
Coverage Technology
Reference Manual
I-2014.03
March 2014

Comments?
E-mail your comments about this manual to:
vcs_support@synopsys.com.

mailto:vcs_support@synopsys.com

ii

Copyright Notice and Proprietary Information
© 2014 Synopsys, Inc. All rights reserved. This software and documentation contain confidential and proprietary information that is
the property of Synopsys, Inc. The software and documentation are furnished under a license agreement and may be used or
copied only in accordance with the terms of the license agreement. No part of the software and documentation may be reproduced,
transmitted, or translated, in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without prior written
permission of Synopsys, Inc., or as expressly provided by the license agreement.

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the United States of America.
Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader's responsibility to
determine the applicable regulations and to comply with them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH
REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Trademarks
Synopsys and certain Synopsys product names are trademarks of Synopsys, as set forth at
http://www.synopsys.com/Company/Pages/Trademarks.aspx.
All other product or company names may be trademarks of their respective owners.

Third-Party Links
Any links to third-party websites included in this document are for your convenience only. Synopsys does not endorse
and is not responsible for such websites and their practices, including privacy practices, availability, and content.

Synopsys, Inc.
700 E. Middlefield Road
Mountain View, CA 94043
www.synopsys.com

iii

Contents

1. Introduction

Operations When You Compile or Simulate 1-2

Using Coverage Metrics Files and Directories. 1-2

Specifying Coverage for Libraries and Cells 1-5

Naming Intermediate Data Files . 1-6

Merging VCS Results for Regressions . 1-7

SystemVerilog Support for Code Coverage 1-14

2. Commands Reference

Compile Options for Coverage Metrics . 2-2

Simulation Options for Coverage Metrics . 2-11

More Options for Toggle Coverage . 2-14

Toggle Coverage for MDAs . 2-14

Realtime Control of Toggle Coverage . 2-14

Limiting Toggle Coverage to Ports Only. 2-15

Excluding and Including Signals in Toggle Coverage 2-17

Excluding a Signal in Toggle Coverage 2-17

iv

Including a Signal in Toggle Coverage 2-18

Including Part-Selects and Bit-Selects 2-18

Using Wildcard Characters. 2-19

Specifying SystemVerilog Structures and Unions. 2-19

More Options for Condition Coverage. 2-20

Modifying Condition Coverage. 2-20

Enabling Coverage for Event Controls 2-23

Enabling Condition Coverage for More Operators 2-25

Enabling Condition Coverage for Allops. 2-27

Enabling Condition Coverage in For Loops 2-29

Enabling Condition Coverage in Tasks and Functions 2-30

Enabling Condition Coverage in Port Connection Lists 2-31

Using Sensitized Multiple Condition Coverage Vectors 2-32

Using the -cm_cond allvectors Option. 2-35

Disabling Vector Conditions . 2-37

Excluded Subexpressions . 2-39

Condition Coverage Observability . 2-40

Specifying Continuous Assignment Coverage. 2-44

Displaying Condition IDs . 2-45

Using Multiple Condition Value Vectors With Constant Filtering 2-46

Omitting Coverage for Default Case Items 2-48

More Options for Branch Coverage. 2-49

For Loops and User-defined Tasks and Functions 2-49

Limitations . 2-50

More Options for FSM Coverage . 2-50

Coding a Verilog FSM . 2-50

Using the Encoded FSM Style . 2-51

v

Implementing Hot Bit or One Hot FSMs. 2-58

Using Continuous Assignments for FSMs 2-61

Avoiding Substituting the Same Numeric Constant 2-62

Sequence Coverage . 2-62

Controlling How VCS Extract FSMs. 2-63

Using an FSM Configuration File . 2-64

The TRANSITIONS Line . 2-69

Specifying the Configuration File . 2-69

Sequence Filtering in Reports . 2-70

Specifying the Maximum for Sequences 2-71

Using the Configuration File for One Hot FSM. 2-72

Reporting FSM State Values Instead of Named States 2-73

Enabling Indirect Assignment to State Variables 2-74

Enabling Two-state FSMs . 2-75

Enabling the Monitoring of Self Looping FSMs 2-76

Enabling X Value States. 2-77

Filtering Out Transitions Caused by Specified Signals 2-79

More Options for Functional Coverage . 2-82

Options to Specify in the optconfigfile . 2-82

Unified Coverage Directory and Database Control 2-84

Loading Coverage Data . 2-84

Using -covg_disable_cg to Disable Functional Coverage Items
2-88

Using -covg_no_guard_in_shape to Handle Guards on Illegal/
Ignore Bins . 2-89

Example . 2-90

Functional Coverage System Tasks Summary Table 2-94

vi

Controlling the Scope of Coverage Compilation 2-97

Using a Configuration File . 2-97

Coverage Pragmas . 2-103

Using Pragmas to Limit Line Coverage 2-104

Using Pragmas to Limit VHDL Lines From Coverage 2-107

Pragmas to Limit Toggle Coverage . 2-109

Pragmas to Limit FSM Coverage. 2-111

Specifying the Signal That Holds the Current State 2-111

Specifying the Part-Select that Holds the Current State. . . . 2-112

Specifying the Concatenation that Holds the Current State . 2-113

Specifying the Signal that Holds the Next State 2-113

Specifying the Current and Next State Signals in the Same
Declaration . 2-113

Specifying the Possible States of the FSM. 2-114

Pragmas in One Line Comments . 2-114

Specifying FSM With Pragmas - an Example. 2-115

Using Pragmas to Limit Branch Coverage. 2-115

Using Glitch Suppression . 2-125

Line Coverage Glitch Suppression . 2-126

Limitation on Clocks . 2-128

Toggle Coverage Glitch Suppression. 2-130

Using Condition Coverage Glitch Suppression 2-131

3. User-defined Coverage System Functions

Coverage System Functions . 3-2

The $cm_coverage System Function . 3-5

Return Values. 3-7

vii

The $cm_get_coverage System Function. 3-9

Return Values. 3-11

The $cm_get_limit System Function . 3-12

Examples. 3-13

Accessing Coverage Data During Simulation Using UCAPI 3-17

Monitoring the Coverage Data . 3-18

Resetting the Coverage Data. 3-19

Ignoring Coverage Collected during Parts of Simulation . . . 3-20

How the Coverage Data Is Accessed. 3-21

4. URG Options

Command-Line Options . 4-2

Using -cm_dir and -dbname Options with the Unified Coverage
Database . 4-21

Redirecting All the Temporary Files Generated By urg -parallel -debug
Option. 4-22

Use Model . 4-23

Examples . 4-23

Limitations . 4-24

Displaying Ratio Score in URG Report 4-24

Additional Options for Parallel Merging 4-26

Unsupported Options in Parallel Merging. 4-26

Merge Covergroups Across Scopes . 4-27

Merge across-shape . 4-27

Merge across-program-scope . 4-28

Instance Coverage Score Option . 4-30

viii

Covergroup Score Covered/Coverable Ratio Option 4-33

Trend Chart Command-Line Options . 4-35

Reporting Element Holes . 4-37

Definition . 4-37

Finding Element Holes. 4-37

Displaying Range Values . 4-38

Showing Element Holes. 4-38

5. Unified Coverage API Functions

Coverage Data Load/Unload. 5-2

covdb_load . 5-2

covdb_loadmerge . 5-3

covdb_unload . 5-4

covdb_save . 5-4

covdb_save_exclude_file. 5-5

covdb_load_exclude_file . 5-5

covdb_save_attempted_file . 5-5

covdb_load_mapfile . 5-6

Coverage Database Version Check . 5-7

Version Check . 5-8

Coverage Data Model Traversal . 5-9

covdb_get_handle . 5-9

covdb_get_qualified_handle . 5-10

covdb_iterate . 5-10

covdb_qualified_iterate . 5-10

ix

covdb_scan . 5-11

covdb_qualified_object_iterate . 5-11

Bypass Checksum Validation . 5-12

covdb_qualified_configure 5-12

Memory and Pointer Management . 5-12

covdb_make_persistent_handle . 5-14

covdb_release_handle. 5-14

Reading Properties . 5-15

covdb_version . 5-15

covdb_get . 5-15

covdb_get_str . 5-17

covdb_get_real . 5-17

Reading Annotations . 5-18

covdb_get_annotation . 5-18

Example . 5-19

covdb_get_qualified_annotation . 5-19

covdb_get_integer_annotation. 5-19

covdb_set_annotation . 5-20

Example . 5-20

Setting Properties . 5-21

covdb_set . 5-21

covdb_set_str . 5-23

Error Handling and Recovery . 5-23

covdb_set_error_callback . 5-23

covdb_get_error. 5-25

x

covdb_configure . 5-25

covdb_qualified_configure . 5-27

APIs for Exclusion . 5-28

Loading/Saving Exclude File . 5-28

covdb_load_exclude_file . 5-28

covdb_save_exclude_file . 5-29

covdb_unload_exclusion . 5-29

covdb_save_attempted_file . 5-29

Types, Properties, and Relations . 5-30

Object Types . 5-30

1-To-1 Relations. 5-31

1-To-Many Relations . 5-31

Object Properties . 5-32

Limitations . 5-33

Values . 5-33

6. Coverage GUI, Menu, and Toolbar Reference

Coverage GUI Command-Line Options . 6-2

Menu Bar Options . 6-5

File Menu . 6-5

Edit Menu. 6-6

View Menu . 6-7

Scope Menu. 6-8

Window Menu . 6-8

Help Menu . 6-10

Toolbar Options . 6-11

xi

Editing Preferences . 6-14

xii

 1-1

Introduction

1
Introduction 1

The Coverage Technology Reference Manual contains list of
coverage commands that you can use for your reference while using
VCS to collect your coverage data. This manual is not a
comprehensive guide for coverage technology and should be used
in conjunction with the Coverage Technology User Guide.

If you are using the VCS Online Documentation, click this link
Coverage Technology User Guide to view in the HTML interface. If
you are using the PDF interface, see cov_ug.pdf to view the PDF
document.

The chapter contains the following sections:

• “Operations When You Compile or Simulate”

• “Merging VCS Results for Regressions”

• “SystemVerilog Support for Code Coverage”

 1-2

Introduction

Operations When You Compile or Simulate

There are many operations related to generating coverage metrics
that you can perform while compiling or simulating your design.
These include specifying coverage for libraries and cells, naming
intermediate data files, using glitch suppression, and so on. You can
also control the scope of the coverage compilation using either
pragmas or a -cm_hier configuration file.

Using Coverage Metrics Files and Directories

When you use the -cm compile-time option, VCS creates the
simv.vdb directory (the coverage metrics database) in the current
directory. The directory structure within the simv.vdb directory is as
follows:

During compilation, VCS writes data files about the design in the
snps/coverage/db/design directory (for Verilog and VHDL).

During simulation, VCS writes intermediate data files (also called
test files) that record the coverage results from the simulation in the
snps/coverage/db/testdata directory (for Verilog and for
VHDL). Each directory under testdata contains all the coverage data
for the test. The base name of the test is the name of the directory.

 1-3

Introduction

To see how to select names for the coverage data files, see “Naming
Intermediate Data Files” . You might want to do so if you plan multiple
simulations with different stimuli and you want to see the coverage
results from the different simulations.

Also during simulation, VCS writes design information into the
simv.vdb/snps/coverage/db/ directory. These files are
compatible with all the supported platforms. For example, if you have
VCS compile and monitor for coverage using the Solaris platform,
you can display coverage information using the RHEL32 platform.
See the release notes (available through the online HTML
documentation system) for a list of supported platforms.

The simv.vdb directory is named after the simv executable file. If
you name the simulation executable file something else with the -o
compile-time option, VCS names the coverage metrics database
directory after the name you assigned to the simulation executable.
For example, if you name the executable, mysimv, as follows:

% vcs source.v -cm fsm -o mysimv

VCS creates the mysimv.vdb directory instead of the simv.vdb
directory.

You can also use the -cm_dir directory_path_name compile-
time option and argument to specify a different name and location for
the simv.vdb directory. For example:

% vcs -cm tgl -cm_dir /net/design1/mycm source.v

 1-4

Introduction

This command line instructs VCS to create the mycm.vdb directory
in the /net/design1 directory instead of the simv.vdb directory
in the current directory. The -cm_dir compile-time option takes
precedence over the -o compile-time option when specifying the
new name for the simv.vdb directory.

When you use the -cm_dir option at compile time, the name and
location of this directory is hard coded into the simv executable, so
there is no need to use the option at runtime to specify this directory.

Using the -cm_dir option at runtime specifies a different location for
the test files that VCS writes at runtime.

If you specify a different location for the intermediate data files at
runtime, you must specify that directory's location using the -dir
option to URG when generating reports, all of the directories can be
listed as well with one -dir option. For example, -dir db1.vdb
db2.vdb.

To summarize when to use -cm_dir and for what purpose:

• At compile-time, to specify a different name or location for the
coverage database directory (simv.vdb) that is created during
compilation.

• If you move the coverage database directory or the binary
executable to a new location after VCS creates it during
compilation, use the -cm_dir option at runtime, to specify the
path for the coverage database directory .

• If you invoke your binary executable from a different location, then
use the -cm_dir option at runtime to specify the path for the
coverage database directory.

 1-5

Introduction

The following command lines illustrate these different possibilities:

% vcs -cm line -cm_dir /net/design1/my_cov_info source.v

% simv -cm line -cm_dir /net/design1/int_dat_files

% urg -dir /net/design1/my_cov_info -dir /net/design1/\
int_dat_files

Specifying Coverage for Libraries and Cells

By default, VCS does not compile the following for coverage:

• The source code in Verilog library directories

• Verilog library files

• Any module defined under the celldefine compiler directive

If you want this excluded code compiled for coverage, include the -
cm_libs compile-time option along with one or both of the following
arguments:

• yv — for compiling for coverage source code from Verilog
libraries.

• celldefine — for compiling coverage modules defined under
the celldefine compiler directive.

If you want to specify both arguments, include the plus delimiter (+)
between the two arguments. For example:

% vcs source.v -v mylib.v -y /net/libs/teamlib -cm fsm \
-cm_libs yv+celldefine

 1-6

Introduction

Naming Intermediate Data Files

By default, when VCS monitors for any type of coverage, it records
the results in intermediate data files named “test” with various
extensions, as follows:

• line.verilog.data.xml for line coverage

• fsm.verilog.data.xml for FSM coverage

• cond.verilog.data.xml for condition coverage

• tgl.verilog.data.xml for toggle coverage

• branch.verilog.data.xml for branch coverage

By default, VCS writes these files in the./simv.vdb/snps/
coverage/db/testdata directory. URG reads these files to
show coverage results.

If you store the results of multiple simulations in the same directory,
you will want to have a different name for these intermediate data
files directory. For example, you might want to apply different stimuli
in different simulations and have intermediate data files with different
names so that you can compare coverage results using URG. To
specify a different name for the intermediate data files, you can do
either of the following:

• Include the -cm_name option at compile-time. For example:

% vcs source.v -cm line -cm_name testm

This command line compiles into the executable the name that
the executable will use when it writes the intermediate data files.
After simulation, the simv.vdb/snps/coverage/db/testm
directory contains the line.verilog.data.xml file.

 1-7

Introduction

• Include the -cm_name option at runtime, for example:

% simv -cm line -cm_name testm

You can override the directory name (testm) that you have
provided during compilation by providing a different directory
name with the simv command line options (say testn).

You cannot use the option -cm_name to specify a different location
for these files. Use the -cm_dir option instead to have simv place
the generated files in a different directory.

Merging VCS Results for Regressions

URG automatically merges the results from the intermediate data
files that VCS writes during more than one simulation of your design.
This section describes four methods for VCS for running the
regressions to produce merged coverage results. In most of these
methods, you only need to compile for coverage once and then run
multiple simulations, either sequentially or in parallel. You can use
either different names for intermediate data files in the same
directory or create different directories for these intermediate data
files and then inform URG where to look for them.

Method 1: Build the simv executable once, then simulate three
times sequentially using the same testbench, but different
inputs.

There are a number of ways to use the same testbench in different
simulations with different input stimulus values. One common way is
to use the $readmemb system task to read values from a file into the
elements of a memory. Then for each simulation, you change the

 1-8

Introduction

contents of the data file specified in the system task. VCS reads this
data at runtime and you make no changes to the system task.
Therefore, you only need to compile for coverage one time.

The values in the memory elements control the execution of your
design and exercise different parts of the design during the different
simulations. When the simulations are over, you can see the total
and merged coverage from all three simulations.

This procedure is as follows:

1. Compile for coverage:

% vcs -cm coverage_arguments \
additional_options_and_source_files

This command line instructs VCS to compile for the selected types
of coverage. VCS creates the simv.vdb directory in the current
directory. In this directory, it creates the snps/coverage/db
directory.

2. Start the first simulation, specifying a name for the intermediate
data files that associates them with the first simulation:

% simv -cm_name test1 -cm coverage_arguments \
additional_runtime_options

During simulation, VCS writes the line.verilog.data.xml,
fsm.verilog.data.xml intermediate data files in the
./simv.vdb/snps/coverage/db/testdata/test1
directory.

3. Revise the contents of the data file in the $readmemb system
task and then start the second simulation, specifying a name for
the intermediate data files that associates them with the second
simulation:

 1-9

Introduction

% simv -cm_name test2 -cm coverage_arguments \
additional_runtime_options

During simulation, VCS writes the line.verilog.data.xml,
fsm.verilog.data.xml intermediate data files in the
./simv.vdb/snps/coverage/db/testdata/test2
directory.

4. Revise the contents of the data file in the $readmemb system
task again and then start the third simulation, specifying a name
for the intermediate data files that associates them with the third
simulation:

% simv -cm_name test3 -cm coverage_arguments \
additional_runtime_options

During simulation, VCS writes the line.verilog.data,xml,
fsm.verilog.data.xml intermediate data files in the
./simv.vdb/snps/coverage/db/testdata/test3
directory.

5. Run URG to generate report and a merged database:

URG reads all the test data files in the./simv.vdb/snps/
coverage/db directory and writes the report files with the
merged results in the urgReport directory.

Method 2: Build the simv executable once, then simulate three
times sequentially as in the previous method, but write the
intermediate data files to a common directory for your design
group.

This procedure is as follows:

1. Compile for coverage:

% vcs -cm_dir /net/design1/oursimv.vdb \

 1-10

Introduction

 -cm coverage_arguments \
 additional_options_and_source_files

This command line instructs VCS to compile for all types of
coverage. VCS creates the oursimv.vdb directory in the
/net/design1 directory, and in the oursimv.vdb directory, it
creates the snps/coverage/db directory.

2. Start the first simulation, specifying both the directory that VCS
created for coverage information, as done in the previous step,
and a name for the intermediate data files that associates them
with the first simulation:

% simv -cm_name test1 -cm coverage_arguments \
additional_runtime_options

During simulation, VCS writes the line.verilog.data.xml,
fsm.verilog.data.xml intermediate data files in the /net/
design1/oursimv.vdb/snps/coverage/db/testdata
directory.

3. Revise the contents of the data file in the $readmemb system
task and then repeat the previous simv command line changing
only the name of the intermediate data files:

% simv -cm_name test2 -cm coverage_arguments \
additional_runtime_options

4. Repeat the previous step, revising the contents of the data file
and the name of the intermediate data files.

% simv -cm_name test3 -cm coverage_arguments \
additional_runtime_options

5. Now run URG, telling it the name and location of the directory for
coverage data that you specified in step 1 and to write a merged
database:

 1-11

Introduction

% urg -dir /net/design1/oursimv.vdb -dbname mergedir/\
merged

Method 3: Only for VCS, build the simv executable once, then
simulate three times in parallel.

It is possible to compile for coverage once and simulate the design
multiple times in parallel using different inputs. You do this by using
the $test$plusargs VCS system function and the corresponding
runtime options. You can use this system function to execute
different $readmemb system tasks depending on the runtime option
you use for each parallel simulation.

This procedure is as follows:

1. Compile for coverage:

% vcs -cm_dir /net/design1/oursimv.vdb -cm \
coverage_arguments additional_options_and_source_files

2. Start the three simulations with the following command lines
specifying both the directory that VCS created for coverage
information, as done in the previous step, and a name for the
intermediate data files that associates them with the first
simulation:

% simv -cm_name test1 -cm coverage_arguments +one\
additional_runtime_options

% simv -cm_name test2 -cm coverage_arguments +two\
additional_runtime_options

% simv -cm_name test3 -cm coverage_arguments +three\
additional_runtime_options

The +one, +two, and +three options are used for the
$test$plusargs system tasks in the testbench.

 1-12

Introduction

3. Run URG once again specifying the name of the directory and
the name of the report files.

% urg -dir /net/design1/oursimv.vdb -dbname \
mergedir/merged

Method 4: Build three different simv executables and simulate
sequentially or in parallel.

To simulate sequentially, the procedure is as follows:

1. Compile three times for coverage using different testbenches,
specifying an alternative name for the simv executable. By doing
this, you are also specifying an alternative name for the
simv.vdb coverage metrics database:

vhdlan [additional_options] source_files //For VCS MX
% vcs -o simv1 test.v -cm coverage_arguments \
additional_options_and_source_files

% vcs -o simv2 test.v -cm coverage_arguments \
additional_options_and_source_files

% vcs -o simv3 test.v -cm coverage_arguments \
additional_options_and_source_files

When VCS does these compilations for coverage, it creates three
coverage metrics directories in the current directory: simv1.vdb,
simv2.vdb, and simv3.vdb.

Note:
In step 1, all three tests use different stimulus. However, they all
use the same source files from the same directories:

- Identical hierarchy

- No differences with +define or `include

 1-13

Introduction

- Source files are passed identically

If some source files are passed as a library in one design and not
in the other, then use cm_libs.

2. Simulate the executables either sequentially or in parallel.

3. Run URG telling it the name and location of the three directories
that you created and the name of the report files:

% urg -dir simv1.vdb simv2.vdb simv3.vdb -dbname \
mergedir/merged
The report files are generated in the urgReport directory.

Merging Multiple Coverage Databases

The preferred method to merge different coverage databases is
to provide the coverage database, which contains code coverage,
as the first one to URG.

For example, assuming that the design is not changed between
the multiple runs:

1. First run (compile+simulation) contains the assert coverage alone

2. Second run (compile+simulation) contains the Code coverage
alone

Use the following URG command to merge multiple coverage
databases:

% urg –dir ./codeCov/simv.vdb –dir ./assert/simv.vdb \
-dbname merged

 1-14

Introduction

SystemVerilog Support for Code Coverage

VCS support for code coverage metrics is now available for
SystemVerilog language constructs. However, VCS does not
support all the constructs in SystemVerilog, essentially the non-
dynamic constructs. The following table illustrates the support
matrix.

Name of the
Construct

Coverage Metrics Unsupported
Coverage

Description

always[comb, ff, latch] All metrics NA NA

initial @ All NA NA

case/casez/casex with
arrays

line+tgl+cond+
branch

fsm NA

case/casez/casex with
part selects

line+tgl+cond+
branch

fsm NA

case/casez/casex with
struct/union members
as case variables with
don’t cares and const
expressions.

line+tgl+cond+
branch

fsm NA

unique/priority tgl+fsm line+cond+branch NA

fork / Join Valid only for line NA NA

Loops

generate line+tgl NA NA

break / continue line+tgl+cond+
branch

NA NA

 1-15

Introduction

return / disable All metrics NA NA

INTERFACES

Interfaces instantiated
in modules

All metrics NA interface
modports, being
passed as a port to
any module is
not reported.

Blocks
**specify block

All metrics NA NA

Tasks and functions line+cond+fsm+tgl Branch coverage
is reported with -
cm_cond

Arguments in task
and functions
not reported in tgl
coverage.

modports Not supported All metrics NA

Parameterized
interfaces

All metrics NA NA

COVERAGE

Datatypes

Enum line+fsm+branch enum methods in
conditional
expression
doesn’t extract a
condition.

NA

event line not monitored in
tgl

NA

byte, shortint, int,
longint, time, shortreal

line not monitored in
tgl

NA

Name of the
Construct

Coverage Metrics Unsupported
Coverage

Description

 1-16

Introduction

bit, logic, tgl NA NA

packed, unpacked All NA NA

struct / union [tagged]

line+tgl+cond+
branch

part select on
struct variable
doesn’t generate
fsm

NA

Nested struct and union
line+tgl+cond+
branch

NA NA

Array of structs and
unions (MDAs as
members)

line+tgl+cond+
branch

NA NA

Arrays If it is used inside
an expression,
conditional and
branch coverage
are reported.

Dynamic arrays line+cond+branch tgl

Associative array line+cond+branch tgl

Queues line+cond+branch tgl

Parameterized Type Works for toggle
coverage on
signals of
"parameterized
type"

NA NA

Name of the
Construct

Coverage Metrics Unsupported
Coverage

Description

 1-17

Introduction

Blocks

clocking Not Supported Not supported NA

Program Block Not Supported Not supported NA

packages Not Supported Not supported NA

Classes Not Supported Not supported NA

Name of the
Construct

Coverage Metrics Unsupported
Coverage

Description

 1-18

Introduction

2-1

Commands Reference

2
Commands Reference 1

This chapter contains the following sections:

• “Compile Options for Coverage Metrics”

• “Simulation Options for Coverage Metrics”

• “More Options for Toggle Coverage”

• “More Options for Condition Coverage”

• “More Options for Branch Coverage”

• “More Options for FSM Coverage”

• “More Options for Functional Coverage”

• “Controlling the Scope of Coverage Compilation”

• “Coverage Pragmas”

• “Using Glitch Suppression”

 2-2

Commands Reference

Compile Options for Coverage Metrics

-cm line|cond|fsm|tgl|branch|assert

Specifies compiling for the specified type or types of coverage.
The arguments specifies the types of coverage:

line — Compile for line or statement coverage.

cond — Compile for condition coverage.

fsm — Compile for FSM coverage.

tgl — Compile for toggle coverage.

branch — Compile for branch coverage.

assert — Compile for SystemVerilog assertion coverage.

If you want VCS to compile for more than one type of coverage,
use the plus (+) character as a delimiter between arguments, for
example:

-cm line+cond+fsm+tgl

-cg_coverage_control=value

Enables or disables the coverage data collection for all the
coverage groups in your NTB-OV or SystemVerilog testbench.
The system task $cg_coverage_control has precedence
over this compile-time option.

The valid values are 0 and 1. A value of 0 disables coverage
collection and a value of 1 enables coverage collection.

2-3

Commands Reference

-cm_assert_hier filename

Limits assertion coverage to the module instances specified in
filename. This option applies to assertion coverage only that is
when you use -cm assert option. If this option is not used,
coverage is implemented on the whole design.

You should use the -cm_dir or -cm_name options for renaming
the coverage database.

Note:
The option -cm_assert_hier is not supported for mixed
language simulations.

-cm_cond arguments

Modifies condition coverage as specified by the argument or
arguments:

basic

Only logical conditions and no multiple conditions.

std

The default: only logical, multiple, sensitized conditions.

full

Logical, non-logical operator, and all the possible vectors not
just the sensitized vectors.

allops

Logical and non-logical conditions.

 2-4

Commands Reference

event

Signals in event controls in the sensitivity list position are
conditions.

for

Enables conditions in for loops.

tf

Enables conditions in user-defined tasks and functions.

obs

Enables observability based condition coverage.

You can specify more than one argument. You do this by using the
plus (+) character between arguments. For example:

-cm_cond basic+allops

-cm_count

Enables coverage report tools (URG or Cov GUI) to do the
following:

- In toggle coverage, reports not just whether a signal toggled
from 0 to 1 and 1 to 0, but also the number of times it toggled
in either direction (0 to 1 and 1 to 0 toggles are not counted
separately).

- In FSM coverage, reports not just whether an FSM reached a
state, and had such a transition, but also the number of times
it did.

- In condition coverage, reports not just whether a condition was
met or not, but also the number of times the condition was met.

2-5

Commands Reference

- In line coverage, reports not just whether a line was executed,
but how many times.

-cm_dir directory_path_name

Specifies an alternative name and location for the simv.vdb
directory. For testbench coverage, -cm_dir option is only a
runtime option. For code coverage, it’s a compile-time and runtime
option.

If you specify -cm_dir during compile-time and runtime, you
can use the -cm_dir option to specify a different location to store
the coverage databases. Then while running URG, you should
first list the coverage directory specified at compile-time, followed
by the coverage database directories created at runtime as
follows:

% vcs -cm_dir ./cov_dbs/cov.vdb -cm line
% simv -cm_dir ./coverage/test1.vdb -cm line
% simv -cm_dir ./coverage/test2.vdb -cm line

% urg -dir ./cov_dbs/cov.vdb -dir ./coverage/test1.vdb \
-dir ./coverage/test2.vdb -metric line

Note:
For code coverage, if runtime database is different from the
compile-time database, it is required to specify both the
databases at report generation time. For assertion coverage,
only runtime database is sufficient for report generation.

If you have used the -cm_dir option at compile-time and have
moved simv.vdb, you must use -cm_dir at runtime to point
to the new location of simv.vdb.

 2-6

Commands Reference

-cm_exclude_macrofile filename

Specifies a file containing Verilog macro names (as specified by
the ‘define compiler directive). so if your Verilog source
contained the following:

`define DFF(q,i,clock)
 always_ff @(posedge clock)
 begin
 if (clock === 1'bX)
 q <= #1 'x;
 else
 q <= #1 i;
 end
If you wrote a file named macros_excl.txt and its content was
the name of the macro:

DFF

The VCS excludes the macro from code coverage when you enter
the following:

% vcs source.v -sverilog -cm code_coverage_options \
-cm_exclude_macrofile macros_excl.tx

URG marks 'DFF as unreachable in urgReports, so, for example,
urgReport/modinfo.txt contains the following:

 9 always_ff @(posedge clk)
 10 begin
 11 1/1 b = b + 1;
 12 end
 13 unreachable `DFF (a[2:0],b[2:0],clk)

Note:
• The contents of the macro exclusion file are one or more macro

names. You can separate the macro names with a space or a tab
or put the names on separate lines.

2-7

Commands Reference

• The compile-time options, -cm_ignore_pragma and
-cm_exclude_macrofile are mutually exclusive options. If
-cm_ignore_pragma is used, the -cm_exclude_macrofile
filename option will not have an effect.

-cm_fsmcfg filename

Specifies the FSMs that VCS or VCS MX extracts from a module
definition.

- Specifies which states and which transitions between states,
VCS or VCS MX keeps track of in the FSMs.

- Specifies the maximum number of sequences that VCS or VCS
MX keeps track of in any of the modules or design entities in
your design, and specifies the maximum length of any
sequence that VCS or VCS MX keeps track of.

For more information, see the section “Using an FSM
Configuration File”

-cm_fsmopt keyword_argument

The keyword arguments are as follows:

allowTmp

By default, the variable that holds the current state of the FSM
must be directly assigned a numerical constant or the value of
a variable that holds the next state of the FSM. This keyword
allows FSM extraction when there is indirect assignment to the
variable that holds the current state.

report2StateFsms

By default, VCS does not extract two state FSMs. This keyword
tells VCS to extract them.

 2-8

Commands Reference

reportvalues

Specifies reporting the value transitions of the reg that holds
the current state of a One Hot or Hot Bit FSM where there are
parameters for the bit numbers of the signals that hold the
current and next state. The default behavior is to identify these
parameters as the states of the FSM and report assignments
to their bits as state transitions.

reportWait

Enables VCS to monitor transitions when the signal holding the
current state is assigned the same state value.

reportXassign

Enables the extraction of FSMs in which a state contains the X
(unknown) value.

-cm_fsmopt excludeCalcFsms

Rejects the FSMs with one of the following statements, when you
use it with the -cm fsm switch, where cs = current state and ns
= next state:

 cs = Expr(cs) : Expr(cs) contains arithmetic;
 (following Expr is same)
 cs = Expr(ns) ;
 cs = Expr(foo); : foo is a Net or Reg
 ns = Expr(cs);
 ns = Expr(ns);
 ns = Expr(foo);

For example if the FSM contains the following line, then it will not
be extracted.

ns = ns +1;

2-9

Commands Reference

-cm_fsmresetfilter filename

Filters out transitions in assignment statements controlled by if
statements where the conditional expression (following the
keyword if) is a signal you specify in the file. This filtering out
can be for the specified signal in any module definition or in the
module definition you specify in the file. You can also specify the
FSM and whether the signal is true or false in the file.

-cm_hier filename

When compiling for line, condition, toggle, branch, or FSM
coverage, this option specifies a configuration file that lists the
module definitions, instances and sub-hierarchies, and source
files that you want VCS to either exclude from coverage or
exclusively compile for coverage.

-cm_ignorepragmas

Tells VCS to ignore pragmas for coverage metrics. When this flag
is given, code inside coverage off/on pragma sections will be
monitored for coverage.

-cm_libs yv|celldefine

Specifies compiling for coverage source files in Verilog libraries
when you include the yv argument. Specifies compiling for
coverage module definitions that are under the ‘celldefine
compiler directive when you include the celldefine argument.
You can specify both arguments together using the plus (+)
character.

-cm_line contassign

Specifies enabling line coverage for Verilog continuous
assignments.

 2-10

Commands Reference

-cm_name name

As a compile-time or runtime option, specifies the name of the
intermediate data files.

-cm_report noinitial

Disables the monitoring of the contents of initial blocks for line,
condition, branch, and path metrics. See section “Disabling the
Monitoring of Initial Blocks”

-cm_tgl mda

Enables toggle coverage for Verilog-2001 multi-dimensional
arrays (MDAs) and SystemVerilog unpacked MDAs. Not required
for SystemVerilog packed MDAs.

-cm_tgl signalsort

Enables you to sort the signals of toggle coverage in alphabectical
order.

-power=coverage

Enables auto-creation of covergroups for low power objects based
on the power intent. For more information, see the MVSIM Native
Mode User Guide.

-power=dump_hvp

When specified along with the -power=coverage compile
option, dumps the necessary information to the coverage
database that enables viewing of low power coverage in URG.
Low power coverage view in URG is enabled with the -lpcov
URG option. For more information, see the MVSIM Native Mode
User Guide.

2-11

Commands Reference

Constant Analysis Options

-cm_constfile filename

Specifies signal/variable names with the values they are
constantly at. The format is as shown in the following example:

top.t1.a 1
top.t1.b 4 b1010

VCS reports for line and condition coverage as if these signals
were permanently at the specified values. However, it does not
really affect the values of signals during simulation.

-cm_constfile_cont_on_error

Downgrades fatal errors encountered during the processing of a
constant file, provided with the -cm_constfile switch. Normal
behavior is to generate an error and stop compilation when non-
existent signal names are provided. Should these errors occur
during processing of the constant file with the -
cm_constfile_cont_on_error switch, then the tool prints a
warning message and continues. Care should be taken with this
switch as unintended results may happen; always review the log
file for errors.

 2-12

Commands Reference

-cm_noconst

Enables constant analysis in combinational code, identifies
objects for line, condition, and toggle coverage that cannot be hit
because of those constant values, and removes them from
coverage monitoring. Coverable objects removed this way are
shown as "unreachable" in the coverage reports and are not used
to compute the coverage scores. For example, a signal with a
single continuous assignment of 1'b0 will be removed from
monitoring for toggle coverage. For more information, see the
Coverage Technology User Guide.

-cm_seqnoconst

Enables a more sophisticated constant analysis compared to -
cm_noconst. This includes analysis of non-blocking
assignments and continuous assignments with delays, as well as
handling multiple assignments to the same bits of a signal. As with
-cm_noconst, coverable objects that VCS detects can never be
hit are marked "unreachable" in coverage reports and removed
from the computation of the coverage score. For more information,
see the Coverage Technology User Guide.

-diag noconst

When -cm_noconst or -cm_seqnoconst is enabled, the -
diag noconst option also enables the creation of a
constfile.txt file. This file contains, for each detected
constant expression, diagnostics listing the location of its
declaration, and the locations of all definitions of that expression.
For each definition site, the list of other detected constant
expressions that are inputs to the expression are listed. For more
information, see the Coverage Technology User Guide.

2-13

Commands Reference

Simulation Options for Coverage Metrics

Note:
If you compile VCS with the -o option, then the simv.vdb gets
renamed to the executable name appended with ".vdb".

The -cm <metrics> option is also a runtime option.

-cm_dir directory_path_name

Specifies an alternative name and location for the simv.vdb
directory. The -cm_dir option is also a compile-time option and
a URG command-line option.

-cm_glitch period

Specifies a glitch period during which VCS does not monitor for
coverage caused by value changes. The period is an interval of
simulation time specified with a non-negative integer.

-cm_log filename

As a compile-time or runtime option, specifies a log file for
monitoring coverage during compilation or simulation. For
example,

% simv -cm fsm -cm_log run1.log

where, the -cm_log run1.log option specifies run1.log as
the log file and directs the output to the run1.log file for
monitoring coverage during simulation.

 2-14

Commands Reference

-cm_name name

As a compile-time or runtime option, specifies the name of the
intermediate data files.

-cm_start/-cm_stop N

Specifies starting or stopping of code coverage collection, where
N is the time you specify to start or stop the coverage collection.
The time unit that you specify with the argument N takes the time
unit of the current simulation, by default.

 For example,

% vcs tb_top_mix_vlog -cm line+cond+tgl
% simv -cm line+cond+tgl -cm_start 10 -cm_stop 20

-covg_cont_on_error

If the simulation hits an illegal functional coverage bin it will stop.
To advance the simulation bypassing this error, enter
-covg_cont_on_error runtime option with the simv
command.

-covg_disable_cg

Allows disabling all functional coverage items (covergroups). See
section “Using -covg_disable_cg to Disable Functional
Coverage Items” .

-covg_dump_range

Enables dumping of bins definition to database. You may pass
the -group show_bin_values (see the URG “Command-Line
Options”) option to URG to get the bins definitions in the
urgReport directory.

2-15

Commands Reference

-covg_no_guard_in_shape

The guard conditions specified on illegal/ignore bins do not impact
the shape of the covergroup. The bins are unconditionally retained
irrespective of the value of the guard expressions. See section
“Using -covg_no_guard_in_shape to Handle Guards on Illegal/
Ignore Bins”

More Options for Toggle Coverage

Toggle Coverage for MDAs

If your design contains memories, Verilog-2001 multi-dimensional
arrays (MDAs), or unpacked SystemVerilog MDAs, and you want
toggle coverage for these memories and MDAs, include the
-cm_tgl mda compile-time option and keyword argument when
you compile for toggle coverage. This option and argument are not
required for packed SystemVerilog MDAs.

% vcs -cm tgl source.v -cm_tgl mda
% simv -cm tgl
% urg -dir simv.vdb -metric tgl

Toggle coverage supports the following VHDL data types:

Toggle coverage supports SystemVerilog data types - bit, logic, reg,
net etc.

Note:
Array of bit and array of std_logic are not supported in VHDL.

bit bit_vector std_logic

std_ulogic std_logic_vector std_ulogic_vector

signed unsigned

 2-16

Commands Reference

Realtime Control of Toggle Coverage

There is a realtime API for Verilog coverage. This API includes the
$cm_coverage system function that enables you to disable and
enable all types of coverage, including toggle coverage. See the
section “The $cm_coverage System Function” .

For real-time control of VHDL toggle coverage, you can enter the
following commands at the VCS interactive command prompt:

coverage -tgl off
Disables monitoring for toggle coverage.

coverage -tgl on
Enables monitoring for toggle coverage.

Limiting Toggle Coverage to Ports Only

You can instruct VCS to compile and monitor only the ports in your
design for toggle coverage, so that the coverage reports that URG
writes contain information only about the ports. These reports do not
contain information about either the variables and nets that are not
ports in your Verilog modules or the variables and signals declared
in your VHDL architectures.

Consider the following design:

Example 2-1 source.v

module test;
reg r1;
reg [7:0] r2;
wire w1;

dut dut1 (w1,r1);

2-17

Commands Reference

initial
begin

r1=0;
r2=8'b00000000;
#100 $finish;

end

always
#10 r1=~r1;

always
#25 r2=r2+1;

endmodule

module dut (out,in);
output out;
input in;
reg dutr1;

always @ in
dutr1=in;

assign out=dutr1;
endmodule

Use the portsonly keyword argument to the -cm_tgl compile-
time option to monitor only ports, as follows:

vcs -cm tgl -cm_tgl portsonly source.v
or
vcs -cm tgl -cm_tgl portsonly cfg

The toggle coverage report for ports is as follows:

--
Toggle Coverage for Module : dut
 Total Covered Percent
Totals 2 2 100.00

 2-18

Commands Reference

Total Bits 4 4 100.00
Total Bits 0->1 2 2 100.00
Total Bits 1->0 2 2 100.00

Ports 2 2 100.00
Port Bits 4 4 100.00
Port Bits 0->1 2 2 100.00
Port Bits 1->0 2 2 100.00

Port Details
 Toggle Toggle 1->0 Toggle 0->1 Direction
out Yes Yes Yes OUTPUT
in Yes Yes Yes INPUT
--

Excluding and Including Signals in Toggle Coverage

Compile time exclusion of toggle coverage is specified via the +/-
node option in the -cm_hier file.

These entries work in conjunction with other entries in the
configuration file to exclude or include toggle and other types of
coverage, such as the following:

The -node and +node entries work for both Verilog and VHDL
signals, nets, and variables.

+file -file

+filelist -filelist

+library -library

+module -module

+tree -tree

2-19

Commands Reference

Excluding a Signal in Toggle Coverage

To exclude a signal, enter the -node entry in the -cm_hier file,
followed by the signal’s hierarchical name. For example:

+module dev
-node top.dev1.w2

In this example, all instances of module dev are compiled for
coverage. In one such instance, top.dev1, signal w2 is excluded
from toggle coverage.

Including a Signal in Toggle Coverage

To include a signal, enter the +node entry in the -cm_hier file,
followed by the signal’s hierarchical name. For example:

-module dev
+node top.dev1.w2

In this example, all instances of module dev are excluded from
various types of coverage, with one exception. Instance top.dev1
is compiled for toggle coverage but only for signal w2.

Including Part-Selects and Bit-Selects

For Verilog nets and variables, you can include a part-select or a bit-
select for a net or variable. For example:

-module test
+node test.w1[2:1]
+node test.w2[1]
+node test.l1[2:1]
+node test.l2[1]

 2-20

Commands Reference

Note:
Make sure that there are no spaces between the signal name and
the bit or bits of the bit-select or part-select.

Using Wildcard Characters

You can use the asterisk (*) and question mark (?) wildcard
characters in these -node and +node entries. For example:

-module test
+node test.w*
+node test.logic?

The asterisk(*) can represent multiple characters, while the question
mark (?) represents a single character.

Excluding and Including Half-Transitions of a Signal

To exclude the half-transitions of a signal, you can enter the -node
entry with the corresponding half-transition "0to1" or "1to0" in the
-cm_hier file followed by the signal's hierarchical name. The
syntax is:

-node [0to1 or 1to0] Hierarchical_name_of_signal

To include the half-transitions of a signal, you can enter the +node
entry with the corresponding half-transition "0to1" or "1to0" in the
-cm_hier file followed by the signal's hierarchical name. The
syntax is:

+node [0to1 or 1to0] Hierarchical_name_of_signal

For example, if the following configuration entries are provided in the
-cm_hier file, Table 2-1 shows the corresponding coverage report.

2-21

Commands Reference

-node 1to0 top.d2.q1[0] // Half toggle 1->0
-node 0to1 top.d2.q1[3:2] // Half toggle 0->1
-node top.d2.q1[4] // Both the half toggles are excluded.

Table 2-1 Signal Details of the top.d2 Instance

Specifying SystemVerilog Structures and Unions

You can specify an instance of a structure or a union, but not a
member of the structure or union. For example, refer to the following
source code:

module test;
typedef struct {

logic log1;
bit bit1;
} control;

control ctl1;
endmodule

The following configuration file entry is valid:

-module test
+node test.ctl1

The following configuration file entry is not valid:

-module test
+node test.ctl1.log1

Toggle Toggle 1->0 Toggle 0->1

q1[0] Covered Unreachable Covered

q1[1] Not Covered Covered Not Covered

q1[2] Covered Not Covered Unreachable

q1[3] Covered Covered Unreachable

q1[4] Unreachable Unreachable Unreachable

 2-22

Commands Reference

Sorting Signals in Toggle Coverage

The -cm_tgl signalsort compile-time option enables you to sort
the signals of toggle coverage in the alphabetical order. The
signalsort keyword argument can be used for compilation where
the `define compiler directive can lead to different source order of
the signals in different tests (based on the value of `define
MACRO). In such a case, it is suggested to use -cm_tgl
signalsort at compile-time as it generates the toggle coverage
data for the signals in the same (alphabetical) order for different
values of `define MACRO.

For example,

output reg [3:0] binary_out, // 4 bit binary Output
`ifdef CFG1
input wire [15:0] binary_in1, // 16-bit Input
input wire [15:0] binary_in2, // 16-bit Input
input wire [15:0] binary_in3, // 16-bit Input
`elsif CFG2
input wire [15:0] binary_in2, // 16-bit Input
input wire [15:0] binary_in3, // 16-bit Input
input wire [15:0] binary_in1, // 16-bit Input
`else
input wire [15:0] binary_in2, // 16-bit Input
input wire [15:0] binary_in1, // 16-bit Input
input wire [15:0] binary_in3, // 16-bit Input
`endif
input wire enable // Enable for the encoder
);
endmodule

Use the signalsort keyword argument to the -cm_tgl compile-
time option as follows:

% vcs –cm tgl –cm_tgl signalsort +define+CFG1 test.v
% simv –cm tgl –cm_name test1

2-23

Commands Reference

% vcs –cm tgl –cm_tgl signalsort +define+CFG2 test.v
% simv –cm tgl –cm_name test2
% vcs –cm tgl –cm_tgl signalsort test.v
% simv –cm tgl –cm_name test3

You can now merge test1, test2, and test3 tests to generate the
correct reports.

Note:
It is recommended not to merge tests generated from different
compilations done with and without -cm_tgl signalsort.

More Options for Condition Coverage

Modifying Condition Coverage

The -cm_cond compile-time option accepts arguments that can add
conditions to condition coverage and change the information in the
report files. The arguments which you can specify are as follows:

full
Specifies the following:

- Logical and non-logical conditions — the subexpressions of all
operators, not just logical AND && and logical OR ||, are
conditions for condition coverage (see “Enabling Condition
Coverage for More Operators”).

- Multiple conditions — condition coverage reports show vectors
containing multiple condition values. Each vector contains a
value for each subexpression of the larger expression (see
“Using the -cm_cond allvectors Option”).

 2-24

Commands Reference

- Event control conditions (Note: Does not apply to VHDL) — the
signals in the sensitivity list of an always are also conditions for
condition coverage.

- Full vectors — the reports show all possible vectors of multiple
condition values, not just the sensitized multiple condition value
vectors (see “Using Sensitized Multiple Condition Coverage
Vectors”).

Note:
- In Verilog condition coverage, conditions with more than ten

operands result in a warning message. VCS replace the full
argument with the allops argument.

- In VHDL condition coverage, conditions with more than six
operands are reported in std format of sensitized vectors. VCS
displays a warning message when it switches to the std format.

std

Specifies the following:

- Logical conditions — the subexpressions of just the logical AND
&& and logical OR || operator are conditions for condition
coverage.

- Multiple conditions

- Sensitized vectors or sensitized conditions — the only vectors
are those where only one subexpression makes the conditional
expression true or false, and one more vector to indicate if the
conditional expression was either true or false, depending on
the operator (see “Using Sensitized Multiple Condition
Coverage Vectors”).

basic

Specifies the following:

2-25

Commands Reference

- Logical conditions

- No multiple conditions — subexpression values are reported
on separate lines (see “Disabling Vector Conditions”).

for (Note: Does not apply to VHDL)

Enables compiling and monitoring conditional expressions in for
loops (see “Enabling Condition Coverage in For Loops”).

tf (Note: Does not apply to VHDL)

Enables compiling and monitoring conditional expressions in
user-defined tasks and functions (see “Enabling Condition
Coverage in Tasks and Functions”).

event (Note: Does not apply to VHDL)

Specifies that the signals in event controls, in the sensitivity list
position of an always block, are also conditions for condition
coverage (see “Enabling Coverage for Event Controls”).

allops

Specifies that the subexpressions of all operators, not just logical
AND && and logical OR ||, in conditional expressions are
conditions for condition coverage.

ports (Note: Does not apply to VHDL)

Enables monitoring conditional expressions in a Verilog module
instance port connection list (see “Enabling Condition Coverage
in Port Connection Lists”).

 2-26

Commands Reference

allvectors (Note: Does not apply to VHDL)

Reports all possible vectors for an expression. If this option is not
used, then VCS prints only the sensitized vectors (see “Using the
-cm_cond allvectors Option”).

scalarbitwise

Reports sensitized vectors for bitwise expressions, having bitwise
operators, and single-bit or one-bit operands. Use allvectors
argument along with scalarbitwise to report all possible
vectors for a bitwise expression.

obs

Enables observability based condition coverage. For more
information, see the topic “Condition Coverage Observability” on
page 43.

You can specify more than one argument. If you do, use the plus
delimiter (+) between arguments. For example:

-cm_cond basic+allops

Since they each specify mutually exclusive behavior, you cannot use
any of the full, std, obs, allvectors and basic arguments
together.

The std argument specifies the default settings for condition
coverage.

The following sections elaborate on the usage of the -cm_cond
compile-time option and explain other options that you can use to
modify condition coverage.

2-27

Commands Reference

Enabling Coverage for Event Controls

Note:
This feature does not apply to VHDL.

Verilog event controls can have subexpressions. For example:

@ (r1 or r2)

The subexpressions in this event control are r1 and r2.

You can use the event argument to the -cm_cond compile-time
option to make the occurrence of the transition specified by these
subexpressions into a condition in conditional coverage. For
example:

vcs verilog/design.vc -cm cond -cm_cond event

Where verilog/design.vc is an example from the $VCS_HOME/
doc/examples directory.

The event control must meet the following requirements for its
subexpressions to become conditions:

• The event control must be in the “sensitivity list” position,
immediately following the always keyword for an always block.

• The event control expression list must contain more than one
signal and also contain the or keyword or a comma.

• The event control must be explicit. This feature does not work for
Verilog 2001 implicit event controls. For example:

always @*

 2-28

Commands Reference

VCS monitors each of the signals in this list as conditions for
condition coverage. The resulting report appears similar to the
following:

LINE 45
 EXPRESSION (state or attention or full)
 --1-- ----2---- --3-

-1- -2- -3- Status
 1 - - Covered
 - 1 - Covered
 - - 1 Covered

Enabling Condition Coverage for More Operators

The truth or falsity of subexpressions, that are the operands of the
logical AND operator && and the logical OR operator ||, in
conditional expressions and in assignment statements are, by
default, conditions for condition coverage. To do this for
subexpressions that are the operands of other operators with the
full or allops arguments to the -cm_cond compile-time option,
use one of the following command lines:

% vcs verilog/design.vc -cm cond -cm_cond full

or

% vcs verilog/design.vc -cm cond -cm_cond allops

Where verilog/design.vc is an example from the $VCS_HOME/
doc/examples directory.

The URG condition coverage reports are as follows:

With -cm_cond full

 LINE 52
 EXPRESSION (((!full)) && ((!x_not)) && y_tot)

2-29

Commands Reference

 ----1---- -----2---- --3--

-1- -2- -3- Status
 0 0 0 Not Covered
 0 0 1 Not Covered
 0 1 0 Not Covered
 0 1 1 Not Covered
 1 0 0 Not Covered
 1 0 1 Not Covered
 1 1 0 Not Covered
 1 1 1 Covered

With -cm_cond allops

 LINE 53
 SUB-EXPRESSION (y_tot ^ ((!x_not)))
 --1-- -----2----

-1- -2- Status
 1 0 Not Covered
 1 1 Covered

The subexpressions of operators other that the logical AND && and
logical OR || are conditions for condition coverage.

Table 2-2 lists the Verilog operators whose subexpression operands
you can include in this expanded condition coverage. Table 2-2 lists
the VHDL operators whose subexpression operands you can
include in this expanded condition coverage.

Operator Description Type

== Logical equality Binary

!= Logical inequality Binary

& Bit-wise and Binary

| Bit-wise inclusive or Binary

^ Bit-wise xor Binary

^~ or ~^ Bit-wise xnor Binary

& Reduction and Unary

 2-30

Commands Reference

Table 2-2 Additional VHDL Operators for Condition Coverage

Enabling Condition Coverage for Allops

By default, VCS condition coverage covers only certain kinds of
conditions such as boolean expressions (single bit) and expressions
containing more than one term (for example, "if (a && b)" but not "if
(a)") or a part of ternary operator ("a <= b ? c : d;");

VCS can monitor an expanded set of conditions using the allops flag.
The VCS compile command for allops is as follows:

% vcs –cm cond –cm_cond allops mydesign.v

It is useful to track the logical combinations of every bitwise
operation in your simulation. It can greatly increase the coverage
runtime and memory usage overhead. The Table 2-3 shows some
examples of the differences between default expression and allops
condition coverage monitoring:

~& Reduction nand Unary

| Reduction or Unary

~| Reduction nor Unary

^ Reduction xor Unary

~^ Reduction xnor Unary

Operator Description Type

= Equality Binary

/= Non-equality Binary

< Less than Binary

<= Less than or equal to Binary

> Greater than Binary

>= Greater than or equal to Binary

Operator Description Type

2-31

Commands Reference

Table 2-3 Conditional Coverage Monitoring for allops

Note that for vector operations, such as the last two rows in
Table 2-3, each bit of the expression is monitored separately. For
example, for the last continuous assignment of a 4-bit expression,
the coverage report is as follows:

LINE 21

SUB-EXPRESSION BIT 3 of (z & w)

 1 2

-1- -2- Status
 0 1 Not Covered
 1 0 Not Covered
 1 1 Not Covered

LINE 21

SUB-EXPRESSION BIT 2 of (z & w)

Example Default allops

if (a && b) Yes Yes

a <= b ? c : d; Yes Yes

a <= (b == 1'b0); No Yes

if (a ^ b) No Yes

if(a) No Yes

if ((a % 100) == 0) No Yes

if(b == 1'b0) No Yes

if(a && (b ^ c)) No Yes

wire [3:0] z;
a <= |z;

No Yes

wire [3:0] y, z, w;
assign y <= z & w;

No Yes

 2-32

Commands Reference

 1 2

-1- -2- Status
 0 1 Not Covered
 1 0 Not Covered
 1 1 Not Covered

LINE 21

SUB-EXPRESSION BIT 1 of (z & w)

 1 2

-1- -2- Status
 0 1 Not Covered
 1 0 Not Covered
 1 1 Not Covered

LINE 21

SUB-EXPRESSION BIT 0 of (z & w)

 1 2

-1- -2- Status
 0 1 Not Covered
 1 0 Not Covered
 1 1 Not Covered

Depending on the design, it can cause significant additional
overhead in simulation time and memory use.

Enabling Condition Coverage in For Loops

By default, VCS does not monitor for conditional expressions in for
loops. For example:

2-33

Commands Reference

always @ r1
begin:named
integer i;
for (i=0;i<10;i=i+1)
 if(r1 && r2)
 r3=r1;
 else
 r3=r2;
end

In this example, VCS does not monitor the conditional expression
(r1 && r2) for condition coverage.

This default behavior occurs because for loops typically exist in
testbenches. You can instruct VCS to compile and monitor for
conditional expressions in for loops with the -cm_cond for
compile-time option. For example:

% vcs source.v -cm cond -cm_cond for

Note:
This feature does not apply to VHDL.

Enabling Condition Coverage in Tasks and Functions

By default, VCS does not monitor conditions in user-defined tasks
and functions. For example:

module test;
reg r1,r2,r3,r4,r5,r6;
.
.
.
task mytask;
input in;
output out;
reg tr1,tr2,tr3;

 2-34

Commands Reference

begin
if (r1 && r2)
 out=in;
 else
 if(tr1 || tr2)
 tr3=~in;
end
endtask
.
.
.
endmodule

VCS does not monitor the (r1 && r2) conditions or the (tr1 || tr2)
conditions in this task.

You can instruct VCS to compile and monitor these conditions with
the -cm_cond tf compile-time option and keyword argument. For
example:

vcs source.v -cm cond -cm_cond tf

VCS can monitor conditions in tasks (functions) independent of the
operands in the task (function) being declared locally or in the
module that contains the task (function).

Enabling Condition Coverage in Port Connection Lists

By default, VCS does not monitor conditional expressions in a port
connection list in a Verilog module instantiation statement. For
example:

module test;
.
.
.
dev d1 (.q(eIpu), .d(eIpurb), .en (rIpu || dIp || wIp),
.clk(cclk));

2-35

Commands Reference

.

.

.
endmodule

By default, VCS does not monitor the rIpu, dIp, or wIp conditions.
You can monitor these expressions with the ports keyword
argument to the -cm_cond compile-time option. For example:

% vcs exp1.v -cm cond -cm_cond ports

The URG condition coverage reports with -cm_cond ports option
is as follows:

LINE 11
EXPRESSION (rIpu || dIp || wIp)

--1- -2- -3-

-1- -2- -3- Status
 0 0 0 Covered
 0 0 1 Not Covered
 0 1 0 Not Covered
 1 0 0 Not Covered

Using Sensitized Multiple Condition Coverage Vectors

By default, VCS compile and monitor for sensitized multiple
condition coverage vectors.

Sensitized multiple condition coverage vectors enable you to see if
the execution of a block of code is sensitive to all the subexpressions
in a conditional expression. Consider the following Verilog if
statement:

if (in1 && in2 && && in3 && in4)
 begin
 .
 .

 2-36

Commands Reference

 .
 end

VCS does not execute the begin-end block if any of the signals in1,
in2, in3 or in4 are false. Because the operator in this expression
is the logical AND operator &&, you would want to determine if:

• During simulation, each of these signals were the only instance
that was false, and thus the sole cause of not executing the block.

• All of the signals were true, and therefore the block did execute.

if (in1 and in2 and in3 and in4) then

 end if;

The signals in1, in2, in3 or in4 are expected to be of type
Boolean only.

To determine if the block was sensitive to all four signals, you can
use sensitized condition coverage. With this coverage, VCS look for
the following patterns or vectors of values for these signals.

These patterns become conditions in condition coverage, therefore
instead of looking for eight conditions, that is the truth or falsity of all
four signals, VCS look for five conditions, one condition where all of
the subexpression signals are true, and four conditions where only
one of them is false.

in1 in2 in3 in4

0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

1 1 1 1

2-37

Commands Reference

Alternatively, if the operator in this expression were the logical OR
operator ||, you would want to determine if:

• During simulation, each of these signals was the only one that
was true, and the sole cause of executing the block.

• All of the signals were false and, therefore the block did not
execute.

When URG reports condition coverage, it duplicates these vectors of
values and informs you of whether or not these vectors were
covered.

You can enable sensitized condition coverage with the std
argument to the -cm_cond compile-time option:

% vcs source.v -cm cond -cm_cond std

or

% vcs cfg -cm cond -cm_cond std

However, you do not need to explicitly enable it. By default, VCS
generate sensitized condition coverage. If you specify the full or
basic arguments, you will not see sensitized condition coverage.

The URG report with the -cm_cond std option is as follows:

LINE 32
EXPRESSION (q && rIpu && dIp && wIp)

 -1- --2- -3- -4-

-1- -2- -3- -4- Status
 0 1 1 1 Covered
 1 0 1 1 Not Covered
 1 1 0 1 Not Covered
 1 1 1 0 Not Covered

 2-38

Commands Reference

 1 1 1 1 Covered

VHDL Data Type Difference

The VHDL LRM specifies that if the Boolean data type is the operand
to the right of the AND, OR, NAND, and NOR operators, that
operand is evaluated if the evaluation of the left operand does not
determine the value of the expression.

Therefore, for the expression:

A and B and C and D

If A and B has the Boolean data type, the sensitized vectors are as
follows:

Using the -cm_cond allvectors Option

Note:
- This feature does not apply to VHDL.

- -cm_cond full is a subset of -cm_cond allvectors
option.

0 - - - The leftmost operand determines the value of the
expression, which is 0. Therefore, VCS does not evaluate
the operands to the right.

1 0 - - The leftmost operand enables the evaluation of the first
right operand. The first right operand makes the expression
0. Therefore, VCS does not evaluate the other right
operands.

1 1 1 0 The previous three left operands enable the evaluation of
the last right operand. The last right operand makes the
expression 0.

1 1 1 1 All the operands make the expression 1.

2-39

Commands Reference

By default, VCS monitors only the sensitized vectors for any
condition expressions in your design.

source.v

module test;
reg a, b;
wire c;
reg [3:0] e,f;
wire [3:0] g;
assign c = a || b;
assign g = e |f;

endmodule

For example, if you compile the above example with the -cm cond
option, VCS reports only the sensitized vectors for the expression
"assign c = a || b", as follows:

LINE 6
EXPRESSION (a || b)
 1 2

-1- -2- Status
 0 0 Not Covered
 0 1 Not Covered
 1 0 Not Covered

To view all possible vectors for the expression
“assign c = a || b”, use the compile-time option
–cm_cond allvectors with –cm cond, as follows:

% vcs source.v -cm cond -cm_cond allvectors

or

% vcs -cm cond -cm_cond allvectors cfg

 2-40

Commands Reference

The report generated with the -cm_cond allvectors option is as
follows:

 LINE 6
 EXPRESSION (a || b)
 1 2

-1- -2- Status
 0 0 Not Covered
 0 1 Not Covered
 1 0 Not Covered
 1 1 Not Covered

Disabling Vector Conditions

If you do not want VCS to look for vectors of conditions, or URG to
report them, you can specify the basic argument to the -cm_cond
compile-time option:

% vcs source.v -cm cond -cm_cond basic

or

% vcs -cm cond -cm_cond basic cfg

The following example is the same example as shown in the
sections, “Using Sensitized Multiple Condition Coverage Vectors”
and “Using the -cm_cond allvectors Option” :

if (in1 && in2 && in3 && in4)
 begin
 .
 .
 .
 end

2-41

Commands Reference

In this example, if you specify the basic argument to the -cm_cond
compile-time option, the URG report appears as follows:

LINE 18
EXPRESSION (in1 && in2 && in3 && in4)
 -1- -2- -3- -4-

-1- -2- -3- -4- Status
 0 - - - Covered
 1 - - - Covered
 - 0 - - Not Covered
 - 1 - - Covered
 - - 0 - Not Covered
 - - 1 - Covered
 - - - 0 Not Covered
 - - - 1 Not Covered

Note:
The basic argument also specifies that only the subexpressions
of the logical AND operator && and the logical OR operator ||,
are conditions, therefore, if you use this argument and want other
conditions, also include the allops argument.

if (in1 AND in2 AND in3 AND in4)
 .
 .
 .

Note:
The basic argument also specifies that only the subexpressions
of the logical AND operator && and the logical OR operator ||,
are conditions, therefore, if you use this argument and want other
conditions, also include the allops argument.

The URG report is different for the Boolean data type as follows:

LINE 6

 2-42

Commands Reference

EXPRESSION (in1 and in2 and in3 and in4)
 -1- -2- -3- -4-

0 - - - | Not Covered
1 - - - | Not Covered
1 0 - - | Not Covered
1 1 - - | Not Covered
1 1 0 - | Not Covered
1 1 1 1 | Not Covered

This is different because the VHDL language specifies that VCS
cannot evaluate a Boolean operand to the right of the logical AND
operator && unless the evaluation of the Boolean operator to the left
of the AND operator is evaluated first.

Excluded Subexpressions

The truth or falsity of subexpressions with explicit X or Z value
operands cannot be conditions for condition coverage.

Note:
This does not apply to VHDL.

For example, in Verilog:

if(a == ’bx) && (b == ’bz))

The truth or falsity of subexpression operands of the operators in
Table 2-5 are not conditions in condition coverage even when you
include the full or allops arguments to the -cm_cond compile-
time option.

Operator Description Type

=== Case equality Binary

!== Case inequality Binary

~ Bit-wise negation Unary

2-43

Commands Reference

The Unified Report Generator (URG) generates combined reports
for all types of coverage information. You can view these reports
organized by the design hierarchy, module lists, or coverage groups.
You can also view the overall summary of the entire design/
testbench on the dashboard. The reports consist of a set of HTML or
text files.

The HTML version of the reports take the form of multiple interlinked
HTML files. For example, a hierarchy.html file shows the
design's hierarchy and contains links to individual pages for each
module and its instances.

The HTML file that URG writes can be read by any web browser that
supports CSS (Cascading Style Sheets) level 1, which includes
Internet Explorer (IE) 5.0 and later versions, any version of Opera,
and the later versions of Netscape Firefox 1.5.

Condition Coverage Observability

The observability feature is used to find out the situations where a
certain part of the combinational circuit is controlling (and hence
observable) the primary output of the combinational circuit. A vector
combination of a subexpression is marked as covered only if that
combination is controlling the primary output in the context of the
whole expression.

You can enable the observability based condition coverage using the
-cm cond -cm_cond obs compile option.

! Logical negation Unary

Operator Description Type

 2-44

Commands Reference

Note:
Observability-based report is only for sensitized vectors. The obs
sub-option cannot be used with -cm_cond basic, full, or
allvectors.

Currently, observability supports pure Verilog/SystemVerilog. In case
of MX, VCS generates a default condition coverage report for the
VHDL side and an observability-based condition coverage report on
the Verilog side.

Usage Model

Following is the syntax of the -cm cond -cm_cond obs switch:

% vcs -sverilog -cm cond -cm_cond obs observability_example.v
% simv -cm cond
% urg -format text -dir simv.vdb

where, observability_example.v contains the following code:

module cond_simple (a,b,c,d,out);
input a,b,c,d;
output out;
reg a,b,c,d;
reg out;
always@*
begin
 if((a && b)||(c && d))// Conditional expression
 begin
 $display ("AM at if loop \n");
 end
 else
 $display ("AM at else part of if loop \n");
end

initial
begin

#5 a=0; b=1; c=1; d=1;
 end

2-45

Commands Reference

initial
 #10 $finish();

endmodule

The generated URG report in html format is as follows:

 2-46

Commands Reference

A list is added after the condition expression to show the
dependencies.

In this example, for test vector combination {A, B, C, D} = {0, 1, 1, 1}
(A && B) = 0 and (C && D) = 1. So, (C && D) is observable at the
primary output, not (A && B).

"01" of table for "EXPRESSION ((a && b) || (c && d))" and "11" of
table for "SUB-EXPRESSION (c && d)" are marked as covered. But,
"01" of table for "SUB-EXPRESSION (a && b)" is not marked, as it
represents the expression (a && b) which is not observable in this
case.

Basic Rules of Determining Observability

The five gates AND, OR, NOT, XOR, and XNOR are treated as the
basic gates for the observability analysis.

The observability rules for each of them are as follows:

• OR — If all the inputs are 1, then nothing is observable. This
scenario is not considered. If any of the inputs is 0, it is not
observable (unless the other input is also 0), but the other input
will be observable. If both the inputs are 0, then both are
observable.

• AND — If all the inputs are 0, then nothing is observable. This
scenario is not considered. If any of the inputs is 1, it is not
observable (unless the other input is also 1), but the other input
will be observable. If both the inputs are 1, then both are
observable.

NOT, XOR, XNOR — Each of the inputs will always be observable.

2-47

Commands Reference

Specifying Continuous Assignment Coverage

The conditional expressions in Verilog continuous assignments are
conditions for condition coverage. For example, if a module definition
contains the following continuous assignment:

assign w1 = r1 ? (r2 ? (r3 ? 2’b11 : 2’b01) : 2’b10) : 2’b00;

Each of the conditional expressions, in this case signals r1, r2, and
r3, are conditional expressions for condition coverage, and URG
reports them as follows:

LINE 24
EXPRESSION (in1 ? (in2 ? (in3 ? 2'b11 : 2'b1) : 2'b10) : 2'b0)
 -1-

-1- Status
 0 Covered
 1 Covered

LINE 24
SUB-EXPRESSION (in2 ? (in3 ? 2'b11 : 2'b1) : 2'b10)
 -1-

-1- Status
 0 Not Covered
 1 Not Covered

LINE 24
SUB-EXPRESSION (in3 ? 2'b11 : 2'b1)
 -1-

-1- Status
 0 Not Covered
 1 Covered

 2-48

Commands Reference

Displaying Condition IDs

You can view the condition IDs in the condition coverage report using
the -cond ids option.

% urg -dir <simv.vdb> -cond ids

The following URG report displays the condition IDs:

LINE 23
 CONDITION_ID 5
 EXPRESSION (((a && b) || (c && d)) && (e || f))
 -----------1---------- ----2---

 ID -1- -2- Status
 1 0 1 Not Covered
 2 1 0 Not Covered
 3 1 1 Covered

 LINE 23
 CONDITION_ID 4
 EXPRESSION ((a && b) || (c && d))
 ----1--- ----2---

 ID -1- -2- Status
 1 0 0 Not Covered
 2 0 1 Not Covered
 3 1 0 Not Covered

 LINE 23
 CONDITION_ID 3
 EXPRESSION (a && b)
 1 2

 ID -1- -2- Status
 1 0 1 Excluded
 2 1 0 Not Covered
 3 1 1 Covered

2-49

Commands Reference

 LINE 23
 CONDITION_ID 2
 EXPRESSION (c && d)
 1 2

 ID -1- -2- Status
 1 0 1 Not Covered
 2 1 0 Not Covered
 3 1 1 Covered

 LINE 23
 CONDITION_ID 1
 EXPRESSION (e || f)
 1 2

 ID -1- -2- Status
 1 0 0 Not Covered
 2 0 1 Not Covered
 3 1 0 Not Covered

Using Multiple Condition Value Vectors With Constant
Filtering

When you use constant filtering, condition coverage reports do not
include condition value vectors in which one value in the vector
cannot be covered. The vectors it does display are not sensitized,
neither are all possible vectors, except those filtered out by the -
cm_noconst compile-time option.

URG report without the -cm_noconst <const_file> option

LINE 52
EXPRESSION (((!full)) && ((!x_not)) && y_tot)
 ----1---- -----2---- --3--

-1- -2- -3- Status
0 1 1 Not Covered

 2-50

Commands Reference

1 0 1 Not Covered
1 1 0 Not Covered
1 1 1 Covered

In the following example, a certain condition, net F having a true
value, cannot be covered. If you also use the -cm_constfile file
to specify that signal test.D is permanently at 0, the report file
would contain the following in the case of Verilog coverage:

module test;
 reg A,B,C,D,E;
 wire F;

 assign F = 1'b0;

 always @(A or B)
 begin
 C = (A && B && D);
 E = (C || F);

if (!D) C = 0;
 else C = (A || B);
 if (!F) E = 0;
 else E = 1;
 end

endmodule

URG report with the -cm_constfile option

LINE 9
EXPRESSION (A && B && D)
 1 2 3

-1- -2- -3- Status
 0 1 1 Unreachable
 1 0 1 Unreachable
 1 1 0 Not Covered
 1 1 1 Unreachable

2-51

Commands Reference

For line 9, there are no vectors where signal D has a value of 1.
Neither is there a vector where all the subexpressions have a value
of 0, therefore, you are not seeing all possible vectors, only those
that are filtered out. The three vectors for line 9 are the same vectors
you would see if you replaced D in line 9 with its permanent value, 0.

Similarly for line 10, there are no vectors where F has a value of 1.
The vectors are those you would see if you replaced F in line 10 with
0.

Omitting Coverage for Default Case Items

Typical usage of default case items in case statements is to tell VCS
what to do if the simulation does something that you do not expect,
that is, if it does not find a case item expression that matches the
case expression. For example:

case (r1)
1’b0 : r2=0;
1’b1 : r2=1;
default : begin
 if (f1 || f2)
 $display("one flag true");
 else
 $display("no flag true");
 $stop;
 end
endcase

In this example, the default case item displays information about the
current state of the design and then halts simulation for debugging.
It is not part of how the design works.

 2-52

Commands Reference

If you use default case items in this way, you might not want URG to
report line coverage information about default case statements when
they are not executed. You do not want to see a lower percentage of
coverage, just because VCS did not execute the default case
statement.

In this case, you can specify URG not to report line coverage
information when default case statements are not executed with the
-line nocasedef option on the URG command line. For example:

% urg -line nocasedef

Note:
This option does not stop URG from reporting toggle or FSM
coverage information about default case items. It also does not
stop URG from reporting line coverage information when VCS
executes default case items. To completely exclude the code
inside a default case item, use the VCS coverage off and on
pragmas.

More Options for Branch Coverage

For Loops and User-defined Tasks and Functions

If the if and case statements and the ternary operator (?:) are in
user-defined tasks or functions, or in code that executes as a result
of a for loop, by default VCS does not monitor them for branch
coverage. This is also true for condition coverage.

If you compile your Verilog design for condition coverage and enter
the -cm_cond compile-time option with the for and tf keyword
arguments, which tell VCS to compile the design for condition

2-53

Commands Reference

coverage in for loops and user-defined tasks and functions, VCS
will also compile the design for branch coverage in for loops and
user-defined tasks and functions. For example:

% vcs -cm cond+branch -f verilog/design.vc -cm_cond tf \
-cm_cond for

% simv -cm cond+branch

Limitations

The following compile-time options for coverage metrics do not work
with branch coverage:

-cm_count - Adds an execution count to reports.

More Options for FSM Coverage

Coding a Verilog FSM

There are a wide range of coding styles for FSMs. The FSM can
consist of a continuous assignment of the next state value to a net
using conditional operators along with procedural assignment
statements in an always block to transfer (assign) the next state
value of the net to the reg that holds the current state. More typically
the FSM consists of procedural statements inside an always block
including procedural assignments to one or more regs of current
state and next state values controlled by case, while, or if-else
statements.

This section includes various groups of statements which VCS/VCS
MX automatically extracts as an FSM.

 2-54

Commands Reference

Using the Encoded FSM Style

The encoded FSM style does not require that:

• Only one bit, in the vector reg that contains the current state, be
true

• You use the entire bit width of the reg for the state

In Example 2-2, the FSM has four possible states:

• NO_ONES

• ONE_ONE

• TWO_ONES

• AT_LEAST_THREE_ONES

Each state is delineated in a parameter declaration.

Example 2-2 FSM with States Delineated in a Parameter Declaration

module enum2_V(signal, clock, detect);
input signal, clock;
output detect;
reg detect;

parameter [1:0]
NO_ONES = 2’h0,
ONE_ONE = 2’h1,
TWO_ONES = 2’h2,
AT_LEAST_THREE_ONES = 2’h3;

// Declare current state and next state variables.
reg [1:0] cs, ns;

always @ (cs or signal)
 begin
 detect = 0;// default value

2-55

Commands Reference

if (signal == 0)
 ns = NO_ONES;

 else
 case (cs)

 NO_ONES: ns = ONE_ONE;
ONE_ONE: ns = TWO_ONES;
TWO_ONES,
AT_LEAST_THREE_ONES:
 begin

ns = AT_LEAST_THREE_ONES;
detect = 1;

 end
default: ns = NO_ONES;

 endcase
 end

always @ (posedge clock) begin
 cs = ns;
end

endmodule

In Example 2-2, the case expression is the reg that holds the current
state of the FSM. The case item expressions are states of the FSM.
When the current state of the FSM is that in the case item expression
the case item statements specify the next state of the FSM.

You can use signed values for the states of an FSM, as shown in
Example 2-3:

Example 2-3 FSM With Signed Values

module finite_state (clk, in, state);

input clk, in;
output state;

reg signed [1:0] state, next;

parameter signed idle=2’sb00, // 0

 2-56

Commands Reference

 first=2’sb01, // +1
 second=2’sb10, // -2
 third=2’sb11; // -1

initial begin
 state=idle;
 next=idle;
 end

always @ in
 begin
 next=state;
 case (state)
 idle : if(in) next=first;
 first : if(in) next=second;
 second: if(in) next=third;
 third : if(in) next=idle;
 endcase
 end

always @ (posedge clk)
 state=next;
endmodule

In the FSM in Example 2-4, the four possible states are A, B, C and
D. They are delineated in text macros specified in ‘define compiler
directives. In these ‘define compiler directives, the macro text that
VCS/VCS MX substitutes for the macro names A, B, C and D are
numeric constants 2’b00, 2’b01, 2’b10 and 2’b11. The ‘define
compiler directive text macros must substitute a numeric constant for
the macro name.

Example 2-4 FSM With States Delineated with Text Macros

‘define A 2’b00
‘define B 2’b01
‘define C 2’b10
‘define D 2’b11

2-57

Commands Reference

module counter_top_fsm(clock, reset, count,
mode, countA, countB);

input clock, reset;
input [3:0] countA, countB;
output [3:0] count;
output [1:0] mode;

reg [3:0] count;
reg [1:0] mode,mode_next;
reg [1:0] top_state, top_state_next;

always @ top_state
begin
case (top_state)
‘A : begin

 top_state_next = ‘B ;
 mode_next = 1;

 end
‘B : begin
 top_state_next = ‘C;
 mode_next = 2;
 end
‘C : begin
 top_state_next = ‘D;
 mode_next = 3;
 end
‘D : begin
 top_state_next = ‘A;
 mode_next = 0;
 end
endcase
end

always @(posedge clock)
begin
 if (!reset)
 begin
 count = 4’b0000;
 mode = 0;

 2-58

Commands Reference

 top_state_next = ‘A;
 top_state = ‘A;
 end
 else
 begin
 mode = mode_next;
 top_state = top_state_next;
 count = (mode == 0)? countA : countB;
 end
end
endmodule

Example 2-5 shows an FSM that has no reg or wire to hold the next
state of the FSM. VCS/VCS MX can still identify and extract this
FSM.

Example 2-5 FSM With No Next State Signal

module no_NS (en,clock,state);
input en,clock;
output [1:0] state;
reg [1:0] state;

initial
state=0;

always @ (posedge clock)
case (state)
 0: if (en == 1) state = 1;
 1: state = en == 0 ? 0: 2;
 2: state = en == 0 ? 1 : 0;
endcase

endmodule

In Example 2-5 the clock controls when the next state is assigned to
the state reg. The group of statements uses an expression that
uses the conditional operator to assign the next state to the state
reg.

2-59

Commands Reference

VCS/VCS MX can identify and extract an FSM even when the state
value propagates from the next state signal to the current state signal
through another module instance as shown in Example 2-6.

Note:
This feature does not apply to VHDL.

Example 2-6 State Value Propagating Through Another Instance

module fsm_mod (in);
input [1:0] in;
parameter
start=2’b11,step1=2’b10,step2=2’b01,finish=2’b00;

wire [1:0] current;

reg [1:0] next;

always @ in
begin
case(current)
start : next = step1;
step1 : next = step2;
step2 : next = finish;
finish : next = start;
default: next = step1;
endcase
end

connector ct1 (current,next);
endmodule

module connector (out,in);
output [1:0] out;
input [1:0] in;
reg [1:0] out;

always @ in
#5 out = in;

endmodule

 2-60

Commands Reference

VCS/VCS MX looks for a way for the state value to propagate from
the next state signal to the current state signal. In this example,
VCS/VCS MX determines that these two signals both connect to an
instance of the connector module, and in this module exists a
direct connection of the input and output ports. Therefore, VCS/VCS
MX extracts the FSM in module fsm_mod.

VCS/VCS MX does not search for this propagation path through
intermediate signals. If the connector module was defined as
follows:

module connector (out,in);
output [1:0] out;
input [1:0] in;
reg [1:0] r1;

assign out = r1;

always @ in
#5 r1 = in;

endmodule

VCS/VCS MX does not search for the path in → r1 → out and,
therefore, VCS/VCS MX does not automatically extract the FSM.

You can use a configuration file or pragmas to instruct VCS/VCS MX
to extract the FSM (see“Using an FSM Configuration File” and
“Coverage Pragmas”).

2-61

Commands Reference

Implementing Hot Bit or One Hot FSMs

Hot bit or One Hot FSMs are usually implemented with case
statements. The case expression is 1’b1, and the case item
expression is a specific bit of the reg that holds the current state of
the FSM.

Note:
Hot bit and One Hot FSMs are not applicable to VHDL.

Example 2-7 Hot Bit FSM

module prep3(clk, rst, in, out);
input clk, rst;
input [7:0] in;
output [7:0] out;

parameter [2:0]
START = 0 ,
SA = 1 ,
SB = 2 ,
SC = 3 ,
SD = 4 ,
SE = 5 ,
SF = 6 ,
SG = 7 ;

reg [7:0] state;
reg [7:0] next_state;
reg [7:0] out, next_out;
always @ (in or state) begin

// default values
next_state = 8’b0;
next_out = 8’bx;

case (1’b1)
state[START]:

if (in == 8’h3c) begin
next_state[SA] = 1’b1 ;

 2-62

Commands Reference

next_out = 8’h82 ;
end

else begin
next_state[START] = 1’b1 ;
next_out = 8’h00 ;
end

state[SA]:
case (in)
8’h2a:

begin
next_state[SC] = 1’b1 ;
next_out = 8’h40 ;
end

8’h1f:
begin
next_state[SB] = 1’b1 ;
next_out = 8’h20 ;
end

default:
begin
next_state[SA] = 1’b1 ;
next_out = 8’h04 ;
end
endcase

state[SB]:
if (in == 8’haa) begin

next_state[SE] = 1’b1 ;
next_out = 8’h11 ;
end

else begin
next_state[SF] = 1’b1 ;
next_out = 8’h30 ;
end

state[SC]:
begin
next_state[SD] = 1’b1 ;
next_out = 8’h08 ;
end

state[SD]:
begin
next_state[SG] = 1’b1 ;

2-63

Commands Reference

next_out = 8’h80 ;
end

state[SE]:
begin
next_state[START] = 1’b1 ;
next_out = 8’h40 ;
end

state[SF]:
begin
next_state[SG] = 1’b1 ;
next_out = 8’h02 ;
end

state[SG]:
begin
next_state[START] = 1’b1 ;
next_out = 8’h01 ;
end

endcase
end

// build the state flip-flops
always @ (posedge clk or negedge rst)

begin
if (!rst) begin

state <= #1 8’b0 ;
state[START] <= #2 1’b1 ;

end
else

state <= #1 next_state ;
end

// build the output flip-flops
always @ (posedge clk or negedge rst)

begin
if (!rst) out <= #1 8’b0 ;
else out <= #1 next_out ;

end

endmodule

 2-64

Commands Reference

Example 2-7 contains case statements, one nested inside the other.
The outer case statement is what makes this FSM a hot bit FSM. In
the outer case statement:

• The case expression is 1’b1.

• The case item expressions are state[START], state[SA],
state[SB], state[SC], state[SD], state[SE],
state[SF], and state[SG]. These expressions specify
specific bits of a reg named state that holds the current state of
the FSM. The parameter declaration in Example 2-7 specifies
parameters for bit numbers of that reg. More typically parameter
declarations specify the states of the FSM.

• The case item statements are begin-end blocks of statements,
including the nested case statement that control the assignment
of the next state of the FSM to the reg named next_state that
holds this next state.

The nature of the hot bit FSM is that only one bit of the reg that holds
the current state of the FSM can be true, and in this example, that is
also true of the reg that holds the next state.

Using Continuous Assignments for FSMs

Not all FSMs consist entirely of procedural statements in always
blocks. In this example, the next state signal is a wire and the next
state is assigned using a continuous assignment statement. An
always block changes the current state contained in a reg.

Example 2-8 Continuous Assignment Statement FSM

module M (x,clock);

input x,clock;
reg [1:0] state;

2-65

Commands Reference

wire [1:0] next;

always @ (posedge clock)
state = next;

assign next = state == 0 ?
 (x == 1 ? 1 : 0) :
 state == 1 ?
 (x == 0 ? 0 : 2) :
 state == 2 ?
 (x == 0 ? 1 : 0) :
 2’b00;
endmodule

In Example 2-8, the states are 0, 1, and 2. The reg named state
holds the current state and the wire named next holds the next
state.

Avoiding Substituting the Same Numeric Constant

When coding an FSM, avoid substituting the same numeric constant
for more than one macro name for a state in multiple ‘define
compiler directives, otherwise, this can cause VCS to confuse one
state for another. For example:

‘define first_state 0
‘define prime_state 0

Sequence Coverage

You can instruct VCS to compile for and monitor sequence coverage
with the -cm_fsmopt sequence compile-time option and keyword
argument.

 2-66

Commands Reference

With sequence coverage, you not only see the states that were
covered, but the sequences of states that were covered during
simulation.

Controlling How VCS Extract FSMs

When VCS compiles your design for FSM coverage, it extract FSMs
from your source code. Extracting FSMs means identifying a group
of statements to be an FSM, so that VCS is ready to keep track of
the states and transitions that occur in the FSM during simulation.

By default, VCS automatically extract all the FSMs that it can identify
in all the module definitions and VHDL architectures in your design.

When you compile the design with the -cm fsm switch, it extracts all
the FSMs that adheres to FSM coding guidelines. When you give the
-cm_fsmopt excludeCalcFsms switch with -cm fsm, then it
rejects the FSMs with one of the following statements, where cs =
current state and ns = next state:

 cs = Expr(cs) : Expr(cs) contains arithmetic;
 (following Expr is same)
 cs = Expr(ns) ;
 cs = Expr(foo); : foo is a Net or Reg
 ns = Expr(cs);
 ns = Expr(ns);
 ns = Expr(foo);

For example if the FSM contains the following line, then it will not be
extracted.

 ns = ns +1;

2-67

Commands Reference

However, you can limit the extraction of FSMs to a part or parts of the
design hierarchy that you specify with the -cm_hier compile-time
option.

You can also specify the FSMs in a module definition by using one
of the following:

• An FSM configuration file

• Pragmas in your code (does not apply to VHDL)

Using an FSM Configuration File

A configuration file enables you to specify:

• The FSMs that VCS extracts from a module or entity definition

• Which states and which transitions between states that VCS
keeps track of in the FSMs

• The maximum number of sequences that VCS keeps track of in
any of the modules or design entities in your design, and specify
the maximum length of any sequence that VCS keeps track of
(see “Specifying the Maximum for Sequences”)

When VCS compiles your Verilog design for coverage, it creates the
simv.vdb directory, and the snps/coverage/db directory in the
simv.vdb directory. If you compile your design for FSM coverage,
VCS writes the fsm.verilog.generated_config.txt file in
the simv.vdb/snps/coverage/db/shape directory. You can
either use this file, editing it to suit your needs, or start a new file as
your configuration file.

 2-68

Commands Reference

When VCS compiles your VHDL design, it creates the simv.vdb/
snps/coverage/db/shape directory and writes the
fsm.vhdl.generated_config.txt file in this directory.

You write a separate section in the configuration file for each module
definition or design entity definition for which you want to specify the
FSMs that VCS extracts.

VCS expects the entries in the FSM configuration file to be written in
a particular order. It expects the design level entries at the top,
followed by module level entries, and then the FSM level entries at
the bottom.

The syntax of a configuration file section is as follows:

SEQ_NUMBER_MAX = integer
SEQ_LENGTH_MAX = integer
MODULE = module_identifier
FSMS = RESTRICT | EXCLUDE
FSMS = START_STATE_DFLT
CURRENT = reg_identifier
NEXT = net_or_reg_identifier
STATES = list_of_states
STATES_X = list_of_states
STATES_NEVER = list_of_states
START_STATE = state
TRANSITIONS = list_of_transitions
TRANSITIONS_X = list_of_transitions
TRANSITIONS_NEVER = list_of_transitions
SEQ_REQUIRE = pattern
SEQ_EXCLUDE = pattern

The following tables describe the FSM configuration file entries:

Design Level Entries Description

SEQ_NUMBER_MAX = integer Specifies the maximum number of sequences in any
module or design entity that VCS maintains. The integer
value must be non-negative.

2-69

Commands Reference

SEQ_LENGTH_MAX = integer Specifies the length of the longest sequence that VCS
maintains. The integer value must be non-negative.

Module Level Entries Description

Verilog:
MODULE = module_identifier

VHDL:
MODULE = E
or
MODULE = lib.E

Specifies a module definition. VCS extracts FSMs from
all instances of this module definition.
This line is always required in a section.

For VHDL designs, specify the entity name as
MODULE = Ent_name, or as
MODULE = Library_name.Ent_name.

FSMS = RESTRICT Specifies that VCS only extracts the FSMs specified in
a line that begins with the keyword CURRENT. This line
is optional and specifies the default condition.

FSMS = EXCLUDE Specifies that VCS extracts all the FSMs in the module
or design entity definition except those specified in a
line that begins with the keyword CURRENT. This line is
optional.

FSMS = START_STATE_DFLT Specifies that VCS only maintains the sequences that
begin with the state that has the lowest value. This line
is also optional.
You can enter an FSMS = RESTRICT or
FSMS = EXCLUDE line along with an
FSMS = START_STATE_DFLT line.

FSM Level Entries Description

CURRENT = reg_identifier Specifies the Verilog variable or VHDL signal that
holds the current state of the FSM.
This line is always required in a section. If you want
to restrict extraction to, or exclude extraction from,
more than one FSM in the module or design entity
definition, enter this line for each FSM.

(continued)

 2-70

Commands Reference

NEXT = net_or_reg_identifier Specifies the wire or reg that holds the next state of
the FSM. This line is required if the FSM has a reg
or wire that holds the next state of the FSM. Like with
the CURRENT line, if you want to restrict extraction
to, or exclude extraction from, more than one FSM
in the module or design entity definition, enter this
line for each FSM.

STATES = list_of_states Specifies a list of states, or the values of states,
separated by commas. Specifying these states
ensures that VCS keeps track of transitions to these
states. This list is not restrictive; if the FSM
transitions to other states VCS also keeps track of
these transitions and reports these unlisted states
by value. This line is required in a section.

STATES_X = list_of_states Specifies a list of states, or the values of states, that
you want VCS to ignore. Separate the states by
commas. VCS does not keep track of these states,
transitions to and from these states, or sequences
that include these states. This line is optional.

STATES_NEVER = list_of_states Specifies a list of states, or the values of states, that
you want VCS to report as ILLEGAL in the report
files if there is a transition or sequence involving
these states or values. This line is also optional.

START_STATE = state Specifies a start state for the FSM such as a reset
state. This line is optional. When you include it VCS
only keeps track of sequences that begin and end
with this start state.

TRANSITIONS =
list_of_transitions

Specifies a list of transitions, separated by commas.
You can specify state names or state values. Like
the STATES line, specifying these transitions
ensures that VCS keeps track of them. This list is
not restrictive; if the FSM makes other transitions,
VCS also keeps track of them. This line is optional.

(continued)

TRANSITIONS_X =
list_of_transitions

Specifies a list of transitions that you want VCS to
ignore. You can specify transitions by state names
or state values. Separate the transitions by commas.
This line is optional.

2-71

Commands Reference

As shown in Example 2-9 and Example 2-10, if you have more states
or transitions than you want on a line, you can enter a line break and
enter more states or transitions on the following line.

Example 2-9 Verilog Configuration File

MODULE = fsmmod

CURRENT = cs
NEXT = ns
STATES = ZERO,ONE,TWO,THREE,FOUR,FIVE
START_STATE = ZERO
TRANSITIONS = ZERO->ONE, ONE->TWO, TWO->THREE,
THREE->FOUR, FOUR->FIVE, FIVE->ZERO

CURRENT = current_state
NEXT = next_state
STATES = step1, step2, step3

Example 2-10 VHDL Configuration File

MODULE=DEFAULT.E A
CURRENT=CS
NEXT=NS
STATES=s0,s1,s3
TRANSITIONS=s0->s1,
s1->s0,
s1->s3,

TRANSITIONS_NEVER =
list_of_transitions

Specifies a list of transitions that you want VCS to
report as ILLEGAL in the report files if there is a
transition or sequence involving these states or
values. You can specify transitions by state names
or state values. Separate the transitions by commas.
This line is also optional.

SEQ_REQUIRE = pattern Specifies a pattern of transitions. URG reports only
sequences that contain the pattern, see “Sequence
Filtering in Reports” .

SEQ_EXCLUDE = pattern Specifies a pattern of transitions. URG does not
report sequences that contain the pattern, see
“Sequence Filtering in Reports” .

 2-72

Commands Reference

s3->s0,
s3->s1

The TRANSITIONS Line

The TRANSITIONS line is optional. The syntax for the transition line
is as follows:

TRANSITIONS = state -> state, ...

The TRANSITIONS line can list one or more transitions from a state,
to a state, with these transitions separated by commas. Enter the
characters "->" between states to specify a transition between these
states.

You can add a second line to the TRANSITIONS line to list more
transitions.

The syntax for a TRANSITIONS_X or TRANSITIONS_NEVER line is
similar.

Specifying the Configuration File

VCS looks for a configuration file named cm.fsm_config in the
current directory. You can specify a configuration file with a different
name and location with an argument to the -cm_fsmcfg compile-
time option. For example:

% vcs -cm fsm -cm_fsmcfg myconfig.txt source.v

or

% vcs -cm fsm -cm_fsmcfg myconfig.txt cfg

2-73

Commands Reference

Sequence Filtering in Reports

You use the SEQ_REQUIRE and SEQ_EXCLUDE commands in the
FSM configuration file for filtering sequences in report files. You can
use either command separately or you can use them together to
specify what sequences you want reported in the report file. The
SEQ_REQUIRE command is used for specifying what must be
included in a sequence for URG to report the sequence. The
SEQ_EXCLUDE command is used for specifying what cannot be
included in a sequence for URG to report it.

The arguments to these commands are patterns for transitions and
can be any of the following:

• A state

• A transition between states

• A sequence of states of any length

You can use the wildcard character * in any transition or sequence
to specify a transition from/to any state.

The following are examples of these commands and arguments:

SEQ_REQUIRE=state2->state3

In this example, URG only reports sequences that include the
transition from state2 to state3.

SEQ_EXCLUDE=*->state2

In this example, URG does not report any sequence that includes a
transition from any other state to state2.

SEQ_REQUIRE=state4

 2-74

Commands Reference

SEQ_EXCLUDE=state4->state5

In this example, URG only reports sequences that include state4,
but does not report sequences that include a transition from state4
to state5.

Specifying the Maximum for Sequences

There are commands that you can enter at the beginning of the
configuration file that specify how VCS compile and monitor the
sequences in the FSMs in all the module or design entity definitions
in your design. These commands must come before any section for
a module or design entity definition. These commands are as
follows:

SEQ_NUMBER_MAX=integer
Specifies the maximum number of sequences in any module or
design entity that VCS maintains. The integer value must be non-
negative.

SEQ_LENGTH_MAX=integer
Specifies the length of the longest sequence that VCS maintains.
The integer value must be non-negative.

In a mixed HDL design, if you enter these commands in both the
Verilog and VHDL FSM configuration files, and the integer values are
not the same, VCS uses the higher value and displays a warning
message.

2-75

Commands Reference

Using the Configuration File for One Hot FSM

For one hot bit fsm, the states no longer represent values, but index
of the bit that needs to be turned on. Hence, 0 actually represents the
value 1 (if 0th bit is on, the value is 1), 1 represents 2, 2 represents
4, and so on.

For one hot bit FSM, you specify the indices instead of the values in
the configuration file. To specify indices, you need to wrap it with
square brackets. For values, you should not wrap it with square
brackets. This applies to states and transitions.

For example, in the configuration file if you specify:

MODULE=simple_fsm
CURRENT=currentState
NEXT=nextState
STATES='h0,SA,SB
TRANSITIONS='h0->SA
SA->'h0,
SA->SB,
SB->'h0,
SB->SA

Now, SA=0 and SB=1.

Here VCS reads the states as 0,0,1, which is wrong, because you
meant to specify 0 (as value), SA (as index, hence 1), SB (as index,
hence 2)). So, the correct way to specify the value or index is to use
square brackets as follows:

MODULE=simple_fsm
CURRENT=currentState
NEXT=nextState
STATES='h0,[SA],[SB]
TRANSITIONS='h0->[SA]
[SA]->'h0,
[SA]->[SB],

 2-76

Commands Reference

[SB]->'h0,
[SB]->[SA]

Reporting FSM State Values Instead of Named States

There are two ways to express an FSM:

• With procedural assignments to the entire reg (variable) that holds
the current state and sometimes to the reg that holds the next
state of the FSM. It could also be a continuous assignment to net
that holds the next state.

• With procedural assignments to individual bits of the reg that holds
the current or next state of the FSM.

VCS coverage metrics identifies the states of the FSM by analyzing
assignment statements. If VCS finds parameter names for bit
numbers in these assignment statements, and the FSM is expressed
as assignments to bits, like the Hot Bit or One Hot FSM in Example
2-7, by default, it uses these parameter names as the states of the
FSM. In the simulation of Example 2-7, by default, VCS monitors for,
and URG displays or reports transitions of START to SA or SE to
START instead of reporting the value transitions of the reg that holds
the current state.

If you want VCS to monitor the value of the reg that holds the current
state, and URG to display and report these values, instead of the
parameters like START and SA, enter the
-cm_fsmopt reportvalues compile-time option and keyword
argument.

In Example 2-7, using this compile-time option with the START to SA
transition would be reported as ’h1 to ’h2 and the SE to START
transition would be reported as a ’h20 to ’h1.

2-77

Commands Reference

This feature does not work for VHDL coverage metrics.

Enabling Indirect Assignment to State Variables

By default, the variable that holds the current state of the FSM must
be directly assigned a numerical constant or the value of a variable
that holds the next state of the FSM. You can allow FSM extraction
when there is indirect assignment to the variable that holds the
current state with the -cm_fsmopt allowTmp compile-time option
and keyword argument.

Without this option and argument, VCS does not extract the FSM in
Example 2-11:

Example 2-11 Indirect Assignment to State Variables

module fsm;
 reg [3:0] ns;
 wire [3:0] cs;
 Connect con(cs,ns);
 always @ cs
 casex(cs)
 4'b0000: ns=4'b0001; // 0?1
 4'b00x0: ns=4'b0011; // 2?3
 4'b001x: ns=4'b0010; // 3?2
 4'b0x11: ns=4'b0101; //none
 default: ns=4; // 1?4, 5?4
 endcase // casex(cs)
endmodule // fsm

module Connect(cs,ns);
 input [3:0] ns;
 output [3:0] cs;
 reg [3:0] temp; // this is the temp variable
 assign cs = temp;
 always @ ns
 begin #1 temp = ns;
 end

 2-78

Commands Reference

endmodule // Connect

In this FSM, the value of the signal that holds the next state of the
FSM is assigned to signal temp, which is continuously assigned to
the signal that holds the current state. You can instruct VCS to
extract the FSM despite this indirect assignment by using the
-cm_fsmopt allowTmp compile-time option and keyword
argument.

This feature does not work in VHDL coverage metrics.

Enabling Two-state FSMs

By default, FSMs must have more than two states. You can tell VCS
to extract two-state FSMs, scalar signals for the current and next
state, with the -cm_fsmopt report2StateFsms compile-time
option and keyword argument.

Without this option and argument, VCS does not extract the FSM in
the following code:

module fsm(in);
 input in;
 reg cs, ns;
 parameter zero=1'b0,
 one =1'b1;
 always @ in
 begin
 case(cs)
 zero : ns=one;
 one : ns=zero;
 endcase // case(cs)
 end
 always @ ns
 cs <= ns;
endmodule // fsm

2-79

Commands Reference

This feature does not work in VHDL coverage metrics.

Enabling the Monitoring of Self Looping FSMs

VCS can extract an FSM from code in which the signal that holds the
current state is assigned its current value. However, by default,VCS
cannot monitor and have URG report “transitions” in which it is
assigned its current value. You can enable this monitoring with the -
cm_fsmopt reportWait compile-time option and keyword
argument.

Without this option and argument, VCS cannot monitor certain
transitions in Example 2-12:

Example 2-12 Monitoring Self Looping FSMs

module fsm(sig1,sig2);
 input sig1,sig2;
 reg [2:0] cs,ns;
 parameter zero = 3'b000,
 first = 3'b001,
 second= 3'b010,
 third = 3'b011,
 fourth = 3'b100;
 always @ (cs or sig1)
 begin
 case (cs)
 zero : begin
 if (~sig1)
 ns = zero; // self loop
 else
 ns = first;
 end
 first :
 ns = second;
 second :
 ns = third;
 third :

 2-80

Commands Reference

 ns = fourth;
 fourth :
 if (~sig2)
 ns = zero;
 else
 ns = fourth; // self loop
 endcase // case(cs)
 end
 always @ sig2
 begin
 cs <= ns;
 end
endmodule // fsm

In this FSM, the current state signal is assigned the value of the next
state signal, and in some cases, the next state signal is assigned the
value of the current state signal, such as when the current state
signal value is zero or fourth.

Note:
There is a performance cost to using this feature. That is why it
is not the default behavior.

This feature does not work in VHDL coverage metrics.

Enabling X Value States

You may want to assign an X value to the signal that holds the
current state to indicate a problem in the logic of the FSM. By default,
VCS does not extract FSMs that have X values. However, you can
enable this extraction with the -cm_fsmopt reportXassign
compile-time option and keyword argument.

Without this option and argument, VCS does not extract the FSM in
Example 2-13:

2-81

Commands Reference

Example 2-13 Enabling X Value States

module fsm (sig) ;
 input sig;
 reg [10:0] ns;
 reg [10:0] cs;
 parameter IDLE = 0,
 STATE1 = 1,
 STATE2 = 2,
 STATE3 = 3;

 always @ cs
 begin
 case(cs)
 IDLE :
 ns = STATE1;
 STATE1 :
 ns = STATE2;
 STATE2 :
 ns = STATE3;
 STATE3 :
 ns = IDLE;
 default:
 ns = 4'bxxxx; // the whole value
 endcase // case(cs)
 end
 always @ sig
 begin
 cs <= ns;
 end
endmodule // fsm

module fsm1 (sig,reset) ;
 input sig,reset;
 reg [10:0] ns;
 reg [10:0] cs;
 parameter IDLE = 0,
 STATE1 = 1,
 STATE2 = 2,
 STATE3 = 3;

 always @ cs

 2-82

Commands Reference

 begin
 if(reset)
 cs=IDLE;
 else begin
 case(cs)
 IDLE :
 ns = STATE1;
 STATE1 :
 ns = STATE2;
 STATE2 :
 ns = STATE3;
 STATE3 :
 ns = IDLE;
 default:
 ns = 4'b000x; // just 1 bit is x
 endcase // case(cs)
 end // else: !if(reset)
 end
 always @ sig
 begin
 cs <= ns;
 end
endmodule // fsm1

URG reports transitions to and from X as follows:

IDLE->X
X->STATE2

This feature does not work in VHDL coverage metrics.

Filtering Out Transitions Caused by Specified Signals

You can filter out transitions in assignment statements controlled by
if statements where the conditional expression (following the if
keyword) is a signal you specify. You might want to do this, for
example, to a reset signal. This filtering out can be used for the

2-83

Commands Reference

specified signal in any module definition or in the module definition
you specify. You can also specify the FSM and whether the signal is
true or false.

To do this, use the -cm_fsmresetfilter compile-time option, and
in the file that you specify, include what you want to filter. The
following is an example of the contents of this file:

signal=reset case=TRUE
module=abc signal=rst case=FALSE
module=xyz fsm=state signal=more_rst CASE=TRUE
module=ABC fsm=STATE signal=reset case=NONE.

The first line does not specify a module, therefore, it applies to all
signals named reset in any module definition. The filtering out
applies when that signal is true.

The second line begins with a specified module, named abc. It
applies to the signal named rst when that signal is false.

The third line is used for module xyz. It applies to assignments in
FSM named state, to the signal named, more_rst, when that
signal is true.

The fourth line applies to the module named ABC, the FSM named
STATE, the signal named reset, and any type of transition on that
signal. The statement case=NONE specifies not considering the
value of the signal.

 2-84

Commands Reference

Note:
This applies only to assignments controlled by the if statement.
If you are using an if-else statement, it does not filter out
transitions controlled by the else part. Therefore, for example, if
the file contains the following entry:

signal=reset case=TRUE

In the following FSM:

always@ns
cs <= ns;

always@cs
begin
 if (reset)
 cs = 1;
 else
 cs <= ns;
 case(cs)
 0: ns=1;
 1: ns=2;
 2: ns=3;
 default: ns=0;
 endcase
end

The explicit assignment of the 1 value to the signal that holds the
current state is filtered out because it is controlled by the if part of
the if-else statement, but neither of the assignments of the next
state to the current state are filtered out, including the one controlled
by the else part.

2-85

Commands Reference

More Options for Functional Coverage

Options to Specify in the optconfigfile

Currently, the configuration file allows enabling/disabling of certain
optimizations on a design object such as a module definition, a
module instance, URG, or a module instance hierarchy.

You can enable instance coverage for all the covergroups at a global
level, rather than having to set option.per_instance for each
covergroup.

You can specify the following four options in the optconfigfile.

• CovgPerInstanceOn — This option is used to set
option.per_instance to 1 for all the covergroups.

• CovgStrobeOn — This option is used to set type_option.strobe
option to 1 for all the covergroups.

• CovgNoAutoCross — This option is used to disable auto-crosses,
for crosses having user-defined bins.

• Auto_bin_max — This option is used to override the default value
(64) of option.auto_bin_max for all the covergroups.

Usage

config_stmt := tree {$root} {list_of_covg_attribs}
| module {mod_name} {list_of_covg_attribs}

list_of_covg_attribs := CovgPerInstanceOn
| CovgStrobeOn
| CovgNoAutoCross
| auto_bin_max=<value>
| list_of_covg_attribs(,list_of_covg_attribs)

 2-86

Commands Reference

For example, using this optconfigfile, you can set the option
'auto_bin_max' to some value for all the covergroups in a given
module or in the entire design.

The "tree" keyword with "$root" as the (special) hierarchy name
indicates that these coverage attributes, when specified, apply to all
the covergroups in all module instances in the design.

Also note that the value of auto_bin_max mentioned in the config file
applies only to those covergroups/coverpoints that do not explicitly
override the option 'auto_bin_max'. That means, only the default
value of auto_bin_max is changed to the value mentioned in the
config file.

For more information about the auto_bin_max, strobe, and
per_instance attribute, see the IEEE SystemVerilog LRM.

Example

Config file specification (assume the config file name as covg.config)

tree {$root} {auto_bin_max=100, CovgPerInstanceOn,
CovgStrobeOn, CovgNoAutoCross};

For this example, VCS command is as follows:

% vcs +optconfigfile+covg.config -sverilog design.v

Note:
"$root" used in any context other than the coverage attributes
results in a compile-time error.

2-87

Commands Reference

Unified Coverage Directory and Database Control

A coverage directory named simv.vdb contains all the testbench
functional coverage data. For your reference, VCS associates a
logical test name with the coverage data that is generated by a
simulation. VCS assigns a default test name, which you can
override, by using the following tasks:

$coverage_set_test_database_name
 ("test_name","dir_name"); //For SV

task $coverage_set_test_database_name
 ("test_name","dir_name"); //For NTB

In order to not save the coverage data to a database file (for
example, if there is a verification error), use the following system
task:

$coverage_save_database (flag);

The value of flag can be:

• OFF for disabling database saving (not "backup")

• ON for enabling database saving (not "backup")

Loading Coverage Data

Both cumulative coverage data and instance-specific coverage data
can be loaded. The loading of coverage data from a previous VCS
run implies that the bin hits from the previous VCS run to this run are
to be added.

 2-88

Commands Reference

Loading Cumulative Coverage Data

The cumulative coverage data can be loaded either for all coverage
groups, or for a specific coverage group. To load the cumulative
coverage data for all coverage groups, use the following syntax:

$coverage_load_cumulative_data("test_name", "dir_name");

In this task, "dir_name" is optional. If you do not specify a
"dir_name", by default, simv.vdb is taken as the directory
containing the database.

The above tasks directs VCS to find the cumulative coverage data
for all coverage groups found in the specified database file and to
load this data if a coverage group with the appropriate name and
definition exists in this VCS run.

To load the cumulative coverage data for just a single coverage
group, use the following syntax:

$coverage_load_cumulative_cg_data("test_name",
 "covergroup_name", "dir_name");

In this task, "dir_name" is optional. If you do not specify a
"dir_name", by default, simv.vdb is taken as the directory
containing the database.

In the following example, there is a SystemVerilog class MyClass
with an embedded covergroup covType. VCS finds the
cumulative coverage data for the coverage group
MyClass::covType in the database file Run1 and loads it into the
covType embedded coverage group in MyClass.

Example 2-14

class MyClass;
 integer m_e;
 covergroup covType @m_e;

2-89

Commands Reference

 cp1 : coverpoint m_e;
 endgroup
endclass
...
$coverage_load_cumulative_cg_data("Run1",
 "MyClass::covType");

In the following example, a Vera class, MyClass, exists with an
embedded coverage object covType. VCS finds the cumulative
coverage data for the coverage group MyClass::covType in the
database file Run1 and loads it into the covType embedded
coverage_group in MyClass.

Example 2-15

MyClass{
integer m_e;
coverage_group covType{

sample_event = wait_var(m_e);
sample m_e;
}

}
...
...
coverage_load_cumulative_cg_data("Run1",

 "MyClass::covType");

Loading Instance Coverage Data

The coverage data can be loaded for a specific coverage instance.
To load the coverage data for a standalone coverage instance, use
the following syntax:

$covgLoadInstFromDbTest
 (coverage_instance,"test_name", "dir_name");
//For SV
coverage_instance.load("test_name", "dir_name");
//For NTB

 2-90

Commands Reference

In this task, "dir_name" is optional. If you do not specify a
"dir_name", by default, simv.vdb is taken as the directory
containing the database.

To load the coverage data for an embedded coverage instance, use
the following syntax:

$covgLoadInstFromDbTest (class_object.cov_group_name,
 "test_name", "dir_name"); //For SV
class_object.cov_group_name.load("test_name","dir_name");
//For NTB

In this task, "dir_name" is optional. If you do not specify a
"dir_name", by default, simv.vdb is taken as the directory
containing the database.

The above commands direct VCS to find the coverage data for the
specified instance name in the database, and load it into the
coverage instance.

In Example 2-16, there is a SystemVerilog class MyClass with an
embedded covergroup covType. Two objects obj1 and obj2 are
instantiated, each with the embedded covergroup covType. VCS
will find the coverage information for the coverage instance
obj1::covType from the database file Run1, and load this
coverage data into the newly instantiated obj1 object. Note that the
object obj2 will not be affected as part of this load operation.

Example 2-16

class MyClass;
 integer m_e;
 covergroup covType @m_e;
 cp1 : coverpoint m_e;
 endgroup
endclass
...
MyClass obj1 = new;

2-91

Commands Reference

$covgLoadInstFromDbTest(obj1,"Run1");
MyClass obj2 = new;

Note:
The compile-time or runtime options -cm_dir and -cm_name will
overwrite the calls to coverage_set_test_database_name
and load coverage data tasks.

In Example 2-17, there is a Vera class MyClass with an embedded
coverage object covType. Two objects obj1 and obj2 are
instantiated, each with the embedded coverage group covType.
VCS will find the coverage information for the coverage instance
obj1::covType from the database file Run1, and load this
coverage data into the newly-instantiated obj1 object. Note that the
object, obj2, will not be affected as part of this load operation.

Example 2-17

MyClass {
integer m_e;
coverage_group covType {

sample_event = wait_var(m_e);
sample m_e;
}

}
...
...
MyClass obj1 = new;
obj1.load("Run1");
MyClass obj2 = new;

Using -covg_disable_cg to Disable Functional
Coverage Items

The -covg_disable_cg option disables functional coverage
(covergroups) from the verification environment. You can use this
option at compile-time or runtime.

 2-92

Commands Reference

If you use this option at compile-time, all the covergroups are
disabled and even statements using covergroup instances are
removed. For example, if 'cg' is a covergroup, statements using
covergroups such as if(cg.get_coverage() < 80) begin ….
end gets eliminated.

If you use this option at runtime, all the covergroups are disabled.
There is no affect on statements using covergroup instances. The -
covg_disable_cg option is helpful in analyzing performance
impact due to functional coverage.

Similar to the -covg_disable_cg option, the -
cg_coverage_control=0 option too turns off functional coverage
collection. However, -cg_coverage_control=0 turns off
coverage collection at time 0, which you can turn on during runtime
inside your design using the $cg_coverage_control system
task.

Using -covg_no_guard_in_shape to Handle Guards
on Illegal/Ignore Bins

For an illegal/ignore coverpoint/cross bin having a guard condition,
the value of the condition evaluated when the covergroup to which
the bin belongs is sampled for the first time determines the creation
of the bin; it is dropped for a false value and is retained when the
value is true. This dependency on the values of the guard conditions
impacts the bin space of the covergroup. When there are multiple
instantiations of the group inside a module, the difference in the
guard values across the group instances will result in multiple
variants (shapes) being created for the covergroup, with the guard
values captured by the GUARD_ON/GUARD_OFF keywords in the
covergroup shape names generated by VCS.

2-93

Commands Reference

Such a shape altering behavior for illegal/ignore bins deviates from
the way guard conditions on the regular bins are handled.
Furthermore, SystemVerilog LRM does not indicate any special
treatment for illegal/ignore bins.

Under the run time switch, -covg_no_guard_in_shape, the
handling of guard conditions is unified across all bins. All illegal/
ignore bins are unconditionally retained irrespective of the values of
guard conditions specified on them, as done for regular bins. The
direct consequence is the non-impact of the guard values on the
binspace of the covergroup. The changes in the guard values across
instances of the group do not result in new shapes for the
covergroup. Therefore, the keywords GUARD_ON and GUARD_OFF
will not appear in the covergroup shapes names under this behavior.

Example

The following example illustrates the difference between the default
and under the switch behaviors:

The following example has a covergroup, cg_def. It has three
arguments, where two arguments are used to guard ignore cross
bins, bc2 and bd2, respectively, while the third argument is used to
set the option auto_bin_max for the coverpoints of the group.
Since the value of auto_bin_max impacts the bin space of the
covergroup, the respective argument abm, which is used to set the
option becomes a shape defining parameter for the group. The
group has six instances, namely, cgd1, cgd2, cgd3, cgd4, cgd5
and cgd6, respectively, with all the four possible guard value
combinations captured across them.

program test;
reg clk = 0;
bit [1:0] dat1, dat2, dat3;

 2-94

Commands Reference

bit gc;

covergroup cg_def(bit grd1, bit grd2, int abm) @clk;
 option.auto_bin_max = abm;
 d1: coverpoint dat1;
 d2: coverpoint dat2;
 d3: coverpoint dat3;

 d1xd2: cross d1, d2 {
 bins bc1 = binsof(d1) intersect {0} && binsof(d2)
intersect {0};
 ignore_bins bc2 = binsof(d1) intersect {1} &&
binsof(d2) intersect {1} iff (gc==grd1);
 }
 d1xd3: cross d1, d3 {
 bins bd1 = binsof(d1) intersect {0} && binsof(d3)
intersect {0};
 ignore_bins bd2 = binsof(d1) intersect {1} &&
binsof(d3) intersect {1} iff (gc==grd2);
 }
endgroup

initial
forever #2 clk = ~clk;

initial begin
 cg_def cgd1 = new(0,1,2);
 cg_def cgd2 = new(1,0,4);
 cg_def cgd3 = new(0,0,2);
 cg_def cgd4 = new(1,1,4);
 cg_def cgd5 = new(0,1,2);
 cg_def cgd6 = new(0,1,4);

 #2 $finish;
end

endprogram

2-95

Commands Reference

Under the default behavior, if in a particular group instance, a '0'
passed to grd1 will turn off the bin bc2. Similarly, a '0' passed to grd2
will turn off bd2. If '1' is passed to grd1, it results in the respective bins
getting retained. VCS generates five different shapes for cg_def
across the six instances:

0.00 1 100
test::cg_def::SHAPE{abm=4,Guard_ON(d1xd2.bc2),Guard_OFF(d1
xd3.bd2)} (for cgd1 and cgd5)
 0.00 1 100
test::cg_def::SHAPE{abm=2,Guard_ON(d1xd2.bc2),Guard_OFF(d1
xd3.bd2)} (for cgd2)
 0.00 1 100
test::cg_def::SHAPE{abm=4,Guard_OFF(d1xd2.bc2,d1xd3.bd2)}
(for cgd3)
 0.00 1 100
test::cg_def::SHAPE{abm=2,Guard_ON(d1xd2.bc2,d1xd3.bd2)}
(for cgd4)
 0.00 1 100
test::cg_def::SHAPE{abm=4,Guard_ON(d1xd3.bd2),Guard_OFF(d1
xd2.bc2)} (for cgd6)

Under the switch, however, where only the value of 'abm' has an
impact on the bin space, with guard values having no impact on the
covergroup shape. Consequently, only two shapes are created for
the group, as shown in the following code:

 0.00 1 100 test::cg_def::SHAPE{abm=4} (for cgd2,
cgd4 and cgd6)
 0.00 1 100 test::cg_def::SHAPE{abm=2} (for cgd1,
cgd3 and cgd5)

 2-96

Commands Reference

Note:It is not advisable to merge databases generated from run with
and without the switch when there are covergroups having ignore
or illegal bins specified with guard conditions. Since the names of
the covergroups change under the switch, as illustrated in the
example above, coverage reporting tools (URG, DVE and UCAPI)
cannot merge the shapes and report all of them. For the example
above, if a test is run twice, one each with and without the switch,
and the two databases are passed to URG or DVE for merging,
the tool will report seven shapes. It is strongly recommended to
avoid mixing both behaviors, i.e., if the switch is to be used, make
sure it is passed to all of the tests.

2-97

Commands Reference

Functional Coverage System Tasks Summary Table

Table 2-4 FCOV System Tasks for NTB

System Tasks Description

coverage_set_test_database_name
(test_name, dir_name)

Sets the name of the toplevel directory in which
coverage will be dumped and also the
associated test name. dir_name is optional and
the default is "simv.vdb".

coverage_set_test_database_name
("foo")

Creates a test named "foo" inside the directory
hierarchy starting with "simv.vdb".

coverage_set_test_database_name
("foo", "top/cdir")

Saves the testdata inside a test named "foo"
inside the toplevel coverage directory "top/
cdir.vdb" Note that the tool will add the ".vdb"
extension to the directory name (if the
extension is not already specified).

coverage_save_database(0/1) Passing the argument 1 will cause the
database to be dumped on to the disk at that
particular simulation time. Argument 0 will
mean that the coverage database is not saved
at all.

coverage_backup_database_test(0/1) Assume a coverage database "test" is present
inside "simv.vdb", During the next simulation
run, the new database will generated as
"test_gen1" thus in effect preserving the data
from the previous run.

coverage_load_cumulative_data
(test_name, dir_name)

Loads cumulative coverage data (all cover
group variants) for the database identified by
the test test_name and stored inside coverage
hierarchy starting with dir_name. Note that
dir_name is optional.

coverage_load_cumulative_data
("allTrans")

Loads all covergroup variants from the test
"allTrans" in the coverage directory "simv.vdb".

coverage_load_cumulative_data
("allTrans", "moo/foo.vdb")

Loads the test "allTrans" from the toplevel
directory "moo/foo.vdb".

coverage_load_cumulative_cg_data
(test_name, cg_name, dir_name)

Allows the specified covergroup to be loaded.
test_name and dir_name will work in the same
manner as for the previous system call.
cg_name is mandatory.

 2-98

Commands Reference

coverage_load_cumulative_cg_data
("foo", "covgrp1", "moo/foo.vdb")

Loads the cumulative data for covergroup
"covgrp1" from the test "foo" inside the toplevel
directory "moo/foo.vdb".

covg_inst.load(test_name, dir_name) Loads the specified instance (covg_inst) from
the coverage database identified by the test
test_name and top level directory dir_name.

coverage_set_database_file_name
(file_name)

Deprecated from VCS 2006.06.SP1 onwards.
Internally gets treated as
coverage_set_test_database_name.

coverage_set_database_file_name
("top/cdir/foo")

Will create the coverage database with test
name "foo" inside the directory hierarchy "top/
cdir.vdb"

coverage_backup_database_file(0/1) Deprecated from VCS 2006.06.SP1 onwards.
Works in the same manner as
coverage_backup_database_test

coverage_load(file_name) Deprecated from VCS 2006.06.SP1 onwards.
Internally gets treated as
coverage_load_cumulative_data.

coverage_load("moo/foo/allTrans" will load the test named "allTrans" from the
directory hierarchy "moo/foo.vdb"

coverage_control
(0/1, covergroup_name)

Turns on/off coverage collection for the
specified cover group.

coverage_control(0, "cov1") will turn off coverage control for the covergroup
named "cov1"

Table 2-4 FCOV System Tasks for NTB

System Tasks Description

2-99

Commands Reference

Note:
The test_name, dir_name, file_name, covergroup_name, and
inst_name are string arguments. You can either use a variable of
type string or a string constant itself.

Table 2-5 FCOV System Tasks for SV

System Tasks Description

$coverage_set_test_database_name(t
est_name, dir_name)

Same as coverage_set_test_database_name
in NTB.

$coverage_backup_database_test(0/
1)

Same as coverage_backup_database_test in
NTB.

$coverage_load_cumulative_data(test
_name, dir_name)

Same as coverage_load_cumulative_data in
NTB.

$coverage_load_cumulative_cg_data(t
est_name, cg_name, dir_name)

Same as coverage_load_cumulative_cg_data
in NTB.

$covgLoadInstFromDbTest(inst_name,
test_name, dir_name)

Loads the instance specified by inst_name
from the coverage database identified by the
test test_name and top level directory
dir_name. the last two arguments follow the
same semantics as covg_inst.load in NTB.

$load_coverage_db("dir_name/
test_name")

$load_coverage_db("moo/foo/allTrans") loads
the test name "allTrans" from the directory
hierarchy "moo/foo.vdb".

$cg_coverage_control(0/1,
covergroup_name)

Same as coverage_control in NTB.

 2-100

Commands Reference

Controlling the Scope of Coverage Compilation

You do not need to compile the entire design hierarchy for code
coverage. Instead, you can limit the scope of coverage metrics by
doing either of the following:

• Enter the -cm_hier compile-time option and its configuration file
to specify the module definitions, instances and subhierarchies,
and source files that you want VCS either to exclude from
coverage or exclusively compile for coverage (see “Using a
Configuration File”).

• Enter the -cm_report noinitial compile-time option to
disable the the monitoring of the contents of initial blocks for line,
condition, branch, and path metrics (see “Disabling the Monitoring
of Initial Blocks”).

• Enter pragmas in your Verilog source code to exclude lines,
source files, and module instances from coverage (see “Using
Pragmas to Limit Line Coverage”).

• Enter pragmas in your VHDL source code to exclude lines from
coverage (see “Using Pragmas to Limit VHDL Lines From
Coverage”).

Using a Configuration File

Note:
URG has an option, -hier, that accepts a subset of the controls
that can be used in the compile-time -cm_hier file. The files are
the same other than the differences noted below.

2-101

Commands Reference

Coverage metrics also has another type of configuration file
“Using an FSM Configuration File” on page 67 for specifying FSMs
in a design.

Statements in the configuration file begin with a plus (+) or minus (-
) sign. If a statement begins with a plus sign (+), it specifies what
VCS should compile for coverage. If a statement begins with a minus
sign (-), it specifies what VCS should not compile for coverage.

You can use the following statements in the configuration file:

+tree instance_name [level_number]
VCS compile only the specified instance and the instances under
it for coverage. These instances can be Verilog module or VHDL
entity instances. VCS exclude all other instances from coverage.

A level number of 0 (or no level number) specifies the entire
subhierarchy, 1 specifies only this instance, 2 specifies this
instance and those instances directly under this instance, 3
specifies this instance and instances in the subhierarchies that
are one and two levels below the specified instance. There is no
limit to the integer you specify as the level number.

If the subhierarchy includes instances in the other HDL, VCS does
not include these instances.

-tree instance_name [level_number]
VCS exclude this instance from coverage and other instances
under it. These instances can be Verilog module or VHDL entity
instances. VCS include all other instances in coverage.

A level number of 0 (or no level number) specifies the entire
subhierarchy, 1 specifies only this instance, 2 specifies this
instance and those instances directly under this instance, and so
on.

 2-102

Commands Reference

If the subhierarchy includes instances in the other HDL, VCS does
not exclude these instances.

+module module_name | entity_name
VCS compiles all instances of the specified Verilog module or
VHDL entity definition, and excludes all other definitions under it,
for coverage.

-module module_name | entity_name
VCS does not compile all instances of the specified Verilog
module or VHDL entity definition, and includes all other definitions
under it, for coverage.

+file file_name
VCS compile for coverage only the code in this file. If the file is
not in the current directory, specify the path name of the file.

-file file_name
VCS exclude the code in this file from coverage. If the file is not
in the current directory, specify the path name of the file.

+filelist file_name
VCS compile for coverage only the source files listed in the
specified file.

-filelist file_name
VCS exclude from coverage the source files listed in the specified
file.

The usage of environment variable in the path is allowed for the
above +/-file or filelist statements. For example:

-file $PATH/common/abc.v

-file $PATH/common/xyz.vhd

2-103

Commands Reference

The following statements (+library and -library) are not
supported in the file you submit to URG with the -hier command-
line option.

+library library_name
VCS compiles for coverage all the Verilog module and VHDL
entities in the specified library. VCS excludes all other Verilog
modules and VHDL entities from coverage.

-library library_name
VCS excludes from coverage all the Verilog modules and VHDL
entities in the specified library. VCS includes all other Verilog
modules and VHDL entities in coverage.

+moduletree module_name [level_number]
VCS provides coverage metrics for all instances of the specified
module and for all module instances in the hierarchy below the
specified module. In other words, each hierarchy tree starting at
each instance of the specified module will have coverage metrics
provided. The coverage metrics are only provided for the number
of levels of hierarchy specified by the optional level_number.

-moduletree module_name [level_number]
VCS excludes coverage metrics for all instances of the specified
module and for all module instances in the hierarchy below the
specified module. In other words, each hierarchy tree starting at
each instance of the specified module will have coverage metrics
excluded. The coverage metrics are only excluded for the number
of levels of hierarchy specified by the optional level_number.

+/-node

Excludes or includes a signal in toggle coverage. For more
information, see the topics “Excluding a Signal in Toggle
Coverage” on page 19 and “Including a Signal in Toggle
Coverage” on page 19.

 2-104

Commands Reference

This option is not supported with the urg -hier option.

You can use the * , ? and + wildcard characters in the configuration
file to specify definitions, instances, VHDL libraries, and file names.

You can add comments to this file using the convention for Verilog
comments. Comments are supported both at compile-time and at
report time with URG

Begin - End Blocks for Coverage Type Control

The keyword arguments to the -cm compile-time option (line,
cond, fsm, and tgl) specify the type of coverage for which VCS
compile. These arguments specify compiling the entire design for
that type of coverage. With begin-end blocks in the -cm_hier file,
you can specify what parts of the design VCS compile for each type
of coverage.

Note:
When you use this feature, the argument to the -cm compile-time
option enables the compilation of the type of coverage and the
entries in the -cm_hier file begin-end blocks specify where VCS
compiles for that type of coverage.

Lines in the -cm_hier file that are not begin-end blocks must
come before any begin-end block lines.

Type Used for...

// comment The end of the line comment.

code /* comment */ code The inside of a line comment.

/* comment 1
comment 2
comment3 */

Multiple line comments.

2-105

Commands Reference

The following are examples of the usage of begin-end blocks in the
-cm_hier file:

Example 1
begin fsm+line +tree TOP.D1 end

This line specifies that VCS compile only the instances in the
specified subhierarchy (TOP.D1) for FSM coverage. This line only
specifies where VCS compile for FSM coverage. If other types of
coverage are specified with other -cm compile-time option
arguments, VCS compile the entire design for those types of
coverage.

Note:
VHDL hierarchical names can only contain uppercase letters. This
requirement is not true for Verilog.

Example 2
begin line+tgl+cond -module bdev end

This line specifies that VCS does not compile the instances of the
module or design entity named bdev for line, toggle, and condition
coverage. To specify more than one type of coverage, use the plus
(+) delimiter.

Example 3
begin cond+line -library gate end
begin tgl -tree TOP.D1.L* end

The first begin-end block calls for excluding all instances of the
entities in the VHDL library named gate from condition and line
coverage. The second begin-end block calls for excluding all

 2-106

Commands Reference

subhierarchies where the top instance has a hierarchical name
beginning with TOP.D1.L (some of these uppercase letters could be
lowercase in the VHDL source code) from toggle coverage.

Example 4
+tree tb.dut1
begin line -module bdev end

The first line does not specify a type of coverage. It calls for VCS to
compile the instances in the subhierarchy with the top instance
tb.dut for the types of coverage specified with the -cm compile-
time option (the hierarchical name has lowercase letters so it must
be a Verilog instance).

The second line is a begin-end block that tells VCS not to compile all
instances of the definition named bdev for line coverage.

Disabling the Monitoring of Initial Blocks

The -cm_report noinitial compile-time option can be used to
disable the monitoring of the contents of initial blocks for line,
condition, branch, and path metrics.

In most of the cases, the initial blocks are completely covered, which
might increase the coverage percentage needlessly. Disabling the
monitoring of the contents of these initial blocks allows you to focus
on the actual design coverage.

Note:
Using the -cm_report noinitial compile-time option does
not affect toggle coverage and FSM coverage.

2-107

Commands Reference

Use Model

To disable the monitoring of the contents of initial blocks, include the
-cm_report noinitial compile-time option in the vcs
command-line.

For example,

module dut(a,b,c);
input a,b;
output c;
wire c;

assign c = a&&b;
endmodule
module tb();
 reg y,x,w;
 reg clk;
 wire z;
 initial begin

//The contents of this block are ignored for coverage
 $monitor($time,"x=%b,y=%b,z=%b",x,y,z);
 #1;

 clk = 1'b0;
 x = 1'b0
 y = 1'b0;
 #1;
 x = 1'b1;
 y = 1'b1;
 #1;
 x = 1'b0;
 y = 1'b0;
 #1;
 x = 1'b1;
 y = 1'b1;
 #1;
 x = 1'b0;
 y = 1'b0;
 #1;
 #50;

 2-108

Commands Reference

 $finish;
 end
 initial begin

//The contents of this block are ignored for coverage
 if(x)

 $display("In the if loop\n");
 else

 $display("In the else loop\n");
 end

 always #5
 clk = !clk;

 always@(posedge clk) begin
 if(z)

$display("z = 1'b1\n");
 else

$display("z = 1'b0\n");
 end dut dut1(x,y,z);
endmodule

To disable the monitoring of the contents of initial blocks in the
example, execute the following command:

% vcs test.v –cm line+branch+cond –cm_report noinitial

URG Report

The following is the URG report for the example. Note that the
contents of initial blocks are ignored for coverage.

--
Line Coverage for Module : tb

 Line No. Total Covered Percent
TOTAL 5 4 80.00
ALWAYS 42 2 2 100.00
ALWAYS 45 3 2 66.67

41 end

2-109

Commands Reference

42 1/1 always #5
43 1/1 clk = !clk;
44 always@(posedge clk) begin
45 1/1 if(z)
46 0/1 ==> $display("z = 1'b1\n");
47 else
48 1/1 $display("z = 1'b0\n");
--
Branch Coverage for Module : tb
 Line No. Total Covered Percent
Branches 2 1 50.00
IF 45 2 1 50.00

45 if(z)
 -1-
46 $display("z = 1'b1\n");
 ==>
47 else
48 $display("z = 1'b0\n");

Coverage Pragmas

Pragmas are meta comments in your source code.

VCS have pragmas that allow you to specify that certain lines of
Verilog code, Verilog source files, specified signal, and all instances
of certain module definitions are not to be compiled for line, toggle,
condition, FSM, or branch coverage. They work like compiler
directives.

These pragmas are as follows:

Pragma Description

//VCS coverage off Specifies disabling coverage for the block
of source code that follows.

 2-110

Commands Reference

The HDL Compiler and Behavioral Compiler users can use the
//synopsys translate_off directive in place of the //VCS
coverage off pragma and the //synopsys translate_on
directive in place of the //VCS coverage on pragma.

The //VCS coverage on pragma enables line coverage after a
//synopsys translate_off directive and a
//synopsys translate_off directive disables line coverage
after a //VCS coverage on pragma.

Similarly, the //VCS coverage off pragma disables line
coverage after a //synopsys translate_on directive and a
//synopsys translate_on directive enables line coverage after
a //VCS coverage off pragma.

//VCS coverage on Specifies re-enabling coverage for the
source code that follows when a previous
block of source code is disabled by the
//VCS coverage off pragma.

//VCS coverage exclude_file Specifies disabling coverage for the code
in the source file that contains this
pragma. Synopsys recommends entering
this pragma at the beginning of the source
file, before any module definitions.

//VCS coverage exclude_module Specifies disabling coverage for all
instances of the module definition that
contains this pragma. Synopsys
recommends entering this pragma
immediately after the port declarations.
This pragma does not exclude from
coverage the module instances
hierarchically under these instances. To
do this, see “Controlling the Scope of
Coverage Compilation” .

2-111

Commands Reference

Using Pragmas to Limit Line Coverage

When you disable line coverage using pragmas, URG indicates this
fact in its line coverage report.

Pragmas do not exclude module instances. For example:

module test;
reg clk, a;
// synopsys translate_off
mod1 inst1(a,clk);
// synopsys translate_on
.
.
.
endmodule

This example does not exclude test.inst1 from coverage.

Pragma pairs for disabling and re-enabling coverage cannot be used
across module boundaries or across blocks of code (such as begin-
end or always blocks). Figure 2-1 illustrates this point.

 2-112

Commands Reference

Figure 2-1 Using Pragmas

always @(posedge CLK)
 begin
 casex (Control_state_next)
 //VCS coverage off
 3’b0: PC = PCmux;
 //VCS coverage on
 3’b001: begin
 //VCS coverage off
 IR = Iin;
 end
 3’b010: begin
 RS_ALU = RSbus;
 //VCS coverage on
 T_ALU = RTbus;
 end
 3’b011: begin
 MAR = ALUout;
 SMDR = RTbus;
 end
 //VCS coverage off
 default: begin
 RS_ALU = RSbus;
 SMDR = ALUout;
 end
 endcase
 end

always @(Control_state_pres)
 begin
 casex (Control_state_pres)
 3’b100: Wrt_en = 1’b1;
 default: Wrt_en = 1’b0;
 endcase
 end
//VCS coverage on

The first pair is good

This pair straddles
begin-end boundaries

This pair straddles
always block
boundaries and is

and is therefore illegal

therefore illegal

2-113

Commands Reference

Using Pragmas to Limit VHDL Lines From Coverage

VCS has pragmas that instruct VCS not to compile certain lines of
VHDL sequential statements or concurrent signal assignments for
line and condition coverage. They also instruct VCS not to compile
certain signal declarations for toggle coverage. These pragmas are
as follows:

--synopsys coverage_off

Specifies disabling line and condition coverage for the sequential
statements or concurrent signal assignments that follow, for line
and condition coverage. Specifies disabling toggle coverage for
the signal declarations that follow.

--synopsys coverage_on

Specifies re-enabling line and condition coverage for the
sequential statements or concurrent signal assignments that
follow and also specifies re-enabling toggle coverage for the
signal declarations that follow, when a previous block of source
code is disabled by the --synopsys coverage_off pragma.

The following examples use these pragmas to disable and re-enable
line and condition coverage in a sequential code:

Example 1
architecture A of E is
.
.
.
begin
p : process
begin
--synopsys coverage_off
sig1 <= 0; -- not compiled for coverage
--synopsys coverage_on

 2-114

Commands Reference

if (x == '0') then
s <= y;
end if;
end process p;
end A;

VCS does not compile the signal assignment statement to signal
sig1 for line coverage.

Example 2

package body mypack is
procedure vec_assn(
signal out: bit_vector(3 downto 0);
x : bit_vector(3 downto 0)
) is
begin
--synopsys coverage_off
if (x == "000") then -- not compiled for coverage
 sequential statements -- not compiled for coverage
.
.
.
end if;
--synopsys coverage_on
out <= x;
end vec_assn;
.
.
.

VCS does not compile the sequential statements controlled by the
if statement in procedure vec_assn for line or condition coverage.

Example 3

You can also use these pragmas around signal declarations to
disable and re-enable toggle coverage. For example:

2-115

Commands Reference

architecture A of E is
signal clk : bit;
--synopsys coverage_off
signal flag1 : integer; --not compiled for toggle coverage
--synopsys coverage_on
signal flag2 : integer; --compiled for toggle coverage
begin
.
.
.
end A;

VCS does not compile signal flag1 for toggle coverage; it does
compile signal flag2 for toggle coverage.

Pragmas to Limit Toggle Coverage

To disable toggle coverage for a variable or a net, enter the pragma
before the variable or net declaration. The allowed pragmas are:

// VCS coverage off

// VCS coverage on

All code between the off and on is excluded for all code coverage
metrics. In the case of toggle coverage, the pragmas should block
out the reg / wire declaration and not the line that updates the reg or
wire.

Example 2-18 shows how this works:

Example 2-18 Pragmas for Toggle Coverage

module test;

//VCS coverage off
reg r1;

 2-116

Commands Reference

//VCS coverage on
reg r2,r3;
//VCS coverage off
wire w1;
//VCS coverage on
wire w2,w3;

initial
begin
#1 r1=1; //pragmas
 r2=1;
 r3=1;
#1 r1=0;
 r2=0;
 r3=0;
#1 r1=1;
 r2=1;
 r3=1;
#1 r2=0;
#1 r2=1;
#100 $finish;
end

assign w1=r1; // pragmas
assign w2=r2;
assign w3=r3;

endmodule

Example 2-18 contains pragmas before the reg r1 and wire w1
declarations, in order to exclude them from the toggle coverage.

The toggle coverage report shows reg r2 and r3 and wire w2 and
w3. It does not report reg r1 or wire w1.

Note:
This feature works only with Verilog code.

2-117

Commands Reference

If you enter any of these pragmas in your source code, but some
time later want VCS to ignore these pragmas, enter the -
cm_ignorepragmas compile-time option.

Pragmas to Limit FSM Coverage

You can use pragmas to specify an FSM that VCS might not
automatically extract.

Note:
Pragmas do not apply to VHDL.

With pragmas, you can inform VCS about the following FSM matter:

• The vector signal, part-select of a vector signal, or concatenation
of signals that hold the current state of the FSM.

• The vector signal that holds the next state of the FSM, unless the
FSM does not use a signal for the next state (in which case VCS
displays a warning and assumes that the current state and next
state are in the same signal, part-select of a signal, or
concatenation of signals).

• The possible states of the FSM that are specified in a parameter
declaration. When using pragmas to specify an FSM, there must
be a parameter declaration to specify the possible states of the
FSM.

Specifying the Signal That Holds the Current State

You use the following pragma to identify the vector signal that holds
the current state of the FSM:

/* VCS state_vector signal_name */

 2-118

Commands Reference

VCS and state_vector are required keywords. You must enter
this pragma inside the module definition where the signal is
declared.

You also must use a pragma to specify an enumeration name for the
FSM. This enumeration name is also specified for the next state and
the possible states, associating them with each other as part of the
same FSM. There are two ways you can do this:

• Use the same pragma:

/* VCS state_vector signal_name enum enumeration_name */

• Use a separate pragma in the signal’s declaration:

/* VCS state_vector signal_name */
reg [7:0] /* VCS enum enumeration_name */ signal_name;

In either case, enum is a required keyword. If using the separate
pragma, VCS is also a required keyword. Also, when using a
separate pragma, enter the pragma immediately after the bit range
of the signal.

Specifying the Part-Select that Holds the Current State

You can specify that a part-select of a vector signal holds the current
state of the FSM. Normally, when URG displays or reports FSM
coverage data, it names the FSM after the signal that holds the
current state. In your FSM, if a part-select holds the current state,
you must also specify a name for the FSM that URG can use. The
FSM name is not the same as the enumeration name.

You can specify the part-select with the following pragma:

2-119

Commands Reference

/* VCS state_vector signal_name[n:n] FSM_name enum
enumeration_name */

Specifying the Concatenation that Holds the Current
State

Like specifying a part-select, you can specify a concatenation of
signals to hold the current state. When you do this, you also need to
specify an FSM name and an enumeration name:

/* VCS state_vector {signal_name, signal_name,...} FSM_name
enum enumeration_name */

The concatenation is of the entire signals. You cannot include bit-
selects or part-selects of signals.

Specifying the Signal that Holds the Next State

You also specify the signal that holds the next state of the FSM with
the pragma that specifies the enumeration name:

reg [7:0] /* VCS enum enumeration_name */ signal_name

If, and only if, the FSM does not have a signal for the next state, you
can omit this pragma.

Specifying the Current and Next State Signals in the
Same Declaration

If you use the pragma for specifying the enumeration name in a
declaration of multiple signals, VCS assumes that the first signal
following the pragma holds the current state and the next signal
holds the next state. For example:

 2-120

Commands Reference

/* VCS state_vector cs */
reg [1:0] /* VCS enum myFSM */ cs, ns, nonstate;

In this example, VCS assumes that signal cs holds the current state
and signal ns holds the next state. It assumes nothing about signal
nonstate.

Specifying the Possible States of the FSM

You can also specify the possible states of the FSM with the pragma
that specifies the enumeration name:

parameter /* VCS enum enumeration_name */
 S0 = 0,
 s1 = 1,
 s2 = 2,
 s3 = 3;

Enter this pragma immediately after the keyword parameter,
unless you specify a bit width for the parameters. If you do specify a
bit width, enter the pragma immediately after the bit width:

parameter [1:0] /* VCS enum enumeration_name */
 S0 = 0,
 s1 = 1,
 s2 = 2,
 s3 = 3;

Pragmas in One Line Comments

These pragmas work in both block comments, between the /* and
*/ character strings, and in one line comments, following the //
character string. For example:

parameter [1:0] // VCS enum enumeration_name
 S0 = 0,

2-121

Commands Reference

 s1 = 1,
 s2 = 2,
 s3 = 3;

Specifying FSM With Pragmas - an Example

Using Pragmas to Limit Branch Coverage

The //VCS coverage exclude_file and
//VCS coverage exclude_module pragmas exclude a source
file or module definition from branch coverage.

Additionally, you can use the //VCS coverage off and //VCS
coverage on pragmas to exclude certain code from branch
coverage.

When you use if-else statements as in Example 2-19:

module m3;

 reg[31:0] cs;
 reg[31:0] /* VCS enum MY_FSM */ ns;
 reg[31:0] clk;
 reg[31:0] rst;

// VCS state_vector cs enum MY_FSM

 parameter // VCS enum MY_FSM
 p1=10,
 p2=11,
 p3=12;

 endmodule // m3

Signal ns holds the next state

signal cs holds the current state

p1, p2, and p3 are possible
states of the FSM

 2-122

Commands Reference

Example 2-19 If Statements in a Design

always @ (r1 or r2 or r3)
begin
if (r1)
 begin
 $display("r1 is true");
 r4=r1;
 end
else
 begin
 $display("r1 not true");
 if (r2)
 begin
 $display("r2 is true");
 r5=r2;
 end
 else
 begin
 $display("r2 not true");
 if (r3)
 begin
 $display("r3 is true");
 r6=r3;
 end
 else
 $display("r3 not true");
 end
 end
$display("no op");
end

URG reports a column for each conditional expression as in
Example 2-20:

Example 2-20 Branch Coverage Report

23 if (r1)
 -1-
24 begin
25 $display("r1 is true");
26 r4=r1;

2-123

Commands Reference

27 end
28 else
29 begin
30 $display("r1 not true");
31 if (r2)
 -2-
32 begin
33 $display("r2 is true");
34 r5=r2;
35 end
36 else
37 begin
38 $display("r2 not true");
39 if (r3)
 -3-
40 begin
41 $display("r3 is true");
42 r6=r3;
43 end
44 else
45 $display("r3 not true");
46 end
47 end

BRANCH -1- -2- -3-
 1 - - | Covered
 0 1 - | Covered
 0 0 1 | Covered
 0 0 0 | Covered

This examples includes branches starting at r1 and ending at r1,
r2, or r3.

You can use these pragmas to exclude one of the conditional
expressions for a if-else statement as shown in Example 2-21:

Example 2-21 Excluding a Conditional Expression for if-else statement

always @ (r1 or r2 or r3)
begin

 2-124

Commands Reference

if (r1)
 begin
 $display("r1 is true");
 r4=r1;
 end
//VCS coverage off
else
 begin
 $display("r1 not true");
 if (r2)
 begin
 $display("r2 is true");
 r5=r2;
 end
 else
 begin
 $display("r2 not true");
//VCS coverage on
 if (r3)
 begin
 $display("r3 is true");
 r6=r3;
 end
 else
 $display("r3 not true");
 end
 end
$display("no op");
end

In this case, URG reports on only the branch starting and ending at
r1. There is no new branch starting at r3 because the if statement
for r2 is excluded from coverage by the //VCS coverage off
pragma.

You can also use pragmas (see Example 2-22) to exclude code that
does not affect branch coverage, that is, the branches that VCS
identify as unchanged. For example:

2-125

Commands Reference

Example 2-22 Using Pragmas Without Affecting Branch Coverage

always @ (r1 or r2 or r3)
begin
if (r1)
 begin
 $display("r1 is true");
 r4=r1;
 end
else
 begin
//VCS coverage off
 $display("r1 not true");
//VCS coverage on
 if (r2)
 begin
 $display("r2 is true");
 r5=r2;
 end
 else
 begin
 $display("r2 not true");
 if (r3)
 begin
 $display("r3 is true");
 r6=r3;
 end
 else
 $display("r3 not true");
 end
 end
$display("no op");
end

When you use case statements as shown in Example 2-23,

Example 2-23 Using case Statements

always @ (r1 or r2 or r3)
case (r1)
 1 : case (r2)
 1 : r4=1;

 2-126

Commands Reference

 0 : r4=0;
 default : $display("r4 not assigned");
 endcase
 0 : case (r3)
 1 : r5=0;
 0 : r5=1;
 default : $display("r5 not assigned");
 endcase
 default : $display("no op");
endcase
URG includes a column for each case expression:

5 case (r1)
 -1-
6 1 : case (r2)
 -2-
7 1 : r4=1;
 ==>
8 0 : r4=0;
 ==>
9 default : $display("r4 not assigned");
 ==>
10 endcase
11 0 : case (r3)
 -3-
12 1 : r5=0;
 ==>
13 0 : r5=1;
 ==>
14 default : $display("r5 not assigned");
 ==>
15 endcase
16 default : $display("no op");
 ==>

Branches:

-1- -2- -3- Status
1 1 - Not Covered
1 0 - Not Covered
1 default - Not Covered
0 - 1 Not Covered

2-127

Commands Reference

0 - 0 Not Covered
0 - default Not Covered
default - - Not Covered

However, when you use pragmas to exclude a case statement, as
shown in Example 2-24, VCS identify no branches for that case
expression (see Example 2-25):

Example 2-24 Using Pragmas to Exclude case Statements

case (r1)
 1 : case (r2)
 1 : r4=1;
 0 : r4=0;
 default : $display("r4 not assigned");
 endcase
//VCS coverage off
 0 : case (r3)
 1 : r5=0;
 0 : r5=1;
 default : $display("r5 not assigned");
 endcase
//VCS coverage on
 default : $display("no op");
endcase

Example 2-25 URG Output When case Statements are Excluded With
Pragmas

5 case (r1)
 -1-
6 1 : case (r2)
 -2-
7 1 : r4=1;
 ==>
8 0 : r4=0;
 ==>
9 default : $display("r4 not assigned");
 ==>
10 endcase
11 //VCS coverage off

 2-128

Commands Reference

12 0 : case (r3)
13 1 : r5=0;
14 0 : r5=1;
15 default : $display("r5 not assigned");
16 endcase
17 //VCS coverage on
18 default : $display("no op");
 ==>

Branches:

-1- -2- Status
1 1 Not Covered
1 0 Not Covered
1 default Not Covered
default - Not Covered

When you use the ternary operator as shown in Example 2-26:

Example 2-26 Using the Ternary Operator

assign w1 = (r1==1) ?
 ((r2==1) ?
 ((r4==1) ? r6 : r7)
 : r5)
 : r3;

URG reports a column for each conditional expression (see Example
2-27)

Example 2-27 URG Output for a Ternary Operator

5 assign w1 = (r1==1) ?
 -1-
 ==>
6 ((r2==1) ?
 -2-
 ==>
7 ((r4==1) ? r6 : r7)
 -3-
 ==>

2-129

Commands Reference

Branches:

-1- -2- -3- Status
1 1 1 Not Covered
1 1 0 Not Covered
1 0 - Not Covered
0 - - Not Covered

If you use these pragmas to exclude one of the conditional
expressions for a ternary operator, as in Example 2-28,

Example 2-28 Excluding a Conditional Operator for the Ternary Operator

assign w1 = (r1==1) ?
//VCS coverage off
((r2==1) ?
//VCS coverage on
((r4==1) ? r6 : r7)
 : r5)
 : r3;

URG still reports the column for the conditional expression, as in
Example 2-29:

Example 2-29 URG Output When a Ternary Operator is Excluded with
Pragmas

5 assign w1 = (r1==1) ?
 -1-
 ==>
6 //VCS coverage off

7 ((r2==1) ?
 -2-
 ==>
8 //VCS coverage on

9 ((r4==1) ? r6 : r7)
 -3-

 2-130

Commands Reference

 ==>
 ==>

Branches:

-1- -2- -3- Status
1 1 1 Not Covered
1 1 0 Not Covered
1 0 - Not Covered
0 - - Not Covered

However, if you use these pragmas to exclude all the ternary
operators and conditional expressions, as shown in Example 2-30,
VCS does not compile for or monitor, and URG does not report,
these ternary operators and their conditional expression for branch
coverage:

Example 2-30 Excluding All Conditional Operators for the Ternary Operator

//VCS coverage off
assign w1 = (r1==1) ?
 ((r2==1) ?
 ((r4==1) ? r6 : r7)
 : r5)
 : r3;
//VCS coverage on

If you enter any of these pragmas in your source code, and at later
time, want VCS to ignore these pragmas, enter the -
cm_ignorepragmas compile-time option.

2-131

Commands Reference

Using Glitch Suppression

Signals often go through many oscillations before they settle down
for an event. Such transitions on a signal to a value for a short period
of time, or even transitioning to a value and then another value
during the same simulation time step can cause transitions or
toggles on other signals and cause some lines to execute, and
perhaps execute more than once, during the same time step.

These oscillations, glitches, or narrow pulses can skew the coverage
results in line, condition or toggle coverage, by showing lines,
conditions, or toggles that were covered only when these glitches
occur and not after these oscillating signals settle down.

To prevent this, you can use the -cm_glitch compile-time option
as follows:

vcs -cm line+cond+tgl -cm_glitch period

Specify the period with a non-negative integer.

When you use this switch for Line coverage, VCS ignores the
coverage in the first 'n' time units even though there are no glitches.
This is to ignore any glitches that might be happening during the
initial few timestamps due to the design setup.

You can use the –cm_glitch 0 option to remove the delta cycle
glitches. For example for

assign na = !a;
assign x = a ^ na;

 2-132

Commands Reference

The initial value of x is 1’b1. With change in signal ‘a’ at time T, x will
temporarily become 1’b0 and will be back to 1’b1. All this occurs in
the same time T. To remove such potential unnecessary glitch,
–cm_glitch 0 can be used. However, this will ensure that any
glitch that has a non-0 period is not filtered out.

The simulation time that you specify is similar to the simulation time
you specify in a delay specification (#10 for example). It is scaled
based on the time_unit and time_precision arguments to the
‘timescale compiler directive.

The -cm_glitch option is also a runtime option, but only works for
toggle coverage.

Glitch suppression works slightly differently in line, condition, and
toggle coverage, as explained in the following sections.

Line Coverage Glitch Suppression

In glitch suppression for line coverage, VCS looks for fast triggering
of always blocks, not initial blocks, and the glitch period is an
interval of simulation time in which there are one or more executions
of the statements in the always block.

When using glitch suppression, VCS only monitors and records the
results on the last execution of the always block during the glitch
period.

The -cm_glitch positive_integer compile-time option
specifies the simulation time period of glitch suppression.

Note:
Glitch suppression does not work for VHDL code.

2-133

Commands Reference

Figure 2-2 Line Coverage Glitch Period

Consider the following example:

module dev (output1,input1,input2,input3);
output output1;
input input1,input2,input3;
reg output1;
.
.
.
always @ (input1 or input2 or input3)
if (input1 && input2)
 output1=input3;
else
 output1=~input3;
.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

simulation time

always block
executions

glitch period

-cm_glitch 5

Coverage data only on the last
execution of the always block
during the glitch period

during the glitch
period

 2-134

Commands Reference

.

.
endmodule

Glitches, or narrow pulses, on the input ports of this module could
cause this always block to trigger (or execute) several times, while
little or no simulation time elapses, before the values on the input
ports settle down and there is a final execution of the always block.

In this example, the conditional expression (input1 && input2)
could be briefly true during one of these glitches or narrow pulses,
but after settling down the expression is finally not true. If this
happens, when VCS monitors instances of this module for line
coverage, it sees that the lines controlled by the if part and the
else part of this conditional expression, both assignment
statements, are executed.

With glitch suppression, VCS does not monitor this code for line
coverage during the entire length of these glitches or narrow pulses,
and in this example only, VCS sees the execution of the second
assignment statement in the final execution of the always block.

Limitation on Clocks

Line coverage interprets an event control with the posedge or
negedge keywords as specifying a clock and does not suppress
glitches, or narrow pulses, when you include the -cm_glitch
compile-time option. Consider the following line numbered example:

1 module test;
2 reg r1;
3 initial
4 begin
5 r1=0;
6 #5 r1=1;
7 #1 r1=0;

2-135

Commands Reference

8 #10 $finish;
9 end
10
11 dev dev1 (w1,r1);
12
13 endmodule
14
15 module dev (out,in1);
16 output out;
17 input in1;
18 reg out;
19 always @ (posedge in1)
20 if (in1)
21 out=in1; //Is this line covered?
22 else
23 out=~in1;
24 endmodule

Line coverage interprets signal in1 in line 19 as a clock because the
event control that controls the execution of the always block
(sometimes called the sensitivity list of the always block) includes
the keyword posedge.

If you entered the following command line:

vcs example.v -cm line -cm_glitch 1

You might expect line 21 not to be covered, because VCS executes
it when in1 is true, and as you can see from lines 6 and 7 that in1
will be true for only one time unit, which is the glitch period specified
on the command line.

However, line coverage does not suppress glitches on clocks,
therefore, line 21 will be reported as covered even when you specify
glitch suppression with the -cm_glitch compile-time option.

 2-136

Commands Reference

Toggle Coverage Glitch Suppression

The -cm_glitch positive_integer compile-time option
specifies the simulation time period of glitch suppression.

Unlike glitch suppression in line and condition coverage, glitch
suppression in toggle coverage is not focused on rapidly triggering
always blocks. Glitch suppression in toggle coverage indicates that
VCS does not monitor or record any value change on a signal that
lasts fewer simulation time units than the simulation time specified
with the -cm_glitch compile-time option. It does not matter
whether these short interval changes, or glitches, are caused by
statements in an always or initial block, continuous assignments, or
connections to a gate, primitive, or user-defined primitive (UDP).

Another difference between glitch suppression for toggle coverage
and glitch suppression for line or condition coverage, is that there is
a -cm_glitch runtime option for toggle coverage. This runtime
option overrides the glitch period for toggle coverage specified at
compile-time. This runtime option does not work for either line or
condition coverage.

Glitch suppression in toggle coverage is not necessary for zero time
glitches, that is transitions from 0 → 1 and then 1 → 0, or from 1 →
0 and then 0 → 1, during the same simulation time step. VCS never
monitors or records these transitions for toggle coverage.

Note:
This feature works only with Verilog code.

2-137

Commands Reference

Using Condition Coverage Glitch Suppression

The -cm_glitch positive_integer compile-time option
specifies the simulation time period of glitch suppression.

In glitch suppression for condition coverage, like glitch suppression
for line coverage, VCS looks for fast triggering of always blocks, not
initial blocks, and the glitch period is an interval of simulation time in
which there are one or more executions of the statements in the
always block.

Note:
Glitch suppression does not work for VHDL code.

When you use glitch suppression, VCS only monitors and records
the results on the last execution of the always block during the glitch
period.

Consider the following example:

module dev (out,in1,in2,in3,in4);
output out;
input in1,in2,in3,in4;
reg out;
.
.
.
always @ (in1 or in2 or in3)
if (in4)
 out=in1 && in2 && in3;
else
 out=~in4;
.
.
.
endmodule

 2-138

Commands Reference

Glitches or narrow pulses on the input ports could cause the always
block to execute several times, while little or no simulation time
elapses, before the values on the input ports settle and there is a
final execution of the always block.

In this example, the default condition coverage is on the assignment
statement that assigns an expression with the logical AND &&
operator:

out=in1 && in2 && in3;

These glitches, although momentary, by default would show a high
amount of coverage. For example:

LINE 29

 EXPRESSION (in1 && in2 && in3)
 -1- -2- -3-
1 0 1 | Covered
1 1 0 | Covered
1 1 1 | Covered

Including the -cm_glitch compile-time option, specifying a short
simulation time interval, but longer than the glitches or narrow
pulses, changes the coverage to the following:

LINE 29

 EXPRESSION (in1 && in2 && in3)
 -1- -2- -3-
-1- -2- -3-
0 1 1 | Not Covered
1 0 1 | Not Covered
1 1 0 | Not Covered
1 1 1 | Not Covered

 3-1

User-defined Coverage System Functions

3
User-defined Coverage System Functions 1

This chapter includes the following sections:

• “Coverage System Functions”

• “The $cm_coverage System Function”

• “The $cm_get_coverage System Function”

• “The $cm_get_limit System Function”

• “Examples”

• “Accessing Coverage Data During Simulation Using UCAPI”

 3-2

User-defined Coverage System Functions

Coverage System Functions

VCS has system functions for a real time API that enable you to write
test fixture modules that can do the following:

• Find out what type of coverage VCS is running for part of a design

• Start or stop a type of coverage for part of a design

• Determine how close you are to recording all the coverage data
that you can in a simulation run for a part of the design.

The parts of the design for which you can determine this information
or start or stop collecting coverage information can be any of the
following:

Note:
You can specify multiple parts of the design.

• All instances of a specific module definition

• All instances of a specific module definition and all module
instances hierarchically under these module instances

• A specific module instance

• A specific module instance and all module instances hierarchically
under this module instance

The user-defined system functions that enable you to do these
things are as follows:

 3-3

User-defined Coverage System Functions

$cm_coverage
Starts or stops monitoring for a particular type of coverage or
returns a value telling you what type of coverage data VCS is
gathering for a particular part of the design.
See “The $cm_coverage System Function” .

$cm_get_coverage
Used with $cm_get_limit, its return value represents how
much of a specific type of coverage data VCS has gathered so far.
See “The $cm_get_coverage System Function” .

$cm_get_limit
Used with $cm_get_coverage, its return value represents the
maximum amount of a specific type of coverage data VCS can
gather for part of a design. See “The $cm_get_limit System
Function” .

You use the $cm_coverage system function to both determine what
type of coverage information VCS is gathering and to enable or
disable gathering that information.

You can use the $cm_get_coverage and $cm_get_limit
system functions together, comparing their return values, to see how
close you are to gathering all the coverage information you can.
There are arguments for specifying the type of coverage and for
looking at how close you are for only part of the design.

The arguments to these system functions are for the most part
integer values. Synopsys provides a source file that defines text
macros for these integer values so that you can more easily see
what you are specifying in these system functions. For example:

$cm_coverage(3,4,11,"top.dev1");

 3-4

User-defined Coverage System Functions

and

$cm_coverage(‘CM_CHECK,‘CM_FSM,‘CM_HIER,"top.dev1");

Both specify checking to see if VCS is gathering FSM coverage for
the part of the design that is hierarchically under module instance
top.dev1. The second example is a lot more obvious because it uses
the macros defined in the $VCS_HOME/include/CoverMeter.vh file.

To use the text macros in the CoverMeter.vh file, do the following:

• Specify including the file with the ‘include compiler directive:

‘include "CoverMeter.vh"

• Tell VCS where to look for this file with the +incdir compile-time
option:

+incdir+$VCS_HOME/include

Note:
These system functions do not work if you do not enable
monitoring for coverage at runtime with the -cm runtime option.

 3-5

User-defined Coverage System Functions

The $cm_coverage System Function

The $cm_coverage system function starts or stops VCS from
monitoring for a particular type of coverage, or returns a value telling
you what type of coverage data VCS is gathering, for a particular part
of the design. Its syntax is as follows:

$cm_coverage(mode,type,include_hierarchy,
"module_or_instance",...)

Here:

mode
Specifies starting, stopping, or checking for a certain type of
coverage. These modes, their text macros, and their integer
equivalents are as follows:

‘CM_START 1 Specifies starting the type of coverage specified in the
type argument for the part or the design specified in
the include_hierarchy and
module_or_instance argument.

‘CM_STOP 2 Specifies stopping the type of coverage specified in the
type argument for the part or the design specified in
the include_hierarchy and
module_or_instance argument.

‘CM_CHECK 3 Specifies looking to see if VCS is gathering coverage
information for the type of coverage specified in the
type argument for the part or the design specified in
the include_hierarchy and
module_or_instance argument.
The return value from this system function, when you
specify this mode, tells you whether VCS is gathering
this information.

 3-6

User-defined Coverage System Functions

type
Specifies the type of coverage you want to start, stop, or check
for. These types, their text macros, and their integer equivalents
are as follows:

include_hierarchy
Specifies whether or not you want to also start, stop, or check for
the type of coverage in the design hierarchy under all instances
of the module or modules you specify in the
module_or_instance argument.

The text macros and integer equivalents that you can enter for
this argument are as follows:

module_or_instance
The module identifier (or name) of a module or the hierarchical
name of a module instance. When you specify a module identifier,
you specify all instances of this module.

Always enclose this argument in quotation marks.
You can specify more than one module identifier or module
instance. If you do, separate these arguments with commas and
enclose each in quotation marks, for example:

"module_identifier","module_instance_hierarchcal_name"

‘CM_SOURCE 1 Line coverage

‘CM_CONDITION 2 Condition coverage

‘CM_TOGGLE 3 Toggle coverage

‘CM_FSM 4 FSM coverage

‘CM_MODULE 10 Specifies not also starting, stopping, or checking for
coverage in the design hierarchy under the instances you
specify in the module_or_instance argument.

‘CM_HIER 11 Specifies also starting, stopping, or checking for coverage
in the design hierarchy under the instances you specify in
the module_or_instance argument.

 3-7

User-defined Coverage System Functions

Consider the following matrix for the include_hierarchy and
module_or_instance arguments:

Return Values

The $cm_coverage system function returns positive or negative
integer values. The meaning of these values is determined by the
mode argument. The $VCS_HOME/include/CoverMeter.vh file also
contains text macros for these return values.

When the mode argument is ‘CM_CHECK the text macros for, integer
values of, and meaning of the return values are as follows:

Specify a module identifier in
the module_or_instance
argument

Specify a hierarchical name
for a module identifier in the
module_or_instance
argument

Specify ‘CM_MODULE or its
equivalent integer for the
include_hierarchy
argument

Applies to all instances of the
specified module but none of
the module instances
hierarchically under these
instances.

Applies only to the specified
instance

Specify ‘CM_HIER or its
equivalent integer for the
include_hierarchy
argument

Applies to all instances of the
specified module and all the
module instances
hierarchically under these
instances.

Applies to the specified
instance and all module
instances hierarchically under
the specified instance.

‘CM_NOERROR 0 VCS is gathering the type of coverage
information specified with the type argument
for the module instances specified with the
include_hierarchy and
module_or_instance arguments.

‘CM_ERROR -1 There is an invalid argument.

‘CM_NOCOV -2 There is no coverage data of the type specified
for the instances specified.

‘CM_PARTIAL -3 There is coverage data of the type specified for
some, but not all, of the instances specified

 3-8

User-defined Coverage System Functions

When the mode argument is ‘CM_START the text macros for, integer
values of, and meaning of the return values are as follows:

When the mode argument is ‘CM_STOP the text macros for, integer
values of, and meaning of the return values are as follows:

‘CM_NOERROR 0 VCS has started gathering the type of coverage
information specified with the type argument for
the module instances specified with the
include_hierarchy and
module_or_instance arguments.

‘CM_ERROR -1 There is an invalid argument.

‘CM_NOCOV -2 VCS cannot gather the type of coverage information
specified with the type argument.
Usually this is because the source code is not
compiled for the type of coverage specified.

‘CM_PARTIAL -3 VCS cannot gather the type of coverage information
specified with the type argument for all instances
specified, but it can for some.
Usually this means only some of the specified
instances are not compiled for this type of coverage,
while other specified instances are.
The coverage data collected will be no different than
if you specified only the instances compiled for the
specified coverage type.

‘CM_NOERROR 0 Coverage successfully stopped

‘CM_ERROR -1 There is an invalid argument.

 3-9

User-defined Coverage System Functions

The $cm_get_coverage System Function

You can use the $cm_get_coverage system function to return a
value that you compare with the return value from the
$cm_get_limit system function to determine how close you are to
gathering all the coverage data you can gather in the current
simulation, of a specified coverage type, and from a specified part of
the design.

The return value from this system task is an integer representing how
much of the specified type of coverage information VCS has
gathered so far for the specified part of the design.

The syntax of the $cm_get_coverage system function is as
follows:

$cm_get_coverage(type, include_hierarchy,
"module_or_instance",...)

Here:

type
Specifies the type of coverage. These types, their text macros,
and their integer equivalents are as follows:

‘CM_SOURCE 1 Line coverage

‘CM_CONDITION 2 Condition coverage

‘CM_TOGGLE 3 Toggle coverage

‘CM_FSM 4 FSM transition coverage

‘CM_FSM_TRANS 4 FSM transition coverage (same as ‘CM_FSM)

‘CM_FSM_STATE 5 FSM state coverage

 3-10

User-defined Coverage System Functions

include_hierarchy
Specifies whether you want to see how close you are to gathering
all the coverage information you can in the design hierarchy under
the module instances you specify in the module_or_instance
argument.

The text macros and their integer equivalents for specifying
whether to include the subhierarchies under these instances are
as follows:

module_or_instance
The module identifier (or name) of a module or the hierarchical
name of a module instance.

Note:
Less detail is provided here for the include_hierarchy and
module_or_instance arguments than is provided for the
$cm_coverage system function. This is to avoid repeating a lot
of details because these arguments work the same way for this
system function as for the $cm_covergage system function. You
use these arguments to specify, for which part of the design, the
operation (in this case determining how much coverage data VCS
has gathered so far) applies.

‘CM_MODULE 10 Specifies not including in the design hierarchy under
the instances or instance of the module or instance
you specify in the module_or_instance
argument.

‘CM_HIER 11 Specifies including the design hierarchy under the
instances or instance of the module or instance you
specify in the module_or_instance
argument.

 3-11

User-defined Coverage System Functions

Return Values

If there are no error conditions, the $cm_get_coverage system
function returns either a zero or a positive integer value. You
compare this return value with the return value of the
$cm_get_limit system function. When they return matching
positive integer values for a specific type of coverage and for a
matching part of the design, then the current simulation run yields no
more additional coverage data. Without this comparison, which
positive integer is returned from this system function has no
particular significance.

When there is an error this system function returns negative integer
values. The text macros for, integer values of, and meaning of the
return values are as follows:

‘CM_ERROR -1 There is an invalid argument.

‘CM_NOCOV -2 The specified type of coverage data is not available
in this simulation run.

 3-12

User-defined Coverage System Functions

The $cm_get_limit System Function

You use the $cm_get_limit system function to return a value that
you compare with the return value from the $cm_get_coverage
system function to determine how close you are to gathering all the
coverage data you can gather in the current simulation of a specified
coverage type and from a specified part of the design.

The return value from this system task is a integer representing how
much of the specified type of coverage information, for the specified
part of the design, VCS could gather during the simulation. In
contrast, the return value of the $cm_get_coverage system
function is an integer representing how much coverage information
of the specified type VCS has gathered so far.

The syntax of the $cm_get_limit system function is, with the
exception of the system function name, identical to the syntax of the
$cm_get_coverage system function.

$cm_get_limit(type, include_hierarchy,
"module_or_instance",...)

The arguments, their text macros, and integer values are identical to
those of the $cm_get_coverage system function. When you use
these two system functions as intended, you use the same
arguments to specify the type of coverage, whether to include the
design hierarchy under the specified module definitions and instance
hierarchical names and matching module definitions and instance
hierarchical names.

 3-13

User-defined Coverage System Functions

Examples

Example 3-1 shows how to use this API to stop simulation when you
have sufficient coverage data. Example 3-2 show how to monitor
how close you are to full coverage data.

 3-14

User-defined Coverage System Functions

Example 3-1 Stopping Simulation When You Have Sufficient Coverage Data

In Example 3-1, the initial block does the following:

1. Assigns to integer get_limit the return value of
$cm_get_limit, which represents how much line coverage
data for module instance top.design1 VCS could gather during
the simulation.

2. Turns off line coverage for the entire design after 5 time units. The
delay is specified so that turning off line coverage happens after
it is started by the CoverMeter.tasks file.

‘timescale 1 ns / 1 ns

module top;
reg r1,r2;
wire w1, w2;
integer coverage_on_or_off,check_coverage,get_coverage,get_limit;

design design1 (w1,r1);

initial
begin
 #0 get_limit=$cm_get_limit(‘CM_SOURCE,‘CM_MODULE,"top.design1");
 #5 coverage_on_or_off= $cm_coverage(‘CM_STOP,‘CM_SOURCE,‘CM_HIER,"top");
 #5 coverage_on_or_off=
 $cm_coverage(‘CM_START,‘CM_SOURCE,‘CM_MODULE,"top.design1");
 r1=0;
 #1000 $finish;
end

always
begin
 #25 r1=~r1;
 get_coverage=$cm_get_coverage(‘CM_SOURCE,‘CM_MODULE,"top.design1");
 if (get_coverage>=get_limit*0.9)
 $finish;
end

endmodule

 3-15

User-defined Coverage System Functions

3. Turns on line coverage 5 time units after that but only for module
instance top.design1.

4. Initializes a stimulus reg.

5. Schedules simulation to end at simulation time 1010.

Also in Example 3-1, the always block does the following:

1. Toggles the stimulus reg.

2. Assigns to integer get_coverage the return value of
$cm_get_coverage, which represents how much line coverage
data for module instance top.design1 VCS has gathered so far.

3. Looks to see if the integer assigned to get_coverage is greater
than or equal to 90% of the integer assigned to get_limit, and
if it is, terminates the simulation.

 3-16

User-defined Coverage System Functions

Example 3-2 Displaying How Close You Are To Full Coverage Data

In Example 3-2, the initial block does the following:

1. At time 0, assigns to integer covdata the return value of the
$cm_coverage system function that is checking to see if VCS is
gathering line coverage information about module instance i1
and the hierarchy under i1.

2. Displays the return value.

3. Waits 1 time unit and then once again assigns to integer covdata
the return value of the $cm_coverage system function that is
checking for the same thing.

4. Displays the return value again. This value should be different
now that the CoverMeter.tasks file has started VCS for line
coverage.

 .

 .

 .

 initial
 begin
 covdata = $cm_coverage(‘CM_CHECK, ‘CM_SOURCE, ‘CM_HIER, "i1");
 $display($time,,"Source coverage check: %d", covdata);
 #1; // wait until after the coverage stuff is initialized
 covdata = $cm_coverage(‘CM_CHECK, ‘CM_SOURCE, ‘CM_HIER, "i1");
 $display($time,,"Source coverage check: %d", covdata);
 covdata = $cm_get_limit(‘CM_SOURCE, ‘CM_HIER, "i1");
 $display($time,,"Source limit : %d", covdata);
 #999;
 forever
 begin

 covdata = $cm_get_coverage(‘CM_SOURCE, ‘CM_HIER, "i1");

 3-17

User-defined Coverage System Functions

5. Assigns to integer covdata the return value of the
$cm_get_limit system function for the same type of coverage
and the same part of the design.

6. Displays the return value from the $cm_get_limit system
function.

7. After 999 time units begins a forever loop that does the following:

Assigns to integer covdata the return value of the
$cm_get_coverage system function for the same type of
coverage and the same part of the design.

Displays this return value.

Waits 100,000 time units before beginning the loop again.

Accessing Coverage Data During Simulation Using
UCAPI

You can access covergroup coverage data during simulation using
C code. You need to add $coverage_dump and
$coverage_reset system tasks to the Verilog code to perform the
following tasks:

• Monitor the coverage status periodically and modify external
stimuli.

• Clear the coverage data from the simulation state so that any
further data collected starts from scratch.

 3-18

User-defined Coverage System Functions

Monitoring the Coverage Data

You can monitor the coverage data during simulation as follows:

• Invoke a system task inside Verilog to dump the current coverage
status to disk.

• Open the dumped database using UCAPI functions and examine
the coverage status.

The system task $coverage_dump atomically dumps all coverage
data to the specified test name. You can give a simple test name,
mytest, or a composite name mydir/mytest, and specify where
the data will be dumped. For example, a Verilog program could
periodically dump the coverage status as follows:

always@(dump_me) begin
$coverage_dump(“mydir/myfile”);
$check_my_coverage(…);

end

Using this syntax, you can toggle the signal dump_me to cause the
current coverage status to be dumped to the mydir directory. The
snapshot of data that UCAPI calls will be given the name, myfile.
In this example, mydir/mytest is overwritten whenever dump_me
is toggled, but you can write a code to give a different name each
time based on a counter.

You can also call $coverage_dump directly using DPI if it is
wrapped in a Verilog task.

export “DPI” task dump_cov_data(string s);
task dump_cov_data(string s);
$coverage_dump(s);
endtask

 3-19

User-defined Coverage System Functions

After the dump is complete, the PLI function (in this example,
check_my_coverage) will be invoked, and you can use UCAPI to
open the dumped database, check the coverage status, and take
appropriate action. You can use UCAPI to load the data as follows:

covdbHandle design = covdb_load(covdbDesign, NULL,
“mydir”); covdbHandle test = covdb_load(design, design,
“mydir/myfile”);

From here, the application can iterate through all covergroups, or
walk over the design hierarchy. The $coverage_dump operation is
automatic, and there is no opening or closing of a database. When
$coverage_dump is called, the specified database is opened,
written, and closed, in one automatic operation.

Note:
As soon as a database is dumped using $coverage_dump, it is
accessible. Do not attempt to access the database until the
$coverage_dump operation is complete.

Resetting the Coverage Data

You can reset the accumulated coverage data using the system task,
$coverage_reset. The system task, $coverage_reset, clears
all coverage data for all covergroups in the current simulation. For
example:

always
begin
#10000

$coverage_dump(“mydir/myfile”);
if ($check_my_coverage(…))
$coverage_reset();

end

 3-20

User-defined Coverage System Functions

If the PLI function, $check_my_coverage, returns true, all
functional coverage data is reset, as if nothing had been covered up
to this point. To dump an empty coverage database, where no bins
are marked covered, you can write as follows:

$coverage_reset(); $coverage_dump(“mydir/myfile”);

The $coverage_reset system task does not remove any
covergroups from the current simulation run. It just resets all the bins’
hit counts to 0. You can only overwrite existing databases. However,
if you want additional data to be merged with an existing database,
you can write it with a new name as follows:

$coverage_dump.

$coverage_dump(“mydir/mytest1”); … $coverage_reset(); …
$coverage_dump(“mydir/mytest2”);

This code writes two different databases to disk – mydir/mytest1 and
mydir/mytest2. You can use UCAPI to load the first one with
covdb_load, and merge the second with covdb_loadmerge, merging
the data from the two separate databases. This way, you can save
and merge distinct databases.

Ignoring Coverage Collected during Parts of Simulation

You can ignore any collected coverage data. Consider the following
example:

At time N: $coverage_dump(“mydir/beforeN”);
At time M: $coverage_reset();

 3-21

User-defined Coverage System Functions

In this example, if there is a period between time N and M for which
you wish to ignore any collected coverage data, turn coverage off
during this time by writing the coverage status before time N to one
database, then clearing coverage data at time M before allowing
simulation to proceed.

The data collected after time M will be written out when simulation
exits (or at the next call to $coverage_dump) and will include only
the data collected since time M. For example, if test is called
“mydir/test.db”, when merged with the data stored in mydir/
beforeN, the effect is as if coverage had been disabled between
time N and M.

design = covdb_load(covdbDesign, NULL, “mydir”);
test = covdb_load(covdbTest, design, “mydir/beforeN”);
test = covdb_loadmerge(covdbTest, test, “mydir/test”);

Now the handle “test” contains the coverage data from simulation
from time 1 through N, and from time M through the end of simulation.
However, any covergroups instantiated between time N and M will still
be in the final written database (or any database written after time M).
You cannot disable or delete these groups through this interface.

How the Coverage Data Is Accessed

The coverage data is accessed during simulation as follows:

1. DPI function is defined and coverage data is dumped on demand.

export “DPI” task dump_cov_data(string s);
export “DPI” task clear_cov_data;
task dump_cov_data(string s);
$coverage_dump(s);
endtask task clear_cov_data;
$coverage_reset();
endtask

 3-22

User-defined Coverage System Functions

2. After simulation begins, coverage is dumped by PLI code calling
the DPI-exported.

task dump_cov_data:
… dump_cov_data(“mydir/test1”); …

3. The PLI code, which has been linked with UCAPI, then opens the
database and looks for the covergroup of interest (assume
tbMetric has already been found).

covdbHandle design = covdb_load(covdbDesign, NULL,
“mydir”);
covdbHandle test = covdb_load(design, design, “mydir/
test1”);
covdbHandle group, groups =
covdb_qualified_iterate(test, tbMetric,
covdbDefinitions);
while((group = covdb_scan(groups))) { if (this is the
group I want …) { … check coverage status …
} } covdb_release_handle(groups);

4. Control then returns to the simulation, which continues collecting
coverage. At a later point, the PLI code again causes coverage
results to be dumped and checks the covergroup of interest once
more. The new test is loaded and the covergroup handle is
acquired from scratch.

… dump_cov_data(“mydir/test2”);
design = covdb_load(covdbDesign, NULL, “mydir”);
test = covdb_load(design, design, “mydir/test2”);
groups = covdb_qualified_iterate(test, tbMetric,
covdbDefinitions);
while((group = covdb_scan(groups))) { if (this is the
group I want …) { … check coverage status …
} } covdb_release_handle(groups);

5. The coverage data is reset and simulation continues.

clear_cov_data(); return;

6. This iteration is repeated as many times as required.

 3-23

User-defined Coverage System Functions

At any given point, the PLI code can dump coverage, analyze it,
reset it, or allow it to continue without resetting. When simulation
exits, coverage data is dumped as normal2 – the $coverage_dump
and $coverage_reset system tasks have no effect on the final
database name.

After simulation exits, a standalone UCAPI program can be used to
load any of the databases dumped during simulation (or the name of
the final db), using the names specified when they were dumped, as
shown in the example code.

The name specified explicitly at compile time or the name given
during simulation using the SystemVerilog
$set_coverage_db_name system task. Because covergroups
can be dynamically instantiated during simulation, the database
written at time N may have fewer groups in it than the database
written at a later time N+C. This is because VCS only collects
coverage data for covergroups that are instantiated during
simulation.

Thus, there is no guarantee that all databases dumped from a given
simulation run will have the same groups in them. However, these
databases can still be merged to create a single result, just as
coverage results from multiple distinct simulation runs that may
instantiate different groups can be merged. Note that there is an
existing mechanism that allows individual covergroups to be
disabled and that is using the $cg_coverage_control system
task. The same system task can be used to disable all the
covergroups if there is no covergroup name specified as an
argument.

The use model for this system task is,

$cg_coverage_control(0/1 <,covergroup_name>)

 3-24

User-defined Coverage System Functions

where,

0 - coverage off

1 - coverage on

<,covergroup name> - (Optional) Overall covergroups are affected if
nothing is supplied here.

There is no additional way to explicitly disable functional coverage.
If $coverage_dump is called from multiple blocks at the same time
with the same argument, both calls will be processed, although the
order does not matter since they both will write exactly the same data
to disk. If $coverage_dump is called from multiple blocks at the
same time with different arguments, two identical databases will be
written.

If $coverage_dump is called multiple times during simulation with
no $coverage_reset, the databases dumped will have
“overlapping” data. For example, if you perform the following:

$coverage_dump(“mydir/test1”);
…
more simulation
…
$coverage_dump(“mydir/test2”);

Then the mydir/test2 directory contains all the coverage data (hit
counts, etc.) from mydir/test1 and the data collected after
mydir/test1 is dumped. Thus, if you use covdb_loadmerge to
merge mydir/test1 and mydir/test2, some of the coverage
data in effect is duplicated.

 3-25

User-defined Coverage System Functions

For example, say that when mydir/test1 is dumped, bin B1 had
15 hits. When mydir/test2 is dumped, B1 will have 25 hits. If you
merge mydir/test1 and mydir/test2, B1 will have 40 hits. It is
the responsibility of your application to manage the relationship of
these databases, since there is no way for UCAPI to know that
mydir/test is really a subset of mydir/test2.

 3-26

User-defined Coverage System Functions

 4-1

URG Options

4
URG Options 1

This chapter contains the following sections:

• “Command-Line Options”

• “Instance Coverage Score Option”

• “Covergroup Score Covered/Coverable Ratio Option”

• “Trend Chart Command-Line Options”

• “Reporting Element Holes”

 4-2

URG Options

Command-Line Options

Important:
The -tb maxmissing N option has been deprecated. You can
use the -group maxmissing N option which has the same
function.

URG supports the following command-line options:

urg
[-assert minimal]
[-dbname dirname][-dbname dirname/testname]
[-diff]
[-dir dir1 [dir2 ...] [-dir dir3 ...]
[-dump full_exclusions metric1[+metric2..]]
[-elfile <file>]
[-elfilelist <filelist>]
[-excl_bypass_checks]
[-excl_strict]
[-f file]
[-format text]
[-format both]
[-fsm disable_sequence]
[-fsm disable_loop]
[-full64 | -mod64]
[-grade [help] [... other grading options ...]]
[-group db_edit_file file]
[-group flex_merge_drop]
[-group instcov_for_score]
[-group merge_across_scope]
[-group maxmissing N]
[-group ratio]
[-group show_bin_values]
[-h | -help]
[-hier <file>]
[-high N]
[-hvp_disable_wildcards_in_cgshapeparam]
[-ID]

 4-3

URG Options

[-lca]
[-line nocasedef]
[-log file]
[-low N]
[-lpcov]
[-mapfile <file>]
[-map <mod>]
[-metric[+]line+fsm+cond+tgl+branch+assert+group]
[-mod filter.file mod.file]
[-noreport]
[-parallel <machine_file>]
[-parallel -maxjobs <Number>]
[-parallel_temproot]
[-plan file]
[-pathmap <file>]
[-report dir] [-parallel ...]
[-scorefile file]
[-show availabletests]
[-show brief]
[-show fullhier]
[-show hvpfullhier]
[-show hvpprob]
[-show legalonly]
[-show maxtests N]
[-show ratios]
[-show tests]
[-srcmap <from> <to>]
[-split N] [-split metric]
[-tests file]
[-tgl portsonly]
[-trend [help] [... other trend options ...]]
[+urg+lic+wait]
[-userdata file]
[-userdatafile file]
[-warn no<ID>,...,no<ID>] [-warn none]
[-warn none,<ID>,...,<ID>]

 4-4

URG Options

-assert minimal
Reports assertion coverage without loading the design
information. This is to improve performance and memory cost, for
example, for sparse assertions inside a big design, you needn’t
load the whole design information, but only load some modules/
instances which have assertions. Only report modules and
instances which have assertions in assertion coverage. Code
coverage database can not be loaded with this option.

With this option, the difference in the hierarchy page is as follows:

- If all instances have assertions, the hierarchy page is the same
as usual.

- If some of the instances have assertions, the nodes for the
instances with no assertions will not be existing in the hierarchy.
An instance will be taken as top level instance if its parent has
no assertion.

For example A.B.C.D.E.F, the ‘A’, ‘B’, ‘C’, and ‘F’ instances have
assertion. The hierarchy page looks like:

 A

 |----->B

 | |----->C

 |

 A.B.C.D.E.F

-cond ids

Displays the condition IDs in the condition coverage detail report.
See the section “Displaying Condition IDs” for more information.

 4-5

URG Options

-dbname dirname

Creates a merged database in the directory 'dirname.vdb'. The
name of the merged test will be 'test' by default. See “Using -
cm_dir and -dbname Options with the Unified Coverage
Database” .

-dbname dirname/testname

Creates a merged database in the directory 'dirname.vdb'.
The name of the merged test will be 'testname'.

-diff

Compares two databases and generates a difference report. Only
supported for assertion and testbench coverage.

-dir directory_name

Specifies coverage data directories. You can specify multiple
directories also and you need not specify -dir option with each
directory name as shown:

% urg -dir ./simv1.vdb ./simv2.vdb ./simv3.vdb

-dump full_exclusions

Dumps the metric specific exclusion files at instance-level and
module level. Each metric specific exclusion file includes the
exclusion entries for all the corresponding coverable objects for
each instance and module of a design.

-echo

Generates Echo bias file based on the holes in the given coverage
database. The suboptions are:

help — shows this description.

 4-6

URG Options

gen_bias N — splits uncovered holes into N bias files (a positive
integer must be given to enable Echo).

max_hole_size N — specifies the maximum number of bins
that can be grouped in single hole (optional - the default is 10).

 gen_bias_dir path — generates bias files in the given path
(optional - the default path is echoBiasConfigs/).

Echo is an LCA feature. For more information about Echo, see
the LCA category in the VCS Online Documentation.

-elfile <file>

Excludes coverable objects specified in <file> for code/assertion/
group coverage. For example:

urg –dir … –elfile filename.el

For more information about elfile, see the chapter "Exclusion" in
the Coverage Technology User Guide.

-elfilelist <filelist>

Specifies a file containing a list of exclude files to be loaded. For
example, a file 'foo' with these lines in it:

elfile1.el
elfile2.el

could be passed to URG as follows:

% urg -elfilelist foo …

 4-7

URG Options

Both elfile1.el and elfile2.el would be loaded as if they had been
passed to the -elfilelist option directly. The exclude files
are loaded in the order in which they are specified in the argument
to -elfilelist:

% urg -elfilelist <elfilelist_filename>

Note:
- You should create the file list of the exclusion files manually in

a text editor.

- You can specify an elfile at each line and add comments which
can begin with ‘#’.

- The elfile provided can be supplied with either a full path name
or relative path name and any environment variable
substitutions are not supported.

For example,

foo

elfile1.el
elfile2.el
dir1/dir2/file1.el
dir1/dir2/file2.el
/home/dir1/dir3/file3.el # for line coverage exclusion
File4.el # current directory

-excl_bypass_checks

By default, when an exclude file is specified to URG, the
checksums stored in the exclude file are compared to the
checksums in the design, and if there are mismatches, the
exclusions are not applied.

 4-8

URG Options

If the -excl_bypass_checks option is given, those
comparisons are not done, and all the exclusions are applied.

% urg -elfile <elfilename> -excl_bypass_checks

You must specify the -elfile option with the
-excel_bypass_checks option, else an error is generated.

-excl_strict

Does not allows covered objects to be excluded. '-elfile <file>'
must be given when this option is used.

-f file_name

Specifies multiple directories for source data in a file. You can also
specify the -f option when there are multiple coverage
directories.

For example, you can use the following command line options to
generate the URG report:

% urg -dir ./simv1.vdb ./simv2.vdb ./simv3.vdb

The size of the command line might exceed the RHEL32 limits
while adding more and more coverage databases to the URG
command line. In such cases, the -f option would suffice the
requirement.

% urg -dir ./simv1.vdb -f file_list

Here, file_list (./simv1.vdb ./simv2.vdb ./simv3.vdb)
contains the databases. These coverage databases can be
mentioned either with the absolute or the relative path in
file_list. You should at least pass one directory (./
simv1.vdb) if you are using the -dir option.

 4-9

URG Options

% urg -f file_list
Here, file_list contains all the databases (./simv1.vdb ./
simv2.vdb ./simv3.vdb) mentioned either with the absolute or
the relative path.

-format text

Generates text report. By default html report is generated unless
-format option is specified with text/both argument.

-format both

Generates both text and html report.

-fsm disable_sequence

Does not report FSM sequences.

-fsm disable_loop

Does not report FSM sequences containing loops.

-full64

Runs URG in 64-bit mode. However, URG auto invokes the 64-
bit URG binary if the following conditions are met:

- The -full64 option is not specified in the urg command-line.

- $VCS_HOME includes the 64-bit URG installation.

- At least one of the coverage databases passed to the urg
command-line is generated in the 64-bit VCS mode.

 4-10

URG Options

Note:
If you do not pass the -full64 option for $VCS_HOME that
includes only 64-bit installation and if at least one of the
coverage databases is generated in the 64-bit VCS mode, 64-
bit URG is auto invoked.

If you do not pass the -full64 option for $VCS_HOME that
includes only 32-bit installation and if at least one of the
coverage databases is in the 64-bit VCS mode, 32-bit URG is
invoked.

-grade [quick|greedy|score][goal R][timelimit N
[maxtests N][minincr R][reqtests
file_name][testfile]

quick

Generates a grading report, displaying cumulative and
incremental values of each metric for each test. The quick
grading algorithm is linear in the number of tests.

 Cumulative value is the coverage score after that test is merged
with all previous tests in the graded list. For each metric,
incremental value is the score improvement contributed to the
cumulative value by that test after merging.

greedy

Produces a report where the tests have been put in best-first
order based on usefulness of the tests. The greedy result shows
the cumulative, stand-alone, and incremental scores for each
test in the graded list. The greedy grading algorithm is quadratic
in the number of tests.

 4-11

URG Options

Cumulative value is the coverage score after that test is merged
with all previous tests in the graded list. Stand-alone value
represents the individual score of that test by itself. For each
metric, incremental value is the score improvement contributed
to the cumulative value by that test after merging. The greedy
argument is the default for the -grade option.

score

Shows the tests in default order and gives their stand-alone
scores only. The score grading algorithm is linear in the number
of tests.

The simulation time/random seed for testbench coverage in
URG is shown with the -grade score option only. The -
grade score gives information for seed/time and score for
each test, and also simply lists the tests in the best first order,
which is not expensive.

goal R

Displays the cumulative coverage goal. If not specified, the
program will process all specified tests.

timelimit N

Specifies the time limit for the report generator to run before
exiting. Only those tests that are graded before the time limit is
hit are included in the graded list.

maxtests N

Specifies the maximum number of tests to include in the report.

 4-12

URG Options

minincr

The score improvement for each metric that the test contributed
to the cumulative value when it was merged. This value is
specified as a real number between 0.00 and 100.00.

reqtests file_name

Use this option with greedy to specify reading a list of test
names from file_name for inclusion in the grading report.
Those tests are included at the top of the graded list, regardless
of their scores or effectiveness for coverage.

testfile

Use this option with -grade to generate the
gradedtests.txt text file, the gradedtests.txt file
contains a simple list of graded tests.

-group db_edit_file file

 Specifies the filename for editing database.

-group flex_merge_drop

Enables flexible merging for covergroups. For more information,
see the section "Flexible Merging" in the Coverage Technology
User Guide.

-group instcov_for_score

Compute scores using coverage of each instance for covergroups
with instance coverage enabled. For more information, see the
section “Instance Coverage Score Option” .

 4-13

URG Options

-group maxmissing N

Shows at most N uncovered bins for any coverpoint or cross in
group coverage reports. The default value is 256.

-group merge_across_scopes

Merges the functional coverage data from different coverage
databases having same covergroup but with different hierarchy.
For more information, see the section “Merge across-shape” .

-group ratio

Instructs URG to compute covergroup scores and overall group
scores as a simple ratio of the number of bins covered over the
total number of coverable bins. The result is an average score of
its variants and this option is shown in the dashboard.html
page.

-group show_bin_values

Displays bin definitions of coverpoints.
Requires -covg_dump_range at runtime.

-help and -h

Shows command line and options supported by URG.

-hier filename

Specifies the module, definitions, instances, subhierarchies, and
source files that you want URG either to exclude from reporting
or exclusively compile for coverage reporting. This option is used
with the configuration file.

 4-14

URG Options

Note:
The urg -hier filename option has the same format as
that of the file used in the -cm_hier filename option. For
more information, see “Controlling the Scope of Coverage
Compilation” section.

If the cover dir is simv1.vdb, the hier config file is hfile1. You
can use the command as shown:

% urg -dir simv1.vdb -hier hfile1

-high N

Shows any coverage number above N percent in green.

-hvp_disable_wildcards_in_cgshapeparam

This switch disables “*”, “/” and “?” wildcards in an expression
of a covergroup shape.

For example,

Group : test::cg::SHAPE{(this.arg11_0_cg_init *
this.arg12_0_cg_init)=3,(this.arg13_0_cg_init **
this.arg14_0_cg_init)=1,(this.arg1_0_cg_init **
this.arg2_0_cg_init)=1,(this.arg3_0_cg_init *
this.arg4_0_cg_init)=2,(this.arg5_0_cg_init **
this.arg6_0_cg_init)=1,(this.arg7_0_cg_init *
this.arg8_0_cg_init)=2,(this.arg9_0_cg_init **
this.arg10_0_cg_init)=2}.*

Inside the expression of test::cg::SHAPE none of the “*” are
treated as wildcards. However, the “*” that is provided after the
covergroup shape expression is treated as wildcard.

 4-15

URG Options

-ID

Displays the Host ID or dongle ID for your machine.

-lca

Enables limited customer availability features and print warning
message.

-line nocasedef

Excludes default cases in case statements from line coverage
reports.

-log file_name

Sends diagnostics to file_name as well as stdout/stderr.

-low N

Shows any coverage number below N percent in red.

-lpcov

Enables you to view the LP coverage report.

-mapfile

Allows you to specify an instance in your “base design” for which
you want to merge coverage data for two different designs.

urg -dir base.vdb -dir input.vdb -mapfile file_name
Where, file_name is the mapping configuration file. For more
information, see the section "Mapping Coverage" in the Coverage
Technology User Guide.

 4-16

URG Options

-map module_name

Maps subhierarchy code coverage from one design to another.
This option is not available for assert or group coverage. The full
hierarchy is generated in hierarchy.html file.

-metric [line+cond+fsm+tgl+branch+assert]

Limits report to specified metrics. For more information about
coverage metrics, see the Coverage Technology User Guide.

-mod file

Reads filtered or overrided HVP data from the specified 'file'. The
-plan options must also be given.

-noreport

Generates only the merged results when used with -dbname; this
option does not generate reports.

-parallel [machine_file]

Specifies merging the results from multiple tests in parallel. For
more information, see the section "Parallel Merging" in the
Coverage Technology User Guide.

-parallel -maxjobs <Number>

Sets the maximum number of jobs that run at the same time. It
works in both single and multi-machine mode, but not in LSF or
Grid mode. It also works for both level1 and other high level jobs.

In the single machine mode, the default value is 10. Only 10 jobs
will be running at the same time in a local machine. In the multi-
machine mode, the default value is 1. Each machine in machine
list file will be running 1 URG job.

 4-17

URG Options

Following is the algorithm for -maxjobs in multi-machine:

create queue for available machine, such as for 2 machines
and ‘-maxjobs 3’ ‘machine1, machine2, machine1, machine2,
machine1, machine2’.

Remove one from this queue to launch a job and push back the
machine name when one job is finished.

Limitation

The jobs across levels do not run at the same time. You need to
finish all level1 jobs, then start to launch level2 jobs.

-plan

Annotates the user-defined HVP (Hierarchical Verification Plan)
data.

For example,

% urg -plan yourPlan.hvp -dir yourCoverageDB.vdb \
-annotate bugRate.txt

For more information on how to generate the HVP using the
Verification Planner Editor, see the Verification Planner Editor
under the LCA Category in the VCS Online Documentation.

-report mydir

Generates a report in mydir instead of default directory
urgReport.

 4-18

URG Options

-scorefile file_name

Specifies a file containing different weights for each metric. The
metrics that are not specified in the score file will have the default
weight one.

-show availabletests

Lists the tests found in each of the specified -dir directories and
exits without generating a report. By default, URG reads all the
test files in the directories specified by the -dir option. You can
edit the resulting list and use it with the -tests option.

For example:

% urg -dir simv.vdb -show availabletests

The output looks like this:

Available tests names:
simv/test1
simv/test2

You can control which tests from a directory (or set of directories)
are loaded by URG by passing a text file to the -tests option.
The entries in the -tests file are in the same format as the output
of urg -show availabletests. In fact, you can edit the
availabletests output to create your -tests input file.

% urg -tests file_name

-show brief

Shows uncovered data only.

 4-19

URG Options

-show fullhier

Shows full hierarchy, including instances that have a hierarchical
coverable count of zero.

-show hvpfullhier

Shows the full hvp hierarchy, including the plans and all the
features which are filtered out.

-show hvpprob

Shows problem hvp hierarchy only. When you use this option, the
default hvp*.html reports are reduced in size. This is used in cases
where you would like a concise report of only the problems.

-show legalonly

Shows only legal coverable objects and suppresses showing
illegal coverable objects.

-show maxtests N

Specifies the maximum number of tests that are displayed with -
show tests. The default number of test is three.

-show ratios

Displays ratio score in the URG report. See “Displaying Ratio
Score in URG Report” .

-show tests

Lists all the tests that covered a given object. Only supported for
assertion and testbench coverage.

 4-20

URG Options

When you have multiple test files (intermediate results files) from
multiple simulations, URG merges the coverage results so that if
something is covered in one, but not all the test files, URG reports
it as covered.

In covergroup and assertion coverage, you can have URG
indicate in the modinfo.txt/mod*.html pages which test covered
each assertion or bin. This feature is enabled with the -show
tests option.

Important:
The -show alltests option has been deprecated. Use
the -grade score option which has the same function.

-pathmap file

Relocates source files with mapping rules in <file>. For more
information, see the section "Mapping Coverage’ in the Coverage
Technology User Guide.

Note:
The -srcmap option is replaced with the -pathmap option

-split metric

Splits all module and instance reports by metric.

-split N

Controls the size of all files before being split. The argument is an
integer specifying the maximum size in kilobytes (KB) for any
generated file. This number is used as a guideline, not an absolute
limit. The default value is 200KB.

 4-21

URG Options

-tests file_name

Specifies the file name containing the list of tests in the directories
specified using -dir option, for which coverage data is reported.
This is a text file with one test on each line. The test names used
in this file must match the test names obtained with the "-show
availabletests" switch.

You can use urg -dir directory_name -show
availabletests to show all the tests listed in the correct format
for the file_name file, then select the tests you want to report.
If the file contains a test that does not appear in any of the specified
directories, then URG displays an error message and exits.

-tgl portsonly

Generates toggle coverage report only for module ports. Ports in
SV Interfaces not yet supported.

-trend [trend_options]

Specifies the options to generate a trend chart. For more
information on -trend, see “Trend Chart Command-Line Options”
. For more information on generating trend charts, see the section
"Analyzing Trend Charts" in the Coverage Technology User
Guide.

+urg+lic+wait

Waits for a network license if none is available when the job starts.

-userdata file

Reads HVP data for annotation from the specified 'file'. The -
plan option must also be given.

 4-22

URG Options

-userdatafile file

Specifies a file containing HVP data file names for annotation.
The -plan option must also be given.

-version

Displays the URG version and version of the coverage database.

-novercheck

Disables version checking.

-warn [no]ID|none|all

Controls the display of warning messages.

Where,

no — Specifies disabling warning messages with the ID that
follows. There is no space between the keyword number and the
ID.

none — Specifies disabling all warning messages. IDs that follow
in a comma-separated list, specify exceptions. There is no space
around the comma.

all — Specifies enabling all warning messages, IDs that follow
preceded by the keyword number in a comma separated list,
specify exceptions.

The following are examples that show how to use these options:

-warn all

Enables all warnings. This is the default.

 4-23

URG Options

-warn noCMR-VCINF

Suppresses CMR-VCINF, other warnings are enabled.

-warn noCMR-VCINF,noCMR-VCE

Suppresses CMR-VCINF and CMR-VCE.

-warn none

Suppresses all warnings.

-warn none,CMR-VCINF

Enables CMR-VCINF, other warnings are disabled.

Using -cm_dir and -dbname Options with the Unified
Coverage Database

With the -cm_dir option,

• a .vdb extension is appended to the name given in -cm_dir if
it is not present already. Therefore, the default name of the
directory will be simv.vdb.

• while running URG, the argument to -dir option can either be
the name given during -cm_dir or the actual directory created.

• wildcard characters can be given in the URG command-line.
Some examples of valid usage are:

urg -dir *.vdb
urg -dir abc*

Using -tests feature in the URG command-line

 4-24

URG Options

• The test names which are given in a testList file (urg -dir abc
-tests <testList>), should contain abc/test or
abc.vdb/test if -cm_dir abc was given in the vcs/simv
command line.

• Old db behavior remains unchanged. Use urg -show
availabletests to get list of valid test names.

With the -dbname option,

• a .vdb is appended to <dirName> if not already present, and
the merged data is dumped there.

• combination of the old database and unified database directories
in URG command-line results in an error.

Redirecting All the Temporary Files Generated By urg -
parallel -debug Option

By default, urg -parallel operation in debug mode generates the
temporary files in the present working directory.

Temporary_URG_db_{process
id}_{hostname}_{timestamp} : temporary db

directoryTemporary_URG_scripts_{process
id}_{hostname}_{timestamp}: script directory

For example,

Temporary_URG_db_20817_peemt503_Thu_Oct_11_00:15:
10_2012

Temporary_URG_scripts_20817_peemt503_Thu_Oct_11_0
0:15:10_2012

 4-25

URG Options

With this enhancement, you can redirect temporary files generated
by urg -parallel -debug to a different location by providing
-parallel_temproot option.

Use Model

% urg -parallel -debug -parallel_temproot
temprootdiradditional_options

You can use this additional option along with
urg -parallel -debug to redirect temporary files under
specified directory location.

Examples

• urg -parallel -debug -parallel_temproot
userlocation -lca -format both

It creates a directory with name userlocation in the present
working directory and redirects all the temporary files inside it.

• urg -parallel -debug -parallel_temproot
~/userlocation -lca -format both

It creates a directory with name userlocation in your home
directory and redirects all the temporary files inside it.

• urg -parallel -debug -parallel_temproot
~/mydir1/mydir2/userlocation -lca -format both

It creates a directory with name userlocation under
~/mydir1/mydir2 located in your home directory and redirects
all the temporary files inside it.

 4-26

URG Options

Note:Make sure that ~/mydir1/mydir2 directory hierarchy is
already present else you will see unexpected behavior during "URG
-parallel" operation in this case.

Limitations

1. The special characters such as #, @, &, _etc. cannot be used
while providing directory name where all the temporary directories
are going to redirect.

2. You cannot provide hierarchies of directories name (while
providing directory name where all temporary directories are going
to redirect) which do not exist in that path.

Displaying Ratio Score in URG Report

You can view the ratio of the coverage score in the URG report using
the -show ratios option. For example,

% urg -dir simv.vdb -show ratios

When you use the -show ratios option, the -group ratio
option is automatically enabled and you get the following message
in the command-line:

Note-[URG-RATIO] URG show ratios
URG '-show ratios' option will turn on '-group ratio'
automatically. Please check the scores in group pages.

The URG report is as follows:

 4-27

URG Options

Figure 4-1 Dashboard Page

Figure 4-2 Hierarchy Page

Figure 4-3 Groups Page

 4-28

URG Options

Additional Options for Parallel Merging

The options for parallel merging are as follows:

-parallel [machine_file]
Specifies merging the results from multiple tests in parallel.

-grid ["GRID_arguments"][-sub submit_command |
-del delete_command]
Specifies using a grid computing engine for parallel merging of
the results and provides an optional means to pass arguments to
the grid engine.

-lsf ["LSF_arguments"][-sub submit_command |
-del delete_command]
Specifies using a LSF (Load Sharing Facility) engine for parallel
merging of the results and provides an optional means to pass
arguments to the LSF engine.

-parallel_split integer
Specifies the number of test results in a “merging” (or clump) of
results that URG merges together at any one time on its way to
merging all the results in parallel.

Unsupported Options in Parallel Merging

The following options are not supported when you use parallel
merging:

 4-29

URG Options

[-diff] [-ID]

[-grade [help] [... other grading options ...]]

[-trend [help] [... other trend options ...]]

Merge Covergroups Across Scopes

If a module containing a covergroup instance is instantiated multiple
times, then for each elaborated module instances, a covergroup
shape is created. The results are not automatically accumulated into
a single shape or score. If you want to know the overall score for a
covergroup definition, you can use the URG option -group
merge_across_scopes.

This technique is useful in cases where you have defined similar
covergroups in different tests, but the program-name is different. So
even though two tests may have exactly the same covergroup (both
name and definition), since enclosing program is different they are
not merged.

Using the -group merge_across_scopes option, you can merge
across shape and across the program scope. It allows the reduction
of shape creation for groups that are otherwise the same but at a
different scope.

Merge across-shape

Suppose there is a covergroup "cg", in a module "M" as follows:

module M;
 covergroup cg; ... endgroup
 cg cg1 = new;

 4-30

URG Options

endmodule

Suppose module "M" is instantiated twice in the top-module "top" as
follows:

 module top;
 M I1();
 M I2();
 endmodule

Then, two covergroup instances are created at runtime, one through
"top.I1" and the other through "top.I2". Two covergroup shapes are
created for "cg", with shape-scope as "top.I1" and "top.I2".

When "across-shape-scope" merging is enabled, the scope-name of
these two shapes is removed, and these two shapes are merged into
one.

The prerequisite for this kind of merging is that both these shapes
should have the same bin-space. If bin-spaces of these two shapes
are not same, then these two shapes are not merged (though scope-
name would still be removed).

Merge across-program-scope

If two programs or modules have a covergroup with the same name,
and same set of coverpoints/crosses, then they are merged into one
covergroup and their shapes are also merged.

Suppose there is a covergroup "cg", in a module "M" as follows:

module M1;
 covergroup cg; ... endgroup
 cg cg1 = new;
endmodule

module M2;

 4-31

URG Options

 covergroup cg; ... endgroup
 cg cg2 = new;
endmodule

In this case, both M1::cg and M2::cg are renamed to
unified_prog::cg. If both of them have the same coverpoints and
crosses, then they are merged into one covergroup. In that case, the
shapes corresponding to M1::cg1 and M2::cg2 are also merged if
their bin-spaces are same.

Suppose the covergroup has multiple shapes; say M1::cg has three
shapes namely S1, S2, S3; M2::cg has two shapes namely S4 and
S5. Suppose S1 and S5 have the same bin-space, and S2 and S4
also have the same bin-space. So, after using the
merge_across_scopes option, you have a covergroup
unified_prog::cg with three shapes, S1_5, S2_4 and S3, where S1_5
is a merged copy of S1 and S5, and so on.

For example, consider that a unit level testbench has a covergroup
named "sb_usbspeed_cov" (coverage database is usbvip.vdb):

Group : test_top.TestProgram::Scoreboard::sb_usbspeed_cov

While the system level also has the same covergroup, but different
hierarchy (coverage database is usbvmm.vdb):

Group : test_usb_top.tb::Scoreboard::sb_usbspeed_cov

To merge these two coverage results, use the -group
merge_across_scopes URG command as follows:

urg -dir usbvmm.vdb usbvip.vdb -group merge_across_scopes

The merged result would be:

unified_prog::Scoreboard::sb_usbspeed_cov

 4-32

URG Options

Instance Coverage Score Option

By default, URG computes the overall score for a test from the
cumulative coverage score for each of the cover groups in that test.
This can be misleading in situations where you have enabled
instance coverage for a particular covergroup. While the cumulative
coverage for a covergroup that is instantiated more than once might
be 100%, the coverage score for individual instances can be well
below that. The final overall test score, which does not take into
account the instance coverage, can different from the score for
instance-based coverage.

The urg command -group instcov_for_score option invokes
a coverage score computation that involves the instance coverage:

%urg –group instcov_for_score

With the -group instcov_for_score option, the overall score
for a test takes into account cumulative coverage and instance
coverage scores (for covergroups with instance coverage enabled),
to provide a better picture of the coverage results:

Example 4-1 Sample Code for Cumulative vs. Instance-Only Coverage
Score

class ex {
 bit a;
 coverage_group cov {
 cumulative = 0;
 sample_event = @(posedge CLOCK);
 sample a;
 }
}
coverage_group t_cov {
 …
}

 4-33

URG Options

coverage_group p_cov {
 …
}
program test {
 ex ex1 = new;
 ex ex2 = new;
 t_cov cov1 = new;
 p_cov cov2 = new;
 ….
 ex1.a = 0;
 ex2.a = 1;
 @(posedge CLOCK);
 …
}

In Example 4-1, assume that the cumulative coverage for t_cov and
p_cov is 40% and 100% respectively. The instance coverage for
both instances of ex::cov is 50% but the cumulative coverage for
ex::cov is 100%: Each possible value for the a bit was hit once in
each of the two instances of ex::cov. This means that, individually,
ex1 has 50% coverage on ex:cov and ex2 has 50% coverage on
ex:cov. However, the cumulative coverage of ex:cov is 100%
because it has reached both possible values.

The overall (cumulative) score for the test is computed as:

(cumulative_score(t_cov) + cumulative_score(p_cov) +
cumulative_score(ex::cov))/3

or

(40 + 100 + 100)/3

By this calculation, the overall score is 80%. This hides the fact that
ex1.a was never 1 and ex2.a was never 0.

 4-34

URG Options

For a better indication of the overall coverage, use the -group
instcov_for_score option to compute the overall score for
ex::cov. For Example 4-1, the overall cumulative coverage score
for the test, using the instance coverage of each instance of the
ex::cov covergroup, is computed as:

(cumulative_score(t_cov) + cumulative_score(p_cov) +
instance_coverage(ex1) + instance_coverage(ex2))/4

or

(40 + 50 + 50 + 100)/4

By this calculation, the overall score is 60%. This method assigns
equal importance to each instance of the covergroup ex::cov.

The corresponding groups.(txt|html) file that appears in the
urgReport directory is shown in Table 4-1:

Table 4-1 groups.html|txt file for the example

Note that the row corresponding to the covergroup ex::cov shows
the average of the instance score for all the instances of ex::cov
instead of the cumulative score.

SCORE INSTANCES WEIGHT GOAL NAME

40 -- 1 100 t_cov

50 50 1 100 ex::cov

100 -- 1 100 p_cov

 4-35

URG Options

Covergroup Score Covered/Coverable Ratio Option

By default, URG computes covergroup scores as the average score
of all the coverpoints and crosses. The overall covergroup score for
a design is the average score of all of the covergroups.

This can lead to a non-intuitive increase or decrease in the score
when new bins are covered or become uncovered. This is mainly
because the number of bins in each cover group is not same, so their
weight in the overall coverage score is also not same. Therefore,
instead of the score linearly improving as each new bin is covered,
the effect might be disproportionately high or low.

In Figure 4-4, the blue line shows the change in a covergroup score
as new bins are covered, using the default coverage score
computation. The red line shows the score computed as a simple
ratio of covered bins over coverable bins, for a sample covergroup
as its coverage improves day to day.

 4-36

URG Options

Figure 4-4 Typical coverage score changes over time

The reason the blue line has a sharp rise at first before flattening out
is that the individual variable bins get covered quickly, but the cross
between them has many more bins. Since the overall coverage
score is computed as the average of the variables coverage score
and the coverage score of the cross between them, the variables
effectively have a higher weight in the score computation. In the ratio
computation (the red line), each variable or cross is weighted by the
number of bins it has, so the line is much smoother.

100

75

50

25

0%
0 5 10 15 20 25 30 35 40

C
ov

er
ag

e

Tim

 4-37

URG Options

The -group ratio option of urg can be used to specify that the
covered/coverable ratio is to be used to compute covergroup scores
(the red line in Figure 4-4) instead of the default method (the blue
line). The usage is:

% urg –group ratio ...

When -group ratio flag is used, the urgGroup::
genCoverageData function computes covergroup scores and the
overall group score using a simple ratio of covered bins divided by
coverable bins. This flag (like all other flags passed to URG) is
shown in the dashboard.html page.

Note:
The score of a group definition is still the average score of its
variants, even when -group ratio is used.

Trend Chart Command-Line Options

Trend Chart is described in the URG chapter of the Coverage
Technology User Guide. In this section, only command-line options
for -trend have been described.

%urg -trend (root path [rootdepth N] | src dir1 [dir2 ...]
) [other_options]

root path

Refers to the base path that contains URG reports from previous
sessions. URG uses reports in this root directory to facilitate
trend analysis. If you run your current session in the same
directory, the resulting reports from the current run will also be
included in the trend analysis.

 4-38

URG Options

src dir1 [dir2 dir3...]

Specifies the urgReport directories if the URG reports are saved
in various locations. You can use both root and multiple src
options to locate the urgReport directories.

rootfile txtfile

Permits enumeration (in a text file) of multiple root paths for
scanning.

srcfile txtfile

Permits enumeration (in a text file) of all URG report paths.

linestyle

Displays each curve of a trend chart with a different line style (solid
line, dashed line, and so on) and color. If the linestyle option is
not given, all curves are shown in solid lines with different colors.
This option is particularly useful for black-and-white chart printing.

offbasicavg

Turns off basic coverage curves and displays only VMM Plan
related score curves.

depth N

Specifies the number of hierarchy scope levels for which to
generate instance and feature charts. The default level number
is 1 (that is, only the top-level chart is generated).

rootdepth N

Defines the depth of the root path hierarchy through which URG
recursively scans to find URG reports. If you do not specify
rootdepth, the default depth N is 1.

 4-39

URG Options

Note:
You can also use the -trend option with other URG options.

Reporting Element Holes

This section describes how URG reports covergroup cross bins in
the special case where large chunks of cross space are uncovered.

Definition

For a cross of n variables v0, v1,..., vn-1, an m-element hole is a

set of uncovered bins, such that m number of the variables have all
possible values in the set, and each of the remaining n-m variables
has only one fixed value for all bins in the set.

For example, consider a three-way cross of variables v0, v1, and v2

with possible values ranging from 1 to 3. Then the following set of
uncovered bins, which can be called (1, 1, *), is a one-element hole
because all possible values of v2 are uncovered for v0 =1 and v1=1:

{ (1, 1, 1), (1, 1, 2), (1, 1, 3) }

Finding Element Holes

You can find all the holes of size ranging from 1 to n, but you would
have to exhaustively search the space. URG looks for holes by fixing
values from the left to right of the cross. Thus, you can find a hole
(x = 2, y = 1, z = *), but you would not find a hole such as
(x = *, y = 2, z = 5).

 4-40

URG Options

Since element holes can be found by modifying the range package,
URG will not search for element holes. They already exist in the list
of (compressed) bins in the UCAPI interface.

URG will detect element holes by looking for any cross bins with the
"*" character as the covdbName of any of the cross components.

Displaying Range Values

To display the full range of a variable, URG uses the "*" character.
For variables which do not consist of the full range of values, URG
uses the auto[…] format.

Note:
Any cross bin that has a value bin with a full range is an element
hole.

Showing Element Holes

You do not need to use any command-line option to turn on element
holes detection because URG reports them automatically.

In URG reports, element holes are part of the uncovered bins table.
They are obvious in the reports since one or more variable columns
will have the "*" character in place of any real value.

URG displays element holes in a separate table before the list of
uncovered bins. For example:

 4-41

URG Options

Figure 4-5 Example of a Report Showing Element Holes

 4-42

URG Options

 5-1

Unified Coverage API Functions

5
Unified Coverage API Functions 1

This chapter describes the functions available in UCAPI and
contains the following sections:

• “Coverage Data Load/Unload”

• “Coverage Database Version Check”

• “Coverage Data Model Traversal”

• “Bypass Checksum Validation”

• “Memory and Pointer Management”

• “Reading Properties”

• “Reading Annotations”

• “Setting Properties”

• “Error Handling and Recovery”

 5-2

Unified Coverage API Functions

• “APIs for Exclusion”

• “Types, Properties, and Relations”

Coverage Data Load/Unload

The following functions are used to load and unload designs and
tests.

covdb_load

The covdb_load function is used to load a design or test:

covdbHandle covdb_load(covdbObjTypesT type,
 covdbHandle design,
 char *name);

The type argument may be covdbDesign or covdbTest. If type is
covdbDesign, name is the pathname to a coverage design
directory, and design should be NULL. The handle returned is of type
covdbDesign.

If type is covdbTest, name is the logical test name, and design is the
design for which to load the test. The handle returned is type
covdbTest.

Function Description

covdb_load load a design or test

covdb_loadmerge load and merge addition design or test

covdb_unload unload or unload merge a design or test

covdb_save save merged test data

 5-3

Unified Coverage API Functions

For example,

covdbHandle design = covdb_load(covdbDesign, NULL,
“simv.vdb”);

Note:
Only one design may be loaded in a single UCAPI session. If the
application wants to load another design, covdb_unload must first
be called on the first design.

covdb_loadmerge

The covdb_loadmerge function loads and merges a design (or test)
with an already-loaded design (or test).

covdbHandle covdb_loadmerge(covdbObjTypesT type,
 covdbHandle design_or_test,
 char *name);

After a successful call of covdb_loadmerge, the covdbName
property of the destination design or test will be the string “merged”.
Applications can set a new name for a test using the covdb_set_str
function (see “covdb_set_str” on page 23).

The primary use of covdb_loadmerge is to load and merge a list of
tests from a design. See the UCAPI user guide for an example.

The other use of covdb_loadmerge is to combine multiple database
directories into a single design handle. To do this, call covdb_load
(covdbDesign, “.....”) to load the first directory. This must be a
directory containing compile time data and not just test data. Then
for each additional directory, use covdb_loadmerge(covdbDesign,
designHdl, “....”) to add the new directory to the previously-loaded
design handle.

 5-4

Unified Coverage API Functions

covdb_unload

The covdb_unload function unloads all of the data corresponding to
the given design or test.

int covdb_unload(covdbHandle design_or_test);

After a design is unloaded, no associated information, such as
related tests, can be used. Applications should unload all tests
associated with a design before unloading the design to avoid
memory leaks. After unloading, all handles related to this design will
be invalid and attempts to use such handles will have unpredictable
effects.

If a test is unloaded, only the coverage information related to that test
will be removed. After this call, handles to this test or coverage
information belonging to this test will be invalid and further attempts
to use such handles will have unpredictable effects.

Returns non-zero if successful, 0 if it fails.

covdb_save

The covdb_save function saves all coverage data in a given test
handle to disk.

int covdb_save((covdbHandle test,
 const char *testname);

The coverage data will be stored in the directory named ‘test’, and
the name of the test will be ‘testname’.

 5-5

Unified Coverage API Functions

covdb_save_exclude_file

The covdb_save_exclude_file function is used to save exclusions
set on objects using the covdb_set function:

int covdb_save_exclude_file(covdbHandle design,
const char *filename,
const char *mode);

A test handle must be given as the first argument. The mode string
should be "w" to overwrite any existing file, or "a" to append the
exclusions to the end of a file. If the file does not exist, "w" and "a"
have the same effect.

The return value is 0 on success and non-zero on failure.

covdb_load_exclude_file

The covdb_load_exclude_file function loads an exclusion file from
the disk and applies its exclusions to objects in the currently-loaded
design.

int covdb_load_exclude_file(covdbHandle design_or_test,
 const char* filename);

A test handle must be given as the first argument. The return value
is 0 on success and non-zero on failure.

covdb_save_attempted_file

The covdb_save_attempted_file function is used to print the list of
objects that were covered, but that the application tried to exclude.
In Strict mode, excluding individual covered objects is not allowed –

 5-6

Unified Coverage API Functions

see the User Guide for more information. This function is typically
used for application debugging or to give information to the user of
the application:

int covdb_save_attempted_file(covdbHandle testHdl,
 const char *filename);

Note that a test handle must be given since objects can’t be covered
without knowing which test (or merged test handle) is involved.

covdb_load_mapfile

The covdb_load_mapfile function is used to specify how UCAPI
should merge data from differing designs as they are loaded.

void covdb_load_mapfile(covdbHandle designHdl,
 const char *mapfilename);

The function returns 0 on success and non-zero if an error
occurs.The format of the mapfile is any number of entries of the
following form:

MODULE: modname
INSTANCE:
SRC: instance_list
DST: instance_list
SRC: instance_list
DST: instance_list
…

Each instance_list is a comma-separated list of full pathnames in the
base design (SRC) or an input design (DST), or the wildcard
character *.

 5-7

Unified Coverage API Functions

Coverage Database Version Check

To detect version mismatch between UCAPI and design/shape/test,
version information needs to be added to the newDB XML files.
Version information must be hard-coded into the UCAPI library.

Version Check rules apply to all UCAPI applications as well as URG
and DVE Coverage GUI.

Version format

<?xml version="1.0"?>
<!DOCTYPE cov SYSTEM "ucdb_cond.dtd">
 <cond type="verilog"
chksum="4E133C48A1C639D0C8DD2CCE906B7D48CFACFE53" >
 <ucapi_version major_ver="10" minor_ver="1"
patch_str="G-2012.09" />
 <conddef id="3" chksum="954450407" >
 <condshape >

Files that are versioned:

• sourceinfo.xml

• design.xml

• shape.xml

• data.xml

• testbench.cumulative.xml

• testbench.inst.xml

Files that are not versioned:

• exclude.xml

 5-8

Unified Coverage API Functions

• non-XML files

Version Check

For compatible reasons, XML files without version are accepted.
Note that coverage databases generated by Vera are not versioned.

Before loading any XML file, UCAPI will check its version if available.
If a file is identified as incompatible, UCAPI will print an error and skip
loading the design/shape/test, depending on the file type.

Error-[UCAPI-VM] CovDB Version Mismatch
The file 'simv.vdb/snps/coverage/db/shape/
line.verilog.shape.xml' is generated by an incompatible VCS
(G-2012.09 with CovDB version 11.1). Please regenerate the
coverage database or use a compatible VCS.

A file is considered compatible if,

• its major version is equal to UCAPI's own major version (which
means a compatible stream),

• its minor version is less than or equal to UCAPI's own minor
version (which means patch over patch compatibility).

Note that patch_str is not used for version check, it is meant for error
reporting.

Once an incompatible change is checked in, the major version must
be increased. This can only happen on a new stream.

A new VCS patch release may increase the minor version if there is
an extension to the coverage database, and it is required to be
backward compatible.

 5-9

Unified Coverage API Functions

UCAPI version check can be disabled with:

covdb_configure(covdbVersionCheck, (char *)"false");

In URG, this can be done with an option -novercheck.

Coverage Data Model Traversal

The following functions are defined for traversing coverage data.

Functions returning handles will generally return NULL if an error
occurs or if the relationship is empty. If an error occurs, any
registered error callback function will also be invoked.

covdb_get_handle

The covdb_get_handle function may be called with any
covdbHandle and any covdb1To1RelationT relation. If the relation
rel is not defined for the handle type it will return NULL. NULL will
also be returned if the relation is empty for handle, even if it applies
to its type.

covdbHandle covdb_get_handle(covdbHandle handle,

Function Description

covdb_get_handle get the handle for a 1-to-1 relation

covdb_get_qualified_handle get a qualified handle for a 1-to-1 relation

covdb_iterate get an iterator for a 1-to-many relation

covdb_qualified_iterate get a qualified iterator for a 1-to-many relation

covdb_scan get the next handle from an iterator

covdb_release_handle release reference to a UCAPI handle

covdb_qualified_object_iterate get qualified information about coverable objects

 5-10

Unified Coverage API Functions

 covdb1To1RelationT rel);

covdb_get_qualified_handle

Similar to covdb_get_handle, but requires a qualifier handle, which
must be of type covdbMetric or covdbTest. If the relation rel is not
defined for the handle type it will return NULL. NULL will also be
returned if the relation is empty for handle, even if it applies to the
handle type.

covdbHandle covdb_get_qualified_handle(covdbHandle handle,
 covdbHandle qual,

 covdb1To1RelationT rel);

covdb_iterate

Returns a handle to an iterator over the objects for the specified
1-to-many relation for handle. If the relation rel is empty, or does not
apply to handle, a NULL iterator handle will be returned.

Handles returned by covdb_iterate may only be scanned through
one time - they cannot be reset to the beginning. To start over and
iterate from the beginning again, acquire a new handle using
covdb_iterate:

covdbHandle covdb_iterate(covdbHandle handle,
 covdb1ToManyRelationT rel);

covdb_qualified_iterate

Returns a handle to an iterator over the objects for the qualified 1-to-
many relation for handle. If the relation rel is empty, or does not
apply to handle, a NULL iterator handle will be returned.

 5-11

Unified Coverage API Functions

Handles returned by covdb_qualified_iterate may only be scanned
through one time - they cannot be reset to the beginning. To start
over and iterate from the beginning again, acquire a new handle
using covdb_qualified_iterate.

covdbHandle covdb_qualified_iterate(covdbHandle handle,
 covdbHandle qual,
 covdb1ToManyRelationT rel);

covdb_scan

The covdb_scan function returns the next object from an iterator
handle and advances the iterator.

Only one handle returned by covdb_scan for a given iterator is valid
at any time – once covdb_scan is called again, the handles returned
by previous calls are invalid.

If called on an object that is not an iterator, it returns NULL.

covdbHandle covdb_scan(covdbHandle iter_handle);

The handles returned by covdb_scan are volatile and may be
overwritten by the next call to a UCAPI function. You can make a
handle persistent by calling covdb_make_persistent_handle.

covdb_qualified_object_iterate

The covdb_qualified_object_iterate function is used when iterating
the qualified contents of an object inside a region.

covdbHandle covdb_qualified_object_iterate(
 covdbHandle objHdl,

 covdbHandle regionHdl,

 5-12

Unified Coverage API Functions

 covdbHandle qualHdl,
 covdb1ToManyRelationsT rel);

For example, the covdbTests relation from an object handle is such
a 1-to-many relation. The object is the coverable object whose test
coverage you want to iterate. The region handle is the region that
contains the object (e.g., a covdbSourceInstance handle). The
qualified is the merged test handle containing tests t1, t2, …, tN.

The iterator for a given object will contain the subset of { t1, t2, …, tN
} where any ti in the set is a test that covers the object.

Bypass Checksum Validation

covdb_qualified_configure

When loading an exclude file via UCAPI, you can suppress
checksum comparison by configuring UCAPI using the
covdbExclBypassChecks configuration item:

covdb_qualified_configure(urgCovered::getDesignHdl(),
covdbExclBypassChecks, "true");

Memory and Pointer Management

A covdbHandle is a pointer that points to an object. If the object is
made persistent, it gets copied into a safe region in the memory.
When the handle is later passed to covdb_release_handle, the
memory is cleaned up. The covdbHandle will still be pointing to the
same (corrupted) memory location, but the object itself will be gone.

 5-13

Unified Coverage API Functions

Example 1:

covdbHandle H = covdb_get(obj, covdbObjects);
H = covdb_make_persistent_handle(H);
covdbHandle C = H;
covdb_release_handle(H)

Here, C is a persistent handle.

However, releasing handle H invalidates the safe memory created
for the object, thus C and H both point to memory that is now corrupt.

Example 2:

covdbHandle K = covdb_get(obj, covdbObjects);
covdbHandle J = covdb_make_persistent_handle(K);
covdb_release_handle(J);

Here, K is not persistent and covdb_release_handle(J) does not
affect the status of K. However, since K was not made persistent, it
may become invalid at the next UCAPI function call.

UCAPI handles returned by covdb_scan, covdb_get_handle,
covdb_get_qualified_handle are not persistent. That is, they are only
guaranteed to be valid until the next call to a UCAPI function.

Handles returned by covdb_iterate and covdb_qualified_iterate are
persistent and must be explicitly released by the application after it
exits the loop, or the memory associated with them will leak.

The following functions are provided for managing handles:

Function Description

covdb_make_persistent_handle make a UCAPI handle persistent

covdb_release_handle release a persistent handle or iterator

 5-14

Unified Coverage API Functions

covdb_make_persistent_handle

The covdb_make_persistent_handle function returns a persistent
handle for an object.

covdbHandle covdb_make_persistent_handle(covdbHandle
 handle);

The handle it returns is guaranteed to remain valid until the
application releases it with covdb_release_handle.

covdb_release_handle

The covdb_release_handle function releases the given handle.

void covdb_release_handle(covdbHandle handle);

When an application is done using a persistent handle, it should call
covdb_release_handle. If applications do not call
covdb_release_handle before discarding a persistent handle,
memory may be lost (leaked).

 5-15

Unified Coverage API Functions

Reading Properties

These functions are defined to read properties from UCAPI object
handles.

covdb_version

The char *covdb_version() returns the version string. For example:

char *version = covdb_version();
 if (!is_supported_version(version)) {
 printf("Error: this version of UCAPI (%s) is not in the
supported list for my application.\n", version);
 }

covdb_get

The covdb_get function returns the value of the specified integer
property prop for the given object handle. If the property is not an
integer-valued property, or the value is not defined for the given
object, it returns -1. Note that the value returned may be an integer,
covdbObjTypeT, or covdbScalarValueT, depending on which
property is read.

Function Description

covdb_version() returns the version string

covdb_get read an integer-valued property

covdb_get_str read a string-valued property

covdb_get_real read a real-valued property

 5-16

Unified Coverage API Functions

An object handle must always be specified. If the object is itself a
region, no region handle is required. If the object is not a region, then
a handle to its enclosing region must be given as well.

A test handle must be given if the property is test-qualified (such as
covdbCovered or covdbCovCount).

The integer properties are defined in.

int covdb_get(covdbHandle object,
covdbHandle region,
covdbHandle test,
covdbPropertiesT prop);

For example, to get the UCAPI type of an instance handle:

type = covdb_get(instHdl, NULL, NULL, covdbType);

To get the number of coverable objects for a given metric for a
metric-qualified instance handle:

instTot = covdb_get(metricInstHdl, NULL, NULL,
 covdbCoverable);

To get the number of covered objects for a given metric for a metric-
qualified instance handle, you have to add a test handle:

instCov = covdb_get (metricInstHdl, NULL, testHdl,
 covdbCovered);

To get the number of coverable objects inside a metric-qualified
object (such as a covdbContainer object), specify the instance, the
object, and the covdbCoverable property, but no test handle is
required:

objTot = covdb_get(objHdl, metricInstHdl, NULL,
 covdbCoverable);

 5-17

Unified Coverage API Functions

To get the number of covered objects inside such an object, you must
use a test handle as well. This is the same form you would use to
query whether a given coverable object is covered or not with
respect to a given test:

objCov = covdb_get(objHdl, metricInstHdl, testHdl,
covdbCovered);

covdb_get_str

The covdb_get_str function returns the value of the specified string
property prop for the given object handle. If the property is not a
string-valued property, or the value is not defined for the given object,
it returns NULL.

char *covdb_get_str(covdbHandle handle,
 covdbPropertiesT prop);

The string properties are defined in section “Object Properties” on
page 32.

String values returned by covdb_get_str are volatile and are not
guaranteed to persist beyond the next call to covdb_get_str.
Applications must make a copy if they want a persistent string.

covdb_get_real

The covdb_get_real function returns the value of the specified real
property prop for the given object handle. If the property is not a real-
valued property, or the value is not defined for the given object, it
returns -1.0.

double covdb_get_real(covdbHandle handle,
 covdbPropertiesT prop);

 5-18

Unified Coverage API Functions

Reading Annotations

Annotations may be unqualified or qualified. Annotations may be
read either by the name (key) of the annotation, or through iteration
of covdbAnnotation objects. To iterate over all annotations for an
object, the iteration functions described in this section are used. The
following functions are used to read annotations by name.

covdb_get_annotation

The covdb_get_annotation function returns the value of the specified
annotation key for the given object handle. If the annotation is not
defined for handle, it returns NULL.

char *covdb_get_annotation(covdbHandle handle, char *key);

You can read the category and severity failures for a given assertion
handle using the covdb_get_annotation function:

char *category = covdb_get_annotation(assertionHdl,
 "FCOV_ASSERT_CATEGORY");

char *severity = covdb_get_annotation(assertionHdl,
 "FCOV_ASSERT_SEVERITY");

Function Description

covdb_get_annotation read an annotation by name

covdb_get_qualified_annotation read a qualified annotation by name

covdb_get_integer_annotation read an integer type annotation

covdb_set_annotation Sets exclusion annotation

 5-19

Unified Coverage API Functions

Example

Here, the return value is the annotation stored for the coverage
object corresponding to the handle obj.

string cmt = covdb_get_annotation(objHandle, "ExclComment");

covdb_get_qualified_annotation

The covdb_get_qualified_annotation function returns the value of
the specified annotation key for the given object handle qualified by
covdbTest or covdbMetric handle qual. If the annotation is not
defined for this handle and qualifier, it returns NULL.

char *covdb_get_qualified_annotation(covdbHandle handle,
 covdbHandle qual,
 char *key);

covdb_get_integer_annotation

The covdb_get_integer_annotation function returns the value of the
specified integer-type annotation key for the given object handle. If
the annotation is not defined for this handle, an error will be flagged
and -1 will be returned. The only way to distinguish between the
value not being set and it being a valid value of -1 is to check the
error status, either by calling covdb_get_error or by using a error
callback function.

int covdb_get_integer_annotation(covdbHandle obj, const
char* key);

You can also use this API to get the ID of a given conditional
expression or a condition vector handle as follows:

 5-20

Unified Coverage API Functions

covdb_get_integer_annotation(expressionHandle/
vectorHandle, "id");

The option of viewing the condition ID with this API is only supported
with the new unified coverage database.

covdb_set_annotation

Sets exclusion annotation for coverable objects.

Syntax

int covdb_set_annotation(covdbHandle obj, const char* key,
const char* value);

To set an exclusion annotation, the argument key should be
“ExclComment” and the value is the annotation to be set for the
coverage object corresponding to the handle obj.

Note:
“ExclComment” is case-sensitive.

Example

covdb_set_annotation(objHandle, "ExclComment", "This is
unreachable");

Currently only "ExclComment" is supported for setting annotations
on UCAPI objects.

 5-21

Unified Coverage API Functions

Setting Properties

covdb_set

This API is supported for all metrics. UCAPI allows applications to
change some properties on coverable objects, as described in this
section.

The covdb_set function is used to set the value of an integer-type
property on a UCAPI handle.

void covdbStatusT covdb_set(covdbHandle handle,
 covdbHandle region,
 covdbHandle test,
 covdbPropertiesT property,
 int value);

This function is used to set integer properties of UCAPI handles.
The properties which can be set are:

• covdbCovered

• covdbCovCount

Applications may also set one of the following flags in the
covdbCovStatus property:

• covdbStatusExcludedReportTime

• covdbStatusUnreachable

Function Description

covdb_set set an integer property of an object

covdb_set_str set a string property of an object

 5-22

Unified Coverage API Functions

• covdbStatusCovered

These properties can only be set on coverable objects (value sets,
blocks, sequences and crosses), and not on coverable objects used
only for annotation purposes (such as on the value sets inside
sequences). covdbCovered and covdbCovCount are set directly:

covdb_set(objHdl, regHdl, testHdl, covdbCovered, 1);
covdb_set(objHdl, regHdl, testHdl, covdbCovCount, 19);

To set a value in the covdbCovStatus property, applications should
read the existing value and modify it:

curval = covdb_get(objHdl, regHdl, testHdl, covdbCovStatus);
covdb_set(objHdl, regHdl, testHdl, covdbCovStatus,
 (curval | covdbStatusCovered));

Clearing a flag in the covdbCovStatus property is similar:

curval = covdb_get(objHdl, regHdl, testHdl, covdbCovStatus);
 covdb_set(objHdl, regHdl, testHdl, covdbCovStatus,
 (curval & (~covdbStatusCovered)));

Setting covdbStatusCovered on a supported handle type will
automatically set the covdbCovered value of that handle equal to its
covdbCoverable value.

Setting the covdbCovered property equal to the covdbCoverable
property for a handle will automatically set the covdbStatusCovered
flag on the handle.

Setting covdbCovered to any value less than the covdbCoverable for
a handle will clear the covdbStatusCovered flag on that object.

 5-23

Unified Coverage API Functions

The test handle is always a required argument to covdb_set,
because properties that can be set are always test-specific. When a
property is changed on an object for a given test, if that test is saved,
the new value of the property will be saved as well.

covdb_set_str

UCAPI allows applications to change the name of a
covdbTestHandle using the covdb_set_str function. Changing the
value of other string properties is not supported for any other handle
types of string properties.

The covdb_set_str function is used to set the value of a string-type
property on a UCAPI handle.

char *covdb_set_str(covdbHandle handle,
 covdbPropertiesT property,
 char *value);

Error Handling and Recovery

covdb_set_error_callback

The covdb_set_error_callback function may be used by an
application to register a function to be called if an error is detected
by UCAPI.

Function Description

covdb_set_error_callback register a function to be called back

covdb_get_error check error status

covdb_configure set error reporting status

 5-24

Unified Coverage API Functions

int covdb_set_error_callback(void (*cbfn)(covdbHandle
 errHdl, void* data),

 void *data);

When an error is detected, UCAPI calls the cbfn function with a
UCAPI error handle and the data pointer that was given when the
callback function was registered. The error handle can be queried for
the error code using the covdbValue property and a string error
message using the covdbName property, for example:

covdb_set_error_callback(mycallback, ”phase0”);
…
perform some UCAPI operations
…
covdb_set_error_callback(mycallback, ”phase1”);
…

void mycallback(covdbHandle errHdl, void *data)
{

char *phase = (char*)data;
int errcode = covdb_get(errHdl, NULL, NULL, covdbValue);
char *errmsg = covdb_get_str(errHdl, covdbName);

printf(“error #%d occurred in phase %s: %s\n”, errcode,
 errmsg, phase);

}

The handle passed to the application’s callback function is of type
covdbError. It should be released using covdb_release_handle
when the application is finished with it.

The covdb_set_error_callback function returns -1 if the callback
function could not be registered, and 0 if the registration was
successful.

 5-25

Unified Coverage API Functions

covdb_get_error

The covdb_get_error function returns a covdbStatusT code (as
defined in covdb_user.h). A value of covdbNoError indicates no error
has occurred. Other values give the type of error (such as
covdbOutOfMemoryError). If an error occurred, the value of *msg
will be set to a descriptive string.

covdbStatusT *covdb_get_error(char **msg);

covdb_configure

The covdb_configure function allows applications to configure the
error reporting of UCAPI. By default, UCAPI will not print error
messages to the display – applications must use the
covdb_get_error function to check when an error has occurred.

If covdb_configure is called to set covdbDisplayErrors to true, then
error messages will be printed. For example:

covdb_configure(covdbDisplayErrors, “true”);

The legal configuration items for covdb_configure include:

- covdbDisplayErrors. Default value false. If true, errors will be
printed to the standard output when they occur.

The default value of each of these configuration options is true. If set
to "false", data for the given metric will not be loaded even if it is
present in the coverage directories:

• covdbLoadLine.

• covdbLoadCond

 5-26

Unified Coverage API Functions

• covdbLoadTgl

• covdbLoadFsm

• covdbLoadBranch

• covdbLoadAssert

• covdbLoadPath

• covdbLoadGroup

The configuration option covdbLimitedDesign has the default value
"false". If set to "true", then the design hierarchy information will not
be loaded, and only assertion and covergroup data will be loaded. In
"limited design" mode, to access assertion or covergroup data
applications must iterate from the test handle. For example, to get
the list of assertions:

assts = covdb_qualified_iterate(testHdl, assertMetricHdl,
 covdbObjects);

Applications can also control simple mapping (merging of data from
different designs) using covdb_configure. The configuration item
covdbMappedModule is set to the name of the module to be
mapped. This has the same effect as the -map option to URG. Finer
control of mapping is available using the mapfile - see
“covdb_load_mapfile” .

You can opt for saving elfiles in the old database format using the
covdb_configure API as follows:

covdb_configure(covdbExcludeFormat, "olddb");

The other value for the covdbExcludeFormat configuration is
"newdb", which is the default.

 5-27

Unified Coverage API Functions

covdb_qualified_configure

The covdb_qualified_configure is used to set configuration options.
For implementation reasons, some configuration options require that
the design handle be passed.

int covdb_qualified_configure(covdbHandle designH,
covdbConfigItemT item, const char* value)

For example,

covdb_qualified_configure(designHdl,
covdbMaxTestsPerCoverable, “5”);

The configuration items for covdb_qualified_configure include:

- covdbKeepTestInfo — Default value "false". If set to true, the list
of tests that covered each object will be preserved on that object
when multiple tests are loadmerged. This data can be read using
covdb_qualified_object_iterate.

- covdbMaxTestsPerCoverable —Default value "3". If set to non-
zero, the value that you set for this API becomes the maximum
number of tests preserved for each object when multiple tests are
loadmerged.

 5-28

Unified Coverage API Functions

APIs for Exclusion

UCAPI can load and modify exclude files whether they were created
through DVE Coverage or manually. It can also be used to create
exclude files itself, from scratch. This section describes the functions
you can use to load an exclude file through UCAPI and save results.

Loading/Saving Exclude File

The following functions are used to load and unload exclude files for
a design.

covdb_load_exclude_file

The covdb_load_exclude_file function is used to load an exclude file:

covdb_load_exclude_file(covdbHandle design,
 const char *filelocation);

After a successful call of covdb_load_exclude_file, all objects
specified in the loaded file will be marked
covdbExcludedAtReportTime, and these objects will no longer
contribute to covdbCoverable or covdbCovered counts for
themselves or any containing objects or regions.

The function covdb_load_exclude_file returns 1 on success and -1
on failure.

Function Description

covdb_load_exclude_file loads an exclude file

covdb_save_exclude_file saves all the excluded coverage data into a .el file

covdb_unload_exclusion unloads previously loaded .el file

 5-29

Unified Coverage API Functions

covdb_save_exclude_file

The covdb_save_exclude_file function is used to save exclusion
data to a file:

covdb_save_exclude_file(covdbHandle design,
 const char *filename,
 const char *mode);

After a successful call of covdb_save_exclude_file, any objects that
were marked covdbExcludedAtReportTime will be saved to the
specified exclude file. If “w” is given as the mode, the file will be
overwritten. If “a” is given as the mode, the excluded objects will be
appended to the end of the file if the file already exists.

The function covdb_save_exclude_file returns 1 on success and -1
on failure.

covdb_unload_exclusion

The covdb_unload_exclusion function is used to clear all exclusions
done by loading any previously-loaded exclude file.

covdb_unload_exclude(covdbHandle design);

All exclusions previously loaded are cleared. The function
covdb_unload_exclusion returns 1 on success and -1 on failure.

covdb_save_attempted_file

In Strict mode, the covdb_save_attempted_file function saves the list
of covered objects that the application attempted to exclude.

int covdb_save_attempted_file (covdbHandle design,
const char *filename,
const char *mode);

 5-30

Unified Coverage API Functions

The attempted object details are overwritten into the file if the mode
“w” is given, or appended if the mode is “a.”

Types, Properties, and Relations

This section contains the complete list of all properties and relations
in the UCAPI model.

Object Types

UCAPI has a small number of different object types. The type of an
object may be retrieved from any handle, for example:

covdbObjTypesT objty = covdb_get(objHandle, covdbType);

The type of a UCAPI handle will always be one of:

typedef enum {
covdbSourceDefinition,
covdbSourceInstance,
covdbDesign,
covdbTest,
covdbTestName,
covdbMetric,
covdbContainer,
covdbSequence,
covdbCross,
covdbBlock,
covdbAnnotation,
covdbIterator,
covdbIntervalValue,
covdbBDDValue,
covdbIntegerValue,
covdbScalarValue,
covdbVectorValue,

 5-31

Unified Coverage API Functions

covdbInterval,
covdbVector,
covdbBDD

 }
 covdbObjTypesT;

1-To-1 Relations

You can use these with the covdb_get_handle or
covdb_get_qualified_handle functions.

typedef enum {
covdbIdentity,
covdbParent,
covdbDefinition,
covdbBDDTrue,
covdbBDDFalse,
covdbVecValue,
covdbFromValue,
covdbToValue

 }
 covdb1To1RelationsT;

1-To-Many Relations

You can use these with the covdb_iterate or covdb_qualified_iterate
functions.

typedef enum {
covdbObjects,
covdbMetrics,
covdbInstances,
covdbDefinitions,
covdbLoadedTests,
covdbAvailableTests,
covdbTests,
covdbAnnotations,

 5-32

Unified Coverage API Functions

covdbComponents
 }
 covdb1ToManyRelationsT;

Object Properties

These properties can be used with the covdb_get, covdb_get_str,
and covdb_get_real functions, as noted:

typedef enum {
 /* integer properties for covdb_get */

covdbLineNo,
covdbWeight,
covdbCoverable,
covdbDeepCoverable,
covdbValue,
covdbType,
covdbCovCount,
covdbCovCountGoal,
covdbCovered,
covdbDeepCovered,
covdbNumObjects,
covdbIsVerilog,
covdbIsVhdl,
covdbAutomatic,
covdbCovStatus,
covdbWidth,
covdbSigned,
covdbTwoState,

 /* string properties for covdb_get_str */
covdbName,
covdbValueName,
covdbFullName,
covdbFileName,
covdbSamplingEvent,
covdbGuardCondition,
covdbTypeStr,
covdbParameters,
covdbMessages,

 5-33

Unified Coverage API Functions

covdbTool,

 /* properties for covdb_get_real */
covdbCovGoal

 }
 covdbPropertiesT;

Limitations

covdbNumObjects, covdbSamplingEvent, covdbParameters, and
covdbGuardCondition are not yet supported.

Values

Objects of type covdbScalarValue return one of these enumerated
values for the property covdbValue (objects of type covdbIntValue
return an integer).

typedef enum {

covdbValue0,
covdbValue1,
covdbValueX

 }
 covdbScalarValueT;

The figures below show how diagrams are used to indicate
properties and relations in the user guide:

 5-34

Unified Coverage API Functions

 6-1

Coverage GUI, Menu, and Toolbar Reference

6
Coverage GUI, Menu, and Toolbar Reference1

This chapter describes the Menu and Toolbar commands and
options in the DVE Coverage GUI and contains the following
sections:

• “Coverage GUI Command-Line Options”

• “Menu Bar Options”

• “Editing Preferences”

• “Toolbar Options”

 6-2

Coverage GUI, Menu, and Toolbar Reference

Coverage GUI Command-Line Options

Following are the DVE Coverage GUI command-line options and
their descriptions:

dve [-assert minimal] [-cond ids] [-cov][-dir <dir>*] [-
elfile <file>*] [-excl_strict] [-f <file>]
[-fsm disable_loop] [-fsm disable_sequence] [-hier <file>]
[-line nocasedef] [-map <module>*] [-mapfile <file>*]
[-metric line+fsm+cond+tgl+branch+assert+group]
[-show availabletests] [-tests <file>] [-tgl portsonly]
[-elfilelist] [-excl_bypass_checks][-excl_resolve on]
[-excl_resolve off] [-excl_strict]

-assert minimal

It is a database dependent option and you must use it with the
-covdir or -covf options. When you invoke DVE using
dve -dir <x_dirs> -assert minimal, DVE enters a special
coverage mode. In this mode, DVE reports only functional
coverage data and partial design information (without loading
cm.decl_info). The Open Coverage Database dialog box disables
code coverage metrics before populating the available tests, and
does not allow you to select code coverage metrics (line, toggle,
etc.). It also adds -metric {assert group} in the
gui_open_cov command.

-cond ids

Shows the expression and vector IDs in the Coverage Detail table.

-cov

Starts up in coverage mode.

-dir <dir>*

Open the coverage database in <dir>*.

 6-3

Coverage GUI, Menu, and Toolbar Reference

-elfile <file>*

Loads exclusion files.

-excl_strict

Does not allow covered objects to be excluded.

-f <file>

Opens coverage directories listed in <file>.

-fsm disable_loop

Does not report loops in FSM coverage.

-fsm disable_sequence

Does not report sequences in FSM coverage.

-hier <file>

Specifies the module definitions, instances, hierarchies, and
source files that you want to exclude or include for the report in
<file>.

-line nocasedef

Disables uncovered case defaults report in line coverage.

-map <module>*

Reports on merging mapped modules coverage given by
<module>*.

-mapfile <file>*

Reports on merging mapped modules coverage given in <file>*.

 6-4

Coverage GUI, Menu, and Toolbar Reference

-metric line

Reports line fsm, cond, tgl, branch, cover directives, events and
assertions, testbench coverage (Vera or NTB coverage groups).

-show availabletests

Lists the available tests for the given design.

-tests <file>

Opens coverage tests listed in <file>.

-tgl portsonly

Reports only ports in toggle coverage.

-elfilelist

Provide a list containing the names of the exclusion files to be
loaded.

-excl_bypass_checks

Bypass checks when loading exclusion files.

-excl_resolve on

Enables adaptive exclusion.

-excl_resolve off

Disables adaptive exclusion.

-excl_strict

Does not allow covered objects to be excluded.

 6-5

Coverage GUI, Menu, and Toolbar Reference

Menu Bar Options

The Menu bar contains the following menus and options:

File Menu

The following items comprise the File menu:

Open/Add Database Displays the Open/Add Database dialog box, which enables
you to select and open a coverage database.

Close Database Displays the Close Database dialog box, which enables you to
close an open coverage database .

Reload Database Reloads the database.

Save Test Saves the current test.

Open File Displays the Open Source File dialog box, which enables you
to select and display a source file in the Source Window.

Close File Closes the source file displayed in the active Source Window
or Window.

New HVP File Creates a new HVP file.

Load HVP File Loads an existing HVP file.

Save HVP File Saves the current HVP file.

Save As HVP File Saves the current HVP file with a new file name.

Close HVP File Closes the current HVP file.

Manage User Data Manages user data files.

Generate URG Report Opens the URG window for you to select the URG command-
line options for generating the URG report.

Import User Defined Groups Opens previously defined cover groups from a file.

Export User Defined Groups Saves to a file the user defined groups you used in your session.

Tests List Lists all the tests that you have loaded in the GUI.

Load Session Displays the Load Session Dialog which enables you to Load
a saved session from a previously saved session file..

Save Session Displays the Save Session Dialog which enables you to Save
the current session to a session file.

Load Exclusions Loads previously save exclusions from an exclusion file.

 6-6

Coverage GUI, Menu, and Toolbar Reference

Edit Menu

The following items comprise the Edit menu:

Save Exclusions Saves current session’s exclusions. from an exclusion file.

Recent Databases Loads the recent database.

Recent Tcl Scripts Loads the recent Tcl script.

Recent Sessions Loads the recent session.

Close View/Pane Closes the current focussed view or pane.

Close Window Closes the currently active pane in the Top Level Window.

Exit Exits DVE.

Expand By Levels Allows expansion by multiple levels with a single
action.

Expand All Expands the entire hierarchy at once. There may
be a delay getting the hierarchy from the
simulation when working interactively.

Collapse Parent Collapses the parent of the selected scope.

Collapse All Collapses all expanded scopes.

Select By Levels Allows selection of more than 1 level at a time.

Select All Selects all that are visible (does not implicitly
expand)

Find Finds specified text in a DVE pane or window.
Field options vary depending on headers, if any,
in the selected pane or window. Multiple Find
dialog boxes can be open at any time with each
identified by in the dialog box name.

Find Next Finds the next occurrence of the search text.

Find Previous Finds the previous occurrence of the search text.

Filters Add Adds filters.

Remove All Deletes previously defined filters.

Exclusion Exclude Excludes the selected item.

Exclude Tree Excludes the parent item.

Unexclude Unexcludes the selected item.

Unexclude Tree Unexcludes the parent item.

 6-7

Coverage GUI, Menu, and Toolbar Reference

View Menu

Apart from the Zoom options, following are the main options in the
View menu:

Edit Exclude
Annotation

Adds or edits an annotation to the selected items.

Delete Exclude
Annotation

Deletes the annotation from the selected items.

Recalculate Displays result with item excluded or unexcluded.

Clear Marks

Clear Exclusions

Create/ Edit User
Defined Groups

Manages user defined groups.

Preferences Opens the Applications Preferences dialog box to
allow customization of the display settings on a
global or window basis.

Show Values Annotates the display with coverage totals.

Show Condition
IDs

Displays the condition IDs/values in the
Condition Coverage Summary table.

Toolbars Edit Toggles the display of the Edit toolbar buttons.

File Toggles the display of the File toolbar buttons.

Window Toggles the display of the Window toolbar
buttons.

Exclusion Toggles display of the Exclusion toolbar
button.

Navigation Toggles the display of the Navigation toolbar
buttons.

Treemap Toggles the display of the Map view navigation
toolbar buttons.

 6-8

Coverage GUI, Menu, and Toolbar Reference

Scope Menu

The following items comprise the Scope menu::

Window Menu

The following items comprise the Window menu:

Show Detail Displays source code and coverage results for the
selected scope in the Source Window.

Show Coverage
Map

Shows you the coverage map.

Show Coverage
Table

Shows coverage table for the selected object.

Show Current Scope Displays the current scope.

Parent Displays the parent of the currently selected scope.

Edit Source Opens an editor with the current source file.

Edit Parent Opens an editor with the parent source of the
current source file.

Navigation Criteria Covered Shows covered scopes.

Uncovered Shows uncovered scopes.

Excluded Shows excluded scopes.

Any Shows all scopes.

Backward Goes to the previous scope.

Forward Goes to the next scope.

Path up Traces path up.

Path down Traces path down.

Move Up to Parent Displays the parent.of selected scope.

Move Down to
Children

Displays children of selected scope.

New Coverage Detail View Opens a Coverage Detail Window, if one is not
already open.

Coverage Table View Opens a Coverage Table Window, if one is not
already open.

 6-9

Coverage GUI, Menu, and Toolbar Reference

Coverage Map View Opens a Coverage Map Window, if one is not
already open.

Set the Frame
Target For

Coverage Detail View Opens a Coverage Detail Window, if one is not
already open.

Coverage Table View Opens a Coverage Table Window, if one is not
already open.

Coverage Map View Opens a Coverage Map Window, if one is not
already open.

Grading View If selected, new coverage grading views will be
created in this frame.

Panes Console Displays new console pane.

Navigation Displays new Navigation pane.

New Top Level
Frame

Coverage Displays new frame.

Load Default
Layout

Returns display to default layout.

Load Layout Reset Layout Returns display to default layout.

From File Load layout from the file.

Save Current
Layout

To Default Saves the current layout as the default layout.

To File Saves the current layout in a file.

Cascade Arranges all open workspace windows so they are
displayed in a cascade pattern.

Tile Arranges all open workspace windows so they are
displayed in a horizontal tile pattern.

Dock in New Row Left Docks the selection to the left of the selected row.

Right Docks the selection to the right of the selected row.

Top Docks the selection to the top of the selected row.

Bottom Docks the selection to the bottom of the selected
row.

Dock in New
Column

Left Docks the selection to the left of the selected row.

Right Docks the selection to the right of the selected row.

Top Docks the selection to the top of the selected row.

 6-10

Coverage GUI, Menu, and Toolbar Reference

Help Menu

The following items comprise the Help menu:

Bottom Docks the selection to the bottom of the selected
row.

Undock Undocks the selected window from the Top Level
Window.

Help Contents Displays HTML help for DVE Coverage.

Help Search Displays the Search tab of the VCS HTML Help.

A Quick Start
Example

Loads a DVE example coverage database.

About DVE Displays DVE Coverage version and copyright
information.

 6-11

Coverage GUI, Menu, and Toolbar Reference

Toolbar Options

This section describes all Toolbar text fields, menus, and icons

Icon Description

•
Open/Add Database or File

Displays the Open/Add Database or Open File
dialog box, depending on the DVE window
displayed, and enables you to select and open a
VPD file.

Search

Searches for selection.

Search Forward/Back

Searches forward or back.

Exclude

Excludes selected item.

Unexclude

Unexcludes selected item.

Recalculate

Recalculates results with excluded/Unexcluded
items.

Clear Exclusion Clears all exclusion.

Load Exclusions Loads exclusion from a file.

Save Exclusions Saves exclusion to a file.

Move Up to Parent

Displays parent of selected item.

 6-12

Coverage GUI, Menu, and Toolbar Reference

Move Down to Child

Displays child of selected item.

Previous/Next

Goes to previous/next instance or scope.

Navigation Criteria

Displays a list of options to view scopes, such as
covered, uncovered, excluded, or any scope.

Path UP/Path Down

Traces path up and down.

Coverage Detail Window

Opens a new Coverage Detail Window.

Coverage Table Window

Opens a new Coverage Table Window.

Coverage Map Window

Opens a new Coverage Map Window.

 6-13

Coverage GUI, Menu, and Toolbar Reference

From left to right:
Selection tool – Uses to select objects.
Zoom In – Makes objects in current view twice
as big so fewer objects will be viewable.
Zoom Out – Makes objects in current view
twice as small so more objects will be
viewable.
Pan tool – Moves the view so the selected
object is centered and viewable in the current
pane. It does not change the zoom.

From left to right:
Zoom Full – Fits all viewable objects into the
current view.
Zoom in 2x – Doubles current view scale.
Zoom out 2x – Halves current view scale.
Zoom to selection– Moves the view so the
selected object is centered and viewable in
the current pane. It does not change the
zoom.

From left to right:
Backward in Zoom and Pan History –
Provides an easy way to go to the previous
view.
Forward in Zoom and Pan History – Provides
an easy way to go to the next view.
Named Zoom and Pan Settings – Chooses
from any views that you saved with a name.

 6-14

Coverage GUI, Menu, and Toolbar Reference

Editing Preferences

To set your display preferences

1. Select Edit > Preferences.

The Application Preferences dialog box appears.

2. Select the Global category to set the font for menus or dialog
boxes and other general settings.

3. Select the Coverage Colors category to customize the color
display of Source Window cover states, Coverage Map window,
and the number of coverage ranges and their associated colors.

4. Click the Exclusion category and select any of the following
options:

 6-15

Coverage GUI, Menu, and Toolbar Reference

- Save exclusion data when saving session – Select this
option when you want the exclusion data to get saved
automatically while saving the session.

- Remind to save exclusion data when reloading database
or exiting – Select this option when you want DVE to remind
you while reloading your database or you are exiting DVE.

- Do not allow covered objects to be excluded – Select this
option when you do not want to exclude the covered objects.
This option is to enable the Strict exclusion mode. You will need
to reload the database after changing the exclusion mode.

5. Select the Metric Weight category to specify weight for each
metric listed to be used for computing the score of each object in
the Summary table or Map window.

The score is a weighted average of the coverage percentage of
each metric. You can remove a metric from score computation by
setting its weight to 0.

6. Select the Navigation Pane category to set display options for
the Navigation pane.

7. Select the Summary Table category to display or hide the detail
values in the table.

8. Click Apply to save the settings or OK to close the Applications
Preferences window.

 6-16

Coverage GUI, Menu, and Toolbar Reference

IN-1

Index

Symbols

--synopsys coverage_off pragma 2-113
--synopsys coverage_on pragma 2-113
-cm_cond 2-23
-cm_constfile 2-50
-cm_dir 1-3
-cm_fsmopt allowTmp 2-7
-cm_fsmopt report2StateFsms 2-7
-cm_fsmopt reportvalues 2-8
-cm_fsmopt reportWait 2-8
-cm_fsmopt reportXassign 2-8
-cm_fsmresetfilter 2-8
-cm_glitch 2-131
-cm_ignorepragmas 2-117, 2-130
-cm_libs 1-5
-cm_line contassign 2-9
-cm_name 1-6
-o 1-4
-v 1-5
-y 1-5
/* VCS enum enumeration_name */ pragma
2-118
/* VCS state_vector signal_name */ pragma
2-117
//VCS coverage off pragma 2-109
//VCS coverage on pragma 2-110
//VCS exclude_file pragma 2-110
//VCS exclude_module pragma 2-110

+incdir 3-4
$cm_coverage system function 3-5
$cm_get_coverage system function 3-9
$cm_get_limit system function 3-12

A

Active Scope 6-8
allops argument to the -cm_cond option 2-25,
2-26, 2-28, 2-42

B

basic argument to -cm_cond 2-37, 2-41
basic argument to the -cm_cond 2-40
basic argument to the -cm_cond option 2-24

C

Cascade (Window menu selection) 6-9
celldefine 1-5
cells

compiling for coverage 1-5
specifying coverage for 1-5

Close Database (File menu selection)
reference 6-5

Close File (File menu selection)
reference 6-5

Close Window (File menu selection)
reference 6-6

IN-2

-cm_assert_hier 2-3
-cm_cond 2-3, 2-23
-cm_cond basic+allops 2-4
-cm_constfile 2-5, 2-11, 2-50
-cm_constfile_cont_on_error 2-11
-cm_count 2-4
$cm_coverage system function 3-5
-cm_dir 1-3, 2-5, 2-13
-cm_exclude_macrofile filename 2-6
-cm_fsmcfg 2-7
-cm_fsmopt 2-7
-cm_fsmopt allowTmp 2-7, 2-77
-cm_fsmopt report2StateFsms 2-7, 2-78
-cm_fsmopt reportvalues 2-8, 2-76
-cm_fsmopt reportWait 2-8, 2-79
-cm_fsmopt reportXassign 2-8, 2-80
-cm_fsmopt sequence 2-65
-cm_fsmresetfilter 2-8, 2-83
-cm_fsmresetfilter filename 2-9
$cm_get_coverage system function 3-9
$cm_get_limit system function 3-12
-cm_glitch 2-13, 2-131
-cm_hier 2-9
-cm_ignorepragmas 2-9, 2-117, 2-130
-cm_libs 1-5, 2-9
-cm_line contassign 2-9
-cm_log 2-13
-cm_name 1-6, 2-10, 2-14
-cm_noconst 2-12
-cm_report noinitial 2-10, 2-106
-cm_fsmresetfilter 2-83
-cm_seqnoconst 2-12
-cm_tgl 2-10, 2-15
-cm_tgl signalsort 2-10
color display, source window 6-14
condition coverage

adding conditions 2-23
disabling vector conditions ??–2-40, 2-40–

??
enabling conditions from more operators

2-28

enabling event control conditions 2-27
modifying 2-23

configuration file
argument to the -cm_fsmcfg option 2-72
for FSM coverage 2-67

Console Pane 6-8, 6-9
continuous assignment FSMs 2-64
continuous assignment statements

in FSM coverage 2-64
coverage

coverage_load() 2-88
single coverage_group 2-88

loading coverage data
coverage_instance() 2-89

loading embedded coverage data
coverage_instance() 2-90

coverage metrics database 1-2
coverage metrics directory 1-2

specifying the name and location 1-3
coverage_instance() 2-89
coverage_load 2-88
CoverMeter.vh file 3-4

D

define compiler directives 2-56, 2-65
-diag noconst 2-12
Dock

Window menu selection 6-9

E

Edit menu, coverage 6-6
Edit menu, reference 6-6
Edit Parent 6-8
Edit Source 6-8
encoded FSMs 2-54
event argument to the -cm_cond option 2-25,
2-27
event controls

in condition coverage 2-25, 2-27
Exit (File menu selection)

IN-3

reference 6-6

F

File menu
, coverage 6-5

File menu, reference 6-5
File Toolbar 6-7, 6-10
Find (Edit menu selection)

reference 6-6
for argument to the -cm_cond option 2-25, 2-33
FSM coverage

coding styles 2-53
continuous assignment FSMs 2-64
one hot FSMs 2-61
things to avoid 2-65
using a configuration file 2-67

full argument to -cm_cond 2-37
full argument to the -cm_cond option 2-23,
2-28, 2-42
full vectors 2-24

G

glitch suppression 2-131
gradedtests.txt 4-12

H

hot bit FSMs 2-61

I

+incdir 3-4
include 3-4
initial blocks

disable 2-10, 2-100, 2-106
intermediate data files

naming 1-6

L

libraries
compiling Verilog libraries for coverage

1-5
specifying coverage for 1-5

Load Session (File menu selection)
reference 6-5

logical conditions 2-23

M

Multiple conditions 2-23

N

non-logical conditions 2-23

O

-o 1-4
one hot FSMs 2-61
Open File (File menu selection)

reference 6-5
Open/Add Database

Toolbar icon 6-11
Open/Add Database (File menu selection)

reference 6-5

P

ports argument to the -cm_cond option 2-25,
2-35
-power=coverage 2-10
-power=dump_hvp 2-10
pragmas for coverage metrics 2-109

Q

Quick Start Example
Toolbar icon 6-13

S

Save Session (File menu selection)
reference 6-5

Scope menu, coverage 6-8
sensitized conditions 2-24
sensitized multiple condition coverage vectors

IN-4

2-35–2-38
sensitized vectors 2-24
Show 6-8
Show Source 6-8
Simulate Toolbar 6-7
simv.vdb directory 1-2, 1-3
Source Pane

Toolbar icon 6-12
std argument to the -cm_cond option 2-24
std argument to the-cm_cond option 2-37
--synopsys coverage_off pragma 2-113
--synopsys coverage_on pragma 2-113

T

test files
naming 1-6

test.branch file 1-6
test.cond file 1-6
test.fsm file 1-6
test.line file 1-6
test.path file 1-6
test.tgl file 1-6
tf argument to the -cm_cond option 2-25, 2-34
Tile (Window menu selection) 6-9
Toolbars 6-7, 6-10
toolbarToolbar 6-11

U

Undock 6-10

V

-v 1-5
//VCS coverage off pragma 2-109
//VCS coverage on pragma 2-110
//VCS exclude_file pragma 2-110
//VCS exclude_module pragma 2-110
Verilog libraries

compiling for coverage 1-5
View menu, coverage 6-7, 6-10
View menu, reference 6-7

W

Window Menu
reference 6-8

Window menu, coverage 6-8
Window Toolbar 6-7

Y

-y 1-5

	VCS Document Navigator
	Contents
	Introduction
	Operations When You Compile or Simulate
	Using Coverage Metrics Files and Directories
	Specifying Coverage for Libraries and Cells
	Naming Intermediate Data Files

	Merging VCS Results for Regressions
	SystemVerilog Support for Code Coverage

	Commands Reference
	Compile Options for Coverage Metrics
	Constant Analysis Options

	Simulation Options for Coverage Metrics
	More Options for Toggle Coverage
	Toggle Coverage for MDAs
	Realtime Control of Toggle Coverage
	Limiting Toggle Coverage to Ports Only
	Excluding and Including Signals in Toggle Coverage
	Excluding a Signal in Toggle Coverage
	Including a Signal in Toggle Coverage
	Including Part-Selects and Bit-Selects
	Using Wildcard Characters
	Excluding and Including Half-Transitions of a Signal
	Specifying SystemVerilog Structures and Unions

	Sorting Signals in Toggle Coverage

	More Options for Condition Coverage
	Modifying Condition Coverage
	Enabling Coverage for Event Controls
	Enabling Condition Coverage for More Operators
	Enabling Condition Coverage for Allops
	Enabling Condition Coverage in For Loops
	Enabling Condition Coverage in Tasks and Functions
	Enabling Condition Coverage in Port Connection Lists
	Using Sensitized Multiple Condition Coverage Vectors
	Using the -cm_cond allvectors Option
	Disabling Vector Conditions
	Excluded Subexpressions
	Condition Coverage Observability

	Specifying Continuous Assignment Coverage
	Displaying Condition IDs
	Using Multiple Condition Value Vectors With Constant Filtering
	Omitting Coverage for Default Case Items

	More Options for Branch Coverage
	For Loops and User-defined Tasks and Functions
	Limitations

	More Options for FSM Coverage
	Coding a Verilog FSM
	Using the Encoded FSM Style
	Implementing Hot Bit or One Hot FSMs
	Using Continuous Assignments for FSMs
	Avoiding Substituting the Same Numeric Constant
	Sequence Coverage
	Controlling How VCS Extract FSMs
	Using an FSM Configuration File
	The TRANSITIONS Line
	Specifying the Configuration File
	Sequence Filtering in Reports
	Specifying the Maximum for Sequences
	Using the Configuration File for One Hot FSM

	Reporting FSM State Values Instead of Named States
	Enabling Indirect Assignment to State Variables
	Enabling Two-state FSMs
	Enabling the Monitoring of Self Looping FSMs
	Enabling X Value States
	Filtering Out Transitions Caused by Specified Signals

	More Options for Functional Coverage
	Options to Specify in the optconfigfile
	Unified Coverage Directory and Database Control
	Loading Coverage Data
	Using -covg_disable_cg to Disable Functional Coverage Items
	Using -covg_no_guard_in_shape to Handle Guards on Illegal/Ignore Bins
	Example
	Functional Coverage System Tasks Summary Table

	Controlling the Scope of Coverage Compilation
	Using a Configuration File
	Disabling the Monitoring of Initial Blocks
	Use Model
	URG Report

	Coverage Pragmas
	Using Pragmas to Limit Line Coverage
	Using Pragmas to Limit VHDL Lines From Coverage

	Pragmas to Limit Toggle Coverage
	Pragmas to Limit FSM Coverage
	Specifying the Signal That Holds the Current State
	Specifying the Part-Select that Holds the Current State
	Specifying the Concatenation that Holds the Current State
	Specifying the Signal that Holds the Next State
	Specifying the Current and Next State Signals in the Same Declaration
	Specifying the Possible States of the FSM
	Pragmas in One Line Comments
	Specifying FSM With Pragmas - an Example

	Using Pragmas to Limit Branch Coverage

	Using Glitch Suppression
	Line Coverage Glitch Suppression
	Limitation on Clocks

	Toggle Coverage Glitch Suppression
	Using Condition Coverage Glitch Suppression

	User-defined Coverage System Functions
	Coverage System Functions
	The $cm_coverage System Function
	Return Values

	The $cm_get_coverage System Function
	Return Values

	The $cm_get_limit System Function
	Examples
	Accessing Coverage Data During Simulation Using UCAPI
	Monitoring the Coverage Data
	Resetting the Coverage Data
	Ignoring Coverage Collected during Parts of Simulation
	How the Coverage Data Is Accessed

	URG Options
	Command-Line Options
	Using -cm_dir and -dbname Options with the Unified Coverage Database
	Redirecting All the Temporary Files Generated By urg - parallel -debug Option
	Use Model
	Examples
	Limitations

	Displaying Ratio Score in URG Report
	Additional Options for Parallel Merging
	Unsupported Options in Parallel Merging

	Merge Covergroups Across Scopes
	Merge across-shape
	Merge across-program-scope

	Instance Coverage Score Option
	Covergroup Score Covered/Coverable Ratio Option
	Trend Chart Command-Line Options
	Reporting Element Holes
	Definition
	Finding Element Holes
	Displaying Range Values
	Showing Element Holes

	Unified Coverage API Functions
	Coverage Data Load/Unload
	covdb_load
	covdb_loadmerge
	covdb_unload
	covdb_save
	covdb_save_exclude_file
	covdb_load_exclude_file
	covdb_save_attempted_file
	covdb_load_mapfile

	Coverage Database Version Check
	Version Check

	Coverage Data Model Traversal
	covdb_get_handle
	covdb_get_qualified_handle
	covdb_iterate
	covdb_qualified_iterate
	covdb_scan
	covdb_qualified_object_iterate

	Bypass Checksum Validation
	covdb_qualified_configure

	Memory and Pointer Management
	covdb_make_persistent_handle
	covdb_release_handle

	Reading Properties
	covdb_version
	covdb_get
	covdb_get_str
	covdb_get_real

	Reading Annotations
	covdb_get_annotation
	Example

	covdb_get_qualified_annotation
	covdb_get_integer_annotation
	covdb_set_annotation
	Example

	Setting Properties
	covdb_set
	covdb_set_str

	Error Handling and Recovery
	covdb_set_error_callback
	covdb_get_error
	covdb_configure
	covdb_qualified_configure

	APIs for Exclusion
	Loading/Saving Exclude File
	covdb_load_exclude_file
	covdb_save_exclude_file
	covdb_unload_exclusion
	covdb_save_attempted_file

	Types, Properties, and Relations
	Object Types
	1-To-1 Relations
	1-To-Many Relations
	Object Properties
	Limitations

	Values

	Coverage GUI, Menu, and Toolbar Reference
	Coverage GUI Command-Line Options
	Menu Bar Options
	File Menu
	Edit Menu
	View Menu
	Scope Menu
	Window Menu
	Help Menu

	Toolbar Options
	Editing Preferences

	Index

