic MGF or cumulant MGF, defined in (8.6), is therefore given by

mT (u) � ln MT (u) = A(η + u)− A(η). (18.19)

We can then find the mean (vector) and the variance (matrix) of T (X) by differentiat-
ing mT (u) once and twice respectively, and by setting u = 0. Because of the relation
(18.19), they can be found by differentiating A(η) with respect to η:

E[T (X)] = ∇umT (0) = ∇η A(η) (18.20)
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and

Var[T (X)] = ∇u∇�u mT (0) = ∇η∇�η A(η), (18.21)

where the operator1 ∇η represents the the vector differential operator or gradient
operator

∇η A(η) �
(
∂A(η)

∂η1
,
∂A(η)

∂η2
, · · · , ∂A(η)

∂ηM

)�
(18.22)

and ∇η∇�η A(η) is the Hessian matrix of A(η):

∇η∇�η A(η) �
[
∂2 A(η)

∂ηi∂η j

]
M×M

. (18.23)

18.1.2 Maximum-likelihood estimation

We continue to consider the case where we know the functional form of the PDF
fX (x; θ) (or the PMF pX (x; θ) for the discrete case), but the value of the parameter
θ is unknown. We wish to estimate θ based on the data x = (x1, x2, . . . , xn). Then a
reasonable procedure is to find the value of θ that is most likely to produce this x.
So we define the following function of θ , with x fixed, which is called the likelihood
function:

Lx(θ) �
{

fX(x; θ), for continuous RV X ,
pX(x; θ), for discrete RV X .

(18.24)

The parameter θ may be either discrete or continuous. Any value of θ that maximizes the
likelihood function is called a maximum-likelihood estimate (MLE) and denoted as θ̂ :

θ̂ = arg max
θ

L x(θ). (18.25)

This value may not always be unique, or in some cases may not even exist. If we know
that it exists and is unique, then it may be appropriate to call it the MLE. The procedure
to find an MLE is called maximum-likelihood estimation.

The concept of the MLE is simple, and it can be shown (see the next section) that an
MLE is asymptotically unbiased, efficient, and normally distributed as the sample size
n →∞. In some cases we may be able to find a closed-form expression of the MLE
in terms of x, but it is generally difficult to find it analytically and we have to resort to
some numerical technique, as we shall discuss in Sections 19.1 and 19.2.

1 This operator, which is called nabla, from the Greek word for a Hebrew harp that has a similar shape, was
introduced by Sir W. R. Hamilton (1805–1865), who was an Irish physicist, astronomer, and mathematician.
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If the likelihood function is differentiable with respect to its parameter, a necessary
condition for an MLE to satisfy is

∇θ L x(θ) = 0, i.e.,
∂L x(θ)

∂θm
= 0, m = 1, 2, . . . ,M, (18.26)

where the ∇θ is the differential operator defined in (18.22). Since the logarithmic
function is a monotonically increasing and differentiable function, θ that satisfies the
conditions (18.26) can be found from

∂ log L x(θ)

∂θm
= 0, m = 1, 2, . . . ,M. (18.27)

These equations have, in general, multiple roots, and in order to find the MLE θ̂ , we
must select the solution that yields the largest value of Lx(θ).

The function log L x(θ) is called the log-likelihood function, and its partial derivative
with respect to θ is called the score function, denoted as s(x; θ):

s(x; θ) = ∇θ log L x(θ) �
(
∂ log L x(θ)

∂θ1
,
∂ log L x(θ)

∂θ2
, . . . ,

∂ log Lx(θ)

∂θM

)�
.

(18.28)

The score function represents the rate at which log Lx(θ) changes as θ varies. If it can
be expanded in a Taylor series around the parameter’s true (but unknown) value θ0, then

s(x; θ) = s(x; θ0)+∇θ s�(x; θ0)(θ − θ0)+ r(x; θ), (18.29)

where the remainder term r(x; θ) is on the order of O(‖θ − θ0‖2) and is negligibly
small for θ in the vicinity of θ0. Then by setting the above equation equal to zero, we
find that θ̂ that satisfies (18.27) is given by

θ̂ ≈ θ0 −
[
∇θ s�(x; θ0)

]−1
s(x; θ0)

= θ0 − H−1(x; θ0)s(x; θ0), (18.30)

where

H(x; θ0) � ∇θ s�(x; θ0) = ∇θ∇�θ log L x(θ0) =
[
∂2 log L x(θ0)

∂θi∂θ j

]
M×M

(18.31)

is the Hessian matrix of log Lx(θ) evaluated at θ = θ0. The negative of this Hessian
matrix

J (x; θ0) = −H(x; θ0) (18.32)

is called the observed Fisher information matrix.
Thus, the above θ̂ , which is the MLE if it gives a global maximum of Lx(θ), can be

written as

θ̂ ≈ θ0 +J (x; θ0)
−1s(x; θ0). (18.33)
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It is easy to show that the expectation of the score function is zero (see Problem 18.4)
for any θ ; i.e.,

E[s(X; θ0)] = 0. (18.34)

The matrix J (X; θ) is also a random variable and its expectation

I x(θ0) � E[J (X; θ0)] (18.35)

is called the Fisher information matrix.

Example 18.3: MLE of θ = (μ, σ 2) of a normal distribution. Suppose that n inde-
pendent samples are taken from a common normal distribution N (μ, σ 2), where both
mean and variance are unknown, and we wish to find an MLE of these parameters based
on x = (x1, x2, . . . , xn). By setting θ = (μ, σ 2), we have the likelihood function

Lx(θ) = f (x; θ) = 1

(2πσ 2)n/2
exp

[
−
∑n

i=1(xi − μ)2
2σ 2

]
.

Therefore, the log-likelihood function is

log L x(θ) = −n log(2π)

2
− n log σ − 1

2σ 2

n∑
i=1

(xi − μ)2.

Then (18.27) yields

1

2σ 2

n∑
i=1

(xi − μ) = 0 and − nσ + 1

σ 3

n∑
i=1

(xi − μ)2 = 0,

from which we have

μ� =
∑n

i=1 xi

n
and σ 2� =

∑n
i=1(xi − μ�)2

n
= 1

n

n∑
i=1

x2
i − μ�2

. (18.36)

It is not difficult to calculate the Hessian matrix (18.31), obtaining

H(x; θ0) = − 1

σ 2
0

[ 1
2 0
0 2n

]
,

which is clearly negative definite. In the case of the normal distribution, the log-
likelihood function is a quadratic equation in θ . Thus, in the Taylor expansion of the
score function, the higher order term r(x; θ) is nonexistent. Hence, the “≈” used in
(18.30) and (18.33) should be replaced by “=,” and the solution given by θ � = (μ�, σ 2�)

of (18.36) is a global maximum point; hence, it is the MLE θ̂ .
It is worthwhile noting that we will arrive at the same result if we define θ = (μ, σ )

instead of θ = (μ, σ 2) (Problem 18.5). In other words,
√
σ̂ 2 = σ̂ . The MLEs in general

possess this property: the same value of a parameter is obtained whether we estimate θ
itself or some monotone function g(θ) of this parameter. �
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18.1.2.1 Maximum-likelihood estimate for the exponential family distribution
We gave the definition and basic properties of the canonical exponential family of dis-
tribution in Section 4.4. Let us now focus on parameter estimation for this class of
distributions. Assume that we have n independent samples x = {x1, x2, . . . , xn} drawn
from a common distribution f (x; η) that belongs to the canonical exponential family.
In other words, we have

fX (x; η) =
n∏

i=1

f (xi ; η),

where

f (xi ; η) = h(xi ) exp
[
η�T (xi )− A(η)

]
.

Note that each sample Xi may itself be vector-valued. The log-likelihood function for
the parameter η based on the n sampled data is

log fX (x; η) =
n∑

i=1

η�T (xi )− n A(η)+ r(x), (18.37)

where

r(x) =
n∑

i=1

log h(xi ) (18.38)

does not depend on η. By differentiating (18.37) with respect to η, and setting it to zero,
we find that an MLE η̂ must satisfy the following equation:

∇η A(η̂) = 1

n

n∑
i=1

T (xi ). (18.39)

Example 18.4: The MLE of a normal distribution – continued. Consider the nor-
mal RV X discussed in Examples 4.3 and 18.3. We write the PDF of each sample xi

(i = 1, 2, . . .) as

f (xi ; θ) = 1√
2πσ

exp

[
− (xi − μ)2

2σ 2

]
= 1√

2π
exp

(
− x2

i

2σ 2
+ xiμ

σ 2
− μ2

2σ 2
− log σ

)
, i = 1, 2, . . . , n.

We showed in Example 4.3 that this belongs to the canonical exponential family with

η =
[
η1

η2

]
=
[

1
σ 2
μ

σ 2

]
, T (x) =

[
− x2

2
x

]
,

h(X) = 1√
2π
, A(η) = μ2

2σ 2
+ log σ.
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The original parameters θ = (μ, σ ) can be expressed as μ = η2/η1 and σ 2 = 1/η1.
Hence,

A(η) = η2
2

2η1
− log η1

2
.

Maximum-likelihood estimates of η1 and η2 and the statistic T (x)must satisfy (18.39):

∇η A(η̂) =
[
− η̂2

2

2η̂2
1

− 1

2η̂1
,
η̂2

η̂1

]�
= 1

n

n∑
i=1

T (xi )

= 1

n

[
−1

2

n∑
i=1

x2
i ,

n∑
i=1

xi

]�
.

Thus, the η̂1 and η̂2 are uniquely determined, and they in turn uniquely determine the
MLE of μ and σ 2:

μ̂ = η̂2

η̂1
= 1

n

n∑
i=1

xi and σ̂ 2 = 1

η̂1
= 1

n

n∑
i=1

x2
i − μ̂2.

These MLEs indeed agree with those we found in Example 18.3. �

18.1.3 Cramér–Rao lower bound

In the introduction to the present section we defined some desirable properties of an esti-
mator. They are unbiasedness, efficiency (or minimum variance), and consistency. We
will study in this subsection what is the minimum variance that any unbiased estimator
can possibly achieve.

C. R. Cramér [74] and C. R. Rao [277] showed that for probability distributions that
satisfy certain regularity conditions (such as differentiability, validity of interchange of
differentiation with respect to the parameter θ , and integration with respect to x, etc.; see
Problem 18.4 (c)), the MSE of a single parameter (i.e., one-dimensional parameter) θ is
subject to the following bound, now widely known as the Cramér–Rao lower bound
(CRLB) or Cramér–Rao inequality:

E[(θ̂ − θ)2] ≥
∣∣1+ b′(θ)

∣∣2
Ix(θ)

, (18.40)

where b(θ) = E[θ̂ (X)] − θ is the bias of the estimator defined in (18.1) and Ix(θ) is
the Fisher information (a scalar quantity for a single parameter), defined by (18.35) (see
Problem 18.4 (c)):

Ix(θ) = −E

[
∂2 log L x(θ)

∂θ2

]
, (18.41)
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where θ is the true value of the parameter. The CRLB for a one-dimensional parameter
θ given by (18.40) can be derived from the Cauchy–Schwarz inequality discussed in
Section 10.1.1 (Problem 18.6).

For an unbiased estimator θ̂ , the numerator of the right-hand side of (18.40) is unity,
and the left-hand side is the variance of the estimate of θ . A generalization to the
estimation of a vector parameter θ is given by Cramér [74].

THEOREM 18.2 (Cramér–Rao lower bound (CRLB)). Let θ̂(x) be any unbiased
estimator of θ . Then the following properties hold.

1. The variance matrix of θ̂(X) is bounded from below by the inverse of the Fisher
information matrix:

Var[θ̂(X)] = E
[
(θ̂(X)− θ)(θ̂(X)− θ)�

]
≥ I−1

x (θ). (18.42)

2. The lower bound is attained if and only if θ̂(X) satisfies the following equation

s(X; θ) = Ix(θ)(θ̂(X)− θ), (18.43)

where s(X; θ) is defined by (18.28).

Proof.

1. First, consider the following simple formula for matrix variances and covariances:

Var[A− B] = Var[A] + Var[B] − Cov[A, B] − Cov[B, A] ≥ 0, (18.44)

where the equality in the right-hand side holds if and only if A− B = constant; i.e.,
if and only if A− B = E[A− B]. By setting A = θ̂(X) and B = I−1

x s(X), where
for notational brevity we write

Ix � I x(θ),

s(X) � s(X; θ) = ∇θ log fX(X; θ),
we have

Var[θ̂(X)− I−1
x s(X)] = Var[θ̂(X)] + I−1

x Var[s(X)]I−1
x

− Cov[θ̂(X), s(X)]I−1
x − I−1

x Cov[s(X), θ̂(X)] ≥ 0. (18.45)

Using formulas (18.113) and (18.115) proved in Problem 18.4,

Var[s(X)] = Ix and Cov[θ̂(X), s(X)] = Cov[s(X), θ̂(X)] = I, (18.46)

we find

Var[θ̂(X)− I−1
x s(X)] = Var[θ̂(X)] − I−1

x ≥ 0. (18.47)
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2. The equality in the above holds if and only if

θ̂(X)− E[θ̂(X)] = I−1
x (s(X)− E[s(X)]).

Since θ̂(X) is an unbiased estimator and E[s(X)] = 0 (see (18.113)), we have

θ̂(X)− θ = I−1
x s(X),

which implies the vector equation (18.43).

Furthermore, we can show that such θ̂(X) that satisfies the CRLB is a sufficient
statistic for estimating θ (Problem 18.7).

Recall that the minimum variance unbiased estimator (MVUE) that attains the
CRLB is called efficient, as defined in Definition 18.1.

Example 18.5: The normal distribution N(μ, 1). Let us consider again the nor-
mal distribution N (μ, 1) discussed in Example 18.2. We found that the sample mean
X = 1

n

∑n
i=1 xi is an unbiased and consistent estimator for the distribution mean μ. In

Example 18.3 we showed that this estimator is an MLE. Let us investigate whether it is
also an efficient estimator.

The variance of the sum of n i.i.d. RVs is n times the variance of one RV. Thus, the
variance of 1

n

∑n
i=1 Xi is

Var [X ] = 1

n2 nVar [Xi ] = 1

n
,

which is the left-hand side of the Cramér–Rao inequality.
Since the log-likelihood function is given by

log fX (x;μ) = −
∑n

i=1(xi − μ)2
2

− n

2
log(2π),

we have

∂ log fX (x;μ)
∂μ

=
n∑

i=1

(xi − μ) = n(X − μ). (18.48)

The Fisher information of n independent samples x = (x1, x2, . . . , xn) is given by
Ix(μ) =∑n

i=1 Ixi (μ) = n, where

Ixi (μ) = E[(X − μ)2)] = 1

is the Fisher information for each sample xi . Thus, the CRLB for any statistic T (x) is
given by I−1

x (μ) = 1/n, as expected. Note that (18.48) is equivalent to (18.43). This
proves that the sample mean X is an efficient estimate.

�
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18.1.3.1 Asymptotic unbiasedness, efficiency, and normality of the maximum-likelihood
estimate
Now we return to the MLE of Section 18.1.2 and discuss its properties. Recall that the
MLE satisfies (18.33). The “≈” in that equation becomes “=”, as n →∞, where n is
the size of the data

x = (x1, x2, . . . , xn) � xn.

Since the expected value of the score function is zero, the MLE is asymptotically
unbiased i.e.,

lim
n→∞ E[θ̂(xn)] = θ ,

where θ is the true value of the parameter.
From (18.33) we also see that the variance matrix2 of the MLE of θ is approxi-

mated by

Var[θ̂] ≈ E
[

H−1(Xn; θ)s(Xn; θ)s�(Xn; θ)H−1(Xn; θ)
]

≈ I−1
x (θ)I xn (θ)I−1

xn
(θ) = I−1

xn
(θ), (18.49)

which is the CRLB, where

Xn � X = (X1, X2, . . . , Xn).

Therefore, the MLE θ̂(xn) is asymptotically efficient. In deriving the above result we
used the property E[s(Xn; θ)s�(Xn; θ)] = −E[J (Xn; θ)] = I xn (θ) (see (18.113) of
Problem 18.4), and the “law of large number” argument that, as n becomes large,
H(Xn; θ) = −J (Xn; θ) can be well approximated by its expectation −I xn (θ).

If the data x1, x2, . . . , xn are i.i.d. samples taken from a common distribution
f (x; θ), i.e.,

fX (x; θ) =
n∏

i=1

f (xi ; θ),

the asymptotic variance of the MLE (18.49) becomes

Var[θ̂ ] ≈ 1

n
I−1

x (θ), (18.50)

where Ix (θ) = 1
n I xn (θ) is the Fisher information matrix based on a single sample x :

I x (θ) = −E

[
∂2 log f (x; θ)

∂θi∂θ j

]
= E

[
∂ log f (x; θ)

∂θi

∂ log f (x; θ)
∂θ j

]
, (18.51)

as given in (18.41) and proved in Problem 18.4 (c).

2 This matrix is sometimes called the “covariance matrix,” but we reserve this term for Cov[X,Y ] = E[(X −
E[X])(Y − E[Y ])�] for two random vectors. Some authors call Cov[X,Y ] the “cross-covariance matrix.”
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The score function s(x; θ) in (18.33) is the gradient of the log-likelihood function.
For i.i.d. samples,

s(X; θ) = ∇θ

(
n∑

i=1

log f (Xi ; θ)
)
. (18.52)

Thus, from the central limit theorem, the summed term converges in distribution to a
normal RV. Since the ∇θ is a linear operator, the score function s(X; θ) converges in
distribution to a normal random vector with mean zero. Thus, the MLE θ̂ (of (18.33)) is
an asymptotically normal random vector with mean θ .

For a more rigorous discussion on the above asymptotic properties of the MLE, the
interested reader is referred to, for example, Cramér [74] and Bickel and Doksum [25].

18.1.4 Interval or region estimation

In contrast with point estimation discussed in the preceding sections, region estimation
uses sampled data x = (x1, x2, . . . , xn) to estimate a region that covers an unknown
population parameter θ . A confidence region Rγ (x) is a range in the parameter space
which is expected to include the estimand θ , and the probability that θ indeed falls in
this region P[θ ∈ Rγ (x)] = γ is called the confidence level or confidence coefficient.

In many cases, the component parameters θi of the vector parameter θ may be treated
separately. Then, a confidence region will become a Cartesian product of M separate
confidence intervals. In the rest of this section, therefore, we will focus on the one-
dimensional parameter space. An interval Iγ = (c1, c2) ∈ R such that

P[c1 < θ < c2] = γ (18.53)

is called a confidence interval associated with the confidence level γ . In order to have an
accurate estimate, we want to make the confidence interval as narrow as possible. Thus,
an efficient (i.e., unbiased minimum-variance) estimator will help us design a good
interval estimator. It should be clear, however, from our earlier discussion on asymptot-
ically efficient estimators that, in order to have a sufficiently narrow confidence interval,
while keeping the confidence level sufficiently high, we need to increase the size n of
data x = (x1, x2, . . . , xn) that we can use for estimation.

Let x = (x1, x2, . . . , xn) represent data of size n sampled from a common PDF f (x).
Let θ̂ (x) be an estimator of θ based on the sample x. Then θ̂ (X) is a random variable
and we denote its PDF by f

θ̂ (X)(y; θ). In order to determine the confidence interval Iγ

defined by (18.53), consider an interval (d1, d2) around the estimate θ̂ such that

P[d1 < θ̂(X) < d2] =
∫ d2

d1

f
θ̂ (X)(y; θ) dy = γ. (18.54)

The above equation, however, does not uniquely determine the interval (d1, d2). In fact,
there are infinitely many such intervals. But let us specify two percentile parameters 0 <
α1 < 1− α2 < 1 such that α1 + α2 = 1− γ . Then consider d1(θ) < d2(θ) such that
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Figure 18.1 Confidence intervals for the unknown parameter θ .

∫ d1

−∞
f
θ̂ (X)(y; θ) dy = α1 and

∫ ∞

d2

f
θ̂ (X)(y; θ) dy = α2. (18.55)

The solutions to these two equations for given θ , denoted d1(θ) and d2(θ), can be
uniquely determined from the α1 and 1− α2 percentiles, denoted as zα1 and z1−α2 , of
the distribution f

θ̂ (X)(y; θ); i.e.,

d1(θ) = zα1(θ) and d2(θ) = z1−α2(θ).

The equations in (18.55) can be viewed to represent two curves θ̂ = d1(θ) and θ̂ =
d2(θ) (see Figure 18.1). The interval (d1(θ), d2(θ)) is a vertical interval that includes
the point estimate θ̂ (X).

Suppose that the functions θ̂ = d1(θ) and θ̂ = d2(θ) are both continuous and mono-
tone increasing functions. Then we can uniquely determine their inverse functions
θ = d−1

1 (θ̂) and θ = d−1
2 (θ̂). Then, by writing

c1(θ̂) = d−1
1 (θ̂) and c2(θ̂) = d−1

2 (θ̂), (18.56)

it is not difficult to show (Problem 18.9) that c1(θ̂(X)) < θ < c2(θ̂(X)) if and only if
d1(θ) < θ̂(X) < d2(θ). Thus, we have

P[c1(θ̂(X)) < θ < c2(θ̂(X))] = P[d1(θ) < θ̂(X) < d2(θ)] = γ. (18.57)

The interval (c1(θ̂(X)), c2(θ̂(X))) on the dashed line in Figure 18.1 represents the
confidence interval defined by (18.57).

Example 18.6: Confidence interval of an estimator μ̂ of N(μ, 1). Let the assumed
distribution for the n samples be the normal distribution N (μ, 1), where the mean μ is
unknown. We wish to find the confidence interval of an estimator at confidence level γ .
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We know that the MLE for μ is the sample mean: μ̂(x) = 1
n

∑
i xi . Since all the Xi

are normal with mean μ and unit variance, the statistic μ̂(X) is also normal with mean
μ, with its variance being 1/n:

fμ̂(X)(y, μ) =
√

n√
2π

exp

[
−n(y − μ)2

2

]
.

Since this distribution is symmetrical with respect to μ, the narrowest confidence inter-
val is obtained if we select α1 = α2 in the equations of (18.55), which in this case take
the form

√
n√

2π

∫ d1

−∞
exp

[
−n(y − μ)2

2

]
dy = α,

√
n√

2π

∫ ∞

d2

exp

[
−n(y − μ)2

2

]
dy = α, (18.58)

where α = (1− γ )/2. Let uα be the α percentile of the unit normal distribution N (0, 1).
Then the end points of the vertical interval can be written as

d1(μ) = μ− uα√
n
, d2(μ) = μ+ uα√

n
.

Thus, the two curves in Figure 18.1 are two parallel straight lines in this example. The
end points of the confidence interval Iγ are obtained by solving these equations for μ.
Therefore, the confidence interval Iγ = (c1(μ̂(X)), c2(μ̂(X))) with level γ is given by

c1(μ̂(X)) = μ̂(X)− uα√
n
, c2(μ̂(X)) = μ̂(X)+ uα√

n
, where α = 1− γ

2
.

As we can see, the length of the confidence interval tends to zero as n →∞. Thus,
we can decide how large the sample size n should be to obtain a sufficiently narrow
interval. For instance, if we choose the confidence coefficient to be γ = 0.95, then α =
0.025 and from the table of the standard normal distribution (or using the MATLAB
function norminv([0.025 0.975],0,1)) we find uα = 1.96. The length of the
confidence interval is 2uα/

√
n. Thus, if we want the confidence interval to be less than

0.01, then we need a sample size n ≥ 4× 1962 = 153 664. �

18.2 Hypothesis testing and statistical decision theory

In Chapter 6 we discussed a statistical procedure of accepting or rejecting a hypoth-
esized probability distribution when we are given experimental data. The techniques
we explored in that chapter are primarily based on graphical presentations of data by
plotting them, for instance, on the log-normal paper.
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18.2.1 Hypothesis testing

In the present section we introduce the theory of statistical hypothesis testing pioneered
by J. Neyman and E. Pearson [256] in 1933. We begin with a binary hypothesis test, in
which we have two possible hypotheses, denoted H0 and H1, one and only one of which
is assumed to be true. The hypothesis H0 is called the null hypothesis, whereas the
hypothesis H1 is called the alternative hypothesis. In radar or sonar, for instance, H0

means the absence of a “target,” whereas H1 means its presence. In medical diagnosis,
H0 means that a patient is well, whereas H1 means that the patient has a specific illness.

Let the hypotheses be concerned with parameter θ of the distribution function
F(x; θ), of the observation x, and let S be the parameter space, i.e., θ ∈ S. We wish to
test the null hypothesis H0 : θ ∈ S0 against the alternative hypothesis H1 : θ ∈ S1,
where S0 ∪ S1 = S and S0 ∩ S1 = ∅. If Si (i = 0, 1) consists of a single point θi , the
hypothesis is called simple; otherwise, it is called composite. The null hypothesis H0 is
simple in most cases. In a radar signal detection problem, for example, θ may represent
the amplitude of a signal reflected from a target. The assumption S0 = {θ = 0} defines
H0, which is simple, whereas S1 = {θ > 0} defines H1, which is composite.

Since we must accept one and only one of the two hypotheses and reject the other,
we make two types of possible error in our decision:

1. Type 1 error (i.e., false alarm or false positive); we accept H1 when H0 is true.
2. Type 2 error (i.e., miss or false negative); we accept H0 when H1 is true.

Since we make a decision solely based on measurement data x, we can formally
state this statistical decision problem as follows. Let X be the sample space of the
RV X . Then a decision rule is equivalent to partitioning X in two regions Rc and
Rc � X \Rc, where Rc is called the critical region (or rejection region) of H0 of the
decision rule, and its complement Rc is called the acceptance region of H0.

We can then represent a decision rule (also called a test function or simply a test)
d(x) as a mapping from X to {0, 1}:

d(x) =
{

1 (Reject H0), if x ∈ Rc,

0 (Accept H0), if x ∈ Rc.
(18.59)

The probability of the type 1 error,

P[X ∈ Rc|H0] = E[d(X)|H0] � α, (18.60)

is called the level of the test (also called the size of the test). The probability of type 2
error is given as

P[X ∈ Rc |H1] = 1− E[d(X)|H1] � β. (18.61)

The probability of rejecting H0 when it is false, i.e., 1− β = E[d(X)|H1], is called the
power of the test, or the true positive probability. In the context of signal detection
theory it is called the detection probability, denoted Pd.
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When there are no prior probabilities given, we cannot use the overall probability
of error as in the MAP (maximum a posteriori probability) estimator, which will be
discussed in Section 18.3 (see (18.100)). An alternative criterion that we may adopt in
such a circumstance is to keep the probability of type 1 error less than or equal to a
prescribed value α and minimize β, the probability of the type 2 error. So we introduce
the following notion.

D E FI N I T I O N 18.3 (Most powerful test). Consider a hypothesis testing of H0 against
H1. Among all tests (or decision rules) with the level at or below α > 0, a test with the
largest power (i.e., the smallest β) is called the most powerful (MP) test at the level α.

18.2.2 Neyman–Pearson criterion and likelihood ratio test

Now let us consider the case where we test a simple null hypothesis against a simple
alternative; i.e.,

H0 : θ = θ0 versus H1 : θ = θ1.

In Example 18.7 of Section 18.3, we show that an optimal decision rule is to compare
the likelihood ratio function

�(x) � f (x|θ1)

f (x|θ0)
(18.62)

against some threshold. In the MAP decision rule, this threshold is given by the ratio of
prior probabilities p(θ0) and p(θ1) (see (18.104)). Neyman and Pearson [256] showed
that the MP test among tests with level α can also be reduced to comparing �(x) with
some threshold. Note that X may be a vector RV, whereas� � �(X) is always a scalar-
valued positive RV.

THEOREM 18.3 (Neyman–Pearson lemma). If the distribution function of the likeli-
hood ratio variable� = �(x) is continuous under both simple hypotheses H0 and H1,
then the MP test should take the form of a likelihood ratio test:

d(�(x)) = u(�(x)− λα) =
{

1 (Reject H0), if �(x) ≥ λα,
0 (Accept H0), if �(x) < λα,

(18.63)

where u(·) is the unit step function and λα is the solution to the equation

α = P[�(X) ≥ λα|H0] = E [u(�(X)− λα)|H0] . (18.64)

Proof. Let Rc be the critical region of this MP test; i.e.,

Rc = {x : �(x) ≥ λα} . (18.65)
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Since we are dealing with two simple hypotheses, Hi : θ = θi ; i = 0, 1, we denote
the condition |Hi simply by |θi . Then (18.64) can be rewritten as

α = P[x ∈ Rc|θ0]. (18.66)

Let R′
c be any region in the sample space X for which

P[x ∈ R′
c|θ0] ≤ α. (18.67)

Then what we need to show is that the decision rule defined by this R′
c is less powerful

than the Neyman–Pearson test (18.63).
Let S be the intersection of Rc and R′

c; i.e.,

S = Rc ∩R′
c.

Then,

f (x|θ1) ≥ λα f (x|θ0), for all x ∈ Rc \ S,
which implies

P[x ∈ Rc \ S|θ1] ≥ λαP[x ∈ Rc \ S|θ0].
Thus,

P[x ∈ Rc|θ1] = P[x ∈ Rc \ S|θ1] + P[x ∈ S|θ1] (18.68)

≥ λαP[x ∈ Rc \ S|θ0] + P[x ∈ S|θ1]
= λαP[x ∈ Rc|θ0] − λαP[x ∈ S|θ0] + P[x ∈ S|θ1] (18.69)

≥ λαP[x ∈ R′
c|θ0] − λαP[x ∈ S|θ0] + P[x ∈ S|θ1] (18.70)

= λαP[x ∈ R′
c \ S|θ0] + P[x ∈ S|θ1] (18.71)

≥ P[x ∈ R′
c \ S|θ1] + P[x ∈ S|θ1] = P[x ∈ R′

c|θ1] (18.72)

In the step from (18.69) to (18.70) we used the following inequality given by (18.64)
and (18.67):

P[x ∈ R′
c|θ0] ≤ α = P[x ∈ Rc|θ0].

In going from (18.71) to (18.72) we used the fact that points in R′
c \ S do not belong to

Rc; hence,

f (x|θ1) ≤ λα f (x|θ0), for all x ∈ R′
c \ S,

which implies

P[x ∈ Rc \ S|θ1] ≤ λαP[x ∈ Rc \ S|θ0], for all x ∈ R′
c \ S.

Note that the left-hand side of (18.68) is the power of the MP test (18.63) which has
Rc as its critical region at level α, whereas the right-hand side of (18.72) is the power
of the level-α test having R′

c as its critical region. Thus, we have established that the
likelihood ratio test (18.63) is the MP test.
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18.2.3 Receiver operating characteristic (ROC)

The concept of receiver operating characteristic, abbreviated as ROC, or the operat-
ing characteristic [150], was originally introduced in signal detection theory [269] to
seek an optimal operating point of the radar receiver by trading the miss probability (or
false negative probability) β for the false alarm probability (or false positive probability
or the level) α by setting an appropriate threshold λα . In the past few decades, however,
the ROC curve has been used in other fields, including psychophysics [127] and clini-
cal medicine [268]. Most recently the ROC has been applied to statistical classification
problems in machine learning and data mining.

The ROC curve is defined by plotting the detection probability (true positive proba-
bility or the power of the test) Pd(= 1− β) versus the false alarm probability Pfa = α
(e.g., see Figure 18.2 of the example in the next subsection).

18.2.3.1 Properties of the receiver operating characterstic of a Neyman–Pearson test
The ROC curve can be obtained for any decision rule, but we shall derive here some
important properties of the Neyman–Pearson decision rule. Similar to (18.64), Pd can
be written as a function of λα:

Pd =
∫

x: �(x)≥λα
f (x|H1) dx =

∫
x: �(x)≥λα

�(x) f (x|H0) dx

= E [�(X)u(�(X)− λα)|H0] . (18.73)

Differentiating (18.64) and (18.73) with respect to λα and using the property that the
derivative of the unit step function is Dirac’s delta function, we have

dα

dλα
= −E [δ(�(X)− λα)|H0] , (18.74)

d Pd

dλα
= −E [�(X)δ(�(X)− λα)|H0] = λα dα

dλα
. (18.75)

Taking the ratio of the last two equations, we find the following interesting property:

d Pd

dα
= d Pd/dλα

dα/dλα
= λα, (18.76)

which shows that the slope of the ROC curve at any point (α, Pd) is equal to λα that
specifies this point.

If we set the threshold λα = ∞ (or higher than the maximum possible value of the
likelihood function �(x)), then H1 will never be accepted; thus, α = 0 and Pd = 0. So
the ROC curve starts from the origin point (0, 0). As the threshold λα decreases, the
operating point moves right and up, as seen in Figure 18.2. The slope of the tangent at
the operating point is the largest at the starting point (0, 0) and monotonically decreases
as λα decreases and the corresponding operating point moves to the right and up on the
ROC curve. Hence, the ROC curve is a concave (or convex ∩ ) function. As the threshold
value λα approaches zero (or below the smallest possible value of �(x)), both α and
Pd approach unity; thus, the ROC curve ends at (1, 1), at which point the slope is the



18.2 Hypothesis testing and statistical decision theory 543

smallest. Thus, the ROC curve of a Neyman–Pearson test always lies above the straight
line, Pd = α, which connects the two end points (0, 0) and (1, 1).

The last property is also evident if we consider a decision rule that ignores the
observation data x and randomly selects H1 with probability p. Then, for this rule,
Pd = α = p, regardless of x. Since a Neyman–Pearson decision rule has the largest Pd

among all rules of its level, it follows that Pd ≥ α.

18.2.4 Receiver operating characteristic application example: radar signal detection

In a radar system, the received discrete-time signal x = (x0, x2, . . . , xn) is an instance
of the RV X :

H0 : X = Z and H1 : X = As + Z, (18.77)

where Z = (Z0, Z1, Z2, . . . , Zn) is random noise, s = (s0, s1, s2, . . . , sn) is a signal
waveform, and the amplitude A is a positive real number, and is assumed to be known.
Otherwise, H1 becomes a composite hypothesis, which would make the analysis a little
more involved. Without loss of generality, we assume ‖s‖2 �

∑n
k=0 s2

k = 1.
Assuming that the Zk are white Gaussian noise with zero mean and variance σ 2, we

can write the PDFs of the RV X under the hypotheses H0 and H1 as follows:

H0 : fX (x|H0) = 1(√
2πσ

)n exp

(
−‖x‖2

2σ 2

)
, (18.78)

H1 : fX (x|H1) = 1(√
2πσ

)n exp

(
−‖x − As‖2

2σ 2

)
. (18.79)

Then the level and power of a test having Rc as its critical region can be written as

α =
∫

x∈Rc

fX (x|H0) dx, (18.80)

Pd =
∫

x∈Rc

fX (x|H1) dx. (18.81)

Taking the ratio of (18.79) to (18.78), we write the Neyman–Pearson test as

�(x) = exp

(
−‖x − As‖2 − ‖x‖2

2σ 2

)
= exp

[
A

σ 2

(
s�x − A

2

)]
≷ λα, (18.82)

where the notation “≷ λα” means “Accept H1 if greater than λα and accept H0 other-
wise.” On taking the logarithm and after some manipulation, the likelihood ratio test
reduces to

T (x) � s�x ≷ tα, where tα � A

2
+ σ 2

A
log λα. (18.83)

The statistic T (x) = s�x is called a test statistic and can be interpreted as a matched
filter output, or a correlation receiver output (see Problems 18.11 and 18.12).
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Thus, the Neyman–Pearson decision rule (18.63) reduces to

d(T (x)) = u(T (x)− tα). (18.84)

Since X is a normal RV, its linear functional T (X) is also a normal RV. Under H0, its
mean is zero and the variance is

Var[T (X)|H0] = E[T 2(X)|H0] = s�E
[

X X�|H0

]
s

= s�σ 2 I s = σ 2. (18.85)

Thus, under the hypothesis H0, T ∼ N (0, σ 2):

fT (t |H0) = 1√
2πσ

exp

(
− t2

2σ 2

)
. (18.86)

For a given level of false alarm probability α, the critical value tα should be deter-
mined by

α =
∫ ∞

tα
fT (t |H0) dt = 1−�

(
tα
σ

)
= 1−�(uα), (18.87)

where �(u) is the CDF of the unit (or standard) normal variable U defined in
Section 4.2.4, and uα is the upper α × 100 percentile point of the unit normal
distribution. The threshold parameter tα is given by

tα = σuα. (18.88)

Since E[T (X)|H1] = s�As = A, the PDF of T (X) under H1 is fT (t − A|H0).
Hence,

Pd =
∫ ∞

tα
fT (t − A|H0) dt = 1−�(uα − r), where r � A

σ
. (18.89)

Figure 18.2 shows the ROC curves of this Neyman–Pearson test for various values
of the signal-to-noise ratio (SNR) parameter r = A/σ . As the threshold tα moves from
+∞ to −∞, the operating point moves from (0, 0) to (1, 1). As SNR r increases,
the ROC curve moves further away from the straight line Pd = α, which corresponds
to the case r = 0. In fact, the area between the ROC curve and the straight line is a
monotone increasing function of the SNR parameter r (Problem 18.14). The reader is
also suggested to verify that this ROC curve satisfies the property (18.76); i.e., the slope
of the ROC at any operating point is equal to the critical value of λα for the likelihood
ratio test (Problem 18.13).

18.3 Bayesian estimation and decision theory

Thus far we have discussed the parameter estimation problem from the frequentists’
point of view; namely, we assumed that the parameter θ is unknown but fixed. As we
discussed in Sections 1.2.4 and 4.5, however, it is more appropriate in some situations to
treat the parameter as a random variable. For example, in a communication system, the
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Figure 18.2 The ROC curves for different values of SNR = A/σ .

receiver estimates a transmitted symbol, which we denote for instance as θ ∈ A, on the
basis of a received signal x. Here A signifies the signal alphabet; i.e., the set of all pos-
sible symbols. All symbols in the alphabet A may not be equally likely and we may have
some prior probabilities of these symbols. In this case it may be more appropriate to treat
the parameter as a random variable � with the prior probability distribution π(θ).3

18.3.1 The Bayes risk

In some applications it may be possible and appropriate to specify the cost of an error
in estimation. The cost associated with assigning an estimate θ̂ to the parameter when
its true value is θ is denoted as C(θ̂ , θ). The function C may take, for example, the form
C(θ̂ , θ) = f (‖θ̂ − θ‖), where f (d) is a nonnegative and monotone increasing function
of the difference d = ‖θ̂ − θ‖ > 0.

If we take a sample x when the parameter � takes θ , we write its conditional PDF, or
the likelihood function, as f (x|θ). Note that in the preceding sections, where we treated
θ as an unknown but fixed constant, we wrote the PDF of X as f (x; θ). The cost or
risk we incur, by using the estimator θ̂(x) when the true value of the parameter is θ , is
given by

R(θ̂ |θ) =
∫

x
C(θ̂(x), θ) f (x|θ) dx, (18.90)

which we term Bayes’ risk. The overall expected cost or risk per estimation is obtained
by averaging the above with respect to the prior distribution π(θ) of the parameter:

3 In this section we adopt this simplified notation, instead of p�(θ) or f�(θ), in both discrete and
continuous cases, as was done in Section 4.5.
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R(θ̂) =
∑
θ

π(θ)R(θ̂ |θ)

=
∑

θ

∫
x
π(θ)C(θ̂(x), θ) f (x|θ) dx. (18.91)

If the parameter takes on continuous values, we replace the summation by integration.
We now proceed to find an optimum estimator that should minimize the average risk R.

18.3.2 The conditional risk

Given the prior probability π(θ) and the measured value x of the RV X , the over-
all probability and the posterior probability π(θ |x)4 of the observation x are given,
respectively, by

f (x) =
∑
θ

π(θ) f (x|θ), (18.92)

π(θ |x) = π(θ) f (x|θ)
f (x)

. (18.93)

The conditional risk R(θ̂ |x) is the average risk for the estimator θ̂ to make when x is
obtained; i.e.,

R(θ̂ |x) =
∑

θ

C(θ̂ , θ)π(θ |x)

=
∑
θ

π(θ)C(θ̂ , θ) f (x|θ)
f (x)

. (18.94)

The overall expected risk (18.91) can be represented in terms of the conditional risk
(18.94) as

R(θ̂) =
∫

x
R(θ̂ |x) f (x) dx. (18.95)

Thus, the overall expected risk can be minimized by making the conditional risk R(θ̂ |x)
as small as possible for each value of x. Such an estimator is referred to as a Bayes
estimator. If the conditional risk is a discrete function of the estimate θ̂ , the Bayes
estimator θ̂

�
(x) can be found from

θ̂
�
(x) = arg max

θ̂

R(θ̂ |x). (18.96)

If the parameter RV � is a continuous RV, the prior distribution π(θ) and the posterior
distribution π(θ |x) should be interpreted as the PDF and the conditional PDF of the RV
�. The conditional risk then also becomes a continuous function of the estimate θ̂ . The
Bayes estimator θ̂

�
can be found by solving the equation

4 We adopt here this simpler notation instead of p�|X (θ |x).
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∇θ R(θ̂ |x) = 0. (18.97)

18.3.3 Maximum a posteriori probability (MAP) estimation

When no cost function is available, a natural estimation strategy is to maximize the
posterior (or a posteriori) PDF π(θ |x). The estimate θ̂ is then the parameter value that
is most likely in view of the observation data x. This strategy, however, is equivalent to
setting the cost function as follows:

C(θ̂ , θ) = 1− δ
θ̂ ,θ
=
{

0, if θ̂ = θ ,

1, if θ̂ �= θ ,
(18.98)

where δx, y is Kronecker’s delta. Then the conditional risk becomes

R(θ̂ |x) =
∑
θ

π(θ)[1− δ
θ̂ ,θ
] f (x|θ)

f (x)

=
∑
θ

π(θ) f (x|θ)
f (x)

− π(θ̂) f (x|θ̂)
f (x)

= 1− π(θ̂ |x), (18.99)

where π(θ̂ |x) is the posterior probability of having � = θ̂ given X = x, as defined
in (18.93).

Then the Bayes estimator (18.96) reduces to

θ̂
�
(x) = arg max

θ̂

π(θ̂ |x), (18.100)

which is often referred to as the maximum a posteriori probability (MAP) estima-
tor.5 Under the cost assignment (18.98), the expected risk is the same as the expected
probability of error.

Note that due to the Bayes’ formula

π(θ |x) = Lx(θ)π(θ)

pX (x)
, (18.101)

where Lx(θ) = p(x|θ) is the likelihood function, the MAP estimate can be obtained by
maximizing L x(θ)π(θ) or, equivalently,

θ̂
�
(x) = arg max

θ
[log Lx(θ)+ logπ(θ)]. (18.102)

It follows from this equation that the MLE is a special case of the MAP estimate when
the parameter is not random or the prior distribution of the parameter is uniform.

5 In the literature, “maximum a posteriori,” without “probability”, is often assigned to stand for “MAP”.
However, the word “probability” should be explicitly included in order to make the term technically
meaningful.
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Example 18.7: Estimation of binary signal. Consider a communication system in
which the transmitter sends either symbol +A or symbol −A with probability p and
q = 1− p respectively. The received signal X is corrupted by additive Gaussian noise
Z ∼ N (0, σ 2). Thus, we write

X = �+ Z ,

where � is the RV that represents the transmitted symbol; i.e., P[� = +A] = p and
P[� = −A] = q.

Our objective is to design an estimator whose probability of error is minimum in esti-
mating the transmitted symbol. To simplify the argument, we assume that the receiver
performs “symbol-by-symbol” estimation. We are concerned about estimation of one
symbol, not a sequence of symbols. Minimizing the probability of error is equivalent
to minimizing the average risk under the cost function (18.98). Thus, the optimum
estimator should be the MAP estimator; i.e.,

θ̂ � =
{ +A, if p�|X (+A|x) ≥ p�|X (−A|x),
−A, otherwise.

(18.103)

By expressing the posterior probability by using Bayes’ formula, the above MAP
estimation rule can be expressed as

θ̂ � =
{
+A, if �(x) ≥ p�(−A)

p�(+A) = q
p ,

−A, otherwise,
(18.104)

where

�(x) = fX |�(x | + A)

fX |�(x | − A)
(18.105)

is the likelihood ratio function. Since the PDF of the additive noise is given by

fZ (z) = 1√
2πσ

exp

(
− z2

2σ 2

)
, (18.106)

we can readily compute the likelihood ratio function:

�(x) = fZ (x − A)

fZ (x + A)
= exp

(
2Ax

σ 2

)
. (18.107)

By substituting this into (18.105) and taking the logarithm of both sides in (18.104), we
finally obtain the following simple result:

θ̂ � =
{
+A, if x > σ 2

2A log q
p ,

−A, otherwise.
(18.108)

�
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18.4 Summary of Chapter 18

Likelihood function (continuous): L x(θ) � fX(x; θ) (18.24)
MLE: θ̂ = arg maxθ L x(θ) (18.25)

Score function: s(x; θ) = ∂ log Lx (θ)
∂θ

(18.28)

Observed Fisher information: J (x; θ0) = −
[
∂2 log L x(θ0)
∂θi∂θ j

]
(18.32)

Fisher information matrix: I x(θ0) � E[J (X; θ0)]
= −E

[
∂2 log Lx(θ0)
∂θi ∂θ j

]
(18.35)

MLE η̂ for exponential family: ∇η A(η̂) = 1
n

∑n
i=1 T (xi ) (18.39)

CRLB for a single parameter: E[(θ̂ − θ)2] ≥
(
∂E[θ̂ (X)]

∂θ

)2

E

[(
∂ log fX (x;θ)

∂θ

)2
] (18.40)

CRLB for multiple parameters: Var[θ̂(X)] ≥ I−1
x (θ) (18.42)

Likelihood ratio (bipolar signal): �(x) = fX |�(x |+A)
fX |�(x |−A) (18.105)

Decision rule: d(x) =
{

1 (Reject H0), if x ∈ Rc

0 (Accept H0), if x ∈ Rc
(18.59)

Likelihood ratio for hypothesis
test:

�(x) � f (x|θ1)
f (x|θ0)

(18.62)

Neyman–Pearson test: d(�) = u(�(bx)− λα) (18.63)
Slope of ROC curve: d Pd

dα = λα (18.76)
Bayes’ risk: R(θ̂(x)|θ) = ∫x C(θ̂ , θ) f (x|θ) dx (18.90)

Bayes’ estimate: θ̂
�
(x) = arg max

θ̂
R(θ̂ |x) (18.96)

MAP estimate: θ̂
�
(x) = arg max

θ̂
π(θ̂ |x) (18.100)

18.5 Discussion and further reading

Statistical estimation and decision and engineering applications have been discussed in
a number of books: Cramér [74], Hald [139], Middleton [248], Helstrom [150], Kendall
and Stuart [179], Rao [278], Lehmann [221], Poor [271], and Bickel and Doksum [25].
Among numerous textbooks on probability and random processes, Papoulis and Pillai
[262], Leon-Garcia [222], and Fine [105] allocate a chapter on statistical estimation and
cover parameter estimation and hypothesis testing.

18.6 Problems

Section 18.1: Parameter estimation

18.1 Sampling distribution. Consider a PDF fX (x; θ) with a single parameter. Let
T (x) be an estimator statistic for θ . The distribution of the RV T (X) is called the
sampling distribution.
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(a) Show that the sampling distribution function is given by

FT (t) =
∫ ∞

−∞

∫ ∞

−∞
· · ·
∫ ∞

−∞
I (T (x) ≤ t) fX (x; θ) dx1 dx2 · · · dxn, (18.109)

where I (A) is the indicator function; i.e., I (A) = 1 if A is true and I (A) = 0
otherwise.

(b) Find an expression for the bias bT of the estimator T (x).
(c) Find an expression for the sampling variance σ 2

T .

18.2 Efficient estimator. Show that the unbiased estimator θ̂
∗
(X) is an efficient esti-

mator of the M dimensional parameter θ if and only if (18.2) holds for any nonzero
vector a of dimension M for any other unbiased estimator θ̂(X).

18.3 More on exponential family of distributions. This is a continuation of
Problem 4.26.

(a) Show that the Rayleigh distribution

f (x; σ) = x

σ 2
exp

(
− x2

2σ 2

)
, x ≥ 0,

belongs to the exponential family. Find its canonical form, if possible, and the mean
and variance of a sufficient statistic for estimating σ .

(b) Refer to the canonical exponential family defined by (18.14). Show that the MLE
of θ is the solution of the following equation:

∇θη
�(θ)T (x) = ∇θ A(θ). (18.110)

18.4∗ Properties of the score function and the observed Fisher information matrix.
The score function s(x; θ) is defined in (18.28). The observed Fisher information matrix
J (x; θ) is defined in (18.32). Both are functions of X , and hence they are RVs. Derive
the following properties:

(a) For any statistic T (x; θ),
E
[

s(X; θ)T�(X; θ)
]
= ∇θ E

[
T�(X; θ)

]
− E

[
∇θ T�(X; θ)

]
. (18.111)

(b) The score function has zero mean:

E[s(X; θ)] = 0. (18.112)

(c) The variance matrix of the score function is equal to the Fisher information matrix
I(θ) = E[J (X; θ)]:

E
[

s(X; θ)s�(X; θ)
]
= I(θ). (18.113)

Show that when θ is a one-dimensional parameter, the following equality holds:

E

[(
∂ log L x(θ)

∂θ

)2
]
= −E

[
∂2 log L x(θ)

∂θ2

]
. (18.114)
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(d) The covariance of the score function s(X, θ) with any unbiased estimator θ̂ of θ is
equal to the identity matrix:

Cov[s(X, θ), θ̂ ] = Cov[θ̂, s(X, θ)] = I . (18.115)

(e) For the canonical exponential family defined by (18.14), show that

s(x; η) = T (x)−∇η A(η) and I(θ) = ∇η∇�η A(η). (18.116)

18.5 MLE of g(θ). Suppose g(·) is a continuous and monotone function. Show that
an MLE of a transformed parameter η = g(θ) is the transformation of an MLE of θ ;
i.e.,

η̂ = g(θ̂); hence, θ̂ = g−1(η̂). (18.117)

18.6 The CRLB and the Cauchy–Schwarz inequality. Show that the CRLB (18.40)
for the case of one-dimensional parameter θ (i.e., a single-parameter case) can be
derived from the Cauchy–Schwarz inequality discussed in Section 10.1.1.

18.7∗ The CRLB and a sufficient statistic. Show that the unbiased minimum variance
estimator T (X) that achieves the CRLB (18.42) is a sufficient statistic for estimating the
parameter θ .

18.8 Minimum-variance unbiased linear estimator. Suppose that it is known that
the mean of RV Xi is μiθ (i = 1, 2, . . . , n), where μi are known constants, whereas θ
is unknown. Let � be the variance matrix of the random vector X = (X1, X2, . . . , Xn).

(a) Show that the minimum-variance unbiased linear estimator of θ is given by

θ̂ (x) = μ��−1x

μ��−1μ
, (18.118)

where μ� = [μ1, μ2, . . . , μn].
(b) Show that the sampling variance (i.e., the variance of the estimator) is given by

σ 2
θ̂
= Var[θ̂ (X)] = 1

μ��−1μ
. (18.119)

18.9 Confidence interval. Derive (18.57), the expression for a confidence interval,
given a confidence level.

18.10 Confidence interval of an estimator of the binomial distribution para-
meter. In Example 18.1 the maximum-likelihood estimator for the parameter p of the
binomial distribution is p̂ = k/n, where k is the number of successes in n independent
Bernoulli trials. Assuming that n is sufficiently large, find the confidence interval for
this estimator.

(a) Find expressions for p̂ = d1(p) and p̂ = d2(p). Show that they represent lower and
upper parts of an ellipse.
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(b) Find expressions for the inverse functions p = d−1
i ( p̂) = ci ( p̂), i = 1, 2.

Section 18.2: Hypothesis testing and statistical decision theory

18.11 Matched filter. Consider the RV X under the hypothesis H1:

X = As + Z.

Apply the received sequence X = (X0, X2, . . . , Xn) to a linear filter with impulse
response h = (h0, h1, . . . , hn). The filter output at time t is given by

Yt = As̃t + Z̃t , t = 0, 1, . . . , n,

where

s̃t =
t∑

k=0

st−khk and Z̃t =
t∑

k=0

Zt−khk .

We define the signal-to-noise ratio at time t = n by SNR = A2s̃2
n/E

[
Z̃2

n

]
.

(a) Show that E
[
Z̃2

n

] = ‖h‖2σ 2, where ‖h‖2 =∑n
k=0 h2

k , and σ 2 is the variance of the
white noise Zk .

(b) Show that SNR is maximized when hk = csn−k, k = 0, 1, 2, . . . , n, where c is any
constant. Such a filter is called the matched filter; i.e., an optimal filter matched to
the signal s = (s0, s1, s2, . . . , sn). What is this maximum SNR?
Hint: Use the Cauchy–Schwarz inequality (see Section 10.1.1):

|x� y| ≤ ‖x‖ · ‖ y‖, where ‖x‖2 = x�x.

(c) Show that the matched filter output yn at time t = n is given by cs�x = cT (x),
where T (x) is defined in (18.83) and c is the constant chosen in part (b).

18.12 Correlation receiver. In referring to the previous problem, let us consider the
following correlation receiver:

R =
n∑

k=0

gk Xk = g�x;

i.e., we multiply the received noisy sequence Xk by some prescribed waveform gk and
sum the product over the signal duration period.

(a) Find an expression for SNR in the correlation receiver output R.
(b) Show that SNR is maximized when gk = csk; k = 0, 1, 2, . . . , n; i.e., g = cs,

where c is an arbitrary scalar constant.

18.13 The slope of the tangent of the ROC curve. Verify that the ROC curves plotted
in Figure 18.2 satisfy the property (18.76).
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18.14 The area under the ROC curve and SNR parameter r . Show that, in
Figure 18.2, the area surrounded by the ROC curve and the straight line Pd = α is a
monotone increasing function of the SNR parameter r = A/σ .

18.15 Exponential distribution with two different parameters. Consider a random
variable X , which is exponentially distributed with two different parameters:

H0 : FX (x; θ0) = 1− e−θ0x and H1 : FX (x; θ1), x ≥ 0, θ1 > θ0.

(a) Design a Neyman–Pearson test.
(b) Find the ROC curve.



19 Estimation algorithms

In this chapter we will study statistical methods to estimate parameters and procedures
to test the goodness of fit of a model to the experimental data. We are primar-
ily concerned with computational algorithms for these methods and procedures. The
expectation-maximization (EM) algorithm for maximum-likelihood estimation is dis-
cussed in detail.

19.1 Classical numerical methods for estimation

As we stated earlier, it is often the case that a maximum-likelihood estimate (MLE)
cannot be found analytically. Thus, numerical methods for computing the MLE are
important. Finding the maximum of a likelihood function is an optimization problem.
There are a number of optimization algorithms and software packages. In this and the
next sections we will discuss several important methods that are pertinent to maximiza-
tion of a likelihood function: the method of moments, the minimum χ2 method, the
minimum Kullback–Leibler divergence method, and the Newton–Raphson algorithm. In
Section 19.2 we give a full account of the EM algorithm, because of its rather recent
development and its increasing applications in signal processing and other science and
engineering fields.

19.1.1 Method of moments

This method is typically used to estimate unknown parameters of a distribution function
by equating the sample mean, sample variance, and other higher moments calculated
from data to the corresponding moments expressed in the parameters of interest. In
Example 18.6 we found that for the normal distribution N (μ, σ 2) the MLE μ̂ of
the mean μ is equal to the sample mean X̄ and the MLE σ̂ 2 of the variance σ 2 is
asymptotically equal to the sampling variance σ 2/n.

Although the method of moments in general does not provide an efficient (i.e.,
minimum-variance unbiased) estimate, this method is often used in practice. Some-
times the estimates obtained by the method of moments can be used as a good initial
approximation for iterative methods such as the Newton–Raphson method and the EM
algorithm to be discussed in the following sections.
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Example 19.1: Estimating the mean of a Rayleigh distribution. Let us compare an
MLE and an estimate based on the method of moments for the parameter σ of the
Rayleigh PDF

f (x; σ) = x

σ 2
exp

(
− x2

2σ 2

)
, x ≥ 0.

The mean E[X ] is σ
√
π/2 (see Problem 7.10 (c)). Thus, the method of moments based

on n independent samples x = (x1, x2, . . . , xn) gives

σ̂ =
√

2

n
√
π

n∑
i=1

xi . (19.1)

The log-likelihood function of n independent RVs X = (X1, X2, . . . , Xn) is

log fX(x; σ) =
n∑

i=1

log xi − 2n log σ − 1

2σ 2

n∑
i=1

x2
i ,

so that the MLE is found by differentiating the above with respect to σ and setting it
to zero, which gives

σ̂ =
√√√√ 1

2n

n∑
i=1

x2
i . (19.2)

We see that the MLE and the method of moment estimate are quite different. �

19.1.2 Minimum chi-square estimation method

Let the sample space X of an RV X be partitioned into r disjoint regions:

X =
r⋃

i=1

Xi and Xi

⋂
X j = ∅, i �= j,

and let

pi (θ) � P[X = x ∈ Xi ; θ]
be the probability that the RV falls into the i th region Xi . We assume that this
probability distribution depends on the unknown parameter θ .

Suppose that we take n independent samples of X , and let ni be the number of sam-
ples that fall in the i th region. Clearly,

∑r
i=1 ni = n. The minimum χ2 estimate of θ

based on the grouped data n = (n1, n2, . . . , nr ) is defined by

θ̂ = arg min
θ
χ2(n; θ),
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where χ2(n; θ) is a chi-square statistic for the grouped data n defined by

χ2(n; θ) �
r∑

i=1

(ni − npi (θ))
2

npi (θ)
=

r∑
i=1

n2
i

npi (θ)
− n. (19.3)

This method is similar to the well-known minimum mean square error (MMSE)
method of fitting parametric distributions. Indeed, an iterative MMSE algorithm can
be used to obtain a series of estimates according to

θ̂k+1 = arg min
θ

r∑
i=1

(ni − npi (θ))
2

np(vi ; θ̂k)
. (19.4)

The main advantage of the minimum χ2 method is that we can use not only the esti-
mated parameter θ̂ , but also the value of χ2(θ̂) to obtain the confidence region by using
the χ2 distribution with r − p − 1 degrees of freedom, where p is the dimension of the
vector parameter θ . In other words, the number of degrees of freedom is reduced by the
number of independent parameters that we wish to estimate. This is a very important
feature of this method.

A typical situation is as follows: we have measured data and we want to construct
a model of a probability distribution (or a model of a random process if the data is a
time series) that may explain the data. If we select a parametric model, we must decide
how many parameters we need to explain the observed data. For instance, if we choose
to use a mixture of distributions, how many component distributions should we use? If
we want to fit a Markov process to an observed time series, how many states should we
use? If we use an MLE for estimating the model parameter, then the more parameters
we choose, the greater will be the corresponding likelihood. If we continue to increase
the number of parameters, the model will approximate noise in the data. This is called
overfitting. Therefore, we need to test a hypothesis that the number of parameters is r
versus an alternative hypothesis that it is r + 1. If we use the χ2(n, θ) statistic for the
goodness-of-fit test given by (19.4), we can use a level α confidence interval of the χ2

distribution as an acceptance region. As the number of model parameters p grows, the
statistic χ2(n, θ) decreases, but both the number of degrees of freedom r − p − 1 and
the confidence interval also decrease.

19.1.3 Minimum Kullback–Leibler divergence method

Let f = f (x) and g = g(x) be two arbitrary PDFs. The Kullback–Leibler divergence
(KLD) between the two probability distributions is defined by

D( f ‖g) � E f

[
log

f (X)
g(X)

]
=
∫

f (x) log
f (x)
g(x)

dx. (19.5)

It is easy to show (Problem 19.1) that the KLD is nonnegative:

D( f ‖g) ≥ 0, (19.6)
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where equality holds when f (x) = g(x) almost everywhere. Thus, the KLD can serve
as a measure of closeness between two distributions.

Similar to the χ2(θ) statistic, the KLD can be used for fitting a distribution
to the grouped data. The KLD between the probabilities p(θ) = {pi (θ)} and the
corresponding relative frequencies f = { fi } from measured data, where

fi = ni

n
, i = 1, 2, . . . , r,

has the form

D( f ‖ p(θ)) =
r∑

i=1

fi log
fi

pi (θ)
. (19.7)

The minimum KLD estimate is found by minimizing the KLD with respect to θ or,
equivalently, the information criterion introduced by Kullback [215]:

I (n; θ) � nD( f ‖ p(θ)) =
r∑

i=1

ni log

(
ni

npi (θ)

)
, (19.8)

where n = (n1, n2, . . . , nr ). This equation can be rewritten as

I (n; θ) =
r∑

i=1

ni log(ni/n)− �(n; θ), (19.9)

where

�(n; θ) =
r∑

i=1

ni log pi (θ)

is the log-likelihood for the grouped data. Thus, we can see that estimation based
on the minimum Kullback information criterion is equivalent to maximum-likelihood
estimation of θ for the grouped data.

By using the approximation (Problem 19.3 (a))

ln x ≈ 1

2
(x − x−1), for x ≈ 1, (19.10)

we can show (see Problem 19.3 (b)) that

2I (n; θ)) ≈ χ2(n; θ), n � 1. (19.11)

The statistic 2I (n; θ) is asymptotically chi-square distributed with r − 1 degrees of
freedom. If we use minimization of Kullback’s information criterion (19.8) to estimate
the distribution parameters, then the asymptotic distribution of 2I (n; θ̂ ) has r − p − 1
degrees of freedom. These relationships among Kullback’s information criterion, the
χ2 statistic, and the log-likelihood function allow us to test the goodness of fit of the
MLEs.
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19.1.4 Newton–Raphson algorithm for maximum-likelihood estimation

In Section 18.1.2 we defined the score function s(x; θ) = ∇θ log L x(θ) as the gradi-
ent of the log-likelihood function, and the MLE θ̂ is a solution of s(x; θ̂) = 0, which
represents a set of M equations (18.27), reproduced here:

sm(x; θ̂) = ∂ log L x(θ)

∂θm
= 0, for m = 1, 2, . . . ,M. (19.12)

The Newton–Raphson algorithm is a generalization of Newton’s tangent method for
finding roots of general equations. We now apply this technique to find roots of (19.12).
The algorithm is based on the Taylor expansion of the score function (18.29), which we
can rewrite by using the observed Fisher information matrix (18.32) as

s(x; θ) ≈ s(x; θ (p))−J (x; θ (p))(θ − θ (p)), (19.13)

where θ (p) is an approximate estimate of a likelihood stationary point, which is defined
as a solution of (19.12), obtained after p iterations. We assume that the remainder
r(x; θ) in (18.29) is negligible when θ (p) comes close enough to θ . Then the MLE,
which is the root of (19.12), can be approximated by the root of the right-hand side of
(19.13) being set to zero:

s(x; θ (p))−J (x; θ (p))(θ − θ (p)) = 0. (19.14)

Denoting the root of this equation as θ (p+1), we find the following iterative algorithm:

θ (p+1) = θ (p) +J −1(x; θ (p))s(x; θ (p)), p = 0, 1, 2, . . . (19.15)

The initial estimate θ (0) may be found, for instance, by the method of moments.
Algorithm 19.1 summarizes the Newton–Raphson algorithm to find an MLE by the
above iteration method. In practice, an iterative algorithm must have a stopping rule
because convergence may be achieved as p →∞. A stopping rule is applied in Step 4
of the Newton–Raphson algorithm, and the rule is application dependent. For instance,
the iteration should stop if ‖θ (p+1) − θ p‖ < ε, where ε is a sufficiently small number, or
if the number of iterations p exceeds a prescribed large number N . Since we are solving
the equation s(x; θ) = 0, we can set the stopping rule: Stop when ‖s(x; θ (p))‖ < ε.

If the log-likelihood is quadratic, the MLE θ̂ is obtained in one step, starting from any
initial point θ (0). If the log-likelihood function is concave, the algorithm converges to the
MLE. In general, the algorithm can be very sensitive to the initial value θ (0). However,
if θ (0) is close enough to θ̂ , the iterations will exhibit a quadratic convergence i.e.,

‖ θ (p+1) − θ̂ ‖< k ‖ θ (p) − θ̂ ‖2 .

In practice, however, we cannot compute with perfect precision, and thus the itera-
tions will exhibit a sub-quadratic convergence. The Newton–Raphson algorithm can be
computationally expensive: at each step we need to calculate the observed Fisher infor-
mation matrix J and invert it. Instead of inverting matrices, we can find the solution of
(19.14) with computational steps on the order of O(M3), where M is the dimension of
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Algorithm 19.1 Newton–Raphson algorithm

1: Select the initial value θ (0) and set the iteration number p = 0.
2: Assume the pth estimate θ (p).
3: Find

θ (p+1) = θ (p) +J −1(x; θ (p))s(x; θ (p)).
4: If any of the stopping conditions is met, go to Step 5. Otherwise, replace θ (p) by

θ (p+1), set p ← p + 1, and repeat Steps 2 through 4.
5: Output θ (p) as an approximate MLE, J −1(x; θ (p)) as an approximate Fisher

information matrix, and ‖s(x; θ (p))‖ as a measure of convergence.

the parameter vector θ . However, calculating the inverse of the matrix J would provide
an estimate of variance of the asymptotic normal distribution of the MLE.

An alternative to the Newton–Raphson algorithm is the method of scoring, in which
the observed Fisher information matrix is replaced by the expected Fisher information
matrix:

θ (p+1) = θ (p) + I−1(θ (p))s(x; θ (p)), p = 0, 1, 2, . . . . (19.16)

If we can find an approximate MLE by some slower but more robust algorithm,
the fast convergence of the Newton–Raphson algorithm can be exploited. One such
algorithm is the EM algorithm to be presented in the next section.

19.2 Expectation-maximization algorithm for maximum-likelihood estimation

The expectation-maximization (EM) algorithm was discussed and given its name by
Dempster et al. in their 1977 seminal paper [80]. Although the method had been pro-
posed previously by others in special circumstances (e.g., the Baum–Welch algorithm
that predates the EM formulation), the 1977 paper generalized the method and provided
a solid theory behind this powerful iterative estimation method.

19.2.1 Expectation-maximization algorithm for transformed data

We consider the case where the observable variable Y is a transformed variable of
some variable X , which may or may not be completely unobservable [80]:

Y = T (X), X ∈ X , Y ∈ Y, (19.17)

where X and Y are the sample spaces of the variables X and Y respectively. The map-
ping T (x) is generally a many-to-one mapping, so the information included in data x
is reduced. Thus, the observed data y contains less information than x concerning the
parameter θ . The inverse transformation T−1( y) is one-to-many mapping, and hence is
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not uniquely determinable. Thus, the observable variable Y is called incomplete, while
X is a complete variable.

Ideally, we should seek θ that would maximize the likelihood function1 L x(θ) =
pX (x; θ), but we cannot have the complete data x to evaluate Lx(θ). Therefore, we
should be content with finding θ that maximizes the likelihood function L y(θ) =
pY ( y; θ) based on the observed but incomplete data y.

Let us start with the joint variable (X,Y ) and denote its probability by pX,Y (x, y; θ).
We assume that the parameter θ is fixed. An extension to the case of Bayesian estima-
tion, where the prior distribution p�(θ) is taken into account, as in MAP estimation, is
straightforward, and it is left to the reader as an exercise problem (Problem 19.9).

If we substitute y = T (x), the above joint probability distribution reduces to the
distribution of x. Hence,

pX (x; θ) = pX,Y (x, T (x); θ). (19.18)

Then, the conditional probability of the variable X given the observable Y is

pX|Y (x| y; θ) = pX,Y (x, y; θ)
pY ( y; θ) = pX (x; θ)

pY ( y; θ) , (19.19)

from which we obtain the log-likelihood function log L y(θ) = log pY ( y; θ) as

log L y(θ) = log pX (x; θ)− log pX|Y (x| y; θ). (19.20)

Since the complete data x is not available to us, the log-likelihood function log L y(θ)

is a function of the complete variable X given by

log L y(X; θ) = log pX(X; θ)− log pX|Y (X| y; θ). (19.21)

Now we take expectations on both sides of (19.21) with respect to the conditional
probability pX|Y (x| y; θ (p)) and obtain

log L y(θ) = E
[
log pX (X; θ)| y; θ (p)

]
− E

[
log pX|Y (X| y; θ)| y; θ (p)

]
, (19.22)

because E
[
log L y(X; θ)| y; θ (p)

]
= log L y(θ). The last equation can be written as

log L y(θ) = Q(θ |θ (p))+ H(θ |θ (p)), (19.23)

where Q(θ |θ (p)) is an auxiliary function, called the Q-function [80], defined by

Q(θ |θ (p)) � E
[
log pX(X; θ)| y; θ (p)

]
, (19.24)

and

H(θ |θ (p)) � −E
[
log pX|Y (X| y; θ)| y; θ (p)

]
. (19.25)

1 For notational simplicity, we consider discrete RVs X,Y . If the variables are continuous, all the derivations
are valid if we replace pX,Y (x, y; θ), pX (x; θ), etc. by the corresponding PDFs.
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The function H of (19.25) satisfies the following inequality (see Problem 19.1 (a)):

H(θ |θ (p)) ≥ H(θ (p)|θ (p)) = H(X| y; θ (p)), (19.26)

where H(X| y; θ (p)) is the conditional entropy [300] of the variable X given the
observation y and the estimate of θ after the pth iteration (see also (19.53) of
Problem 19.7).

19.2.1.1 Relationship between the log-likelihood function and Q-function
The auxiliary function defined in (19.24) should read as the expectation of log pX (X; θ)
under the probability measure pX|Y (x| y; θ (p)) for the complete variable X , with the
observation instance y fixed. Since the Q-function is not symmetric with respect to its
two arguments (i.e., Q(θ |θ (p)) �= Q(θ (p)|θ)), the order of the arguments matters. Our
final goal is to find an MLE of θ , given an observation instance y. Since it is often com-
putationally difficult to find the MLE directly, we will pursue an iterative algorithm to
arrive at the MLE. The auxiliary function Q will help us find such a solution, because the
following important relation holds between log L y(θ) and Q(θ |θ (p)) (Problem 19.4):

Q(θ |θ (p))− Q(θ (p)|θ (p)) ≤ log L y(θ)− log L y(θ
(p)), (19.27)

where the equality holds when θ = θ (p). Equation (19.26) shows that H(θ |θ (p)) attains
its minimum at θ = θ (p), and thus ∇θ H(θ |θ (p))|θ=θ (p) = 0. Then, differentiating both
sides of (19.23), we obtain

∇θ log L y(θ)|θ=θ (p) = ∇θ Q(θ)|θ (p))|θ=θ (p) . (19.28)

19.2.1.2 Derivation of the E-step and the M-step
Suppose that we have obtained an estimate of θ after p iterations, which we denote
as θ (p). We want to improve upon this estimate using Q(θ |θ (p)) as a guide. This Q-
function is a function of θ and the observation y, given the current model parameter
θ (p). The variable X is averaged out by taking the expectation:

Q(θ |θ (p)) = E
[

log pX (X; θ)| y, θ (p)
]

(E-step). (19.29)

The inequality (19.27) implies that if Q(θ |θ (p)) > Q(θ (p)|θ (p)), then L y(θ) >

L y(θ
(p)). Therefore, the best choice for the next estimate θ (p+1), given the current

estimate θ (p), will be found by maximizing Q(θ |θ (p)) with respect to θ :

θ (p+1) = arg max
θ

Q(θ |θ (p)) (M-step). (19.30)
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If Q(θ |θ (p)) is differentiable, the next estimate θ (p+1) satisfies
∇θ Q(θ |θ (p))|θ=θ (p+1)= 0. Thus, if the algorithm converges to θ∗, ∇θ Q(θ |θ∗)|θ=θ∗ = 0,
which implies, according to (19.28), that

∇θ L(θ)|θ=θ∗ = 0. (19.31)

Thus, the algorithm converges to a stationary point of the likelihood function. There-
fore, an MLE θ̂ can be found by the above iterative procedure of alternating the
expectation step (E-step) given by (19.29) and the maximization step (M-step) given
by (19.30). The EM algorithm is summarized as Algorithm 19.2.

Algorithm 19.2 EM algorithm for an MLE

1: Denote the initial estimate of the model parameters as θ (0). Set the iteration
number p = 0.

2: Assume the pth estimate θ (p).
3: Evaluate

E
[
log pX (X; θ)| y, θ (p)

]
� Q(θ |θ (p)) (E-step).

4: Find

θ (p+1) = arg max
θ

Q(θ |θ (p)) (M-step).

5: If any of the stopping conditions are met, go to Step 6. Otherwise, replace θ (p) by
θ (p+1), set p ← p + 1, and repeat Steps 2 through 5.

6: Output θ (p+1) as an MLE.

19.2.1.3 Geometrical interpretation of the EM algorithm
If we apply inequality (19.26) to (19.23), we obtain

log L y(θ) ≥ Q(θ |θ (p))+ H(θ (p)|θ (p)) � B(θ |θ (p)). (19.32)

As we can see, the new auxiliary function B(θ |θ (p)) differs from the Q(θ |θ (p)) by the
term H(θ (p)|θ (p)), which does not depend on θ . Thus, these functions achieve their
extrema at the same point, so they both can be used in the M-step of the algorithm.
However, in contrast with the Q(θ |θ (p)), B(θ |θ (p)) coincides with the log-likelihood at
the point θ = θ (p), since

B(θ (p)|θ (p)) = Q(θ (p)|θ (p))+ H(θ (p)|θ (p)) = log L y(θ
(p)), (19.33)

as shown in Figure 19.1. According to (19.28), we have

∇θ log L y(θ)|θ=θ (p) = ∇θ B(θ |θ (p))|θ=θ (p) , (19.34)

which means that log L y(θ) and its lower bound B(θ |θ (p)) have a common tangen-
tial plane, as shown in Figure 19.1, which illustrates the M-step of the EM algorithm.
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θ (p)θ (p + 1)

log Ly (θ (p + 1))

B (θ; θ (p))
log Ly (θ (p))

log Ly (θ)

θ

Figure 19.1 The M-step of the EM algorithm.

At θ = θ (p), the log-likelihood is log L y(θ
(p)), and the M-step finds the next point

θ (p+1) which maximizes the auxiliary function B(θ |θ (p)). The log-likelihood at this
point log L y(θ

(p+1)) is marked by an arrow. As is illustrated in the figure, the M-step
increases the log-likelihood as well:

log L y(θ
(p)) = B(θ (p)|θ (p)) ≤ B(θ (p+1)|θ (p)) ≤ log L y(θ

(p+1)). (19.35)

Thus, this equation can be considered as an alternative derivation of the EM algorithm.
Like any iterative algorithm such as the Newton–Raphson algorithm, there is no guar-

antee that the point of convergence is the true MLE value: it can be a local maximum or
a saddle point. But the EM algorithm guarantees that the likelihood-function L y(θ

(p))

increases in every step because of (19.35) or (19.27), whereas the Newton–Raphson
and other algorithms do not, and can be very unstable until θ (p) reaches the vicin-
ity of the extremum point. Referring to Figure 19.1, the Newton–Raphson algorithm
approximates the log-likelihood function with the quadratic polynomial, which, simi-
lar to B(θ |θ (p)), has the same tangential plane as the log L y(θ); but, in contrast to the
EM algorithm, this polynomial does not necessarily represent the lower bound on the
log L y(θ).

In order to reach a global maximum, we must carefully choose, as in any other iter-
ative algorithm, the initial estimate θ (0) close to the MLE; if this cannot be arranged,
we must try a number of choices as an initial estimate. Wu [362] discusses several
convergence properties of the EM algorithm. See also McLachlan and Krishnan [246].

The rate of convergence of the EM algorithm can be faster than conventional
first-order iterative algorithms, but is usually slower than the quadratic convergence
typically available with Newton-type methods. Dempster et al. [80] show that the rate
of convergence of the EM algorithm is linear and the rate depends on the propor-
tion of information in the observed data. Thus, if a large portion of data is missing
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in comparison with the formulated complete-data problem, convergence can be quite
slow. Several methods have been proposed to speed up the EM algorithm [246]. The
essential idea behind the EM algorithm is that instead of attacking the maximization of
L y(θ) directly, which is often computationally difficult, we take an iterative procedure,
and work on maximization of the auxiliary function Q(θ |θ (p)) in the pth step. When
the iterative procedure converges to a stable point, it may converge to a local maximum
or a saddle point, instead of the global maximum. The logarithm of pX (x; θ) may take
a simpler form when the probability distribution belongs to the exponential family or
the exponential class (see Section 4.4 and Problem 19.10).

When it is difficult to find θ that maximizes Q(θ |θ (p)), we can adopt the Newton–
Raphson algorithm or hill-climbing method and choose an appropriate θ as long as it
increases this Q function; i.e.,

Q(θ |θ (p)) ≥ Q(θ (p), θ (p)).

It will give a greater likelihood function, i.e., L y(θ) ≥ L y(θ
(p)). Such a method is often

referred to as the generalized EM (GEM) method.

19.2.2 Expectation-maximization algorithm for missing data

Let us consider a special case of the model formulated in the previous section; namely,
the complete variable X can be written as

X = (Y , Z), (19.36)

where Y is the observable variable and Z is a latent variable. The transformation T
truncates the second component of x = ( y, z); i.e.,

T (x) = T ( y, z) = y. (19.37)

An instance x is called complete data, y is observed data or incomplete data, and z is
missing data. Many practical applications of the EM algorithm, such as parameter esti-
mation in a HMM and parameter estimation for pattern classification, can be formulated
under this special case defined by (19.36) and (19.37).

The Q-function is defined, similar to (19.24), by:2

Q(θ |θ (p))� E
[
log pYZ( y, Z; θ)| y; θ (p)

]
=
∑

z

pZ|Y (z| y; θ (p))log pYZ( y, z; θ),

(19.38)

which reads as the expectation of log pZY ( y, Z; θ) under the probability measure
pZ|Y (z| y; θ (p)) for the unobserved variable Z, with the observation instance y fixed.

This Q-function also satisfies the important property (19.27) (Problem 19.5), and
an MLE θ̂ can be found by an iterative procedure of alternating the E-step and the

2 The Q-function defined by Baum et al. [16] is slightly different: instead of the conditional probability
p(z| y; θ), the joint probability p(z, y; θ) is used as the probability measure.
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M-step discussed in the previous section. A slightly different argument to derive the
EM algorithm in the presence of the latent variable Z is to consider a tight lower bound
function B∗(θ |θ (p)) defined by (19.53) in Problem 19.7. We argue that maximization
of this B∗-function is equivalent to maximization of the Q-function (see Problem 19.8).

19.2.2.1 Bayesian EM algorithm for MAP estimation
Thus far, we assumed that the parameter θ is unknown but fixed. If we have a prior
probability distribution p�(θ) of the parameter variable �, then we should take the
Bayesian approach; namely, we should find the maximum a posteriori probability
(MAP) estimate of θ instead of the MLE, i.e., θ̂MLE = arg maxθ pY ( y; θ):

θ̂MAP = arg max
θ

p�|Y (θ | y). (19.39)

According to (18.102) the MAP estimate can be obtained by maximizing the sum of
the log-likelihood and the prior:

θ̂MAP = arg max
θ

[log L y(θ)+ logπ(θ)]. (19.40)

Therefore, the M-step of (19.30) should be modified (see Problem 19.9 (a)) to

θ (p+1) = arg max
θ

[
Q(θ |θ (p))+ log p�(θ)

]
. (19.41)

The reader is suggested to write a program similar to Algorithm 19.2 (see
Problem 19.9 (b)).

19.2.2.2 Monte Carlo EM algorithm
The EM algorithm is most effective when both the E-step and the M-step can be per-
formed analytically. However, it is not always possible to do so in practical applications.
In such a case we need to resort to some kind of simulation method, such as Markov
chain Monte Carlo (MCMC), which is discussed in Section 21.7.

The E-step to compute the Q-function of (19.38),

Q(θ |θ (p)) = E
[
log p( y, Z; θ)| y, θ (p)

]
, (19.42)

can be approximated by generating N (p) samples, z1, z2, . . . , zt , . . . , zN (p) (after dis-
carding the initial B(p) burn-in samples) from the conditional distribution p(z| y, θ (p))
and then by substituting the empirical average for the conditional expectation:

Q(θ |θ (p)) ≈ 1

N (p)

N (p)∑
t=1

log p( y, zt ; θ). (19.43)

Maximization of this function with respect to θ can be performed using the simulated
annealing method discussed in Section 21.7.5.
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19.3 Summary of Chapter 19

Newton–Raphson
algorithm:

θ (p+1) = θ (p) +J −1(x; θ (p))s(x; θ (p)) (19.15)

Method of scoring: θ (p+1) = θ (p) + I−1(θ (p))s(x; θ (p)) (19.16)

Kullback information
criterion:

I (n; θ) � nD( f ‖ p(θ)) =∑r
i=1 ni log

(
ni

npi (θ)

)
(19.8)

Q-function for EM: Q(θ |θ (p)) � E
[
log pX (X; θ)| y; θ (p)

]
(19.24)

Q-func. and log L y(θ): log L y(θ) = Q(θ |θ (p))+ H(θ |θ (p)) (19.23)
H-func. inequality: H(θ |θ (p)) ≥ H(θ (p)|θ (p)) (19.26)
Key property of

Q-function:
Q(θ |θ (p))− Q(θ (p)|θ (p))

≤ log L y(θ)− log L y(θ
(p)) (19.27)

E-step: Q(θ |θ (p)) = E
[

log pX(X; θ)| y, θ (p)
]

(19.29)

M-step: θ (p+1) = arg maxθ Q(θ |θ (p)) (19.30)

M-step for MAP
estimation:

θ (p+1) = arg maxθ

[
Q(θ |θ (p))+ log p�(θ)

]
(19.41)

19.4 Discussion and further reading

Most textbooks on probability and random processes written for engineering students
do not cover the topics of this chapter, with the exception of Stark and Woods [310]
which discusses the EM algorithm.

In communication system applications the EM algorithm is philosophically similar
to maximum-likelihood detection/estimation in the presence of unknown delay, phase,
or other unknown parameters [96, 193]. The difference is that the EM algorithm does
not use the gradient of the likelihood function, as in the Newton–Rhapson method.

There are two classes of basic applications of the EM algorithm: (i) parameter esti-
mation for an HMM and (ii) parameter estimation of mixture distributions. These
application examples are discussed at length in Section 20.6. The literature on appli-
cations of the EM algorithm abounds, including such fields as digital communications
(e.g., see [233, 253, 331, 369]), econometrics (e.g., see Hamilton [141]), machine
translation (e.g., see Koehn [205]), and image processing (e.g., see [176, 303, 333]).

In the field of network performance, the EM algorithm and its variants have been
applied to the problem of fitting Markovian arrival processes, Markov-modulated Pois-
son process, and other phase-type distributions (e.g., see Asmussen et al. [7], Rydén
[291], Breuer [38], Roberts et al. [281]). Turin [332] develops the EM algorithm for
the maximization of deterministic functions and also discusses the problem of fitting
phase-type distributions.

McLachlan and Krishnan [246] devote an entire volume to the EM algorithm and its
extensions, including the GEM algorithm and the variational Bayesian EM algorithm.
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19.5 Problems

Section 19.1: Classical numerical methods for estimation

19.1∗ Nonnegativity of KLD. Let f = f (x) and g = g(x) be two arbitrary PDFs.
Show that the KLD defined by (19.5) is nonnegative, i.e., D( f ‖g) ≥ 0, where the
equality holds if and only if f (x) = g(x) for all x. Prove the nonnegativity using three
different approaches.

(a) The inequality log x ≤ x − 1, x > 0;
(b) Jensen’s inequality (see Section 10.1.2);
(c) The Lagrangian multiplier method.

19.2 KLD between θ and θ ′. Let

f (z) � p(z| y; θ) = p( y, z; θ)
L y(θ)

, (19.44)

g(z) � p(z| y; θ ′) = p( y, z; θ ′)
L y(θ

′)
, (19.45)

where L y(θ) = p( y; θ) is the likelihood function. We write D(θ‖θ ′) for (19.5), with f
and g given by (19.44) and (19.45) respectively.

Show that

D(θ‖θ ′) = log
L y(θ

′)
L y(θ)

+
∑

z

p(z| y; θ) [log p( y, z; θ)− log p( y, z; θ ′)] . (19.46)

19.3 Approximation of ln x and Kullback’s information criterion I (n; θ), and
χ2(n; θ) statistic.

(a) Derive the approximation formula (19.10):

ln x ≈ 1

2
(x − x−1), for x ≈ 1.

Hint: Use the approximation sinh t = et−e−t

2 ≈ t , near t = 0.
(b) Show that I (n; θ) defined in (19.8) is related to the chi-square statistic χ2(n; θ) of

(19.4) by

2I (n; θ) ≈ χ2(n; θ).

Section 19.2: Expectation-maximization algorithm for maximum-likelihood
estimation

19.4 Relation between Q-function and log L-function. Derive the inequality
(19.27).
Hint: Use the equation (19.23) and the inequality (19.26).

19.5 KLD and Q-function.
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(a) Show the following relation between the KLD and the Q-function (19.38):

D(θ‖θ ′) = log
L y(θ

′)
L y(θ)

+ Q(θ |θ)− Q(θ ′|θ). (19.47)

(b) Show that the inequality (19.27) holds also for the Q-function of (19.38).

19.6 Lower bound B to the log-likelihood function. Consider the EM algorithm
that involves the latent variable Z, as discussed in Section 19.2.2. Define a function
B(θ;α(z)) by

B(θ;α(z)) �
∑
z∈Zn

α(z) log
p( y, z; θ)
α(z)

, (19.48)

where α(z) is an arbitrary probability distribution of the latent variable Z.

(a) Use of Jensen’s inequality. Show that this B-function provides a lower bound to the
log-likelihood function:

log L y(θ) ≥ B(θ;α(z)), (19.49)

where the equality can be achieved when

α(z) = p(z| y, θ). (19.50)

(b) Use of the KLD. Show that the above defined B-function is related to the KLD as
follows:

B(θ;α(z)) = −D (α(z)||p(z| y; θ))+ log L y(θ) ≤ L y(θ). (19.51)

(c) Use of the Lagrangian multiplier method. Obtain the best distribution (19.50) for
α(z) by applying the Lagrangian method; i.e., maximize

J (α(z), λ) = B(θ;α(z))+ λ
⎛⎝∑

z∈Z
α(z)− 1

⎞⎠ . (19.52)

19.7 The reachable lower bound B∗(θ |θ( p)) of the likelihood function. Rewrite
B(θ;α(z)) of (19.48) as B∗(θ |θ (p)), when

α(z) = pZ|Y (z| y; θ (p)).
(a) Show that

B∗(θ |θ (p)) = Q(θ |θ (p))+ H(Z| y; θ (p)), (19.53)

where H(Z| y; θ (p)) is the conditional entropy [300] of Z given y and θ (p).
(b) Show that the likelihood function and its lower bound B∗-function touch at

θ = θ(p); i.e.,

B∗(θ (p)|θ (p)) = log L y(θ
(p)). (19.54)
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19.8 An alternative derivation of the EM algorithm. In Problem 19.7 we estab-
lished an important property that the function B∗(θ |θ (p)) is bounded from above by the
log-likelihood function log L y(θ) and the two functions are equal at θ = θ (p).

We also established the relationship (19.53) between B∗(θ |θ (p)) and Q(θ |θ (p)).
Derive the EM algorithm using these results.

19.9 EM algorithm for a MAP estimate.

(a) Write a program similar to Algorithm 19.2 to find the MAP estimate.
(b) Show that the MAP estimate of θ may be obtained by using an EM algorithm whose

M-step maximizes the APP (a posteriori probability) of the complete variable

θ (p+1) = E[log p(θ |X)| y, θ (p)). (19.55)

19.10∗ EM algorithm when the complete variables come from the exponential
family of distributions. Let the complete variable X come from the exponential family
(or PDF) (see Section 4.4, (4.126)):

pX (x; θ) = h(x) exp{η�(θ)T (x)− A(θ)}, (19.56)

and let the observable data y = T (x) come from probability distribution (or PDF)
pY ( y; θ), which is not necessarily in the exponential family. We want to find an MLE
that maximizes pY ( y; θ).

Show that the E-step and M-step are reduced to

T (p) = E[T (x)| y, θ (p)],
θ (p+1) = arg max

θ
{η�(θ)T (p) − A(θ)}.
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20 Hidden Markov models
and applications

20.1 Introduction

In this chapter we shall discuss hidden Markov models (HMMs), which have been
widely applied to a broad range of science and engineering problems, including speech
recognition, decoding and channel modeling in digital communications, computational
biology (e.g., DNA and protein sequencing), and modeling of communication networks.

In an ordinary Markov model, transitions between the states characterize the
dynamics of a system in question, and we implicitly assume that a sequence of states
can be directly observed, and the observer may even know the structure and parameters
of the Markov model. In some fields, such as speech recognition and network traffic
modeling, it is useful to remove these restrictive assumptions and construct a model in
which the observable output is a probabilistic function of the underlying Markov state.
Such a model is referred to as an HMM.

We shall address the important problems of state and parameter estimation associated
with an HMM: What is the likelihood that an observed data is generated from this
model? How can we infer the most likely state or sequence of states, given a particular
observed output? Given observed data, how can we estimate the most likely value of
the model parameters, i.e., their MLEs? We will present in a cohesive manner a series
of computational algorithms for state and parameter estimation, including the forward
and backward recursion algorithms, the Viterbi algorithm, the BCJR algorithm, and
the Baum–Welch algorithm, which is a special case of the EM algorithm discussed in
Section 19.2.

We provide some illustrative examples from coding and communication systems, and
a parameter estimation problem involving mixture distributions.

20.2 Formulation of a hidden Markov model

20.2.1 Discrete-time Markov chain and hidden Markov model

20.2.1.1 Discrete-time Markov chain (DTMC)
Recall the definition and properties of DTMC defined in Section 15.1. Consider a homo-
geneous (i.e., time-invariant) DTMC {St }, where the number of states M is finite. We
label the states, without loss of generality, by integers {0, 1, . . . ,M − 1} and let S
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denote the state space:

S � {0, 1, . . . ,M − 1}. (20.1)

The subscript t of St is the discrete-time index, and we label a set of discrete time epochs
by integers 0, 1, 2, . . . , T , where T can be infinite, but in practice the observation period
is finite:

t ∈ {0, 1, 2, . . . , T } � T . (20.2)

Let the initial state distribution be denoted by

π0 = (π0(0), π0(1), . . . , π0(M − 1)) � (π0(i); i ∈ S), (20.3)

where π0(i) = P[S0 = i], i ∈ S. (20.4)

It is apparent that π�0 1 =∑i∈S π0(i) = 1,1 where 1 is a column vector of all ones. In
a Markov chain,2 the current state St depends on its past only through its most recent
value; i.e.,

P[St = st |St−1 = st−1, St−2 = st−2, . . .] = P[St = st |St−1 = st−1], (20.5)

or, more compactly, using the conditional probability distribution:

p(st |st−1, st−2, . . .) = p(st |st−1). (20.6)

Thus, the (one-step) state transition probabilities3 {a(i, j)} govern the evolution of
this homogeneous Markov chain:

A � [a(i, j); i, j ∈ S], (20.7)

where a(i, j) � P[St = j |St−1 = i], i, j ∈ S. (20.8)

Clearly,
∑

j∈S a(i, j) = 1; hence, A1 = 1.
A graphical representation of the Markov chain is helpful. A homogeneous Markov

chain can be represented by a state transition diagram of the type given in Figure 15.1,
which we reproduce here in Figure 20.1 (a). If we depict the states vertically and the
discrete times horizontally, we obtain the trellis diagram of Figure 20.1 (b). The notion
of a trellis diagram was introduced by Forney [107, 108] and explicitly shows the time
progression of the state sequences.

Assuming that we are interested in the state sequence for the period T defined in
(20.2), we introduce a vector variable S and its instance s:4

S � (St : t ∈ T ) ∈ S |T | and s � (st : t ∈ T ),

1 We use
∑

i∈S instead of
∑M−1

i=0 for notational simplicity.
2 Throughout this chapter we mean by a Markov chain a simple Markov chain or first-order Markov chain to

differentiate from an nth-order Markov chain. See Definition 15.2.
3 In Chapter 15 we used the notation Pi j or P(i, j) for the state transition probability. The symbol a(i, j) is

often used in the HMM-related literature, so we follow this convention.
4 We may sometimes write ST

0 to explicitly show the starting and ending time indices.
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Figure 20.1 (a) The state transition diagram of a three-state Markov chain S = {0, 1, 2} and (b) its trellis
diagram.

where |T | = T + 1, the size of set T . For every instance of the state sequence s, there
is a unique path in the trellis diagram, and vice versa. The example of Figure 20.1 (b)
shows a case where the initial state is state 0, which is equivalent to setting π0(0) =
1, π0(1) = π0(2) = 0.

20.2.1.2 Hidden Markov model
Let us assume that the Markov chain St is not observable, but there is another discrete-
time random process Yt , which is a probabilistic function of the chain and is observable.
Let us assume that Yt takes on a finite set of values. Then we can assign, without loss of
generality, a set of integers 0, 1, 2, . . . , K − 1 to represent these output values.

Y � {0, 1, 2, . . . , K − 1}. (20.9)

In the HMM literature, however, the alphabet of output symbols is often written, for
instance, as V � {vk; k = 1, 2, . . . , K }. But the elements of V , or any finite alphabet
of size K , have one-to-one correspondence with the elements of Y; in other words, V
is isomorphic with Y . Thus, writing vk instead of k is superfluous, making the nota-
tion unnecessarily complicated. As far as the HMM-related algorithms we discuss in
this chapter, there are no computations of Yt (= k) such as any addition, multiplication,
expectation, maximization. As will be seen below, the value k serves only as the argu-
ment of the conditional probabilities such as c(i; j, k) = P[St = j, Yt = k|St−1 = i]
and b( j; k) = P[Yt = k|St = j]. Of course, when the output symbol Yt is a continuous
RV, the finite alphabet model defined does not apply. (See the remark at the end of this
section. See also Problems 20.5 and 20.6).)

Similar to S and s defined above, we denote the observed sequence variable over
the period T and its instance by Y and y respectively:

Y � (Yt ; t ∈ T ) and y � (yt ; t ∈ T ). (20.10)

If the observable process Yt is a probabilistic function of only St−1 and St , then the pair
process

Xt = (St , Yt ), t ∈ T (20.11)
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is also a Markov process, since it depends on the past only through Xt−1 = (St−1, Yt−1).
The process Yt by itself is generally not a Markov process (Problem 20.1).

Now we are ready to present a formal definition of an HMM:

D E FI N I T I O N 20.1 (Hidden Markov model). A Markov process Xt = (St , Yt ) is called
a partially observable Markov process or HMM if its state transition probability does
not depend on Yt−1; i.e.,

p(xt |xt−1) = p(xt |st−1); (20.12)

i.e.,

p(st , yt |st−1, yt−1) = p(st , yt |st−1). (20.13)

Any state St ∈ S is called a hidden state and the process S = (St ; t ∈ T ) is a hidden
process; and y = (yt ; t ∈ T ) is called an observation. �

Now we introduce the notion of model parameter, which is different from the con-
ventional notion of a distribution parameter, such as λ in the Poisson distribution. Later
in this chapter we will discuss how to estimate and re-estimate the model parameters of
a given HMM so that they will best explain observed data.

D E FI N I T I O N 20.2 (Model parameters of an HMM). For a homogeneous HMM, we
denote

P[S0 = i, Y0 = k] � α0(i, k), i ∈ S, k ∈ Y, (20.14)

P[St = j, Yt = k|St−1 = i] � c(i; j, k), i, j ∈ S, k ∈ Y, fort = 1, 2, . . . , T .
(20.15)

Denote the sets of initial distribution vectors α0(k) and the state transition probability
matrices C(k) by α0 and C respectively:

α0 � (α0(k); k ∈ Y), (20.16)

where α0(k) � (α0(i, k); i ∈ S), k ∈ Y, (20.17)

C � (C(k); k ∈ Y), (20.18)

where C(k) � [c(i; j, k); i, j ∈ S], k ∈ Y . (20.19)

We then define the model parameters θ associated with the HMM by the set

θ = (α0, C). (20.20)

�

The initial distributions (20.17) and the initial state probability (20.3) are all
M-dimensional vectors and are related by∑

k∈Y
α0(k) = π0. (20.21)
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Similarly, the M × M matrices C(k) of (20.19) and A of (20.7) are related by∑
k∈Y

C(k) = A. (20.22)

Now we can rewrite the joint conditional probability p(st , yt |st−1) of (20.13) as

p(st , yt |st−1) = p(st |st−1)p(yt |st−1, st). (20.23)

Then we define a special type of HMM as follows.

D E FI N I T I O N 20.3 (State-based HMM versus transition-based HMM). A homogeneous
HMM is said to be state-based if a special condition

p(yt |st−1, st ) = p(yt |st) (20.24)

holds. A state-based HMM is defined by

θ = (π0, A, B), (20.25)

where π0 and A are defined in (20.3) and (20.7) respectively and B is an M × K matrix
given by

B � [b( j; k)]; j ∈ S, k ∈ Y, (20.26)

where

b( j; k) = P[Yt = k|St = j]. (20.27)

If the special condition (20.24) does not hold, the HMM is said to be transition
based. �

Note that state-based HMMs form a subclass of transition-based HMMs, to which all
HMMs belong. The joint conditional probability c(i; j, k) can be factored as

c(i; j, k) = a(i, j)b̃(i; j, k), (20.28)

where a(i, j) is defined in (20.8) and

b̃(i, j; k) � P[yt = k|St−1 = i, St = j]. (20.29)

The state-based HMM is a special case where the b̃(i, j; k) are independent of i ; i.e.,

b̃(i, j; k) = b( j; k) for all i ∈ S, (20.30)

which is nothing but a restatement of the condition (20.24).
Most existing literature on HMMs, however, deals with only state-based HMMs. This

in theory is not a serious defect, because any transition-based HMM can be converted
into an equivalent state-based HMM, by defining S̃t � (St−1, St ) ∈ S × S as a new
state. However, the corresponding state transition matrix Ã would become M2 × M2,
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which would make the transition diagram and trellis diagram unbearably too large and
complex even for a moderate M , the size of the hidden state space. Thus, clearly there is
an advantage in working with a transition-based HMM representation. Thus, we assume
a general transition-based HMM, unless stated otherwise.

20.2.1.3 The case where the observable Y t is a continuous random variable
Thus far, we have assumed that the observed variable Yt takes on a discrete value
from a finite alphabet. If Yt is a continuous RV, we should replace the conditional joint
probability c(i; j, k) of the transition-based HMM by

pSt ,Yt |St−1( j, y|i) dy = P[St = j, y < Yt ≤ y + dy|St−1 = i]. (20.31)

Similarly, in a state-based HMM, the conditional probability b( j; k) should be replaced
by a conditional PDF fYt |St (y| j)dy:

fYt |St (y| j)dy = P[y < Yt ≤ y + dy|St = j]. (20.32)

The restrictive condition (20.24) for the state-based model is equivalent to assuming the
following factorization:

pSt ,Yt |St−1( j, y|i) = a(i, j) fYt |St (y| j). (20.33)

20.2.2 Examples of hidden Markov models

Now we will discuss two examples of HMM representations.

Example 20.1: Convolutional encoder and binary symmetric channel. Figure 20.2
shows a schematic diagram of a convolutional encoder, which consists of a three-
stage shift register5 and two modulo-2 adders (or binary counters). The encoder takes a
binary input sequence sequence I = (I1, I2, . . . , It , . . .) and sends out a binary output
sequence O = (O0, O1, . . . , Ot , . . .), where Ot = O(1)

t O(2)
t , where O(1)

t is the output
from the upper adder and O(2)

t is the output from the lower adder at discrete time
t, t = 0, 1, 2, . . .. We assume that initially the shift register is set to all zeros; i.e., “000.”
Thus, the upper and lower adders both generate 0. Therefore, 00 will be the output
sequence at t = 0.

The relation between the input and output of the encoder is given by

Ot = O (1)
t O(2)

t , t ≥ 0, (20.34)

where O(1)
t = It ⊕ It−1 ⊕ It−2 and O(2)

t = It ⊕ It−2, (20.35)

I−2 = I−1 = I0 = 0, (20.36)

5 In actual implementation, a shift register may not be adopted, but the schematic representation of Figure
20.2 will best illustrate the operation of the encoder.
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Figure 20.2 A rate 1/2 convolutional encoder with input It and output Ot , and a noisy channel with input Ot
and output Yt , which is observable.

where ⊕ represents modulo-2 addition (which is equivalent to “Exclusive OR” or
“XOR” in logic); i.e., 0⊕ 0 = 0, 0⊕ 1 = 1, 1⊕ 0 = 1 and 1⊕ 1 = 0.

Thus, an input information sequence I = (1, 1, 0, 1, 0, 0, 1, . . .), for instance, will
result in an encoded output sequence O = (11, 01, 01, 00, 10, 11, 11, . . .). The encoded
sequence is twice as long as the information sequence, so the amount of information per
binary symbol in O should be half of that in I . Hence, this encoder is called a rate 1/2
convolutional encoder.

Note that if we set 00 = 0, 01 = 1, 10 = 2, and 11 = 3, then the output symbol
alphabet becomes simply the Y of (20.9) with K = 4; i.e.,

O = Y = {0, 1, 2, 3}, with K = 4.

Then, the output sequence can be compactly written as O = (3, 1, 1, 0, 2, 3, 3, . . .).6

A natural choice of the state for this encoder would be to define the three-bit register
content as the state; i.e.,

St = It It−1 It−2, t = 0, 1, 2, . . . .

The reader is suggested to draw the state transition diagram and the trellis diagram
(Problem 20.2). We define, instead, state St as the two latest message bits; i.e., the two
leftmost bits in the three-stage shift register of the encoder:

St = It It−1, t = 0, 1, 2, . . . . (20.37)

Then, the state space is given by

S = {00, 01, 10, 11} = {0, 1, 2, 3}.
If we assume that {It } is an i.i.d. sequence, then the state sequence {St } is a simple
Markov chain (Problem 20.3).

Figure 20.3 (a) and (b) shows the state transition diagram and the trellis diagram
respectively. We assume the initial condition I0= I−1= 0; hence, S0= 0 with probabil-
ity one. If the encoder is in state St−1= 10= 2 at time t − 1 and if It = 0, then the next

6 This is another reason why we define the output alphabet in the form of {0, 1, . . . , K − 1} instead of
{v0, v1, . . . , vk−1} or {1, 2, . . . , K }.
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Figure 20.3 (a) The state transition diagram of the rate 1/2 convolutional encoder. (b) The trellis diagram (all
transitions have probability 1/2).

state is St = 01= 1 and the corresponding output is Ot = 10= 2. We write this relation
as “0/2” in the state transition and trellis diagrams. Similarly, state St−1= 01= 1 with
input It = 0 leads to St = 00 = 0, generating Ot = 11 = 3. Thus, “0/3” is attached to
the transition St−1 = 1 → St = 0.

If 0 and 1 appear in It with equal probability, i.e., P[It = 0] = P[It = 1] = 1/2 for
all t = 1, 2, . . ., the state transition matrix associated with the convolutional encoder,
denoted as A, becomes

A �

⎡⎢⎢⎣
1/2 0 1/2 0
1/2 0 1/2 0
0 1/2 0 1/2
0 1/2 0 1/2

⎤⎥⎥⎦ . (20.38)

20.2.2.1 Discrete memoryless channel
Suppose that the encoder output sequence Ot is sent over a channel. Because of possible
noise in the channel, the channel output Yt may not necessarily be the same as Ot .
We assume that the channel output Yt has the same alphabet as the channel input; i.e.,
Y = O = {00, 01, 10, 11}. We can write the relation between the channel input and
output as

Yt = Ot ⊕ Et , (20.39)

where Et is called an error pattern, meaning a “1” in Et will result in an error in the
corresponding bit position of Yt . For instance, if

O = (11, 01, 01, 00, 10, 11, 11, . . .),

E = (00, 00, 10, 00, 01, 00, 11, . . .),
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then

Y = (11, 01, 11, 00, 11, 11, 00, . . .).

We assume that errors at different times occur independently of each other. More
formally, we assume the following product form for the conditional probabilities of the
observable sequence (i.e., the channel output) yT

0 = (y0, y1, . . . , yT ) given the encoder
output sequence (i.e., the channel input) oT

0 = (o0, o1, . . . , oT ):

p( yT
0 |oT

0 ) =
T∏

t=0

p(yt |ot ). (20.40)

Such a channel is referred to as a discrete memoryless channel [300]. Since the channel
input (or the encoder output) Ot is a function of the encoder states St−1 and St only, the
memoryless property implies that the observable channel output Yt depends probabilis-
tically only on St−1 and St . Thus, the pair process Xt = (St , Yt ) depends only on St−1;
hence, it is a hidden Markov process, as defined in Definition 20.1.

If we further assume that the probability of making an error at a given bit position is
ε irrespective of the channel content ot , such a memoryless channel is called a binary
symmetric channel (BSC).

For instance, a transition from state st−1 = 0(= 00) to state st = 2(= 10) will pro-
duce the encoder output ot = 3(= 11). Because of the noise, it can be changed into any
of the symbols in Y = O = {0, 1, 2, 3} at the channel output; i.e.,

yt =

⎧⎪⎪⎨⎪⎪⎩
0(= 00), with probability ε2,

1(= 01), with probability ε(1− ε),
2(= 10), with probability ε(1− ε),
3(= 11), with probability (1− ε)2.

We have the following joint conditional probabilities

c(0; 2, k) =

⎧⎪⎪⎨⎪⎪⎩
a02ε

2, for k = 0,
a02ε(1− ε), for k = 1,
a02ε(1− ε), for k = 2,
a02(1− ε)2, for k = 3.

(20.41)

Since there are four possible observable outputs yt for every one of the eight transition
patterns, there are 32 model parameters C= [c(i; j, k)], so we do not give an exhaustive
list here.

Thus, the model parameter of this HMM is given by θ = C = (A, ε). If the assump-
tion (20.38) for the state transitions in the convolutional encoder is believed to be
correct, as is the case if the binary sequence It is completely random, then A will not
be an issue for investigation, and we simply have θ = ε. In the model of Figure 20.2
that involves both the convolutional encoder and the BSC, the encoder state sequence
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St (or equivalently the input information sequence It ) is a hidden process and Yt is an
observable variable. We will later discuss how to estimate the channel error parameter
ε as well as the state sequence St from the observed output yt . �

Example 20.2: Gilbert–Elliott channel model for burst errors. In the previous
example, error occurrences are assumed to be completely random. But in reality, the
channel errors are often not random, but bursty, in the sense that once an error occurs
at some time t , then the chance of having errors in subsequent bits tends to be high.
Consequently, errors are likely to occur in a burst. The Gilbert–Elliott model [89, 120]
described below provides a simple model of burst errors. Let a given channel have two
possible states: Good state (“0”) and Bad state (“1”); i.e.,

S̃t ∈ {0, 1}.7 (20.42)

When the channel state S̃t−1 = 0, then it will stay in 0 at time t with probability p00 ≈ 1.
Once the channel enters the Bad state, it will remain bad with probability p11. Thus, the
state transition matrix of Ã of this Gilbert–Elliott channel is given as

Ã =
[

p00 1− p00

1− p11 p11

]
. (20.43)

Clearly, the sequence S̃t is a Markov chain with the equilibrium state probabilities
(Problem 20.4 (a))

π0 = lim
t→∞ P[S̃t = 0] = 1− p11

2− p00 − p11
and π1 = lim

t→∞ P[S̃t = 1] = 1− p00

2− p00 − p11
.

(20.44)

The mean state sojourn time (the duration of a channel state) is given as
(Problem 20.4 (b))

T0 = 1

1− p00
and T1 = 1

1− p11
. (20.45)

When the channel is in the Bad state, it will cause an error with probability ε1 � 0,
yielding Et = 1. Similarly, when it is in the Good state, Et = 1 with probability ε0 ≈ 0.
Thus, we have the conditional probability matrix B̃ of this noise source by

B̃ = [b( j; k)] = [p(Et = k|S̃t = j); j ∈ {0, 1}, k ∈ {0, 1}]

=
[

p(Et = 0|S̃t = 0) p(Et = 1|S̃t = 0)
p(Et = 0|S̃t = 1) p(Et = 1|S̃t = 1)

]
=
[

1− ε0 ε0

1− ε1 ε1

]
. (20.46)

7 We denote the channel state process by S̃t in order to distinguish it from the encoder state process St defined
earlier.
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Since Et depends probabilistically only on the current state S̃t , the process (S̃t , Et) is
a partially observable Markov process, provided the error pattern process Et is observ-
able. Then, the Gilbert–Elliott channel model can be characterized as a state-based
HMM. The model parameters are θ = (π0(0), Ã, B̃), where π0(0) is the probability
that the channel is in state 0 at time t = 0. Since Ã is determined by p00 and p11 and B̃
is determined by ε0 and ε1, the model parameters are θ = (π0(0), p00, p11, ε0, ε1).

If we replace the BSC model by the Gilbert–Elliott model in Figure 20.2, the overall
process is Xt = (St , S̃t , Yt ) is a hidden Markov process, where Yt is observable, whereas
both St and S̃t are unobservable. �

20.3 Evaluation of a hidden Markov model

In the present and the following three sections, we will consider the following four
basic problems, which will arise when we apply an HMM to characterize a system of
our interest:

1. Model likelihood evaluation (Section 20.3).
2. State sequence estimation (Section 20.4).
3. State estimation (Section 20.5).
4. Model parameter estimation (Section 20.6).

Depending on the application or circumstance, one problem may be more important
than the others, or perhaps not all the four problems may be addressed. In these next
four sections, however, we will address all the above in that order, and discuss important
techniques and computational algorithms associated with the utility of an HMM.

20.3.1 Evaluation of a likelihood function

The first problem, the evaluation of the likelihood of a certain HMM, can be stated as
follows.

Given an HMM with the model parameter θ and an observation

y = yT
0 = (y0, y1, . . . , yT ),

what is the likelihood p( y; θ) that this y will occur in this HMM with this parame-
ter θ? �

The probability p( y; θ)8 can serve as an indicator of how good the HMM and its
parameter setting θ are, where

θ = (α0, C),

8 Some authors write this probability as p( y|θ), which is appropriate in the Bayesian estimation context,
where the parameter is treated as an RV, which we denote by �. See Section 21.5.



584 Hidden Markov models and applications

as defined in (20.20). If there are other competing models or model parameters, the
answer to the above question will guide us to accept or reject this particular HMM.
The quantity p( y; θ) is, by definition, the probability that the RV Y takes on y for a
given parameter value θ . But p( y; θ) can also be interpreted as the likelihood that this
assumed value of the model parameter θ may yield this observed instance y. Recall that
we introduced the notion of likelihood function in Sections 4.5 and 18.1.2 in the context
of estimating parameters of probability distribution functions. The same concept can be
applied to estimation of the HMM parameter we are dealing with in this chapter. Thus,
we call p( y; θ) the likelihood function of θ for given y, and denote it by L y(θ):

L y(θ) � p( y; θ). (20.47)

In order to evaluate this likelihood function, we first write it as a marginal probability
of the joint probability of (S,Y) with the assumed model parameter θ :

L y(θ) =
∑

s∈S |T |
p(s, y; θ), (20.48)

where

S |T | = S × S × · · · × S

is the state space for the vector variable S = (St : t ∈ T ) of size |T | = T + 1.
Using the Markov property of Xt = (St , Yt ) and the definition of an HMM given by

(20.12), we find the following product form for the joint probability (Problem 20.8 (a)):

p(s, y; θ) = α0(s0, y0)

T∏
t=1

c(st−1; st , yt ), (20.49)

where

α0(i, k) = P[S0 = i, Y0 = k],
c(i; j, k) = P[St = j, Y j = k|St−1 = i], t ≥ 1,

as defined in (20.14) and (20.15) respectively. Thus, the likelihood function for the
transition-based output model can be expressed as a sum of product terms:

L y(θ) =
∑
s0∈S

∑
s1∈S

· · ·
∑
sT∈S

α0(s0, y0)c(s0; s1, y1) · · · c(sT−1; sT , yT ). (20.50)

Evaluation of L y(θ) using (20.50) would require computations on the order of
O(T M T ). Thus, a brute-force evaluation would become computationally infeasi-
ble even for modest sizes of M and/or T . A more efficient computation method
can be achieved by converting the above sum of products into a product of sums, as
will be developed in the next section. In Section 21.5 on Bayesian networks, which
can be viewed as a generalization of HMMs, we discuss the sum-product algorithm.
The algorithm discussed below is a simple instance of the sum-product algorithm (see
Section 21.6.1).
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20.3.2 Forward recursion algorithm

By defining a row vector α0(y0)
� and an M × M matrix C(yt),

α0(y0)
� � [α0(i, y0); i ∈ S],C(yt ) �

[
c(i; j, yt ); i, j ∈ S

]
, yt ∈ Y, t = 1, 2, . . . , T,

(20.51)

we obtain a concise expression for the likelihood function:

L y(θ) = α0(y0)
�
(

T∏
t=1

C(yt)

)
1, (20.52)

where 1 is a column vector whose entries are all one. The expression (20.52) can be
rewritten as

L y(θ) = {[(α0(y0)
�C(y1))C(y2)] · · ·C(yT )}1, (20.53)

which involves T steps of multiplying a row vector with a matrix (M2 additions and M2

multiplication per step), ended by summing up the entries of the final row vector (M
additions). This rearrangement leads to a computationally efficient procedure, called the
forward recursion algorithm (or simply forward algorithm) for calculating L y(θ).
This forward recursion is a direct consequence of (20.49) for the joint probability of St

and Y t obtained in terms of the product form of c(i; j, k).
An alternative derivation of the above result (20.52) can be obtained in terms of the

forward variable,9 which we define as the joint probability of St and yT
0 :

αt( j, yt
0) � P[St = j,Y t

0 = yt
0; θ ], (20.54)

which can be written as

αt ( j, yt
0) =

∑
i∈S

P[St−1 = i, St = j,Y t−1
0 = yt−1

0 , Yt = yt ; θ ]

=
∑
i∈S

P[St−1= i,Y t−1
0 = yt−1

0 ; θ ]P[St = j, Yt = yt |St−1= i, Yt−1= yt−1, θ ]

=
∑
i∈S

P[St−1 = i,Y t−1
0 = yt−1

0 ; θ ]P[St = j, Yt = yt |St−1 = i, θ ]

=
∑
i∈S

αt−1(i, yt−1
0 )c(i; j, yt ), j ∈ S. (20.55)

In obtaining the second line in (20.55), we used the fact that Xt = (Yt , St ) is a Markov
process, and hence depends on its past only through Xt−1. But by definition of an HMM,
Xt should depend only on St−1; hence, we obtain the third line. In other words, if St−1 is

9 In the HMM literature, it is common to write the forward variable as αt (i) or αi (t) by dropping yt
0. We

include yt
0 as the second argument to emphasize that the forward variable depends on the observations up

to time t . In algorithmic statements, however, we drop this argument.
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Algorithm 20.1 Forward algorithm for L y(θ)

1: Compute the forward variables recursively:

α�0 = (α0(i, y0); i ∈ S),
α�t = α�t−1C(yt ), t = 1, 2, . . . , T .

2: Compute

L y(θ) = α�T 1.

known, the past observation yt−1
0 does not provide any additional information regarding

St and yt . We define the forward vector variable as a row vector

αt ( yt
0)
� = (αt (i; yt

0); i ∈ S), t = 1, 2, . . . , T . (20.56)

From (20.55) we indeed obtain the forward recursion algorithm:

αt ( yt
0)
� = αt−1( yt−1

0 )�C(yt ), t = 1, 2, . . . , T, (20.57)

with the initial vector α0(y0) defined by (20.51). Equation (20.53) readily follows from
this result.

Thus, L y(θ) can be evaluated, after T steps of the forward recursion, as

L y(θ) = αT ( yT
0 )
�1 =

∑
i∈S

αT (i, yT
0 ). (20.58)

The computational complexity of this evaluation step is merely T M2 in contrast to
O(T M T ) of the direct enumeration method based on (20.50).

We summarize the forward algorithm in Algorithm 20.1. Here, we drop yt
0 from the

arguments of the forward variable and simply write them as αt( j), because, from the
algorithmic point of view, the variables α can be stored in a two-dimensional array of
size M × (T + 1). The values αt ( j) do certainly depend on the specific observation
sequence yt

0 = (y0, y1, . . . , yt ).

20.3.3 Backward algorithm and forward-backward algorithm

Now, let us consider the time-reversed version of the above procedure. The matrix
multiplications in (20.52) now rearranged, instead of (20.53), as

L y(θ) = α(y0)
� {C(y1)[C(y2) · · ·C(yT )1)]} . (20.59)

We define the backward variable βt(i; yT
t+1) as the probability of the partial obser-

vation yT
t+1 = (yt+1, yt+2, . . . , yT ), given that the Markov chain is in state i at

time t :
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βt (i; yT
t+1) � p( yT

t+1|St = i; θ), i ∈ S, t = T − 1, T − 2, . . . , 0. (20.60)

Then, by defining the backward vector variable as a column vector,

β( yT
t+1) = (βt (i; yT

t+1); i ∈ S)�, t = T − 1, T − 2, . . . , 0, (20.61)

we obtain, analogous to the forward recursion formula (20.57), the following backward
recursion formula (Problem 20.10):

βt ( yT
t+1) = C(yt+1)β t+1( yT

t+2), t = T − 1, T − 2, . . . , 0. (20.62)

The boundary condition (i.e., the initial condition in the backward recursion) is

βT (∅) = 1 = (1, 1, . . . , 1)�. (20.63)

Specification of a backward algorithm, similar to Algorithm 20.1, is left to the reader
as an exercise (Problem 20.11).

By combining the forward and backward variables, we find (Problem 20.12)

αt (i, yt
0)βt(i; yT

t+1) = P[St = i,Y = y; θ ], i ∈ S, t ∈ T . (20.64)

Then we find an alternative expression to evaluate L y(θ):

L y(θ) = αt ( yt
0)
�β t ( yT

t+1), for any t ∈ T . (20.65)

The choice of t = T in the last expression reduces to the forward algorithm (20.58),
whereas t = 0 gives

L y(θ) = α0(y0)
�β0( yT

1 ) =
∑
i∈S

α0(i, y0)β0(i; yT
1 ). (20.66)

The reader is suggested (Problem 20.13) to state an algorithm to compute the likelihood
function based on (20.65). This algorithm is called the forward–backward algorithm
(FBA).

Simultaneous use of both forward and backward algorithms may make sense when
the computational speed for each recursion is slower than the rate at which observa-
tion data are collected. Although the backward recursion cannot commence until all
the observations yT

0 are in, all of the forward recursions may not have been com-
pleted by then. It may then speed up the computation of L y(θ) if the forward and
backward recursions are performed concurrently, after the data yT

0 are gathered. Again,
the storage requirements are only 2M times the space to store one variable. The same
amount of space is needed for backward variables; thus, storage space for 4M variables
is required altogether. If the individual αt (i) and βt (i) are needed for later use, then
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storage for 2M(T + 1) variables would be needed. The MAP state estimation algorithm
(Algorithm 20.3) to be discussed later is such an example.

20.4 Estimation algorithms for state sequence

Now consider a case where we wish to estimate the hidden state sequence s(= sT
0 ),

based on the observation sequence y(= yT
0 ). As will be shown below, an optimum

estimate is not unique, because there is more than one choice of optimality condition.

20.4.1 Forward algorithm for maximum a posteriori probability state sequence estimation

In Section 18.3 we introduced the notion of the maximum a posteriori probability
(MAP) estimation as one of the estimation criteria. The MAP state sequence estimate
ŝ∗ is defined by

ŝ∗ = arg max
s
π(s| y), (20.67)

where π(s| y) is the posterior probability of the state sequence s, which can be rewritten,
using the formula π(s| y) = p(s, y)/p( y), as

ŝ∗ = arg max
s

p(s, y). (20.68)

We introduce the following auxiliary variables:

α̃t ( j, yt
0) � max

st−1
0

P[St−1
0 = st−1

0 , St = j,Y t
0 = yt

0], (20.69)

for j ∈ S, 1 ≤ t ≤ T . The variable α̃t ( j, yt
0) is similar to the forward variable αt ( j, yt

0)

of (20.54), which we can rewrite as

αt( j, yt
0) = P[St = j,Y t

0 = yt
0] =

∑
st−1

0

P[St−1
0 = st−1

0 , St = j,Y t
0 = yt

0]. (20.70)

So the difference is that the summation in (20.70) is replaced by max in (20.69).
Then analogous to the recursion formula (20.57) for the variable αt( j, yt

0), we obtain
(Problem 20.14) the following recursion formula:

α̃t ( j, yt
0) = max

i∈S

{
α̃t−1(i, yt−1

0 )c(i; j, yt )
}
, j ∈ S, 1 ≤ t ≤ T, (20.71)

with the initial value

α̃0(i, y0) = α0(i, y0) = P[S0 = i, Y0 = y0], i ∈ S. (20.72)

Note that all the variables αt ( j, yt
0) and parameters c(i; j, yt ) involved in the above

recursion are probabilities; thus, they are nonnegative quantities.
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We can show by mathematical induction that the recursion formula leads to the
MAP estimation sequence ŝ∗ of (20.68). First, we consider the case where we know
the initial state s0 ∈ S. Then, given an observation up to time t − 1 denoted as
yt−1

0 = (y0, y1, . . . , yt−1), suppose that we have found a most likely state sequence;
i.e., the one that maximizes α̃t−1(i, yt−1

0 ) among all possible state sequences entering

state i at time t . We denote this most likely path on the trellis diagram as ŝt−1
0 (i), and

retain it as a surviving sequence and discard all other possible state sequences enter-
ing state i from further consideration. This is because they will never be a part of the
overall optimal sequence, regardless of the observations in the future, yT

t , since all the
quantities involved in (20.71) are nonnegative.

Then, as we observe yt at time t , we proceed to find a most likely state sequence that
maximizes the right-hand side of (20.71) among all possible state sequences entering
at state j at time t , so there will be M(= |S|) surviving sequences, one per each state
j ∈S. Then the argument of mathematical induction implies that there will be M sur-
viving sequences when we reach the end of the observation period t = T . The sequence
that has the largest auxiliary variable α̃t( j, yT

0 ) is the MAP sequence estimate ŝ∗ we
have been after.

As observed above, there are exactly M(= |S|) survivors at any time t , but these M
survivors may share a unique state subsequence up to time t ′(< t). In other words, the
sequence s0ŝ1, . . . , ŝt ′ is common to all the M survivors at time t . Then we know for
sure that this sequence must be a part of the MAP sequence, even though we have not
yet seen the future observation data yT

t+1.
If the initial state is unknown, we must apply the same procedure to each of the

M initial states and proceed in parallel. In the initial period there may be as many
as M2 distinct surviving paths, but as time t progresses, there will be again only one
subsequence up to a recent past that is common to all the survivors, similar to the case
where the initial state is fixed and known.

20.4.1.1 The logarithmic conversion of probabilities
Since the logarithm is a monotonic and continuous function, the operation
maxx log f (x) = log maxx f (x) may be performed. By applying the logarithmic trans-
formation to (20.71) and (20.72),10 this leads to the following recursion:

4αt ( j, yt
0) = max

i∈S

{
4αt−1(i, yt−1

0 )+ d(i; j, yt )
}
, j ∈ S, 1 ≤ t ≤ T, (20.73)

where

4αt ( j, yt
0) � log α̃t ( j, yt

0) (20.74)

and

d(i; j, yt ) � log c(i; j, yt ) = log P[St = j, Yt = yt |St−1 = i ], (20.75)

10 We define log 0 = −∞, or a sufficiently large negative number in algorithmic computations.
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with the initial value

4α0(i, y0) = log(α0(i, y0)) = d(∅; i, y0), i ∈ S. (20.76)

Note that any positive number, not necessarily 10 or e, can serve as the base of the
logarithm.

The maximization operation in (20.71) or (20.73) suggests that we need to retain only
one sequence, i.e., a surviving sequence, that enters state j at time t . Thus, at any time
t , there are only M surviving sequences, one ending at each node j ∈ S. The forward
variable α̃t ( j, yt

0) or 4αt ( j, yt
0) represents the “score” of this surviving sequence.

20.4.2 The Viterbi algorithm

Now consider the case where all possible state sequences (i.e., all sequences that have
legitimate paths in the trellis diagram of the hidden Markov chain) are considered
equally likely prior to the occurrence of the specific y; i.e.,

π(s) = constant for all legitimate sequences s. (20.77)

In digital communications, for instance, it is usually assumed that the information
sequences are i.i.d. binary sequences so that all paths on the trellis diagram associ-
ated with a convolutional encoder (see Example 20.1) or a partial-response channel
(Problem 20.6) are equally likely.

If the initial state is given (say S0 = 0 with probability one), some state sequences
(i.e., sequences with s0 �= 0) will never occur. However, all feasible state sequences are
still equally likely; i.e., the condition (20.77) holds.

Then, it is apparent that the MAP state sequence estimate obtained in the preceding
section should also maximize the likelihood function defined11 by

L y(s) � p( y|s), (20.78)

where s = (s0, s1, . . . , sT ). The solution to this problem is called the maximum-
likelihood sequence estimate (MLSE). See Problem 20.16 for a further discussion
regarding the MAP sequence estimation versus the MLSE.

A remark is in order concerning maximum-likelihood estimation. In Section 18.1.2
we discussed the MLE of parameter θ that maximizes the likelihood function L x(θ) =
pX (x; θ), when x is observed. In Section 19.2 on the EM algorithm, we also discussed
the MLE of the parameter θ of L x(θ) = pX (x; θ), when the observed sequence is not x,
but y, which is an instance of a transformed variable Y = T (X). A special case is where
T truncates the complete variable so that X = (Y , Z), where Z is a latent or missing
variable. As remarked earlier, an HMM is exactly such a case, by identifying Z = S,
the hidden Markov process. We will discuss algorithms to estimate θ of an HMM based
on y in Section 20.6. Our problem at hand, however, is the MLE of the latent variable
S, while the parameter θ is known.

11 Note that this likelihood function is different from L y(θ) defined by (20.47).
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Algorithm 20.2 Forward algorithm for MAP state sequence estimation: the
Viterbi algorithm

1: Compute the forward variables recursively:

4α0(i) = logα0(i, y0), i ∈ S,
4αt ( j) = max

i∈S
{4αt−1(i)+ d(i; j, yt )} , j ∈ S, t = 1, 2, . . . , T .

While computing the survivor’s score 4αt ( j), keep a pointer to the state ŝ∗t−1 from
which the surviving path emanates; i.e.,

ŝ∗t−1 = arg max
i∈S

{4αt−1(i)+ d(i; j, yt )} .

2: Find the surviving state at t = T ; i.e.,

arg max
j∈S 4αT ( j) � ŝ∗T .

3: Starting from ŝ∗T , backtrack to obtain the state sequence
(ŝ∗T−1, . . . , ŝ∗t , . . . , ŝ∗1 , ŝ∗0 ), as the pointer to each surviving state indicates.

The algorithms based on (20.73), after the logarithmic conversion of the forward
variables, for calculating the MAP state sequence (or the MLSE under the assump-
tion (20.77)) is given in Algorithm 20.2, which is commonly known as the Viterbi
algorithm [108, 339].

The state sequence

ŝ∗ = (ŝ∗0 , ŝ∗1 , ŝ∗2 , . . . , ŝ∗t , . . . , ŝ∗T )

thus obtained is the MAP state sequence estimate, which is also the MLSE when prior
probabilities for all feasible state sequences are equal; i.e.,

ŝ∗ = arg max
s

p(s, y). (20.79)

Note that if the initial state s0 is known to the observer, as is often done in data
transmission, the initial forward value in Step 1 of Algorithm 20.2 should be set as

4α0(i) =
{

0, for i = s0,

−∞, for i �= s0.

In digital communications, an information sequence I (which corresponds directly or
indirectly to the hidden state sequence s) and its transformed version, i.e., the encoder
output o = T (s), are sent over a noisy channel, and the observation y is a noisy version
of o. If the channel is subject to additive white Gaussian noise (AWGN) (e.g., see
(20.124)), the problem can be reduced to a shortest path problem on the trellis diagram
(see Problem 20.124), where the distance metric is the Euclidean distance. If a noisy
channel is characterized by a BSC as discussed in Example 20.1, then the distance
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metric becomes the Hamming distance.12 It is in fact in this context that the Viterbi
algorithm was initially devised [339]. Omura [259] observed that the Viterbi algorithm
is equivalent to Bellman’s dynamic programming [17]. See also Poor [272, 273].

Because of the assumption (20.77) we usually make concerning the prior distribu-
tion of state sequences, the Viterbi algorithm is often referred to as a computationally
efficient algorithm for maximum-likelihood sequence estimation (e.g., see [109, 200]),
although it is more appropriate to call it a MAP sequence estimation algorithm [93, 108],
because the algorithm does not require the uniform probability assumption (20.77).

The Viterbi algorithm has been successfully applied, in addition to convolutional
decoders, to almost all digital recording systems, which now adopt the so-called PRML
(partial-response, maximum-likelihood) scheme [55, 198, 199] and a channel with
intersymbol interference [109, 200, 260] (see also Problem 20.17).

Analogous to the algorithm of Problem 20.11, the backward recursion algorithm for
L y(θ), we can derive the backward algorithm for the MAP state sequence as well. A
mathematical derivation and its algorithmic specification are left to the reader as an
exercise (Problem 20.19). The state sequence thus obtained is also a solution to (20.79).
We can also find an interesting relation between the forward and backward variables
(Problem 20.21), analogous to the relationship (20.64).

20.5 The BCJR algorithm

Suppose that we wish to find a MAP estimate, denoted ŝ∗t , of a hidden state st at time
t (rather than the hidden state sequence s) on the basis of the entire observed data
y � (y0, y1, . . . , yT );13 i.e.,

ŝ∗t = arg max
i∈S

P[st = i |Y T
0 = y], t ∈ T � [0, 1, 2, . . . , T ]. (20.80)

To this end, we consider the following a posteriori probability (APP) of state St being
in i ∈M:

γt (i | y) � P[St = i |Y T
0 = y], i ∈ S, t ∈ T . (20.81)

If we sum this APP across the observation interval T , we can interpret
∑

t∈T γt (i | y)
as the expected number of times that St ; t ∈ T enters state i , when y is observed. This
should also be equal to the expected number of transitions out of state i .

We will find it more convenient to use the following joint probability, instead of the
above conditional probability:

λt (i, y) � P[St = i,Y T
0 = y], i ∈ S, t ∈ T . (20.82)

12 For given two binary sequences of length n, x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn), the Hamming
distance between x and y is defined as dH(x, y) =∑n

i=1 xi ⊕ yi . If x and y are real-valued vectors, the

Euclidean distance is defined by dE(x, y) =
√∑n

i=1(xi − yi )
2.

13 In this section we also drop the model parameter, although we should write p(st = i | y; θ ), if we wish to
emphasize the dependency of the APP on the model parameters, as we shall do in the next section.
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For an observation sequence y, with the parameter θ given and fixed, we can evaluate
p( y) � p( y; θ) = L y(θ) using (20.58), (20.65), or (20.66). Then

γt (i | y) = λt (i, y)
p( y)

, i ∈ S, t ∈ T . (20.83)

The joint probability λt (i, y) can be written in terms of the forward and backward
variables

λt (i, y) = P[St = i,Y t
0 = yt

0]P[Y T
t+1 = yT

t+1|St = i,Y t
0 = yt

0]
= αt (i, yt

0)P[Y T
t+1 = yT

t+1|St = i] = αt(i, yt
0)βt (i; yT

t+1), (20.84)

which we already derived in (20.64) (see Problem 20.12).
From (20.83) and (20.84), we find the following relation between the APP γt (i | y)

and the forward and backward variables:

γt(i | y) =
αt (i, yt

0)βt(i; yT
t+1)

p( y)
, i ∈ S, t ∈ T , (20.85)

where the normalization factor p( y)(= L y(θ)), as given by (20.65), makes γt (i | y) a
bona fide conditional probability so that

∑
i∈S γt (i | y) = 1. Once the APPs γt (i | y) are

found for all states St = i ∈ S at given time t , the MAP estimate (20.80) can then be
expressed as

ŝ∗t = arg max
i∈S

{
αt(i, yt

0)βt (i; yT
t+1)

}
, t ∈ T . (20.86)

The above steps to obtain the MAP estimate were found by Bahl, Cocke, Jelinek
and Raviv [11]. By taking the initials of the four authors, this computation algorithm is
known as the BCJR algorithm, which we summarize in Algorithm 20.3, in which the
initial probability α0(i, y0) = P[S0 = i, Y0 = y0], as given in (20.49).

Algorithm 20.3 Forward–backward algorithm for MAP state estimation: BCJR
algorithm

1: Compute and save the forward vector variables recursively:

α�0 = (α0(i, y0), i ∈ S),
α�t = α�t−1C(yt), t = 1, 2, . . . , T .

2: Compute the backward vector variables recursively and find the MAP state
estimate:

βT = 1,

β t = C(yt+1)β t+1,

ŝ∗t = arg max
i∈S

αt (i)βt (i), t = T − 1, T − 2, . . . , 1.



594 Hidden Markov models and applications

The BCJR algorithm is based on applying the FBA, discussed in Section 20.3.3
for evaluating the likelihood L y(θ), to a related but different problem of estimating
a hidden state variable St at a given t ∈ T . We will show in Section 20.6 that the
FBA can also be applied to estimate and re-estimate HMM parameters (α0, C) (or
(π0, A, B)). This algorithm, as applied to parameter estimation, is known as the Baum–
Welch algorithm. In fact, the auxiliary variables λt (i, y) and γt (i | y) used in the BCJR
algorithm were originally introduced in the Baum–Welch algorithm.

20.6 Maximum-likelihood estimation of model parameters

In many situations we may not have prior knowledge about exact values of the model
parameter θ = (α0, C). In such a case, we make an initial estimate of the parameter
in some manner. Once we collect the observations y, we may learn about the model
parameter and find a possibly better estimate of the parameter. This learning pro-
cess is referred to as parameter estimation and re-estimation, or simply as parameter
estimation.

As we discussed in Chapter 18, it is generally too difficult or complex to come up
with an analytic expression for an MLE or a Bayes’ estimate for a certain param-
eter associated with some general probability distribution. This is also the case for
an estimate of the model parameter associated with an HMM. Therefore, we need to
resort to some numerical algorithm to seek an optimal estimate under a given cri-
terion. In Section 19.2.2 on the EM algorithm for missing data, we discussed an
iterative method for an MLE of the parameter θ associated with a probability distri-
bution pX (x; θ), where only Y of X = (Y , Z) is observable. Our problem at hand
exactly fits into that framework. The hidden Markov process S corresponds to the
latent variable Z assumed in that formulation. Thus, it is apparent that the expectation-
maximization (EM) algorithm is applicable to maximum-likelihood estimation of the
HMM parameters.

20.6.1 Forward–backward algorithm for a transition-based hidden Markov model

In this section we focus on the EM algorithm for estimation and re-estimation of

θ = (α0( j, k), c(i; j, k), i, j ∈ S, k ∈ Y).

Recall the general auxiliary function derived in (19.38) of Section 19.2.2:

Q(θ |θ (p)) = E
[

log p(S, y; θ)| y; θ (p)
]
=
∑

s

p(s| y; θ (p)) log p(s, y; θ),

(20.87)

where θ (p) is the pth estimate of the model parameters,p = 0, 1, 2, . . ..
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From (20.49) we have

p(s, y; θ) = α0(s0, y0; θ)
T∏

t=1

c(st−1; st , yt ), (20.88)

where

y � yT
0

as defined before. By taking the logarithm of the above expression, and replacing s by
S, we have

log p(S, y; θ) = logα0(S0, y0; θ)+
T∑

t=1

log c(St−1; St , yt ). (20.89)

Since S is an RV, both sides of the above equation are RVs. Now, taking the expectation
with respect to p(s| y; θ (p)), we have

Q(θ |θ (p)) = E[logα0(S0, y0; θ)| y, θ (p)] +
T∑

t=1

E[log p(St , yt |St−1; θ)| y, θ (p)]

= Q0(θ |θ (p))+ Q1(θ |θ (p)), (20.90)

where we used the definition c(st−1; st , yt ) = p(st , yt |st−1; θ). The first term can be
written as

Q0(θ |θ (p)) =
∑
i∈S

logα0(i, y0; θ)γ0(i | y; θ (p)), (20.91)

where γ0(i | y; θ (p)) = P[S0 = i | y; θ (p)] is the APP of the initial hidden state S0 defined
by (20.85). Similarly, we can write the second term of (20.90) as

Q1(θ |θ (p)) =
T∑

t=1

∑
i∈S, j∈S

log p( j, yt |i; θ)ξt−1(i, j | y; θ (p)), (20.92)

where ξt−1(i, j | y; θ (p)) = P[St−1 = i, St = j | y; θ (p)] is the conditional joint proba-
bility of the pair of states (St−1, St). Similar to the derivation of (20.85), it is not difficult
to show (see Problem 20.22 (c)) that

ξ
(p)
t−1(st−1, st | y) =

α
(p)
t−1(st−1, yt−1

0 )c(p)(st−1; st , yt )β
(p)
t (st ; yT

t+1)

L y(θ
(p))

, (20.93)

where we use the simplified notation

ξ
(p)
t−1(st−1, st | y) � ξt−1(st−1, st | y; θ (p)),

α
(p)
t−1(st−1, yt−1

0 ) � αt−1(st−1, yt−1
0 ; θ (p)),

β
(p)
t (st ; yT

t+1) � βt(st ; yT
t+1; θ (p)).
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Since these conditional probabilities are expressed in terms of the forward and backward
variables, they can be calculated using the forward-backward algorithm (FBA) as was
done in Algorithm 20.3. Note that, because γt (i | y; θ (p)) =∑ j∈S ξt (i, j | y; θ (p)) (see

Problem 20.24), it is sufficient to calculate ξt (st−1, st | y; θ (p)) only.
Thus, the E-step of the EM algorithm can be performed using the FBA discussed

in Section 20.3.3. In the forward part we compute and save the forward variables
α( yt

0; θ (p)), and in the backward part we compute β( yT
t ; θ (p)) and, using the saved

forward variables, compute ξt−1(st−1, st | y; θ (p)) and accumulate the sums to evaluate
Q0(θ |θ (p)) of (20.91) and Q1(θ |θ (p)) of (20.92).

20.6.1.1 The M-step of the EM algorithm for a transition-based hidden Morkov model
Recall that, in a transition-based HMM, the model parameter is θ = (α,C), where

α = (α0( j, k); j ∈ S, k ∈ Y),C = [c(i; j, k); i, j ∈ S, k ∈ Y],

and

α0( j, k) = P[S0 = j, Y0 = k], j ∈ S, k ∈ Y,
c(i; j, k) = P[St = j, Yt = k|St−1 = i], i, j ∈ S, k ∈ Y, t = 1, 2, . . . , T .

Since these parameters are the joint probability and conditional joint probability
distributions, they must satisfy constraints∑

j∈S,k∈Y
α0( j, k) = 1, (20.94)

∑
j∈S,k∈Y

c(i; j, k) = 1, for all i ∈ S. (20.95)

We readily see from (20.91) and (20.92) that Q0(θ |θ (p)) depends only on α0 and
Q1(θ |θ (p)) depends on C, but not on α0. Hence, we can maximize them separately.
Applying the log-sum inequality (10.21), we find that Q0(θ |θ (p)) is maximized at the
(p + 1)st step when α0( j, y0; θ) is set to

α
(p+1)
0 ( j, y0) = γ0(i | y; θ (p)) = α

(p)
0 ( j, y0)β

(p)
0 ( j; yT

1 )

L y(θ
(p))

. (20.96)

Similarly, Q1(θ |θ (p)) can be maximized at

c(p+1)(i; j, k) =
∑T

t=1 ξ
(p)
t−1(i, j | y)δyt ,k∑

j∈S
∑T

t=1 ξ
(p)
t−1(i, j | y)δyt ,k

. (20.97)
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Because of the multiplier δyt ,k , summation is done with respect to those t for which
yt = k. The last equation can also be presented more explicitly by using (20.140):

c(p+1)(i; j, k) =
∑T

t=1 α
(p)
t−1(i, yt−1

0 )c(p)(i; j, yt )β
(p)
t ( j; yT

t+1)δyt ,k∑
j∈S

∑T
t=1 α

(p)
t−1(i, yt−1

0 )c(p)(i; j, yt )β
(p)
t ( j; yT

t+1)
. (20.98)

Algorithm 20.4 implements the EM algorithm discussed above. The forward part of
the E-step is the same as in Algorithms 20.1 and 20.3, and we use the vector-matrix
notation as before. The backward part is basically the same as in Algorithm 20.3, as far
as the computation of the backward vector variables β

(p)
t is concerned. However, we

need to compute

S(p)(i, j, k) =
T∑

t=1

α
(p)
t−1(i, yt−1

0 )c(p)(i; j, yt )β
(p)
t ( j; yT

t+1)δyt ,k , (20.99)

Algorithm 20.4 EM algorithm for a transition-based HMM

1: Set p ← 0, and denote the initial estimate of the model parameters as
α
(0)
0 = [α(0)0 (i, y0), i ∈ S] and C(0)(y0) = [c(0)(i; j, y0); i, j ∈ S, k ∈ Y].

2: The forward algorithm in the E-step: Compute and save the forward vector
variables α

(p)
t recursively:

α(p)
�
t = α(p)

�
t−1C(p)(yt ), t = 1, 2, . . . , T .

3: Compute the likelihood function: L(p) = 1�α
(p)
T .

4: The backward algorithm in the E-step:Compute the backward vector variables
β
(p)
t recursively. Compute and accumulate α(p)t−1(i)c

(p)(i; j, k)β(p)t ( j).

1. Set β
(p)
T = 1and S(p)(i, j, k) = 0, i, j ∈ S, k ∈ Y .

2. For t = T − 1, T − 2, . . . , 0:
a. Compute β

(p)
t = C(p)(yt+1)β

(p)
t+1.

b. Compute

S(p)(i, j, k)← S(p)(i, j, k)+ α(p)t−1(i)c
(p)(i; j, yt )β

(p)
t ( j)δk,yt .

5: The M-step: Update the model parameters:

α
(p+1)
0 ( j)←− α

(p)
0 ( j)β(p)0 ( j)

L(p)
, for all j ∈ S,

c(p+1)(i; j, k)←− S(p)(i, j, k)∑
j∈S S(p)(i, j, k)

for all i, j ∈ S, k ∈ Y .

6: If any of the stopping conditions are met, stop the iteration and output the
estimated α

(p+1)
0 and C(p+1); else set p ← p + 1 and repeat Steps 2 through 5.
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which is required to calculate c(p)(i; j, k) of (20.98). For the parameter variables used
in the algorithm, we explicitly show the superscript (p), although we suppress the
observed data y. If we do not need to keep all the computation results in the itera-
tive procedure, we can overwrite the parameter values of the previous iteration and can
suppress (p).

20.6.2 The Baum–Welch algorithm

Let us turn our attention to the state-based output model, which is commonly assumed
in the HMM literature; namely, a special case where both the initial distribution
α0( j, k) = P[S0 = j, Y0 = k] and the conditional probability c(i; j, k) = P[St = j,
Yt = k|St−1 = i] can be factored as follows (see Definition 20.3 of Section 20.2.1):

α0( j, k) = π0( j)b( j; k), j ∈ S, k ∈ Y, (20.100)

c(i; j, k) = a(i, j)b( j; k), i, j ∈ S, k ∈ Y . (20.101)

Then the model parameter is θ = (π0, A, B), where

π0 = (π0(i); i ∈ S), A = [a(i, j); i, j ∈ S], B = [b( j; k); j ∈ S, k ∈ Y].

The EM algorithm for this type of HMM is known as the Baum–Welch algorithm [346].
By proceeding in a fashion similar to the steps that we took to arrive at the M-step

formula (20.97), we can find M-step formulas for the model parameters A, B, and π0.
However, rather than starting from the definition of the Q-function given in (20.87),
we make use of the expression (20.90) obtained for the transition-based HMM. Using
(20.100), we can write Q0 of (20.91) as

Q0(θ |θ (p)) =
∑
iS

logπ0(i)γ
(p)(i | y)+

∑
i∈S

log b(i; y0)γ
(p)
0 (i | y), (20.102)

where

γ
(p)
0 (i | y) = γ0(i | y; θ (p)).

Similarly, using (20.101), we write Q1 of (20.92) as

Q1(θ |θ (p)) =
T∑

t=1

∑
i∈S, j∈S

log a(i, j)ξ (p)t−1(i, j | y)+
T∑

t=1

∑
i∈S, j∈S

log b( j; yt )ξ
(p)
t−1(i, j | y)

=
T∑

t=1

∑
i∈S, j∈S

log a(i, j)ξ (p)t−1(i, j | y)+
T∑

t=1

∑
j∈S

log b( j; yt )γ
(p)( j | y),

(20.103)

where we used the identity (Problem 20.24 (c))
∑

i∈S ξt−1(i, j | y) = γt( j | y). Then,
from (20.102) and (20.103), we find
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Q(θ |θ (p)) =
∑
iS

logπ0(i)γ
(p)(i | y)+

T∑
t=1

∑
i∈S, j∈S

log a(i, j)ξ (p)t−1(i, j | y)

+
T∑

t=0

∑
j∈S

log b( j; yt )γ
(p)( j | y). (20.104)

It is clear that we can maximize the three summed terms separately, by applying the
equality condition for the log-sum inequality as done in the previous section, and find
the following M-step formulas:

π
(p+1)
0 (i) = γ (p)0 (i | y), i ∈ S,

a(p+1)(i; j) =
∑T

t=1 ξ
(p)
t−1(i, j | y)∑T

t=1 γ
(p)
t−1(i | y)

, i, j ∈ S,

b(p+1)( j; k) =
∑T

t=0 γ
(p)
t ( j | y)δk,yt∑T

t=0 γ
(p)
t ( j | y)

, j ∈ S.

(20.105)

The reader is suggested to derive the above updating formula directly from the definition
of the auxiliary function Q(θ |θ (p)) of (20.87) (Problem 20.26), instead of starting from
(20.90) as was done here, which saved a number of derivation steps.

Algorithm 20.5 shows the EM algorithm for a state-based HMM, which is widely
known as the Baum–Welch algorithm, as stated earlier. In order to simplify the notation,
we define an M × M matrix C(yt ), similar to (20.51), by

C(yt) = [a(i, j)b( j; yt ); i, j ∈ S], yt ∈ Y, (20.106)

and the forward vector variables, also as in (20.51):

αt = (αt (i); i ∈ S)�. (20.107)

Then the forward part can be written as a simple vector-matrix equation as shown in the
algorithm.

We introduce the following arrays to represent the numerators and denominators of
a(p+1)(i; j) and b(p+1)( j; k). For notational brevity, we drop the superscript (p).

mt (i; j) � αt−1(i, yt−1
0 )a(i; j)b( j; yt )βt ( j; yT

t+1), i, j ∈ S,

M(i; j) =
T∑

t=1

mt (i, j), i, j ∈ S,

nt ( j, k) � αt ( j, yt
0)βt ( j; yT

t+1)δk,yt = λt ( j, y)δk,yt , j ∈ S, yt ∈ Y,

N ( j, k) =
T∑

t=0

nt ( j, yt ), j ∈ S, k, yt ∈ Y,

where λt (y, y) = αt ( j, yt
0)βt ( j; yT

t+1), as defined in (20.82) (see also (20.84)).
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Algorithm 20.5 Baum–Welch algorithm: the EM algorithm for a state-based
HMM

1: Set p ← 0, and denote the initial estimate of the model parameters as
θ (0)= (π (0)0 , A(0), B(0)(y0)), and define an M × M matrix
C(y0) = [a(i, j)b( j; y0); i, j ∈ S].

2: The forward algorithm in the E-step: Compute and save the forward vector
variables α

(p)
t recursively:

α
(p)
0

� = (α(p)0 (i); i ∈ S),where α
(p)
0 (i) = π(p)0 (i)b(p)(i; y0),

α
(p)
t
� = α

(p)
t−1

�
C(p)(yt ), t = 1, 2, . . . , T .

3: Compute the likelihood function: L(p) = 1�α
(p)
T .

4: The backward algorithm in the E-step: Compute the backward vector variables
β
(p)
t recursively. Compute and accumulate the m(p)

t (i, j) and n(p)t ( j, k).

1. Set

β
(p)
T = 1,M (p)(i, j) = 0, and

N ( j, k) = α(p)T ( j)δk,yT , i, j ∈ S, k ∈ Y .

2. For t = T − 1, T − 2, . . . , 1:
a. Compute β

(p)
t = C(p)(yt+1)β

(p)
t+1.

b. Compute m(p)
t (i, j) = α(p)t−1(i)a

(p)(i; j)b(p)( j; yt )β
(p)
t ( j) and add to

M (p)(i, j):

M(p)(i, j)← M (p)(i, j)+ m(p)
t (i, j), i, j ∈ S, k ∈ Y .

c. Compute n(p)t ( j, k) = α(p)t ( j)β(p)t ( j)δk,yt and add to N (p)( j, k):

N (p)( j, k)← N (p)( j, k)+ n(p)t ( j, yt ).

5: The M-step: Update the model parameter:

π
(p+1)
0 (i)← γ

(p)
0 (i), i ∈ S,

a(p+1)(i; j)← M (p)(i, j)∑
j∈S M (p)(i, j)

, i, j ∈ S,

b(p+1)( j; k)← N (p)( j, k)δk,yt

N (p)( j, yt)
, j ∈ S, yt ∈ Y .

6: If any of the stopping conditions are met, stop the iteration and output the
estimated the model parameter θ (p+1) = (π (p+1)

0 , A(p+1), B(p+1))( y); else set
p ← p + 1, and repeat Steps 2 through 5.
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Note that mt (i; j) is the probability of a transition from state St−1 = i to St = j .
Thus, M(i; j) is the expected number of transitions from state i into state j in ST

0 . Sim-
ilarly, nt ( j, k) is the joint probability that St = i, yt = k; hence, N ( j, k) is the expected
number of occurrences of (St = j, yt = k) in (ST

0 , yT
0 ). Here, γ0(i) is the probability

that the system is in state i at time t = 0. Then,

a(p+1)(i; j)← M (p)(i, j)∑
j∈S M(p)(i, j)

, i, j ∈ S,

b(p+1)( j; k)← N (p)( j, k)δk,yt

N (p)( j, yk)
, j ∈ S, k, yk ∈ Y .

Needless to say, the same storage space can be assigned to all of these variables and
arrays; hence, the superscripts become superfluous and can be dropped in the algorithm
and its implementation. But if we are interested in observing the convergence behavior
of the iterative steps, it will be worthwhile to store all these intermediate results. The
same holds when you are in the debugging stage of implementing the algorithm.

20.7 Application: parameter estimation of mixture distributions

As an example of application of the results of the preceding section, consider the
problem of estimating parameters of a mixture of M probability distributions whose
PDF has the form

fY (y; θ) =
∑
i∈S

πi fi (y;φi ),where S � 0, 1, . . . ,M − 1. (20.108)

In this equation, each fi (y;φi ), i ∈ S, represents a PDF with an unknown (vector)
parameter φi . The mixture coefficients πi are positive numbers whose sum is equal
to unity; otherwise, fY (y; θ) would not be a bona fide PDF.

Our goal is to estimate the parameter

θ = (π0, . . . , πM−1,φ0, . . . ,φM−1) � (a,φ) (20.109)

of this distribution from a sequence of independent samples y = (y0, y1, . . . ,

yt , . . . , yT ) taken from the distribution (20.108).
The likelihood function of θ , given the observation y, is

L y(θ) = fY ( y; θ) =
∏
t∈T

fY (yt ; θ). (20.110)

It is clear that direct minimization of the likelihood function is generally a difficult task,
unless fY ( y; θ) has a nice closed-form expression. Therefore, we may have to resort
to a simulation or an iterative algorithm to numerically obtain an MLE of θ . We now
show that we can formulate the above problem as a parameter estimation problem for
an HMM.

We introduce an i.i.d. random sequence {St } that takes on i ∈ S with probability πi ,
where the set S is defined in (20.108). An i.i.d. sequence can be considered as a zeroth
order Markov chain with state transition probabilities of the form
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a(i, j) = π j , for all i ∈ S, j ∈ S. (20.111)

So we can treat St as a hidden Markov process such that, if St = i , the sample yt is
drawn from the distribution associated with the state i . Thus, we have a state-based
HMM.

The likelihood function of θ = (π,φ) given the complete data (s, y) is given by

L s, y(θ) �
T∏

t=0

πst fst (yt ;φst ). (20.112)

Thus, the log-likelihood function is

log L s, y(θ) =
T∑

t=0

logπst +
T∑

t=0

log fst (yt ;φst ). (20.113)

We denote the estimate of θ obtained after the pth iteration as θ (p) = (π (p),φ(p)).
Then, by taking the expectation of (20.113) under the conditional probability
p(s| y; θ (p)), we find that the conditional probability of S, given y and θ (p), is

P[S| y; θ (p)] =
T∏

t=0

γ
(p)
t (st |yt ),

where

γ
(p)
t (st |yt ) � P[St |yt ; θ (p)].

We find the auxiliary function of (19.24) as

Q(θ |θ (p)) = Q1(π |θ (p))+ Q2(φ|θ (p)), (20.114)

where

Q1(π |θ (p)) =
T∑

t=0

∑
st∈S

γ
(p)
t (st |yt ) logπst

=
∑
i∈S

{
T∑

t=0

γ
(p)
t (i |yt )

}
logπi (20.115)

and

Q2(φ|θ (p)) =
T∑

t=0

∑
st∈S

γ
(p)
t (st |yt ) log fst (yt ;φzt )

=
∑
i∈S

T∑
t=0

γ
(p)
t (i |yt ) log fi (yt ;φi ). (20.116)
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We can maximize the Q1 and Q2 of the above expression separately. The condition
to maximize Q1 can be found by using once again the log-sum inequality of (10.21):

πi =
∑T

t=0 γ
(p)
t (i |yt )∑

i∈S
∑T

t=0 γ
(p)
t (i |yt)

, i ∈ S. (20.117)

Noting that the denominator of the right-hand side is equal to T + 1, we find that the
M-step to update an estimate of probability πi should be

π
(p+1)
i = 1

T + 1

T∑
t=0

γ
(p)
t (i |yt ), i ∈ S. (20.118)

The conditional probability in the above equation can be computed, using Bayes’
formula, as

γ
(p)
t (i |yt ) = π

(p)
i fi (yt ;φ(p)i )

fY (yt ; θ (p))
, (20.119)

where fY (yt ; θ (p)) is given by setting θ = θ (p) in (20.108). Thus, we have

π
(p+1)
i = π

(p)
i

T + 1

T∑
t=0

fi (yt ;φ(p)i )

fY (yt ; θ (p))
. (20.120)

In order to find the parameters φi that maximize Q2, we write from (20.116) and
(20.119)

Q2(φ|θ (p)) =
∑
i∈S

T∑
t=0

π
(p)
i fi (yt ;φ(p)i )

fY (yt ; θ (p))
log fi (yt ;φi ). (20.121)

Since φi ’s are independent, we can maximize each summand of the sum over i ∈ S
independently. Thus, a general solution for the M-step for the parameter φi is given by

φ
(p+1)
i = argφi

max
T∑

t=0

π
(p)
i fi (yt ;φ(p)i )

fY (yt ; θ (p))
log fi (yt ;φi ). (20.122)

Analytic expressions for φ
(p+1)
i may be obtained, however, if we assume the exponen-

tial family distribution for the PDFs fi (y;φ), i ∈ S, such as in an often-assumed mix-
ture of Gaussian distributions (see Problems 20.28 and 20.29; see also Section 21.3.2).
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20.8 Summary of Chapter 20

State space of St : S = {0, 1, . . . ,M − 1} (20.1)

Alphabet of output yt Y = {0, 1, 2, . . . , K − 1} (20.9)

Definition of HMM: p(st , yt |st−1, yt−1) = p(st , yt |st−1) (20.13)

State-based HMM: p(yt |st−1, st ) = p(yt |st ). (20.24)

Transition-based HMM: p(yt |st−1, st ) �= p(yt |st ) Def. 20.3

HMM parameter: c(i; j, k) = P[St = j, Yt = k|St−1 = i] (20.15)

Likelihood function: L y(θ) = p( y; θ) (20.47)

Matrix rep. of L y(C): L y(C) = α0(y0)
�
(∏T

t=1 C(yt )
)

1 (20.52)

Forward variable: αt ( j, yt
0) = P[St = j,Y t

0 = yt
0;C] (20.54)

Forward recursion: αt ( yt
0)
� = αt−1( yt−1

0 )�C(yt ) (20.57)

Forward evaluation of
L y(C):

L y(C) = αT ( yT
0 )
�1 =∑i∈S αT (i, yT

0 ) (20.58)

Backward variable: βt(i; yT
t+1) = p( yT

t+1|St = i,C) (20.60)

Backward recursion: βt ( yT
t+1) = C(yt+1)β t+1( yT

t+2) (20.62)

Forward–backward
evaluation:

L y(C) = αt( yt
0)
�β t ( yT

t+1) (20.65)

Forward variable for

MAP sequence
estimation:

α̃t ( j, yt
0) � maxst−1

0
P[St−1

0 = st−1
0 ,

St = j,Y t
0 = yt

0]
(20.69)

Viterbi algorithm: α̃t ( j, yt
0) =

maxi∈S
{
α̃t−1(i, yt−1

0 )c(i; j, yt )
} (20.71)

APP of St = i , given y: γt (i | y) = αt (i, yt
0)βt (i; yT

t+1)

p( y) (20.85)

MAP estimate (BCJR): ŝt = arg maxi∈S
{
αt (i, yt

0)βt(i; yT
t+1)

}
(20.86)

Q-function for HMM: Q(θ |θ (p)) = E
[

log p(S, y; θ)| y; θ (p)
]

=∑s p(s| y; θ (p)) log p(s, y; θ)] (20.87)

EM algorithm for
HMM:

c(p+1)(i; j, k) =
∑T

t=1:yt=k ξ
(p)
t−1(i, j | y)∑T

t=1 γ
(p)
t−1(i | y)

(20.97)

where ξ
(p)
t (i, j | y) = α

(p)
t (i, yt

0)c
(p)(i; j,yt+1)β

(p)
t+1( j; yT

t+2)

L y(C(p))
(20.137)

γ
(p)
t (i | y) = α

(p)
t (i, yt

0)β
(p)
t (i; yT

t+1)

L y(C(p))
(20.85)

Baum–Welch algorithm: π
(p+1)
0 (i) = γ (p)0 (i | y) (20.105)

a(p+1)(i; j) =
∑T

t=1 ξ
(p)
t−1(i, j | y)∑T

t=1 γ
(p)
t−1
(i | y) (20.105)

b(p+1)( j; k) =
∑

t∈T γ
(p)
t ( j | y)b(p)( j;yt )δyt ,k∑

t∈T γ
(p)
t ( j | y)b(p)( j;k) (20.105)
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20.9 Discussion and further reading

It is difficult to trace back the history of HMMs, because similar concepts have been
developed in diverse fields; hence, the different nomenclatures: e.g., a stochastic sequen-
tial machine, a Markov function, a probabilistic automata, a state-space system, and
a partially observable Markov process. Markov considers, in his 1912 paper [239],
unobserved events A, B, and C representing a (Markov) chain, and events E and F
occurring associated with them with different probabilities. Romanovsky [284, 285]
generalizes Markov’s results to a chain with n states. Shannon introduced in his seminal
paper [300] a finite-state channel, which is an HMM. Burke and Rosenblatt [43] stud-
ied the problem of HMM state reduction. Baum and coworkers [15, 16] used the term
“probabilistic functions of Markov chains.”

As we shall discuss in Chapter 21, the forward recursion algorithm discussed in
Section 20.3.2 is a simplest example of the sum-product algorithm or Pearl’s belief
propagation algorithm discussed in Section 21.5 for the Bayesian network, which can
be viewed as a generalization of the HMM.

The Viterbi algorithm [339, 340], originally devised by A. Viterbi in 1967 as an
optimal decoding scheme for convolutional codes, is perhaps the most widely prac-
ticed algorithm in HMM applications. See Kobayashi [200] and Forney [109] for its
early applications to digital communication channels with intersymbol interference,
and Kobayashi [198, 199] for its application to high-density digital recording. See also
Forney [108], and Hayes et al. [148], and Poor [272, 273] on the Viterbi and related
algorithms.

The BCJR algorithm was proposed [11] as an optimal scheme for the minimum sym-
bol error-rate decoding of convolutional and linear codes. Chang and Hancock [49]
derived an algorithm equivalent to the BCJR algorithm in the context of optimal recep-
tion of a signal over a channel with intersymbol interference (ISI). The BCJR algorithm,
however, requires substantially more computations than the Viterbi algorithm, because
the matrix multiplications in (20.57) and (20.62) require significantly more computa-
tions than the max operation of (20.73), yet the performance gain of the BCJR algorithm
over the Viterbi algorithm may be insignificant. Thus, it had not been used in practice
until its utility was found in the mid 1990s when it was found it could constitute an
important part of an iterative decoding scheme known as the Turbo decoding algorithm
[22]. See also Hagenauer et al. [138].

Application of HMM to speech recognition has been explored by Jelinek and cowork-
ers at IBM Research since the early 1970s [163–165]. Rabiner and coworkers [274–276]
at Bell Telephone Laboratories, who also worked on speech recognition, seem to have
popularized the term “hidden Markov model.” Ephraim [92] discusses the HMM in the
context of statistical-model-based speech-enhancement systems. The HMM formula-
tion and the Viterbi algorithm have also been practiced in computational biology; e.g.,
DNA sequence analysis (e.g., see Durbin et al. [85]) and protein sequencing (e.g., see
Kumar and Cowen [216] and reference therein). See also Brown et al. [39].

The Viterbi algorithm and the BCJR algorithm differ in a fundamental manner. The
former computes an MLE of a state sequence, which is a point estimate in the state
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space ST , whereas the latter computes the posterior probability for each message bit.
The real value of the BCJR algorithm is that the posterior probability can be used as
a part of Turbo decoding in an iterative fashion. Turbo decoding can be viewed as a
Bayesian learning procedure; i.e., an instance of Pearl’s belief propagation algorithm
or the sum-product algorithm discussed in Section 21.6.1 (see also [245]).

The BCJR algorithm can also be viewed as an extension of smoothing, which will be
discussed in the context of Wiener filtering in Section 22.2, in the sense that it provides
an optimal estimate of st on the basis of the observations yT

0 received prior to and after
time t . In Wiener filtering, Yt and St are restricted to the case where Yt = St + Nt , and
both St and Nt are WSS processes. As we shall discuss in Section 22.5, a continuous-
time algorithm based on forward-filtering and backward smoothing, similar to the BCJR
algorithm, was devised by Rauch–Tung–Striebel (RTS) [279]. See also Cappé et al. [46]
on this and other inference problems in HMMs.

As for model parameter estimation for the HMM, the Baum–Welch algorithm
[16, 346] is perhaps the best known and most frequently used algorithm. Turin [332]
provides a comprehensive treatment of HMMs as applied to digital communication sys-
tems. Ephraim and Merhav [93] give an extensive review of HMM theory and related
literature. Kschischang et al. [213] show that the forward–backward algorithm (FBA)
is a sum-product algorithm and they relate the algorithm to the Tanner graph and other
factor graphs. See Section 21.6.1 for more on these subjects.

The EM algorithm and its variants have also been applied to the problem of fit-
ting Markovian arrival processes, Markov modulated Poisson process (MMPP) (see
Problems 16.11 and 20.30) and other phase-type distributions (e.g., see Asmussen et
al. [7], Rydén [291], Breuer [38], and Roberts et al. [281]). See also Problems 20.30–
20.32 of this chapter. The aforementioned book by Turin [332] discusses the problem
of fitting phase-type distributions using the EM algorithm.

In the discrete-time HMM discussed in this chapter, we assumed that the duration of
any state is either constant (i.e., the unit time in a discrete-time model) or geometrically
distributed. If we allow the state duration to have a general distribution, such a model
is referred to as an explicit-duration HMM or a hidden semi-Markov model (HSMM)
[224, 250]. Ferguson [103] seems to be the first to investigate an estimation algorithm
for the HSMM. Yu and Kobayashi [366, 367] discuss an HSMM with missing data and
multiple observation sequences, and an efficient FBA. See also Yu [365] for an excellent
survey on the HSMM and its applications.

20.10 Problems

Section 20.2: Formulation of a hidden Markov model

20.1∗ Observable process Y(t). Show that the observable process defined by (20.12)
is not a simple Markov chain.

20.2 An HMM representation of the convolutional encoder with a state-based
output model. Apply the state-based output model to the convolutional encoder
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discussed in Example 20.1. How do you define an HMM in this case? What is the state
space? Draw the state-transition diagram and the trellis diagram. What is the model
parameter θ in this model?

20.3 St of the convolutional encoder is a Markov chain. Show that the state
sequence St defined by (20.37) forms a Markov chain when the input variables It are
independent for different t .

20.4 Equilibrium state distribution and mean state sojourn time. Derive the equi-
librium state distribution (20.44) and the mean state sojourn times (20.45) in the
Gilbert–Elliott channel model.

20.5 A convolutional encoder and an AWGN channel. Assume that the encoded
sequence is sent as a bipolar signal over a channel where noise Nt is added. When Nt

are i.i.d. RVs drawn from N (0, σ 2), such noise is called white Gaussian noise and such
a channel is referred to as an additive white Gaussian noise (AWGN) channel.

The signal amplitude is+A or−A depending on a binary bit in the encoded sequence
is “1” or “0.” Find the model parameter θ of this HMM.

20.6∗ Partial-response channel. A partial-response (PR) channel [204, 214] represen-
tation plays an important role in digital recording as well as in digital communications
[198]. An example of a PR channel is one that transforms a binary sequence into a
ternary sequence {Xt }, where

Xt = A(It − It−1), with It , It−1 ∈ {0, 1}, t = 0, 1, 2, . . . , (20.123)

where A is the amplitude of the signal Xt . We assume the initial condition I−1 = 0. It
is then apparent that {Xt ; t ≥ 1} is a sequence of {+A, 0,−A}.

Because of noise, an observable signal is a continuous RV Yt :

Yt = Xt + Nt , (20.124)

where we assume that Nt is white Gaussian noise with zero mean and variance σ 2.

(a) Represent this PR channel by a transition-based output HMM.
(b) Do the same using a state-based HMM.

Section 20.3: Evaluation of a hidden Markov model

20.7∗ Likelihood function as a sum of products. Show that, for the state-based output
model, the likelihood function is also expressed as a sum of products, similar to (20.50).

20.8 Derivation of the product forms.

(a) Derive (20.49) for the HMM (St , Yt ).
(b) Show that the process X t

0 = (St
0,Y t

0) satisfies

p(st
0, yt

0; θ) = p(st−1
0 , yt−1

0 ; θ)c(st−1; st , yt ). (20.125)
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20.9∗ Forward recursion formula when Yt is a continuous RV. Suppose Yt is a
continuous RV. Then, how do you define the functions c(i; j, yt )? Will this affect the
forward recursion algorithm?

20.10 Backward recursion formula. Derive the backward recursion formula (20.62).

20.11 Backward algorithm. Write the backward recursion formula as a program
similar to Algorithm 20.1.

20.12 Forward–backward formula. Derive the formula (20.64).

20.13 Forward–backward algorithm. Write the forward–backward recursion for-
mula as a program similar to Algorithm 20.1 and the answer to Problem 20.11.

Section 20.4: Estimation algorithms for state sequence

20.14∗ The Viterbi algorithm. Derive the recursion formula (20.71).

20.15 The Viterbi algorithm for a convolutional encoded sequence sent over a
BSC. Consider the communication system discussed in Example 20.1 of Section 20.2.2.
For a given error rate ε of the BSC, discuss how the Viterbi algorithm works to obtain
an MLE of the information sequence It based on the observation yT

0 at the output of the
BSC channel.

20.16 MAP state estimation versus maximum-likelihood sequence estimation. We
showed in the text that when prior probabilities π(s) of possible state sequences are
equal, the MAP state estimation algorithm can be used to find an MLSE. Let us assume
that the prior probabilities π(s) are not equal. Then the MLSE is clearly different from
the MAP sequence estimation algorithm. Show that the auxiliary variable (20.69) should
be modified as

α̃t( j, yt
0) � max

st−1
0

P[Y t
0 = yt

0|St−1
0 = st−1

0 St = j] (20.126)

and (20.71) should be modified to

α̃t( j, yt
0) = max

i∈S {α̃t−1(i, yt−1
0 )b̃(i; j, yt )}, j ∈ S, 1 ≤ t ≤ T, (20.127)

with the initial value

α̃0(i, y0) = b(i, y0), i ∈ S, (20.128)

where b(i, y0) and b̃(i, j; yt ) are defined by (20.27) and (20.28), respectively.

20.17 The Viterbi algorithm for an AWGN channel. Consider a communication
channel where an information sequence {It } is transformed into a Markov chain {St } in
some fashion. We assume that this transformation is invertible in the sense that, once
we recover the state sequence {St }, we can reconstruct the information sequence {It }.

The transmitter sends a signal Xt which is uniquely determined by the state transition
St−1 = i → St = j , which we denote as
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Xt = Xt (i, j).

The communication channel is an AWGN channel:

Yt = Xt (i, j)+ Nt ,

where Nt ∼ N (0, σ 2).

(a) Find fYt |St−1St (yt |i, j) and c(i; j, yt ) asked in Problem 20.9.
(b) Show that the recursion formula (20.71) can be replaced by the following equation

for a new forward variable α̌t( j, yt
0), j ∈ S, t = 1, 2, . . . , T :

α̌t ( j, yt
0) = min

i∈S

{
α̌t−1(i, yt−1

0 )+ [yt − xt (i, j)]2 − 2σ 2 ln a(i, j)
}
, (20.129)

with the initial condition

α̌0( j, y0) =
{

0, for j = s∗0 ,
∞, for j �= s∗0 .

20.18∗ The Viterbi algorithm for a partial-response channel [199, 200]. Consider
the partial-response channel of Problem 20.6. The state transition probability matrix
A = [a(i, j)] is given by

A = [a(i, j)
] = [ 1/2 1/2

1/2 1/2

]
. (20.130)

Assume that the information sequence It (= St) is an i.i.d. binary sequence. Assume
that initially the transmitter state is set to S0 = 0.

(a) Show that the recursion equation (20.129) is further simplified to

4αt ( j, yt
0) = max

i∈S

{
4αt−1( j, yt−1

0 )+ yt xt (i, j)− x2
t (i, j)

2

}
, (20.131)

where

4α0(i, y0) =
{

0, for i = 0,
−∞, for i = 1.

(b) Further simplify the above recursion formula by noting that x(0, 0) = x(1, 1) = 0,
x(0, 1) = +A and x(1, 0) = −A.

20.19 Backward version of the Viterbi algorithm and its program.

(a) Show that a backward version of the auxiliary variable for the Viterbi algorithm is
given by

β̃t (i; yT
t+1) = max

sT
t+1

P[ST
t+1 = sT

t+1,Y T
t+1 = yT

t+1|St = i]. (20.132)
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(b) Show that the variable β̃t (i; yT
t+1) satisfies the following recursion:

β̃t (i; yT
t+1) = max

j∈S
{c(i; j, yt+1)β̃t+1( j; yT

t+2)}. (20.133)

(c) State the backward version of the Viterbi algorithm. Assume that the final state sT

is known; i.e., ST = sT with probability one.
(d) Write an algorithmic specification similar to Algorithm 20.2 for the backward

version of the Viterbi algorithm.

20.20 Backward Viterbi algorithms for an AWGN channel and the partial-
response channel.

(a) Show that, for an AWGN channel, the backward recursion (20.133) is replaced by
the following recursion:

β̌t(i; yT
t+1) = min

j∈S

{
β̌t+1( j; yT

t+2)+ [yt+1 − xt+1(i, j)]2 − 2σ 2 ln a(i, j)
}
,

(20.134)

with the initial condition

β̌T ( j,∅) = 0 for all j ∈ S.

Note that if the terminal state sT is known to the receiver, the above initial condition
should be replaced by

β̌T ( j,∅) =
{

0, for j = sT ,

∞, for j �= sT .

(b) Consider the partial-response channel discussed in Problems 20.6 and 20.18.
Assume that the terminal state is known to be zero; i.e., ST = 0. Show that the
above recursion (20.134) can be replaced by

4βt(i; yT
t+1) = max

j∈S

{
4βt+1( j; yT

t+2)+ yt+1xt+1(i, j)− x2
t+1(i, j)

2

}
, (20.135)

where

4βT ( j; ∅) =
{

0, for j = 0,
−∞, for j = 1.

Further simplify the above recursion formula by noting that x(0, 0) = x(1, 1) =
0, x(0, 1) = +A and x(1, 0) = −A.

20.21 Forward and backward variables of the Viterbi algorithm. Show that the
auxiliary variables α̃t ( j, yt

0) of (20.69) and β̃t ( j; yT
t+1) of (20.132) satisfy

α̃t ( j, yT
0 )β̃t ( j; yT

t+1) = max
st−1

0 ,sT
t+1

P[St−1
0 = st−1

0 , St = j, ST
t+1 = sT

t+1,Y T
0 = yT

0 ].
(20.136)
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Section 20.5: The BCJR algorithm

20.22 APP ξt(i, j |y) and joint probability σt(i; j, y).

(a) Consider the APP of observing a transition St = i → St+1 = j , given the observa-
tion y:

ξt (i, j | y) � P[St = i, St+1 = j |Y T
0 = y]. (20.137)

What does
∑T

t=0 ξt(i, j | y) represent?
(b) Consider the joint probability

σt (i; j, y) � P[St = i, St+1 = j,Y T
0 = y]. (20.138)

Show that

σt (i; j, y) = αt(i, yt
0)c(i; j, yt+1)βt+1( j; yT

t+2). (20.139)

(c) Show that

ξt (i, j | y) = αt(i, yt
0)c(i; j, yt+1)βt+1( j; yT

t+2)

p( y)
. (20.140)

20.23 Alternative derivation of the MAP estimate. Obtain an alternative method to
find the MAP estimate by focusing on state transitions as follows.

(a) Obtain the following backward recursion formula for the variable γt (i | y) defined in
(20.85):

γt (i | y) = γt+1(i | y)+
∑
j∈S\i

[ξt(i, j | y)− ξt ( j, i | y)], (20.141)

with the initial condition

γT (i | y) = αT (i, yT
0 )

p( y)
= αT (i, yT

0 )∑
i∈S αT (i, yT

0 )
, (20.142)

where the symbol \ denotes the “set difference” operator; i.e., S \ i denotes the set
of all elements in S excluding i .
Hint: Use the following identity:

P[St = i, St+1 = i] = P[St = i] −
∑

j∈S\i
P[St = i, St+1 = j]

= P[St+1 = i] −
∑

j∈S\i
P[St = j, St+1 = i]. (20.143)

(b) Show that the MAP estimate can be expressed as

Ŝ∗t = arg max
i∈S

γt(i | y), for t = T, T − 1, . . . , 1, 0. (20.144)
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Section 20.6: Maximum-likelihood estimation of model parameters

20.24 Derivation of (20.85). Define ξt (i, j | y) by

ξt (i, j | y) = αt(i, yt
0)c(i; j, yt+1)βt+1( j; yT

t+2)

L y(θ)
, i, j ∈ S, t ∈ T . (20.145)

(a) Show that it is the APP of observing a transition St = i → St+1 = j , given the
observations y.

(b) Show that another APP γt (i | y) defined by (20.85) is related to ξt (i, j | y) by

γt (i | y) =
∑
j∈S

ξt(i, j | y) = αt (i, yt
0)βt (i; yT

t+1)

L y(θ)
. (20.146)

(c) Show the following identity:

γt ( j | y) =
∑
i∈S

ξt−1(i, j | y). (20.147)

20.25∗ Alternative derivation of the FBA for the transition-based HMM. The FBA
for the transition-based HMM discussed in this section can be derived in an alternative
way as follows.

Define M(i; j, k) as the number of times that (St ; St+1, yt+1) = (i; j, k) is found in
the sequence (ST

0 , yT
0 ). Since M(i; j, k) is a function of ST

0 , it is an RV.

(a) Show that

Q0(θ |θ (p)) = E
[
logα0(S0, y0)| y; θ (p)

]
, (20.148)

Q1(θ |θ (p)) =
∑

i, j∈S,k∈Y
E
[

M(i; j, k)| y, θ (p)
]

log c(i; j, k). (20.149)

where Qi (θ |θ (p)); i = 0, 1, correspond to the two terms in (20.90).
(b) Show

M
(p)
(i; j, k| y) � E

[
M(i; j, k)| y, θ (p)

]
=
∑T

t=1 α
(p)
t−1(i, yt−1

0 )c(p)(i; j, k)β(p)t ( j; yT
t+1)δyt ,k

L y(θ
(p))

. (20.150)

Hint: Use equation (20.139) of Problem 20.22.
(c) Show how the maximization step is performed, and verify the solutions obtained in

(20.96) and (20.97).

20.26∗ Alternative derivation of the Baum–Welch algorithm. Derive the Baum–
Welch algorithm by using the following expression for p(S, y; θ) in the definition of
the auxiliary function Q(θ |θ (p)) of (20.87):

p(S, y; θ) = p(S|θ)p( y|S; θ) (20.151)
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and

p(S|θ) = π0(S0)

T∏
t=1

a(St−1, St ) = π0(S0)
∏

i, j∈S
a(i, j)M(i, j), (20.152)

p( y|S; θ) =
T∏

t=0

b(St ; yt ) =
∏

j∈S,k∈S
b( j; k)N ( j,k), (20.153)

where the RV M(i, j) represents the number of times that (St−1, St ) = (i, j) occurs in
the state sequence ST

0 . Similarly, the RV N ( j, k) is the number of times that (St , Yt ) =
( j, k) appears in the Markov process (ST

0 ,Y T
0 ).

Section 20.7: Application: parameter estimation in mixture distributions

20.27 Derivation of (20.118). Find the condition (20.118) by applying the Lagrangian
method to Q1 of (20.115).

20.28 Mixture of Gaussian distribution. In the example of Section 20.7, assume that
the M distributions are all Gaussian distributions N (μi , σ

2
i ), i = 0, 1, . . . ,M − 1. Find

the EM algorithm in a form to obtain an MLE of the model parameters μi , σi as well
as πi , the probability that the i th distribution is chosen, i = 0, 1, . . . ,M − 1. Also state
the algorithm similar to Algorithm 20.5.

20.29 Mixture of exponential family distribution. Show that the updating for-
mula for the parameter φi can take a simpler form if the PDFs fi ( y;φi ) are all
from the canonical exponential family distributions. Verify this result in the case of
Problem 20.28.

20.30 Markov modulated Poisson process and Markov modulated Poisson
sequence. Consider a CTMC S(t); 0 ≤ t <∞with the state space S = {0, 1, . . . ,M −
1}, and its infinitesimal generator Q (16.22) given by

Q = [Qi j
]
, i, j ∈ S. (20.154)

Associated with the process S(t) is a Poisson counting process N (t), whose rate
depends on the state μS(t). In other words,

P[S(t + h) = j, N (t + h) = n | S(t) = i, N (t) = m]

=
⎧⎨⎩

Qi j h(1− μi h + o(h)), if n = m,
Qi j h(μi h + o(h)), if n = m + 1,
o(h), if n ≥ m + 2.

(20.155)

The process (S(t), N (t)) is called Markov modulated Poisson process (MMPP) (see
also Problem 16.11). If the CTMC is hidden and only N (t) is observable, then the
process (S(t), N (t)) is an HMM.

Let us divide the time axis into disjoint and contiguous subintervals of length 
 and
transform the process S(t) into a discrete-time state sequence Sk, k = 0, 1, 2, . . ., such
that
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Sk = S(k
), k = 0, 1, 2, . . . (20.156)

We define the observation sequence Yk as the increment of the counting process N (t)
in the interval (k
, (k + 1)
]; i.e.,

Yk = N ((k + 1)
)− N (k
), k = 0, 1, 2, . . . (20.157)

(a) Find an expression for the transition probability matrix A of its discrete-time
counterpart, which we term a Markov modulated Poisson sequence (MMPS).

(b) Find the MMPS parameter λ = [λi ; i ∈ S] in terms of the time-continuous model
parameters.

20.31 Traffic modeling based on MMPS. Consider the problem of modeling packet
traffic in terms of an MMPS defined in Problem 20.30, in which we denote a hid-
den Markov chain as Sk; k = 0, 1, 2, . . . , Sk ∈ S � {0, 1, 2, . . . ,M − 1}. The packet
arrival process Yk is observable and is known to be Poisson distributed with mean λi ,
when the underlying hidden Markov process is in state i ; i.e.,

P[Yk = n|Sk = i] = λn
i

n! e
−λi , n = 0, 1, 2, . . . , i ∈ S. (20.158)

The model parameter we want to estimate are

θ = (π0, A,λ), (20.159)

where π0 = (π0(i); i ∈ S) is the initial state probability vector; A = [a(i, j)], i, j ∈ S,
is the state transition matrix of the hidden Markov chain Sk and

λ = {λi ; i ∈ S} � (λ0, λ1, . . . , λM−1). (20.160)

Derive a Baum–Welch-type algorithm to obtain an MLE θ̂ of the parameter θ of
(20.159).

20.32 Markov modulated Bernoulli sequence (MMBS). Consider the following
variant of the MMPS model discussed in Problem 20.30. At a given discrete-time, the
number of packets that arrive in the t th interval is at most one; i.e.,

P[Yt = n|St = i] =
⎧⎨⎩

1− bi , for n = 0,
bi , for n = 1,
0, for n ≥ 2,

(20.161)

where 0 ≤ bi ≤ 1 for all i ∈ S = {0, 1, 2 . . . ,M − 1}. The model parameter we need
to specify and estimate is

θ = (π0, A, b),

where b = [b0, b1, . . . , bM−1].
Find the re-estimation formula for the parameter θ = (π0, A, b).



21 Probabilistic models
in machine learning

21.1 Introduction

Machine learning refers to the design of computer algorithms for gaining new knowl-
edge, improving existing knowledge, and making predictions or decisions based on
empirical data. Applications of machine learning include speech recognition [164, 275],
image recognition [60, 110], medical diagnosis [309], language understanding [50],
biological sequence analysis [85], and many other fields. The most important require-
ment for an algorithm in machine learning is its ability to make accurate predictions or
correct decisions when presented with instances or data not seen before.

Classification of data is a common task in machine learning. It consists of finding a
function z = G( y) that assigns to each data sample y its class label z. If the range of the
function is discrete, it is called a classifier, otherwise it is called a regression function.
For each class label z, we can define the acceptance region Az such that y ∈ Az if
and only if z = G( y). An error occurs if the classifier assigns a wrong class to y. The
probability of classification error

E(G) = P[Z �= G(Y)] (21.1)

is called the generalization error in machine learning, where Z denotes the actual
class to which the observation variable Y belongs. The classifier that minimizes the
generalization error is called the Bayes classifier and the minimized E(G) is called
the Bayes error. In practical applications, we generally do not know the probability
distribution of (Y , Z). Hence, we cannot find an analytic expression for the Bayes
classifier. We can, however, construct an empirical solution for the classifier using a
statistical model for the probability distribution. One successful approach to machine
learning is what is termed statistical learning, which consists of three steps: (i) observe
instances ( y1, z1), ( y2, z2), . . . , ( yn, zn) of training data with correct labels;1 (ii) con-
struct a probabilistic (or statistical) model from a set of observed data, a step that is
called training; and (iii) make predictions or decisions, using the model.

One important requirement for a model is its agreement with observed data. But,
given data, it is always possible to construct a model that fits the data exactly, but such
a model may not serve a useful purpose in predicting or classifying future instances.

1 Learning using labeled training data is called supervised learning or learning with a teacher.
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Generality of the model is more important. The model should be a particular case of
a broad family of models. The menu of models should be rich enough to enable us to
choose one that agrees with the data (i.e., extract sufficient knowledge from the data) so
that the model application will give credible results.

In this chapter we will present some important concepts and techniques useful
in probabilistic machine learning. They are MAP (maximum a posteriori probabil-
ity) recognition algorithms, clustering algorithms, sequence recognition algorithms,
Bayesian networks, factor graphs, and Markov chain Monte Carlo (MCMC) methods.
We will illustrate the application of HMMs to several tasks of machine learning (speech
recognition, handwriting recognition, and bioinformatics). Our goal is to show similar-
ities among problems in these diverse fields and to discuss statistical methods for their
solutions. A Bayesian network (BN) is a generalization of the HMM. A factor graph
representation and the sum-product algorithm are useful to find solutions for the BN by
augmenting the methods for the HMMs discussed in Chapter 20. The MCMC method
is a very powerful tool for Bayesian models in general, including machine learning
formulated in the Bayesian framework.

There are many other successful approaches and techniques developed for machine
learning that are not discussed in this chapter. Support vector machines (SVMs) [338]
perform regression and classification by constructing the boundaries of the acceptance
region Az in a multidimensional space. The most popular functions to determine the
boundaries include linear, polynomial, and radial basis functions (RBFs).2 They are
also useful in regression analysis and time series prediction or forecasting. Other topics
in machine learning not covered in this chapter include. (i) Boosting, which refers to
a class of heuristic algorithms for supervised learning, in which a set of weak learn-
ers are combined, typically in an iterative manner to form a strong learner [242, 293].
(ii) The decision tree algorithm, which predicts the value of a target variable based on
input variables using a decision tree. Each interior node corresponds to a value of the
input variable, and each leaf node represents a value of the target variable given the input
variables’ instance represented by the path from the root to the leaf. (iii) The artificial
neural network (ANN) [149] finds a classifier G( y) as a composition of interconnect-
ing artificial neurons (programming constructs) that simulate properties of biological
neurons [154]. ANNs are trained by minimizing the difference between the observed
class z and that of the the network output. ANNs have been applied successfully to
speech recognition, image analysis, robotics, and in other fields. Mathematical theory
and algorithms used in ANNs include statistical estimation theory, optimization, and
control theory. (iv) The genetic algorithm (GA) [241], which refers to a class of heuris-
tic algorithms for search, optimization, and machine learning, using techniques inspired
by natural evolution, such as inheritance, mutation, selection, and crossover.

Closely related to machine learning is the rapidly developing field of data mining
[356]. Data mining refers to the process of extracting relevant patterns from current and
past data and then analyzing and predicting future trends. It is routinely practiced in a

2 An RBF f (x) is a real-valued function whose value depends only on the distance from the origin; i.e.,
f (x) = f (‖x‖).
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wide range of applications, including marketing, surveillance, medicine, genetics, and
bioinformatics. Many of the tools and techniques used in data mining are common to
those developed for machine learning.

21.2 Maximum a posteriori probability (MAP) recognition

Suppose that we want a machine to recognize handwritten symbols drawn from an
alphabet A = {a1, a2, ..., am} based on their images. Let Y represent the image of a
symbol to be recognized. Then the MAP decision rule (or estimation procedure) (see
Section 18.3) corresponds to the following symbol recognition procedure:

a∗ = arg max
a∈A p(a| y), (21.2)

where p(a| y) is the posterior probability of a, given an instance y (i.e., an observed
image data) of the RV Y . Using Bayes’ theorem we can present the previous equation
in the equivalent form

a∗ = arg max
a∈A

p(a) f ( y|a), (21.3)

where p(a) is the prior probability of the symbol a and f ( y|a) is the conditional PDF
of the observation variable Y when it comes from symbol a ∈ A. Needless to say,
f ( y|a) should be replaced by the conditional PMF p( y|a) when the observation takes
on discrete values.

For a given image y, the function L y(ai ) � f ( y|ai ) is called the likelihood function
of ai (see Section 18.1.2). In order to adopt the MAP recognition rule, which is designed
to minimize the overall expected probability of error (see (18.100)), we need to have
probabilistic models, such as HMMs or Gaussian models, for the observation variable Y
so that we can compute the right-hand side of (21.3). The parameters of such models are
estimated using training data yi,k(k = 1, 2, ..., ni ), where ni is the size of the training
data for the model of symbol ai . If the m(= |A|) symbols appear with equal probability
(i.e., p(ai ) = 1/m for all ai ∈ A), the above MAP decision rule (21.3) will reduce to
the maximum-likelihood decision rule.

If we have a sufficient number of training samples for each symbol, we can create the
symbol models by fitting the PDFs f ( y|ai ) to the training data. For example, we can
choose a Gaussian model

f ( y|θ i ) = 1

(2π)k/2|�i |1/2 exp

[
−1

2
( y − μi )

��−1
i ( y − μi )

]
, i ∈M, (21.4)

where M = {1, 2, . . . ,m} is the index set for the alphabet A = {ai ; i ∈M}. The model
parameters θ i = (μi ,�i ) are the mean vector and covariance matrix of the image vari-
able Y , when it is generated by symbol ai . In actual situations, we may not know true
parameter values, so we need to obtain their estimates θ̂ i from the training data.
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Once the model parameters are estimated, the MAP recognizer (21.3) should be
designed as follows. We partition the space Y of the observation variable Y into m
acceptance regions Yi as follows:

Yi = { y : p(ai ) f ( y|θ̂ i ) > p(a j ) f ( y|θ̂ j ) for all j �= i}, for i ∈M. (21.5)

If an image y falls into Yi , we recognize it as ai . If y falls on the boundary of n(≤ m)
regions, we can resolve the tie by a random decision; i.e., we choose one of the n regions
with equal probability 1/n, or, more properly, according to their prior probabilities,
i.e., ∝ p(ai ). If the observation Y is a continuous RV, such a tie situation occurs with
probability zero.

In particular, if we use Gaussian models whose covariance matrices are the identity
matrices (�i = I for all i) and if the prior probabilities are all equal (i.e., p(ai ) =
1/m for all ai ∈ A), then the decision rule (21.5) reduces to the following minimum
distance decision rule:

Yi = { y : ‖y − μ̂i‖ < ‖y − μ̂ j‖ for all j �= i}, i, j ∈M. (21.6)

where ‖y − μ‖ denotes the Euclidean distance between y and μ. These regions are
called Voronoi regions and the collection of these regions is called a Voronoi diagram.
The image y is recognized as symbol ai if y ∈ Yi (i.e., μ̂i is the closest of all the
μ̂i to y).

Now we are ready to evaluate the recognition performance, using test data. The
recognizer’s performance measure can be the average cost of misclassification:

C̄ =
∑
i, j

ci, j ni, j

n
, (21.7)

where ci, j is the cost or risk associated with misclassifying ai as a j (with ci,i = 0 for
correct classification), ni j is the number of tests in which ai is classified as a j , and
n =∑i, j∈M ni, j is the total number of tests. Note that the average cost C̄ of (21.7) is
an empirical estimate of the overall Bayes’ risk (18.91) defined in Section 18.3, because
ni, j/n is an empirical estimate of P[ y ∈ Y j |ai ]. As pointed out in Section 18.3, if we
set ci, j = δi, j (Kronecker’s delta), the average cost C̄ reduces to the overall probability
of misclassification per test.

The above example illustrates the steps involved in a typical machine learning
procedure. However, there are many issues related to its practical implementation:

• The scanned images must be preprocessed to remove noise and distortions. The
images should be represented by their attributes or feature vectors to reduce
the dimensionality of Y . Such data reduction may be achieved, for instance, by using
the principal component analysis (PCA) or the singular value decomposition (SVD)
techniques discussed in Section 13.3. The selection of the representative attributes
is not an easy task. The attributes are often selected by using some background
information in combination with trial and error.

• The shapes of the acceptance regions Yi should be selected to optimize the per-
formance. A discriminative learning approach in which the points close to the
boundaries play a more important role than the other points is often more efficient
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than other methods. The SVMs use this approach to create special types of separat-
ing boundaries between the regions by mapping them into higher dimensional spaces
in which they become hyperplanes.

• The dimension of the symbol space can be very large (e.g., if we treat whole words
or sentences as symbols), necessitating the use of some sophisticated parametric
models, such as HMMs.

The MAP recognition of handwritten symbol recognition formulated in terms of
(21.2) and (21.3) should remain valid for a general MAP recognition problem. The
alphabet A should be interpreted as a set of “symbols,” where a symbol may represent a
word, sequence, or DNA molecule, depending on applications, and y is an observation,
which is called an evidence in the machine learning literature.

21.3 Clustering

The type of learning considered in the previous section is called supervised learning
(or learning with a teacher) because we know the symbol ai of image data we use
for training the machine. However, often we do not know the symbol ai and we need to
obtain this knowledge from the observable data. This type of learning is called unsuper-
vised learning. A typical example of unsupervised learning is data clustering, which
consists of partitioning the training data into nonintersecting subsets (clusters) based on
some similarity measure (or distance measure) so that the members of the same cluster
are more similar (or closer) than the elements of different clusters.

Clustering has applications in various diverse fields, including machine learning, data
mining, image analysis, and bioinformatics. For example, it is used for data classifica-
tion and compression. This is a very important task, because in many applications the
dimensionality of the observation vectors is enormous. In bioinformatics, clustering is
used, for instance, to group homologous3 sequences into gene families and to investigate
possible subtypes.4 Classification of healthy and diseased samples is critical in diagnos-
tics and forensic biology. In signal processing, clustering is used for lossy compression
of a signal. For example, analog-to-digital (A/D) conversion can be viewed as a form of
clustering.

There are many different algorithms for clustering. We consider here three such
algorithms: the K -means algorithm, the EM algorithm, and the k-nearest neighbor rule.

21.3.1 K -means algorithm

The K -means algorithm (also known as Lloyd’s algorithm) is an iterative algorithm for
creating K clusters of observed data y1, y2, . . . , yn . The i th cluster Ci , i = 1, 2, ..., K ,
is a subset of the data points. Denote as ci , i = 1, 2, ..., K , the centroid of the cluster Ci ,

3 In biology, similarity due to shared ancestry is called homology.
4 Subtypes are descendants of a biological type (e.g., a disease) in a phylogenetic tree (see Section 16.4).
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where the centroid is defined as the average point or the center of gravity for the
cluster.

The iterative clustering algorithm finds centroids c(p)i of the clusters C(p)i obtained

after p iterations. Then it forms new clusters C(p+1)
i based on the centroids and a dis-

tance measure d( yk, c(p)i ) between the data points and centroids; yk ∈ C(p+1)
i if and

only if c(p)i is the closest centroid to yk :

d( yk, c(p)i ) = min
j

d( yk, c(p)j ). (21.8)

In other words,

yk ∈ C(p+1)
i if and only if c(p)i = arg min

j
d( yk, c(p)j ). (21.9)

The K -means algorithm uses the mean values of the cluster points as its centroids and
can be described as follows.

1. Initialization. The iteration count p is set to zero and the initial centroids c(0)i are
selected based on some background information or at random.

2. Assignment step. Data points are assigned to K clusters C(p+1)
i according to (21.9).

3. Update step. New centroids c(p+1)
i are found as the means of the data points in the

clusters C(p+1)
i :

c(p+1)
i = 1

n(p+1)
i

∑
yk∈C(p+1)

i

yk,

where n(p+1)
i is the number of data points that belong to the i th cluster at the

(p+ 1)st step. (Clearly,
∑K

i=1 n(p)i = n for all p = 0, 1, 2 . . . .)
4. Repeat the Assignment step and the Update step until the assignments do not

change.

21.3.2 EM algorithm for clustering

Clustering can be performed by fitting a mixture of distributions to experimental data.
For example, if we apply a Gaussian mixture model (GMM) (see Section 20.7,
Problem 20.28), then

f ( y; θ) =
K∑

i=1

πi

(2π)r/2|�i |1/2 exp

[
−1

2
( y − μi )

��−1
i ( y − μi )

]
, (21.10)

where πi is the probability or weight assigned to the i th distribution; hence
∑K

i=1 πi = 1
and r is the dimension of the observation vector y. Then we can use the μi as the
centroids of the clusters while the other parameters allow us to define the boundaries of
the clusters. Note that clustering based on the GMM is similar to the MAP recognition
problem with the Gaussian model (21.4) in which πi is the prior probability assigned
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to the i th symbol. As we discussed in Section 20.7, the parameters of a GMM can
be estimated efficiently using the EM algorithm. This method of clustering is called
GMM/EM clustering in the machine learning literature.

21.3.3 The k-nearest neighbor rule

For a sample y that needs to be classified, the k-nearest neighbor (k-NN) classifier first
finds its k nearest neighbors among the samples y1, y2, . . . , yn and then takes a majority
vote over the class labels of these nearest neighbors and assigns it to the sample y. The
distance is usually the Euclidean distance in the feature vector space.

The following asymptotic result is known [68]: as the sample size n →∞, the prob-
ability of error of the k-NN rule is bounded above by twice the Bayes error. Thus,
the generalization error (21.1) of any classifier based on an infinite data set cannot be
smaller than one half of that of the k-NN rule.

21.4 Sequence recognition

In principle, the methods for symbol recognition can be applied to recognize sequences
of symbols by treating the sequences as new symbols. However, this approach is not
practical in general because the dimensionality of the problem grows exponentially as
the lengths of the sequences grow. Therefore, we need to use a dynamical model for
sequence recognition. The ARMA time series (13.236) driven by white Gaussian noise
en is a Gauss–Markov dynamical model. Similarly, the state space model (22.166) is a
Markov process dynamical model. The finite state machine representation of a convolu-
tional encoder (see Example 20.1 in Section 20.2.2) is another example of a dynamical
model, and an optimal decoding of the convolutional code is done by the Viterbi
decoding algorithm, which is also known as dynamic programming (Section 20.4.2).
However, in the case of a convolutional code, the encoded sequence model is known,
whereas in a machine learning problem the learning algorithm needs to extract the
sequence model from training data.

In this section, we consider two major examples in which HMMs are applied to
sequence modeling. One is speech recognition and the other is biological sequence
alignment. However, the methods to be described here will also be relevant to other
applications, such as handwriting recognition and signature verification.

21.4.1 Speech recognition

In speech recognition, a continuous speech signal is converted into a sequence of
(typically 26-dimensional) feature vectors a1, a2, . . ., which are used by the learning
algorithm. For each phoneme in the selected phonetic alphabet, an HMM, called a
phoneme HMM, is constructed and its model parameter is estimated by using, for
example, the Baum–Welch algorithm. For each word in the vocabulary W , the word
model is constructed by concatenating the corresponding phoneme HMMs. The use
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of null transitions, which are state transitions that do not emit any output, can add
flexibility in aligning the sequences. The word models are then concatenated with pause
models to form a sentence model.

21.4.1.1 Isolated-word recognition
In order to perform isolated-word recognition, we define the vocabulary W of legit-
imate words for a particular application. For each word w ∈W we build a distinct
HMM by combining its component phoneme HMMs stated above, and by obtaining its
model parameter, denoted θ̂(w). The word recognition procedure consists of obtaining
its observation sequence y and computing the likelihood function L y(w) = p( y; θ̂(w))
for each word w ∈W . The word having the maximum likelihood is selected as the
recognizer’s output:

w∗ = arg max
w

L y(w). (21.11)

An optimal solution w∗ is usually found using the Viterbi algorithm (see
Section 20.4.2). The computational burden of the Viterbi algorithm is determined
by
∑

j∈S n j , where n j is the number of edges that are incident on node j ∈ S in
the trellis diagram. In Figure 20.3 of Section 20.2.2, for instance, n j = 2 for all
j ∈ S = {0, 1, 2, 3} (see (20.38)). The Viterbi algorithm has to perform n j compar-
isons to determine a surviving path that ends at state j at time t . This n j is equal to the
number of nonzero a(i, j) in the state transition matrix A = a(i, j) for given j . Therefore,
we often assume a left–right HMM, where each transition takes place from a state to
itself or only to neighboring states, say up to r states on the right; i.e., a(i, j) = 0 for
all i > j and i < j − r , which guarantees that n j < min{ j, r} (see Figure 21.1). In the
left–right HMM, the number of states is often taken to be the length of the word.

21.4.1.2 Connected-word recognition
Isolated-word recognition capability may be sufficient in applications that accept spoken
commands, one at a time. In order to process continuous speech, we need to cre-
ate a sentence model by concatenating the word HMMs and inserting transition states
between the words and pause models.

The MAP speech recognition procedure is based on (21.3), in which a is a sentence
to be recognized based on the observation sequence y. The prior probabilities p(a)
represent the statistical properties of the language that impose certain constraints (i.e.,
the grammar and syntax) on word sequences. We can also take advantage of the fact

S0 S1 S2 S3

Figure 21.1 A left–right HMM.
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that the utterance of a phoneme depends on its adjacent phonemes. This phenomenon
is known as coarticulation, which is often modeled by biphones or triphones; i.e.,
sets of two or three adjacent phonemes selected as the basic units for the HMM at the
phonetic level.

Statistical dependency in a sequence of words a1, a2, . . . , at , . . . can be expressed by
a Markov chain. Typically, a second-order Markov chain is used, and such a language
model at the word level is called a trigram. In this case, we have

p(at |a1, a2, ..., at−1) = p(at |at−2, at−1). (21.12)

Suppose that a word is broken into Np phonemes (or biphones or triphones) on the
average, and each phoneme HMM has Ns hidden phoneme states on the average.
Then a word model involves on average Np M Ns

p hidden states, where Mp is the num-
ber of phonemes (or biphones or triphones). In connected-word recognition with the
trigram language model, the number of states is N 2

w, where Nw is the number of words
in a given application. Then the total number of hidden states at the acoustic level
is N 2

wNp Mp Ns , which becomes an astronomical number even for modest values of
Nw and Mp. Thus, a brute-force application of the Viterbi algorithm to find a MAP
state sequence at the phoneme level is out of the question. Therefore, we need to
resort to a suboptimal algorithm, which searches an optimal sequence in a hierarchi-
cal manner; for instance, by using the Viterbi algorithm at the word sequence level,
on top of the individual word recognition achieved by the Viterbi algorithm at the
phoneme (or triphone) sequence level. In order to reduce the number of state sequence
searches, a heuristic algorithm called the beam search Viterbi algorithm is often
used, which considers only highly plausible sequences, by pruning out less promising
sequences.

21.4.2 Biological sequence analysis

It is well known that similarity between genes and proteins strongly suggests that they
have a common ancestor. (In biology, similarity due to shared ancestry is called homol-
ogy). A DNA molecule is represented by a sequence of nucleotides from the four-letter
alphabet {A, G, C, T} (nucleotide bases: A for adenine, G for guanine, C for cytosine,
and T for thymine), whereas a protein is represented by a sequence of 20 amino acids
that are coded by codons, which are three nucleotides, called trinucleotides. There are
64(= 43) possible codons, but only 20 different amino acids exist; thus, some distinct
codons must represent the same amino acid (e.g., see Durbin et al. [85]).

Random mutations in the sequences that have a common ancestor accumulate over
time. Therefore, the analysis of sequence similarity plays an important role in discov-
ery of any evolutionary relationship between protein and gene sequences and in the
creation of phylogenetic trees (see Section 16.4). Their similarity can be discovered by
aligning the sequences and scoring similarities. Multiple sequence alignments are used
to identify conserved sequence regions across a group of sequences that are assumed
to be evolutionarily related. The sequences are represented as rows (see Figure 16.4
in Section 16.4) and gaps are inserted between the characters so that identical or
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similar characters are aligned in successive columns. This method can be used for short
sequences.

Alternatively, an HMM is trained on sequences that are members of the same family.
A typical HMM for sequences consists of three hidden states (“m” for match, “d” for
delete, and “i” for insert). The model is defined by the state transition probability matrix
A and the matrix B of state-conditional observation probabilities (i.e., probabilities of
observing the letters A, C, G, or T given the hidden state “m” or “i”) with no observa-
tions in a “d” state. It is always assumed that there is one initial state and one terminal
state. This HMM allows us to decide whether a test sequence belongs to a particular
family by evaluating the corresponding likelihood (e.g., by using the forward algorithm
(20.53)). The Viterbi algorithm allows us to align sequences that belong to the same
family by means of match and insert states. This alignment identifies regions of con-
served structures that are characteristic of the family. The model parameter is estimated
using the Baum–Welch algorithm.

21.5 Bayesian networks

A Bayesian network (BN) [166] is a probabilistic graphical model introduced in
machine learning to represent a broad class of complex stochastic systems with many
dependent random variables. A BN may be viewed as a generalization of an HMM. It
has been successfully applied to such diverse fields as medical diagnosis [309], image
recognition [60], speech recognition [371], language understanding [50], and turbo
decoding [245].

We begin with some basic definitions of graph theory required for defining a BN.
Recall that we already used some of these concepts in Section 16.4.

D E FI N I T I O N 21.1 (Directed graph). A directed graph is an ordered pair G = (V, E),
where V is a set of nodes (or vertices) and E is a set of ordered pairs (u, v) of nodes
called directed edges. For given nodes u, v ∈ V , we denote the directed edge from u to
v as (u, v). �

An example of a directed graph is depicted in Figure 21.2. The set of parent nodes of
a node v ∈ V is defined by (see Section 16.4)

pa(v) � {u ∈ V : (u, v) ∈ E}. (21.13)

A B C

DE F

Figure 21.2 Directed graph.
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In Figure 21.2, node A does not have a parent, while the rest of the nodes have one
parent. The set of child nodes of a node u ∈ V is defined by (see also Section 16.4)

ch(u) � {v ∈ V : (u, v) ∈ E}. (21.14)

In Figure 21.2, node A has three children, nodes B, C , and F have one child, while
nodes D and E do not have a child.

In a cycle graph the sequence of all nodes with edges (v1, v2), (v2, v3), . . . , (vn, v1)

represents a cycle. In Figure 21.2, the subgraph5 consisting of nodes B, F , and C is
a cycle graph. If a cycle graph occurs as a subgraph of another graph, it defines a
cycle of that graph. A directed graph with no cycles is called a directed acyclic graph
(DAG).The graph in Figure 21.2 is not acyclic because it has a cycle B, F,C . However,
the subgraph consisting of nodes A, B, D, E, F is acyclic.

D E FI N I T I O N 21.2 (Bayesian network). A Bayesian network (BN) is a DAG G = (V, E)
whose nodes have their associated RVs Xv with the joint probability distribution of the
form

p(x) =
∏
v∈V

p(xv|xpa(v)), (21.15)

where x = (xv; v ∈ V) is an instance of the random vector X = (Xv; v ∈ V) and is
called a state of X and xpa(v) denotes an instance of the RVs Xpa(v) associated with the
parent nodes of v. �

Edges represent conditional dependencies between the RVs associated with the
nodes; the absence of an edge between two given nodes means that the correspond-
ing RVs are conditionally independent of each other. It follows from this definition
that it is sufficient to know the conditional probabilities p(xv|xpa(v)) to describe a BN.
Thus, a BN can be defined as a triplet (V, E, P), where P defines a set of conditional
probability distributions (CPDs) p(xv|xpa(v)), which are also called local probability
distributions. These distributions are estimated from experimental data or provided
by experts of a given application field. The latter possibility represents a major advan-
tage of the BN: the entire BN or a part of the BN can be constructed without using
any experimental data. The CPD is usually represented by the conditional probability
table (CPT), which lists the probabilities for values at a node conditioned on the values
of its parents. If a node does not have parents (i.e., pa(v) = ∅), the CPD reduces to
p(xv|xpa(v)) = p(xv), the prior distribution. If the RV Xv is continuous, p(xv|xpa(v))

of (21.15) should be replaced by the PDF f (xv|xpa(v)).

Example 21.1: Consider the subgraph consisting of the nodes A, B, D, E , and F in
Figure 21.2. This subgraph is a DAG and, according to its structure, we can write

5 A subgraph of a graph G is a graph whose vertex set is a subset of G, and whose adjacency relation is a
subset of that of G restricted to this subset.
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P(A, B, D, E, F) = P(A)P(B|A)P(D|A)P(E |A)P(F |B), (21.16)

where we denote the RVs by the corresponding node symbols (e.g., P(A) and
P(B|A) instead of p(xA) and p(xB |xA) respectively) for notational brevity. This BN is
characterized by the probabilities in the right-hand side of (21.16). �

A set of nodes ∂v is called a Markov blanket of node v if xv is conditionally
independent6 of the value xU of any subset U of other nodes in the network (i.e.,
U ⊂ V,U ∩ ∂v = ∅), given its blanket:

p(xv|x∂v, xU ) = p(xv|x∂v), (21.17)

where x∂v denotes the variables that belong to the Markov blanket of v. This equation
represents the Markovian property of the BNs. Similar to Markov chains, the conditional
probability p(xv|x−v) of the node variable xv given the values of the rest of the nodes
in the BN (denoted as x−v) satisfies

p(xv|x−v) = p(xv|x∂v). (21.18)

Using (21.15) we can show (see Problem 21.3) that

p(xv|x−v) = Cv p(xv|xpa(v))
∏

k∈ch(v)

p(xk |xpa(k)), (21.19)

where

Cv =
⎡⎣∑

xv

p(xv|xpa(v))
∏

k∈ch(v)

p(xk |xpa(k))

⎤⎦−1

(21.20)

is the normalization factor. It follows from this equation that the Markov blanket of
a node consists of its parents, its children, and the other parents (co-parents) of its
children.

A dynamic Bayesian network (DBN) is a BN of a random process Xt . A state-
based HMM Xt = (St , Yt ) is an example of DBN, and can be presented by the directed
graph shown in Figure 21.3. The first row of nodes in this graph represents hidden state
variables St , whereas the observation Yt is a child of the state variable St , and so is

S0

Y0 Y1 Y2

S1 S2

Figure 21.3 An HMM as a BN.

6 Recall that we say RVs X and Y are conditionally independent, given Z , if P[X = x, Y = y|Z = z] =
P[X = x |Z = z]P[Y = y|Z = z], or, equivalently, if P[X = x |Y = y, Z = z] = P[X = x |Z = z] for all
x , y, and z.
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St+1. Note that the case where the St are continuous RVs can also be represented by
this DBN.

21.6 Factor graphs

In Section 20.3, we presented several efficient algorithms (e.g., the forward–backward
algorithm (FBA) and the Viterbi algorithm) for solving various estimation problems
associated with HMMs. In order to generalize these algorithms for BNs, we need to
introduce the notion of a factor graph.

Problems that we encounter in computation algorithms often involve a function g(x)
of multivariates x = (x1, x2, . . . , xn), which can be factored into several functions
fi (xi ), where xi denotes an arbitrary subset of the variables x:

g(x1, x2, ..., xn) =
K∏

i=1

fi (xi ). (21.21)

The joint probability distribution given by (21.15) is an example of such g(x).

D E FI N I T I O N 21.3 (Factor graph). A factor graph G = (X ,F, E) is an undirected
bipartite graph7 representing the factorization (21.21). It consists of variable nodes
xi ∈ X , factor nodes fi ∈ F , and edges (i, j) ∈ E between factor node fi and variable
node x j , where x j is an argument of fi . A factor node is also called an operational
node. �

In other words, a factor graph represents the relation between a set of functions
and their arguments in terms of a bipartite graph. In order to apply the sum-product
algorithm to be discussed below, we consider a class of factor graphs that can be repre-
sented as a tree. In such a factor graph, for any given pair of nodes, a path from a node
to the other node is unique. It is a convention to show the variable nodes in circles and
the factor nodes by squares.

Example 21.2: A factor graph. Let

g(x1, x2, x3, x4, x5) = f1(x1, x2) f2(x2) f3(x2, x3, x4) f4(x4, x5).

The corresponding factor graph is shown in Figure 21.4, and this factor graph has a tree
structure. If the function f1 contains the variable x3, i.e., f1(x1, x2, x3), the correspond-
ing factor graph does not allow a tree representation, because between the factor f1 and
the variable x3 there are two paths: f1 → x3 and f1 → x2 → f3 → x3. �

7 A bipartite graph is a graph whose nodes V can be partitioned into two disjoint sets V1 and V2 such that
every edge connects a node in V1 to one in V2.
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x1 x2 x3 x4

f1 f2 f3 f4

x5

Figure 21.4 Factor graph for the product f1(x1, x2) f2(x2) f3(x2, x3, x4) f4(x4, x5).

21.6.1 Sum-product algorithm

Consider now the problem of finding an efficient algorithm to compute a sum of product
terms such as (21.21) over a certain subset of the state space R

n of the n-dimensional
variables x = (x1, x2, . . . , xn). Computation of a marginal distribution of the joint
probability given by the product form (21.15) is such an instance.

Suppose that we want to find the following sum-product:

gs(xs) =
∑
X−s

g(x1, x2, ..., xn) =
∑
X−s

K∏
i=1

fi (xi ), (21.22)

where X−s � {x : −∞ < xi <∞ for all i = 1, 2, . . . , s − 1, s + 1, . . . , n}; i.e., the
space of an (n − 1)-dimensional variable x−s . To perform this summation efficiently,
we take advantage of the factorization form of g(x). As noted earlier, a factor graph
allows a tree representation where any node can serve as its root. So we consider a
tree having the node associated with the variable xs as its root. The variable nodes that
belong to different subtrees represent mutually exclusive subsets of V . Thus, we can
perform the summations over the variables in different subtrees independently. First,
the factor node fi adjacent to a leaf node v (where xv is one of the arguments of the
function fi ) “eliminates” or “marginalizes out” xv by computing

∑
xv fi , and passes

this marginal sum as a “message” to its next factor node by way of the variable node in
the path towards the root. A factor node that receives messages from multiple vari-
able nodes computes the sum of the product of the messages over these variables,
and passes the result as a message to its next factor node towards the root. This pro-
cess of node elimination propagates down to the factor node connected to the root
node s.

Before we develop the general algorithm, let us consider a simple example.

Example 21.3: Sum-product algorithm. Consider the problem of finding

g3(x3) =
∑
X−3

g(x1, x2, x3, x4, x5) =
∑

x1,x2,x4,x5

g(x1, x2, x3, x4, x5) (21.23)

for the function of Example 21.2

g(x1, x2, x3, x4, x5) = f1(x1, x2) f2(x2) f3(x2, x3, x4) f4(x4, x5).
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x1

x2

x3

x4

f1f2

f3

f4

x5

Figure 21.5 Factor graph of Figure 21.4 presented as a tree.

To obtain the marginal g3(x3), we translate the bipartite graph of Figure 21.4 into a
tree graph whose root node is x3, as shown in Figure 21.5.8 In order to compute the
sum-product (21.23) we apply the following simple sum-product formula, which can be
viewed as the reverse of the distributive law:

n∑
i=1

a · bi = a ·
n∑

i=1

bi . (21.24)

It is clear that the right-hand side of this equation requires fewer computations (one mul-
tiplication and n additions) than the left-hand side (n multiplications and n additions).
This reduction in computations is the essence of the sum-product algorithm. Thus, we
can rearrange (21.23) as

g3(x3) =
∑
x2,x4

f3(x2, x3, x4) f2(x2)
∑
x1

f1(x1, x2)
∑
x5

f4(x4, x5). (21.25)

As the first step, the factor node f4, adjacent to the leaf node x5, computes∑
x5

f4(x4, x5) � μ f4→x4(x4) and passes this message to the variable node x4, which
simply rewrites the message as μx4→ f3(x4) and passes to f3:

μx4→ f3(x4) � μ f4→x4(x4) =
∑
x5

f4(x4, x5). (21.26)

Similarly, f1 computes
∑

x1
f1(x1, x2) = μ f1→x2(x2) and passes this message to the

node x2. The node x2 also receives the message f2(x2) � μ f2→x2(x2) from f2 and
forwards the product of these two messages to f3:

μx2→ f3(x2) � μ f2→x2(x2)μ f1→x2(x2) = f2(x2)
∑
x1

f1(x1, x2). (21.27)

The factor node f3 combines the messages from x2 and x4 and its locally generated
message f3(x2, x3, x4) and sums the product term over (x2, x4) ∈ R

2 and passes it to
the root node x3 as message μ f3→x3(x3):

8 In Figure 21.5 we use xv to denote the node v associated with the variable xv . The reader should not be
confused by this slight abuse of notation.
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μ f3→x3(x3) �
∑
x2,x4

f3(x2, x3, x4)μx2→ f3(x2)μx4→ f3(x4)

=
∑
x2,x4

f3(x2, x3, x4)μ f2→x2(x2)μ f1→x2(x2)μ f4→x4(x4)

=
∑
x2,x4

f3(x2, x3, x4) f2(x2)
∑
x1

f1(x1, x2)
∑
x5

f4(x4, x5), (21.28)

which is indeed the desired function g3(x3) of (21.25).
The algorithm described above is called the sum-product algorithm. We have

explained it in terms of message passing: the algorithm starts from leaf nodes (i.e.,
f2, x1, x5 in the above example); a factor node sends its message to its adjacent variable
node towards the root; a variable node processes and forwards the message to its adja-
cent factor node towards the root; this process is repeated until all the messages arrive
at the root node associated with the argument of the desired marginal (i.e., x3 of g3(x3)

in this example). �

Consider now a general factor graph. As in Example 21.3, we start the algorithm at
leaf nodes. To formally state the start of the algorithm, we define the initial messages
from leaf nodes as follows. If a leaf node is a factor node fi , it passes the message
μ fi→xi (xi ) = fi (xi ) to the variable node xi ; if the leaf node is a variable node x j ,
its message to its adjacent factor node fm (i.e., the function fm has x j as one of its
arguments) is defined to be unity; in other words, μx j→ fm (x j ) = 1.

Since the summation of the products in (21.22) is obtained by repeated use of the
formula (21.24), we derive the following recursion (similar to the recursion (21.28)) to
express the message to be sent from a factor node f (x, z1, z2, ..., zk) to the variable
node x : ∑

z1,...,zk

f (x, z1, z2, ..., zk)μz1→ f (z1) · · ·μzk→ f (zk) � μ f→x (x), (21.29)

where μzi→ f (zi ) is the message that the factor node f has received from the variable
node zi . If the variable zi , an argument of the function f , is also an argument of m other
functions h1, h2, ..., hm , the message μzi→ f (zi ) is the product of the m messages that
zi received from the factor nodes h1, h2, ..., hm :

μzi→ f (zi ) � μh1→zi (zi ) · · ·μhm→zi (zi ). (21.30)

This equation generalizes (21.27) of Example 21.3. Repeat these recursions until all
messages reach the root node xs , which delivers the marginal gs(xs).

If we need to compute more than one marginal, we can reuse some of the messages
computed to obtain the previous marginals. For instance, suppose we want to compute
g2(x2) after g3(x3) has been computed. We now form a tree with x2 as its root. Then we
just need to compute

μ f3→x2(x2) =
∑
x3,x4

f3(x2, x3, x4)μx4→ f3(x4)μx3→ f3(x3),
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where μx3→ f3(x3) = 1 (since x3 is a leaf node). Then, by using μ f2→x2(x2)μ f1→x2(x2)

= μx2→ f3(x2) obtained in (21.27), we find

g2(x2) = μ f2→x2(x2)μ f1→x2(x2)μ f3→x2(x2) = μx2→ f3(x2)μ f3→x2(x2).

Repeating this procedure, we can find a complete set of marginals gi (xi ) for all i in any
order.

Some important remarks are in order:

• If the variables are continuous variables, the sum-product algorithm discussed
above becomes the integral-product algorithm, by replacing the summation by
integration.

• It is clear that the sum-product algorithm can be applied to any operations that follow
the distributive law [244]. In particular, the Viterbi algorithm can be viewed as a
special case of such an algorithm, if we replace the summation by maximization (see
(20.71)). The Viterbi algorithm may therefore be called the max-product algorithm,
where the message defined by (21.29) is replaced by

μ f→x (x) � max
z1,...,zk

f (x, z1, z2, ..., zk)μz1→ f (z1) · · ·μzk→ f (zk). (21.31)

21.6.2 Applications of factor graphs to Bayesian networks

We now apply factor graphs to BNs. Since (21.15) is a special case of (21.21), we
can apply the sum-product algorithm to find marginal distributions of any BN, if it is
a tree network. If it is not a tree, we can construct an equivalent tree BN by replac-
ing joint variables by new variables, which define new nodes. Such a tree network is
called a junction tree. For example, a transition-based HMM (see Definition 20.3) can
be represented by the BN depicted in Figure 21.6, which is not a tree. However, as
we remarked concerning Definition 20.3, any transition-based HMM can be converted
into an equivalent state-based HMM, by defining S̃t � (St−1, St ) as a new state, whose
state space has dimension M2, where M is the dimension of the original state space.
This straightforward translation of a transition-based HMM to an equivalent state-based
HMM might make the corresponding BN too large, and required computations too
intensive, even for a moderate M . In some cases, however, the factor graph representing
a BN may form a tree, even if the BN is not a tree. For example, the aforementioned
transition-based HMM can be represented by the factor graph of Figure 21.7, in which
factor nodes ft correspond to the state-transition probabilities pt(st , yt |st−1). Using the
sum-product algorithm, we can find all the marginal distributions or a joint distribution

S0

Y0 Y1 Y2

S1 S2

Figure 21.6 State-transition based HMM.
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f1 f2f0

Y0 Y1 Y2

S0 S1 S2

Figure 21.7 Factor graph for the state-transition based HMM.

of a subset of variables. For example, if some states of a BN are unobservable, we might
want to evaluate the probability distribution of the observable states only. To find this
distribution we marginalize out the unobserved states using the sum-product algorithm.
Thus, this algorithm generalizes the FBA for computing the distribution of an HMM
observation sequence described in Sections 20.3.2 and 20.3.3.

A final remark is in order. In contrast with the FBA for an HMM, where the
computation of the forward or backward variables must be performed in a specific order,
there is no explicit ordering of nodes in the sum-product algorithm for a BN. Thus, any
operation to be performed by a factor node can be done at any time after all neces-
sary messages have arrived at this node. Therefore, message-passing scheduling is an
important part of the sum-product algorithm.

21.7 Markov chain Monte Carlo (MCMC) methods

Rarely can the analysis of a complex system be performed explicitly. Typically, many
unrealistic assumptions have to be made in order to obtain analytical solutions. Often, a
better approach to solving such a problem is to use a complex but realistic model that can
represent accurately and then try to find an approximate solution to the problem at hand.
The Monte Carlo simulation method, therefore, has become an important technique in
the analysis of complex systems. In the context of analyzing a dynamical system, Monte
Carlo simulation is also referred to as self-driven simulation [203].

As we discussed in Section 5.4, Monte Carlo simulation often refers to a numerical
technique for evaluating a certain integration expression (e.g., a marginal distribution)
by introducing a random variable whose distribution is related to the solution of the
original problem. In many applications, including Bayesian statistics, computational
physics, computational biology, and computational linguistics, we often need to eval-
uate such quantities as E[g(X)], where X is a random variable with PDF fX (x). The
random variate generation methods in classical Monte Carlo simulation discussed in
Section 5.4 can provide independent samples from the target distribution fX (x). How-
ever, even when g(X) is a simple function, such as g(X) = X or g(X) = X 2, it may
not necessarily be easy to evaluate the integral

∫
g(x) fX (x) dx with sufficient accu-

racy using the classical Monte Carlo technique if the target distribution fX (x) is a
complicated distribution or a multidimensional distribution. You may recall that in the
acceptance–rejection algorithm (Algorithm 5.1) and its variants, we need to generate,
on the average, N random numbers to successfully generate one usable random variate,
where N depends on the shape of the target PDF fX (x).
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In a modern Monte Carlo simulation method, called Markov chain Monte Carlo
(MCMC), we design a Markov chain in such a way that its stationary distribution
π(x) is equivalent to the target distribution fX (x). We resort to simulating such a
Markov chain, because we do not know how to draw samples from the target distribution
fX (x)(= π(x)).

21.7.1 Metropolis–Hastings algorithm

Consider a discrete-time Markov chain (DTMC) {X0, X1, X2, . . . , Xt , . . .}, which
takes on values from a finite or countably infinite set of states {s1, s2, s3, . . .}, which
we represent as {si ; i ∈ S}, with S representing an index set

S = {1, 2, 3, . . . }.
This notation simplifies the DTMC representation and its analysis. Assume that the
DTMC {Xt } is a homogeneous (or stationary) Markov chain with transition probability
matrix (TPM) (see Definition 15.3)

P = [Pi j ; i, j ∈ S], where Pi j = P[Xt = s j |Xt−1 = si ].
We showed in Section 15.3.4 that if the chain is ergodic (i.e., irreducible and aperiodic
with all states being positive recurrent), there exists a unique stationary distribution
π = (π j ; j ∈ S)� such that

π� = π�P (21.32)

and

lim
t→∞ P(t)i, j = π j , for all i, j ∈ S. (21.33)

Now suppose that we are interested in generating random variates x1, x2, . . . , xt , . . .

with the distribution pX � (pX (xi ); i ∈ S). The MCMC method designs a DTMC with
TPM P such that its stationary distribution π is equal to the target distribution pX .
Suppose that the number of states is finite; i.e., |S| = M . Then (21.32) represents less
than M independent linear constraints on the Pi j (since some of the equations are
linearly dependent) and the stochastic property of P (see (15.14)) gives another M
constraints; hence, the total is less than 2M constraints. Thus, there are infinitely many
choices for choosing the M2 entries of the TPM P of an ergodic Markov chain (see
Problem 21.5).

In solving (21.32) for the unknown TPM P for a given target stationary distribution
π , let us limit ourselves to a class of time-reversible (or simply reversible) Markov
chains (Section 16.3.1). Theorem 16.4 implies that the necessary and sufficient con-
dition for reversibility of an ergodic DTMC is for the detailed balance equations to
hold:

πi Pi j = π j Pji , i, j ∈ S. (21.34)

Reversible Markov chains are common in the MCMC method, because the detailed bal-
ance equations (21.34) necessarily imply that, in the Markov chain thus constructed,
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π is a stationary distribution and it is the steady-state distribution if the chain is ergodic.
Note that we work on the class of reversible Markov chains to simplify the design of the
TPM. The simplicity of (21.34) is a key element in developing an MCMC algorithm,
which finds the solution for Pi j easily. The restriction imposed by (21.34), however,
might lead to the design of a Markov chain with poor mixing properties. Some non-
reversible Markov chain may exhibit better convergence behavior. Combining several
reversible Markov chains may deliver a Markov chain which is generally nonreversible,
but has a higher rate of convergence (see Problem 21.6).

The Metropolis–Hastings (MH) algorithm, to be described below, provides a
general approach to constructing a time-reversible Markov chain. Furthermore, this
algorithm can be used even when we know only the shape of the target distribution
{gi ; i ∈ S}. The algorithm does not require us to evaluate the normalization constant
G =∑ j∈S g j to find the target distribution πi = gi/G, i ∈ S. Thus, the MH algorithm
is especially useful, for instance, when gi is a product of several functions and the
state space S is too large for a brute-force enumeration, as found in the discussion that
led to the sum-product algorithm of the previous section. A similar problem occurs
when we need to compute the normalization constant G in a product-form queueing
network or loss network model (e.g., see [203, Chapter 8]). In applications to Bayesian
inference (see Section 4.5) the RVs of interest are the parameter θ and the target distribu-
tion, which is the posterior distribution π(θ | y), where y represents data. The posterior
distribution is updated according to (e.g., see (4.144)) π(θ | y) ∝ p( y|θ)π(θ), where
p( y|θ) is the likelihood function and π(θ) is the prior distribution. Again, the evalu-
ation of the normalization constant to obtain the posterior distribution π(θ | y) is often
computationally too expensive.

In the first step for obtaining a desired TPM P , we begin with an (arbitrary) Markov
chain with TPM Q defined9 over the same set of states {si ; i ∈ S}:

Q = [Qi j ; i, j ∈ S
]
. (21.35)

The i th row of this matrix represents the probability distribution Qi j ; j ∈ S of choosing
the next state s j when the current state is si , and is referred to as the proposal distri-
bution. The Markov chain with TPM Q is, in general, not a reversible chain, nor is its
stationary distribution equal to the target distribution π . Therefore, we consider a chain
with state transition probabilities of the form

Pi j =
{

Qi jαi j , for j �= i,
Qii +∑k(�=i)∈S Qik(1− αik), for j = i.

(21.36)

The Markov chain with TPM P thus defined satisfies the detailed balance equations
(21.34) if and only if

πi Qi jαi j = π j Q jiα j i , i, j ∈ S. (21.37)

9 This Q should not be confused with the transition rate matrix or infinitesimal generator Q of a CTMC
defined in Chapter 16.
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These balance equations are satisfied if we choose

αi j = min

{
π j Q ji

πi Qi j
, 1

}
, (21.38)

because if αi j = π j Q ji/πi Qi j , then α j i = 1 and vice versa.
Equation (21.36) is interpreted as follows: if the present state of the Markov pro-

cess Xt is si , generate the next state s j according to the proposal probability Qi j =
P[Xt+1 = s j |Xt = si ] and accept a proposed sample s j (�= si ) with probability αi j . If
this is rejected (which happens with probability 1− αi j ), the chain remains at si ; i.e.,
Xt+1 = si . The parameter αi j of (21.38) is called the acceptance ratio.

Equation (21.38) can be written as

αi j = min

{
g j Q ji

gi Qi j
, 1

}
, (21.39)

where {gi ∝ πi ; i ∈ S} is an unnormalized target distribution; the normalization con-
stant G =∑ j∈S g j is immaterial in determining αi j , and this confirms our earlier
statement that the MH algorithm greatly simplifies the Monte Carlo simulation. Since
the target distribution is the steady-state distribution, we need to discard the initial states
generated by the algorithm until we believe that the Markov chain has converged to its
equilibrium state.

In Monte Carlo simulation, the initial period in which samples are discarded is
referred to as the burn-in period. This is closely related to the notion of mixing time
in the theory of a Markov chain (e.g., see Levin et al. [223]), which is defined as
the time until the state distribution of the Markov chain becomes “close” to its steady-
state distribution. It should be recognized, however, that the steady state is a limiting
condition that may be approached but, in general, never attained exactly in finite time.
There is no single point in time beyond which the Markov chain is in equilibrium. But
we can choose some point beyond which we are willing to neglect the error that is made
by considering the system to be in equilibrium. It has been shown that some families
of Markov chains exhibit a sharp transition from “unmixed phase” to a nearly com-
pletely mixed phase after a specific amount of time. Such a phase transition is called the
“cut-off” phenomenon (see [223], Chapter 18).

A practical, but laborious, way to estimate the mixing time or burn-in time is to
make a number of preliminary pilot runs from the same starting point and compare
the observed distribution of the state of the system at various ages (e.g., see [203], pp.
689–690). If the burn-in period is estimated to be t ∈ [0, B], then we discard the first
B + 1 samples x0, x1, . . . , xB and use the remaining samples xB+1, xB+2, . . . , xB+N

as usable N samples drawn from the target distribution π . The MH algorithm, given an
unnormalized target distribution gi ∝ πi ; i ∈ S, and the proposal distributions Qi j , is
summarized in Algorithm 21.1.

In order to accept the proposed variate Xt = s j with the probability αi j (21.39) so that
the detailed balance equations (21.37) can be met, we use a uniform random variable
U (0, 1). Note that the uniform variate u is less than one, so the condition u ≤ αi j =
min{g j Q ji/gi Qi j , 1} reduces to u ≤ g j Q ji/gi Qi j . Step 3 in Algorithm 21.1 shows
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Algorithm 21.1 MH algorithm

1: Choose the initial state x0 ∈ S, set t ← 1, and si ← x0.
2: Generate a variate s j according to P[X = s j ] = Qi j and a uniform variate

u∼U (0, 1).
3: If u ≤ g j Q ji

gi Qi j
, then set the next state xt ← s j ; else xt ← si .

4: Set t ← t + 1 and si ← xt .
5: If t < N + B repeat Steps 2–4; else return xB+1, xB+2, . . . , xB+N .

the proposed next state xt+1 = s j will be rejected with probability 1− αi j ; thus, some-
times this algorithm is interpreted as a variant of the acceptance–rejection algorithm
discussed in Section 5.4.2. However, in contrast to the acceptance–rejection algorithm,
which actually discards some samples, the MH algorithm does not discard any samples
(beyond the burn-in period): it selects either xt = s j or xt = si . So no random number
generated will be wasted.

21.7.1.1 Choices of proposal distributions
The art of designing a good MH algorithm lies primarily in finding an appropriate
proposal distribution Qi j .

• If the proposal distribution is symmetric: Qi j = Q ji , then (21.42) becomes

αi j = min

{
π j

πi
, 1

}
. (21.40)

The algorithm with this αi j is the original Metropolis algorithm [247]. Later,
Hastings generalized this algorithm to accommodate nonsymmetric distributions.

• If Qi j = q j , for all i ∈ S, then

αi j = min

{
η j

ηi
, 1

}
, for all i ∈ S, (21.41)

where ηi = πi/qi .
• If the proposal distribution has the form Qi j = q j−i , then we can write s j = si + wk ,

where wk ∼ qk . This case is most popular in applications and is called the random
walk MH algorithm. If, in addition, the distribution is symmetric, then we also have
a simple expression for αi j given by (21.40).

The length of the burn-in period B and the way in which the chain mixes (meaning
that the chain moves to different parts of the state space) depend critically on the pro-
posal distribution. Convergence will be slow and mixing properties will be poor if the
proposed transitions are mostly between nearby states in the state space. However, if we
choose a proposal distribution with a wide support aiming at distant transitions, it may
result in a lower acceptance ratio, which leads to slow convergence and poor mixing.
Thus, the proposal distribution should be chosen in such a way as to allow both distant
transitions and a high acceptance ratio. One way to achieve this is to alternate different
proposal distributions in light of sampled elements.
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Suppose that we have several proposal distributions Q(1)
i j , Q(2)

i j , . . . , Q(m)
i j for the

same target distribution π j . Then we can design the corresponding MH algorithms with

different acceptance ratios α(1)i j , α
(2)
i j , . . . , α

(m)
i j :

α
(k)
i j = min

{
π j Q(k)

j i

πi Q(k)
i j

, 1

}
, k = 1, 2, . . . ,m. (21.42)

We assume that the conditions for convergence are satisfied in all algorithms. Then we
can use these algorithms in any order. By alternating the proposals, we may be able to
improve the algorithm’s mixing properties (see Problem 21.6). As for the convergence
properties of the MH algorithm, see Tierney [320, 321] for example.

21.7.2 Metropolis–Hastings algorithm for continuous variables

If the target distribution is a continuous (and multidimensional) distribution, the MH
algorithm presented in the previous section still applies with a rather straightforward
modification in the notation. Suppose we wish to generate samples from a multivariate
PDF π(x), where X = (X1, X2, . . . , Xm) is an m-dimensional random vector:

P[X ∈ A] =
∫

x∈A
π(x) dx, (21.43)

where A is any region in R
m . Then we want to design a discrete-time continuous-

space Markov process, which we specify in terms of the transitional (or conditional)
PDF f (x; y) (also referred to as the transition kernel) such that

P[X t+1 ∈ B|X t = x] =
∫

y∈B
f (x; y) d y, (21.44)

where B ⊆ R
m . The requirement that this Markov process is time-reversible is given by

the following detailed balance equation:

π(x) f (x; y) = π( y) f ( y; x), x, y ∈ R
m . (21.45)

Then,

P[X t+1 ∈ B] =
∫

y∈B

∫
x∈Rm

π(x) f (x; y) dx d y

=
∫

y∈B

∫
x∈Rm

π( y) f ( y; x) dx d y =
∫

y∈B
π( y) d y, (21.46)

which shows that π(x) is the stationary distribution of this reversible Markov chain
with the transitional PDF f (x; y). Then, by defining an ergodic Markov chain with the
transitional PDF q(x; y) (the proposal PDF) and the acceptance ratio

α(x, y) =
{

min
{
π( y)q( y;x)
π(x)q(x; y) , 1

}
, if π(x)q(x; y) �= 0,

1, otherwise,
(21.47)
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Algorithm 21.2 MH algorithm for continuous variables

1: Choose the initial value x0 ∈ R
m , set t ← 1 and x ← x0.

2: Generate a proposed variate y according to the transitional PDF q(x; y) and a
uniform variate u ∼ U (0, 1).

3: If u ≤ π( y)q( y;x)
π(x)q(x; y) , then set the next value xt ← y; else xt ← x.

4: Set t ← t + 1 and x ← xt .
5: If t < N + B repeat Steps 2–4; else return xB+1, xB+2, . . . , xB+N .

we can design a reversible discrete-time continuous-space Markov process with the
transitional PDF

f (x; y) = q(x; y)α(x, y)+ r(x)δ( y − x), (21.48)

where

r(x) = 1−
∫

y∈Rm
q(x; y)α(x, y)d y. (21.49)

As we can see, the transition kernel is a mixture of continuous and discrete components.
Given the current state X t = x, the Markov process X t+1 moves to the next state y �= x
with PDF q(x; y)α(x, y) and does not move from x; i.e., X t+1 = x with probability
r(x). The condition π(x)q(x; y) �= 0 of (21.47) is satisfied if the range of the function
q(x; y) is within the support of the target distribution π(x). Note that, in computing
α(x, y), an unnormalized target density g(x) ∝ π(x) is sufficient as in the discrete-state
case, because π( y)/π(x) = g( y)/g(x).

In Algorithm 21.2 we present the MH algorithm for generating B + N samples of
continuous variates x0, x1, . . . , xt , . . . , x B+N , for a given unnormalized target den-
sity g(x) ∝ π(x), and the proposal PDF q(x; y). The first B + 1 samples x0, . . . , x B

should be discarded, since they are the “burn-in” samples.

21.7.3 Block Metropolis–Hastings algorithm

Suppose that we want to sample from a joint distribution π(x1, x2), where the vari-
ables appear in two blocks, both of which may be vectors. Furthermore, suppose that
π(x1|x2) and π(x2|x1) are the conditional distributions, for which sampling algorithms
are known. We want to show that, by applying the MH algorithm to samples from the
conditional PDFs π(x1|x2) and π(x2|x1), we can obtain samples from the joint PDF
π(x1, x2).

We need to design two Markov chains with transitional PDFs f1(x1; y1|x2) and
f2(x2; y2|x1) such that their stationary distributions are equal to π1(x1|x2) and
π2(x2|x1) respectively. That is,

π1( y1|x2) =
∫

x1

f1(x1; y1|x2)π1(x1|x2) dx1, (21.50)

π2( y2|x1) =
∫

x2

f2(x2; y2|x1)π2(x2|x1) dx2. (21.51)
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Algorithm 21.3 MH algorithm with two blocks

1: Choose the initial value (x(0)1 , x(0)2 ), set t ← 1 and (x1, x2)← (x(0)1 , x(0)2 ).
2: Generate y1 from q1(x1; y1|x2) and u1 ∼ U (0, 1).
3: If u1 ≤ π( y1|x2)q1( y1;x1|x2)

π(x1|x2)q1(x1; y1|x2)
, then set x(t)1 ← y1; else x(t)1 ← x1.

4: Generate y2 from q2(x2; y2|x(t)1 ) and u2 ∼ U (0, 1).

5: If u2 ≤ π( y2|x(t)1 )q2( y2;x2|x(t)1 )

π(x2|x(t)1 )q2(x2; y2|x(t)1 )
, set x(t)2 ← y2; else x(t)2 ← x2.

6: Set t ← t + 1 and (x1, x2)← (x(t)1 , y(t)2 ).
7: If t < N + B repeat Steps 2–6; else return xB+1, xB+2, . . . , xB+N .

Then it can be shown (Problem 21.7) that a Markov chain with the transitional
PDF f1(x1, y1|x2) f2(x2, y2| y1) has π(x1, x2) = π1(x1)π2(x2|x1) as its stationary
distribution:∫

x1

∫
x2

f1(x1; y1|x2) f (x2; y2| y1)π(x1, x2) dx1 dx2 = π1( y1, y2). (21.52)

We now denote the Markov sequence that the MH algorithm with two blocks gen-
erates as (x(0)1 , x(0)2 ), (x(1)1 , x(1)2 ), . . . , (x(t)1 , x(t)2 ), . . . , and the algorithm is shown in
Algorithm 21.3. Note that Step 2 generates a proposed value y1 conditioned on the
current value x1 in the same block and the current value x2 in the other block. Step 4
generates a proposed value y2 conditioned on the current value x2 in the same block
and the updated value x(t)1 in the other block. The block MH algorithm consists of
alternating the MH algorithms for each conditional distribution.

Extension of the MH algorithm to m blocks of variables

x = (x1, x2, . . . , xm)

(Algorithm 21.4) is possible when we know how to generate random variates from
proposal densities qi (xi ; yi |x(t)−i ), where xi is the previous i th block (i.e., X (t−1)

i = xi )

and yi is a proposed value for X(t)
i . The variate x−i contains all the blocks of x except

for xi ; i.e.,

x(t)−i = (x(t)1 , x(t)2 , . . . , x(t)i−1, x(t)i+1, . . . , x(t−1)
m ), i = 1, 2, . . . ,m. (21.53)

21.7.4 The Gibbs sampler

The Gibbs algorithm, or Gibbs sampler as it is often called [118], is a special case
of the MH algorithm, and is perhaps the most widely used MCMC algorithm. Let us
consider the Gibbs algorithm with two blocks (Algorithm 21.5).

We want to sample from a joint distribution π(x1, x2), where x1 and x2 may be
vector variables. We assume that we know simulation algorithms for the two conditional
distributions π1(x1|x2) and π2(x2|x1). Let x = (x1, x2) be the state at time t , i.e.,
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Algorithm 21.4 MH algorithm with m blocks

1: Choose the initial values x(0) = (x(0)1 , x(0)2 , . . . , x(0)m ). Set t ← 1 and x ← x(0).
2: For i = 1, 2, . . . ,m:

1. Generate a proposed sample yi from qi (xi ; yi |x−i ) and ui ∼ U (0, 1) .

2. If ui ≤ π( yi |x(t)−i )qi ( yi ;xi |x(t)−i )

π(xi |x(t)−i )qi (xi ; yi |x(t)−i )
, then set x(t)i ← yi ; else x(t)i ← xi .

3: Set t ← t + 1 and x ← x(t), where x(t) = (x(t)1 , x(t)2 , . . . , x(t)m ).
4: If t < N + B repeat Steps 2 and 3; else return xB+1, xB+2, . . . , xB+N .

Algorithm 21.5 The Gibbs algorithm with two blocks

1: Choose the initial value (x(0)1 , x(0)2 ). Set t ← 1 and (x1, x2)← (x(0)1 , x(0)2 ).

2: Generate x(t)1 from π1(x1|x2).

3: Generate x(t)2 from π2(x2|x1).

4: Set t ← t + 1 and (x1, x2)← (x(t)1 , x(t)2 ).
5: If t < N + B repeat Steps 2–4; else return xB+1, xB+2, . . . , xB+N .

X t = x, and let y = ( y1, y2) be the next value, i.e., X t+1 = y. The Gibbs algorithm
sets the transitional kernel as

f (x; y) = π1( y1|x2)π2( y2| y1), (21.54)

from which we can readily show (Problem 21.8)∫
π(x) f (x; y) dx = π( y). (21.55)

Thus, π(x) is the stationary distribution of a Markov chain with the transitional PDF
f (x; y) defined by (21.54).

In the algorithm, there are no steps that correspond to Steps 3 and 5 of Algorithm 21.3,
where the proposed samples are compared against the acceptance ratio, because in the
Gibbs algorithm the transitional kernel takes the following form:

q1(x1; y1|x2) = π1( y1|x2) for all x1,

q2(x2; y2|x1) = π2( y2|x1) for all x2,

which gives

α1(x1, y1|x2) = π1( y1|x2)π2(x2|x2)

π2(x2|x2)π1( y1|x2)
= 1,

α2(x2, y2|x1) = 1.

Extension of the Gibbs algorithm to m blocks of variables x = (x1, x2, . . . , xm)

(Algorithm 21.6) can be done in a similar fashion, when we know how to generate
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Algorithm 21.6 Gibbs algorithm with m blocks

1: Choose the initial values x(0) = (x(0)1 , x(0)2 , . . . , x(0)m ). Set t ← 1 and x ← x(0).
2: For i = 1, 2, . . . ,m:
3: Generate x(t)i from πi (xi |x−i ).

4: Set x ← x(t), where x(t) = (x (t)1 , x (t)2 , . . . , x (t)m ) and set t ← t + 1.
5: If t < N + B repeat Steps 2 and 3; else return xB+1, xB+2, . . . , xB+N .

random variates from the conditional densities π(xi |x−i ), where x−i contains all the
blocks of x except for xi , as defined in (21.53).

21.7.4.1 Gibbs sampling in Bayesian networks
Gibbs sampling is the most frequently used MCMC method for sampling from the
joint probability distribution of a BN (V, E, P), where each full conditional distribution
depends only on its Markov blanket, as shown in (21.18):

p(xv|x−v) = p(xv|x∂v) ∝ p(xv|xpa(v))
∏

k∈ch(v)

p(xk |xpa(k)). (21.56)

This Markovian property simplifies sampling from the full conditionals. Then, by
making the number of blocks m be equal to V = |V|, the number of node vari-
ables (hence, each block variable is a scalar variable), the above Gibbs sampling with
V blocks can generate samples from the joint distribution p(x) of the BN, where
x= (x1, x2, . . . , xV ). This approach is used in the Bayesian updating with Gibbs
sampling (BUGS) software package [121].

21.7.5 Simulated annealing

In many applications, we need to find the value x that maximizes a given PDF π(x)
(or PMF px). Such a need arises when we want to find an MLE or MAP estimate. In
principle, we can achieve this by sampling from the given distribution and finding a
sample x that maximizes π(x):

xmax = arg max
x∈Rm

π(x). (21.57)

However, this approach may not always work well, when the distribution is broad
or nearly flat near the point of maximum or when the number of samples is not
large enough. To force the Markov process X(t) to move to the vicinity of the global

maximum, we apply the MH algorithm to the distribution g(x)T
−1
t , where g(x) is

a distribution that has the same shape as the target distribution; i.e., g(x) ∝ π(x).
Tt is called the system’s temperature at time t , and is a monotonically decreasing
sequence, converging to zero: limt→∞ T−1

t = ∞. The sequence {Tt} is called the
cooling schedule.

As Tt deceases, the distribution g(x)T
−1
t becomes concentrated around xmax. Thus, if

we apply an MCMC simulation method to this skewed distribution, we will be sampling
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Algorithm 21.7 Simulated annealing algorithm

1: Choose the initial value x(0) and T0. Set x ← x(0), T ← T (0), and t ← 1.
2: Generate the proposed next state y from q(x; y) and u ∼ U (0, 1)

3: If u ≤ g( y)T
−1

q( y;x)
g(x)T−1 q(x; y) , set x(t) = y; else x(t) = x.

4: Set x ← x(t), T ← Tt (according to the cooling schedule), and set t ← t + 1.
5: If t < N + B repeat Steps 2–4; else return xB+1, xB+2, . . . , xB+N .

from the vicinities of xmax. This method is called simulated annealing because, as the
temperature goes to zero, the Markov process will “freeze” at states around xmax.

The acceptance ratio is modified according to

α(t)(x, y) = min

{
g( y)T

−1
t q( y; x)

g(x)T
−1
t q(x; y)

, 1

}
, (21.58)

where g(x) ∝ π(x). The maximization algorithm is summarized in Algorithm 21.7.
Discard the first B + 1 burn-in samples and use x(B+1), . . . , x(B+N ) as usable N
samples.

The M-step in the EM algorithm, for example, can be done by using this max-
imization algorithm, when an analytic method is not available, as discussed in
Section 19.2.2.

21.8 Summary of Chapter 21

Parent nodes of v: pa(v) � {u ∈ V : u → v} (21.14)
Children nodes of u: ch(u) � {v ∈ V : u → v} (21.14)
Bayesian network: p(x) =∏v∈V p(xv|xpa(v)

)
(21.15)

Markov blanket: p(xv|x∂v, xU ) = p(xv|x∂v) (21.17)
Markov property: p(xv|x−v) = p(xv|xpa(v))

∏
k∈ch(v) p(xk |xpa(k)) (21.19)

Message f → x : μ f→x (x) �
∑

z1,...,zk
f (x, z1, . . . , zk)

·μz1→ f (z1) · · ·μzk→ f (zk) (21.29)
Message zi → f : μzi→ f (zi ) � μh1→zi (zi ) · · ·μhm→zi (zi ) (21.30)

MH acceptance rate: α(x, y) = min
{
π( y)q( y;x)
π(x)q(x; y) , 1

}
(21.47)

Gibbs sampler: qi (xi ; yi |x−i ) = πi ( yi |x−i ), i = 1, 2, . . . ,m Alg. 21.6

21.9 Discussion and further reading

Bayesian networks are becoming increasingly popular in various applications because
of their generality and ease of use. Applications of BNs include image modeling,
Markov random fields, fast Fourier transforms, and turbo codes.

Several problems are important in applications of BNs: evaluation of the posterior
joint distribution, finding the most probable path in the network, and estimating the BN
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parameters. They are solved by algorithms that generalize those used for HMMs, such as
the belief propagation algorithm and the EM algorithm. As we mentioned before, Pearl’s
belief propagation algorithm [265] was the first algorithm to introduce the notion of
message passing between the nodes. This algorithm was designed to solve the problem
of finding the conditional joint distribution of the BN node values given the values of
some other nodes. However, it was later shown [213] that the sum-product algorithm
and Pearl’s algorithm are equivalent. We presented the sum-product algorithm because
it is easier to derive and understand.

Other powerful models that are popular in machine learning include SVMs [337, 338]
and ANNs. Support vector machines perform data separation with some surfaces using
discriminative learning. The ANNs use sophisticated multivariable and multilayered
mapping to model unknown functions using the values of their input (arguments) and
the corresponding outputs. In many cases it is possible to use any of these models to
solve the same problems. Bayesian networks, however, are more suitable for modeling
purposes if we have some prior knowledge about the data.

Computationally efficient methods based on MCMC have made the Bayesian
approach practical, and are increasingly used not only in machine learning (Koller and
Friedman [206] and Kononenko [211]), but also in information theory (MacKay [234]),
econometrics (Greenberg [128]), and bioinformatics (Wilkinson [352]).

21.10 Problems

Section 21.5: Bayesian networks

21.1 Markov chain as a DBN. Present a Markov chain as a DBN and find a Markov
blanket of its state.

21.2 An HMM as a DBN.

(a) Find Markov blankets for the observed and hidden states.
(b) Derive the FBA as a special case of the sum-product algorithm.
(c) Derive the Viterbi algorithm as a special case of the sum-product algorithm.

Section 21.6: Factor graphs

21.3 Conditional probability of a Markov blanket. Prove (21.19).

21.4∗ Sum-product algorithm for a phylogenetic tree. Develop a sum-product
algorithm to compute the probability given in (16.69) for a Markov process defined
on a phylogenetic tree as discussed in Section 16.4.2.

Section 21.7: Markov chain Monte Carlo (MCMC) methods

21.5∗ Second-order Markov chains. Show that there are infinitely many second-order
ergodic Markov chains whose stationary distribution is π = (π1, π2).
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21.6 Nonreversible Monte Carlo.

(a) Show that Markov chains with TPMs

P1 =
⎡⎣0.1 0.2 0.7

0.2 0.6 0.2
0.7 0.2 0.1

⎤⎦ and P2

⎡⎣0.2 0.3 0.5
0.3 0.5 0.2
0.5 0.2 0.3

⎤⎦
are both reversible and ergodic chains, but their product P1 P2 represents a
nonreversible ergodic Monte Carlo.

(b) Prove that a Markov chain with TPM P1 P2 converges faster than a chain with TPM
P1 or P2.

21.7∗ Stationary distribution in the block MH algorithm. Derive (21.52).

21.8∗ Stationary distribution in the Gibbs sampler. Show that π(x) is the stationary
distribution of a Markov chain with the transitional PDF f (x; y) defined by (21.54).

21.9 Gibbs sampler for multidimensional normal distribution. Design a Gibbs
sampler to sample from the multidimensional normal distribution.



22 Filtering and prediction of
random processes

The estimation of a random variable or process by observing other random variables
or processes is an important problem in communications, signal processing and other
science and engineering applications. In Chapter 18 we considered a partially observ-
able RV X = (Y , Z), where the unobservable part Z is called a latent variable. In this
chapter we study the problem of estimating the unobserved part using samples of the
observed part. In Chapter 18 we also considered the problem of estimating RVs, called
random parameters using the maximum a posteriori probability (MAP) estimation pro-
cedure. When the prior distribution of the random parameter is unknown, we normally
assume a uniform distribution, and then the MAP estimate reduces to the maximum-
likelihood estimate (MLE) (see Section 18.1.2): if the prior density is not uniform, the
MLE is not optimal and does not possess the nice properties described in Section 18.1.2.
If an estimator θ̂ = T (X) has a Gaussian distribution N (μ,�), its log-likelihood func-
tion is a quadratic form (t − μ)��−1(t − μ),1 and the MLE is obtained by minimizing
this quadratic form. If the variance matrix is diagonal, the MLE becomes what is called
a minimum weighted square error (MWSE) estimate. If all the diagonal terms of � are
equal, the MWSE becomes the minimum mean square error (MMSE) estimate. Thus,
the MMSE estimator is optimal only under these assumptions cited above.

In this chapter, we will first discuss an important relation between MMSE estimation
and the conditional expectation, and then introduce regression analysis, since its
criterion, the least squares, is the statistical counterpart of the MSE. We then discuss
the theory of filtering and prediction of wide-sense stationary (WSS) processes, which
was pioneered by Norbert Wiener [350]. In the final section we will discuss a recursive
algorithm for predicting a discrete-time Gauss Markov processes, widely known as the
Kalman filtering algorithm [171, 172]. We formulate this problem as a hidden Markov
model (HMM).

22.1 Conditional expectation, minimum mean square error estimation
and regression analysis

A fundamental problem in statistics and statistical signal processing is the estimation
of a random variable given a set of observed RVs. First, we define the concept of mean

1 The square root of this quadratic form dM(t,μ) =
√
(t − μ)��−1(t − μ) is sometimes called the

Mahalanobis distance.
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square error (MSE) and a minimum mean square error (MMSE) estimator. Then we
look at linear estimators that minimize the MSE. Finally, we discuss the relationship
between MMSE estimation and conditional expectation.

22.1.1 Minimum mean square error estimation

In many applications, we wish to estimate the value of an unobservable random variable
S in terms of the observed values of a set of RVs

X = (X1, X2, . . . , Xm)
�.

For example, we may want to estimate S, a transmitted signal, based on the received
signal X , which is corrupted by noise and multipath effects of the wireless channel.
The estimate Ŝ is a function of the observed random vector X . The vector variable X is
often called an independent variable2 or a predictor variable and S is called a dependent
variable or response variable, especially in the context of regression analysis,3 which
will be discussed in Section 22.1.4.

As we defined in Chapter 18, an estimate is a function T (x) of a sample x, whereas
an estimator Ŝ is a function of the RV X :

Ŝ = T (X), (22.1)

where T (·) has the dimension m. Clearly, Ŝ is also a random vector, since X is a random
vector. The mean square error (MSE) (also called mean squared error) of the estimate Ŝ
is defined as

E = E[|S − Ŝ|2]. (22.2)

It is of interest to determine T such that the MSE is minimized. Such a T is called a
minimum mean square error (MMSE) estimator, or a least squares estimator.

In order to properly define an error of estimating a vector-valued complex RV,
we must recall the inner product of RVs and the norm (see Definition 10.3 of
Section 10.1.1). The inner product of RVs X and Y was defined by (10.7):

〈X, Y 〉 � E[XY ∗]. (22.3)

The scalar value ‖X‖ �
√〈X, X〉 = √E[|X |2] is called the norm of the RV X . Recall

that in Section 11.2.4 we also defined the notion of mean square equivalence. Given
two RVs X and Y , if ‖X − Y‖2 = E[‖X − Y‖2] = 0, we say that they are equivalent
in mean square and denote this relationship by

X
m.s.= Y.

2 Although X is a vector, it is conventional to call it an independent variable rather than an independent
vector. We may use the terms random vectors and RV interchangeably.

3 As for the meaning of the concept “regression” in statistical analysis, see the historical remark given in
Section 1.2.4.
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Thus, if E = 0, we say that S and Ŝ are equivalent in mean square or S equals Ŝ in mean
square. Similarly, ‖X‖ = 0 if and only if X

m.s.= 0.

22.1.2 Linear minimum mean square error estimation

Suppose we restrict ourselves to linear estimators; i.e.,

Ŝ = T (X) =
m∑

i=1

βi Xi , (22.4)

where the βi are scalar coefficients.4 If we define a row vector β� = (β1, β2, . . . , βn),
then (22.4) can be expressed as

Ŝ = β�X . (22.5)

The MSE is a function of the coefficients β:

E(β) = E[|S − Ŝ|2] = E[|S|2] − βH E[S∗X] − E[XHS]β∗ + β�E[X XH]β∗
= rss − β�rsx − rH

sxβ∗ + β�Rxxβ∗, (22.6)

where

rss = E[|S|2], rsx = E[S∗X], and r xx = E[X XH], (22.7)

rss is a real scalar, rsx is a complex-valued column vector of size m, and Rxx is an
m×m Hermitian matrix. It is easy to show (Problem 22.1) that the quadratic polynomial
(22.6) is minimized when

Rxxβ∗ = rsx . (22.8)

Thus, if Rxx is positive definite, the optimal coefficient vector is given as

βopt = R−1
xx r∗sx . (22.9)

Thus, the linear MMSE estimate or linear least squares estimate is

Ŝopt = β�opt X = rH
sx R−1

xx X, (22.10)

where we used the self-adjoint (or Hermitian) property of the correlation matrix; i.e.,
RH

xx = Rxx . Then, the MMSE can be found by substituting (22.9) into (22.6):

Emin = E(βopt) = rss − rH
sx R−1

xx rsx . (22.11)

The condition (22.8) can be rewritten as (see Problem 22.2)

E[(Ŝ − S)X∗] = 0, (22.12)

whose geometric interpretation is given below (see (22.23)).

4 Alternatively, we can denote the linear coefficients by β∗i instead of βi , which might somewhat simplify
some of the subsequent equations, by denoting ∗� by a single symbol H standing for Hermitian.
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22.1.2.1 Unbiased linear minimum mean square error estimate
The linear MMSE estimate of the form (22.4) has the bias

b = E[Ŝ] − E[S] = β�E[X] − μs . (22.13)

In order to obtain an unbiased linear estimate, we replace (22.4) by

Ŝ = β0 + β�X . (22.14)

An estimator of the form (22.14) can actually be seen as a special case of the linear
form (22.5), obtained by introducing a random variable X0 that is identically equal to
the constant one. In this case Ŝ =∑m

i=0 βi Xi . One can then show that, to minimize the
MSE, β0 must satisfy the equation

μs = β0 + β�E[X]; (22.15)

that is,

β0 = μs − β�E[X] = −b, (22.16)

which means that the constant β0 cancels the bias (22.13).
Subtracting (22.15) from (22.14), we obtain

Ŝ − μs = β�(X − E[X]), (22.17)

which is essentially (22.5), with Ŝ replaced by Ŝ − μs and X replaced by X − E[X].
Thus, (22.14) gives a linear MMSE estimator of S as a function of X if and only if
(22.16) holds, and β satisfies (Problem 22.4)

C xx · β = csx, (22.18)

where csx is a vector whose t th element is Cov(S, Xi ) and C xx is the covariance matrix
of the vector variable X :

csx = rsx − μs E[X], (22.19)

C xx = Rxx − E[X]E[X�]. (22.20)

The condition (22.18) implies (see Problem 22.2)

Cov[Ŝ − S, X] = 0. (22.21)

Recall the notion of orthogonality between two RVs defined in Definition 10.3 of
Section 10.1.1. The RVs X and Y are said to be orthogonal if 〈X, Y 〉 = E[XY ∗] = 0.
Then the condition (22.12) can be rewritten as

〈Ŝ − S, Xi 〉 = 0, for all i = 1, 2, . . . , n, (22.22)
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S − Sˆ 

Ŝ 
X1

X2

Xt

S

Subspace spanned by Xt,t = 1,2,...

Figure 22.1 Ŝ as the projection of S onto the subspace spanned by X .

which we express in a compact form

〈Ŝ − S, X〉 = 0. (22.23)

The orthogonality expression (22.22), or equivalently (22.23), means that Ŝ − S
is orthogonal to all Xi , i = 1, 2, . . . , n. Therefore Ŝ − S is orthogonal to the linear
subspace spanned by the Xi . Then it is evident that Ŝ is the projection of S onto this
linear subspace, as illustrated in Figure 22.1. Recall that, in a vector space with inner
product, a projection T is a linear transformation from the vector space to itself such
that T T = T . This definition of projection formalizes the “graphical projection” illus-
trated in Figure 22.1. The transformation T such that T S = Ŝ surely satisfies T T = T
because T Ŝ = Ŝ. Recall that we have already discussed the projection or projection
matrix a few times in this book: (i) in the eigenvector expansion of the correlation matrix
R =∑i λivvH =∑i λi Ei (see (13.83) of Section 13.2.1), where Ei are projection
matrices; (ii) the transition probability matrix (TPM) P of a discrete-time Markov chain
(DTMC) P =∑i λi uv� =∑i λEi has Ei as projection matrices, and similarly (iii) in
a continuous-time Markov chain (CTMC), the projection matrices associated with an
eigenvalue of the infinitesimal generator (or transition rate matrix) Q have essentially
the same expansion and their orthogonal projection defined in the same manner (see
Example 16.2).

The MMSE Emin (22.11) is the norm square of the estimation error:

Emin = ‖S − Ŝ‖2 = ‖S‖2 − ‖Ŝ‖2, (22.24)

which is equivalent to (22.11).

22.1.3 Conditional expectation and minimum mean square error estimation

If all of the available information on S is summarized in the marginal distribution of
S, then the MMSE is simply the mean, or the prior expectation, E[S] (Problem 22.6).
If S is stochastically related to another RV X whose value can be observed, then it
should not be surprising to assert that the MMSE estimate, given X , is the conditional
expectation or posterior expectation, E[S|X]. In order to formally prove this, we use
the following property of the conditional expectation.

L E M M A 22.1 (Property of the conditional expectation). Let h(X) be any scalar
function of the RV X . Then the RVs S − E[S|X] and h(X) are orthogonal, i.e.,



650 Filtering and prediction of random processes

〈S − E[S|X], h(X)〉 = 0. (22.25)

Proof.

〈S − E[S|X], h(X)〉 = E
[
(S − E[S|X])h∗(X)]

=
∫ ∫

(s − E[S|x])h∗(x) fSX(s, x) ds dx

=
∫ (∫

(s − E[S|x]) fS|X(s|x) ds

)
h∗(x) fX (x) dx = 0,

(22.26)

because the term inside the parentheses is zero for all x:∫
(s − E[S|x]) fS|X(s|x) ds =

∫
s fS|X (s|x) ds − E[S|x]

∫
fS|X(s|x) ds

= E[S|x] − E[S|x] = 0. (22.27)

Another, but essentially equivalent, proof can be derived by using the law of iterated
expectations (see Problem 22.3).

THEOREM 22.1 (Equivalence between the MMSE estimator and the conditional
expectation). Let T (X) be any estimator of S; i.e., any scalar function of X . Then
the following inequality holds:

E
[
(S − T (X))2

]
≥ E

[
(S − E[S|X])2

]
, (22.28)

where the equality holds if and only if T (X)
m.s.= E[S|X]. Thus, the MMSE estimator

and the conditional expectation are equivalent in mean square.

Proof.

E = E
[
(S − T (X))2

]
= E

[
{(S − E[S|X])+ (E[S|X] − T (X))}2

]
= E

[
(S − E[S|X])2

]
+ 2E

[
(S − E[S|X])(E[S|X] − T (X))

]
+ E

[
(T (X)− E[S|X])2

]
(22.29)

= E
[
(S − E[S|X])2

]
+ E

[
(T (X)− E[S|X])2

]
,

where the second term in (22.29) can be seen to be zero by defining h(X) = T (X)−
E[S|X] in the above lemma. Therefore, in order to minimize the MSE E , we must have

E
[
(T (X)− E[S|X])2

]
= 0.

In other words, E[S|X] is mean-square equivalent to T (X).
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Example 22.1: Additive noise model. Consider an additive noise model

X = S + N ,

where S ∼ N (μs, σ
2
s ), N ∼ N (0, σ 2

n ). The input or transmitted signal S and the noise
N are independent and X is the observed or received signal. Then X and S are jointly
normally distributed with

μx = E[X ] = μs , σ
2
x = Var[X ] = σ 2

s + σ 2
n , and Cov[S, X ] = σ 2

s .

The conditional distribution of S given X is also normal with the mean (Problem 22.7)

E[S|X ] = μs + ρsx
σs

σx
(X − μx ), (22.30)

where ρsx is the correlation coefficient between S and X , and can be obtained as

ρsx =
√

σ 2
s

σ 2
s + σ 2

n
. (22.31)

Thus, the MMSE estimator of S given X can then be written from (22.30) as

Ŝ(X) = E[S|X ] = μs + SNR

1+ SNR
(X − μs), (22.32)

where

SNR = σ 2
s

σ 2
n
.

Thus, if SNR � 1, Ŝ(X) ≈ X , whereas if SNR � 1, Ŝ(X) ≈ μs . In other words, if σ 2
s

is much greater than the σ 2
n , then the MMSE estimator of S given X is approximately

X itself. For the opposite extreme, the MMSE estimator of S given X is approximately
μs , which is the prior expectation; i.e., in this case, the observed signal is so corrupted
by noise that the posterior expectation E[S|X ] differs very little from μs . �

22.1.4 Regression analysis

The theory of regression [278] is concerned with prediction of a variable Y on the
basis of information provided by observable variables X = (X1, X2, . . . , Xm).5 It is
customary to call X an independent or predictor variable and Y a dependent or response
variable. Sometimes the term “regressor” is used for X .

Let us define a statistic M(x) by

M(x) � E[Y |x], (22.33)

5 The following theory can be generalized to the case where Y is a vector variable, but here we assume a
scalar variable for simplicity of presentation. It seems that simple matrix expressions do not hold when Y ,
as well as X , is a multivariate and when we have n samples of X .
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which is is called the regression function, or simply regression, of Y on
X = (X1, X2, . . . , Xm). Theorem (22.1) shows that, for any statistic T (x),
E
[
Y − T (X)|2] ≥ E

[|Y − M(X)|2]; that is, the best predictor that minimizes the
MSE is the conditional expectation M(X). The error of the MMSE predictor is thus
the conditional variance of Y given X , denoted as

σ 2
Y |X � E

[
|Y − M(X)|2

]
. (22.34)

It can be shown (Problem 22.9) that the correlation coefficient between any predictor
T (X) and Y , denoted ρT,Y ,

ρT,Y = Cov[T, Y ]
σT σY

, (22.35)

satisfies the inequality

ρ2
T,Y ≤ ρ2

M,Y , (22.36)

where the equality holds if and only if T is a linear function of M .
The variance of Y can be decomposed as (Problem 22.10)

E
[
|Y − E[Y ]|2

]
= E

[
|Y − M |2

]
+ E

[
|M − E[M]|2

]
, (22.37)

which can be compactly expressed as

σ 2
Y = σ 2

Y |X + σ 2
M , (22.38)

which is the fundamental equation for analysis of variance (ANOVA), as will be
explored later. The ratio

η2
Y X �

σ 2
M

σ 2
Y

= 1− σ 2
Y |X
σ 2

Y

(22.39)

is called the correlation ratio and approaches unity as the error of the MSE predictor
σ 2

Y |X approaches zero. Thus, η2
Y X provides a measure of association between Y and X .

22.1.4.1 Linear regression
Now let us investigate a special case, where the regression function M(x) is linear in x.
We consider an arbitrary linear predictor

T (x) = β0 + β1x1 + · · · + βm xm = β0 + β�x

and determine the coefficients that minimize the prediction error

E = E

[∣∣∣Y − β0 − β�X
∣∣∣2]

= σ 2
Y + |b|2 + β�C xxβ∗ − β�cxy − cxyβ

∗, (22.40)
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where

b = β0 − E[Y ] + β�E[X], (22.41)

cxy = E
[
(X − E[X])(Y − E[Y ])∗] , (22.42)

and Cxx is the covariance matrix defined in (22.20). The optimal choices of b, β, and
β0 are (Problem 22.11) given, respectively, by

bopt = 0, C xxβ∗opt = cxy, and β0,opt = E[Y ] − β�opt E[X]. (22.43)

Then the minimum value of (22.40) is

Emin = σ 2
Y − cH

xy C−1
xx cxy, (22.44)

which is essentially the same as (22.11). From (22.43) we see that the linear regression
is completely specified by mean values, variances, and covariances of the variables.

The correlation ratio of (22.39) can be written for the linear regression as

η2
yx = 1− σ 2

y|x
σ 2

y
= cH

xy C−1
xx cxy

σ 2
y

. (22.45)

22.1.4.2 Best linear predictors
We have seen above that if the regression M(x) = E[Y |x] is a linear function of x,
the best predictor can be determined in terms of means, variances and covariances of
the concerned variables. Then if the linear assumption of regression function does not
hold, what is the best linear predictor? As a matter of fact, we already investigated
this question in Section 22.1.2 and found that the best linear MMSE estimate should
satisfy the orthogonality equation given by (22.23). The reader is suggested to show the
equivalence of that solution and the linear regression determined by (22.43) (Problem
22.12). We state this important fact as a theorem.

THEOREM 22.2. The linear predictor Topt(X) = βopt + β�opt X given by (22.43) is the
MMSE linear predictor of Y . It is also the linear predictor that has the maximum
correlation with Y .

22.1.4.3 Statistical analysis of regression6

With the theoretical background given above, we are now ready to present regression
analysis often applied to empirical data in a variety of fields, including biostatistics,
econometrics, and machine learning, in which empirical models are important.

We assume that the response variable Y and the predictive variables X =
(X1, X2, . . . , Xm) are related by

Y = f (X; θ)+ ε, (22.46)

6 The material of this section is based on Kobayashi [197] pp. 377–393.
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where the functional form f (X; θ) is known or assumed except for the parameter

θ = (θ1, θ2, . . . , θp).

The quantity ε represents the effect of uncontrolled factors or “noise” inherent in the
measurement. Our prior knowledge of the structured model describes f (X) except for
certain parameters that are to be estimated from the data. When the theory is insufficient
to provide this information, we may resort to the empirical expedient of using some
arbitrarily selected function that seems to have about the right shape; this procedure
may be useful for interpolation, but it cannot be safely used for extrapolation.

Suppose that there are n observations yi , where

y j = f (x j ; θ)+ ε, j = 1, 2, . . . , n, (22.47)

and x j = (x1 j , x2 j , . . . , xmj ) is the j th sample of the predictor multivariable X . Thus,
the data of the vector RV X may be presented in a two-dimensional array, or matrix,
denoted as X, which is called panel data in econometrics:

X =

⎡⎢⎢⎢⎣
x11 x12 · · · x1n

x21 x22 · · · x2n
...

...
. . .

...

xm1 xm2 · · · xmn

⎤⎥⎥⎥⎦ . (22.48)

Recall that we used the same representation of panel data in principal component anal-
ysis (PCA) and singular value decomposition (SVD) discussed in Section 13.3. The
estimation of the parameters θ1, θ2, . . . , θp is usually done by the method of least
squares (see Section 1.2.4 for a historical remark on this method), which can be viewed
as the statistical analysis counterpart of the MMSE discussed in the preceding section.
We let

Q =
n∑

j=1

[
y j − f (x j ; θ)

]2 (22.49)

represent, as a function of the unknown parameters θ , the sum of the squares of devi-
ation of the observed points from the functional curve. The least-square estimates of
the parameters are those that minimize Q. Estimating an equation of the form (22.46)
is equivalent to fitting a curve through a scatter diagram of plotting yi versus xi , and
this is called the regression of y on x. This is consistent with our earlier definition of
regression function or regression given in (22.33), where the regression of the response
variable Y on X is defined as the conditional expectation E[Y |X] � M(X).

We denote the sample average of y j by

y =
∑n

j=1 yi

n
, (22.50)

and the predicted value, that is, the value on the regression curve corresponding to
x j , by

ŷ j = f (x j ; θ), j = 1, 2, . . . , n. (22.51)
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Then the total sum of the squares of deviation from the predicted value is given by

Q �
n∑

j=1

(y j − ŷ)2. (22.52)

In view of the ANOVA suggested by (22.38), the above Q can be decomposed as

Q =
n∑

j=1

(y j − ŷ j )
2 +

n∑
j=1

(ŷ j − y)2 (22.53)

= QaR + QbR, (22.54)

where the term QaR represents the variation about the regression curve and QbR is the
sum of the squares of the deviations between the values on the regression curve; that is,
the variation of Y explained by regression.

Example 22.2: Linear regression. Consider, for instance, the following simple regres-
sion equation:

f (x) = β0 +
m∑

i=1

βi xi = β0 + β�x, (22.55)

where β = (β1, β2, . . . , βm). Then the sum of the squares of the deviations is given by

Q =
n∑

j=1

(y j − β0 − β�x j )
2, (22.56)

and we obtain the least-square estimates of regression coefficients as

β̂ =
∑n

j=1(x j − x)y j∑n
j=1(x j − x)2

(22.57)

and

β̂0 = y − β̂
�

x, (22.58)

where

x =
∑n

j=1 x j

n
(22.59)

and y is as given in (22.50). Therefore, we obtain the following regression equation:

f (x) = y + β̂
�
(x − x). (22.60)

It can be shown (Problem 22.13) that the estimates β̂0 and β̂ have the following
properties:

E[β̂0] = β0,Var[β̂0] = σ 2
ε

m
xH

⎡⎣ n∑
j=1

(xi − x)(xi − x)H

⎤⎦−1

x, (22.61)
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E[β̂] = β,Var[β̂] = σ 2
ε

⎡⎣ n∑
j=1

(xi − x)(xi − x)H

⎤⎦−1

, (22.62)

where the expectation is taken with respect to Y for given X ; σ 2
ε is the variance of the

error ε.
The quantity QbR is the variance of Y explained by the regression and Q is the total

variation of Y , and their ratio

r2
yx =

QbR

Q
(22.63)

is equal to the square of the sample correlation coefficient between Y and X , and is
also called the coefficient of determination, since it represents the proportion of the total
variance of Y explained by fitting the linear regression.

From the relation established by (22.53) and (22.63), the following null hypothesis
test on β may be constructed: the question is whether the ratio of the explained variance
QbR to the unexplained variance QaR is sufficiently large to reflect the hypothesis that
Y is unrelated to X . Specifically, a test of the hypothesis

H0 : β = 0 (22.64)

involves forming the ratio

F = QbR

QaR/(n − 2)
= β̂

H∑n
j=1(xi − x)(x − x)Hβ̂

s2
aR

, (22.65)

which has an F-distribution with degrees of freedom 1 and n − 2 (see Section 7.3 for
Fisher’s F distribution). The mean squared dispersion s2

aR defined in the last expression
is an estimate of σ 2

ε . �

For a further discussion on regression analysis, including multiple regression analysis,
analysis of covariance, and case study examples, the reader is directed to, for example,
Kobayashi [197] (pp. 377–413) and references therein.

22.2 Linear smoothing and prediction: Wiener filter theory

Classical filters that we study in linear circuit theory are designed in the frequency
domain. Norbert Wiener [350] took a different approach: he assumed that a signal
process and additive noise are both WSS random processes with known spectral
characteristics or autocorrelation and cross-correlation functions. Then he sought a filter
that is physically realizable (or causal) under the criterion of MMSE. Wiener presented
his theory for continuous-time processes, but the theory is equally applicable to the
discrete-time case, as we shall discuss below. The discrete-time case was independently
investigated by Kolmogorov and was published in 1941 [209]. Thus, this filter theory is
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Xt YtL(Xt)

Figure 22.2 A linear system with random process input Xt and output process Yt .

often referred to as the Wiener–Kolmogorov filter theory. We begin with a brief review
of linear time-invariant systems with random inputs.

22.2.1 Linear time-invariant system with random input

Consider the system of Figure 22.2 with a random process Xt as its input and
Yt = L(Xt ) as its output process, where t is a discrete time index; i.e., t = 0, 1, 2, . . . .
The operator L(·) that acts on the process Xt is a linear operator.

We say that the linear system L(·) is time invariant if, for any sample function xt of
the random process Xt and for any finite time index k,

yt = L(xt ) $⇒ L(xt+k) = yt+k . (22.66)

In other words, in a time-invariant linear system the only effect of a delay k in the input
is a corresponding delay in the output.

A linear time-invariant system can be characterized by its impulse response h[t];7
t = . . . ,−2,−1, 0, 1, 2, . . . , which is the output sequence when the input is the unit
pulse at t = 0; i.e., δt,0:

h[t] = L(δt,0), t = . . . ,−2,−1, 0, 1, 2, . . . . (22.67)

Its Z -transform

H(z) =
∞∑

t=−∞
h[t]z−t (22.68)

is called the system function or transfer function.
In a linear time-invariant system, the output random process Yt is given as the

convolution sum between the input random process Xt and the impulse response h[k]:

Yt =
∞∑

k=−∞
h[k]Xt−k =

∞∑
k=−∞

h[t − k]Xk,
8 (22.69)

where the process Xt , Yt , and the h[k] may be complex-valued.

7 We use the notation h[t] instead of ht , because subscripts such as opt cannot be added to ht . Thus, we adopt
mixed notation: Xt , Yt , etc. for the discrete-time random processes, and h[t], h[k], etc. for discrete-time
impulse response sequences.

8 This expression should be interpreted as the limit in mean square or l.i.m.; that is, Yt =
l.i.m.m,n→∞

∑n
k=−m h[k]Xt−k , meaning limm,n→∞ E

[∣∣Yt −∑n
k=−m h[k]Xt−k

∣∣2] = 0. See Section

11.2.4 on convergence in mean square.



658 Filtering and prediction of random processes

A system is called causal, or physically realizable, if its output Yt depends only on
its past and present inputs Xt , Xt−1 . . .; i.e., if and only if

h[k] = 0, for k < 0, (22.70)

which is referred to as the causality condition. A system whose output depends on
future inputs is called noncausal or physically unrealizable. If the output depends only
on future inputs, the system is called anti-causal.

If the input process is stationary, we have

E[Yt ] =
∞∑

k=−∞
h[k]E[Xt−k] = μx

∞∑
k=−∞

h[k]. (22.71)

The autocorrelation function of the output process Yt is9

Ryy[t1, t2] = E[Yt1 Y ∗t2 ]

= E

⎡⎣ ∞∑
k=−∞

h[k]Xt1−k

∞∑
j=−∞

h∗[ j]X∗t2− j

⎤⎦
=

∞∑
k=−∞

∞∑
j=−∞

h[k]h∗[ j]Rxx [t1 − k, t2 − j], (22.72)

with Y ∗t and h∗[ j] denoting the complex conjugates of Yt and h[ j] respectively. If Xt is
WSS,10

Rxx [t1 − k, t2 − j] � Rxx [d + j − k], where d = t1 − t2.

Thus,

Ryy[t1, t2] =
∞∑

k=−∞

∞∑
j=−∞

h[k]h∗[ j]Rxx [d + j − k]. (22.73)

Hence, Ryy[t1, t2] is also a function of d = t1 − t2 only; thus, Yt is also WSS, and we
can write Ryy[t1, t2] = Ryy[t1 − t2].

If the linear system can be characterized by an FIR, for instance,

h� = (h[0], h[1], . . . , h[n]),
(22.73) can have the following vector-matrix representation:

Ryy[d] = h�Rxx [d]h∗, (22.74)

9 We use square brackets for the discrete-time argument of the autocorrelation Ryy . When we deal with the
continuous-time process, we use parentheses; i.e., Ryy(t1, t2), Y (t), etc.

10 Recall that we say a continuous-time process X (t) is WSS if its autocorrelation function Rxx (t1, t2) is a
function of the time difference t1 − t2 only, and we write it as Rxx (t1 − t2).



22.2 Linear smoothing and prediction: Wiener filter theory 659

where

Rxx [d] =

⎡⎢⎢⎢⎣
Rxx [d] Rxx [d + 1] · · · Rxx [d + n]
Rxx [d − 1] Rxx [d] · · · Rxx [d + n − 1]
...

...
. . .

...

Rxx [d − n] Rxx [d − n + 1] · · · Rxx [d]

⎤⎥⎥⎥⎦ . (22.75)

The reader who wonders why the right-hand side of (22.74) is not given in the form
hH Rxx [d]h (where H signifies the complex conjugate and transpose) is suggested to
work on Problem 22.14.

We denote the Z -transform of the autocorrelation function (22.73) by Pyy(z):

Pyy(z) =
∞∑

k=−∞
Ryy[k]z−k =

∞∑
k=−∞

h[k]
∞∑

j=−∞
h∗[ j]

∞∑
d=−∞

Rxx [d + j − k]z−d .

(22.76)

This function is simply related to the power spectrum or (power) spectral density
Py(ω) defined as the Fourier transform of the autocorrelation function (see (13.49) of
Chapter 13):

Py(ω) = 1

2π
Pyy(e

iω) = 1

2π

∞∑
k=−∞

R[k]e−ikω,−π ≤ ω ≤ π, (22.77)

where i = √−1. Therefore, Pyy(z) of (22.76) is also often called the power spectrum
of the WSS process Y (t).

Letting p = d + j − k or d = k − j + p, we can write

Pyy(z) =
∞∑

k=−∞
h[k]z−k

∞∑
j=−∞

h∗[ j]z j
∞∑

p=−∞
Rxx [p]z−p

= H(z)H∗(z−1)Pxx(z). (22.78)

Therefore, we find

Py(ω) = |H(eiω)|2 Px (ω), (22.79)

where Px (ω) is the spectral density of the input process X (t).

22.2.2 Optimal smoothing and prediction of a stationary process

Let the input Xt be a superposition of a stochastic signal St and noise process Nt :

Xt = St + Nt . (22.80)

We assume that St and Nt are both WSS processes and E[Nt ] = 0, −∞ < t <∞.
We want to design a linear filter with an impulse response h[k] that acts on the input

in such a way that the output Yt is the best estimate of St+p in the mean square sense
(Figure 22.3); i.e.,
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 Xt = St + Nt
ˆYt = St + p

h[k]

Figure 22.3 A linear predictor h[k] for the signal St+p based on its noisy past input Xt−k , k ≥ 0.

min
h[k] E

[
|Yt − St+p|2

]
, (22.81)

where

Yt =
∞∑

k=−∞
h[k]Xt−k . (22.82)

When p > 0 in (22.81), the Yt is a predicted value of the signal at p [time units] in
the future. When p ≤ 0, Yt is called either a smoothed estimate or filtered estimate
of St+p , depending on the range of k in (22.82). There seems to be no universally
accepted precise definition of smoothing versus filtering. But we give here the definition
adopted in a majority of the literature. The aim of filtering is to find a good estimate of
St+p (for p≤ 0) based on the information available at time t ; hence, the range of the
running variable k in (22.82) is [0,∞). Thus, when we say filtering, it usually means
physically realizable in real-time. The aim of smoothing is to estimate St+p (for p ≤ 0)
by taking account of the information available after time t as well as before t . In this
definition, a smoother is equivalent to a physically unrealizable filter, for the case p ≤ 0.
The term “filtering” usually assumes the presence of noise or error in the observed
data, whereas smoothing may be applied even to noise-free data. The moving-average
procedure, often used in econometrics, may be called smoothing (e.g., “exponentially
weighted smoothing”), but such estimation is seldom called filtering, whether it is causal
or not. A precise distinction of the two terms, however, is not of our concern here, so
we may use the two terms interchangeably for the purpose of this chapter.

In order for a filter to be actually implementable, we must impose the causality
condition (22.70). With this condition we denote the MSE E as

E = E

⎧⎨⎩
∣∣∣∣∣
∞∑

k=0

h[k]Xt−k − St+p

∣∣∣∣∣
2
⎫⎬⎭ , (22.83)

which can be expanded as

E =
∞∑

k=0

∞∑
j=0

h[k]Rxx [ j − k]h∗[ j] − 2 
⎧⎨⎩
∞∑
j=0

Rsx [p + j]h∗[ j]
⎫⎬⎭+ Rss[0], (22.84)

where Rxx [k] is the autocorrelation function of Xt = St + Nt and Rsx [k] is the cross-
correlation function between St and Xt :

Rxx [k] = E[Xt+k X∗t ] and Rsx [k] = E[St+k X∗t ], (22.85)

and Rss[k] is the autocorrelation of the stochastic signal St ; hence, Rss[0] = E[|St |2].
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Let g[k] be an arbitrary causal filter (i.e., g[k] = 0, k < 0). Then h[k] + δg[k] is also
causal. If we replace h[k] by h[k] + δg[k] in the above expression for E ,

E(δ) = E + δ2
∞∑

k=0

∞∑
j=0

g[k]Rxx [ j − k]g[ j]

+ 2δ 
⎧⎨⎩

∞∑
k=0

∞∑
j=0

h[k]Rxx [ j − k]g[ j]
⎫⎬⎭− 2δ 

⎧⎨⎩
∞∑
j=0

Rsx [p + j]g[ j]
⎫⎬⎭ .
(22.86)

In order for {h[k]} to be an optimal linear predictor, it is necessary and sufficient that
E ≤ E(δ) holds for any {g[k]} and any real number δ; i.e.,

δ2
∞∑

k=0

∞∑
j=0

g[k]Rxx [ j − k]g[ j]

+ 2δ 
⎡⎣ ∞∑

k=0

∞∑
j=0

h[k]Rxx [ j − k]g[ j] −
∞∑
j=0

Rsx [p + j]g[ j]
⎤⎦ ≥ 0. (22.87)

Then a necessary and sufficient condition for the above inequality to hold is that the
expression in the square brackets is zero; that is,

∞∑
j=0

[ ∞∑
k=0

h[k]Rxx [ j − k] − Rsx [p + j]
]

g[ j] = 0. (22.88)

Since we assume that g j is an arbitrary function, the above equation holds if and only if

∞∑
k=0

h[k]Rxx [ j − k] = Rsx [ j + p], for all j ≥ 0. (22.89)

Thus, the optimal linear predictor’s impulse response {h[k]} is given as a solution to the
above equation. The continuous-time version of this equation is the following integral
equation: ∫ ∞

0
h(u)Rxx (t − u) du = Rsx (t + λ), for all t ≥ 0, (22.90)

which is known as an integral equation of Wiener–Hopf type. The solution h(t) of
this integral equation is the impulse response function of an optimum filter that predicts
the signal value at time t + λ (where λ > 0) based on the observation {X (t ′); t ′ ≤ t}.
When λ ≤ 0, the solution is an optimum smoother or filter. An alternative derivation
of the above equations (22.89) and (22.90) can be done by using the orthogonality
principle defined in Definition 10.3 of Section 10.1.1 and also refreshed in arriving at
Lemmma 22.1 in the preceding section (see also Problem 22.15).
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Our objective is to find a causal filter {h[k]} that satisfies the equation (22.89) sub-
ject to the condition for the filter to be physically realizable; i.e., h[k] = 0, k < 0. This
causality condition makes the task of solving (22.89) nontrivial. Thus, we first consider
noncausal filters.

22.2.3 Noncausal (or physically unrealizable) filter

Suppose we drop the restriction h[t] = 0, t < 0. Then the above equation is replaced by

Rsx [t + p] =
∞∑

k=−∞
h[k]Rxx [t − k],−∞ < t <∞. (22.91)

Taking the Z -transform of both sides, we have

LHS =
∞∑

t=−∞
Rsx [t + p]z−t =

∞∑
t ′=−∞

Rsx [t ′]z−t ′+p

= z p Psx (z), (22.92)

and similarly,

RHS =
∞∑

t=−∞

( ∞∑
k=−∞

h[k]Rxx [t − k]
)

z−t = H(z)Pxx(z). (22.93)

Hence, we can obtain the optimal (but noncausal) filter’s transfer function as

Hopt(z) = Psx (z)z p

Pxx(z)
. (22.94)

If the signal process St and noise Nt are uncorrelated, we can simplify the cross-
correlation function

Rsx [k] = E[St+k Xt ] = E
[
St+k (St + Nt )

]
= Rss[k] + E[St+k]E[Nt ] = Rss[k], (22.95)

where we used the property E[Nt ] = 0. Hence, by taking the Z -transform of the above
equation we find

Psx (z) = Pss(z) for all z. (22.96)

Similarly, we find

Rxx [k] = E[Xt+k Xt ] = E
[
(St+k + Nt+k) (St + Nt )

]
= Rss[k] + Rnn[k], (22.97)

from which we obtain

Pxx (z) = Pss(z)+ Pnn(z). (22.98)
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By substituting the last result into (22.94), we have

Hopt(z) = Pss(z)z p

Pss(z)+ Pnn(z)
= z p

1+ Pnn(z)
Pss (z)

. (22.99)

The multiplication factor z p corresponds to advancing the input signal by p time units.

22.2.4 Prediction of a random signal in the absence of noise

Now we consider the special case where the noise is absent, i.e., Nt = 0,−∞ < t <∞,
and our task is to design a physically realizable filter h[k] that gives the MMSE in
predicting St+p based on the past input {Xt−k = St−k, k ≥ 0} (Figure 22.4).

All the information we can use is that the signal process is WSS with its autocor-
relation function Rss[k]. Thus, if the stochastic signal St is replaced by another WSS
process Zt with the same autocorrelation function as Rss[k], the MSE E will remain
unchanged. Hence, the optimal predictor for predicting Zt+p should be the same as the
optimal predictor for St+p .

Now consider a discrete-time white noise sequence11 Wt of unit spectral density; i.e.,

Pww(z) = 1 for all z; equivalently, Rww[k] = δk,0.

Let Wt be applied as input to a causal filter gs[k] to produce the random process
Zt whose second-order statistics (i.e., autocorrelation function or, equivalently, power
spectrum) are the same as that of St . This is schematically shown in Figure 22.5:

Zt =
t∑

k=−∞
gs[t − k]Wk . (22.100)

We choose the Z -transform Gs(z) of the filter impulse response {gs[k]} such that

Gs(z)G
∗
s (z

−1) = Pss(z). (22.101)

ˆYt = St + pXt = St
h[k]

Figure 22.4 A pure predictor h[k] for the signal St+p based on its noiseless input Xt = St .

ZtWt
gs[k]

Figure 22.5 White noise Wt passes through a linear filter {gs [k]} to produce Zt that is statistically equivalent
to St , the signal of our concern.

11 In Chapter 17 we used the symbol W (t) for the Wiener process and Z(t) for white noise.
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or, equivalently,

|Gs(e
iω)|2 = 2π Ps(ω). (22.102)

Then, the power spectrum of the output noise Zt is given by (Problem 22.16)

Pzz(z) = Gs(z)Pww(z)G
∗
s (z

−1) = Pss(z) for all z. (22.103)

Thus, the stochastic signal St and the filtered noise Zt possess the same autocorre-
lation function; hence, they are statistically equivalent as far as their predictability is
concerned.

Therefore, the signal process St is representable as

St =
t∑

k=−∞
gs[t − k]Wk, (22.104)

where Gs(z) = Z{gs[k]} should satisfy (22.101). From (22.104), we can write the
future value of St as

St+p =
t+p∑

k=−∞
gs[t + p − k]Wk

=
t∑

k=−∞
gs[t + p − k]Wk +

t+p∑
k=t+1

gs[t + p − k]Wk . (22.105)

Note that {Wk,−∞ < k < t} and {Wk, t < k < t + p} are independent, and a
causal filter must predict the value of St+p solely based on the past input, i.e.,
{Sk,−∞< k< t}, which in turn is a function of {W j ,−∞ < j < k < t}.

Thus, it is not difficult to conjecture that the optimally predicted value should be the
first term of the above equation.

THEOREM 22.3 (Optimum linear pure predictor). For a WSS signal St with autocor-
relation function Rss[k], an optimal linear pure prediction of St+p based on the input
{St ′,−∞ < t ′ < t} is given by

Ŝt+p =
t∑

k=−∞
gs[t + p − k]Wk, (22.106)

where gs[k] = Z−1 {Gs(z)} such that Gs(z)G∗
s (z

−1) = Pss(z) = Z {Rss[k]}, and Wt

is a white noise sequence with unit spectral density.
The minimized MSE is

Emin = E
[
|St+p − Ŝt+p|2

]
= E

⎡⎣∣∣∣∣∣
t+p∑
k=t

gs[t + p − k]Wk

∣∣∣∣∣
2⎤⎦ . (22.107)
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Proof. Let

S̃t+p =
t∑

k=−∞
f [t − k]Wk (22.108)

be an arbitrary linear prediction of St+p . Then we can show that

E
[
|St+p − S̃t+p|2

]
= E

[
|St+p − Ŝt+p|2

]
+ E

⎡⎣∣∣∣∣∣
t∑

k=−∞
( f [t − k] − gs[t + p − k])Wk

∣∣∣∣∣
2
⎤⎦ . (22.109)

Thus, an optimum prediction is achieved when

f [k] = fs[k] � gs[k + p], k ≥ 0, (22.110)

or, equivalently, when

S̃t+p = Ŝt+p =
t∑

k=−∞
gs[t + p − k]Wk, (22.111)

and the MSE is given by the first term of the RHS of (22.109):

Emin = E
[
|St+p − Ŝt+p|2

]
, (22.112)

which is equivalent to (22.107).

From (22.110), the optimal causal filter fs[k] that acts on white noise Wt is related to
gs[k] according to

fs[k] =
{

0, k < 0,
gs[k + p], k ≥ 0.

(22.113)

Then, the optimal predicted value of St+p is obtained by passing the white noise
sequence to the filter fs[k]:

Ŝt+p =
t∑

k=−∞
fs[t − k]Wk . (22.114)

In order to represent the relation between fs[k] and gs[k] in the transformed domain,
we introduce a new notation []+ as follows:

B(z) = Z{bk} $⇒ [B(z)]+ � Z{b[k]u[k]}, (22.115)

where u[k] is the unit step function defined in the discrete-time domain; i.e.,

u[k] =
{

1, k = 0, 1, 2, . . . ,
0, k = . . . ,−2,−1.
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Thus, for given B(z), the corresponding [B(z)]+ is found by taking the inverse
Z -transform to obtain {b[k]}, discarding its negative time part, and then taking its
Z -transform. If {b[k]} is an impulse response function, then b[k]u[k] is its physically
realizable part and [B(z)]+ is the corresponding transfer function.

Then, we write (22.113) as

Fs(z) =
[
Gs(z)z

p]
+ . (22.116)

Figure 22.6 illustrates these relationships. Since the white noise Wt can be created by
passing the signal St into a filter with transfer function 1/Gs(z), we finally find that the
transfer function Hopt(z) of the optimal pure predictor is given by

Hopt(z) = 1

Gs(z)

[
Gs(z)z

p]
+ , (22.117)

which is schematically shown in Figure 22.7.
Therefore, the impulse response hopt[k] of the optimal pure predictor is given by the

inverse Z -transform of Hopt(z):

hopt[k] = Z−1
{

Fs(z)

Gs(z)

}
. (22.118)

(b)(a)

gs[k]

fs[k]

gs[k + p]

Ŝt + pWt fs[k]

Figure 22.6 (a) The relation between gs [k] and fs [k]; (b) an optimal predictor fs [k] = gs [k + p] that acts on
white noise.

Hopt (Z) = Fs (Z)/Gs (Z)

St Wt St+p1/G (Z) Fs (Z)
ˆ

Figure 22.7 An optimal predictor Hopt(z) that acts on the input signal St .



22.2 Linear smoothing and prediction: Wiener filter theory 667

In referring to Figure 22.6, we note that

∞∑
k=0

|gs[k]|2 = E
[
|St+p|2

]
= ‖St+p‖2 (22.119)

and
∞∑

k=0

| fs[k]|2 =
∞∑

k=p

|gs[k]|2 = E
[
|Ŝt+p|2

]
= ‖Ŝt+p‖2 (22.120)

represent the norm square of the random variables St+p and Ŝt+p respectively (see
Figure 22.17 of Problem 22.15). Thus, the norm square of the prediction error et+p is
given by

‖et+p‖2 = ‖St+p‖2 − ‖Ŝt+p‖2 =
p−1∑
k=0

|gs[k]|2. (22.121)

We provide a more formal derivation of these important results at the end of
Section 22.2.5.

Example 22.3: Pure predictor of an autoregressive signal. We consider a pure
prediction problem; i.e., Xt = St . Suppose the signal spectrum takes the form

Pss(z) = |A|2
(1− αz−1)(1− αz)

or, equivalently,

Ps(ω) = |A|2
2π
(
1+ |α|2 − 2 {α} cosω

) . (22.122)

Then a physically realizable filter Gs(z) such that Gs(z)G∗
s (z

−1) = Pss(z) is found:

Gs(z) = A

1− αz−1 .

Then, by referring to Figure 22.5, the filtered noise {Zt } and the white noise {Wt } are
related by

Zt = αZt−1 + AWt , (22.123)

and Zt is an autoregressive sequence of first order, often denoted as AR(1) (see
Section 13.4.3). If the white noise Wt is Gaussian, then (22.123) implies that Zt is Gaus-
sian as well as Markovian, and hence it is a Gauss-Markov process (GMP), as defined
in Section 13.4.3. Thus, the stochastic signal St , which is statistically equivalent to Zt ,
is also a GMP. Figure 22.8 shows an example of white Gaussian noise Wt ∼ N (0, 1),
and GMP Zt (in a solid line), which is statistically equivalent to the signal process St .
We set A = 1 and α = 2−1/4.
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Figure 22.8 (a) White noise Wt that generates (b) a Gauss–Markov signal St with a specified power spectral
density (22.122). The dashed curve is the output of a pure Wiener predictor, which estimates St
based on St−2.

The impulse response function {gs[k]} is readily found as

gs[k] =
{

0, k < 0.
Aαk, k = 0, 1, 2, . . . .

(22.124)

Hence, we find

fs[k] =
{

0, k < 0,
Aαk+p, k ≥ 0.

By taking the Z -transform, we obtain the transfer function

Fs(z) = Aα p

1− αz−1
.

Then, combining this and 1/Gs(z) = A−1(1− αz−1), we find that the optimal pure
predictor is given by

Hopt(z) = Fs(z)

Gs(z)
= α p. (22.125)

Thus,

Ŝt+p = α p St .
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In the lower figure of Figure 22.8 the dashed curve is the pure prediction Ŝt = α p St−p ,
where p = 2 time units and α = 2−1/4. The predicted waveform is a scaled (by
α p = 2−1/2) and shifted (by p= 2 time units) version of the actual signal waveform.

It will be instructive to note that Theorem 22.4 (to be presented below) implies
that the best linear predictor for this example problem is also the optimal predictor
(linear or nonlinear) in the MMSE sense, which is given by the conditional expecta-
tion E[St+p|Sk, k ≤ t]. The latter reduces to the conditional expectation E[St+p|St ],
because St here is a Markov process. Furthermore, St+p and St are bivariate normal
RVs, both having zero mean and variance σ 2

s . The correlation coefficient between them
is ρ = Rss[p]/Rss[0] = α p. Applying the formula (4.111) of Section 4.3.1 to the bivari-
ate RV (St , St+p), we find that the conditional distribution of St+p given St is also
normal with mean

E[St+p|St ] = ρSt = α p St , p ≥ 0, (22.126)

and variance

Var[St+p|St ] = σ 2
s (1− ρ2) = σ 2

s

(
1− α2p

)
, p ≥ 0. (22.127)

In order to find σ 2
s , we take the absolute square of both sides of (22.123):

|Zt |2 = |αZt−1|2 + |AWt |2 + 2 {αAZt−1W t }.
Taking the expectations of both sides and using the independence between Zt−1 and
Wt , we readily find

σ 2
s = |α|2σ 2

s + |A|2.
Thus,

σ 2
s =

|A|2
1− |α|2 . (22.128)

The last expression can be also found from the spectrum Pss(z) or Ps(ω)

(Problem 22.18).
The continuous-time version of this GMP has a power spectrum of the form

Pss( f ) = |A|2
1+ |a|2 f 2

. (22.129)

The reader is suggested to obtain the filter gs(t) and optimum predictor fs(t)
(Problem 22.19). �

Thus far, we have limited ourselves to a class of linear predictors. If we expand to
include nonlinear predictors, we should be able to do better; i.e., a nonlinear predictor
may provide a smaller mean square prediction error. However, if the stochastic signal
St is Gaussian, we can claim the following.
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THEOREM 22.4 (Optimality of the best linear pure predictor for a Gaussian process).
If the signal St is a Gaussian process, the best linear pure predictor Ŝt+p is as good as
any predictor, linear or nonlinear, in the MMSE sense.

Proof. Recall that uncorrelated Gaussian RVs are statistically independent. If St is
Gaussian, the whitened noise Wt is also Gaussian. Let Yt be any prediction of St+p

based on the input prior to time t ; i.e., {St ′, t ′ ≤ t}. Then Yt is independent of the future
value of the white noise {Wk, k > t}. Since

Zt = Yt − Ŝt+p = Yt −
t∑

k=−∞
gs[t + p − k]Wk, (22.130)

Zt is also independent of {Wk, k > t}. Furthermore, by writing St+p − Ŝt+p as

St+p − Ŝt+p =
t+p∑

k=t+1

gs[t + p − k]Wk,

we find that Zt and St+p − Ŝt+p are independent and, hence, orthogonal. Thus, the
MSE of Yt as a predictor can be written as

E
[∣∣St+p − Yt

∣∣2] = E

[∣∣∣St+p − Ŝt+p − Zt

∣∣∣2]
= E

[∣∣∣St+p − Ŝt+p

∣∣∣2]+ E
[
|Zt |2

]
≥ E

[∣∣∣St+p − Ŝt+p

∣∣∣2] . (22.131)

Hence, we have shown that the MSE of any prediction Yt cannot be made smaller than
the error of the best linear prediction; i.e., Ŝt+p =∑∞

k=0 h[k]St−k .

In the context of our pure prediction problem, the optimum MSE predictor of
St+p given St is the conditional expectation E[St+p|Sk, u ≤ t], which will be in
general a nonlinear function of Sk , u ≤ t . The above theorem states that if St is a
Gaussian process, then E[St+p|Sk, u ≤ t] =∑∞

k=0 h[k]St−k with some linear predictor
h[k], k≥ 0.

22.2.5 Prediction of a random signal in the presence of noise

Now let us return to the original model, i.e., the input Xt is signal plus noise, as given
in (22.80). The impulse response of the MMSE predictor, {h[k]}, must satisfy (22.89),
the discrete-time version of the Wiener–Hopf integral equation. The main difficulty in
solving the above equation, as we pointed out earlier, is to take into account the causality
condition; i.e., h[k] = 0 for k < 0. Were it not for this restriction, the equation would
be easily solved by the Z -transform method (or the Fourier transform method for the
continuous-time case), as discussed in Section 22.2.3.
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The first step in solving the general case is similar to the one adopted in the pure
prediction problem discussed in the preceding section; that is, to factor out Pxx (z):

Pxx (z) = Gx (z)G
∗
x (z

−1), (22.132)

where Gx (z) is a causal filter; i.e., gx [k] = Z−1{Gx (z)} = 0, k < 0. Recall that in the
pure prediction problem Pxx (z) reduces to Pss(z), so (22.132) becomes (22.101).

The factorization of the general power spectrum function Pxx (z) may be generally a
formidable task, but it becomes somewhat easier if Pxx (z) is a rational function of z.

Example 22.4: Factorization of P xx(z). Let us assume that both signal and noise are
AR(1); i.e., autoregressive sequences of the first-order, as defined in Example 22.3:

St = αSt−1 + AWt , Nt = βNt−1 + BW ′
t , (22.133)

where Wt and W ′
t are independent white noise with zero mean and unit variance (not

necessarily Gaussian). In Figure 22.9 we plot a sample of St , Nt , and their superposition
Xt = St + Nt , by assuming Wt and W ′

t are white Gaussian noise ∼ N (0, 1) and

|A|2 = |B|2 = 1, α = 2−1/4 ≈ 0.8409, β = 2−1 = 0.5. (22.134)
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Figure 22.9 (a) Gauss–Markov signal St , (b) noise Nt , (c) their superposition Xt = St + Nt , where SNR is
2.56 (or 4.08 dB).
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In this case both signal and noise are GMPs. Using the result of σ 2
s of (22.128), the

signal-to-noise ratio (SNR) is given by

SNR = σ 2
s

σ 2
n
= |A|2(1− |β|2)
|B|2(1− |α|2) =

3

4(1− 2−1/2)
= 2.56 ≈ 4.08 dB.

The power spectrums take the following form:

Pss(z) = |A|2
(1− αz−1)(1− αz)

, Pnn(z) = |B|2
(1− βz−1)(1− βz)

. (22.135)

The power spectral density of the signal process is

Ps(ω) = 1

2π
Pss(e

iω) = |A|2
2π |1− αe−iω|2 =

1

2π(1− 2 {α} cosω + |α|2) ,

where −π ≤ ω ≤ π , and there is a similar expression for the noise process. In
Figure 22.10 we plot Ps(ω) = Pss(eiω)/2π and Pn(ω) = Pnn(eiω)/2π for the parame-
ters set in (22.134).

Since log2 α/ log2 β = 1/4, we expect the signal bandwidth is to be one-fourth of
the noise bandwidth, and clearly Figure 22.10 confirms this observation. The power
spectrum of the superposed process Xt = St + Nt is
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Figure 22.10 (a) Signal and (b) noise power spectrums Ps(ω) and Pn(ω), where SNR is 2.56 (or 4.08 dB)
and the noise bandwidth is four times as broad as the signal bandwidth.
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Pxx (z) = Pss(z)+ Pnn(z) = |B|2(1− αz−1)(1− αz)+ |A|2(1− βz−1)(1− βz)

(1− αz−1)(1− αz)(1− βz−1)(1− βz)

= |C |2(1− γ z−1)(1− γ z)

(1− αz−1)(1− αz)(1− βz−1)(1− βz)
,

where |C | and γ are determined by

|C |2(1+ |γ |2) = |B|2(1+ |α|2)+ |A|2(1+ |β|2),
|B|2α + |A|2β = |C |2γ.

For the parameters chosen above, we find

γ = 0.5175 and |C |2 = 2.3326.

We can factor Pxx(z):

Pxx (z) = Gx (z)G
∗
x (z

−1), (22.136)

where

Gx (z) = C(1− γ z−1)

(1− αz−1)(1− βz−1)
.

The inverse Z -transform gives

gx [k] = C(α − γ )
α − β αk + C(γ − β)

α − β βk, k = 0, 1, 2, . . . .

If we choose C to be real and positive among infinitely many possibilities, we find
C = 1.5273, and we find

gx [k] = 1.4489× 2−k/4 + 0.0784× 2−k , k = 0, 1, 2, . . . ,

which is the sum of two geometrically decaying series. Clearly, the second term dies
down four times as fast as the first term as time k progresses. �

Note that all zeros (z = 0, γ ) and poles (z = α, β) of Gx (z) are within the unit circle
(|z| = 1), so that the inverse filter 1/Gx (z) should be also physically realizable. Such a
linear system is called a minimum-phase system.

Let us denote the inverse Z -transform of G∗
x (z

−1) as g(−)x [k]:

g(−)x [k] = Z−1
{

G∗
x (z

−1)
}
= Z−1

{
Gx (z−1)

}
= gx [−k] = gx [−k].

Therefore, we have established that

g(−)x [k] = 0, k > 0. (22.137)



674 Filtering and prediction of random processes

This filter is quite opposite to the causal filter gx [k], in the sense that its output depends
only on the future and present inputs. Such a filter is referred to as an anti-causal filter,
as defined earlier.

Since Pxx(z) = Gx (z)G∗
x (z), the inverse Z -transform yields

Rxx [k] = gx [k]� g(−)x [k] =
0∑

j=−∞
gx [k − j]g(−)x [ j]. (22.138)

Define A(z) such that

Psx (z) = A(z)G∗
x (z

−1). (22.139)

By taking the inverse Z -transform, we have

Rsx [k] = a[k]� g(−)x [k] =
0∑

j=−∞
a[k − j]g(−)x [ j], (22.140)

where

a[k] = Z−1{A(z)}. (22.141)

Note that, in the pure prediction problem, A(z) reduces to Gx (z).
By substituting (22.138) and (22.140) into (22.90), we find

0∑
j=−∞

a[t + p − j]g(−)x [ j] =
∞∑

k=0

h[k]
0∑

j=−∞
gx [t − k − j]g(−)x [ j], t ≥ 0, (22.142)

or

0∑
j=−∞

g(−)x [ j]
[

a[t + p − j] −
∞∑

k=0

h[k]gx [t − k − j]
]
= 0, t ≥ 0. (22.143)

The last equation is satisfied if the expression in [ ] vanishes for all j < 0 and t ≥ 0;
i.e., if

a[t + p − j] =
∞∑

k=0

h[k]gx [t − k − j], t ≥ 0, j < 0. (22.144)

By writing t − j = t ′ > 0, we have

a[t ′ + p] =
∞∑

k=0

h[k]gx [t ′ − k], t ′ > 0. (22.145)

This equation looks similar to the Wiener–Hopf equation (22.89), but there is an impor-
tant difference; namely, gx [k] = 0 for k < 0 (whereas Rxx [k] �= 0 for k < 0). Thus,
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(22.145) can be solved by using the steps taken for the physically unrealizable case of
Section 22.2.3.

We find the Z -transform of the left-hand side of (22.145) to be

LHS = Z{a[t ′ + p]u[t ′]} = [A(z)z p]
+

=
[

Psx (z)z p

G∗
x (z

−1)

]
+

� Fsx (z). (22.146)

Since the right-hand side of (22.145) is the convolution of the two causal functions h[k]
and gx [k], its Z -transform is readily found as

RHS = Z
{ ∞∑

k=0

h[k]gx [t − k]
}
= H(z)Gx (z). (22.147)

From the last two equations we find the transfer function of the optimal linear predictor:

Hopt(z) = Fsx (z)

Gx (z)
= 1

Gx (z)

[
Psx (z)z p

G∗
x (z

−1)

]
+
. (22.148)

Let us examine the above solution for some special cases.

Pure prediction: If Nt = 0 for all t as in the pure prediction problem, then

Psx (z) = Pss(z) = Gs(z)G
∗
s (z

−1).

Thus, (22.148) becomes

Hopt(z) = 1

Gs(z)

[
Pss(z)z p

G∗
s (z

−1)

]
+
= 1

Gs(z)

[
Gs(z)z

p]
+ , (22.149)

which is (22.117).

Smoothing: If p = −d ≤ 0, then it is no longer a prediction problem, but instead a
“smoothing” problem; i.e., to filter out the noise Nt as much as possible and obtain the
best possible estimate of the signal St−d . Such an optimal smoothing filter with delay d
is found by setting p = −d in (22.148).

Uncorrelated signal and noise: If the noise Nt is uncorrelated with the signal process
St , then

Psx (z) = Pss(z).

Then, an optimum p-step predictor is given by

Hopt(z) = 1

Gx (z)

[
Pss(z)z p

G∗
x (z

−1)

]
+
. (22.150)

Similarly, an optimum smoothing filter is given by setting p = −d ≤ 0.
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Example 22.5: Optimal predicting filter for uncorrelated signal and noise. Let
us consider an optimal prediction problem when the AR signal and AR noise are
uncorrelated and their spectrums are given in (22.135) of Example 22.4. In that
example, we found that the spectrum Pxx (z) = Pss(z)+ Pnn(z) could be factored as
Pxx (z) = Gx (z)G∗

x (z
−1), where

Gx (z) = C(1− γ z−1)

(1− αz−1)(1− βz−1)
, G∗

x (z
−1) = C(1− γ z)

(1− αz)(1− βz)
.

Thus,

Pss(z)z p

G∗
x (z

−1)
= |A|2

C

(1− βz)z p

(1− αz−1)(1− γ z)
= |A|2

C

z p+1(1− βz)

(z − α)(1− γ z)

= |A|2
C

[
az p

1− αz−1
+ bz p+1

1− γ z

]
, (22.151)

where

a = 1− αβ
1− αγ and b = γ − β

1− αγ .

If p ≥ 1, the first term in the brackets [ ] of (22.151) contributes to the causal part,
whereas the second term is all noncausal (Problem 22.17). For p ≥ 0, we find[

Pss(z)z p

G∗
x (z

−1)

]
+
= a|A|2

C

[
z p

1− αz−1

]
+
= a|A|2

C

∞∑
k=0

αk z−(k−p)uk−p

= a|A|2α p

C

∞∑
t=0

αt z−t = a|A|2α p

C

1

1− αz−1 . (22.152)

Thus, the optimal predicting filter is from (22.150) given as

Hopt(z) = cα p 1− βz−1

1− γ z−1
, (22.153)

where

c = a|A|2
|C |2 = (1− αβ)|A|2

(1− αγ )|C |2 .

By taking the Z -transform, we obtain the impulse response of the optimal predictor:

hopt[k] =
{

cα p, k = 0,
c(γ − β)α pγ k−1, k = 1, 2, . . . ,

(22.154)

which is an almost geometrically decaying function; i.e., hopt[k + 1]/hopt[k] = γ < 1
for all k ≥ 1, but hopt[1]/hopt[0] = γ − β < γ < 1. The multiplication factor α p is the
same as in the pure predictor (22.125) for the AR signal obtained earlier.
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Figure 22.11 (a) The GMP signal St , (b) its noisy version Xt , with the same power spectrums as in
Figure 22.9, and (c) the filter output Yt = Ŝt with p = 0.

In Figure 22.11 we plot the GMP signal St and noisy version Xt = Sn + Nt and the
filtered output Yt , where we set p = 0. It is certainly clear that the causal optimal filter
(22.154) filters out much of the noise process. Let us examine the above solution for
two special cases.

White noise: If we let β = 0, then the noise spectrum becomes Pnn(z) = B for all z;
hence, the noise is white. The predicting filter is found from the last equation as

Hopt(z) = cα p

1− γ z−1 .

Thus, we find the impulse response function of the optimum predicting filter:

hopt[k] =
{

cα pγ k, k = 0, 1, 2, . . . ,
0, k < 0,

(22.155)

which is a geometrically decaying function for all k ≥ 0.
Pure prediction: Now let us consider the case where there is no noise; i.e., Xt = St .
We want to find h[k] that gives the best prediction of St+p . By setting B = 0,
we have

Pxx (z) = Pss(z) = |A|2
(1− αz−1)(1− αz)

and Gs(z) = A

1− αz−1
,G∗

s (z
−1) = A

1− αz
.
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Thus, the optimum pure predictor is found from (22.149) as

Hopt(z) = (1− αz−1)

[
z p

1− αz−1

]
+
.

Following the derivation step in (22.152), we have[
z p

1− αz−1

]
+
= α p

1− αz−1
.

Thus, we find

Hopt(z) = (1− αz−1)
α p

1− αz−1 = α p,

which is essentially an “attenuator” by the factor α p , as obtained in (22.125) of
Example 22.3.

When p = −d < 0, the above problem becomes an optimal smoothing problem. This
is left to the reader as an exercise (Problem 22.20). �

Evaluation of MMSEs: Now that we have found the optimum predictor or smoothing
filter, we wish to obtain their performance in terms of the MMSE:

Emin = E

[∣∣∣St+p − Ŝt+p

∣∣∣2] . (22.156)

By substituting the optimally predicted value

Ŝt =
∞∑

k=0

hopt[k]Xt−k, (22.157)

we have

Emin = Rss[0] − 2 
⎧⎨⎩

∞∑
j=0

Rsx [ j + p]h∗opt[ j]
⎫⎬⎭+

∞∑
k=0

∞∑
j=0

hopt[k]Rxx [ j − k]h∗opt[ j].

(22.158)
By substituting

Rsx [ j + p] =
∞∑

k=0

hopt[k]Rxx [ j − k] (22.159)

into the second term of (22.158) we have

Emin = Rss[0] −
∞∑

k=0

∞∑
j=0

hopt[k]Rxx [ j − k]h∗opt[ j]. (22.160)

Using Parseval’s formula, we can write the above (Problem 22.21) as

Emin = 1

2π i

∮
Pss(z)

dz

z
− 1

2π i

∮
Hopt(z)Pxx (z)H

∗
opt(z

−1)
dz

z
. (22.161)
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By substituting (22.148) into the above and using Gx (z)G∗
x (z

−1) = Pxx (z), we finally
obtain

Emin = 1

2π i

∮
Pss(z)

dz

z
− 1

2π i

∮
Fsx (z)Fsx (z

−1)
dz

z
, (22.162)

where Fsx (z) was defined in (22.146):

Fsx (z) =
[

Psx (z)z p

G∗
x (z

−1)

]
+
. (22.163)

Pure prediction case: In the pure prediction problem, i.e., in the absence of noise,
we have

Psx (z) = Pxx (z) = Pss(z) = Gs(z)G
∗
s (z

−1),

such that

gs[t] = 0, t < 0.

Then the minimum prediction error is

Emin =
∮

Gs(z)G
∗
s (z

−1)
dz

z
−
∮

Fs(z)Fs(z
−1)

dz

z
, (22.164)

where Fs(z) is an optimum predictor for the whitened signal as shown in Figure 22.6:

Fs(z) =
[
Gs(z)z

p]
+ .

Using the inverse formula Z−1 {Gs( f )z p} = gs[k + p], we find

fs[k] = Z−1 {Fs(z)} = gs[k + p]u[k].
Applying Parseval’s formula again, we have an expression for the minimum error in the
time-domain:

Emin =
∞∑

k=0

|gs[k]|2 −
∞∑

k=0

| fs[k]|2 =
p−1∑
k=0

|gs[k]|2. (22.165)

In referring to Figure 22.6 (a), the MMSE of the pure prediction is given by the norm
square of the noncausal part of the second impulse response gs[k + p].

22.3 Kalman filter

The Wiener filter approach discussed in the preceding section has two disadvantages:
(i) WSS of the signal and noise is assumed; (ii) solving the Wiener–Hopf equation, or
obtaining the corresponding factorization in the Z - or f -domain, is generally difficult,
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and can be computationally expensive, if not impossible, as the size of the problem
grows.

In this section, we will consider the Kalman filter, which is a recursive filtering and
prediction approach, by assuming a certain structure between successive system states
and the observation on which the estimation is based. Our exposition of the Kalman
filter is different from a majority of textbooks, in that we provide a useful insight to
the Kalman filter model by relating it to the hidden Markov model and its estimation
algorithm, the topics we explored in Chapters 18 and 20.

In this section we assume a discrete-time model, although the theory has been devel-
oped for the continuous-time case as well. We begin with a discussion of a discrete time
state-space model.

22.3.1 State space model

A discrete-time state-space model is defined by the following two equations:

St = Gt(St−1,W t ),

Y t = Ht (St , N t ),
(22.166)

where the sequence St is the system state process and Y t represents the observation
or output process. In the context of control theory, W t and N t can be input or control
sequences and are often deterministic functions in the absence of disturbance or noise.
Thus, in the control theory literature it is more common to represent these processes by
lower case symbols; i.e., wt , nt , etc.

In our case, however, we assume that W t and N t are independent white noise
sequences, but they need not be identically distributed for different t . Unlike in the
Wiener filter theory, we can assume nonstationarity for these sequences, and conse-
quently for the state and observation processes as well. The function Gt in (22.166)
determines the structure of how the current state St is related to the previous state St−1

and the transition noise. Clearly, St is a Markov process. The function Ht determines
the structural relation between the observation Y t , the current state St , and the obser-
vation noise N t . The processes (St ,Y t ) thus defined constitute an HMM, since the
state process St is a hidden Markov process, and we wish to estimate or predict its
value based on the observation process Y t . We assume that the processes St ,Y t ,W t ,
and N t are vector-valued and their dimensions can be different. Of course, they can be
scalars as well. It is important to recognize that the Kalman filter can be discussed in
the framework of an HMM, which is duly discussed in Chapter 20.

An alternative approach to the above state-space model representation is to char-
acterize stochastic behavior of the processes St and Y t in terms of their joint and
conditional PDFs. The first equation of (22.166) can be replaced by the state transi-
tion PDF fSt |St−1(st |st−1), while the second equation of (22.166) can be replaced by
the conditional PDF fY t |St ( yt |st ). If the the state space S is discrete and finite, the state
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transition dynamic can be represented by the TPM P t =
[

pi j (t)
]
, where i, j ∈ S are

the state indices.
Our goal is to find an optimal estimate of the state St on the basis of an instance of

observations yt
0 = ( y0, y1, . . . , yt ) (filtering or smoothing) or based on the past output

yt−1
0 (one-step prediction). Here, the criterion for optimality is the MMSE, which corre-

sponds to the conditional expectation. In the case of Gaussian processes, which will be
our primary focus in this section, the MAP estimate is indeed equivalent to the MMSE
estimate or conditional expectation.

For the discrete-state HMM this problem is solved in Chapter 20 using the forward
algorithm (Algorithm 20.1). A similar algorithm can be developed for the continuous-
state HMM as follows. We denote the forward variable by the joint PDF of (St ,Y t

0),
similar to (20.54) of Chapter 20:

αt (st , yt
0) = fSt ,Y t

0
(st , yt

0). (22.167)

By replacing the summation in the forward recursion equation (20.55) by integration,
we obtain

αt (st , yt
0) =

∫
S

fSt ,Y t |St−1(st , yt |st−1)αt−1(st−1, yt−1
0 ) dst−1, (22.168)

where dst−1 should be interpreted as an infinitesimal volume and should be distin-
guished from a similar notation often used as the tangential infinitesimal vector in the
contour integrals (e.g., see dx in (18.16) of Chapter 18).

The MAP estimate of the state at time t based on the observation yt
0, for instance,

can be obtained by maximization of the above joint PDF:

ŝt ( yt
0) = arg max

st
αt (st , yt

0). (22.169)

The main difficulty associated with this estimation is that we need to compute
multidimensional integrals in (22.168).

For the jointly Gaussian processes (St ,Y t ), however, these integrals can be com-
puted analytically, because the Gaussian distribution is completely defined by their
means, variances, and covariance. The Kalman filter algorithm to be described below
can be viewed as an efficient recursive procedure to evaluate the means and variance
matrices in the forward algorithm.

Before we present the algorithm, it will be useful to transform the forward algorithm
(22.168) into equivalent expressions using conditional PDFs instead of the joint PDFs.
By dividing both sides of (22.168) by fY t−1

0
( yt−1

0 ) and integrating over the variable yt ,

we obtain (see Problem 22.22)

fSt |Y t−1
0
(st | yt−1

0 ) =
∫
S

fSt |St−1(st |st−1) fSt−1|Y t−1
0
(st−1| yt−1

0 ) dst−1. (22.170)
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This equation represents what is termed the propagation step of the filter algorithm.
The maximization of this function gives ŝt |t−1, the MAP or MMSE estimate of st on
the basis of yt−1

0 ; i.e., one-step prediction.
To obtain ŝt( yt

0), we use the following equation for the corresponding PDF, which is
called the update step of the Kalman filter algorithm:

fS|Y t
0
(st | yt

0) =
fY t |st ( yt |st ) fSt |Y t−1

0
(st | yt−1

0 )

fY t |Y t−1
0
( yt | yt−1

0 )
. (22.171)

This follows from Bayes’s theorem (see Problem 22.23). The maximization of this
density gives us the filtering estimate ŝt ( yt

0).

22.3.2 Derivation of the Kalman filter

Consider now a linear discrete-time state-space system that characterizes the state
sequence St and the observation sequence Y t :

St = At St−1 + W t ,

Y t = Bt St + N t ,
(22.172)

where we assume that W t and N t are independent and are both white Gaussian noise12

with zero mean and covariance matrices given by

E[W t W t ′
�] = Cwt δt,t ′ and E[N t N t ′

�] = Cnt δt,t ′ (22.173)

respectively. We further assume that the initial state variable S0 is also Gaussian; i.e.,
S0 ∼ N (ŝ0, P0), where

ŝ0 � E[S0], P0 � Var[S0].13

The first equation in (22.172) can be viewed as a multivariate analog of the AR signal
(22.123) discussed in Example 22.3. Recall that the state-space representation of an
ARMA process is given in (13.236) and its relation to the HMM and the Kalman filter

12 A random process N (t) (a continuous-time process) or Nt (a discrete-time process) is called white Gaus-
sian noise if the probability distribution of N (t) or Nt is Gaussian distributed for any given t and its
power spectral density is flat; i.e., Pn( f ) = const. −∞ < f <∞ (for the continuous-time case) or
Pn(ω) = 1

2π Pnn(eiω) = const. − π < ω < π . The definition of power spectrum Py(ω) of a discrete-
time process Yt and its relation to Pyy(z), the Z -transform of the autocorrelation sequence Ryy [k], are
provided in (22.77).

13 We define the variance of a random vector X by Cx = E
[
(X − E[X])(X − E[X])H], although

this matrix is often called the covariance matrix in the context of multivariate analysis; i.e.,
we write Cx =

[
Ci j
]
, where Ci j = E

[
(Xi − E[Xi ])(X j − E[X j ])∗

]
is usually called the covari-

ance between Xi and X j . We reserve the covariance of random vectors to mean Cov[X,Y ] =
E
[
(X − E[X])(Y − E[Y ])H]. Use of P for the variance matrix is unconventional, but P is often used in

the Kalman filter literature, because probably the variance corresponds to the “power” of the signal.
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Figure 22.12 A schematic representation of the stochastic signal St and the noisy observation Y t represented
by the state-space system (22.172).

is described in Section 13.4.3. In Figure 22.12 we show a schematic structure of the
stochastic signal St and the noisy observation Y t .

We can show by induction that (Y t , St ) are jointly Gaussian. Since St is Markovian
by definition (see the first equation of (22.172)), St is a GMP. As pointed out in the
preceding section, the pair process, often called the complete process, X t = (St ,Y t ) is
a hidden Markov process or a partially observable process (see Chapter 20 for details),
and in this case it is a Gaussian process, so we may term X t a hidden Gauss-Markov
process. The observation sequence Y t is not Markovian.

According to (22.172) with t = 0, S0 and Y 0(= B0 S0 + W0) are jointly Gaussian
with mean and covariance matrix given, respectively, by (Problem 22.24)[

ŝ0

B0 ŝ0

]
and

[
P0 P0 B�0

B0 P0 B0 P0 B�0 + Cw0

]
. (22.174)

22.3.2.1 Kalman filter estimate
Once we have found the bivariate normal distribution, we can find the conditional PDF
fS0|Y 0(s0| y0) using the formulae (4.124) and (4.125) of Section 4.3.2. It is also a
normal distribution with mean

ŝ0|0 = ŝ0 + K 0
(

y0 − ŷ0
)

(22.175)

and covariance

P0|0 = P0 − K 0 · Cov[Y0, S0], (22.176)

where

ŷ0 � E[Y 0], ŝ0|0 � E[S0| y0], and P0|0 � Cov[S0| y0],
and

K 0 = Cov[S0,Y 0] · Var−1[Y 0]
= P0 B�0 (B0 P0 B�0 + Cn0)

−1 (22.177)

is called the Kalman gain.
By substituting these results into (22.174), we update the estimate of s0 (an instance

of the initial state variable S0) based on the observation y0:
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ŝ0|0 = ŝ0 + K0( y0 − B0 ŝ0). (22.178)

The term ( y0 − B0 ŝ0) is the difference between the observation y0 and its predicted
value based on the prior estimate ŝ0 and is called the innovation. Thus, the amount
of the adjustment in updating the estimate of S0 is the innovation multiplied by the
Kalman gain K0.

The observation y0 should also help update the covariance matrix of S0 from the
prior value P0 to the following posterior estimate:

P0|0 = (I − K 0 B0) P0, (22.179)

where I is the identity matrix. Clearly, the greater the Kalman gain, the greater the
reduction in uncertainty regarding the variance estimate.

By setting t = 0 in the first equation of (22.172), we find that S1 = A1 S0 + W1 is
also Gaussian; hence, (S1, S0) are jointly Gaussian distributed. Then, the state transition
PDF fS1|S0(s1|s0) is also normal ∼ N

(
A1 ŝ0,Cw1

)
. Based on this result and the result

for the conditional PDF fS0|Y 0(s0| y0) ∼ N
(
ŝ0|0, P0|0

)
, we find (see Problem 22.26)

that fS1|Y 0(s1| y0) ∼ N
(
ŝ1|0, P1|0

)
with

ŝ1|0 = A1 ŝ0|0 and P1|0 = A1 P0|0 A�1 + Cw1 , (22.180)

where ŝ1|0 is called the predicted estimate of s1 based on the observation y0.
From these results and (22.172), it follows that the joint variables (S1,Y 1), condi-

tioned on the observation Y 0 = y0, are also normally distributed with the conditional
mean and conditional covariance matrix given, respectively, by[

ŝ1|0
B1 ŝ1|0

]
and

[
P1|0 P1|0 B�1

B1 P1|0 B1 P1|0 B�1 + Cn1

]
. (22.181)

Note the similarity between this equation and (22.174). Hence, by repeating the pre-
vious derivations, we obtain, similar to (22.178) and (22.179), the following posterior
estimates (i.e., updated estimates) of S1 and its covariance:

ŝ1|1 = ŝ1|0 + K 1
(

y1 − B1 ŝ1|0
)
, (22.182)

P1|1 = (I − K 1 B1) P1|0, (22.183)

where

ŝ1|1 = E[S1| y1
0], P1|1 = Var[S1| y1

0], and y1
0 = ( y0, y1).

The Kalman gain K 1 is given by

K 1 = P1|0 B�1
(

B1 P1|0 B�1 + Cn1

)−1
. (22.184)

Continuing this procedure, we obtain the recursive algorithm for updating and pre-
dicting the state estimates and their covariances. By repeating updating and prediction
steps in a recursive manner, we obtain
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Algorithm 22.1 Kalman filter

1: Initialize:

ŝ0|−1 � ŝ0 = E[S0], P0|−1 � P0 = Var[S0].
2: Fort = 0, 1, 2, . . . ,

• Update step:

K t = P t |t−1 B�t
(

Bt P t |t−1 B�t + Cnt

)−1
,

ŝt |t = ŝt |t−1 + K t
(

yt − Bt ŝt |t−1
)
,

P t |t = (I − K t Bt ) P t |t−1,

• Prediction step:

ŝt+1|t = At+1 ŝt |t ,
P t+1|t = At+1 P t |t A�t+1 + Cwt+1 .

ˆ
Kt At

Bt Z –1

Yt St |t

Ŝt |t–1

Ŝt+1|t+ +

+–

∑ ∑

Figure 22.13 The Kalman filtering and prediction system of Algorithm 22.1.

ŝt |t = E[St | yt
0], P t |t = Var[St | yt

0], (22.185)

ŝt+1|t = E[St+1| yt
0], and P t+1|t = Var[St+1| yt

0], t = 0, 1, 2, . . . , (22.186)

where yt
0 = ( y0, y1, . . . , yt ). We present this recursive algorithm in Algorithm 22.1.

Note that the state estimate ŝt |t depends on the present observation yt as well as
past observations yt−1

0 , but the Kalman gain K t and the updated covariance P t |t do
not depend on the current observation yt . Similarly, the predicted covariance P t+1|t
does not depend on yt either. Therefore, these matrices can be pre-computed and stored
just based on yt−1

0 , prior to the arrival of yt . Thus, this algorithm trades memory for
computation time. In Figure 22.13 we show a schematic diagram of the Kalman filtering
and prediction algorithm that corresponds to Algorithm 22.1.

Example 22.6: Gauss–Markov process signal and AWGN. Consider the following
state-space model

St = αSt−1 + Wt , t = 0, 1, 2, . . . , (22.187)

Yt = St + Nt , t = 0, 1, 2, . . . , (22.188)
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where Wt ∼ N (0, σ 2
w) and Nt ∼ N (0, σ 2

n ) for all t ; i.e., stationary white noise. The
stochastic signal St specified by (22.187) is an AR sequence of first order, denoted
AR(1), which was discussed in Examples 22.3, 22.4, and 22.5. The parameters A and
B in those examples are now represented by σs and σn respectively. The parameter β
in (22.133) is now equal to zero, since we assume Nt is white. Since we assume Wt is
white Gaussian noise, the resulting St is a GMP as discussed there. We wish to find the
Kalman predictor and its MSE E(Ŝt ) as t →∞.

By referring to (22.172), we find

At = α, Bt = 1, for all t = 0, 1, 2, . . . .

Then the Kalman filtering algorithm is summarized as follows:

• Update step:

Kt = Pt |t−1

Pt |t−1 + σ 2
n
, (22.189)

ŝt |t = ŝt |t−1 + Kt
(
yt − ŝt |t−1

)
, (22.190)

Pt |t = (1− Kt)Pt |t−1. (22.191)

• Prediction step:

ŝt+1|t = αŝt |t , (22.192)

Pt+1|t = α2 Pt |t + σ 2
w. (22.193)

Figure 22.14 shows a MATLAB simulation run of the AR(1) signal St , the obser-
vation process Yt , and the Kalman filter estimate Ŝt |t . Since σ 2

s = σ 2
w/(1−α2)

= 1/(1− 2−1/2) and σ 2
n = 1, the SNR= √2/(

√
2− 1) = 3.412 ≈ 5.33 dB, which is

somewhat larger than the SNR of Examples 22.4 and 22.5, where the noise is not white
but is a GMP with the correlation parameter β = 1/2, which makes σ 2

n = 4/3.
Figure 22.15 shows another run, where the bottom curve is the Kalman predictor

output Ŝt |t−1; i.e., an estimate of St based on the observation up to time t − 1. Because
of the attenuation factor α as given in (22.192), the Kalman predictor Ŝt |t−1 is smaller
than the Kalman filter Ŝt−1|t−1 by this factor. This relation between estimation and
prediction is similar to what we found in the Wiener filter (see (22.154) with p = 0
versus p = 1).

From (22.189), (22.191), and (22.193), we readily find that for α2= 2−1/2,

σw = σn = 1,

lim
t→∞ Pt |t−1 =

√
2 ≈ 1.4142, and lim

t→∞ Kt = lim
t→∞ Pt |t =

√
2√

2+ 1
≈ 0.5858.

Figure 22.16 plots the first 20 time units of the Kalman gain Kt , the estimation error
variance Pt |t , and the prediction error variance Pt |t−1. These values converge to their
limit values rather quickly; i.e., by t = 3.

We find, from (22.190) and (22.192), that the predictor takes the following recur-
sive form:
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Figure 22.14 (a) GMP signal St , (b) the observation sequence Yt and (c) the Kalman filter output Ŝt |t .
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Figure 22.16 (a) Kalman gain Kt , (b) the observation sequence Yt , (c) and the Kalman predictor output
Ŝt |t−1.

ŝt+1|t = α
[
ŝt |t−1 + Kt

(
yt − ŝt |t−1

)]
= α(1− Kt )ŝt |t−1 + αKt yt . (22.194)

The predictor’s MSE is give by

Et+1 � Pt+1|t , (22.195)

which satisfies the following recursive form:

Et+1 = α2(1− Kt )Et + σ 2
w =

α2σ 2
n Et

Et + σ 2
n
+ σ 2

w, (22.196)

from which we find the MSE in the steady state:

E∞ = σ 2
w − (1− α2)σ 2

n +
√[σ 2

w − (1− α2)σ 2
n ]2 + 4σ 2

wσ
2
n

2
. (22.197)

If σn = 0, i.e., Nt = 0, then

E∞ = σ 2
w. (22.198)

If σw = 0, i.e., Wt = 0, then

E∞ =
{

0, if |α| < 1,
(α2 − 1)σ 2

n , if |α| ≥ 1.
(22.199)
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For sufficiently large t , the Kalman predictor takes the following form:

ŝt+1|t = α[σ 2
n ŝt |t−1 + E∞yt ]
E∞ + σ 2

n
, (22.200)

If σn = 0, then ŝt+1|t = αyt , as expected from (22.187) and (22.188) with Nt = 0. �

22.4 Summary of Chapter 22

MSE: E = E[(S − Ŝ)2] (22.2)

X
m.s.= Y : E[(X − Y )2] = 0 Sec. 22.1.1

Orthogonality principle: 〈Ŝ − S, X〉 = 0 (22.23)

Orthogonality of
E[S|X]:

E [(S − E[S|X]) h(X)] = 0 (22.25)

E[S|X] is an MMSE
estimate:

E
[
(S − φ(X))2] ≥ E

[
(S − E[S|X])2] (22.28)

Wiener–Hopf eq.
(discrete-time):

∑∞
k=0 h[k]Rxx [ j − k] = Rsx [ j + p] (22.89)

Wiener–Hopf eq.
(cont.-time):

∫∞
0 h(u)Rxx(t − u) du = Rsx (t + λ) (22.90)

Optimal noncausal filter: Hopt(z) = Psx (z)z p

Pxx (z)
(22.94)

Optimal pure predictor: Hopt(z) = 1
Gs (z)

[
Gs(z)z p

]
+ (22.117)

where Gs(z)G∗
s (z

−1) = Pss(z) (22.101)

Optimal causal filter: H (opt)(z) = 1
G(z)

[
Psx (z)z p

G∗x (z−1)

]
+ (22.148)

where Gx (z)G∗
x (z

−1) = Pxx (z) (22.132)

MMSE in pure
prediction:

Emin =∑p−1
k=0 |gs[k]|2 (22.165)

Linear SSM (state
transition):

St = At St−1 + W t (22.172)

Linear SSM (observable
output):

Y t = Bt St + N t (22.172)

Kalman update: ŝt |t = ŝt |t−1 + K t
(

yt − Bt ŝt |t−1
)

Alg. 22.1

Kalman prediction: ŝt+1|t = At+1 ŝt |t Alg. 22.1

Kalman gain: K t = P t |t−1 B�t
(
Bt P t |t−1 B�t + Cnt

)−1
Alg. 22.1

Covariance prediction: P t |t−1 = At P t−1|t−1 A�t + Cwt Alg. 22.1

Covariance update: P t |t = (I − K t Bt ) P t |t−1 Alg. 22.1

Initialization: ŝ0|−1 = E[Ŝ0], P0|−1 = Cov[Ŝ0] Alg. 22.1
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22.5 Discussion and further reading

Although we have primarily presented the discrete-time version of the Wiener filter
theory, the original work by Wiener [350] is concerned with the continuous-time model.
Davenport and Root [77] and Thomas [319] treat this topic in more detail than most
textbooks on random processes written for electrical engineering students. Kailath et al.
[170] discuss the subject in great depth. Several books on random processes written by
mathematicians also discuss the Wiener filter theory; e.g., Breiman [36], Doob [82],
Gikhman and Skorokhod [119], and Karlin and Taylor [175].

The Kalman filter is a recursive MMSE estimator of a signal in additive noise.
The Kalman filter can adapt itself to nonstationary environments, whereas the Wiener
filter is applicable only to WSS processes. On the other hand, the Kalman filter
theory requires that the processes (St ,Y (t)) form a GMP to be solvable, while the
the Wiener filter theory does not have these requirements. Even if the signal and/or
noise are non-Gaussian, the Kalman filter is still the best linear MMSE estimator. Sev-
eral textbooks on probability and random processes written for engineering students
(e.g., Papoulis and Pillai [262], Stark and Woods [310], and Fine [105]) discuss the
Kalman filter to varying degrees, but the aforementioned book by Kailath et al. [170]
and Hänsler [137] treat this subject most thoroughly.

As we discussed in Section 22.3.1, the Kalman filter can be formulated as a problem
of estimating or predicting hidden states in an HMM setting, and the algorithm can be
viewed as an efficient recursive procedure to evaluate the mean vectors and variance
matrices in the forward algorithm. As we discussed in Chapter 20, a smoothing
estimate of St based on the observations yT

0 (where t ∈ [0, T ]) can be efficiently com-
puted by a forward–backward algorithm (FBA), called the Bahl–Cooke–Jelinek–Raviv
(BCJR) algorithm. A similar FBA, which is called the Rauch–Tung–Striebel (RTS)
smoother, has been developed for continuous-state HMMs [279].

22.6 Problems

Section 22.1: Conditional expectation, MMSE estimation and regression analysis

22.1 The condition for MSE. Show that the solution (22.8) minimizes (22.6).

22.2 Linear MMSE condition and the orthogonality. Show that (22.8) is equivalent
to (22.12) and that (22.18) is equivalent to (22.21).

22.3∗ Alternative proof of Lemma 22.1. Apply the law of iterated expectations (cf.
(3.38) and (4.106)) to prove Lemma 22.1.

22.4 Derivation of (22.18). Derive (22.18).

22.5 Alternative derivation of (22.18). Define (n + 1)-dimensional column vectors

X̃ =
[

1
X

]
and β̃ =

[
a0

β

]
.
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(a) Show that the condition for β̃ for the linear MSE estimate is

E[X̃ X̃
�]β̃ = E[S X̃]. (22.201)

(b) Show that the above condition is equivalent to (22.15) and (22.18).

22.6 The MMSE estimate and the expectation. Show that if all the available infor-
mation about S is given in terms of its distribution function FS(s) or its density

function fS(s), the estimate Ŝ that minimizes the MSE E = E
[
(Ŝ − S)2

]
is given by

the expectation Ŝ = μs .

22.7 Example 22.1: Additive noise model. With respect to Example 22.1, show the
following:

(a) S and X are jointly normally distributed.
(b) The correlation coefficient of S and X is given by (22.31).
(c) The MMSE estimator Ŝ(X) is given by (22.32).

22.8 Independent normal variables and their product. Suppose X and Y are
independent RVs, X ∼ N (1, 2), Y ∼ N (−1, 1), and Z = XY .

(a) Evaluate E[Z ] and Var[Z ].
(b) Evaluate Cov[X, Z ].
(c) Evaluate the linear MMSE estimator X̂ = a0 + a1 Z of X given Z .
(d) Evaluate the MMSE estimator Ẑ = T (X) of Z given X .

22.9 Correlation coefficient between the response variable and a predictor. Show
that the correlation coefficient ρT,Y between any predictor T (X) and Y satisfies the
inequality (22.36).

22.10 ANOVA equation. Show that variance of Y can be decomposed according to
(22.37), which is the fundamental equation for ANOVA.

22.11 Optimal choice of regression coefficients. Show that the optimal choice of b,
β, and β0 are given by (22.43).

22.12 Equivalence of the regression and the solution from the orthogonality
equation. Show that the linear regression determined by (22.43) and the best linear
MMSE estimate obtained from the orthogonality equation (22.23) are equivalent.

22.13∗ Regression coefficient estimates. Verify the properties (22.61) and (22.62) of
the regression coefficient estimates.

Section 22.2: Linear smoothing and prediction: Wiener filter theory

22.14∗ An alternative expression for (22.74). A reader who is familiar with the
following expression, instead of (22.74), may wonder where this discrepancy comes
from:

Ryy[d] = hH Rxx [d]h.
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Linear subspace LX spanned by Xt ′,t ′ ≤ t

ˆYt = St + p

et + p

St + p

Figure 22.17 The orthogonality principle: the prediction error et+p should be orthogonal to the linear
subspace L X spanned by the input process Xt−k , k ≥ 0.

Resolve this question by going back to the original definition of the input and output
relation of the linear system and the definition of autocorrelation matrix.

22.15 Alternative derivation of the Wiener–Hopf equation (22.89) and (22.90).

(a) In referring to Figure 22.17, the predictor output Yt = Ŝt+p must lie in the linear
subspace L X spanned by the past input {Xt−k, k ≥ 0}, since

Yt = Ŝt+p =
∞∑

k=0

h[k]Xt−k

and the prediction error et+p is given by

et+p � St+p − Ŝt+p

= St+p −
∞∑

k=0

h[k]Xt−k . (22.202)

Derive (22.89) by observing that the MSE E = E
[
e2

t+p

]
= ‖et+p‖2 will be

minimum if the error et+p is orthogonal to the linear subspace L X .
(b) By making a similar observation, derive the Wiener–Hopf integral equation (22.90).

22.16 Derivation of (22.103). Show that the spectrum of the filtered white noise is
given by (22.103).

22.17 Physically unrealizable filter. Explain why the second term in the square
brackets in the last expression of (22.151) is physically unrealizable.

22.18 Signal power σ 2
s . Derive the signal power σ 2

s (22.128) from Pss(z) or Ps(ω).

22.19 Continuous-time Gauss-Markov process (GMP). Consider the Gaussian
process S(t) with the following power spectrum:

Pss( f ) = 1

1+ a−2 f 2
.

(a) Find a causal filter Gs( f ) such that |Gs( f )|2 = Pss( f ).
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(b) Show that the impulse response function is given by

gs(t) =
{

0, t < 0,
2πa e−2πat , t ≥ 0.

(c) Show that the optimum predictor is given by

Hopt( f ) = Fs( f )

Gs( f )
= e−2πaλ ≤ 1. (22.203)

(d) What is the optimal prediction of S(t + λ) given S(t)?
(e) The conditional distribution of S(t + λ) given S(t) is Gaussian. What are the

conditional mean E[S(t + λ)|S(t)] and conditional variance Var[S(t + λ)|S(t)]?
Note that this GMP S(t) is the Ornstein–Uhlenbeck process discussed in
Section 17.3.4.

22.20 Optimum smoothing filter for uncorrelated signal and noise. Consider an
optimum smoothing problem for the signal and noise model assumed in Example 22.5.

(a) Let p = −d < 0. Then find the causal part of (22.151); i.e.,

Pss(z)z−d

G∗
x (z

−1)
= |A|2

C

[
az−d

1− αz−1
+ bz−d+1

1− γ z

]
. (22.204)

(b) Assume white noise and find the optimal smoothing filter. Verify that the case d = 0
reduces to (22.155) in Example (22.151).

(c) Assume that noise is absent. Find an optimal smoothing filter. What is the error of
the estimate?

22.21 Conservation of inner products and expressions for the MMSE.

(a) Show the following identity of the inner product defined in the discrete-time domain
and the z-domain:

〈g(1), g(2)〉 = 〈G(1),G(2)〉;
or, equivalently,

∞∑
k=−∞

g(1)[k]g(2)[k] = 1

2π i

∮
G(1)(z)G∗(2)(z−1)

dz

z
,

where

G(i)(z) =
∞∑

k=−∞
g(i)[k]z−k and g(i)[k] = 1

2π i

∮
G(i)(z)

dz

z
.

(b) Derive the expression (22.161).

Section 22.3: Kalman filter

22.22 Derivation of the propagation step. Derive (22.170), the propagation step of
the Kalman filter algorithm for a continuous-state HMM.
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22.23 Derivation of the update step. Derive (22.171), the update step of the Kalman
filter algorithm for a continuous HMM.

22.24 Derivation of the mean and covariance matrix (22.174). Derive (22.174), the
mean and covariance of the joint Gaussian variables (S0,Y 0).

22.25 Kalman gain for scalar variables S0 and Y0. If both S0 and Y 0 are scalar RVs,
find an expression for the Kalman gain.

22.26 Derivation of the Kalman’s predicted estimate. Derive (22.180), the pre-
dicted estimate and variance of s1 based on the observation y0.



23 Queueing and loss models

23.1 Introduction

In this chapter we will provide a brief overview of queueing and loss models as an
application of Markov process theory (Chapter 16) and birth–death (BD) processes in
particular (Chapter 14). Queueing theory was originally developed in telephone traffic
engineering. Its origin goes back to the paper published in 1917 by Erlang [94], a Dan-
ish mathematician and engineer. Today, queueing theory is well established as a branch
of applied probability, pertaining to traffic congestion analysis, queueing, and schedul-
ing of various services and logistic systems. Many queueing theory formulas obtained
under Markovian assumptions, such as Poisson processes and exponential distributions,
have been found useful, despite some of these assumptions being far from reality. Such
surprising results can be explained by the robustness or insensitivity of these formu-
las to distributional forms of the RVs involved. We provide intuitive interpretations of
such important properties, leaving rigorous mathematical arguments to advanced books
and relevant literature. In this sense our treatment may be quite unique by calling the
reader’s attention to recently developed useful results in the subject field.

Before we discuss specific queueing and loss models, we introduce a simple, yet most
important formula, called Little’s formula, which holds in a very general setting, not just
in queueing or loss systems.

23.2 Little’s formula: L = λW

Consider a “system” into which “customers” arrive, and stay there for some finite dura-
tion, and eventually depart. A system may be any well-defined facility (e.g., a gasoline
station, a runway at an airport, a communication link in a network) or a surround-
ing/environment (e.g., a park, a shopping mall, a country). We assume that the system is
stable in the sense that the population in the system remains finite at all times. Consider,
for instance, some university as a system. The customers may be students, professors,
administrators, etc. If we focus on students as the customers, they typically enter the
university as freshmen (i.e., as first-year students) and then leave (i.e., graduate from
or drop out of) the university after some number of years. Then the mean number of
students L , the number of entering students per year λ, and the mean number of years
that a student stays in the university W must satisfy the following simple relation:
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THEOREM 23.1 (Little’s Formula). Let L be the mean number of customers found in
the system, λ be the arrival rate, and W the mean duration that a customer stays in the
system. Then, the following relation holds among these quantities:

L = λW . (23.1)

This is known as Little’s formula, Little’s theorem, or Little’s law, because its formal
proof was given by Little [228] in 1961. This formula is perhaps the most frequently
used formula in queueing analysis. If the system is a queue, then L is the mean queue
length and W is the mean waiting time.

Proof. We provide the proof assuming that the system in question is a queue to simplify
the terminology, but the proof applies to any stable system. Let the RV W j be the waiting
time of the j th customer, j = 1, 2, . . ., and let A(t) and D(t) be the cumulative counts
of arrivals and departures in the interval [0, t], respectively. The assumption that the
queue is stable means that it becomes empty infinitely often. Let t = 0 and t = T be
two such epochs; i.e., A(0) = D(0) and A(T ) = D(T ) (see Figure 23.1).

We further define the following two RVs:

n(T ) � A(T )− A(0) = total number of arrivals in (0, T ] (23.2)

and

λ(T ) � n(T )

T
= mean arrival rate during (0, T ]. (23.3)

Note that n(T ) also represents the total count of departures in (0, T ], i.e., n(T ) =
D(T )− D(0), and λ(T ) is the average departure rate during (0, T ].

The shaded area of Figure 23.1 can be decomposed into n(T ) horizontal strips of
height one and length W j , j = 1, 2, . . . , n(T ). Thus, the total shaded area can be
represented in two different ways:

A(T ) = D(T )

D(t )

A(t )

A(0) = D(0)

t = 0 t = T

total
waiting
time

Figure 23.1 The total waiting time as
∫ T

0 L(t) dt and
∑n(T )

j=1 W j .
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Shaded area =
∫ T

0
[A(t)− D(t)] dt =

n(T )∑
j=1

W j . (23.4)

Since A(t)− D(t) = L(t), the above equation leads to

L(T ) =
∫ T

0 L(t) dt

T
=
∑n(T )

j=1 W j

T
= n(T )

T

∑n(T )
j=1 W j

n(T )
. (23.5)

The strong law of large numbers (see Section 11.3.3) implies that λ(T ) converges
almost surely (i.e., with probability one) to λ, as T →∞. Similarly, the time average
L(T ) converges almost surely to the ensemble average L as T →∞. Then the average
waiting time per customer, W n(T ) must converge almost surely; i.e.,

W n(T ) =
∑n(T )

j=1 W j

n(T )
a.s.−→ W . (23.6)

It is apparent that W is a constant determined by λ and L through (23.1).

23.3 Queueing models

In this section we will derive several queueing and loss models from the results on BD
processes discussed in Section 14.2.

23.3.1 M/M/1: the simplest queueing model

Consider a queueing model which consists of a single server and its queue (see
Figure 23.2). We make the following assumptions:

1. Customers arrive according to a Poisson process with rate λ [s−1].
2. Service times S j are i.i.d. RVs and exponentially distributed with mean E[Sj ] =
μ−1[s], j = 1, 2, . . . .

3. Customers waiting for service will form a queue, and it can accommodate an infinite
number of customers.

If no customers are found in this system (i.e., the server plus the queue), a newly arrived
customer receives service immediately. Otherwise, it joins the end of the queue and
waits until all the previous customers are served and cleared. Once this customer, say
the j th customer, denoted C j , enters service, C j receives service for the service interval
S j [s]. Here we use [s] as the unit of service or work, but we can assume any work

D(t ) D*(t )A(t )

tj tj’ tj*
Server

Queue

Figure 23.2 A single-server queue and its counting processes A(t), D(t), and D∗(t).
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unit, such as [bits], [packets], etc. Then the server’s capacity must be described using
an appropriate unit for its service rate, i.e., [bits/s], [packets/s], etc.

Because of the memoryless property of the exponential distribution, the probability
that this customer’s service completes in the next small interval h is given by λh + o(h),
regardless of how long the customer has been in service. The constant parameter λ is
thus called the service completion rate.

This simple single-server model is usually denoted as an “M/M/1” queue. The first
letter “M” signifies “Markovian” arrivals, which in this case means a Poisson process.1

The second “M” signifies a “Markovian” service time, which means here an expo-
nentially distributed service time. The last symbol “1” means that there is only one
server.

The arrival rate λ is the birth rate, and the service completion rate is the death rate.
Thus, assuming that the system is empty at time t = 0, the number of customers N (t)
in the system is a counting process:

N (t) = A(t)− D∗(t), (23.7)

where D∗(t) is the departure process at the output of the server, whereas D(t) is the
departure process at the queue; i.e., the arrival process to the server. Thus,

L(t) = A(t)− D(t) (23.8)

is the queue length at time t .
The dynamics of the M/M/1 queue can be studied by analyzing the BD process N (t)

with

λn = λ, n = 0, 1, 2, . . . , (23.9)

μn = μ, n = 1, 2, 3, . . . . (23.10)

It should be noted that the process L(t), despite its similarity to N (t), is not a BD
process (Problem 23.6).

The transition rate matrix, or the infinitesimal generator, of N (t) defined in
(14.42) takes the following form:

QM/M/1 =

⎡⎢⎢⎢⎢⎢⎣
−λ λ 0 0 · · ·
μ −λ− μ λ 0 · · ·
0 μ −λ− μ λ · · ·
0 0 μ −λ− μ · · ·
...

...
...

...
. . .

⎤⎥⎥⎥⎥⎥⎦ . (23.11)

Then the steady-state distribution π = (πn, n = 0, 1, 2, . . .)�, where πn =
limt→∞ P[N (t) = n], is given as the solution of

π� QM/M/1 = 0�. (23.12)

1 In the queueing literature the term “Markovian arrival” generally represents a broader class of arrival
processes than a Poisson process.
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If we expand the above matrix equation, we obtain

−λ0 + μπ1 = 0, (23.13)

λπn−1 − (λ+ μ)πn + μπn+1 = 0, (23.14)

from which we find

− λπn + μπn−1 = −λπn−1 + μπn−2 = · · · = −λπ0 + μπ1 = 0. (23.15)

Then we can readily find

πn = ρπn−1 = ρnπ0, n = 0, 1, 2, . . . , (23.16)

where

ρ = λ

μ
= λE[S j ] (23.17)

is called the traffic intensity and represents the expected number of arrivals during the
service of a customer. The parameter ρ is also called the utilization factor or server
utilization, since it represents the fraction of time on average that the server is busy.

If ρ < 1, then the series (14.57) converges to the constant

G =
∞∑

n=0

ρn = 1

1− ρ , (23.18)

and thus

π0 = 1− ρ, (23.19)

yielding

πn = (1− ρ)ρn, n = 0, 1, 2, . . . . (23.20)

If ρ > 1, the series (14.57) diverges, reflecting the situation in which the customers
arrive, on average, faster than the server can handle, and thus the queue grows without
bound. If we apply the concept of state classification in a Markov chain discussed in
Section 15.3, we find that when ρ > 1, all states in the state space, Z

+ = {0, 1, 2, . . .},
are transient, when ρ = 1, all states are null-recurrent, and when ρ < 1, all states
are ergodic (Problem 23.5). Thus, when ρ < 1, the mean and variance of N (t) are
computed, respectively, as (Problem 23.7)

N = E[N (t)] =
∞∑

n=0

nπn = ρ

1− ρ , (23.21)

σ 2
N =

∞∑
n=0

n2πn − N
2 = ρ

(1− ρ)2 . (23.22)
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Recall that L(t) of (23.8) represents the length of the queue at time t (excluding
the customer in service); thus, its average and variance are given, respectively, by (also
Problem 23.7)

L = lim
t→∞ E[L(t)] =

∞∑
n=1

(n − 1)πn = ρ2

1− ρ , (23.23)

σ 2
L =

∞∑
n=1

(n − 1)2πn − L
2 = ρ2(1+ ρ − ρ2)

(1− ρ)2 . (23.24)

Note that

N = L + ρ, (23.25)

which is not unexpected: the server utilization ρ (< 1) can be interpreted as the expected
number of customers within the server.

23.3.1.1 Waiting and system times
The mean waiting time can be readily obtained from Little’s formula as

W = L

λ
= ρ2

λ(1− ρ) =
ρ

μ(1− ρ) . (23.26)

If we apply Little’s formula to the system (i.e., the queue plus the server), we have

N = λT . (23.27)

Thus, from this and (23.21), we find

T = N

λ
= 1

μ(1− ρ) , (23.28)

which could be alternatively derived from T = W + S = ρ
μ(1−ρ) + 1

μ
.

Since μ−1 = E[S j ] is the mean service time, the quantities μW and μT are the
normalized mean waiting and system times and are dimensionless. In Figure 23.3, we
plot μW and μT versus ρ.

The above results obtained for the M/M/1 in terms of the mean values N , L, T , and W
do not depend on the queue discipline (or scheduling discipline) as long as it is work-
conserving. A queue discipline is said to be work-conserving if the work or service
demand of each customer is not affected by the queue discipline and if the server is not
idle when there are customers waiting for service. Work-conserving queue disciplines
include FCFS (first-come, first served), LCFS (last-come, first-served), or random, or
even a discipline that interrupts or preempts the customer in service.

The performance metrics N , L, T , and W of the M/M/1 are insensitive to a specific
queue discipline, as long as it is work-conserving, because the exponential service dis-
tribution has the memoryless property (see (4.26)). Even when a customer in service is
interrupted and a new customer enters the server, the behavior of N (t) is unaffected,
because the remaining service time of the interrupted customer and the service time of
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Figure 23.3 The normalized mean waiting time μW and mean system time μT versus the server utilization
(or traffic intensity) ρ.

the interrupting customer are statistically equivalent, both being exponential RVs with
completion rate μ.

Although the mean waiting time W and system time T can be derived directly from
L and N , using Little’s formula, the distribution functions of W and T require us to
start from scratch.

Now we assume the FCFS discipline. Suppose a customer arrives at the queue to
find n customers in the system; that is, one customer in service and n − 1 customers in
queue, n ≥ 1. Then its waiting time is

W = R1 + S2 + · · · + Sn, (23.29)

where the RVs R1 is the remaining service time of the customer in service and
S2, . . . , Sn are the service times in queue. These n random variables are i.i.d. with a
common exponential distribution with mean μ−1. Thus, the conditional distribution of
W given that there are n customers are in the system, not including the newly arrived
customer in question, is given by that of the n-stage Erlang distribution defined in
(4.163):

FW (x |n) = 1− e−μx
n−1∑
i=0

(μx)i

i ! = 1− Q(n − 1;μx), x ≥ 0, (23.30)

where Q(n; a) is the cumulative Poisson distribution; i.e.,

Q(n; a) �
n∑

i=0

P(i; a), n = 0, 1, 2, . . . , (23.31)

P(n; a) � an

n! e
−a, n = 0, 1, 2, . . . (23.32)
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Then the PDF of FW (x |n) is given by

fW (x |n) = μP(n − 1;μx) = (μx)n−1

(n − 1)!μ e−μx , x ≥ 0. (23.33)

We can show (Problem 23.24) that when the arrival process is Poisson, the probability
distribution {an} of the number of customers N (t) in the system observed by an arriving
customer is the same as the long-run time-average distribution {πn}. This interesting and
useful property is called the PASTA (Poisson arrivals see time averages) property.
This property holds for the case where the service time distribution is general, i.e., for
an M/G/1 queue, as well.

Thus, the distribution function of W is given by

FW (x) =
∞∑

n=0

an FW (x |n) =
∞∑

n=0

πn FW (x |n). (23.34)

The first term, FW (x |0), represents the waiting time distribution of a customer that finds
the system to be empty. Then the waiting time is zero; that is,

FW (x |0) =
{

1, x ≥ 0,
0, x < 0.

(23.35)

By noting that π0 = 1− ρ, we find

FW (x) = 1− ρ + (1− ρ)
∞∑

n=1

ρn

[
1− e−μx

n−1∑
i=0

(μx)i

i !

]

= 1− ρ + (1− ρ)
∞∑

n=1

ρn[1− Q(n − 1;μx)], x ≥ 0. (23.36)

By arranging the double summation of the second term, and with some algebraic
manipulations (Problem 23.8), we obtain the following surprisingly simple result:

FW (x) = 1− ρ e−μ(1−ρ)x , x ≥ 0. (23.37)

Thus, the probability that a customer must wait longer than x is

Fc
W (x) = P[W > x] = ρ e−μ(1−ρ)x , x ≥ 0. (23.38)

Therefore, the mean waiting time is obtained as

E[W ] =
∫ ∞

0
Fc

W (x) dx = ρ

(1− ρ)μ, (23.39)

which, as expected, agrees with W of (23.26). Note that while the mean waiting time
remains the same for any work-conserving queue discipline, the distribution function
obtained above is valid only for FCFS.

The system time of the j th customer is by definition Tj = W j + Sj . For FCFS, the
random variables W j and S j are independent; thus, the distribution function of Tj can
be obtained by convolution:
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Figure 23.4 The waiting time distribution function and the system time distribution function in M/M/1. The
horizontal axis is μx , the time normalized by the mean service time μ−1, and the server
utilization is ρ = λ/μ = 0.8

FT (x) =
∫ ∞

0
FW (x − y) fS(y) dy

=
∫ ∞

0

[
1− ρ e−μ(1−ρ)(x−y)

]
μ e−μy dy. (23.40)

Then we have

FT (x) = 1− e−μ(1−ρ)x , x ≥ 0, (23.41)

which is also surprisingly simple. It is the exponential distribution with mean
1/(μ(1− ρ)). In Figure 23.4 we plot the curves FW (x) and FT (x) versus μx when
traffic intensity ρ = 0.8 [erlangs].

23.3.2 M/M/∞ and M/G/∞: infinite servers

Suppose that there are ample servers in parallel and, whenever a new customer arrives,
a server is immediately assigned to the customer. We assume as before that customers
arrive according to a Poisson process with rate λ. Their service times are exponentially
distributed with mean 1/μ. When there are n customers in the center, n servers will
work; hence, there is no queue to be formed. The service completion rate of thiscenter
is nμ. Since the number n can become arbitrarily large, the service center must have,
in theory, infinitely many servers. Hence, we call such a system an infinite server (IS)
queue (although actually a queue never forms) and denote it by M/M/∞.

Let N (t) be, as before, the number of customers in this M/M/∞ queue at time t . The
process N (t) is again a BD process, now with birth rate

λn = λ, n = 0, 1, 2, . . . , (23.42)
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and death rate

μn = nμ, n = 1, 2, 3, . . . . (23.43)

Substitution of the above results into (14.57) leads to the following normalization
constant:

G = 1+ a + a2

2! + · · · +
an

n! + · · · = ea, (23.44)

where the parameter

a = λ/μ (23.45)

is called the traffic intensity, offered load, or traffic load, similar to ρ defined by (23.17)
for a single-server queue, and represents the rate at which work enters the system. In
telephone engineering, the unit [erlang] or [erl] is often used for traffic load a in def-
erence to Erlang. The offered load a can also be interpreted as the average number
of call arrivals during the service of a call. However, unlike in the M/M/1 queue, this
quantity cannot be interpreted as server utilization. It is instead the average number of
busy servers, as will be shown below.

From (14.55) and (23.44), we obtain the equilibrium-state distribution or stationary
distribution:

πn = an

n! e
−a = P(n ; a), n = 0, 1, 2, . . . , (23.46)

which is the Poisson distribution with mean a.

23.3.2.1 M/ G/∞ model and formula (23.46)
It is important to know that the equilibrium-state distribution (23.46) holds also for
a general M/G/∞ model, where “G” stands for a general service time distribution.
In other words, the distribution (23.46) is insensitive to the form of service time
distribution FS(t). One way to prove this property is to use the notion of quasi-
reversibility introduced by Kelly [177]. Another direct proof is suggested here as an
exercise (Problem 23.11), which shows that, given that the system is empty at t = 0, the
probability πn(t) = P[N (t) = n] is given by

πn(t) =
[∫ t

0 (1−FS(u)) du
]n

n! exp

[
−λ
∫ t

0
(1−FS(u)) du

]
, n = 0, 1, 2, . . .

(23.47)

So the time-dependent solution πn(t) is also Poisson distributed, with a parameter that
depends on FS(t). In the limit t →∞, however, this converges to the equilibrium-state
distribution (23.46) regardless of FS(t), since

∫∞
0 (1− FS(x)) dx = E[S] = μ−1. With

a little extension of the above result, we can show (Problem 23.12) that the departure
process is also a Poisson process with rate λ.
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We provide here a simple and intuitive interpretation of the formula (23.46). In a sta-
ble system the distribution {an} seen by arriving customers is equal to the distribution
{dn} seen by departing customers. Then, using the PASTA property, the probability dis-
tribution {πn} of M/G/∞ is equivalent to {an}, and hence to {dn} as well. The latter
distribution should be, on average, equal to the distribution of the number of customers
who arrive during the expected service time E[S] = μ−1 of an arbitrarily chosen cus-
tomer. From the definition of Poisson process, we know that the number of arrivals
during the interval E[S] is Poisson distributed with mean λE[S] = λ/μ = a.

We will observe this type of insensitivity property in loss models and a processor
shared queueing model to be discussed in subsequent sections. Interestingly enough,
this insensitivity property can always be explained by identifying a set of (equivalent)
infinite servers involved in such models. The reader will gain a better understanding
of this important feature of many queueing or loss models, as we will repeat similar
arguments in the following.

23.3.3 M/M/m : multiple server queue

Now we consider an M/M/m queue; i.e., the case where there are m parallel servers,
sharing a common queue. The M/M/1 and M/M/∞ systems are two extreme cases of
M/M/m. If N (t) = n ≤ m, then the n customers are simultaneously served by n parallel
servers. If N (t) = n > m, then n − m customers will be present in the queue. Since both
the arrival and service processes are memoryless, N (t) is again a BD process, with the
following BD rates:

λn = λ, n = 0, 1, 2, . . . , (23.48)

μn = min{n,m}μ, n = 1, 2, 3, . . . (23.49)

If a = λ/μ < m, then the normalization constant G of (14.57) is given by

G =
m−1∑
n=0

an

n! +
am

m!
1

1− ρ , (23.50)

where

ρ = a

m
= λ

mμ
< 1 (23.51)

is the utilization per server. Thus, the equilibrium-state distribution of N (t) is

π0 = G−1,

πn =
{an

n! π0, n = 1, 2, . . . ,m,
ρn−mπm, n = m + 1,m + 2, . . .

(23.52)

It will be instructive to observe that the distribution in the region 0 ≤ n ≤ m takes
the form of a Poisson distribution (as in M/M/∞), whereas in the range n > m it is
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a geometric distribution with parameter ρ (as in M/M/1). These two distributions are
connected at n = m.

Using the PASTA property of the Poisson arrivals defined in the section on M/M/1,
we see that the probability that an arriving customer finds n customers in queue is πm+n .
Thus, the probability that a customer cannot be immediately served is

Fc
W (0) = P[W > 0] =

∞∑
n=0

πm+n = πm

1− ρ

= am

m!
m

m − a
π0 � C(m, a), (23.53)

which is known as Erlang’s delay formula, Erlang’s second formula, or the Erlang C
formula. We then rearrange G = π−1

0 of (23.50) and find (Problem 23.14)

C(m, a) = m B(m, a)

m − a(1− B(m, a))
, (23.54)

where B(m, a) is

B(m, a) � am/m!
m∑

i=0

ai

i !
, (23.55)

which is called Erlang’s loss formula, Erlang’s first formula, or the Erlang B formula.
This formula will be further discussed in Section 23.4.1.

The distribution of waiting time under the FCFS discipline can be derived in the
same way as was done for the M/M/1 queue, and is left to the reader as an exercise
(Problem 23.15):

FW (x) = 1− C(m, a)e−mμ(1−ρ)x . (23.56)

For m = 1, the above expression indeed reduces to (23.37), the waiting time distribution
for the M/M/1 queue.

From (23.149) we obtain the mean waiting time for M/M/m :

E[W ] =
∫ ∞

0
Fc

W (x) dx = C(m, a)

mμ(1− ρ) . (23.57)

Needless to say, the mean waiting time could have been obtained more readily
by calculating the mean queue length first and then applying Little’s formula (see
Problem 23.13).
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Figure 23.5 Multiple access model: G(K )/M/m.

23.3.4 M(K )/M/m and G(K )/M/m: multiple access models

We now consider a situation where customers are generated from finite sources, as
shown in Figure 23.5.

This is a proper model to represent, for instance, a multiple access communica-
tion system, in which m servers represent channels or links of m units; customers are
messages or packets to be transmitted by K users.

In the queueing theory literature this model with m = 1 has been extensively dis-
cussed under the name machine repairman model, machine-servicing model [99], or
machine interference model [73]: a repairman (the server) maintains a group of K
machines, and each machine is either “up” (running) or “down” (requiring repair ser-
vice). When a machine breaks down, it joins the queue (i.e., a logical queue: the machine
cannot walk!) for repair. Let a random variable U represent the amount of time that the
machine is up and S be the amount of time the repairman spends to repair the bro-
ken machine. Thus, the case with m > 1 may be aptly called the “multiple repairmen
model” [203].

First, we assume that both U and S are exponentially distributed:

FU (x) = 1− e−νx , (23.58)

FS(x) = 1− e−μx , (23.59)

where ν−1 and μ−1 are the mean “user” time (or “up” time) and the mean service time
respectively. This queueing model is denoted as M/M/m/K/K according to the con-
ventional notation (called Kendall’s notation) in the queueing theory literature. Instead,
we adopt the notation M(K )/M/m [4, 203], which will be easier to remember: “M(K )”
means K Markovian sources.

The arrival process from finite sources with the exponential source time (23.58) is
called a quasi-random arrival process (as opposed to completely random arrivals or
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Poisson arrivals). Then the number of customers N (t) found in m servers or their
common queue at time t can be represented as a BD process with birth rate

λn =
{
(K − n)ν, 0 ≤ n ≤ K ,
0, n > K ,

(23.60)

and death rate

μn = min{n,m}μ, 0 ≤ n ≤ K . (23.61)

The normalization constant G of (14.57) becomes (Problem 23.16)

G(K ) = π−1
0 (K ) =

m−1∑
n=0

(
K

n

)
rn +

K∑
n=m

K !
(K − n)!m!m

m−nrn, (23.62)

where r is defined as

r = ν

μ
= E[S]

E[U ] . (23.63)

Then, the distribution of the number of customers found in the servers or their common
queue in the G(K )/M/m system is (Problem 23.17)

πn(K ) =

⎧⎪⎨⎪⎩
(K

n

)
rnπ0(K ), 0 ≤ n ≤ m,
K !

(K−n)!m!m
m−nrnπ0(K ), m ≤ n ≤ K ,

0, n > K .

(23.64)

which will take a simpler form when m = 1, to be shown below. Before we proceed, we
will discuss the robustness of the above formula.

23.3.4.1 G(K )/ M/ m and formula (23.64)
Although we have assumed for the sake of analysis that the user time (or the machine’s
uptime) variable U is exponentially distributed, the formula (23.64) should remain
unchanged, even if the distribution of U were a general distribution, insofar as its
mean is E[U ] = ν−1. Although its mathematical proof can be found elsewhere (e.g.,
[203, Chapter 5]), we will provide here an intuitive argument by extending the similar
property we found for M/G/∞ in Section 23.3.2.

The model of Figure 23.5 can be viewed as a two-stage cyclic queueing system,
which consists of an IS (infinite server) station and a queue with m parallel servers,
with K customers circulating. By extending the argument we presented for M/G/∞, the
distributional form of the time spent in the IS station is immaterial. All that counts is its
mean value, in this case E[U ] = ν−1. If we consider the case m = 1, this analogy will
become even clearer.

23.3.4.2 G(K )/ M/1: The machine repairman model (m = 1).
As we remarked earlier, the case m = 1 is historically called the machine repairman
model and has been applied to modeling of a time-shared computer system (e.g., [197])
and other systems. The formula (23.64) becomes
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πn(K ) =
rn

(K−n)!∑K
i=0

ri

(K−i)!
, n = 0, 1, 2, . . . , (23.65)

which leads, after some manipulation, to the following expression (Problem 23.20):

πn(K ) = P(K − n; r−1)

Q(K ; r−1)
, n = 0, 1, 2, . . . . (23.66)

This shows that K − n (the number of machines up running) has a truncated Poisson
distribution. We will revisit this result in Section 23.4.1 on Erlang loss model.

It can be shown that if we let K →∞ and ν → 0, while keeping Kν = λ (hence,
Kr = Kν/μ→ ρ), then the system G(K )/M/1 approaches the M/M/1 queue. The dis-
tribution (23.66) then should converge to the geometric distribution (1− ρ)ρn, n =
0, 1, 2, . . . (Problem 23.21). This limiting argument also implies that the merged stream
of a sufficient number K of independent sources converges to a Poisson stream. It is
important to note that each sub-stream need not be a Poisson stream. This is analogous
to the central limit theorem studied earlier: the sum of K independent RVs converges
to a normal variable as K →∞, even when the component variables are not normal,
as long as any of their contributions are negligibly small compared with the summed
variable.

23.3.4.3 Waiting time distribution in M(K )/M/m.
Now we proceed to derive the waiting time distribution FW (x). The results we obtain
here will apply only to M(K )/M/m, unlike (23.64), which holds for G(K )/M/m in
general.

First, we need to obtain {an}, the probability distribution of the number of customers
found by an arriving customer. The PASTA property does not hold for the quasi-random
input. However, a simple relation can be found between the distributions {πn(K )} and
{an(K )}, as we shall see below.

Over a long time interval (0, T ) the average number of customers who arrive
when the system is in state n (i.e., when N (t) = n) is given by λnTπn(K ), n =
0, 1, 2, . . . , K − 1. As T →∞, the proportion of these customer arrivals to all cus-
tomer arrivals in this period converges almost surely (i.e., with probability one) to the
constant

an(K ) = λnTπn(K )
K−1∑
i=0

λi Tπi (K )

= λnπn(K )
K−1∑
i=0

λiπi (K )

, 0 ≤ n ≤ K − 1. (23.67)

Note that the last expression holds for any state-dependent arrivals, not just for the
quasi-random arrival. Substituting (23.60) into (23.67), we find
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an(K ) = (K − n)πn(K )
K−1∑
i=0

(K − i)πi (K )

, 0 ≤ n ≤ K − 1, (23.68)

and with (23.64) we arrive at (Problem 23.18)

an(K ) = πn(K − 1), 0 ≤ n ≤ K − 1. (23.69)

This result suggests that the distribution seen by an arriving customer is what would
be observed at a randomly chosen instant in steady state, with that particular source
removed from the system.

The relation (23.69) is a special case of the arrival theorem [220, 297] that holds
in any Markovian closed queueing network. Since it is known [47] that any closed
Markovian network can have an equivalent two-stage cyclic queueing system with state-
dependent arrivals and service rates, it suffices to prove (23.69) for a state-arrival rate
of the form λ j = f (K − j) with an arbitrary function f (·) and f (0) = 0, instead of
the specific linear form as in (23.60), and for arbitrary state-dependent service rates μ j ,
instead of the specific form as in (23.61) (Problem 23.19).

In order to obtain the waiting time distribution, we proceed in a way similar to what
we did for the M/M/m. We can show that the complementary function of the waiting
time distribution is given (Problem 23.22 (a)) by

Fc
W (x) =

K−m∑
n=0

πn+m(K − 1)Fc
W (x |n + m), (23.70)

where Fc
W (x |n + m) is given by

Fc
W (x |n + m) = e−μx

n∑
j=0

(μx) j

j ! = Q(n;mμx), 0 ≤ n ≤ K − m. (23.71)

The function Q(n; a) in the last expression is the cumulative Poisson distribution
defined in (23.31).

Thus, the waiting time distribution function and PDF of waiting time are given by
(Problem 23.22 (b))

FW (x) = 1− mm

m! π0(K − 1)
Q(K − m − 1;mμ(x + 1

ν
))

P(K − 1;mr−1)
(23.72)

and

fW (x) = FW (0)δ(x)+ mmμ

m! π0(K − 1)
P(K − m − 1;mμ(x + 1

ν
))

P(K − 1;mr−1)
. (23.73)

23.3.5 M/G/1 queueing model

If we retain the Poisson arrival assumption but remove the assumption of the expo-
nential service time, the resulting single-server queueing system is denoted as M/G/1.
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The M/G/1 queueing model has found many applications. In packet transmission in
a computer network, for instance, packet traffic may be adequately characterized as a
Poisson process, but its service time, which is proportional to the packet length, may
be far from being exponentially distributed. Thus, any result obtained using an M/M/1
queueing model may be suspect.

When the service time is not exponential, the transition probabilities (14.41) are no
longer independent of t . It depends on how long the system has been in the current
state. Thus, N (t) is no longer a BD process. There are a couple of ways to deal with this
non-Markov queueing process. One of them is called the method of embedded Markov
chain (EMC).

Let Nk be the number of customers found in the system just after the service com-
pletion of customer Ck , and let Ak be the number of customers who arrive while Ck

is served (Figure 23.6). Clearly, A1, A2, . . . are i.i.d. RVs. Furthermore, under the
FCFS discipline, Ak is independent of N1, N2, . . . , Nk−1. However, Nk and Ak are not
independent, but related by the following equation:

Nk =
{

Ak, if Nk−1 = 0,
Nk−1 + Ak − 1, if Nk−1 > 0.

(23.74)

By defining the left-continuous unit step function2 U (t),

U (x) �
{

1, x > 0,
0, x ≤ 0,

(23.75)

we can rewrite (23.74) in a single line:

Nk = Nk−1 −U (Nk−1)+ Ak . (23.76)

N(t )

Nk

Nk – 1

Ck – 4

Ck – 1

Nk + 1Bk + 1= 2Bk =  3

Ck + 1Ck – 1

Ck – 2Ck – 3 Ck – 1 Ck

Ck

Ck + 1Xk + 1CkXk

t

t

t

Figure 23.6 The Markov chain {Nk} embedded in the process N (t).

2 Note that U (t) is different from the right-continuous unit step function u(t) used elsewhere.
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From this expression it is apparent that the sequence {Nk} is a DTMC. Since this chain
is embedded in the original time-continuous (non-Markov) process N (t), we say that
Nk is an EMC associated with N (t).

The equilibrium-state distribution

dn = lim
k→∞ P[Nk = n], n = 0, 1, 2, . . . , (23.77)

is the distribution seen by departing customers. But we are primarily interested in the
equilibrium-state distribution of the process N (t); i.e.,

πn = lim
t→∞ P[N (t) = n], n = 0, 1, 2, . . . , (23.78)

which is also the long-run time-average distribution. How are {dn} and {πn} related?
In any stable system, {dn} should be equal to {an}, the distribution seen by arriving

customers. Because of the PASTA property in an M/G/1 system, these distributions
should be identical to {πn}.

23.3.5.1 Queue distribution in M/G/1
Let us denote the PGF of {πn} by P(z):

P(z) =
∞∑

n=0

πnzn =
∞∑

n=0

dnzn = lim
k→∞ E[zNk ]. (23.79)

Then, substituting (23.76) into the above equation and noting that Ak and Nk−1 are
independent, we find

P(z) = lim
k→∞ E[z Ak ]E[zNk−1−U (Nk−1)] = A(z)

∞∑
n=0

[
πn

(
zn−U (n)

)]
= A(z)

[
π0 +

∞∑
n=1

πnzn−1

]
= A(z)

[
π0 + z−1(P(z)− π0)

]
, (23.80)

from which we readily obtain

P(z) = π0 A(z)(z − 1)

z − A(z)
, (23.81)

where A(z) is the PGF of Ak :

A(z) =
∞∑

n=0

P[Ak = n]zn =
∞∑

n=0

∫ ∞

0

e−λt (λt z)n

n! fS(t) dt

=
∫ ∞

0
e−λt eλt z fS(t) dt = f ∗S (λ− λz). (23.82)

Here, f ∗S (·) is the Laplace transform of fS(t).
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The constant π0 is obtained by letting z → 1 in the above and applying l’Hôpital’s
rule (Problem 23.25):

π0 = 1− λE[S] = 1− ρ, (23.83)

which is as expected. Thus, we finally have

P(z) = (1− ρ)(z − 1) f ∗S (λ− λz)

z − f ∗S (λ− λz)
, (23.84)

which is called the Pollaczek–Khintchine transform equation or just the Pollaczek–
Khintchine formula.

Example 23.1: M/D/1 queue. If the service time is constant or deterministic, i.e.,
S = μ−1 with probability one, then we denote such an M/G/1 queue by M/D/1. Using
the right-continuous unit step function u(x), we can write the service time distribution
function as

FS(x) = u(x − μ−1) (23.85)

and its density function as

fS(x) = δ(x − μ−1), (23.86)

where δ(x) is the Dirac delta function . The Laplace transform of fS(x) is therefore

f ∗S (s) =
∫ ∞

0
e−sxδ(x − μ−1) dx = e−s/μ. (23.87)

By substituting the above result into (23.84), we obtain

P(z) = (1− ρ)(1− z)

1− z eρ(1−z)
. (23.88)

The Taylor series expansion of (23.88) gives

P(z) = (1− ρ)(1− z)
∞∑
j=0

z j e jρe− jρz . (23.89)

By equating the coefficients of zn on both sides, we obtain

πn = (1− ρ)
n∑

j=0

(−1)n− j e jρ
[
( jρ)n− j

(n − j)! +
( jρ)n− j−1

(n − j − 1)!
]
. (23.90)
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0
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k = 1 (M/M/1)

k = ∞ (M/D/1)

k = 2 (M/E2/1)
k = 4 (M/E4/1)
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π n

Figure 23.7 The queue distribution of the M/Ek /1 system for k = 1, 2, 4,∞.

Figure 23.7 shows the distribution (23.90), to which the solution for the M/Ek /1
system converges as k →∞. �

23.3.5.2 Pollaczek–Khintchine mean value formula
By differentiating (23.84) and letting z → 1, we obtain the average number of cus-
tomers in the M/G/1 system (Problem 23.28):

N = ρ + ρ2(1+ c2
S)

2(1− ρ) , (23.91)

where cS is the coefficient of variation of the service time. Equation (23.91) is called the
Pollaczek–Khintchine mean value formula. There is another way to derive this important
formula (see Problem 23.29).

If the service time distribution is exponential, then cS = 1 and (23.91) reduces to

N = ρ

1− ρ (M/M/1). (23.92)

If the service time is constant, then cS = 0 and

N = ρ(1− ρ
2 )

1− ρ (M/D/1). (23.93)

Thus, under a heavy traffic condition (ρ ≈ 1), the ratio of the mean queue size of M/M/1
to that of M/D/1 is two to one.

Since the utilization factor ρ of a single-server system can be interpreted as the mean
number of customers in service, we can write N as the sum of ρ and the mean number
Q of customers in queue. Thus,

N = ρ + Q. (23.94)
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From (23.91) and (23.94) we have

Q = λ2 E[S2]
2(1− ρ) . (23.95)

The expected waiting time under the FCFS queue discipline is now readily obtainable
using Little’s formula:

E[WFCFS] = Q

λ
= λE[S2]

2(1− ρ) =
ρE[S](1+ c2

S)

2(1− ρ) , (23.96)

where cS = √Var[S]/E[S] is the coefficient of variation. Similarly, we find the
expected system time under the FCFS discipline:

E[TFCFS] = E[S] + ρE[S](1+ c2
S)

2(1− ρ) = E[S]
1− ρ

[
1− ρ(1− c2

S)

2

]
. (23.97)

23.3.5.3 Waiting time distribution in M/G/1
Under the FCFS (first come, first served) scheduling discipline, Nk is equivalent to the
number of arrivals during the system time of customer Ck (see Figure 23.6). Thus, we
find the following parallel relation:

Ak = number of arrivals during the service time Sk ,
Nk = number of arrivals during the system time Tk .

Then the relation between P(z) and the system time distribution FT (t) is parallel
to that between A(z) and the service time distribution FS(t) (see also Problem 23.30).
Therefore, the relation (23.82) implies

P(z) = f ∗T (λ− λz), (23.98)

where f ∗T (·) is the Laplace transform of fT (t), which we wish to obtain. By equating
(23.84) and (23.98) and setting s = λ− λz, we find

f ∗T (s) =
(1− ρ)s f ∗S (s)
s − λ+ λ f ∗S (s)

(FCFS). (23.99)

Under the FCFS scheduling rule, the system time Tk , waiting time Wk , and service time
Sk of customer Ck are simply related according to

Tk = Wk + Sk . (23.100)

Since Wk and Sk are independent RVs, the above equation implies

f ∗T (s) = f ∗W (s) f ∗S (s). (23.101)

Then, from (23.99) and (23.101), we readily have

f ∗W (s) =
(1− ρ)s

s − λ+ λ f ∗S (s)
(FCFS). (23.102)
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Then by applying the inverse Laplace transform to f ∗T (s) and f ∗S (s), we can derive the
PDFs fT (t) and fW (t) respectively.

The expression for f ∗W (s) becomes somewhat simpler if we use f ∗R(s), the Laplace
transform of the residual lifetime (or forward recurrence time) R associated with the
service time S (Problem 23.31), yielding

f ∗W (s) =
(1− ρ)

1− ρ f ∗R(s)
= (1− ρ)

∞∑
n=0

ρn ( f ∗R(s)
)n

(FCFS). (23.103)

This formula is often referred to as the Pollaczek–Khintchine formula for the waiting
time distribution.

23.3.6 M/G/1 with processor sharing (PS)

The FCFS scheduling is often assumed as a default scheduling in many queueing mod-
els, but it is not necessarily a fair scheduling strategy, since small customers behind a
big customer may suffer unreasonably. The notion of processor sharing (PS) was orig-
inally introduced by Kleinrock [188] as the limiting case of round robin (RR), in which
the time quantum (or time slice) is allowed to approach zero. Thus, under this disci-
pline, the server divides the service among all of the customers presently in the system.
So, whenever there are n customers in the system, each customer will receive service at
the rate of 1/n work unit per unit time.

The PS discipline was used to model the scheduling policy adopted in time-shared
computing systems. The recent renewed interest in PS stems from its applicability to (i)
modeling of statistically multiplexed traffic over a high-speed link, (ii) modeling of Web
servers, and (iii) modeling of links congested with transmission control protocol (TCP)
traffic. Job schedulers in Web servers often employ PS-based algorithms to achieve
fairness. Roughly speaking, TCP attempts to provide each session (TCP flow) with an
equal share of the bandwidth of a given link, and this is exactly what the PS discipline
provides.

M/G/1 with PS is similar to M/G/∞ in the sense all the customers in the system
simultaneously receive services without being to forced to wait. The difference is that
the total service rate at the service station is n work units per time unit in M/G/∞,
whereas it is one work unit per unit time in the M/G/1 with PS. Thus, it should not be
so surprising to find that the equilibrium state of the number of customers in the system
{πn} depends only on the mean service time, and not on the distributional form of FS(t),
as in M/G/∞. That is, it has the same distribution as that for M/M/1 with PS. But the
probability distribution {πn} of M/M/1 is independent of the scheduling discipline as
long as it is work-conserving, which the PS discipline is. Therefore, the steady-state
distribution of N (t) is the same as that of M/M/1; i.e.,

πn = (1− ρ)ρn, n = 0, 1, 2, . . . , where ρ = λE[S]. (23.104)
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Because of the inherent fairness of the PS discipline, it is easy to see that the system
time T should be proportional to its service demand S. If we define the conditional
system time variable

TPS(S) = time that a customer with service demand S spends in the system,
(23.105)

then, as was shown by Sakata et al. [292] and Coffman et al. [59], its expectation is
simply given by

E[TPS(S)|S] = S

1− ρ , x > 0. (23.106)

Then the unconditional expectation of the system time is

T PS = ES[E[TPS(S)|S]] = E[S]
1− ρ , (23.107)

which agrees with (23.28) as expected.
If we define the waiting time variable of a customer, whose service time requirement

is S, by

WPS(S) = TPS(S)− S, (23.108)

then we find

E[WPS(S)|S] = E[TPS(S)|S] − S = ρS

1− ρ , (23.109)

and the unconditional mean waiting time is

W PS = ρE[S]
1− ρ , (23.110)

which agrees with (23.26).

23.4 Loss models

In the queueing models studied in the preceding sections, all customers are eventually
served no matter how large the queue may develop temporarily, provided the long-run
average rate of service requests is less than the server capacity. We shall now consider
the other extreme, where there is no room for a queue to form and arriving customers
are denied service when all the servers are busy. This is typically the case in a circuit-
switched telephone system, including a cellular phone system. A denied call attempt
will be lost. So a loss model is useful in analyzing CAC (call admission control or
connection admission control) in connection-oriented network services. Congestion of
TCP flows in the Internet can be analyzed by formulating the system as a loss system.
Thus, in a loss system model, a customer is usually a “call” and servers are “lines”
or “circuits.” The service time is often called the (call) holding time. A lost call is
sometimes referred to as a blocked call.
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In this section we discuss two classical loss models, the Erlang and Engset loss
models, which are again special cases of the BD process model. We also remark on
generalizations of these classical loss models.

23.4.1 M/M/m(0) and M/G/m(0): Erlang loss models

Consider a service center with m parallel servers, but no waiting room, as shown in
Figure 23.8. Customers or calls arrive according to a Poisson process with rate λ, and the
service time S is exponentially distributed with mean μ−1, as assumed in the queueing
models studied in the preceding sections. We denote this loss system as M/M/m(0),
where (0)means no room for a queue. The conventional notation is M/M/m/m, where
the last m represents the maximum number of customers that can be accommodated in
the system. The system M/M/m(0) or M/M/m/m is called the Erlang loss model in
deference to A. K. Erlang.

Let N (t) be the number of calls in service at time t . Clearly, 0 ≤ N (t) ≤ m.
When N (t) = m, a new call is denied service and is lost. The process N (t) is a BD
process with

λn = λ, n = 0, 1, 2, . . . ,m − 1, and μn = nμ, n = 1, 2, . . . ,m. (23.111)

The normalization constant G of (14.57) becomes

G = π−1
0 =

m∑
n=0

an

n! , (23.112)

where the dimensionless parameter

a = λE[S] = λ

μ
[erl] (23.113)

is the traffic intensity defined in (23.45), but is often referred to as the offered load.
Hence,

ρ = a

m
= λ

mμ
(23.114)

m servers
1

λ

μ

μ

μ Completed calls
Arriving calls

Lost calls

2

m

Figure 23.8 M/M/m(0): Erlang loss model.
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is the offered load per server. As defined earlier in (23.113), the offered load a [erl]
represents the total average load placed on the service station per unit time, or, equiv-
alently, the average number of call arrivals during service of a call. The parameter ρ is
not a measure of server utilization or productivity in a loss system, because some of the
offered calls will be lost and never served.

The equilibrium state distribution of N (t)

πn = an/n!
m∑

i=0

ai

i !
, for n = 0, 1, 2, . . . ,m, (23.115)

is called the Erlang distribution.3 As m →∞, this Erlang distribution (23.115)
approaches the Poisson distribution (23.46). This is because, in the limit m →∞, the
systems M/M/m(0) and M/M/∞ are equivalent: the waiting room is immaterial when
infinitely many servers are available.

We can express the Erlang distribution as a truncated Poisson distribution

πn = P(n; a)

Q(m; a)
, for n = 0, 1, 2, . . . ,m, (23.116)

where P(n; a) and Q(n; a) are the Poisson and cumulative Poisson distributions defined
in (23.32) and (23.31), respectively.

23.4.1.1 Generalized Erlang loss model: M/ G/ m(0)
Now we make an important observation that the Erlang distribution (23.115) or (23.116)
is insensitive to the form of the service time distribution FS(t), similar to the property
we found for the systems M/G/∞ and G(K )/M/m. A formal proof can be provided
by applying the notion of quasi-reversibility of a symmetric queue as discussed in
Kelly [177] (see also [203] Section 5.2). See also Ross [287] for a formal proof.

Here, we provide an intuitive argument by relating the the generalized Erlang loss
model M/G/m(0) to the machine repairman model G(m)/M/1 (with the parameter K
now replaced by m), for which we showed the insensitivity of the queue distribution
to the distribution of U , the interval that a machine is up and running. As far as the
queue distribution at the m-parallel exponential servers is concerned, the lost calls in
the system M/G/m(0) have no effect: a lost call does not change the system state. So
if we consider only accepted and served calls, then we can construct a two-stage cyclic
closed system that is equivalent to the system M/G/m(0), although the latter is an open
system. This equivalent closed system consists of an infinite server (IS) station (where a
customer stays according to FS(t)), and an exponential server (with mean service time
λ−1), with m customers or calls circulating.

3 This should not be confused with the k-stage Erlang or Erlangian distribution Ek discussed in Section 4.2.3.
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The probability that n out of m machines are in service by the repairman in the system
G(m)/M/1 is given from (23.66) as

πn(m) = P(m − n, r−1)

Q(m, r−1)
, (23.117)

where r is defined in (23.63). This is equal to the probability that m − n � n′ machines
are up and running (i.e., in the IS station side). In the corresponding Erlang loss model,
the probability that n′ calls are in service is given from (23.116) by

πn′ = P(n′, a)

Q(m, a)
, (23.118)

where n′ = m − n and a = μ/ν = r−1. Clearly, these two probabilities are equivalent.
Thus, the insensitivity of the Erlang loss model with respect to service time distribution
is reduced to the insensitivity of a G(m)/M/1 system.

23.4.1.2 Blocking probability versus loss probability
The probability πm in (23.116) represents the proportion of time that all the m servers
are occupied. In telephony, this long-run time-average probability is called the blocking
probability or time congestion [316]. A related quantity is the loss probability, call loss
probability, or call congestion, denoted by L , which is the probability that an arriving
call finds all the m servers (or lines) occupied, and hence will be lost.

Because of the PASTA property, {an}, the probability distribution of the number of
calls in progress observed by an arriving call should be equal to {πn}, the long-run time-
average distribution of N (t) (Problem 23.35). Thus, the call congestion L is equal to the
time congestion πm :

L = πm = am/m!
m∑

i=0

ai

i !
= P(m; a)

Q(m; a)
� B(m, a), (23.119)

which is called Erlang’s loss formula, Erlang’s first formula, or the Erlang B formula.

Figure 23.9 shows L as a function of traffic load a with the number of circuits m fixed.
Four different values of m are assumed: m = 10, 20, 40, and 80. Telephone networks are
usually designed and operated so that L ≈ 0.01 is attained for an assumed value of a.

23.4.1.3 Carried load
We now introduce the notion of carried load or carried traffic, denoted ac, which is the
average number of servers occupied in the steady state. It is equivalent to throughput:

ac = lim
t→∞ E[N (t)]. (23.120)
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Figure 23.9 Erlang’s loss formula: the loss probability L versus offered load a: the number of circuits
m = 10, 20, 40, and 80 ([203] Reprinted with permission from Pearson Education, Inc., Upper
Saddle River, NJ.).

For the Erlang loss model we have

ac =
m∑

n=1

nπn =
a

m∑
n=1

an−1

(n−1)!
m∑

i=0

ai

i !
= a[1− B(m, a)]. (23.121)

The loss probability L is, by definition, the proportion of calls that cannot be carried;
hence, we can write

L = 1− ac

a
, (23.122)

and with (23.121) we have

L = a − a[1− B(m, a)]
a

= B(m, a), (23.123)

which is Erlang’s loss formula (23.119), obtained earlier.

23.4.2 M(K )/M/m(0) and G(K )/G/m(0): Engset loss models

We now consider a loss system with K sources and m parallel servers, as shown in
Figure 23.10. This model can represent a circuit-switched telephone system, in which
K input lines (sources) are served by m output lines. It is also a proper model for a
cellular radio system in which K mobile users are served by m channels that belong to
a base station. Similar to the M(K )/M/m queueing model of Section 23.3.4, each source
spends a random time interval U before generating a customer.
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Figure 23.10 M(K )/M/m(0): Engset loss model.

By extending our argument concerning the two-stage cyclic queueing system repre-
sentation of the Erlang loss model, this finite source loss model can also be viewed as a
two-stage cyclic system which is composed of an IS station and a station with m-parallel
servers, with K customers (or calls) circulating. Therefore, the queue distribution in the
steady state is insensitive to the distribution of time spent in the sources (the IS sta-
tion) FU (t) as well as the service time distribution FS(t). A mathematical argument to
support this statement can be found in, for example, [203].

We first assume, however, that FU (t) = 1− e−νt . The call arrivals form a quasi-
random arrival process, as was defined in Section 23.3.4. The service time or call
holding time is exponentially distributed; i.e., FS(t) = 1− e−μt . This loss system
model, a hybrid between the multiple access model (or multiple repairman model)
M(K )/M/m and the Erlang loss model M/M/m(0), is called the Engset loss model in
deference to Engset [91], denoted as M(K )/M/m(0). The conventional notation in the
queueing literature is M/M/m/m/K .

Then N (t), the number of calls in service at time t , is a BD process with birth rate
(23.60) and death rate (23.111), and the normalization (14.57) becomes

G =
m∑

n=0

K (K − 1) · · · (K − n + 1)

n!
νn

μn
=

m∑
n=0

(
K

n

)
rn, (23.124)

where r is as defined in (23.63). Therefore, the stationary distribution of N (t) is

πn(K ) =
(K

n

)
rn

m∑
i=0

(K
i

)
r i

� E(m, K , r), 0 ≤ n ≤ m, (23.125)

which is a truncated binomial distribution. This distribution is known as the Engset
distribution. Then the blocking probability or time congestion is given by
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πm(K ) =
(K

m

)
rm

m∑
i=0

(K
i

)
r i

� E(m, K , r), (23.126)

which we call the Engset blocking probability.
There are on average K − E[N (t)] sources that are eligible to generate new

customers with intensity ν/μ. Thus, the offered load is expressed as

a = (K − E[N (t)]) ν
μ
= r

m∑
n=0

(K − n) πn(K ) = r K

m∑
n=0

(K−1
n

)
rn

m∑
i=0

(K
i

)
r i

. (23.127)

An alternative way to derive the first equality above is to recognize that the average
service time for a given customer is E[S] = μ−1. During its service, the expected arrival
rate of new customers is given by (K − E[N (t)])ν. The offered load is by definition the
product of these two quantities.

The carried load ac, the expected number of servers that are occupied at given time,
can be readily obtained as

ac =
m∑

n=1

nπn(K ) = r K

m−1∑
j=0

(K−1
j

)
r j

m∑
i=0

(K
i

)
r i

. (23.128)

From the last two equations we can obtain the Engset loss probability or call
congestion as

L(K ) = 1− ac

a
=

(K−1
m

)
rm

m∑
i=0

(K−1
i

)
r i
= E(m, K − 1, r), (23.129)

which is called Engset’s loss formula.

23.4.2.1 Probability distribution seen by arrivals
Unlike in the Erlang loss model, the PASTA property does not hold for the Engset loss
model. However, the “arrival theorem” we derived in Section 23.3.4 holds here as well,
since the Engset loss model is a Markovian queueing model. Thus, similar to (23.69),
we find

an(K ) = πn(K − 1) =
(K−1

n

)
rn

m∑
i=0

(K−1
i

)
r i
, for 0 ≤ n ≤ m. (23.130)
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Figure 23.11 Engset loss formula with K = 40 sources: the loss probability L(K ) versus offered load a for
different values of the number of servers m = 10, 20, 30, 39 ([203] Reprinted with permission
from Pearson Education, Inc., Upper Saddle River, NJ.).

The loss probability L(K ) is by definition an(K ) at n = m:

L(K ) = am(K ) = πm(K − 1) = E(m, K − 1, r), (23.131)

which is Engset’s loss formula (23.129) obtained earlier from a and ac.
Figure 23.11 shows the loss probability L(K ) as a function of the offered load a

in a loss system with K = 40 sources. Four different values of m are considered:
m = 10, 20, 30, and 39. The case m = 40 servers does not show up here, since the
loss probability should always be zero if m ≥ K . The parameter r = ν/μ is implicit,
but is related to the offered load a through (23.127). As r increases, the offered load
approaches (K − m)r [erl], as is evident from (23.127).

We define the trunk efficiency or link efficiency as the utilization factor per server (i.e.,
output line or trunk):

η = ac

m
. (23.132)

We can then show from Engset’s loss formula that the trunk efficiency increases as m
increases for any K , when the loss probability L(K ) is fixed.

23.4.3 Loss network model and generalized loss station

In this section we will introduce the notion of loss networks introduced by Kelly [178],
which may be viewed as loss system counterparts of queueing networks. A queueing
network has been applied to analyze a packet-switched network (e.g., see Kleinrock
[190]), whereas a loss network model can represent, for instance, (i) a circuit-switched
network such as a telephone network and (ii) the Internet network at the flow level with
a resource reservation protocol.
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Figure 23.12 Open loss network ([203] Reprinted with permission from Pearson Education, Inc., Upper
Saddle River, NJ.).

23.4.3.1 Open loss network
First we consider a loss network, as illustrated in Figure 23.12. We call this type of loss
network an open loss network (OLN). The Erlang loss model is a simple example of
OLN, whereas the Engset loss model is an example of closed loss network (CLN).

We define the following notation and properties of OLN.

1. Let L denote the set of links in the network. There are L = |L| links in the network;
link � ∈ L contains ml units for service, where the service unit may be a channel or
a time slot.

2. A call class r ∈ R is defined as a pair (c, τ ); i.e.,

r = (c, τ ), c ∈ C, τ ∈ T , (23.133)

where C is the set of routing chains or paths and T is the set of call types. Thus, the
set R = C × T .

3. The arrival pattern of class-r calls to the OLN is a Poisson process with rate λr ,

r ∈ R.
4. A class r = (c, τ ) call seeks to simultaneously acquire A�,r service units for all links
� in its route c.

5. The holding time of a class-r call is a general distribution with mean 1/μr .

This OLN model provides a general model for a circuit-switched network that carries
multirate traffic: different bandwidth requirements correspond to different types of call.
The bandwidths of different links are generally different. We assume that a class r =
(c, τ ) call requires A�,r units (i.e., servers) from link �. Although Figure 23.12 might
give a false impression that the OLN model can represent only unidirectional traffic, that
is not the case. The model can handle bidirectional flows by assigning different class
identifications to traffic in the reverse directions. The reverse traffic for a given pair of
nodes may have different bandwidth requirements. The path for the reverse traffic need
not be the reverse path of the forward path.
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Figure 23.13 GLS which is equivalent to the OLN ([203] Reprinted with permission from Pearson Education,
Inc., Upper Saddle River, NJ.).

23.4.3.2 Generalized loss station (GLS)
We now consider what we term a generalized loss station (GLS) of Figure 23.13, which
consists of multiple server types � ∈ L. This loss station is a generalization of the loss
stations defined in the previous sections (i.e., the Erlang and Engset loss stations), in the
sense that it has multiple types of server. Class-r customers arrive at the GLS as a birth
process with rate λr ar (nr ). Every class-r customer requires A�,r servers of type � ∈ L,
all simultaneously; thus, a class-r customer holds a total of

∑
�∈L A�,r servers.

Let N (GLS)
r (t) be the number of class-r customers being served by the GLS at

time t . Then the process N(GLS)(t) = {N (GLS)
r (t); r ∈ C} is equivalent to the process

N (OLN)(t) defined over the OLN. We state this relationship as a theorem.

THEOREM 23.2 (Equivalence of an OLN and its associated GLS). The OLN defined
above can be reduced to a GLS with multiple server types.4

Let Nr (t) represent the number of class-r calls in progress at time t in an
OLN or the number of class-r customers in service at its equivalent GLS. Then,
the process N(t) = {Nr (t); r ∈ C} is reversible and has a stationary distribution of
product form:

πN (n) = 1

G(m)

∏
r∈R

anr
r

nr ! , n ∈ FN (m), (23.134)

4 Note that the link index � ∈ L in the OLN corresponds to the server type in its equivalent GLS. Thus, the
number of servers of type � is m� in the equivalent GLS, � ∈ L.
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where ar = λr/μr and

G(m) �
∑

n∈FN ()

∏
r∈R

anr
r

nr ! , (23.135)

FN(m) � {n ≥ 0 :
∑
r∈R

A�,r nr ≤ m�, � ∈ L}, (23.136)

where m� is the number of type-� servers.

A formal proof of this theorem makes use of the quasi-reversibility of the GLS.
Interested readers are referred to [201, 203] for further details.

We now introduce a CLN by replacing the set of Poisson streams by a set of finite
number Kr of sources, r ∈ R. The generalized Engset loss model is an example of a
CLN. We classify the chains of a loss network into the set of open subchains Cop and
the set of closed subchains Ccl. Type-τ customers in an open chain c ∈ Cop arrive to
an OLN according to a Poisson process with rate λr , where r = (c, τ ), whereas type-
τ customers in a closed chain c ∈ Ccl enter the equivalent GLS from Kr − nr ready
sources, each of which sends out calls at rate νr .

A mixed loss network (MLN), as depicted in Figure 23.14, has both kinds of routes.
The MLN generalizes both the Erlang and Engset stations of the previous section. To
simplify notation, for a given class membership r = (c, τ ), we write r ∈ Rop if c ∈ Cop.
Similarly, r ∈ Rcl and c ∈ Ccl are equivalent. Denote the population vector process in
the loss network proper (excluding those in the sources) by N(t) = [Nop(t), Ncl(t)],
with Nop(t) = (Nr (t) : r ∈ Rop) and Ncl(t) = (Nr (t) : r ∈ Rcl), where r = (c, τ ).
We have the following result for the MLN.

r ∈Rcl

1

2

Kr

λr , r ∈Rop r ∈Rop

Open class r ∈Rop

Closed class r ∈Rcl

Figure 23.14 Mixed loss network ([203] Reprinted with permission from Pearson Education, Inc., Upper
Saddle River, NJ.).
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THEOREM 23.3 (Mixed loss network and reversibility). The population vector process
of the MLN is a reversible process with equilibrium distribution given by

πN (n|m, K ) = 1

G(m, K )
πop(nop)πcl(ncl|K ), n ∈ FN (m, K ), (23.137)

where n = (nop, ncl) and

πop(nop) =
∏

r∈Rop

anr
r

nr ! , πcl(ncl|K ) =
∏

r∈Rcl

(
Kr

nr

)
rr

nr , (23.138)

with ar = λr/μr (r ∈ Rop), rr = νr/μr (r ∈ Rcl),

FN (m, K ) = {n ≥ 0 :
∑
r∈R

A�,r nr ≤ m�, � ∈ L; nr ≤ Kr , r ∈ Rcl}, (23.139)

and

G(m, K ) =
∑

n∈FN (m,K )

πop(nop)πcl(ncl|K ). (23.140)

�

A proof of this result can be found in [203].
From the stationary distribution of the MLN obtained above, we can express the

time congestion and call congestion in terms of the normalization constant G(m, K ) as
follows:

1. For a class-r customer in an open route r ∈ Rop:

Br (m, K ) = 1− G(m − Ar , K )
G(m, K )

,

Lr (m, K ) = Br (m, K ),
(23.141)

where Ar is the r th column of the matrix A = [A�,r ]. The last equation is due to the
PASTA property.

2. For a class-r customer in a closed route r ∈ Rcl:

Br (m, K ) = 1− G(m − Ar , K )
G(m, K ),

Lr (m, K ) = Br (m, K − er ),

(23.142)

where er denotes the unit vector, whose r th component is unity, with all other
components being zero.

The above formulae for the time and call congestions are generalizations of the formulas
obtained for the Erlang and Engset models. Finally, as m →∞, G(m, K ) increases
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monotonically to the normalization constant for a network with all IS stations:

G(∞, K ) = exp

⎛⎝ ∑
r∈Rop

ar

⎞⎠ ∏
r∈Rcl

(1+ rr )
Kr . (23.143)

23.4.3.3 Computational algorithms for loss networks
Although computation of the Erlang loss formula (23.119) and Engset loss formula
(23.129) should be relatively straightforward, their generalizations given by (23.141)
and (23.142) may be computationally difficult or infeasible, as some of the dimensions
of the set of links L, the numbers of lines m�, � ∈ L, the number of call classes in
Rop and Rcl, and the number of sources Kr , r ∈ Rcl, become somewhat large, because
the number of terms that appear in the the expressions for the normalization constant
(23.135) or (23.140) may be enormous.

There are several computationally efficient algorithms for the normalization con-
stant G: (i) recursive algorithms, (ii) numerical evaluation of an inversion integral
for a generating function representation of the normalization constant, (iii) asymptotic
approximation of the inversion integral, and (iv) reduced load approximation. In the
interest of space, the interested reader is directed to [201, 203] and references therein.

23.5 Summary of Chapter 23

Little’s law: L = λW (23.1)
M/M/1:

Prob. distribution: πn = (1− ρ)ρn, n = 0, 1, 2, . . . (23.20)

Mean system time: T = N
λ
= 1

μ(1−ρ) (23.28)

Waiting time dist. function: FW (x) = 1− ρ e−μ(1−ρ)x , x ≥ 0 (23.37)
System time dist. function: FT (x) = 1− e−μ(1−ρ)x , x ≥ 0 (23.41)

M/G/∞:
Prob. distribution: πn = an

n! e
−a = P(n ; a), n = 0, 1, 2, . . . (23.46)

Transient. prob. distr.: πn(t) =
(∫ t

0 (1−FS(u)) du
)n

n! e−λ
∫ t

0 (1−FS(u)) du (23.47)
M/M/m:

Prob. distribution: π0 = G−1

πn =
{ an

n! π0, n = 1, 2, . . . ,m
ρn−mπm, n = m+1,m+2, . . .

(23.52)

Erlang B formula: B(m, a) � am/m!∑m
i=0

ai
i !

(23.55)

Erlang C formula: C(m, a) = m B(m,a)
m−a(1−B(m,a)) (23.54)

Waiting time dist. function: FW (x) = 1− C(m, a)e−mμ(1−ρ)x (23.149)

Mean waiting time: E[W ] = C(m,a)
mμ(1−ρ) (23.57)
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G(K )/M/1: πn(K ) = P(K−n;r−1)

Q(K ;r−1)
, n = 0, 1, 2, . . . (23.66)

M(K )/M/m: an(K ) = λnπn(K )∑K−1
i=0 λiπi (K )

, 0≤n≤K−1 (23.67)

Arrival theorem: an(K ) = πn(K − 1), 0 ≤ n ≤ K−1 (23.69)
M/G/1:

Recurrence relation: Nk = Nk−1 −U (Nk−1)+ Ak (23.76)
PGF of {πn}: P(z) = A(z)

[
π0 + z−1(P(z)− π0)

]
(23.80)

PGF of {Ak}: A(z) = f ∗S (λ− λz) (23.82)

P–K transform formula: P(z) = (1−ρ)(z−1) f ∗S (λ−λz)
z− f ∗S (λ−λz) (23.84)

P–K mean value formula: N = ρ + ρ2(1+c2
S)

2(1−ρ) (23.91)

Laplace transform of
system time (FCFS):

f ∗T (s) = (1−ρ)s f ∗S (s)
s−λ+λ f ∗S (s)

(23.99)

M/G/1 with PS:
Prob. distribution: πn = (1− ρ)ρn, n = 0, 1, . . . (23.104)
Mean waiting time: W PS = ρE[S]

1−ρ (23.110)

(Generalized) Erlang
loss model:

Erlang distribution: πn = an/n!∑m
i=0

ai
i !
, n = 0, 1, . . . ,m (23.115)

Erlang B loss formula: L = πm = am/m!∑m
i=0

ai
i !
= P(m;a)

Q(m;a) � B(m, a) (23.119)

(Generalized) Engset
loss model:

Engset distribution: πn(K )= (K
n )r

n

m∑
i=0
(K

i )r
i
� E(m, K , r), 0≤n≤m (23.125)

Engset loss formula: L(K )=1− ac
a = (K−1

m )r
m

m∑
i=0
(K−1

i )r
i
=E(m, K−1, r) (23.129)

23.6 Discussion and further reading

A general and rigorous proof of Little’s formula, a seemingly obvious formula, is
rather involved mathematically (e.g., see Wolff [358]). In this section we followed Jew-
ell [168], by restricting ourselves to the situation in which the queue empties itself
infinitely often. Little’s formula has been generalized to H = λG, where H and G are
respectively time and customer averages of quantities that bear a certain relationship to
each other but are otherwise unspecified. For instance, if G represents the average cost
per customer and λ is the customer arrival rate, then H represents the time average cost
per unit time. This law was first proved by Brumelle [40] in a stochastic setting and then
by Heyman and Stidham [151] as a sample-path law. See Stidham and El-Taha [311]
for a comprehensive discussion on this subject.

The BD process-based queueing models, M/M/1, M/M/∞, M/M/m, and M(K )/M/1
and M/G/1 are discussed in most books on queueing theory; e.g., Cohen [61],
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Cooper [67], Cox and Smith [73], Gross et al. [132], Kleinrock [189], Lipsky [227],
Morse [251], Nelson [254], Syski [316], Takács [317], Wolff [358], and others. Loss
models, however, are not so extensively covered in these, an exception being Syski’s
book. Our treatment on the GLS and its equivalence to loss networks draws from our
earlier publications [201–203].

In the interest of space, we entirely skipped discussion on G/M/m, G/G/1, and queue-
ing networks, which are extensively covered in many books on queueing theory and
its applications; e.g., Bolch et al. [33], Chandy and Sauer [48], Daigle [76], Gelenbe
and Mitrani [116], Haverkort [146], Hayes and Ganesh Babu [147], Kelly [177], King
[183], Kobayashi [197], Kobayashi and Mark [203], Lavenberg [219], Tijms [322], and
others.

23.7 Problems

Section 23.2: Little’s formula: L = λW

23.1 Little’s formula [197]. Determine whether the following statements concerning
the formula L = λW are true or false.

(a) The formula L = λW holds only when the arrival process is a Poisson process with
rate λ.

(b) It is not necessary to assume a Poisson process, but interarrival times must be
statistically independent variables.

(c) The formula L = λW is valid under any queueing discipline. Thus, the average
queue length L is invariant under different queue disciplines.

(d) The formula holds even when the arrival rate at a given time is dependent on the
congestion of the queueing system.

23.2 Little’s formula for multiple customer types [197]. Suppose that there are
R types of customer. The arrival rates are given by λr , r = 1, 2, . . . , R. How do you
generalize the formula L = λW ? If the queue discipline is FCFS, what can we say
about the average queue sizes of different types?

23.3 Distributions seen by arrivals and departures [197]. Choose a sufficiently long
observation interval (0, T ) such that Q(t) = A(t)− D(t) = 0 at both t = 0 and t = T .
With the aid of the diagram of Q(t), show that the distribution of queue size seen by
arriving customers is the same as that seen by departing customers.

Section 23.3: Queueing models

23.4 Choice of work unit in a queueing model. Suppose that a server is a commu-
nication link and customers are packets. Assume that the communication link has a
bandwidth or speed of B [bits/s] and packet lengths are random variable Ln [bits]. The
interarrival times between packets are i.i.d. RVs Tn [s].
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(a) Find the arrival rate λ and the service completion rate μ.
(b) What assumptions do we have to make in order to formulate this problem as an

M/M/1 queue?

23.5 State classification in the M/M/1 queue. Show that, in the M/M/1 queue, the
states are all transient if ρ = λ/μ > 1, null-recurrent if ρ = 1, and ergodic if ρ < 1.

23.6 L(t) in the M/M/1 queue analysis. Show that the queue-length process L(t)
defined by (23.8) is not a BD process, despite its similarity to N (t) defined by (23.7).
Hint: Consider the state L(t) = 0. How does a new arrival affect the state?

23.7 Mean and variance in the M/M/1 queue. Show that the mean and variance of
N (t) in the M/M/1 queue are given by (23.21) and (23.22). Show also that the mean
and variance of the length of the waiting line L(t) are given by (23.23) and (23.24),
respectively.

23.8∗ Derivation of the waiting time distribution (23.37). Derive FW (x) of (23.37).

23.9 Cumulative Poisson distribution Q(n; a) [203]. Show the following properties
of Q(k ; a):

(a)

k∑
j=0

P(k − j ; a1)Q( j ; a2) = Q(k ; a1 + a2).

(b)

Q(k ; a) =
∫ ∞

a
P(k ; y) dy = �(k + 1, a)

k! ,

where �(p, z) = ∫∞z y p−1e−y dy is called the upper incomplete gamma function
(cf. (7.126)).

(c)

Q(k ; a) = aQ(k − 1; a)

k + a + 1
+ (k + 1)Q(k + 1; a)

k + a + 1
.

(d)

k−1∑
j=0

Q( j ; a) = k Q(k ; a)− aQ(k − 1; a).

(e) ∫ ∞

a
Q(k − 1; y) dy = k Q(k ; a)− aQ(k − 1; a).

23.10∗ Time-dependent solution for a certain BD process. Consider a BD pro-
cess with λn = λ for all n ≥ 0 and μn = nμ for all n ≥ 1. This process represents the
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M/M/∞ queue. Find the partial differential equation that G(z, t)must satisfy. Show that
the solution to this equation is

G(z, t) = exp

[
λ

μ
(1− e−μt )(z − 1)

]
.

Show that the solution for pn(t) is given as

pn(t) =
[
λ
μ
(1− e−μt )

] j

j ! exp

[
− λ
μ
(1− e−μt )

]
, 0 ≤ n <∞. (23.144)

23.11 Time-dependent solution for M/G/∞ is also Poisson [203, 249]. Show that
N (t) in an M/G/∞ is Poisson distributed, following the steps given below. Assume that
the system is initially empty; i.e., N (0) = 0. Pick any customer who has arrived in the
interval (0, t). From the uniformity property of the Poisson process (e.g., Section 14.1.2
see [203]), the arrival time U of this customer is uniformly distributed over (0, t).

(a) Show that the probability that this randomly picked customer is still in service at
time t is

p(t) =
∫ t

0 (1− FS(t − u)) du

t
, (23.145)

where FS(t) is the service time distribution.
(b) Suppose that N customers have arrived in (0, t). What is the probability that n(≤ N )

customers are still in service at time t?
(c) Show that the probability that there are n customers in service at time t is given by

(23.47).

23.12 The departure process of M/G/∞ is Poisson. Continue the above problem to
show that the departure process of M/G/∞ is also a Poisson process with rate λ in the
equilibrium state.

(a) Find the probability that the number of customers m who have received service and
departed by time t .

(b) Show that the number of customers that depart in (t, t + s) is independent of the
number of customers that have departed in (0, t).

(c) Show that the probability of departure in the time increment (t, t + h) approaches
λh + o(h) in the limit t →∞.

23.13 Mean queue length and mean waiting time.

(a) Show that the mean queue length for M/M/m is given by

Q = ρC(m, a)

(1− ρ) .

(b) Derive the mean waiting time E[W ] of (23.57), using the above result.
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23.14 Relations between the two Erlang formulas. Derive (23.54) for Erlang’s delay
formula C(m, a) in terms of Erlang’s loss formula B(m, a).

23.15∗ Waiting time distribution in the M/M/m queue.

(a) Show

Fc
W (x) = P[W > x] =

∞∑
n=0

am+n Fc
W (x |m + n)

= Fc
W (0)(1− ρ)

∞∑
n=0

ρn Fc
W (x |m + n), (23.146)

where

Fc
W (x |m + n) = P[ W > x | (m + n) customers found by an arrival ]. (23.147)

Hint: am+n = πm+n due to PASTA.
(b) Let Ti be the interval between the (i − 1)st service completion and the i th com-

pletion, i = 2, 3, . . . , n + 1. Show that T1, T2, . . . , Tn+1 are i.i.d. RVs with an
exponential distribution of mean 1/mμ.

(c) Show then that

FW (x |m + n) = 1− e−mμx
n∑

j=0

(mμx) j

j ! , (23.148)

which is an (n + 1)-stage Erlang distribution.
(d) Derive

FW (x) = 1− C(m, a)e−mμ(1−ρ)x . (23.149)

23.16 Normalization constant (23.62). Derive the normalization constant G(K ) of
(23.62).

23.17 Steady-state distribution of the number of customers in the system
G(K )/M/m. Show that the steady-state distribution πn(K ) is given by (23.64).

23.18 Derivation of (23.69). For λn = (K − n)ν, derive the formula (23.69):

an(K ) = πn(K − 1), 0 ≤ n ≤ K − 1.

23.19 The arrival theorem. Show that the relationship (23.69) between {an} and
{πn} still holds for general service ratesμ j and the arrival rate λ j is an arbitrary function
of K − j ; i.e.,

λ j = f (K − j),

where f (i) is an arbitrary positive function for i > 0, but f (0) = 0.
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23.20 Derivation of the distribution (23.66). Show that (23.65) leads to (23.66).

23.21 Limit of the machine repairman model. Show that in the limit K →∞, ν →
0 while Kν = λ, the distributions (23.65) and (23.66) converge to that of the M/M/1.

23.22∗ The waiting time distribution in M(K )/M/m. Derive the complementary
waiting time distribution (23.70).

23.23 The waiting time distribution in M(K )/M/m – continued. Derive (23.72)
and (23.73).

23.24 PASTA in an M/G/1 queue. Consider an M/G/1 queue. Let {πn} be the proba-
bility distribution of the number of customers found in the system at a randomly chosen
time.

(a) Let the Poisson arrival rate be λ. What is the expected number of arriving customers
during the interval (0, T ] that find exactly n customers in the system?

(b) Show then that {an}, the probability distribution seen by arriving customers, is equal
to {πn}.

23.25 Determination of π0. Derive (23.83).

23.26 M/G/1 with hyperexponential service time distribution [203]. Consider
an M/G/1 queue whose service time distribution is a two-stage hyperexponential
distribution:

FS(t) = 1− p1e−μ1t − π2e−μ2t , (23.150)

where p1 + p2 = 1. Find the equilibrium-state distribution {πn}.
23.27 M/G/1 with Erlangian service time distribution [203]. Consider an M/G/1
queue whose service time distribution is a k-stage Erlang distribution with mean 1/μ.

(a) Find the equilibrium-state distribution {πn}.
(b) Plot the distributions {πn} for the cases k = 1, 2, and 4 with traffic intensity ρ =

0.75.

23.28 Derivation of Pollaczek–Khintchine formula. Show the derivation steps from
(23.84) to (23.91).

23.29 Alternative derivation of Pollaczek–Khintchine formula [203]. Derive the
Pollaczek–Khintchine formula as instructed below.

(a) Take the expectation of (23.76) and find the probability that the server is busy in the
equilibrium state.

(b) Square both sides of (23.76) and then take the expectation. Derive the formula
(23.91).

23.30 Derivation of (23.98). Discuss the relation between P(z) and FT (t) and derive
the expression (23.98).
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23.31∗ Derivation of waiting time distribution (23.103). Derive the Pollaczek–
Khintchine formula (23.103) for waiting time distribution in M/G/1.

23.32 System time distribution of an M/H2/1 queue. Show that the system time
distribution FT (t) of an M/H2/1 system (see Problem 23.26) is also a two-phase
hyperexponential distribution.

23.33 Conditional mean system time under FCFS. Show that the conditional mean
response time for a customer with service time S in an M/G/1 system with FCFS is
given by

E[TFCFS(S)|S] = S + ρE[S](1+ c2
S)

2(1− ρ) . (23.151)

23.34 Comparison of T PS and T FCFS. What determines T PS ≷ T FCFS?

Section 23.4: Loss models

23.35 PASTA in the Erlang loss model. Consider an M/M/m(0) loss system and
let pn be the probability distribution of the number of calls in service. If we choose a
sufficiently long interval (0, T ), the portion of time that the system contains n calls is,
on average, πn T .

(a) Assume a Poisson arrival process with rate λ. What is the expected number of arriv-
ing calls during the interval (0, T ) that find exactly n calls in the system? Show then
that {an}, the probability distribution seen by an arriving call, is equal to {πn}.

(b) What can you say about the relation between {πn} and {dn}, the distribution seen by
a completing call?

(c) If the arrival process is not Poisson, the above result is no longer true in general.
Find an example to illustrate this fact.

23.36 Erlang loss model and the machine repairman model. Study the relationship
between the Erlang loss model M/G/m(0) and the machine repairman model G(m)/M/1
by answering the following questions.

(a) By drawing a schematic diagram, show that the machine repairman model
G(m)/M/1 can be represented as a two-stage cyclic system with an IS station and a
single exponential server (i.e., the repairman), with m machines circulating. Let U ,
the period that a machine is up and running, have mean ν−1 and assume that S, the
time for repair, is exponentially distributed with mean μ−1.

(b) Observe that the service completions (or departures) form a Poisson process with
rate μ insofar as the repairman is busy. When the repairman becomes idle, there
will be no departure of repaired machines. Hence, the departure process from the
repairman is an interrupted Poisson process (IPP) (see Problem 16.11(d)). How
many servers in the IS station are busy (i.e., how many machines are up and running)
when this interruption occurs in the departing Poisson process?
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(c) Find the relation between the above IPP and lost calls out of Poisson arrivals to the
Erlang loss model M/G/m(0).

(d) Explain the equivalence between (23.116) and (23.66).

23.37 Recursive computation of Erlang’s loss formula. Show that Erlang’s loss
formula B(m, a) of (23.119) satisfies the following recursion:

B(m, a) = aB(m − 1, a)

m + aB(m − 1, a)
. (23.152)

23.38 Bounds for Erlang’s loss formula [155].

(a) Show that Erlang’s loss formula B(m, a) has the following upper and lower bounds:

am

m! e
−a ≤ B(m, a) ≤

∞∑
i=m

ai

i ! e−a .

(b) Show that, for i ≥ m,

ai

i ! ≤
( a

m

)i−m am

m! .
(c) Derive the following upper bound for B(m, a):

B(m, a) ≤ 1

1− a
m

am

m! e
−a . (23.153)

23.39 TDMA-based digital cellular network [203]. Consider the following call-
connection problem for a time division multiple access (TDMA)-based digital cellular
network. For the uplink there are m time slots per frame. Suppose that there are two
classes of users: a class-1 user occupies only one time slot per frame, whereas a class-2
user requires two time slots per frame. When the base station cannot accommodate an
arriving call, the call will be lost.

Let Kr be the number of class-r users, where r = 1 or 2, 1/νr be the expected inactive
period during which a class-r user does not make a new call after the completion or loss
of its previous call, and 1/μr be the mean holding time of a class-r call. For simplicity,
we assume load-independent service rates; i.e., βr (nr ) = 1. Let N(t) = (N1(t), N2(t))
be the number of class-1 and class-2 calls in service at time t .

(a) Define the feasible set of states FN (m, K ) for N(t).
(b) Find the stationary distribution of N(t).
(c) Let us assume the following system parameters:

K1 = 3, 1/μ1 = 3 [min], 1/ν1 = 6 [min], hence r1 = 1

2
;

K2 = 2, 1/μ2 = 6 [min], 1/ν2 = 9 [min], hence r2 = 2

3
.

Find the FN (m, K ) and the corresponding normalization constants G(m, K ) for
m = 4, 5, and 6.
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23.40 TDMA-based digital cellular network – continued. [203]. We continue
Problem 23.39.

(a) Find the blocking probabilities for both classes of calls.
(b) Find the call loss probabilities for both classes of calls.

23.41∗ Differential-difference equation for the Engset model [203]. Consider the
Engset model with K sources and m output lines (or servers), where m ≤ K . Let ν be
the call generation rate from a source that is not engaged in service. Assume that the
holding times are exponentially distributed with mean 1/μ.

(a) Let n(t) be the number of lines engaged in service at time t . Let

pn(t; K ) = P[N (t) = n], n = 0, 1, . . . ,m.

Find the differential-difference equation that pn(t; K ) must satisfy.
(b) Find the balance equation that must hold in the equilibrium state. Then find the

equilibrium distribution {πn(K )}, where πn(K ) = limt→∞ pn(t; K ).
(c) Let Bn represent the event that n servers are in service and A be the event that a

new call is generated in a small interval δt . Then it should be clear that P[A|Bn] =
(K − n)νδt . Let {an(K )} be the probability that an arriving call finds that n servers
are busy. Find an(K ) in terms of the probabilities associated with events A and Bn .
Then relate this probability to πn(K ) defined in part (b).

(d) Consider the limit case K →∞ in the result of part (c). Make any additional
assumptions required to make the limit meaningful. What does this limit case mean?

23.42 Engset model without restriction K > m [203]. In the text we made the
assumption K > m. Suppose we drop this restriction.

(a) How should the formula (23.125) be changed?
(b) How about the formula (23.130)?

23.43∗ Link efficiency [203]. The carried traffic load that each output line carries is
called the efficiency of the trunk or link as defined in (23.132).

(a) Show that for the Engset loss model, the trunk efficiency is given by

η = a(1− L(K ))

m
. (23.154)

(b) Plot the link efficiency η as a function of m, the number of output lines or circuits.
Choose the number of input sources to be K = 10, 20, 40, 60, 80, and 100. The
traffic parameter r should be chosen so that the loss rate is maintained at L = 0.01.

23.44∗ Example of MLN [203]. Consider a cellular network that can be represented
as an MLN shown in Figure 23.15 with m = 6 channels and two classes of calls: class-
1 calls from a small number (K1 = 3) of talkative subscribers forming a closed chain
and class-2 calls from a large number of other ordinary subscribers forming an open
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Figure 23.15 An example of an MLN ([203] Reprinted with permission from Pearson Education, Inc., Upper
Saddle River, NJ.).

chain. The system provides preferential treatment to class-2 calls by providing more
bandwidth per call.

Assume the following parameters:

1/μ1 = 6 [min/call], 1/ν1 = 12 [min between calls], A1 = 1 [channel/call];
1/μ2 = 2 [min/call], λ2 = 0.25 [calls/min], A2 = 2 [channels/call].

(a) Find r1 and a2.
(b) Find the steady-state distribution of N(t).
(c) Fix K1 = 3. Find F(m, 3) for m = 0, 1, 2, . . . , 6.
(d) Find the blocking probability (or time congestion) and call congestion for class-2

customers in the open route.
(e) Find the call loss probability (or call congestion) for class-1 calls.
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�

sample space, 19
∇

gradient operator, 528
σ -field
σ -algebra, 24
closure property, 39

t-distribution, 162
Student’s, 162

tk -distribution
mean, 163
variance, 163

z-transform, 211

A posteriori probability
APP, 592

a.s., see Almost surely, 285
Abscissa

of convergence, 229, 233
Acceptance ratio, 635
Acceptance region, 539
Acceptance–rejection algorithm, 127–129, 632
Acceptance–rejection method

gamma variate generation, 128
general distribution generation, 126
rejection method, 126

Accessible state
reachable state, 445

Additive white Gaussian noise
AWGN, 591, 607, 609

Adjacency matrix, 384
Adrain, Robert (1775–1843), 12
Age

in a renewal process, 414
Almost sure convergence, 285, 311

conditions for, 286
strong law of large numbers, 300

Almost surely
almost everywhere, 285
with probability 1, 285

Alternative hypothesis
H1, 539

Analysis of variance

ANOVA, 652, 655
Analytic geometry

Jacobian, 120
Analytic process, 333
Analytic signal

complex-valued process, 322
ANN, see Artificial neural network, 616
ANOVA, see Analysis of variance, 652
Anti-causal, 658
Anti-causal filter, 674
APP, see A posteriori probability, 592
AR, see Autoregressive, 385
ARIMA, see Autoregressive integrated moving

average, 392
Arithmetic mean, 269
ARMA, see Autoregressive moving average, 390
Arrival theorem

Engset loss model, 723
multiple access model, 710

Artificial neural network, 616
Asymptotically unbiased estimate

maximum-likelihood estimate, 535
Autocorrelation function, 323

WSS time series, 351
Autocovariance function

WSS time series, 351
Autoregressive (AR) sequence

of first order, 686
Autoregressive integrated moving average

ARIMA time series, 392
Autoregressive moving average

ARMA time series, 390
Autoregressive process

AR(p), 385
ARIMA(p, d, q), 392
ARMA state-space representation, 391
ARMA(p, q), 390
vector AR, 5
vector ARMA, 5

Autoregressive sequence
of first order, 667

AWGN, see Additive white Gaussian noise, 591,
607

759
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Axioms of probability, 20, 23

B(b, a)
Erlang loss formula, 737
recursive computation, 737

Bachelier, Louis (1870–1946), 5, 11
Backward algorithm, 586
Backward diffusion equation

Kolmogorov, 501
Backward recursion, 587
Backward variable, 586

vector, 587
Balance equation

Birth–death process, 409
Band-pass signal

pass-band signal, 338
Baum–Welch algorithm, 3, 621, 624

EM algorithm for a state-based HMM, 598
forward–backward algorithm, 594, 598

Bayes’ classifier, 615
Bayes’ estimator, 546
Bayes’ risk, 545, 618
Bayes’ theorem, 32, 40, 97, 617

rule, 32
Bayes, Thomas (1702–1761), 7
Bayesian econometrics, 5
Bayesian estimation and decision theory, 544
Bayesian inference, 4
Bayesian infererence, 97
Bayesian learning

BCJR algorithm, 606
belief propagation algorithm, 606

Bayesian method
numerical, 5

Bayesian network, 616, 624, 625
dynamic, 626

Bayesian probabilities, 33
Bayesian statistics, 3
BCJR algorithm, 593

Bayesian learning, 606
Chang–Hancock algorithm, 605
forward–backward algorithm, 594

smoothing estimator, 690
minimum symbol error-rate decoding, 605
Turbo decoding, 605

BD process, see Birth-death process, 407
BD process model

M/M/∞, 703
M/M/m, 705

Beam search Viterbi algorithm, 623
BEC, see Binary erasure channel, 428
Belief, 34
Belief propagation algorithm

Bayesian learning, 606
sum-product algorithm, 606

Bellman’s dynamic programming, 592

Bernoulli
Daniel (1700–1782), 28
Jacob (1654–1705), 7, 28
Nicholas (1687–1759), 28

Bernoulli distribution, 27, 54, 98, 524
Bernoulli trials, 26
Bernoulli’s theorem, 8, 250, 282

law of large numbers, 8
weak law of large numbers, 28, 300

Bernoulli, Daniel (1700-1782), 7
Bernstein’s lemma, 308
Beta distribution, 98
Beta function, 99

multinomial, 111
Bilateral exponential distribution

moment generating function, 206
Bilateral exponential function

characteristic function, 208
Binary erasure channel (BEC), 428
Binary symmetric channel, 428

BSC, 581
Binomial, 213
Binomial coefficient, 27
Binomial distribution, 27, 54, 281

alternative derivation, 238
characteristic function, 208
convolution, 216
moment generating function, 186
normal approximation, 83
truncated, 722

Bioinformatics, 4, 619
Biological sequence alignment, 623
Biorthonormal vectors, 465
Biostatistics, 4
Bipartite graph, 627
Birth process

pure, 421
state-dependent, 709
time-dependent solution, 421

Birth rate, 407
state-dependent

machine servicing model, 708
Birth–death process, 6, 10, 407

balance equation, 409
Birthday problem

R. von Mises, 40
Bivariate normal distribution, 85, 92

Cauchy distribution, 135
characteristic function, 199
correlation coefficient, 191
covariance matrix, 191
joint MGF, 190
standard, 92

Black, Fischer (1938–1995), 5, 511
Black–Scholes differential equation

option pricing, 6, 11, 512
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Black–Scholes model
financial derivative, 511

Block Metropolis–Hastings algorithm, 640
Blocking probability

time congestion, 720
BN, see Bayesian network, 624
Boltzmann’s constant, 495
Boltzmann, Ludwig (1844–1906), 8
Borel’s strong law of large numbers, 301
Borel, Émile (1871–1956), 9, 30
Borel–Cantelli Lemmas, 296
Bose, Satyendra Nath (1894–1974), 39
Bound

Chernoff’s, 253
Box–Muller method

normal variate generation, 130
Brown, Robert (1773–1858), 11
Brownian dynamics simulation, 4
Brownian motion, 4, 5

Bachelier process, 491
conditional PDF, 517
diffusion equation, 517
Fokker–Planck equation, 496
geometric, 508, 509
geometric, exponential, 5
standard, 491, 498
Wiener process, 317, 491
Wiener process, Wiener–Lévy process, 5
with drift, 496

BSC, see Binary symmetric channel, 428, 581
Buffon

Georges Louis Leclerc (1707–1788), 109
Buffon’s needle problem, 109
BUGS, see Bayesian updating with Gibbs sampling,

641
Burn-in period, 635

Call class
loss network, 725

Call congestion
loss probability, 720
MLN, 728

Call holding time
holding time, service time, 717

Call type
loss network, 725

Canonical exponential family, 95
normal distribution, 96, 531
parameter estimation, 531
Poisson distribution, 96

Cantelli, Francesco Paolo (1875–1966), 30
Cardano, Gerolamo (1501–1576), 7
Carried load, carried traffic

M/M/m(0), 720
throughput, 720

Cauchy convergence, 277

Cauchy distribution, 133, 282, 290
bivariate normal distribution, 135
characteristic function, 208
sample mean, 210

Cauchy’s residue theorem, 209, 219, 230
Cauchy–Goursat integral theorem, 195
Cauchy–Lorentz distribution, see Cauchy

distribution, 202
Cauchy–Schwarz inequality, 241, 552

Cramér–Rao lower bound, 551
derived from Lagrange identity, 243
for random variables, 245
for random vectors, 245
integral form, 244

Causal
physically realizable, 658

Causality condition, 658, 660
CDF, see Cumulative distribution function, 45
Cellular network

TDM-based, 737
Central limit theorem, 80, 201, 260, 303, 355

characteristic function, 201
de Moivre, 8
Liapunov’s sufficient condition, 305
Lindeberg–Feller’s for independent RVs, 305
Lindeberg–Lévy’s theorem for i.i.d. RVs, 304
Lyapunov’s for independent RVs, 304

Central moment, 50
normal distribution, 189

Centroid, 619
Certain event

sure event, 21
CF, see Characteristic function, 192, 185, 192
Chapman–Kolmogorov equation

Brownian motion with drift, 498
CTMC, 460
DTMC, 429

Characteristic function, 82, 192
bilateral exponential distribution, 208
binomial distribution, 208
bivariate normal distribution, 199
Cauchy distribution, 208
central limit theorem, 201
exponential function, 208
Fourier inversion, 193
Fourier transform, 185
gamma distribution, 209
joint, 199
moment generation, 198
multinomial distribution, 210
multivariate complex-valued normal variables,

202
multivariate normal distribution, 200
noncentral χ2 distribution, 209
nonnegative definiteness, 193
normal distribution, 194
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normal variable, 194
Poisson distribution, 208, 210
properties, 193
self-adjoint property, 193
symmtric distribution, 209
uniform continuity, 193

Characteristic polynomial, 358
Chebyshev’s condition

for m.s. convergence, 290
Chebyshev’s inequality, 249
Chebyshev, Pafnuty Lvovich (1821–1894), 9, 10
Chernoff’s bound, 253

applications, 268
assessment, 274
coin tossing, 255
derivation, 274
for a single RV, 253
for sum of i.i.d. RVs, 254
numerical evaluation, 274
sum of normal RVs, 274
sum of Poisson RVs, 274

Chi-square
degree of freedom, 133
degrees of freedom (d.f.), 157
distribution, 133
distribution (χ2), 157
estimation method, 555
gamma distribution, 80
statistic for grouped data, 556

Child node, 625
Circuit-switched network, 717

open loss network model, 725
Circulant matrix, 362

eigenvalue, 362
eigenvector, 362

Circular symmetry, 108
Circularly symmetric, 329
Class interval, 140
CLN, see Closed loss network, 725
Closed loss network, 725
Closure property
σ -field, 39

CLT, see Central limit theorem, 201, 303
Cluster, 619
Clustering, 619
Coarticulation, 623
Codon, 623
Coefficient of determination

regression analysis, 656
Coefficient of variation

exponential distribution, 77
Coin tossing, 270

Chernoff’s bound, 255
large deviation approximation, 276

Combined generator
random number generator (RNG), 125

Complement, 21
Complementary distribution, 225
Complementary distribution function

Survivor function, 74
Complementary error function, 261
Complete variable

EM algorithm, 560
Completely random arrival

Poisson arrival, 707
Completion rate function

hazard function, 417
hazard function, failure rate, 148

Complex envelope, 333, 338
Complex-valued multivariate normal variables

moments, 210
Complex-valued Gaussian

random process, 329
process, 322
random variable, 329

Complex-valued normal variables
characteristic function, 202

Complex-valued process
analytic signal, 322

Composite hypothesis, 539
Computational biology, 4
Concave function, 245
Conditional entropy, 561, 568
Conditional expectation, 50, 91

equivalence to MMSE estimate, 650
law of iterated expectations, 50, 91
law of total expectation, 50
orthogonality, 649
tower property, 50

Conditional probability, 31
Conditional probability density function, 90
Conditional probability distribution (CPD)

local probability distribution, 625
Conditional probability table (CPT), 625
Conditional survivor function, 155
Conditional variance, 51

diffusion process, 500
Confidence interval, 536, 551
Confidence level

confidence coefficient, 536
Conformational sampling, 4
Congruent modulo m, 124
Conjugate prior distribution, 98
Connection-oriented service, 717
Consistent estimator, 524
Continuous random variable

nonnegative, 226
Continuous-state random process, 317
Continuous-time Markov chain (CTMC), 10, 319,

425, 459, 613
Chapman–Kolmogorov equation, 460
transition probability function, 459
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transition probability matrix function, 459
Continuous-time, continuous-state

Markov process, 320
Contour integral, 219, 230
Convergence

in mean square, 289
Convergence

almost everywhere, 285
almost sure, 287
almost surely, 285
Cauchy, 277
everywhere, 278, 280
in distribution, 280, 283
in distribution to a constant, 292
in mean square

Chebyshev’s condition, 290
in probability, 29, 282, 287
in the r th mean, 311
in the r th mean square, 288
in the mean, 289
in the mean of order r , 288
in the mean square, 289
in the mean square sense, 289
pointwise, 278
relations between different modes of, 292
stochastic, 282, 283
uniform, 278
with probability 1, 30, 285

Convex function, 245
above its tangent, 269
continuous at all points, 269
positive 2nd derivatives, 269

Convolution
Poisson distribution, 236
summation, 216

Convolution integral
convolution, 116
sum of independent RVs, 197

Convolutional encoder
hidden Markov model, 578

Correlation, 149
Correlation coefficient, 151, 156

bivariate normal distribution, 191
sample, 152

Correlation receiver, 552
matched filter, 368, 543

Counting process, 407
point process, 316, 321, 410

Covariance
multinomial distribution, 210

Covariance matrix
bivariate normal distribution, 191

Covariance stationary
wide-sense stationary, 323

CPD, see Conditional probability distribution, 625
CPT, see Conditional probability table, 625

Cramér, Carl Harald (1893–1985), 13
Cramér–Rao lower bound

Cauchy–Schwarz inequality, 551
Cramér–Rao inequality, 532
CRLB, 532

Critical region
rejection region, 539

CRLB, see Cramér–Rao lower bound, 533
CTCS, see Continuous-time, continuous-state, 320
CTMC, see Continuous-time Markov chain, 319,

459
Cumulant, 198
Cumulant generating function, 198

logarithmic CF, 196
Cumulant MGF

logarithmic MGF, 186, 527
Cumulative distribution function (CDF), 45
Cumulative periodogram

normalized, 356
Cumulative Poisson distribution

properties, 732

D. convergence
convergence in distribution, 308

DAG, see Directed acyclic graph, 625
Data, 34
Data mining

ROC curve, 542
dB, see Decibel, 167
DBN, see Dynamic Bayesian network, 626
de Moivre, Abraham (1667–1754), 7
de Morgan’s law, 22
de Morgan, Augustus (1806–1871), 22
De Moivre–Laplace limit theorem, 83
Death process

pure, 421
time-dependent solution, 421

Death rate, 407
Decibel, 167
Decision rule

test, 539
test function, 539

Degree of freedom (d. f.)
chi-squared (χ2) distribution, 157

Delta function
impulse function, 113

Density function
conditional probability, 91

Dependent
linearly, 161

Dependent variable
response variable, 646

Derivative security, 511
Detailed balance equations, 468, 633

CTMC, 469
Detection probability
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power of a test
true positive probability, 539

Diffusion coefficient, 497
Diffusion equation

Brownian motion with drift, 517
Diffusion process, 317

conditional variance, 500
continuous-state Markov process, 320
continuous-time, continuous-state Markov

process, 500
drift rate, 500
Markov process, 496
variance rate, 500

Dirac delta function, 713
impulse function, 46
sampling property, 46
unit impulse function, 232

Dirac, Paul Adrien Maurice (1902–1984), 39
Directed acyclic graph, 625
Directed graph, 471, 624
Dirichlet distribution, 111
Discrete Fourier transform (DFT), 353
Discrete memoryless channel, 427, 580
Discrete random variable, 45
Discrete-state random process, 317
Discrete-time continuous-space, 637
Discrete-time Markov chain (DTMC), 10, 385, 425,

574, 633
Chapman–Kolmogorov equation, 429
simple Markov chain, 319

Discrete-time, continuous-state
Markov process, 320

Discriminative learning, 618
Disjoint

mutually exclusive, 21
Distribution

t , 162
Cauchy, 74, 162
chi-squared, 355
complementary, 219
deterministic, 228
Erlang, 228
exponential, 76, 228
F , 164
hyperexponential, 228
negative-binomial, 213
Poisson, 160
Snedecor, 164
Student’s t , 162
uniform, 228
variance-ratio, 164

Distribution function, 43
complementary, 74
conditional probability, 91
cumulative, 45
joint, 44

marginal, 45
properties, 43

DNA molecule, 623
Dominated convergence theorem

Lebesgue’s, 293
Doob, Joseph Leo (1910–2004), 7
Doob–Kolmogorov’s inequality

for non–negative submartingale, 251
Dot diagram

scatter diagram, 149
Drift coefficient, 497
Drift rate

diffusion process, 500
DTCS, see Discrete-time, continuous-state, 320
DTMC, see Discrete-time Markov chain, 318, 424,

573
Dynamic Bayesian network (DBN), 626
Dynamical model, 621

E(m, K , r )
Engset loss formula, 723

E-step, see Expectation step, 562
EM algorithm, 596

ECM, see Exponential change of measure, 258
Econometrics, 4
EDA, see Exploratory data analysis, 153
Efficient estimator

minimum variance unbiased estimator (MVUE),
534

minimum-variance estimator, 524
Eigenfunction

characteristic function, 364
Eigenvalue, 357, 358, 362, 433, 435, 464, 465
Eigenvector

left-, 359, 465
right-, 358, 465

Einstein
diffusion equation for Brownian motion, 499

Einstein, Albert (1879–1955), 11
Ellipse, 108
EM algorithm, see Expectation-maximization

algorithm, 559, 594
Baum–Welch algorithm, 598
expectation-maximization algorithm, 559
for transformed data, 559
geometrical interpretation, 562
hidden Markov model, 564
HMM parameter estimation, 594
latent variable, 564
Monte Carlo simulation, 565
observable variable, 564

Embedded Markov chain (EMC), 321, 457, 711
semi-Markov process, 457

EMC, see Embedded Markov chain, 456, 711
Empirical average

sample mean, 48
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Engset distribution
truncated binomial distribution, 722

Engset loss formula
E(m, K , r ), 723

Engset loss model
arrival theorem, 723

Ensemble
set of all sample functions, 315

Ensemble average
population mean, 328

Entropy function, 256
Envelope

of a signal, 118
Epidemology, 4
Equilibrium state, 409
Equivalence of random variables, 348, 395
Ergodic

Markov chain, 450
process, 328
random process, 450
state, 443
theorem, 328
theory, 328
time series, 317

Ergodicity, 4
Erlang, 704
erlang

erl., 704
Erlang B formula

Erlang loss formula, 706, 720
Erlang C formula

Erlang delay formula
Erlang’s second formula, 706

Erlang delay formula
cf. Erlang loss formula, 734
Erlang C formula, 706

Erlang distribution, 106, 279
k-stage, 159
Erlang loss model, 719
gamma distribution, 80
log-survivor function, 154
mean, 159
moment generating function, 207
truncated Poisson distribution, 719

Erlang loss formula, 720
bounds, 737
Erlang B formula, 706
recursive computation, 737

Erlang’s first formula
Erlang loss formula, 720

Erlang B formula, 706
Erlang’s second formula

Erlang C formula, 706
Erlang, Agner Krarup (1878–1929), 6
Estimand, 523
Estimate

unbiased, 139
Estimator, 523

efficient, 550
minimum-variance, 524
unbiased, 524

Euler, Leonhard (1707–1783), 64
European call option, 512
Event, 19

null, 42
simple, 20

Evidence, 619
Evolutionary tree

phylogenetic tree, 470
Expectation

conditional, 50
posterior, 649

mean, 49
of a histogram, 154
posterior, 651
prior, 649, 651

Expectation step
E-step, 562

Expectation-maximization algorithm
EM algorithm, 3, 5, 13, 559
generalized, 566
variational Bayesian, 566

Experiment, 18
Explicit-duration HMM

hidden semi-Markov model (HSMM), 606
Exploratory data analysis (EDA), 153
Exponential change of measure (ECM), 258
Exponential class

exponential family
of distributions, 95

Exponential distribution, 76
characteristic function, 208
coefficient of variation, 77
hazard function, 148
memoryless property, 77
moment-generating function, 206
two independent normal distributions, 135

Exponential family
canonical, 95
curved, 95
exponential class

of distributions, 95
natural, 95
of distributions, 527

Exponential order, 229, 230
Exponential variate generation

transform method, 126
Exponentially tilted distribution

exponentially twisted distribution, 257

Factor graph, 627
Factor node, 627
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Factorization theorem
Fisher–Neyman, 525

Fading, 322
False alarm

false positive
type-1 error, 539

False negative
miss

type-2 error, 539
False positive

false alarm
type-1 error, 539

Fast simulation
rare event, 268

FBA, see Forward-backward algorithm, 587, 596
FCFS, see First come, first served, 700, 715
Feller, William (1906–1970), 11
Fequency

relative, 18
Fermat, Pierre de (1601–1665), 7
Fermi, Enrico (1901–1954), 39
Fermi–Dirac statistics, 39
Final value theorem, 432
Financial derivative, 511
Finanical derivative

Black–Scholes model, 511
Finite impulse response (FIR), 658
First come, first serval, 715
First come, first served, 700
First passage time, 439
Fisher information matrix, 550
Fisher, Sir Ronald Aylmer (1890–1962), 4, 12
Fisher–Neyman factorization theorem, 525, 527
Fokker–Planck equation

Brownian motion with drift, 496
Kolmogorov’s forward equation, 498

Forward algorithm, 586
Forward and backward variables

BCJR algorithm, 593
Forward diffusion equation

derivation, 518
Kolmogorov, 501

Forward recursion algorithm, 586
forward algorithm, 585
hidden Markov model, 585

Forward variable, 585
Forward variable vector

forward recursion algorithm, 586
Forward–backward algorithm

Baum–Welch algorithm, 598
BCJR algorithm, 593
FBA, 3, 587

Fourier series expansion, 343
Fourier transform, 234

Plancherel’s theorem, 346
Fourier–Stieltjes transform, 192

Fréchet, René Maurice (1878–1973), 9
Fractile

diagram, 142, 143
percentile, 142

Frequentist probabilities, 33
Frobenius norm

of a matrix, 374
Frobenius, Ferdinand Georg (1849–1917), 374
Function

of one random variable, 112
of two random variables, 115

Jacobian matrix, 119

G(K )/M/m
multiple repairmen model, 707

G/G/1 waiting time
upper bound on, 273

GA, see Genetic algorithm, 616
Gambler ruin problem, 486

expected duration of the game, 517
opponent with finite capital, 488
opponent with infinite capital, 486

Gambler’s ruin, 7
Gamma

distribution, 159
function, 158

Gamma distribution, 78, 279
characteristic function, 209
moment-generating function, 207
standard, 78

mean residual life function, 155
Gamma function, 78
Gamma variate generation

acceptance–rejection method, 128
Gauss, Carl Friedrich (1777–1805), 8
Gauss–Markov process, 686

AR(1) with white Gaussian noise, 385, 667
Ornstein–Uhlenbeck process, 693

Gauss–Markov signal, 685
Gaussian mixture model (GMM), 621
Gaussian model, 617
Gaussian process, 4, 318

complex-valued, 322
Gaussian property

of Wiener process, 492
GBM, see Geometric Brownian motion, 508
General distribution generation

acceptance–rejection method, 126
General variate generation

transform method, 125
Generalization error, 615
Generalized EM algorithm, 566
Generalized Erlang loss model

M/G/m(0), 719
Generalized loss station (GLS)

equivalence to OLN, 726
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Generating function, 211
inverse transformation, 218
polynomial representation, 362
two-dimensional, 238

Generating function method
computation of state probabilities, 430

Genetic algorithm, 616
Geometric, 213
Geometric distribution, 420
Geometric Brownian motion, 508, 509

conditional mean and variance, 519
log-normal distribution, 165, 510

Geometric distribution
Bernoulli trials, 55

Geometric mean, 269
Gibbs algorithm, 640
Gibbs sampler, 639
Gibbs sampling, 641
Gibbs’ inequality

Shannon’s lemma, 246
Gibbs, Josiah Willard (1839–1903), 8
Gilbert–Elliott model

burst errors, 582
GLS, see Generalized loss station, 726

stationary distribution, 726
GMM, see Gaussian mixture model, 620
GMP, see Gauss-Markov process, 385
Gradient operator

vector differential operator ∇, 528
Gram–Schmidt orthogonalization, 370
Graph, 471

directed acyclic graph (DAG), 625
Graphical presentation, 141
Grouped data, 556

Hamilton, Sir W. R. (1805–1865), 528
Hausdorff, Felix (1868–1942), 9
Hazard function, 6, 417

completion rate function, failure rate, 148
curve, 148
hyperexponential distribution, 155
relation to the mean residual life function, 155

Heavy tailed distribution, 87, 165
log-normal, 165
Weibull, 87

Heavy-tailed distribution
long-tailed distribution, 89
Pareto distribution, 89

Hermitian
complex-conjugate and transpose, 358

Hermitian matrix
self-adjoint matrix, 358

Hessian matrix, 528
Hidden Gauss–Markov process

Kalman filter, 683
Hidden Markov model (HMM), 573

Kalman filter, 680
state-space model, 680
Baum–Welch algorithm, 598
EM algorithm, 564
forward recursion algorithm, 585
HMM, 5, 576

Hidden Markov process, 581
Hidden semi-Markov model

HSMM, 606
explicit-duration HMM, 606

Hilbert transform, 334
Hilbert, David (1862–1943), 9
Hilbert-transform filter

quadrature filter, 335
Histogram, 141

cumulative, 141, 154
expectation and variance, 154

HITS, see Hypertext induced topics search, 384
HMM, see Hidden Markov model, 573

hidden Markov model, 576
HMM parameter estimation

EM algorithm, 594
Holding time

service time, 717
Homogeneous BD process, 407
Homology, 619
HSMM, see Hidden semi-Markov model, 606
Huygens, Christiaan (1629-1695), 7
Hyperexponential distribution

harzard function, 155
log-survivor function, 146
Mixed exponential distribution, 107

Hypothesis
composite, 539
simple, 539

Hypothesis testing, 539

i.i.d., see Independent and identically distributed,
139, 160, 321

Importance sampling
fast simulation, 268

Impulse function
delta function, 113
Dirac delta function, 46

Impulse response, 657
Incomplete gamma function

lower, 182
upper, 182, 732

Incomplete variable
EM algorithm, 560

Independent
pairwise, 35

Independent and identically distributed, 139, 160,
420

Independent increments
of a random walk, 484
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of Wiener process, 492
Independent process, 318
Independent variable

predictor variable, 646
Indicator function, 249
Inequality

Bienaymé’s, 270
Bienaymè’s, 290
Boole’s, 295
Cauchy–Schwarz, 241
Chebyshev’s, 249, 299
Doob–Kolmogorov’s, 251
Hölder’s, 245, 310
Hajek–Renyi’s, 302
information theory, 270
Jensen’s, 245
Kolmogorov’s, 302
Kolmogorov’s for martingale, 252
Kolmogorov’s for submartingale, 251
log sum, 247
Lyapunov’s, 291, 309
Markov’s, 248
Markov–Chebyshev–Bienaymé’s, 271
Minkoswki’s, 245
Minkowski’s, 311
one-sided Chebyshev’s, 271

Infinite server (IS), 703
M/M/∞, 703

Infinitesimal generator, 406
CTMC, 460
transition rate matrix, 406, 460

Information theory, 2
Inner product, 241

of matrices, 374
of random variables, 244, 646
scalar product, 358

Insensitivity
Engset loss models, 722
Erlang loss model, 720
M/G/∞, 704
processor sharing, 716

Inside–outside algorithm, 3
Instance

of a random variable, 138
Integral kernel

integral equation, 364
Interrupted Poisson process

IPP, 480, 736
Intersection, 21
Inverse

of Jacobian matrix, 137
Inverse Laplace transform

numerical-inversion method, 233
residue theorem, 233

IS, see Infinite server, 703
IPP, see Interrupted Possion process, 480

Itô process, 506
stochastic differential equation, 506

Itô’s lemma
in geometric Brownian motion, 519
Itô’s formula, 507

Itô, Kiyoshi(1915–2008), 6

Jacobian
analytic geometry, 120
inverse, 137
matrix, 121

two functions of two random variables, 119
Jensen’s inequality, 245

derivation, 269
for random variable, 246

Joint characteristic function
multinomial distribution, 210

Joint distribution
versus marginal distribution, 119

Joint distribution function, 44
m-dimensional, 45

Joint MGF
bivariate normal distribution, 190

Joint probability
compound probability, 30

Joint probability density function, 90
Joint probability distribution, 46
Joint probability generating function, 237
Jordan canonical form

multiplicity of eigenvalues, 437

K -NN, see k-nearest neighbor, 621
K -means algorithm, 619
K -nearest neighbor, 621
Kalman filter, 13

algorithm, 681, 685
hidden Gauss–Markov process (HGMP), 683
hidden Markov model (HMM), 680
prediction step, 685
propagation step, 682
update step, 682, 685

Kalman filter algorithm
forward algorithm in an HMM, 681

Kalman filtering
stochastic differential equation, 11

Kalman gain, 683
Kalman, Rudolph Emil (1930–), 13
Kelvin, Lord William Thompson (1824–1907), 8
Kernel

integral keernel, 364
Khinchin, Aleksandr Takovlevich (1894–1959), 349
Kingman’s upper bound

G/G/1 waiting time, 273
KLD, see Kullback-Leibler divergence, 247, 556
Kolmogorov’s backward (differential) equation, 463
Kolmogorov’s backward diffusion equation, 501
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Kolmogorov’s criterion, 469
CTMC, 470
DTMC, 469
for the SLLN, 301

Kolmogorov’s first theorem
sufficient criterion for SLLN, 302

Kolmogorov’s forward (differential) equation, 463
Kolmogorov’s forward diffusion equation, 501
Kolmogorov’s inequality

for martingale, 252
for submartingale, 251

Kolmogorov, Andrey Nikolaevich (1903–1987), 9,
20

Kotelnikov, Vladimir Aleksandrovich (1908–2005),
352

Kronecker delta, 359
Kullback’s information criterion

maximum-likelihood estimation for grouped data,
557

relation to chi-square statistic, 567
Kullback–Leibler divergence (KLD), 247

between two distribution parameters, 567
minimum KLD method, 556
nonnegativity, 567

l.i.m, see Limit in the mean, 289
Lévy, Paul Pierre (1886–1971), 7
Lagged Fibonacci generator (LFG)

random number generator (RNG), 125
Lagrange identity

Cauchy–Schwarz inequality, 243
Lagrange, Joseph (1736–1813), 7
Langevin equation, 4
Laplace transform, 185, 226, 421

nth moment, 230
convolution, 230
final value theorem, 230
Important transform pairs, 228
initial value theorem, 230
integral property, 230
inverse, 229
mean, 230
negative exponential, 228
properties, 229
ramp, 228
shifted impulse, 228
shifted unit step, 228
unit impulse, 228
unit step, 228

Laplace, Pierre-Simon (1749–1827), 8
Large deviation approximation, 257

applications, 268
for coin tossing, 276
for Erlang distribution, 265
for fast simulation, 268
sum of normal RVs, 262

Large deviation rate function, 263
Large deviation theory, 257
Last come, first served, 700
Latent semantic analysis, 372, 395
Latent variable

EM algorithm, 564
Law of large numbers, 18

strong, 30, 300
weak, 28, 298

LCFS, see Last come, first served, 700
LCG, see Linear congruential generator, 124
Learning theory, 34
Lebesgue’s dominated convergence theorem, 293
Lebesgue, Henri Léon (1875–1941), 9
Left eigenvector

of transition probability matrix (TPM), 434
PageRank, 384

left–right HMM, 622
Legendre, Adrien-Marie (1752–1833), 12
Leibniz’s rule

for differentiation under integral, 133
Leibniz, Gottfried Wilhelm (1646–1716), 7
Level of a test

size of a test, 539
LFG, see Lagged Fibonacci generator, 125
Lifetime

of a renewal process, 321
Likelihood function, 97, 584, 590, 617
Likelihood ratio, 367
Likelihood ratio function, 548
Likelihood ratio test

most powerful test, 540
Limit theorems, 293
Lindeberg

sufficient condition for the CLT, 305
Lindeberg’s condition

for the CLT, 305
Lindeberg, Jarl Waldemar, 304
Lindeberg–Feller’s CLT

for independent RVs, 305
Lindeberg–Lévy theorem

central limit theorem for i.i.d. RVs, 304
Line integral, 195
Linear congruential generator (LCG)

random number generator, 124
Linear MMSE estimate

linear least square estimate, 647
Linear modulation, 322
Linear transformation

of random variables, 122
Linearity, 230
Linearly dependent

properly, 151
Link efficiency

trunk efficiency, 738
Lloyd’s algorithm
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K -means algorithm, 619
Log-likelihood function, 529

lower bound B(θ;α(z)), 568
Log-normal distribution

geometric Brownian motion, 165, 510
hazard function, 148

Log-normal paper, 143
Log-sum inequality, 247, 603
Log-survivor function

curve, 144
Erlang distribution, 154
hyperexponential distribution, 146
log-survival function, 145
Pareto distribution, 146
sample (or empirical), 146

Logarithmic MGF
properties, 206

Logarithmic MGF
cumulant MGF, 527
log-MGF, 186

Long-range dependent (LRD) process, 350
Loss network

call class, 725
call type, 725
multiclass customers, 728
product-form solution, 726
reversibility, 728

Loss probability
call congestion, 720

Lower bound B
for log-likelihood function, 568

LRD, see Long-range dependent, 350
LSA, see Latent semantic analysis, 372
LT, see Laplace transform, 226
Lyapunov

CLT for independent RVs, 304
sufficient condition for the CLT, 305

Lyapunov’s condition
for the CLT, 305

Lyapunov, Aleksandr Mikhailovich (1857–1918), 9,
10

M(K )/M/m
waiting time distribution, 710
waiting time PDF, 710

M(K )/M/m(0)
arrival theorem, 723
normalization constant, 722

M(K )/M/1
normalization constant, 708

M-step, see Maximization step, 562, 642
EM algorithm, 596

m.s., see Converge in the mean square, 289
M/D/1, 713
M/Ek /1

queue distribution, 714

M/G/∞, 703
M/G/m(0)

generalized Erlang loss model, 719
M/G/1, 710

Pollaczek–Khintchine formula, 713, 714
queue distribution, 712
system time distribution, 715
waiting time distribution, 715

M/H2/1
system time distribution, 736

M/M/∞, 703
normalization constant, 704
service completion rate, 703
time-dependent solution, 422, 733

M/M/m
multiple server queue, 705

M/M/m(0)
carried load

carried traffic, 721
Erlang distribution, 719
Erlang loss formula, 720
normalization constant, 718
offered load, 718
PASTA, 720, 736
time congestion, 720

M/M/1
BD process, 698
system time distribution, 703

MA process, see Moving average process, 341
Machine interference model

machine servicing model, 707
Machine learning, 615, 616

learning theory, 3
Machine repairman model

M(K )/M/1
machine servicing model, 707

Machine servicing model
finite source model, 707
M(K )/M/1

machine repairman model, 707
MAP, see Maximum a posteriori probability, 547
MAP decision rule, 617
MAP estimate

MMSE estimate
conditional expectation, 681

MAP estimation, 565
MAP recognition, 617, 619
MAP state estimation

BCJR algorithm, 592
MAP state sequence estimation

Viterbi algorithm, 588
Marginal distribution, 90

versus joint distribution, 119
Marginal distribution function, 45
Markov blanket, 626
Markov chain, 3
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ergodic, 450
homogeneous, stationary, 427
of order h, 319, 425
simple, 318
state transition diagram, 427
transition probability matrix, 426

Markov chain Monte Carlo (MCMC), 5, 632
Markov modulated Poisson process

MMPP, 479, 613
Markov modulated Poisson sequence

EM algorithm for parameter estimation, 614
Markov process, 407

continuous-time, continuous-state, 320
discrete-time, continuous-state, 320
Markov chain, 424

Markov property
of random walk, 484
of Wiener process, 492

Markov renewal function, 479
Markov renewal process (MRP), 457

semi-Markov process, 457
Markov sequence

discrete-time Markov process, 425
Markov’s inequality, 248
Markov’s theorem

convergence in mean square, 289
Markov, Andrei A. Markov (1856–1922), 3, 10
Markov-modulated Poisson process

MMPP, 479
Markovian property

Markov property, memoryless property, 424
Marsaglia–Zamam’s AWC algorithm

random number generator (RNG), 125
Marsaglia–Zamam’s SWB algorithm

random number generator (RNG), 125
Martingale, 5, 250

random walk, 483
theory, 7, 268

Matched filter, 495, 552
correlation receiver, 368, 543

Mathematical finance, 5
Maximization step

M-step, 562
Maximum

of two random variables, 136
Maximum a posteriori probability

MAP, 592
Maximum a posteriori probability estimation

MAP estimation, 547
Maximum-likelihood decision, 371
Maximum-likelihood estimate

asymptotically unbiased, 535
exponential family distribution, 531

Maximum-likelihood estimation, 528
HMM model parameters, 594
Kullback’s information criterion, 557

method of moments, 554
method of scoring, 559
minimum chi-square estimation method, 555
Newton–Raphson algorithm, 558

Maximum-likelihood sequence estimation
Viterbi algorithm, 590

Maxwell, James Clerk (1831–1879), 8
Maxwell–Boltzmann statistics, 38
MCMC, see Markov chain Monte Carlo, 616, 632
Mean, 219

expectation, 49
Mean residual life

curve, 148
function

relation to the hazard function, 155
Mean square error (MSE), 646
Mean waiting time, 700

M/M/m, 706
Memoryless property

exponential distribution, 77
Poisson process, 403

Merton, Robert C. (1944), 5, 511
Message passing, 630
Method of least square, 12

regression analysis, 654
Method of least squares, 12
Method of moments, 554

generalized, 5
Method of scoring, 559
Metric space

complete, 242
Metropolis algorithm, 636
Metropolis–Hastings algorithm, 634, 636, 638

MCMC, 5
two blocks, 639

Metropolis–Hastings maximization, 642
MGF, see Moment-generating function, 185
MH algorithm, see Metropol is Hastings algorithm,

634
MIMO (multiple-input, multiple-output), 112
Minimum

of two random variables, 136
Minimum chi-square estimation method, 555
Minimum distance decision rule, 618
Minimum mean square error

pure prediction problem, 679
Minimum mean square error (MMSE) estimator

least square estimator, 646
Minimum phase system, 673
Minimum variance unbiased estimator (MVUE)

efficient estimator, 534
Minimum-variance unbiased linear estimator, 551
Miss

false negative
type-2 error, 539

Mixed congruential generator
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linear congruential generator, 124
Mixed loss network (MLN), 727

example, 738
normalization constant, 728
reversibility, 728

Mixing time, 635
Mixture distributions

parameter estimation, 601
Mixture model, 104
MLE, see Maximum-likelihood estimate, 528
MLN, see Mixed loss network, 727
MLSE, see Maximum-likelihood sequence estimate,

590
MMPP, see Markov modulated Poisson process,

479, 606, 613
MMSE, see Minimum mean square error, 646
MMSE estimate

equivalence to conditional expectation, 650
Mode, 79, 159, 164
Model parameter, 576

HMM, 576
Modified Bessel function

of the first kind and zeroth order, 170
Modulus, 124
Moment, 50, 198

factorial, 214
generation, 226
joint, 190, 199
second factorial, 219

Moment-generating function, 166, 185, 186, 258
bilateral exponential function, 206
binomial distribution, 186
Erlang distribution, 207
expoenential distribution, 206
gamma distribution, 207
joint, 190
multinomial distribution, 207
multivariate normal distribution, 207
negative binomial distribution, 207
normal distribution, 188
of a sufficient statistic, 527
Poisson distribution, 187
triangular distribution, 207
uniform distribution, 206

Moment generation
characteristic function, 198
moment-generating function, 166

Moments
complex-valued multivariate normal variables,

210
Monte Carlo EM algorithm, 565
Monte Carlo simulation

EM algorithm, 565
Most powerful test

likelihood ratio test, 540
MP test, 540

Moving average
process, 341
time series, 389

Moving average process
MA(q), 389

MP test, see Most powerful test, 540
MRG, see Multiple recursive generator, 125
MRP, see Markov renewal process, 457
Multinomial coefficient, 40
Multinomial distribution, 55, 68, 405

characteristic function, 199
joint characteristic function, 210
moment generating function, 207

Multiple access system
arrival theorem, 710

Multiple recursive generator (MRG)
random number generator (RNG), 125

Multiple repairmen model
G(K )/M/m, 707

Multiple server queue
M/M/m, 705

Multiple-input, multiple-output (MIMO), 322
Multiplicative congruential generator, 124
Multirate traffic

open loss network, 725
Multivariate normal distribution, 85, 94

characteristic function, 200
moment generating function, 207

Mutually exclusive, 22
MVUE, see Minimum variance unbiased estimator,

534

Nabla
∇, 528

Nakagami m-distribution, 181
Negative binomial distribution

MGF, 207
moment-generating function, 207
Pascal distribution, 59, 60, 237

Newton’s generalized binomial formula, 236
Newton–Raphson algorithm

maximum-likelihood estimation, 558
Newton–Raphson method

adopted basis (ABNR), 4
Neyman, Jerszy (1894–1981), 13
Neyman–Pearson criterion

likelihood ratio test, 540
Neyman–Pearson lemma, 540
Neyman–Pearson test, 541
Noncentral χ2 distribution

characteristic function, 209
Nonnegative definitite matrix, 358
Norm, 242

of a matrix, 374
of a random variable, 244, 291

Normal distibution
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characteristic function, 194
Normal distribution

asymptotically, 201, 202
bivariate, 85, 92, 135
canonical exponential family, 96
central moment, 189
de Moivre, 8
MLE of parameters, 531
moment-generating function, 188
multivariate, 85, 94
relation to exponential distribution, 135
reproductive property, 198
standard, 80, 142, 157, 160

Normal variate generation
Box–Muller method, 130
sum method, 130

Normalization constant
M(K )/M/m(0), 722
M(K )/M/1, 708
M/M/∞, 704
M/M/m(0), 718
MLN, 728

Null event, 24
Null hypothesis

H0, 539
Null transition, 622
Null-recurrent state, 443
Numerical-inversion method

inverse Laplace transform, 233
Nyquist, Harry (1889–1976), 352

Observable variable
EM algorithm, 564

Observed Fisher information matrix, 529
properties, 550

Observed sequence variable
hidden Markov model, 575

Offered load
M/M/m(0), 718

Ogura, Kinnosuke (1885–1962), 352
OLN, see Open loss network, 725, 726
Open loss network (OLN)

circuit-switched network model, 725
equivalent to GLS, 726

Ornstein–Uhlenbeck process
diffusion process

Gauss–Markov process, 693
Orthogonal, 242

random variables, 244
Orthogonality

conditional expectation, 649
Orthonormal

orthogonal and normalized, 359
Outcome, 20

P. convergence

convergence in probability, 287
PageRank algorithm

Goole’s search engine, 384
Panel data

regression analysis, 654
vector-valued time series, 322

Parameter, 34
Parameter estimation

mixture distributions, 601
Parent node, 624
Pareto distribution

hazard function, 148
log-survivor function, 146
mixed, 147
translated, 89
Zipf’s law, 88

Parseval’s formula
Parseval’s identity, 344

Partial fraction, 220
Partial-fraction expansion method, 220, 231
Partial-response channel, 607

Viterbi algorithm, 609
Partially observable Markov process

HMM, 576
Partition, 31
Pascal distribution

negative binomial distribution, 237
Pascal, Blaise (1623–1662), 7
PASTA, see Poisson arrivals see time averages, 702
PASTA

M/G/1, 712
M/M/m queue, 734
M/M/m(0), 720, 736

Path
route

loss network, 725
Pauli, Wolfgang Ernst (1900–1958), 39
PCA, see Principal component analysis, 361, 372
PDF, see Probability density function, 72

joint PDF, 90
Pearson, Egon Sharpe (1895–1980), 13
Pearson, Karl (1857–1936), 4, 12
Percentile

fractile, 142
Periodic state, 444
Periodogram, 353
Perrin, Jean-Baptiste (1870–1942), 11
Persistent state

recurrent state, 439
PGF, see Probability generating function, 185, 212,

712
Phoneme HMM, 621
Phylogenetic network, 477
Phylogenetic tree, 472, 619, 623

character, 472
evolutionary distance, 475
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evolutionary tree, 470
mutation, 474
Stationary Markov process, 475
substitution, 474

Physically realizable system
causal system, 658

Planchrel’s theorem
Fourier transform, 346

PMF, see Probability mass function, 45
Poincaré, Henri (1854–1912), 9
Point estimate, 523
Point process

counting process, 316, 321, 410
lifetime, 321
renewal point, 321

Pointwise convergence, 278
Poisson, 213
Poisson arrivals see time averages, 702
Poisson distribution, 421

characteristic function, 208, 210
cumulative, 719
limit of binomial distribution, 57, 281
moment-generating function, 187
probability generating function (PGF), 213

Poisson process, 10, 400
counting process, 320
CTMC, 321
decomposition, 404, 420
definition, 400
exponential distribution, 76, 77
memoryless property, 403
point process, 321
renewal process, 321
reproductive additivity, 404
superposition, 404, 420
waiting time paradox, 77

Poisson, Siméon-Denis (1781–1840), 8, 29
Pollaczek–Khintchine formula

alternative derivation, 735
M/G/1, 713, 714
waiting time distribution, 716

Population
mean, 160

Possible outcomes, 18
Posterior distribution, 97
Posterior probability, 546

a posteriori probability, 32
power of test

true positive probability
detection probability, 539

PR channel, see Partial-response channel, 607
Predicted value, 660
Prediction

optimal, 659
Prediction step

Kalman filter, 685

Predictor
Kalman

mean square error (MSE), 688
Predictor variable

independent variable, 646
Principal component analysis, 4, 372, 618

PCA, 5, 361
Principal value integral

Cauchy principal value, 334
Prior probability

a priori probability, 32
PRML, see Partial-response, maximum-likelihood,

592
Probability

conditional, 31
joint or compound, 30
objective or quantitative, 1
subjective or qualitative, 1

Probability density function
conditional, 90
continuous random variable, 72
discrete random variable, 46
joint, 90
PDF, 72

Probability distribution
discrete random variable, 45

Probability generating function, 185, 212, 404, 712
Z -transform, 185
joint PGF, 237
M/D/1, 713
M/G/1 analysis, 712
Poisson distribution, 213
property, 219
shifted geometric distribution, 212
shited negative binomial distribution, 236
time-dependent, 422

Probability mass function (PMF), 45
Probability measure, 20, 25
Probability paper, 143
Probability space, 25
Processor sharing

insensitivity, 716
PS, 716
TCP congestion control, 716

Product of sums
versus sum of products, 584

Product space, 26
Product-form solution

generalized loss model, 726
loss network, 726

Projection
matrix, 359, 434

Propagation step
Kalman filter, 682
Kalman filter algorithm, 682

Proposal density
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cf. target density, 127
Proposal distribution, 634
PS, see Processor sharing, 716
Pseudo-covariance function

complex-valued random process, 330
Pseudo-covariance matrix

complex random variable, 330
Pseudo-inverse

computation based on SVD, 384
Pseudorandom sequence

random-number generator, 124
Pure prediction

minimum mean square error, 679

Q-function
auxiliary function, 564
cf. complementary error function, 261

Quadrature amplitude modulation, 325
Quadrature filter

Hilbert-transform filter, 335
Quantile

fractile, 142
Quasi-random sequence

pseudorandom sequence, 124
Quasi-reversibility, 719

generalized loss station, 727
Queue discipline

scheduling discipline, 700
Queueing theory

traffic theory, 6

Radar signal detection, 543
ROC curve, 544

Radial basis function, 616
Radius of convergence, 213
Random, 18
Random number generator (RNG), 124

linear congruential generator, 124
Random process

continuous-state, 317
discrete-state, 317
discrete-time, 317, 350
nonstationary, 317
sample function, 315
stationary, 317, 322
stochastic process, 10, 315
strict-sense stationary, 323
wide-sense stationary, 323

Random sequence
discrete-time random process, 317

Random variable
almost sure equivalence, 43
continuous, 72
discrete, 45
exponentially distributed, 226
independent, 189

mixed, 104
normal or Gaussian, 80
RV, 42
statistically independent, 48
with probability one, 43

Random variables
difference of two random variables, 134
function of, 112
instances, 138
linear transformation, 113
maximum, 136

of two random variables, 136
minimum

of two random variables, 136
product of two random variables, 135
ratio of two random variables, 135
sum of two random variables, 115

Random vector, 45
vector random variable, 190

Random walk, 317, 483
Brownian motion, 11
independent increments, 484
Markov chain, 426
Markov property, 484
martingale, 483
simple, 483, 485
spatial homogeneity, 484
temporal homogeneity, 484
Wiener process, 489

Random walk Metropolis–Hastings algorithm, 636
Rank of a matrix, 378
Rao, Calyampudi Radhakrishna (1920–), 13
Rare event, 257
Rate function

large deviation rate function, 263
Rauch–Tung–Striebel

smoother, 690
Rayleigh distribution, 168, 555
RBF, see Radial basis function, 616
Reachable state, 445
Receiver operating characteristic (ROC), 4

operating characteristic, 542
Recurrence time, 439
Recurrent state

persistent state, 439
Recursion method, 225
Regime-switching model

hidden Markov model, 5
Region estimation

confidence interval, 536
Regression analysis, 646, 653
Regression coefficients, 655
Regular-recurrent state

positive-recurrent state, 440
Rejection method

acceptance–rejection method, 126
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Rejection region
critical region, 539

Relative frequency, 140
cumulative, 141

Renewal equation, 413
Renewal point

of a renewal process, 321
Renewal process, 6, 148, 321, 411

random walk, 411
Reproductive property, 82

normal variable, 198
Reproductivity, 157
Residual life, 6

function, 149
Residual lifetime

excess lifetime, forward recurrence time, 414
Residue theorem

inverse Laplace transform, 233
Response variable

dependent variable, 646
Result, 20
Reversed balance equations, 467, 469

CTMC, 469
DTMC, 467, 469

Reversed process, 467
Reversibility

MLN, 728
Reversible process, 467
Riemann

Georg Friedrich Bernhard (1826–1866), 64
Right-eigenvector

of transition probability matrix (TPM), 433
RNG, see Random number generator, 124
ROC, see Receiver operating characteristic, 4, 542
ROC curve

area under the curve, 553
properties, 542
radar signal detection, 544
receiver operating characteristic

signal detection theory, 542
tangent’s slope, 552

Round robin, 716
Route

path
loss network, 725

RR, see Round robin, 716
RTS, see Rauch-Tung–Striebel, 606, 690
RV

random variable, 42

Sample
variance, 160, 162

Sample covariance
unbiasedness, 156

Sample correlation coefficient, 152
Sample covariance, 152

recursive formula, 156
Sample function

random process, 315
Sample mean

empirical average, 48, 138
recursive formula, 153
recursive formula, 153
variable, 138

expectation of, 139
variance of, 139

Sample point, 19
Sample size, 523
Sample space
�, 19

Sample standard deviation, 140
Sample variance, 139, 152

recursive formula, 153
variable, 140

Sampling distribution, 523, 549
Sampling function

since function, 335
Sampling property

Dirac delta function, 46
Sampling theorem

Whittaker, Ogura, Kotelnikov, Shannon, Someya,
352

Samuelson, Paul (1915–2009), 5
Scatter diagram

dot diagram, 149
Scholes, Myron S. (1941–), 5, 511
Schwarz, Karl Herman Amandus (1843–1921), 241
Score function

gradient of log-likelihood function, 529
properties, 550

Second-order stationary
wide-sense stationary, 323

Self-adjoint matrix
Hermitian matrix, 358

Semi-Markov process, 321
Semi-Markov process (SMP), 455

sojourn time, 456
Semi-Markovian kernel density, 480
Semi-Markovian transition kernel, 478
Sequence modeling, 621
Sequence of events

decreasing, 294
increasing, 294

Serial correlation coefficient, 351
Service completion rate, 698

M/M/∞, 703
Set theory, 21
Shannon’s lemma

from Jensen’s inequality, 270
from Lagrangian multiplier, 270
Gibbs’ inequality, 246

Shannon, Claude Elwood (1916–2001), 2, 352
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Shifted geometric distribution
probability generating function (PGF), 212

Shifted negative binomial distribution
probability generating function, 236
reproductive property, 237

Shortest path problem
Viterbi algorithm, 591

Sigma-field
σ -field, 24

Signal
envelope, 118

Signal processing, 619
Signal space method, 371
Signal-to-noise ratio

SNR, 544
Similarity transformation

unitary matrix, 360
Simple chain

simple Markov chain, 319
Simple hypothesis, 539
Simple Markov chain

first-order Markov chain, 425
discrete-time Markov chain, 319

Simulated annealing, 641
M-step, 565

Sinc function
sampling function, 335

Singular value decomposition, 380, 618
Size of a test

level of a test, 539
SLLN, see Strong law of large numbers, 300
Smoluchowski, Marion (1872–1917), 11
Smoothed estimate

filtered estimate, 660
Smoother

Rauch–Tung–Striebel, 690
Smoothing

optimal, 659
Smoothing estimate, 690
SNR, see Signal-to-noise ratio, 544
Sojourn time

semi-Markov process, 456
Someya, Isao (1915–2007), 352
Spatial homogeneity

of a random walk, 484
of Wiener process, 492

Spectral expansion method
eigenvalue-eigenvector method, 433

Spectral representation
spectral expansion, 343

Spectrum
of a correlation matrix, 359
set of eigenvalues, 433

Speech recognition, 621
connected word, 622
isolated word, 622

Square law detector, 113, 132
Square root law

random walk, 486
Square-root law

random walk, Brownian motion, 318
SSS, see Strict-sense stationary, 323
Standard normal distribution, 157, 160
Standard deviation, 51
State probability

generating function method, 429
State space, 574
State-space model

hidden Markov model, 680
State transition diagram, 427, 574
State transition probability, 574
State transition probability matrix, 576
State-based HMM, 577, 598
State-dependent

birth process
M(K )/M/m, 709

State-space representation
AR time series, 389
ARMA(p, q), 391

Stationary distribution, 633
GLS, 726
invariant distribution, 448
of CTMC, 463
of DTMC, 448

Statistic, 523
sufficient, 524

Statistical independence, 48
Statistical learning, 615
Statistical regularity, 17
Statistically independent

events, 34
experiments, 26
random variables, 48

Stirling’s approximation formula, 275
factorial, 83

Stirling, James (1692–1770), 275
Stochastic convergence

convergence in probability, 282
Stochastic differential equation, 6, 498

Itô process, 506
Stochastic integral, 493
Stochastic matrix

transition probability matrix (TPM), 427
Stochastic process

random process, 315
Stochastically independent

statistically independent, 34
Stratonovich, Ruslan Leont’evich (1930–1938), 12
Strict-sense stationary (SSS)

complex Gaussian variable, 332
strictly stationary, 323
strongly stationary, 323
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Strong law of large numbers, 265, 300
almost sure convergence, 300
Borel’s, 301
Kolmogorov’s sufficient criterion, 302
necessary and sufficient condition for, 303
sufficient condition for, 302

Subfair, 251
Subgraph, 625
Submartingale, 271

G/G/1 waiting time, 273
Sufficient statistic, 524
Sum method

normal variate generation, 130
Sum-product algorithm, 584, 628, 630
Super-diagonal matrix

Jordan canonical form, 437
Superfair, 251
Supermartingale, 251
Supervised learning, 615, 619
Support vector machine, 616, 619
Sure event

certain event, 21
Survival function

survivor function, 145
Surviving sequence

Viterbi algorithm, 590
Survivor function, 74, 219

conditional, 155
survival function

complementary distribution, 145
SVD, see Singular value decomposition, 380, 618
SVM, see Support vector machine, 616, 619
Switched Poisson process, 480
Symbol recognition, 617
Symmetric distribution

characteristic function, 209
Symmetric queue

quasi-reversible, 719
System time

distribution
M/G/1, 715
M/H2/1, 736

Target density
cf. proposal density, 127

Target distribution, 632
TCP, see Transmission control protocol, 716
TCP congestion control

processor sharing, 716
Temporal homogeneity

of random walk, 484
of Wiener process, 492

Test
decision rule

test function, 539
Test statistic, 543

Thermal noise, 495
Throughput

carried load, 720
Tilting parameter, 259

optimum, 260
Time average

statistical average, 328
Time congestion

blocking probability, 720
MLN, 728

Time series, 351
discrete-time random process, 4, 317
vector-valued, or vector, 322
wide-sense stationary, 351

Time-dependent solution
birth process, 421
death process, 421
M/M/∞, 422, 733

Time-invariant
linear system, 657

Time-series
multivariate, 322

Total probability theorem, 32
Total sum of the squares

regression analysis, 655
TPM, see Transition probability matrix, 426
Traffic intensity, 699, 703, 723, 735

M/M/∞, 704
offered load, 718

Traffic modeling
Markov modulated Poisson sequence, 614

Transform method
exponential variate generation, 126
general variate generation, 125
random variate generation, 125

Transformed data
EM algorithm for, 559

Transition kernel, 637
Transition probability

Markov chain, 426
Transition probability function

CTMC, 459
Transition probability matrix (TPM)

Markov chain, 426
Transition probability matrix function

(TPMF)
CTMC, 459

Transition-based HMM, 577, 596
Translated Pareto distribution, 89
Trapezoidal rule, 233
Tree, 471

interior node, 471
leaf node, 471
Markov process, 473
Markov property, 473
rooted, 471
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Trellis diagram, 574, 622
Triangular distribution

moment-generating function, 207
Trigram, 623
Trinomial distribution, 68
Triphone, 623
Trunk efficiency

link efficiency
Engset loss model, 724

Turbo decoding
BCJR algorithm, 605

Two-dimensional generating function
binomial distribution, 238

Type-1 error
false alarm

false positive, 539
Type-2 error

false negative
miss, 539

Unbiased estimate
sample mean, 139

Unbiased estimator, 524
Uncorrelated

bivariate normal variables, 92
Uniform convergence, 278
Uniform distribution, 75, 239

MGF, 206
moment-generating function, 206

Union, 21
Union bound

Boole’s inequality, 295
Unit normal distribution

standard normal distribution, 80
Unit step function, 46, 113
Unit uniform distribution, 76
Unit-impulse function, 232
Unsupervised learning, 619
Update step

Kalman filter, 682, 685
Upper bound

G/G/1 waiting time, 273
Kingman’s for G/G/1 waiting time, 273

Utilization
M/M/m, 705

Variable node, 627
Variance, 219

of a histogram, 154
sample, 162

Variance rate
diffusion process, 500

Variational Bayesian EM algorithm, 566
Vector autoregressive process

multivariate autoregressive process, 389
Vector process

multidimensional process, 322
Vector random variable

random vector, 190
Venn diagram, 21
Venn, John (1834–1923), 8
Viterbi algorithm, 3, 622, 624

backward version, 609
dynamic programming, 592
MAP state sequence estimation, 588
partial-response channel, 609
surviving sequence, 590

Volatility
square root of diffusion coefficient, 511

von Mises, Richard (1887–1953), 9, 19, 40
Voronoi diagram, 618
Voronoi region, 618

Waiting time
distribution

M(K )/M/m, 710
M/G/1, 715

PDF
M(K )/M/m, 710

Weak law of large numbers, 298–300
Bernoulli’s theorem, 250, 300

Weakly stationary
wide-sense stationary, 323

Weibull distribution
hazard function, 148
standard, 86
three-parameter, 86
two-parameter, 86

Weibull, E. H. Waloddi (1887–1979), 86
Weight function, 357
White Gaussian noise, 607
White noise, 493

differential Wiener process, 493
Whittaker, E.T. (1873–1956), 352
Wide-sense stationary (WSS), 323, 658

complex Gaussian variable, 332
Wiener filter theory

Wiener–Kolmogorov filter theory, 657
Wiener process

Bachelier process, 491
Brownian motion, 11, 489, 491
Gaussian property, 492
independent increments, 492
limit of random walk, 489
Markov property, 492
spatial homogeneity, 492
temporal homogeneity, 492

Wiener, Norbert (1894–1964), 11
Wiener–Hopf type integral equation, 661
Wiener–Khinchin formula, 352, 387

Wiener–Khinchin theorem, 349
Window function, 357
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WLLN, see Weak law of large numbers, 298
WSS, see Wide-sense stationary, 323

Zeta distribution

Zipf’s law, 63

Zipf’s law

zeta distribution, 63
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