
CIRCUIT ANALYSIS
and FEEDBACK

AMPLIFIER THEORY

© 2006 by Taylor & Francis Group, LLC



CIRCUIT ANALYSIS
and FEEDBACK

AMPLIFIER THEORY

Edited by

Wai-Kai Chen

A CRC title, part of the Taylor & Francis imprint, a member of the
Taylor & Francis Group, the academic division of T&F Informa plc.

Boca Raton   London   New York

University of Illinois
Chicago, U.S.A.

© 2006 by Taylor & Francis Group, LLC



The material was previously published in The Circuit and Filters Handbook, Second Edition. © CRC Press LLC 2002.

Published in 2006 by
CRC Press
Taylor & Francis Group 
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2006 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group

No claim to original U.S. Government works
Printed in the United States of America on acid-free paper
10 9 8 7 6 5 4 3 2 1

International Standard Book Number-10: 0-8493-5699-7 (Hardcover) 
International Standard Book Number-13: 978-0-8493-5699-5 (Hardcover) 

This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with
permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish
reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials
or for the consequences of their use.

No part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or
other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information
storage or retrieval system, without written permission from the publishers. 

For permission to photocopy or use material electronically from this work, please access www.copyright.com
(http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC) 222 Rosewood Drive, Danvers, MA
01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For
organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Catalog record is available from the Library of Congress 

Visit the Taylor & Francis Web site at 
http://www.taylorandfrancis.com

and the CRC Press Web site at 
http://www.crcpress.com

Taylor & Francis Group 
is the Academic Division of T&F Informa plc.

© 2006 by Taylor & Francis Group, LLC

http://www.copyright.com
http://www.copyright.com
http://www.taylorandfrancis.com
http://www.crcpress.com


v

Preface

The purpose of Circuit Analysis and Feedback Amplifier Theory is to provide in a single volume a
comprehensive reference work covering the broad spectrum of linear circuit analysis and feedback
amplifier design. It also includes the design of multiple-loop feedback amplifiers. The book is written
and developed for the practicing electrical engineers in industry, government, and academia. The goal
is to provide the most up-to-date information in the field. 

Over the years, the fundamentals of the field have evolved to include a wide range of topics and a
broad range of practice. To encompass such a wide range of knowledge, the book focuses on the key
concepts, models, and equations that enable the design engineer to analyze, design and predict the
behavior of large-scale circuits and feedback amplifiers. While design formulas and tables are listed,
emphasis is placed on the key concepts and theories underlying the processes.

The book stresses fundamental theory behind professional applications. In order to do so, it is rein-
forced with frequent examples. Extensive development of theory and details of proofs have been omitted.
The reader is assumed to have a certain degree of sophistication and experience. However, brief reviews
of theories, principles and mathematics of some subject areas are given. These reviews have been done
concisely with perception.

The compilation of this book would not have been possible without the dedication and efforts of
Professor Larry P. Huelsman, and most of all the contributing authors. I wish to thank them all.

Wai-Kai Chen
Editor-in-Chief
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1
Fundamental

Circuit Concepts

1.1 The Electrical Circuit ......................................................... 1-1
Current and Current Polarity • Energy and Voltage • Power

1.2 Circuit Classifications ...................................................... 1-10
Linear vs. Nonlinear • Active vs. Passive • Time Varying vs. Time 
Invariant • Lumped vs. Distributed

1.1 The Electrical Circuit

An electrical circuit or electrical network is an array of interconnected elements wired so as to be capable
of conducting current. As discussed earlier, the fundamental two-terminal elements of an electrical
circuit are the resistor, the capacitor, the inductor, the voltage source, and the current source. The
circuit schematic symbols of these elements, together with the algebraic symbols used to denote their
respective general values, appear in Figure 1.1.

As suggested in Figure 1.1, the value of a resistor is known as its resistance, R, and its dimensional
units are ohms. The case of a wire used to interconnect the terminals of two electrical elements corresponds
to the special case of a resistor whose resistance is ideally zero ohms; that is, R = 0. For the capacitor in
Figure 1.1(b), the capacitance, C, has units of farads, and from Figure 1.1(c), the value of an inductor is
its inductance, L, the dimensions of which are henries. In the case of the voltage sources depicted in
Figure 1.1(d), a constant, time invariant source of voltage, or battery, is distinguished from a voltage
source that varies with time. The latter type of voltage source is often referred to as a time varying signal
or simply, a signal. In either case, the value of the battery voltage, E, and the time varying signal, v(t),
is in units of volts. Finally, the current source of Figure 1.1(e) has a value, I, in units of amperes, which
is typically abbreviated as amps.

Elements having three, four, or more than four terminals can also appear in practical electrical
networks. The discrete component bipolar junction transistor (BJT), which is schematically portrayed
in Figure 1.2(a), is an example of a three-terminal element, in which the three terminals are the collector,
the base, and the emitter. On the other hand, the monolithic metal-oxide-semiconductor field-effect
transistor (MOSFET) depicted in Figure 1.2(b) has four terminals: the drain, the gate, the source, and
the bulk substrate.

Multiterminal elements appearing in circuits identified for systematic mathematical analyses are rou-
tinely represented, or modeled, by equivalent subcircuits formed of only interconnected two-terminal
elements. Such a representation is always possible, provided that the list of two-terminal elements itemized
in Figure 1.1 is appended by an additional type of two-terminal element known as the controlled source,
or dependent generator. Two of the four types of controlled sources are voltage sources and two are
current sources. In Figure 1.3(a), the dependent generator is a voltage-controlled voltage source (VCVS)
in that the voltage, v0(t), developed from terminal 3 to terminal 4 is a function of, and is therefore

John Choma, Jr.
University of Southern California
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1-2 Circuit Analysis and Feedback Amplifier Theory

dependent on, the voltage, vi (t), established elsewhere in the considered network from terminal 1 to
terminal 2. The controlled voltage, v0(t), as well as the controlling voltage, vi (t), can be constant or time
varying. Regardless of the time-domain nature of these two voltage, the value of v0(t) is not an indepen-
dent number. Instead, its value is determined by vi (t) in accordance with a prescribed functional rela-
tionship, e.g.,

(1.1)

If the function, f(⋅), is linearly related to its argument, (1.1) collapses to the form

(1.2)

where fµ is a constant, independent of either v0(t) or vi(t). When the function on the right-hand side of
(1.1) is linear, the subject VCVS becomes known as a linear voltage-controlled voltage source.

FIGURE 1.1  Circuit schematic symbol and corresponding value notation for (a) resistor, (b) capacitor, (c) inductor,
(d) voltage source, and (e) current source. Note that a constant voltage source, or battery, is distinguished from a
voltage source that varies with time.

FIGURE 1.2  Circuit schematic symbol for (a) discrete component bipolar junction transistor (BJT) and
(b) monolithic metal-oxide-semiconductor field-effect transistor (MOSFET).
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Fundamental Circuit Concepts 1-3

The second type of controlled voltage source is the current-controlled voltage source (CCVS) depicted
in Figure 1.3(b). In this dependent generator, the controlled voltage, v0(t), developed from terminal 3 to
terminal 4 is a function of the controlling current, ii(t), flowing elsewhere in the network between terminals
1 and 2, as indicated. In this case, the generalized functional dependence of v0(t) on ii (t) is expressible as

(1.3)

which reduces to

(1.4)

when r(⋅) is a linear function of its argument.
The two types of dependent current sources are diagrammed symbolically in Figures 1.3(c) and (d).

Figure 1.3(c) depicts a voltage-controlled current source (VCCS), for which the controlled current i0(t),
flowing in the electrical path from terminal 3 to terminal 4, is determined by the controlling voltage,
vi(t), established across terminals 1 and 2. Therefore, the controlled current can be written as

(1.5)

In the current-controlled current source (CCCS) of Figure 1.3(d),

(1.6)

where the controlled current, i0(t), flowing from terminal 3 to terminal 4 is a function of the controlling
current, ii (t), flowing elsewhere in the circuit from terminal 1 to terminal 2. As is the case with the two
controlled voltage sources studied earlier, the preceding two equations collapse to the linear relationships

(1.7)

and

(1.8)

when g(⋅) and a(⋅), respectively, are linear functions of their arguments.

FIGURE 1.3  Circuit schematic symbol for (a) voltage-controlled voltage source (VCVS), (b) current-controlled voltage
source (CCVS), (c) voltage-controlled current source (VCCS), and (d) current-controlled current source (CCCS).
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1-4 Circuit Analysis and Feedback Amplifier Theory

The immediate implication of the controlled source concept is that the definition for an electrical
circuit given at the beginning of this subsection can be revised to read “an electrical circuit or electrical
network is an array of interconnected two-terminal elements wired in such a way as to be capable of
conducting current”. Implicit in this revised definition is the understanding that the two-terminal ele-
ments allowed in an electrical circuit are the resistor, the capacitor, the inductor, the voltage source, the
current source, and any of the four possible types of dependent generators.

In, an attempt to reinforce the engineering utility of the foregoing definition, consider the voltage
mode operational amplifier, or op-amp, whose circuit schematic symbol is submitted in Figure 1.4(a).
Observe that the op-amp is a five-terminal element. Two terminals, labeled 1 and 2, are provided to
receive input signals that derive either from external signal sources or from the output terminals of
subcircuits that feed back a designable fraction of the output signal established between terminal 3 and
the system ground. Battery voltages, identified as ECC and EBB in the figure, are applied to the remaining
two op-amp terminals (terminals 4 and 5) with respect to ground to bias or activate the op-amp for its
intended application. When ECC and EBB are selected to ensure that the subject op-amp behaves as a linear
circuit element, the voltages, ECC and EBB, along with the corresponding terminals at which they are
incident, are inconsequential. In this event the op-amp of Figure 1.4(a) can be modeled by the electrical
circuit appearing in Figure 1.4(b), which exploits a linear VCVS. Thus, the voltage amplifier of
Figure 1.4(c), which interconnects two batteries, a signal source voltage, three resistors, a capacitor, and
an op-amp, can be represented by the network given in Figure 1.4(d). Note that the latter configuration
uses only two terminal elements, one of which is a VCVS.

FIGURE 1.4  (a) Circuit schematic symbol for a voltage mode operational amplifier. (b) First-order linear model of
the op-amp. (c) A voltage amplifier realized with the op-amp functioning as the gain element. (d) Equivalent circuit
of the voltage amplifier in (c).
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Fundamental Circuit Concepts 1-5

Current and Current Polarity

The concept of an electrical current is implicit to the definition of an electrical circuit in that a circuit is
said to be an array of two-terminal elements that are connected in such a way as to permit the condition
of current. Current flow through an element that is capable of current conduction requires that the net
charge observed at any elemental cross-section change with time. Equivalently, a net nonzero charge,
q(t), must be transferred over finite time across any cross-sectional area of the element. The current, i(t),
that actually flows is the time rate of change of this transferred charge;

(1.9)

where the MKS unit of charge is the coulomb, time t is measured in seconds, and the resultant current
is measured in units of amperes. Note that zero current does not necessarily imply a lack of charge at a
given cross-section of a conductive element. Instead, zero current implies only that the subject charge is
not changing with time; that is, the charge is not moving through the elemental cross-section.

Electrical charge can be negative, as in the case of electrons transported through a cross-section of a
conductive element such as aluminum or copper. A single electron has a charge of –(1.6021 × 10–19)
coulomb. Thus, (1.9) implies a need to transport an average of (6.242 × 1018) electrons in 1 second
through a cross-section of aluminum if the aluminum element is to conduct a constant current of 1 amp.
Charge can also be positive, as in the case of holes transported through a cross-section of a semiconductor
such as germanium or silicon. Hole transport in a semiconductor is actually electron transport at an
energy level that is smaller than the energy required to effect electron transport in that semiconductor.
To first order, therefore, the electrical charge of a hole is the negative of the charge of an electron, which
implies that the charge of a hole is +(1.602 × 10–19) coulomb.

A positive charge, q(t), transported from the left of the cross-section to the right of the cross-section

to right across the indicated cross-section. Assume that, prior to the transport of such charge, the volumes
to the left and to the right of the cross-section are electrically neutral; that is, these volumes have zero
initial net charge. Then, the transport of a positive charge, q0, from the left side to the right side of the
element charges the right side to +1q0 and the left side to –1q0.

Alternatively, suppose a negative charge in the amount of –q0 is transported from the right side of the
element to its left side, as suggested in Figure 1.5(b). Then, the left side charges to –q0, and the right side
charges to +q0, which is identical to the electrostatic condition incurred by the transport of a positive
charge in the amount of q0 from left- to right-hand sides. As a result, the transport of a net negative
charge from right to left produces a positive current, i(t), flowing from left to right, just as positive charge
transported from left- to right-hand sides induces a current flow from left to right.

Assume, as portrayed in Figure 1.5(c), that a positive or a negative charge, say, q1(t), is transported
from the left side of the indicated cross-section to the right side. Simultaneously, a positive or a negative
charge in the amount of q2(t) is directed through the cross-section from right to left. If i1(t) is the current
arising from the transport of the charge q1(t), and if i2(t) denotes the current corresponding to the
transport of the charge, q2(t), the net effective current ie(t), flowing from the left side of the cross-section
to the right side of the cross-section is

(1.10)

where the charge difference, [q1(t) – q2(t)], represents the net charge transported from left to right.
Observe that if q1(t) ≡ q2(t), the net effective current is zero, even though conceivably large numbers of
charges are transported back and forth across the junction.

i t
dq t

dt
( ) = ( )

i t
d

dt
q t q t i t i te( ) = ( ) − ( )[ ] = ( ) − ( )1 2 1 2
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1-6 Circuit Analysis and Feedback Amplifier Theory

Energy and Voltage

The preceding section highlights the fundamental physical fact that the flow of current through a
conductive electrical element mandates that a net charge be transported over finite time across any
arbitrary cross-section of that element. The electrical effect of this charge transport is a net positive
charge induced on one side of the element in question and a net negative charge (equal in magnitude
to the aforementioned positive charge) mirrored on the other side of the element. This ramification
conflicts with the observable electrical properties of an element in equilibrium. In particular, an element
sitting in free space, without any electrical connection to a source of energy, is necessarily in equilibrium
in the sense that the net positive charge in any volume of the element is precisely counteracted by an
equal amount of charge of opposite sign in said volume. Thus, if none of the elements abstracted in
Figure 1.5 is connected to an external source of energy, it is physically impossible to achieve the indicated
electrical charge differential that materializes across an arbitrary cross-section of the element when charge
is transferred from one side of the cross-section to the other.

The energy commensurate with sustaining current flow through an electrical element derives from
the application of a voltage, v(t), across the element in question. Equivalently, the application of electrical
energy to an element manifests itself as a voltage developed across the terminals of an element to which
energy is supplied. The amount of applied voltage, v(t), required to sustain the flow of current, i(t), as

the differential charge induced across the element through which i(t) flows. This is to say that without
the connection of the voltage, v(t), to the element in Figure 1.6(a), the element cannot be in equilibrium.
With v(t) connected, equilibrium for the entire system comprised of element and voltage source is
reestablished by allowing for the conduction of the current, i(t).

FIGURE 1.5 (a) Transport of a positive charge from the left-hand side to the right-hand side of an arbitrary cross-
section of a conductive element. (b) Transport of a negative charge from the right-hand side to the left-hand side of
an arbitrary cross-section of a conductive element. (c) Transport of positive or negative charges from either side to
the other side of an arbitrary cross-section of a conductive element.
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Instead of viewing the delivery of energy to an electrical element as the ramification of a voltage source
applied to the element, the energy delivery may be interpreted as the upshot of a current source used to
excite the element, as depicted in Figure 1.6(b). This interpretation follows from the fact that energy
must be applied in an amount that effects charge transport at a desired time rate of change. It follows
that the application of a current source in the amount of the desired current is necessarily in one-to-one
correspondence with the voltage required to offset the charge differential manifested by the charge
transport that yields the subject current. To be sure, a voltage source is a physical entity, while current
source is not; but the mathematical modeling of energy delivery to an electrical element can nonetheless
be accomplished through either a voltage source or a current source.

In Figure 1.6, the terminal voltage, v(t), corresponding to the energy, w(t), required to transfer an
amount of charge, q(t), across an arbitrary cross-section of the element is

(1.11)

where v(t) is in units of volts when q(t) is expressed in coulombs, and w(t) is specified in joules. Thus,
if 1 joule of applied energy results in the transport of 1 coulomb of charge through an element, the
elemental terminal voltage manifested by the 1 joule of applied energy is 1 volt.

It should be understood that the derivative on the right-hand side of (1.11), and thus the terminal
voltage demanded of an element that is transporting a certain amount of charge through its cross-section,
is a function of the properties of the type of material from which the element undergoing study is
fabricated. For example, an insulator such as paper, air, or silicon dioxide is ideally incapable of current
conduction and hence, intrinsic charge transport. Thus, q(t) is essentially zero in an insulator and by
(1.11), an infinitely large terminal voltage is required for even the smallest possible current. In a conductor
such as aluminum, iron, or copper, large amounts of charge can be transported for very small applied
energies. Accordingly, the requisite terminal voltage for even very large currents approaches zero in ideal
conductors. The electrical properties of semiconductors such as germanium, silicon, and gallium arsenide

FIGURE 1.6  (a) The application of energy in the form of a voltage applied to an element that is made to conduct
a specified current. The applied voltage, v(t), causes the current, i(t), to flow. (b) The application of energy in the
form of a current applied to an element that is made to establish a specified terminal voltage. The applied current,
i(t), causes the voltage, v(t), to be developed across the terminals of the electrical element.
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1-8 Circuit Analysis and Feedback Amplifier Theory

lie between the extremes of those for an insulator and a conductor. In particular, semiconductor elements
behave as insulators when their terminals are subjected to small voltages, while progressively larger
terminal voltages render the electrical behavior of semiconductors akin to conductors. This conditional
conductive property of a semiconductor explains why semiconductor devices and circuits generally must
be biased to appropriate voltage levels before these devices and circuits can function in accordance with
their requirements.

Power

The foregoing material underscores the fact that the flow of current through a two-terminal element, or
more generally, through any two terminals of an electrical network, requires that charge be transported
over time across any cross-section of that element or network. In turn, such charge transport requires
that energy be supplied to the network, usually through the application of an external voltage source.
The time rate of change of this applied energy is the power delivered by the external voltage or current
source to the network in question. If p(t) denotes this power in units of watts

(1.12)

where, of course, w(t) is the energy supplied to the network in joules. By rewriting (1.12) in the form

(1.13)

and applying (1.9) and (1.11), the power supplied to the two terminals of an element or a network
becomes the more expedient relationship

(1.14)

Equation (1.14) expresses the power delivered to an element as a simple product of the voltage applied
across the terminals of the element and the resultant current conducted by that element. However, care
must be exercised with respect to relative voltage and current polarity, when applying (1.14) to practical
circuits.

s 

the two terminals, 1 and 2, of an element, which responds by conducting a current i(t), from terminal 1
to terminal 2 and developing a corresponding terminal voltage v(t), as illustrated. If the wires (zero
resistance conductors, as might be approximated by either aluminum or copper interconnects) that
connect the signal source to the element are ideal, the voltage, v(t), is identical to vs(t). Moreover, because
the current is manifested by the application of the signal source, which thereby establishes a closed
electrical path for current conduction, the element current, i(t), is necessarily the same as the current,
is(t), that flows through vs(t).

If attention is focused on only the element in Figure 1.7, it is natural to presume that the current
conducted by the element actually flows from terminal 1 to terminal 2 when (as shown) the voltage
developed across the element is positive at terminal 1 with respect to terminal 2. This assertion may be
rationalized qualitatively by noting that the positive voltage nature at terminal 1 acts to repel positive
charges from terminal 1 to terminal 2, where the negative nature of the developed voltage, v(t), tends to
attract the repulsed positive charges. Similarly, the positive nature of the voltage at terminal 1 serves to
attract negative charges from terminal 2, where the negative nature of v(t) tends to repel such negative
charges. Because current flows in the direction of transported positive charge and opposite to the direction
of transported negative charge, either interpretation gives rise to an elemental current, i(t), which flows

p t
dw t

dq
( ) = ( )

p t
dw t

dq t

dq t

dt
( ) = ( )

( )
( )

p t v t i t( ) = ( ) ( )
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To the foregoing end, it is useful to revisit the simple abstraction of Figure 1.6(a), which is redrawn
as the slightly modified form in Figure 1.7. In this circuit, a signal source voltage, v (t), is applied across
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from terminal 1 to terminal 2. In general, if current is indicated as flowing from the “high” (+) voltage
terminal to the “low” (–) voltage terminal of an element, the current conducted by the element and the
voltage developed across the element to cause this flow of current are said to be in associated reference
polarity. When the element current, i(t), and the corresponding element voltage, v(t), as exploited in
the defining power relationship of (1.14), are in associated reference polarity, the resulting computed
power is a positive number and is said to represent the power delivered to the element. In contrast, v(t)
and i(t) are said to be in disassociated reference polarity when i(t) flows from the “low” voltage terminal
of the element to its “high” voltage terminal. In this case the voltage-current product in (1.14) is a negative
number. Instead of stating that the resulting negative power is delivered to the element, it is more
meaningful to assert that the computed negative power is a positive power that is generated by the element
in question.

At first glance, it may appear as though the latter polarity disassociation between element voltage and
current variables is an impossible circumstance. Not only is polarity disassociation possible, it is absolutely
necessary if electrical circuits are to subscribe to the fundamental principle of conservation of power.
This principle states that the net power dissipated by a circuit must be identical to the net power supplied
to that circuit. A confirmation of this basic principle derives from a further consideration of the topology
in Figure 1.7. The electrical variables, v(t) and i(t), pertinent to the element delineated in this circuit, are
in associated reference polarity. Accordingly, the power, pe(t), dissipated by this element is positive and
given by (1.14):

(1.15)

However, the voltage and current variables, vs(t) and is(t), relative to the signal source voltage are in
disassociated polarity. It follows that the power, ps(t), delivered to the signal source is

(1.16)

Because, as stated previously, vs(t) = v(t) and is(t) = i(t), for the circuit at hand, (1.16) can be written as

(1.17)

FIGURE 1.7  Circuit used to illustrate power calculations and the asso-
ciated reference polarity convention.
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The last result implies that the

power delivered by the signal source = (1.18)

that is, the power delivered to the element by the signal source is equal to the power dissipated by the
element.

combining (1.15) and (1.17) to arrive at

(1.19)

The foregoing result may be generalized to the case of a more complex circuit comprised of an electrical
interconnection of N elements, some of which may be voltage and current sources. Let the voltage across
the kth element by vk(t), and let the current flowing through this kth element, in associated reference
polarity with vk(t), be ik(t). Then, the power, pk(t), delivered to the kth electrical element is vk(t) ik(t). By
conservation of power,

(1.20)

The satisfaction of the expression requires that at least one of the pk(t) be negative, or equivalently, at
least one of the N elements embedded in the circuit at hand must be a source of energy.

1.2 Circuit Classifications

It was pointed out earlier that the relationship between the current that is made to flow through an
electrical element and the applied energy, and thus voltage, that is required to sustain such current flow
is dictated by the material from which the subject element is fabricated. The element material and the
associated manufacturing methods exploited to realize a particular type of circuit element determine the
mathematical nature between the voltage applied across the terminals of the element and the resultant
current flowing through the element. To this end, electrical elements and circuits in which they are
embedded are generally codified as linear or nonlinear, active or passive, time varying or time invariant,
and lumped or distributed.

Linear vs. Nonlinear

A linear two-terminal circuit element is one for which the voltage developed across, and the current
flowing through, are related to one another by a linear algebraic or a linear integro-differential equation.
If the relationship between terminal voltage and corresponding current is nonlinear, the element is said
to be nonlinear. A linear circuit contains only linear circuit elements, while a circuit is said to be nonlinear
if a least one of its embedded electrical elements is nonlinear.

All practical circuit elements, and thus all practical electrical networks, are inherently nonlinear.
However, over suitably restricted ranges of applied voltages and corresponding currents, the volt-ampere
characteristics of these elements and networks emulate idealized linear relationships. In the design of an
electronic linear signal processor, such as an amplifier, an implicit engineering task is the implementation
of biasing subcircuits that constrain the voltages and currents of internal semiconductor elements to
ranges that ensure linear elemental behavior over all possible operating conditions.

The voltage–current relationship for the linear resistor offered in Figure 1.8(a) is

(1.21)

+ ( ) ( ) ≡ ( )v t i t p te

p t p ts e( ) + ( ) = 0

p t v t i tk

k

N

k

k

N

k( ) = ( ) = ( ) =
= =

∑ ∑
1 1

0

v t Ri t( ) = ( )
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An alternative statement to conservation of power, as applied to the circuit in Figure 1.7 derives from
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where the voltage, v(t), appearing across the terminals of the resistor and the resultant current, i(t),
conducted by the resistor are in associated reference polarity. The resistance, R, is independent of either
v(t) or i(t). From (1.14), the dissipated resistor power, which is mainfested in the form of heat, is

(1.22)

The linear capacitor and the linear inductor, with schematic symbols that appear, respectively, in
Figures 1.8(b) and (c), store energy as opposed to dissipating power. Their volt-ampere equations are
the linear relationships

(1.23)

for the capacitor, whereas for the inductor in Figure 1.8(c),

(1.24)

Observe from (1.23) and (1.14) that the power, pc(t), delivered to the linear capacitor is

(1.25)

From (1.12), this power is related to the energy, e.g., wc(t), stored in the form of charge deposited on the
plates of the capacitor by

(1.26)

It follows that the energy delivered to, and hence stored in, the capacitor from time t = 0 to time t is

(1.27)

It should be noted that this stored energy, like the energy associated with a signal source or a battery
voltage, is available to supply power to other elements in the network in which the capacitor is embedded.
For example, if very little current is conducted by the capacitor in question, (1.23) implies that the voltage
across the capacitor is essentially constant. However, an element whose terminal voltage is a constant
and in which energy is stored and therefore available for use behaves as a battery.

If the preceding analysis is repeated for the inductor of Figure 1.8(c), it can be shown that the energy,
wl (t), stored in the inductive element form time t = 0 to time t is

FIGURE 1.8  Circuit schematic symbol and corresponding voltage and current notation for (a) a linear resistor, (b)
a linear capacitor, and (c) a linear inductor.
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(1.28)

Although an energized capacitor conducting almost zero current functions as a voltage source, an
energized inductor supporting almost zero terminal voltage emulates a constant current source.

Active vs. Passive

An electrical element or network is said to be passive if the power delivered to it, defined in accordance
with (1.14), is positive. This definition exploits the requirement that the terminal voltage, v(t), and the
element current i(t), appearing in (1.14) be in associated reference polarity. In constrast, an element or
network to which the delivered power is negative is said to be active; that is, an active element or network
generates power instead of dissipating it.

Conventional two-terminal resistors, capacitors, and inductors are passive elements. It follows that
networks formed of interconnected two-terminal resistors, capacitors, and inductors are passive net-
works. Two-terminal voltage and current sources generally behave as active elements. However, when
more than one source of externally applied energy is present in an electrical network, it is possible for
one more of these sources to behave as passive elements. Comments similar to those made in conjunction
with two-terminal voltage and current sources apply equally well to each of the four possible dependent
generators. Accordingly, multiterminal configurations, whose models exploit dependent sources, can
behave as either passive or active networks.

Time Varying vs. Time Invariant

The elements of a circuit are defined electrically by an identifying parameter, such as resistance, capac-
itance, inductance, and the gain factors associated with dependent voltage or current sources. An element
whose indentifying parameter changes as a function of time is said to be a time varying element. If said
parameter is a constant over time, the element in question is time invariant. A network containing at
least one time varying electrical element it is said to be a time varying network. Otherwise, the network
is time invariant. Excluded from the list of elements whose electrical character establishes the time
variance or time invariance of a considered network are externally applied voltage and current sources.
Thus, for example, a network with internal elements that are exclusively time-invariant resistors, capac-
itors, inductors, and dependent sources, but which is excited by a sinusoidal signal source, is nonetheless
a time-invariant network.

Although some circuits, and particularly electromechanical networks, are purposely designed to exhibit
time varying volt–ampere characteristics, parametric time variance is generally viewed as a parasitic
phenomena in the majority of practical circuits. Unfortunately, a degree of parametric time variance is
unavoidable in even those circuits that are specifically designed to achieve input–output response prop-
erties that closely approximate time-invariant characteristics. For example, the best of network elements
exhibit a slow aging phenomenon that shifts the values of its intrinsic physical parameters. The upshot
of these shifts is electrical circuits where overall performance deterioriates with time.

Lumped vs. Distributed

Electrons in conventional conductive elements are not transported instantaneously across elemental cross
sections, but their transport velocities are very high. In fact, these velocities approach the speed of light,
say c, which is (3 × 108) m/s or about 982 ft/µsec. Electrons and holes in semiconductors are transported
at somewhat slower speeds, but generally no less than an order of magnitude or so smaller than the speed
of light. The time required to transport charge from one terminal of a two-terminal electrical element
to its other terminal, compared with the time required to propagate energy uniformly through the
element, determines whether an element is lumped or distributed. In particular, if the time required to
transport charge through an element is significantly smaller than the time required to propagate the

w t Li tl ( ) = ( )1

2
2
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energy through the element that is required to incur such charge transport, the element in question is
said to be lumped. On the other hand, if the charge transport time is comparable to the energy propa-
gation time, the element is said to be distributed.

The concept of a lumped, as opposed to a distributed, circuit element can be qualitatively understood

i(t), is identical to the indicated source current, is(t). This equality implies that i(t), is effectively circulating
around the loop that is electrically formed by the interconnection of the signal source voltage, vs(t), to
the element. Equivalently, the subject equality implies that i(t) is entering terminal 1 of the element and
simultaneously is exiting at terminal 2, as illustrated. Assuming that the element at hand is not a
semiconductor, the current, i(t), arises from the transport of electrons through the element in a direction
opposite to that of the indicated polarity of i(t). Specifically, electrons must be transported from terminal
2, at the bottom of the element, to terminal 1, at the top of the element, and in turn the requisite amount
of energy must be applied in the immediate neighborhoods of both terminals. The implication of
presuming that the element at hand is lumped is that i(t) is entering terminal 1 at precisely the same
time that it is leaving terminal 2. Such a situation is clearly impossible, for it mandates that electrons be
transported through the entire length of the element in zero time. However, given that electrons are
transported at a nominal velocity of 982 ft/µsec, a very small physical elemental length renders the
approximation of zero electron transport time reasonable. For example, if the element is 1/2 inch long
(a typical size for an off-the-shelf resistor), the average transport time for electrons in this unit is only
about 42.4 psec. As long as the period of the applied excitation, vs(t), is significantly larger than 42.4
psec, the electron transport time is significantly smaller than the time commensurate with the propagation
of this energy through the entire element. A period of 42.4 psec corresponds to a signal whose frequency
of approximately 23.6 GHz. Thus, a 1/2-in resistive element excited by a signal whose frequency is
significantly smaller than 23.6 GHz can be viewed as a lumped circuit element.

In the vast majority of electrical and electronic networks it is difficult not to satisfy the lumped circuit
approximation. Nevertheless, several practical electrical systems cannot be viewed as lumped entities.
For example, consider the lead-in wire that connects the antenna input terminals of a frequency modu-
lated (FM) radio receiver to an antenna, as diagrammed in Figure 1.9. Let the signal voltage, va(t), across
the lead-in wires at point “a” be the sinusoid,

(1.29)

where VM represent the amplitude of the signal, and ω is its frequency in units of radians per second.
Consider the case in which ω = 2π(103.5 × 106) rad/s, which is a carrier frequency lying within the
commercial FM broadcast band. This high signal frequency makes the length of antenna lead-in wire
critically important for proper signal reception.

In an attempt to verify the preceding contention, let the voltage developed across the lead-in lines at
point “b” in Figure (1.9) be denoted as vb(t), and let point “b” be 1 foot displaced from point “a”; that
is, Lab = 1 foot. The time, πab required to transport electrons over the indicated length, Lab, is

(1.30)

Thus, assuming an idealized line in the sense of zero effective resistance, capacitance, and inductance,
the signal, vb(t), at point “b” is seen as the signal appearing at “a”, delayed by approximately 1.02 ns. It
follows that

(1.31)

where the phase angle associated with vb(t) is 0.662 radian, or almost 38°. Obviously, the signal established
at point “b” is a significantly phase-shifted version of the signal presumed at point “a”.

v t V ta M( ) = ( )cos ω

τab
abL

c
= = 1 018.  ns

v t V t V tb M ab M( ) = −( )[ ] = −( )cos cosω τ ω 0 662.
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through a reconsideration of the circuit provided in Figure 1.7. As argued, the indicated element current,
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An FM receiver can effectively retrieve the signal voltage, va(t), by detecting a phase-inverted version
of va(t) at its input terminals. To this end, it is of interest to determine the length, Lac, such that the signal,
vc(t), established at point “c” in Figure 1.9 is

(1.32)

The required phase shift of 180°, or π radians, corresponds to a time delay, τac, of

(1.33)

In turn, a time delay of τac implies a required line length, Lac of

(1.34)

A parenthetically important point is the observation that the carrier frequency of 103.5 MHz corresponds
to a wavelength, λ, of

(1.35)

Accordingly, the lead-in length computed in (1.34) is λ/2; that is, a half-wavelength.

FIGURE 1.9  Schematic abstraction of a dipole antenna for an FM receiver application.
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2.1 Kirchhoff’s Voltage and Current Laws

Ray R. Chen and Artice M. Davis

Circuit analysis, like Euclidean geometry, can be treated as a mathematical system; that is, the entire
theory can be constructed upon a foundation consisting of a few fundamental concepts and several
axioms relating these concepts. As it happens, important advantages accrue from this approach — it is
not simply a desire for mathematical rigor, but a pragmatic need for simplification that prompts us to
adopt such a mathematical attitude.

The basic concepts are conductor, element, time, voltage, and current. Conductor and element are
axiomatic; thus, they cannot be defined, only explained. A conductor is the idealization of a piece of
copper wire; an element is a region of space penetrated by two conductors of finite length termed leads
and pronounced “leeds”. The ends of these leads are called terminals and are often drawn with small
circles as in Figure 2.1.

Conductors and elements are the basic objects of circuit theory; we will take time, voltage, and current
as the basic variables. The time variable is measured with a clock (or, in more picturesque language, a
chronometer). Its unit is the second, s. Thus, we will say that time, like voltage and current, is defined
operationally, that is, by means of a measuring instrument and a procedure for measurement. Our view
of reality in this context is consonant with that branch of philosophy termed operationalism [1].

Voltage is measured with an instrument called a voltmeter, as illustrated in Figure 2.2. In Figure 2.2, a
voltmeter consists of a readout device and two long, flexible conductors terminated in points called
probes that can be held against other conductors, thereby making electrical contact with them. These
conductors are usually covered with an insulating material. One is often colored red and the other black.
The one colored red defines the positive polarity of voltage, and the other the negative polarity. Thus,
voltage is always measured between two conductors. If these two conductors are element leads, the voltage
is that across the corresponding element. Figure 2.3 is the symbolic description of such a measurement;
the variable v, along with the corresponding plus and minus signs, means exactly the experimental
procedure depicted in Figure 2.2, neither more nor less. The outcome of the measurement, incidentally,
can be either positive or negative. Thus, a reading of v = –12 V, for example, has meaning only when
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San Jose State University
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Marwan A. Simaan
University of Pittsburgh
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viewed within the context of the measurement. If the meter leads are simply reversed after the measure-
ment just described, a reading of v′ = +12 V will result. The latter, however, is a different variable; hence,
we have changed the symbol to v′. The V after the numerical value is the unit of voltage, the volt, V.

Although voltage is measured across an element (or between conductors), current is measured through
a conductor or element. Figure 2.4 provides an operational definition of current. One cuts the conductor
or element lead and touches one meter lead against one terminal thus formed and the other against the
second. A shorthand symbol for the meter connection is an arrow close to one lead of the ammeter. This
arrow, along with the meter reading, defines the current. We show the shorthand symbol for a current
in Figure 2.5. The reference arrow and the symbol i are shorthand for the complete measurement in
Figure 2.4 — merely this and nothing more. The variable i can be either positive or negative; for example,
one possible outcome of the measurement might be i = –5 A. The A signifies the unit of current, the
ampere. If the red and black leads in Figure 2.4 were reversed, the reading sign would change.

Table 2.1 provides a summary of the basic concepts of circuit theory: the two basic objects and the
three fundamental variables. Notice that we are a bit at variance with the SI system here because although
time and current are considered fundamental in that system, voltage is not. Our approach simplifies
things, however, for one does not require any of the other SI units or dimensions. All other quantities

FIGURE 2.1  Conductors and elements.

FIGURE 2.2  The operational definition of voltage.

FIGURE 2.3  The symbolic description of the voltage
measurement.

FIGURE 2.4  The operational definition of current.

FIGURE 2.5  The symbolic representation of a current
measurement.

TABLE 2.1 Summary of the Basic Concepts of Circuit Theory

Objects Variables

Conductor Element  Time Voltage Current
 —  —  Seconds, s Volt, V Ampere, A
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are derived. For instance, charge is the integral of current and its unit is the ampere-second, or the
coulomb, C. Power is the product of voltage and current. Its unit is the watt, W. Energy is the integral
power, and has the unit of the watt-second, or joule, J. In this manner one avoids the necessity of
introducing mechanical concepts, such as mechanical work, as being the product of force and distance.

In the applications of circuit theory, of course, one has need of the other concepts of physics. If one is
to use circuit analysis to determine the efficiency of an electric motor, for example, the concept of
mechanical work is necessary. However — and this is the main point of our approach — the introduction
of such concepts is not essential in the analysis of a circuit itself. This idea is tied in to the concept of
modeling. The basic catalog of elements used here does not include such things as temperature effects or
radiation of electromagnetic energy. Furthermore, a “real” element such as resistor is not “pure.” A real
resistor is more accurately modeled, for many purposes, as a resistor plus series inductance and shunt
capacitance. The point is this: In order to adequately model the “real world” one must often use complicated
combinations of the basic elements. Additionally, to incorporate the influence of variables such as temper-
ature, one must assume that certain parameters (such as resistance or capacitance) are functions of that
variable. It is the determination of the more complicated model or the functional relationship of a given
parameter to, for example, temperatures that fall within the realm of the practitioner. Such ideas were

The radiation of electromagnetic energy is, on the other hand, a quite different aspect of circuit theory.
As will be seen, circuit analysis falls within a regime in which such behavior can be neglected. Thus, the
theory of circuit analysis we will expound has a limited range of application: to low frequencies or, what
is the same in the light of Fourier analysis, to waveforms that do not vary too rapidly.

We are now in a position to state two basic axioms, which we will assume all circuits obey:

Axiom 1: The behavior of an element is completely determined by its v–i characteristic, which can be
determined by tests made on the element in isolation from the other elements in the circuit in which
it is connected.
Axiom 2: The behavior of a circuit is independent of the size or the shape or the orientation of its
elements, the conductors that interconnect them, and the element leads.

At this point, we loosely consider a circuit to be any collection of elements and conductors, although
we will sharpen our definition a bit later. Axiom 1 means that we can run tests on an element in the
laboratory, then wire it into a circuit and have the assurance that it will not exhibit any new and different
behavior. Axiom 2 means that it is only the topology of a circuit that matters, not the way the circuit is
stretched or bent or rearranged, so long as we do not change the listing of which element leads are
connected to which others or to which conductors. 

The remaining two axioms are somewhat more involved and require some discussion of circuit
topology. Consider, for a moment, the collection of elements in Figure 2.6. We labeled each element with
a letter to distinguish it from the others. First, notice the two solid dots. We refer to them as joints. The
idea is that they represent “solder joints,” where the ends of two or more leads or conductors were
connected. If only two ends are connected we do not show the joints explicitly; where three or more are
connected, however, they are drawn. We temporarily (as a test) erase all of the element bodies and replace
them with open space. The result is given in Figure 2.7. We refer to each of the interconnected “islands”
of a conductor as a node. This example circuit has six nodes, and we labeled them with the numbers
one through six for identification purposes.

FIGURE 2.6  An example circuit.
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discussed more fully in Chapter 1. Circuit analysis merely provides the tools for analyzing the end result.
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Axiom 3 (Kirchhoff ’s Current Law): The charge on a node or in an element is identically zero at all
instants of time.

Kirchhoff ’s current law (KCL) is not usually phrased in quite this manner. Thus, let us consider the
closed (or “Gaussian”) surface S in Figure 2.8. We assume that it is penetrated only by conductors. The
elements, of course, are there; we simply do not show them so that we can concentrate on the conductors.
We have arbitrarily defined the currents in the conductors penetrating S. Now, recalling that charge is
the time integral of the current and thus has the same direction as the current from which it is derived,
one can phrase Axiom 3 as follows:

(2.1)

at each instant of time. This equation is simply one form of conservation of charge. Because current is
the time derivative of voltage, one can also state that

(2.2)

at each and every time instant. This last equation is the usual phrasing of KCL. The subscript “in” means
that a current reference pointed inward is to be considered positive; by default, therefore, a current with
its reference pointed outward is to have a negative sign affixed. This sign is in addition to any negative
sign that might be present in the value of each variable. For node 4 in Figure 2.8, KCL in its current
form, therefore, reads

(2.3)

Two other ways of expressing KCL (in current form) are

(2.4)

and

(2.5)

FIGURE 2.7  The nodes of the example circuit.
 

FIGURE 2.8  Illustration of Kirchhoff ’s current law.
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The equivalent charge forms are also clearly valid. We emphasize the latter to a greater extent than is
usual in the classical treatment because of the current interest in charge distribution and transfer circuits.

The Gaussian surface used to express KCL is not constrained to enclose only conductors. It can enclose
elements as well, although it still can be penetrated by only conductors (which can be element leads).
Thus, consider Figure 2.9, which illustrates the same circuit with which we have been working. Now,
however, the elements are given and the Gaussian surface encloses three elements, as well as conductors
carrying the currents previously defined. Because these currents are not carried in the conductors pene-
trating the surface under consideration, they do not enter into KCL for that surface. Instead, KCL becomes

(2.6)

As a special case let us look once more at the preceding figure, but use a different surface, one enclosing
only the element b. This is depicted in Figure 2.10. If we refer to Axiom 3, which notes that charge cannot
accumulate inside an element, and apply charge conservation, we find that

(2.7)

This states that the current into any element in one of its leads is the same as the current leaving in the
other lead. In addition, we see that KCL for nodes and KCL for elements (both of which are implied by
Axiom 3) imply that KCL holds for any general closed surface penetrated only by conductors such as the
one used in connection with Figure 2.9.

In order to phrase our last axiom, we must discuss circuit topology a bit more, and we will continue
to use the circuit just considered previously. We define a path to be an ordered sequence of elements
having the property that any two consecutive elements in the sequence share a common node. Thus,
referring for convenience back to Figure 2.10, we see that {f, a, b} is a path. The elements f and a share
node 2 and a and b share node 3. One lead of the last element in a path is connected to a node that is not
shared with the preceding element. Such a node is called the terminal node of the path. Similarly, one
lead of the first element in the sequence is connected to a node that is not shared with the preceding
element.1 It is called the initial node of the path. Thus, in the example just cited, node 1 is the initial node
and node 4 is the final node. Thus, a direction is associated with a path, and we can indicate it diagram-

FIGURE 2.9  KCL for a more general surface.

FIGURE 2.10  KCL for a single element.

1We assume that no element has its two leads connected together and that more than two elements are in the
path in this definition.
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2-6 Circuit Analysis and Feedback Amplifier Theory

matically by means of an arrow on the circuit. This is illustrated in Figure 2.11 for the path P1 = {f, a,
b} and P2 = {g, c, d, e}.

If the initial node is identical to the terminal node, then the corresponding path is called a loop. An
example is {f, a, b, g}. The patch P2 is a loop. An alternate definition of a loop is as a collection of branches
having the property that each node connected to a patch branch is connected to precisely two path
branches; that is, it has degree two relative to the path branches.

We can define the voltage across each element in our circuit in exactly two ways, corresponding to the
choices of which lead is designated plus and which is designated minus. Figure 2.12 presents two voltages
and a loop L in a highly stylized manner. We have purposely not drawn the circuit itself so that we can
concentrate on the essentials in our discussion. If the path enters the given element on the lead carrying
the minus and exits on the one carrying the positive, its voltage will be called a voltage rise; however, if
it enters on the positive and exits on the minus, the voltage will be called a voltage drop. If the signs of
a voltage are reversed and a negative sign is affixed to the voltage variable, the value of that variable
remains unchanged; thus, note that a negative rise is a drop, and vice versa.

We are now in a position to state our fourth and final axiom:

Axiom 4 (Kirchhoff ’s Voltage Law): The sum of the voltage rises around any loop is identically zero
at all instants of time.

We refer to this law as KVL for the sake of economy of space. Just as KCL was phrased in terms of
charge, KVL could just as well be phrased in terms of flux linkage. Flux linkage is the time integral of
voltage, so it can be said that the sum of the flux linkages around a loop is zero. In voltage form, we write

(2.8)

We observed that a negative rise is a drop, so

(2.9)

or

(2.10)

FIGURE 2.11  Circuit paths.

FIGURE 2.12  Voltage rise and drop.
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Network Laws and Theorems 2-7

Thus, in Figure 2.13, we could write [should we choose to use the form of (2.8)]

(2.11)

Clearly, one can rearrange KVL into many different algebraic forms that are equivalent to those just
stated; one form, however, is more useful in circuit computations than many others. It is known as the
path form of KVL. To better appreciate this form, review Figure 2.13. This time, however, the paths are
defined a bit differently. As illustrated in Figure 2.14, we consider two paths, P1 and P2, having the same
initial and terminal nodes, 1 and 4, respectively.2 We can rearrange (2.11) into the form

(2.12)

This form is often useful for finding one unknown voltage in terms of known voltages along some given
path. In general, if P1 and P2 are two paths having the same initial and final nodes,

(2.13)

Be careful to distinguish this equation from (2.10). In the present case two paths are involved; in the
former we find only a single loop, and drops are located on one side of the equation and rises on the
other. One might call the path form the “all roads lead to Rome” form.

We covered four basic axioms, and these are all that are needed to construct a mathematical theory
of circuit analysis. The first axiom is often referred to by means of the phrase “lumped circuit analysis”,
for we assume that all the physics of a given element are internal to that element and are of no concern
to us; we are only interested in the v–i characteristic. That is, we are treating all the elements as lumps
of matter that interact with the other elements in a circuit by means of the voltage and current at their
leads. The second axiom says that the physical construction is irrelevant and that the interconnections
are completely described by means of the circuit graph. Kirchhoff ’s current law is an expression of
conservation of charge, plus the assumption that neither conductors nor elements can maintain a net

FIGURE 2.13  Illustration of Kirchhoff ’s voltage
law.

FIGURE 2.14  Path form of KVL.

2If one defines the negative of a path as a listing of the same elements as the original path in the reverse order
and summation of two paths as a concatenation of the two listings, one sees that P1 – P2 = L, the loop in Figure 2.13.
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2-8 Circuit Analysis and Feedback Amplifier Theory

charge. In this connection, observe that a capacitor maintains a charge separation internally, but it is a
separation of two charges of opposite sign; thus, the total algebraic charge within it is zero. Finally, KVL
is an expression of conservation of flux linkage. If l(t) = ∫–∞

t
v(α)dα is the flux linkage, then one can write3

(using one form of KVL)

(2.14)

In the theory of electromagnetics, one finds that this equation does not hold exactly; in fact, the right-
hand side is equal to the negative of the derivative of the magnetic flux contained within the loop (this
is the Faraday–Lenz law). If, however, the time variation of all signals in the circuit are slow, then the
right-hand side is approximately zero and KVL can be assumed to hold. A similar result holds also for
KCL. For extremely short instants of time, a conductor can support an unbalanced charge. One finds,
however, that the “relaxation” time of such unbalanced charge is quite short in comparison with the time
variations of interest in the circuits considered in this text.

Finally, we tie up a loose end left hanging at the beginning of this subsection. We consider a circuit
to be, not just any collection of elements that are interconnected, but a collection having the property
that each element is contained in at least one loop. Thus, the circuit in Figure 2.15 is not a circuit; instead,
it must be treated as a subcircuit, that is, as part of a larger circuit in which it is to be imbedded.

The remainder of this section develops the application of the axioms presented here to the analysis of
circuits. The reader is referred to [2, 3, 4] for a more detailed treatment.

Nodal Analysis

Nodal analysis of electric circuits, although using all four of the fundamental axioms presented in the
introduction, concentrates upon KCL explicitly. Kirchhoff ’s voltage law is also satisfied automatically in
view of the way the basic equations are formulated. This effective method uses the concept of a node
voltage. Figure 2.16 illustrates the concept. Observe a voltmeter, with its black probe attached to a single
node, called the reference node, which remains fixed during the course of the investigation. In the case

FIGURE 2.15  A “noncircuit.”

FIGURE 2.16  Node voltages.

3One might anticipate a constant on the right side of (2.14); however, a closer investigation reveals that it is more
realistic and pragmatic to assume that all signals are one-sided and that all elements are causal. This implies that the
constant is zero. Two-sided signals only arise legitimately within the context of steady-state behavior of stable circuits
and systems.
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Network Laws and Theorems 2-9

shown node 1 is the reference node. The red probe is shown being touched to node 4; therefore, we call
the resulting voltage v4. The subscript denotes the node and the result is always assumed to have its
positive reference on the given node. In the present instance v4 is identical to the element voltage because
element g (across which vg is defined) is connected between node 4 and the reference node. Note that
the voltage of such an element is always either the node voltage or its negative, depending upon the
reference polarities of its associated element voltage. If we were to touch the red probe to node 5, however,
no element voltage would have this relationship to the resulting node voltage v5 because no elements are
connected directly between nodes 5 and 1.

The concept of reference node is used so often that a special symbol is used for it [see Figure 2.17(a)];
alternate symbols often seen on circuit diagrams are shown in the figure as well. Often one hears the
terms “ground” or “ground reference” used. This is commonly accepted argot for the reference node;
however, one should be aware that a safety issue is involved in the process of grounding a circuit or
appliance. In such cases, sometimes one symbol specifically means “earth ground” and one or more other
symbols are used for such things as “signal ground” or “floating ground”, although the last term is
something of an oxymoron. Here, we use the terms “reference” or “reference node.” The reference symbol
is quite often used to simplify the drawing of a circuit. The circuit in Figure 2.16, for instance, can be
redrawn as in Figure 2.18; circuit operation will be unaffected. Note that all four of the reference symbols
refer to a single node, node 1, although they are shown separated from one another. In fact, the circuit
is not changed electrically if one bends the elements around and thereby separates the ground symbols
even more, as we have done in Figure 2.19. Notice that the loop L shown in the original figure, Figure 2.16,
remains a loop, as in Figures 2.18 and 2.19. Redrawing a circuit using ground reference symbols does
not alter the circuit topology, the circuit graph.

Suppose the red probe were moved to node 5. As described previously, no element is directly connected
between nodes 5 and 1; hence, node voltage v5 is not an element voltage. However, the element voltages

FIGURE 2.17 Reference node symbols.

FIGURE 2.18 An alternate drawing.

FIGURE 2.19 An equivalent drawing.
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2-10 Circuit Analysis and Feedback Amplifier Theory

and the node voltages are directly related in a one-to-one fashion. To see how, look at Figure 2.20. This
figure shows a “floating element,” e, which is connected between two nodes, k and j, neither of which is
the reference node. It is vital here to remember that all node voltages are assumed to have their positive
reference polarities on the nodes themselves and their negative reference on the reference node. Now, we
can define the element voltage in either of two possible ways, as illustrated in the figure. Kirchhoff ’s
voltage law (the simplest form perhaps being the path form) shows at once that

(2.15)

and

(2.16)

An easy mnemonic for this result is the following:

(2.17)

where v+ is the node voltage of the node to which the element lead associated with the positive reference
for the element voltage is connected, and v– is the node voltage of the node to which the lead carrying
the negative reference for the element voltage is connected. We refer to an element that is not floating,
by the way, as being “grounded.”

It is easy to see that a circuit having N nodes has N – 1 node voltages; further, if one uses (2.17), any
element voltage can be expressed in terms of these N – 1 node voltages. Then, for any invertible element,4

one can determine the element current. The nodal analysis method uses this fact and considers the node
voltages to be the unknown variables.

To illustrate the method, first consider a resistive circuit that contains only resistors and/or independent
sources. Furthermore, we initially limit our investigation to circuits whose only independent sources (if
any) are current sources. Such a circuit is depicted in Figure 2.21. Because nodal analysis relies upon the
node voltages as unknowns, one must first select an arbitrary node for the reference. For circuits that
contain voltage sources, one can achieve some simplification for hand analysis by choosing the reference
wisely; however, if current sources are the only type of independent source present, one can choose it
arbitrarily. As it happens, physical intuition is almost always better served if one chooses the bottom

FIGURE 2.20  A floating element and its voltage.

  

FIGURE 2.21  An example circuit.

  

4For instance, resistors, capacitors, and inductors are invertible in the sense that one can determine their element
currents if their element voltages are known.
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Network Laws and Theorems 2-11

node. Such is done here and the circuit is redrawn using reference symbols as in Figure 2.22. Here, we
have arbitrarily assigned node voltages to the N – 1 = 2 nonreference nodes. In performing these two
steps, we have “prepared the circuit for nodal analysis.” The next step involves writing one KCL equation
at each of the nonreference nodes. As it happens, the resulting equations are nice and compact if the form

(2.18)

is used. Here, we mean that the currents leaving a node through the resistors must sum up to be equal
to the current being supplied to that node from current sources. Because these two types of elements are
exhaustive for the circuits we are considering, this form is exactly equivalent to the other forms presented
in the introduction. Furthermore, for a current leaving a node through a resistor, the floating element
KVL result in (2.17) is used along with Ohm’s law:

(2.19)

In this equation for node k, Rkj is the resistance between nodes k and j (or the equivalent resistance of
the parallel combination if more than one are found), isq is the value of the qth current source connected
to node k (positive if its reference is toward node k), and Mk is the number of such sources. Clearly, one
can simply omit the j = k term on the left side because vk – vk = 0.

The nodal equations for our example circuit are

(2.20)

and

(2.21)

Notice, by the way, that we are using units of A, Ω, and V. It is a simple matter to show that KVL, KCL,
and Ohm’s law remain invariant if we use the consistent units of mA, kΩ, and V. The latter is often a more
practical system of units for filter design work. In the present case the matrix form of these equations is

(2.22)

FIGURE 2.22  The example circuit prepared for nodal analysis.
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2-12 Circuit Analysis and Feedback Amplifier Theory

It can be verified easily that the solution is v1 = 36 V and v2 = 18 V. To see that one can compute the
value of any desired variable from these two voltages, consider the problem of determining the current
i6 (let us call it) through the horizontal 6 Ω resistor from right to left. One can simply use the equation

(2.23)

The previous procedure works for essentially all circuits encountered in practice. If the coefficient
matrix on the left in (2.22) (which will always be symmetric for circuits of the type we are considering)
is nonsingular, a solution is always possible. It is surprisingly difficult, however, to determine conditions
on the circuit under which solutions do not exist, although this is discussed at greater length in a later
subsection.

Suppose, now, that our circuit to be solved contains one or more independent voltage sources in
addition to resistors and/or current sources. This constrains the node voltages because a given voltage
source value must be equal to the difference between two node voltages if it is floating and to a node
voltage or its negative if it is grounded. One might expect that this complicates matters, but fortunately
the converse is true.

To explore this more fully, examine the example circuit in Figure 2.23. The algorithm just presented
will not work as is because it relies upon balancing the current between resistors and current sources.
Thus, it seems that we must account in some fashion for the currents in the voltage sources. In fact, we
do not, as the following analysis shows. The key step in our reasoning is this: the analysis procedure should
not depend upon the values of the independent circuit variables, that is, on the values of the currents in
the current sources and voltages across the voltage sources. This is almost inherent in the definition of
an independent source, for it can be adjusted to any value whatsoever. What we are assuming in addition
to this is simply that we would not write one given set of equations for a specific set of source values,
then change to another set of equations when these values are altered. Thus, let us test the circuit by
temporarily deactivating all the independent sources (i.e., by making their values zero). Recalling that a
deactivated voltage source is equivalent to a short circuit and a deactivated current source to an open
circuit, we have the resulting configuration of Figure 2.24. The resulting nodes are shaded for convenience.
Note carefully, however, that the nodes in the circuit under test are not the same as those in the original

FIGURE 2.23  An example circuit.

FIGURE 2.24  The example circuit deactivated.
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Network Laws and Theorems 2-13

circuit, although they are related. Notice that, for the circuit under test, all the resistor voltages would
be determined by the node voltages as expected; however, the number of nodes has been reduced by one
for each voltage source. Hence, we suspect that the required number of KCL equations Nne (and the number
of independent node voltages) is

(2.24)

where Nv is the number of voltage sources. In the example circuit one can easily compute this required
number to be 5 –1 –2 = 2. This is compatible with the fact that clearly three nodes (3 – 1 = 2 nonreference
nodes) are clearly found in Figure 2.24.

It should also be rather clear that there is only one independent voltage within each of the shaded
regions shown in Figure 2.24. We can use KVL to express any other in terms of that one. For example,
in Figure 2.25 we have redrawn our example circuit with the bottom node arbitrarily chosen as the
reference. We have also arbitrarily chosen a node voltage within the top left surface as the unknown v1.
Note how we have used KVL (the path form, again, is perhaps the most effective) to determine the node
voltages of all the other nodes within the top left surface. Any set of connected conductors, leads, and
voltage sources to which only one independent voltage can be assigned is called a generalized node. If
that generalized node does not include the reference node, it is termed a supernode. The node within
the shaded surface at the top left in Figure 2.25, however, has no voltage sources; hence, it is called an
essential node.

As pointed out earlier, the equations that one writes should not depend upon the values of the
independent sources. If one were to reduce all the independent sources to zero, each generalized node
would reduce to a single node; hence, only one equation should be written for each supernode. One
equation should be written for essential node also; it is unaffected by deactivation of the independent
sources. Observe that deactivation of the current sources does not reduce the number of nodes in a circuit.

Writing one KCL equation for the supernode and one for the essential node in Figure 2.25 results in

(2.25)

and

(2.26)

In matrix form, one has

(2.27)

FIGURE 2.25 The example circuit prepared for nodal analysis.
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2-14 Circuit Analysis and Feedback Amplifier Theory

The solution is v1 = 12 V and v2 = 8. Notice once again that the coefficient matrix on the left-hand side
is symmetric. This actually follows from our earlier observation about this property for circuits containing
only current sources and resistors because the voltage sources only introduce knowns into the nodal
equations, thus modifying the right-hand side of (2.27).

The general form for nodal equations in any circuit containing only independent sources and resistors,
based upon our foregoing development, is

(2.28)

where A is a symmetric square matrix of constant coefficients, Fv and F1 are rectangular matrices of
constants, and –vn is the column matrix of independent mode voltages. The vectors –vs and

–
is are column

matrices of independent source values. Clearly, if A is a nonsingular matrix, (2.28) can be solved for the
node voltages. Then, using KVL and/or Ohm’s law, one can solve for any element current or voltage
desired. Equally clearly, if a solution exists, it is a multilinear function of the independent source values.5

Now suppose that the circuit under consideration contains one or more dependent sources. Recall
that the two-terminal characteristics of such elements are indistinguishable from those of the correspond-
ing independent sources except for the fact that their value depends upon some other circuit variable.
For instance, in Figure 2.26 a voltage-controlled voltage source (VCVS) is shown. Its v–i characteristic is
identical to that of an independent source except for the fact that its voltage (the controlled variable) is
a constant multiple6 of another circuit variable (the controlling variable), in this case another voltage.
This fact will be relied upon to develop a modification to the nodal analysis procedure.

We will adopt the following attitude: We will imagine that the dependent relationship, kvx in
Figure 2.26, is a label pasted to the surface of the source in much the same way that a battery is labeled
with its voltage. We will imagine ourselves to take a small piece of opaque masking tape and apply it
over this label; we will call this process taping the dependent source. This means that we are —
temporarily — treating it as an independent source. The usual nodal analysis procedure is then followed,
which results in (2.28). Then, we imagine ourselves to remove the tape from the dependent source(s)
and note that the relationship is linear, with the controlling variables as the independent ones and the
controlled variables the dependent ones. We next express the controlling variables — and thereby the
controlled ones as well — in terms of the node voltages using KVL, KCL, and Ohm’s law. The resulting
relationships have the forms

(2.29)

and

(2.30)

Here, the subscript i refers to the fact that the corresponding sources are the independent ones. Noting
that –vc and

–
ic appear on the right-hand side of (2.28) because they are source values, one can use the last

two results to express the vectors of all source voltages and all source currents in that equation in the form

FIGURE 2.26  A dependent source.

5That is, it is a linear function of the vector consisting of all of the independent source values.
6Thus, one should actually refer to such a device as a linear dependent source.
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(2.31)

and

(2.32)

Finally, using the last two equations in (2.28), one has

(2.33)

Now,

(2.34)

This equation can be solved for the node voltages, provided that A – B is nonsingular. This is even more
problematic than for the case without dependent sources because the matrix B is a function of the gain
coefficients of the dependent sources; for some set of such values the solution might exist and for others
it might not. In any event if A – B is nonsingular, one obtains once more a response that is linear with
respect to the vector of independent source values.

Figure 2.27 shows a rather complex example circuit with dependent sources. As pointed out earlier,
there are often reasons for preferring one reference node to another. Here, notice that if we choose one
of the nodes to which a voltage source is attached it is not necessary to write a nodal equation for the
nonreference node because, when the circuit is tested by deactivation of all the sources, the node
disappears into the ground reference; thus, it is part of a generalized node including the reference called
a nonessential node. For this circuit, choose the node at the bottom of the 2V independent source. The
resulting circuit, prepared for nodal analysis, is shown in Figure 2.28. Surfaces have been drawn around
both generalized nodes and the one essential node and they have been shaded for emphasis. Note that
we have chosen one node voltage within the one supernode arbitrarily and have expressed the other node

FIGURE 2.27  An example circuit.

FIGURE 2.28  The example circuit prepared
for nodal analysis.
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2-16 Circuit Analysis and Feedback Amplifier Theory

voltage within that supernode in terms of the first and the voltage source value; furthermore, we have
taped both dependent sources and written in the known value at the one nonessential node.

The nodal equations for the supernode and for the essential node are

(2.35)

and

(2.36)

Now, the two dependent sources are untaped and their values expressed in terms of the unknown node
voltages and known values using KVL, KCL, and Ohm’s law. This results in (referring to the original
circuit for the definitions)

(2.37)

and

(2.38)

Solving these four equations simultaneously gives v1 = – 2 V and v2 = 2 V.
If the circuit under consideration contains op amps, one can first replace each op amp by a VCVS,

using the above procedure, and then allow the voltage gain to go to infinity. This is a bit unwieldy, so
one often models the op amp in a different way as a circuit element called a nullor. This is explored in
more detail elsewhere in the book and is not discussed here.

Thus far, this chapter has considered only nondynamic circuits whose independent sources were all
constants (DC). If these independent sources are assumed to possess time-varying waveforms, no essential
modification ensues. The only difference is that each node voltage, and hence each circuit variable,
becomes a time-varying function. If the circuit considered contains capacitors and/or inductors, however,
the nodal equations are no longer algebraic; they become differential equations. The method developed
above remains applicable, however. We will now show why.

Capacitors and inductors have the v–i relationships given in Figure 2.29. The symbols p and 1/p are
referred to as operators, differential operators, or Heaviside operators. The last term is in honor of
Oliver Heaviside, who first used them in circuit analysis. They are defined by

(2.39)

(2.40)

FIGURE 2.29  The dynamic element relationships.
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The notation suggests that they are inverses of each other, and this is true; however, one must suitably
restrict the signal space in order for this to hold. The most realistic assumption is that the signal space
consists of all piecewise continuous functions whose derivatives of all orders exist except on a countable
set of points that does not have any finite points of accumulation — plus all generalized derivatives of
such functions. In fact, Laurent Schwartz, on the first page of the preface of his important work on the
theory of distributions, acknowledges that this work was motivated by that of Heaviside. Thus, we will
simply assume that all derivatives of all orders of any waveform under consideration exists in a generalized
function sense. Higher order differentiation and integration operators are defined in power notation, as
expected:

(2.41)

and

(2.42)

Another fact of the preceding issue often escapes notice, however. Look at any arbitrary function in the
above-mentioned signal set, compute its running integral, and differentiate it. This action results in:

(2.43)

In fact, it is precisely this property that characterizes the set of all generalized functions. It is closed under
differentiation. However, suppose the computation is done in the reverse order:

(2.44)

We have assumed here that the Fundamental Theorem of Calculus holds. This is permissible within the
framework of generalized functions, provided that the waveform x(t) has a value in the conventional
sense at time t. The problem with the previous result is that one does not regain x(t). If it is assumed,
however, that x(t) is one sided (that is, x(t) is identically zero for sufficiently large negative values of (t),
x(t) will be regained and p and 1/p will be inverses of one another. Thus, in the following, we will assume
that all independent waveforms are one sided. We will, in fact, interpret this as meaning that they are all
zero for t < 0. We will also assume that all circuit elements possess one property in addition to their
defining v–i relationship, namely, that they are causal. Thus, all waveforms in any circuit under consid-
eration will be zero for t ≤ 0 and the previous two operators are inverses of one another. The only
physically reasonable situation in which two-sided waveforms can occur is that of a stable circuit operating
in the steady state, which we recognize as being an approximate mode of behavior derived from the
previous considerations in the limit as time becomes large.

Referring to Figure 2.29 once more, we define

(2.45)

(2.46)

to be the impedance operators (or operator impedances) for the capacitor and the inductor, respectively.
With our one-sidedness causality assumptions, we can manipulate these qualities just as we would
manipulate algebraic functions of a real or complex variable.
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2-18 Circuit Analysis and Feedback Amplifier Theory

The analysis of a dynamic circuit is illustrated by Figure 2.30. The circuit is shown prepared for nodal
analysis, with the reference node at the bottom of the circuit and the dynamic elements expressed in
terms of their impedance operators, in Figure 2.31. Note that if the circuit were to contain dependent
sources, we would have taped them at this step. The nodal equations at the two essential nodes are

(2.47)

and

(2.48)

In matrix form, merely rationalizing and collecting terms,

(2.49)

Notice that the coefficient matrix is once again symmetric because no dependent sources exist. Multi-
plying the first row of each side by 4p and the second by 6p, thus clearing fractions, one obtains

(2.50)

Now, multiply both sides by the inverse of the 2 × 2 coefficient matrix to get

(2.51)

Multiplying the two matrices on the right and cancelling the common p factor (legitimate under our
assumptions), we finally have

FIGURE 2.30  An example circuit.

FIGURE 2.31  The example circuit prepared for
nodal analysis.
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(2.52)

We can, on the one hand, consider the result of our nodal analysis process to be a differential equation
which we obtain by cross-multiplication:

(2.53)

In conventional notation, using the distributive properties of the p operators, one has

(2.54)

On the other hand, it is possible to interpret (2.52) directly as a solution operator equation. We simply
note that the denominator factors, then do a partial fraction expansion to get

(2.55)

Thus, we have expressed the two second-order operators in terms of operators of order one. It is quite
easy to show that the first-order operator has the following simple form:

(2.56)

Using this result, one can quickly show that the impulse and step responses of the first-order operator are

(2.57)

and

(2.58)

respectively. Thus, if is (t) = δ(t) and vs(t) = u(t), one has

(2.59)

References [5, 6] demonstrate that all the usual algebraic results valid for the Laplace transform are
also valid for Heaviside operators.

Mesh Analysis

The central concept in nodal analysis is, of course, the node. The central idea in the method we will
discuss here is the loop. Just as KCL formed the primary set of equations for nodal analysis, KVL will
serve a similar function here. We will begin with the idea of a mesh. A mesh is a special kind of loop in
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2-20 Circuit Analysis and Feedback Amplifier Theory

a planar circuit (one that can be drawn on a plane) a loop that does not contain any other loop inside
it. If one reflects on this definition a bit, one will see that it depends upon how the circuit is drawn.
Figure 2.32 illustrates the idea of a mesh. The nodes have been numbered and the elements labeled with
letters for clarity. The circuit graph in Figure 2.32 abstracts all of the information about how the elements
are connected, but does not show them explicitly. The lines represent the elements and the solid dots
represent the nodes. If we apply the definition given in the introduction to this section, we can quickly
verify that {h, a, i, k} is a loop. It is a simple loop because each of its elements share only one node with
any of the other path elements. It is a mesh because no other loops are inside it.

It is an important fact that the number of meshes in a circuit is given by

(2.60)

where B is the number of branches (elements) and, as usual, N is the number of nodes. To see this, just
look at the simple one-mesh graph in Figure 2.33. The number of branches is the same as the number
of nodes for such a graph (or circuit). Imagine constructing the graph by placing an element on a planar
surface, thereby forming two nodes with the one element. B – N  + 1 = 1 – 2 + 1 = 0 in this case, and
no meshes exist. Now, add another element by connecting one of its leads to one of the leads of the first
element. Now, B – N + 1 = 2 – 3 + 1 = 0. This can be done indefinitely (or until you tire). At this point,
connect one lead of the last element to the free lead of the one immediately preceding and the other lead
of the last element to a node already placed. N nodes and N – 1 branches will have been put down, and
exactly one mesh will have been formed. Thus, it is true that B – N + 1 = N – (N – 1) + 1 = 1 mesh and
the formula is verified. Now connect a new element to one of the old nodes; the result is that one new
element and one new node have been added. A glance at the formula verifies that it remains valid. Again,
continue indefinitely, and then connect one new element and no new nodes by connecting the free lead
of the last element with one of the nodes in the original one-loop circuit. Clearly, the number of added

shows the new circuit. For the graph shown in the figure, B = 13 and N = 12, so B – N  + 1 = 2, as
expected. Induction generalizes the result, and (2.60) has been proved.

illustrates this idea with a circuit graph. All mesh currents are assumed to be circulating in a clockwise
direction, although this is not necessary. We see that i1 is the only current flowing in the branch in which
the element current ia is defined, therefore, ia = i1; similarly, i3 is the only mesh current flowing in the
element carrying element current ib, but the two are defined in opposite directions. Thus, one sees that

FIGURE 2.32 A circuit and its graph.
 

FIGURE 2.33 A one-mesh (series) circuit.
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branches exceeds the number of added nodes by one; once again, the formula is verified. Figure 2.34

We now define a fictitious set of currents circulating around the meshes of a circuit. Figure 2.35
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ib = –i3. The third element where the current is indicated, however, is seen to carry two mesh currents
in opposite directions. Hence, its element current is ic = i3 – i2. In general, an element that is shared
between two meshes has an element current which is the algebraic sum or difference7 of the two adjacent
mesh currents.

We used the term “fictitious” in our definition of mesh current. In the last example, however, we see
that it is possible to make a physical measurement of each mesh current because each flows in an element
that is not shared with any other mesh. Thus, one need only insert an ammeter in that element to measure
the associated mesh current. Circuits exist, however, in which one or more mesh currents are impossible
to measure. Figure 2.36 plots the graph of such a circuit. Each of the meshes is assumed to be carrying
a mesh current, although only one has been drawn explicitly, ik. As readily observed, each of the other
mesh currents appears in a nonshared branch. For the mesh where the current is shown, however, it is
impossible to find an element or a conductor carrying only that current. For this reason, ik is merely a
fiction, though a useful one.

FIGURE 2.34  A two-mesh (series) circuit.

FIGURE 2.35  Mesh currents.

FIGURE 2.36  A fictitious mesh current.

  

7Always the difference if all mesh currents are defined in the same direction: clockwise or counterclockwise.
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It is easy to see that mesh currents automatically satisfy KCL because they form a complete loop.
Observe the stylized picture in Figure 2.37, which shows three meshes represented for simplicity as small,
closed ovals. M1 lies entirely within the arbitrary closed surface S; thus, its current does not appear in
KCL for that surface. M2 lies entirely outside S, so the same thing is true for its current. Finally, we note
that, regardless of the shape of S, M3 penetrates it an even number of times. Thus, its current will appear
in KCL for S an even number of times, and half of its appearances will carry a positive sign and half a
negative sign. Thus, we have shown that any mesh current automatically satisfies KCL for any closed
surface.

Because KCL is automatically satisfied, we must turn to KVL for the solution of a network in terms
of its mesh currents. Figure 2.38 is an example circuit. Just as we assumed at the outset of the last
subsection that any circuit under consideration contained only resistors and current sources, we will
assume at first that any circuit under consideration contains only resistors and voltage sources. The one
shown in Figure 2.38 has this property.

The first step is to identify the meshes and assign a mesh current to each. Identification of the meshes
is easy, and this is the primary reason for its effectiveness in hand analysis of circuits. The mesh currents
can be assigned in arbitrary directions, but for circuits of the sort considered here, it is more convenient
to assign them all in the same direction, as in Figure 2.39. Writing one KVL equation for each mesh
results in

(2.61)

and

(2.62)

In matrix form,

(2.63)

FIGURE 2.37  Illustration of KCL for mesh currents.

FIGURE 2.38  An example circuit.

FIGURE 2.39  The example circuit prepared for mesh analysis.
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The solution is i1 = 0 A and i2 = 2 A. The same procedure holds for any planar circuit of an arbitrary
number of meshes.

Suppose, now, that the circuit being considered has one or more current sources, such as the one in
Figure 2.40. The meshes are readily determined; one need only to look for the “window panes”, as meshes
have been called. The only problem is this: When we write our mesh equations, what values do we use
for the voltages across the current sources? These voltages are not known.

Thus, we could ascribe their voltages as unknowns, but this would lead to a hybrid form of analysis
in which the unknowns are both element voltages and mesh currents; however, a more straightforward
way is available. Consider this question: should the variables we use or the loops around which we decide
to write KVL change if we alter the values of any of the independent sources? The answer, of course, is
no. Thus, let us test the circuit by deactivating it-that is, by reducing all sources to zero. Recalling that a
zero-valued voltage source is a short circuit and a zero-valued current source is an open circuit, we obtain
the test circuit in Figure 2.41.

Notice what has happened. The two bottom meshes merge, thus forming one larger mesh in the
deactivated circuit. The top mesh disappears (as a mesh or loop). For this reason, we refer to the former
as a supermesh and the latter as a nonessential mesh. Observe also that it was the deactivation of the
current sources that altered the topology; in fact, deactivation of the voltage sources has no effect on the
mesh structure at all. Thus, we see that only one KVL equation is required to solve the deactivated circuit.
(Reactivation of the source(s) is necessary, otherwise all voltage and currents will have zero values.) The
conclusion relative to our example circuit is this: To solve the original circuit in terms of mesh currents,
only one equation (KVL around the supermesh) is necessary.

that the isolated (nonshared) current source in the top (nonessential) mesh defines the associated mesh
current as having the same value as the source itself. On the other hand, the 1 A current source shared
by the bottom two meshes introduces a more general constraint: the difference between the two mesh
currents must be the same as the source current. This constraint has been used to label the mesh current
in the right-hand mesh with a value such that it, minus the left-hand mesh current, is equal to the source
current. The nice feature of this approach is that one can clearly see which mesh currents are unknown
and which are dependent upon the unknowns. Exactly one independent mesh current is always associated
with a supermesh. Recalling our test circuit in Figure 2.41, we see that we need to write only one KVL
equation around the supermesh. It is

FIGURE 2.40 An example with current sources.

FIGURE 2.41 The deactivated current.
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The original circuit, with its three mesh currents arbitrarily defined, is redrawn in Figure 2.42. Notice



2-24 Circuit Analysis and Feedback Amplifier Theory

(2.64)

or

(2.65)

The solution is i = 1 A. From this, one can compute the mesh current on the bottom right to be i + 1 = 2
A and the one in the top loop is already known to be 3 A. With these known mesh currents, we can solve
for any circuit variable desired.

The development of mesh analysis seems at first glance to be the complete analog of nodal. This is
not quite the case, however, because nodal will work for nonplanar circuits, while mesh works only for
planar circuits; furthermore, no global reference exists for mesh currents as it does for node voltages.

Analyzing the problem, we observe that each current source, when deactivated, reduces the number
of meshes by one. (A given element can be shared only by two meshes). Combining this fact with (2.60),
we see that the required number of mesh equations is

(2.66)

where, as usual, B is the number of branches, N is the number of nodes, and (in this equation) NI is the
number of current sources.

Note that mesh analysis is undertaken for circuits containing dependent sources in exactly the same
manner as in nodal analysis — that is, by first taping the dependent sources, writing the mesh equations
as above, and then untaping the dependent sources and expressing their controlled variables in terms of
the unknown mesh currents. Figure 2.43 shows an example of such a circuit; in fact, it is the same figure
investigated with nodal analysis in the preceding subsection.

The first step is to tape the dependent sources, thus placing them on the same footing as their more

All element labels have been removed merely to avoid obscuring the ideas being discussed. We see one
supermesh, one essential mesh, and no nonessential mesh. Therefore, two KVL equations must be written

FIGURE 2.42 Assigning the mesh currents.

FIGURE 2.43 An example circuit.
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independent relatives. Then the circuit is tested for complexity by deactivating it as shown in Figure 2.44.

in the original circuit, which is shown with the dependent sources taped in Figure 2.45. Notice that only
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two unknowns exist, and also that the dependent sources have been taped. For the moment, we have
turned them into independent sources (albeit with unknown values).

We are now in a position to write KVL equations:

(2.67)

and

(2.68)

Observe that ic and vc are not known quantities, as would be the case were they the values of independent
sources. Thus, at this point, we must untape the dependent sources and express their values in terms of
the mesh currents. We find that

(2.69)

and

(2.70)

Inserting the last two results in (2.67) and (2.68) results in the matrix equation

(2.71)

The coefficient matrix is no longer symmetric now that dependent sources have been introduced. (This
is also the case with nodal analysis. The example treating this same circuit is found in the last subsection
and should be checked to verify this point.) However, the solution is found, as usual, to be i1 = 7 A and
i2 = 0 A.

FIGURE 2.44  Testing the example circuit.

FIGURE 2.45  The example circuit prepared for mesh
analysis.
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A careful consideration of what we have done up to this point reveals that the mesh equations can be
written in the form

(2.72)

In this general formulation, A is a square nM × nM matrix, where m is the number of meshes, and B
and C are rectangular matrices whose dimensions depend upon the number of independent voltage and
current sources, respectively. The variables –vs and

–
is are the column matrices of independent voltage and

current source values, respectively. A is symmetric if the circuit contains only resistors and independent
sources. As was the case for nodal analysis, the elucidation of conditions under which the A matrix is
nonsingular is difficult. Certainly, it can be singular for circuits with dependent sources; surprisingly,
circuits also exist with only resistors and independent sources for which A is singular as well.

Finally, the mesh analysis procedure for circuits with dynamic elements should be clear. The algebraic
process closely follows that for nodal analysis. For this reason, that topic is not discussed here.

Fundamental Cutset-Loop Circuit Analysis

As effective as nodal and mesh analysis are in treating circuits by hand, particular circuits exist for which
they fail. Consider, for example, the circuit in Figure 2.46. If we were to blindly perform nodal analysis
on this circuit, we would perhaps prepare it for analysis as shown in Figure 2.47. We have three nonref-
erence nodes, hence, we have three nodal equations:

(2.73)

(2.74)

(2.75)

The third equation is simply the negative of the second; hence, the set of equations is linearly dependent
and does not have a unique solution. The reason is quite obvious: the circuit is not connected.8 It actually
consists of two circuits considered as one. Therefore, one should actually select two reference nodes rather
than one. A bit of reasoning along this line indicates that the number of nodal equations should be

FIGURE 2.46  An example circuit.

FIGURE 2.47  The example circuit prepared for
nodal analysis.

8A circuit is connected if at least one path exists between each pair of nodes.
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(2.76)

where P is the number of separate parts, and hence the number of reference nodes required.
Another way nodal analysis can fail is not quite as obvious. Figure 2.48 illustrates the situation. In this

case, we have a cutset of current sources. Therefore, in reality, at least one of the current sources cannot
be independent for it must have the same value as the other in the cutset. We will leave the writing of the
nodal equations as an exercise for the reader. They are, however, linearly dependent. The problem here
clearly becomes evident if one deactivates the circuit, because the resulting test circuit is not connected.

Analogous problems can occur with mesh analysis, as the circuit in Figure 2.49 demonstrates. We find
a loop of voltage sources and, when the circuit is deactivated, one mesh disappears. Again, it is left as an
exercise for the reader to write the mesh equations and show that they are linearly independent (the
coefficients of all currents in the KVL equation for the central mesh are zero).

One might question the practically of such circuits because clearly no one would design such networks
to perform a useful function. In the computer automation of circuit analysis, however, dynamic elements
are often modeled over a small time increment in terms of independent sources, and singular behavior can
result. Furthermore, one would like to be able to include more general elements than R, L, C, and voltage
and current sources. For such reasons, a general method that does not fail is desirable. We develop this
method next. It is related to the modified nodal analysis technique that is described elsewhere in the book.

theory is covered elsewhere in the book, but salient points will be reviewed here [7, 8]. The graph, of
course, is not concerned at all with the v–i characteristics of the elements themselves — only with how
they are interconnected. The lines (or edges or branches) represent the elements and the dots represent
the nodes. The arrows represent the assumed references for voltage and current, the positive voltage at
the “upstream” end of the arrow and the current reference in the direction of the arrow. We also recall
the definition of a tree: for a connected graph of N nodes, a tree is any subset of edges of the graph that
connects all the nodes, but which contains no loops. Such a tree is shown by means of the darkened
edges in the figure: a, b, and c. The complement of a tree is called a cotree. Thus, edges d, e, f, g, and h
form a cotree in Figure 2.50. If a graph consists of separate parts (that is, it is not connected), then one
calls a subset of edges that connects all N nodes, but forms no loops, a forest. The complement of a
forest is a coforest. The analysis method presented here is applicable to either connected or nonconnected
circuits. However, we will use the terms for a graph that is connected for ease of comprehension; one

FIGURE 2.48 Another example circuit.

FIGURE 2.49 Another example of a singular circuit.
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To develop this technique, we will examine the graph of a specific circuit: the one in Figure 2.50. Graph
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should go through a parallel development for nonconnected circuits to assure oneself that the generali-
zation holds.

Each edge contained in a tree is called a twig, and each edge contained in a cotree is called a link.
(Remember that the set of all nodes in a connected graph is split into exactly two sets of nodes, each of
which is individually connected by twigs, when a tree edge is removed). The set of links having one of
its nodes in one set and another in the second, together with the associated twig defining the two sets
of nodes, is called a fundamental cutset, or f-cutset. If all links associated with a given tree are removed,
then the links replaced one at a time, it can be seen that each link defines a loop called a fundamental
loop or f-loop. Figure 2.51 is a fundamental cutset and a fundamental loop for the graph shown in
Figure 2.50. The closed surface S is placed around one of the two sets of nodes so defined (in this case
consisting of a single node) and is penetrated by the edges in the cutset b, d, and e. A natural orientation
of the cutset is provided by the direction of the defining twig, in this case edge b. Thus, a positive sign
is assigned to b; then, any link in the fundamental cutset with a direction relative to S agrees with that
of the twig receives a positive sign, and each with a direction that is opposite receives a negative sign.
Similarly, the fundamental loop is given a positive sense by the direction of the defining link, in the case
edge h. It is assigned a positive sign; then, each twig in the f-loop is given a positive sign if its direction
coincides in the loop with the defining link, and a negative sign if it does not.

The positive and negative signs just defined can be used to write one KCL equation for each f-cutset
and one KVL equation for each f-loop, as follows. Consider the example graph with which we are working.
The f-cutsets are {d, b, e}, {d, a, f, h}, and {e, c, g, h}. In general, N – 1 f-cutsets are associated with each
tree — exactly the same as the number of twigs in the tree. Using surfaces similar to S in Figure 2.51 for
each of the f-cutsets, we have the following set of KCL equations:

(2.77)

(2.78)

FIGURE 2.50  An example of a circuit graph.

FIGURE 2.51  Fundamental cutsets and loops.
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(2.79)

In matrix form, these equations become

(2.80)

The coefficient matrix consists of zeroes, and positive and negative ones. It is called the f-cutset matrix.
Each row corresponds to the KCL equation for one of the f-cutsets, and has a zero entry for each edge not
in that cutset, a + 1 for any edge in the cutset with the same orientation as the defining twig, and a – 1
for each edge in the cutset whose orientation is opposite to the defining twig, and a – 1 for each edge in
the cutset whose orientation is opposite to the defining twig. One often labels the rows and columns,

(2.81)

to emphasize the relation between the matrix and the graph. Thus, the first row corresponds to KCL for
the f-cutset defined by twig a, the second to that defined by twig b, and the last to the cutset defined by
twig c. The columns correspond to each of the edges in the graph, with the twigs occupying the first
N – 1 columns in the same order as that in which they appear in the rows. Notice that a unit matrix of
order N – 1 × N – 1 is located in the leftmost N – 1 columns. Furthermore, Q has dimensions (N – 1) × B,
where B is the number of branches (edges). Clearly, Q has maximum rank because of the leading unit
matrix. More succinctly, one writes KCL in terms of the f-cutset matrix as

(2.82)

where
–
i is the column matrix of all the branch currents. Here, the structure of Q appears explicitly with

the unit matrix in the first N – 1 columns and, for our example,

(2.83)

In general, H will have dimensions (N – 1) × (b – N + 1).
Each of the links, all B – N + 1 of them, have an associated KVL equation. In our example, using the

same order for these links and equations that occurs in the KCL equations,

i i i ic e g h− + + = 0

1 0 0 1 0 1 0 1

0 1 0 1 1 0 0 0

0 0 1 0 1 0 1 1

0

0

0

− − −

−



























































=



















i

i

i

i

i

i

i

i

a

b

c

d

e

f

g

h

.

Q

a

b

c

a b c d e f g h

   =
− − −

−























1 0 0 1 0 1 0 1

0 1 0 1 1 0 0 0

0 0 1 0 1 0 1 1

.

Qi U H i= [ ] =M 0,

H  =

− − −

−



















1 0 1 0 1

1 1 0 0 0

0 1 0 1 1

© 2006 by Taylor & Francis Group, LLC



2-30 Circuit Analysis and Feedback Amplifier Theory

(2.84)

We have one row for each link and, therefore, one for each f-loop. If a given edge is in the given loop,
a + 1 is in the corresponding column if its direction agrees with that of the defining link, and a – 1 if it
disagrees. Notice that a unit matrix of dimensions (B – N + 1) × (B – N + 1) is located in the last B –
N + 1 columns. Even more important, observe that the matrix in the first N – 1 columns has a familiar
form; in fact, it is –H′, the negative transpose of the matrix in (2.83).

This is no accident. In fact, the entries in this matrix are strictly due to twigs in the tree. Focus on a
given twig and a given link. The twig defines two twig-connected sets of nodes, as mentioned above. If
the given link has both its terminal nodes in only one of these sets, the given twig voltage does not appear
in the KVL equation for that f-loop. If, on the other hand, one of the link nodes is in one of those sets
and the other in the alternate set, the given twig voltage will appear in the KVL equation for the given
link, with a + 1 multiplier if the directions of the twig agree relative to the f-loop and a – 1 if they do
not. However, a little thought shows that the same result holds for the f-cutset equation defined by the
twig, except that the signs are reversed. If the link and twig directions agree for the f-loop, they disagree
for the f-cutset, and vice versa. Thus, we can write KVL for the f-loops, in general, as

(2.85)

Bf is called the fundamental loop matrix, and –v is the column matrix of all branch voltages.
Suppose that we partition the branch voltages and branch currents according to whether they are

associated with twigs or links. Thus, we write

(2.86)

and

(2.87)

We use transpose notation to conserve space, and the subscripts T and C represent tree and cotree voltages
and currents, respectively. We cannot use (2.82) and (2.85) to write the composite circuit variable vector as

(2.88)
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The coefficient matrix is of dimensions 2B × B and has rank B because of the two unit matrices. What
we have accomplished is a direct sum decomposition of the 2B-dimensional vector space consisting of
all circuit variables in terms of the N – 1 dimensional vector space of tree voltages and the B – N + 1
dimensional vector space of link currents. Furthermore, the tree voltages and link currents form a basis
for the vector space of all circuit variables.

We have discussed topology enough for our purposes. We now treat the elements. We are looking for
a generalized method of circuit analysis that will succeed, not only for circuits containing R, L, C, and
source elements, but ideal transformers, gyrators, nullators, and norators (among others) as well. Thus,
we turn to a discussion of elements. [9].

Consider elements having two terminals only, as shown in Figure 2.52. The most general assumption
we can make, assuming that we are ruling out “nonlinear” elements, is that the v–i characteristic of each
such element be affine; that is, it is defined by an operator equation of the form

(2.89)

where the parameters a, b, and c are operators. It is more classical to assume a scalar form of this equation;
that is, with c and g(t) both zero. In a series of papers in the 1960s, however, Carlin and Youla, Belevitch,
and Tellegen [10–12] proposed that the v–i characteristic be interpreted as a multidimensional relation-
ship. Among other things to come out of the approach was the definition of the nullator and the norator.
Now, assuming that this defining characteristic is indeed multidimensional, we see at once that it is not
necessary to consider operator matrices of a dimension larger than 2 × 2. There must be two columns
because there are only two scalar terminal variables. If more than two rows were found, the additional
equations would be either redundant or inconsistent, depending upon whether row reductions resulted
in additional rows of all zeroes or in an inconsistent equation. Finally, the (2, 1) element in the operator
matrix clearly can be chosen to be zero as shown, because otherwise it could be reduced to zero with
elementary row operations. That is, one could, unless a = 0; but here, an exchange of rows produces the
desired result shown. Note that any or all of a, b, and c can be the zero operator.

We pause here to remark that a and b can be rather general operators. If they are differential, or
Heaviside, operators, (that is, they are real, rational functions of p), a theory of lumped circuits (differ-
ential systems) is obtained. On the other hand, they could be rational functions of the delay operator E.9

In this case, one would obtain the theory of distributed (transmission line) circuits. Then, if a common
delay parameter is used, one obtains a theory of commensurate transmission line circuits; if not, an
incommensurate theory results. If the parameters are functions of both p and d, a mixed theory results.
We will assume here that a, b, and c are rational functions of p.

Let us suppose that c is the zero operator and that g(t) = 0 is the second equality resulting from the
stipulation of existence (consistency). This gives the affine scalar relationship

(2.90)

FIGURE 2.52  A two-terminal element.

9Ex(t) = x(t – T) for all t and all waveforms x(t).
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Special cases are now examined. For instance, if b = 0 and a ≠ 0, one has

(2.91)

This, of course, is the v–i characteristic for an independent voltage source. If, on the other hand, a = 0
and b ≠ 0, one has

(2.92)

This is an ideal current source. If, in addition f(t) is identically zero, one obtains a short circuit and an
open circuit, respectively. These results are shown in Figure 2.53. Now suppose that a and b are both
zero. Then, f(t) must be identically zero as well; otherwise, the element does not exist. In this case any
arbitrary voltage and current are possible. The resulting element, a “singular one” to be sure, is called a
norator. Its symbol is shown in Figure 2.54.

Remaining with the same general case, that is, with c = 0 and g(t) = 0, we ask what element results if
we also assume that neither a nor b are zero, but that f(t) is identically zero. We can solve for either the
voltage or the current. In either case, one obtains a passive element, as shown in Figure 2.55. If –b/a is
constant, a resistor will result; if –b/a is a constant times the differential operator p, an inductor will
result; and if –b/a is reciprocal in p, a capacitor will result. In case the ratio is a more complicated function
of p, one would consider the two-terminal object to be a subcircuit, that is, a two-terminal object
decomposable into other elements, with –b/a being the driving point impedance operator.

One can, in fact, derive the Thévenin and Norton equivalents from these considerations. Staying with
the general case of c and g (t) both zero, but allowing f(t) to be nonzero, we first assume that a ≠ 0. Then,
we obtain

(2.93)

write

(2.94)

The latter equation is descriptive of the Norton equivalent shown in Figure 2.56b. The basic assumption
is that the two-terminal object has a v–i characteristic (i.e., an affine relationship); if this object contains

FIGURE 2.53 Conventional two-terminal elements.

FIGURE 2.54 The norator.

  

FIGURE 2.55 Passive elements.
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which represents the Thévenin equivalent subcircuit shown in Figure 2.56a. Alternately, if b ≠ 0 we can
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only elements characterized by affine relationships having a rank property to be given later, one can use
the analysis method being presented here to prove that this assumption is true. At this point, however,
we are merely assembling a catalog of elements, so we assume that the two-terminal object is, indeed, a
single element (it cannot be decomposed farther).

We have only one other case to consider: that in which c is a nonzero operator. If this is the situation
and if, in addition, a ≠ 0 as well, one can solve (2.90) by inverting the coefficient matrix to obtain

(2.95)

Therefore, the voltage and current are independently specified. First, suppose that both vs(t) and is(t) are
identically zero. Then, one has v(t) = 0 and i(t) = 0 for t. The associated element is called a nullator,
and has the symbol shown in Figure 2.57(a). Finally, if vs(t) and is(t) are nonzero, one can sketch the
equivalent subcircuit as in Figure 2.57(b).

At this point, we have an exhaustive catalog of two-terminal circuit elements: the independent voltage
and current sources, the resistor, the inductor, the capacitor, the norator, and the nullator. We would like
to include more complex elements with more than two terminals as well. Figure 2.58(a) shows a three-
terminal element and Figure 2.58(b) shows a two-port element. For the former, we see at once that only
two voltages and two currents can be independently specified because KVL gives the voltage between the
left and right terminals in terms of the two shown, while KCL gives the current in the third lead. As for
the latter, it is a basic assumption that only the two-port voltages and the two-port currents are required
to specify its operation. In fact, one assumes that the currents coming out of the bottom leads are identical
to those going into the top leads. We also assume that the v–i characteristic is independent of the voltages
between terminals in different ports. Each of the ports will be an edge in the circuit graph that results
when such elements are interconnected.

FIGURE 2.56  Two general equivalent subcircuits.

FIGURE 2.57  The nullator element and an equivalent subcircuit.

FIGURE 2.58  Three-terminal and two-port elements.

voc isc

a. Thévenin b. Norton

+
−

Zeq

Yeq

is(t)
vs(t)

v = i = 0

a. b.
+
−

v

i

c b ac

a

f t

g t

v t

i t

s

s













=
−











( )
( )













=
( )
( )













     
1

0 1

−−

− −

++

++

i1 i2
i1 i2

v2v1

v2v1

a. Three-terminal b. Two-port

© 2006 by Taylor & Francis Group, LLC



2-34 Circuit Analysis and Feedback Amplifier Theory

Because four variables are associated with a three-terminal or two-port element, the dimensionality
of the resulting vector space is four; thus, we assume that the describing v–i characteristic is

(2.96)

We justify this form exactly as for the case of two-terminal elements. We will not exhaustively catalog all
of the possible three-terminal/two-port elements for reasons of space; however, note that the usual case
is that in which aij = 0 for i ≥ 3. In this case one must insist that f3(t) = f4(t) = 0; then one has the 2 × 2
system of equations

(2.97)

If the two forcing functions on the right are not identically zero, a number of different two-port equivalent
circuits can be generated — generalized Thévenin and Norton equivalents. If both of these forcing
functions are identically zero and if at least one 2 × 2 submatrix of the coefficient operator matrix on
the left side is nonsingular, one can derive a hybrid matrix and a hybrid parameter equivalent circuit.
Specialized versions are the impedance parameters, the admittance parameters, and the transmission or
chain parameters. Furthermore, one can accommodate controlled sources, transformers, gyrators, and
all of the other known two-port elements.

To present just one example, assume that the operator (2.97) has the form

(2.98)

The parameter n, assumed to be a real scalar multiplier, is called the turns ratio, and the element is the
ideal transformer. The VCVS (voltage controlled voltage source) obeys

(2.99)

Thus, i1 is identically zero and v2 = µv1. The quantity µ is the voltage gain.
Similarly, for each element with any number of ports,10 we can write

10A two-terminal element is a one-port device.
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(2.100)

where the voltage and current vectors are the terminal variables of the element. We can then represent
the element equations for any circuit in the same form by forming A0 and B0 as quasidiagonal matrices,
each of whose diagonal terms is the corresponding A0 or B0 for a given element, and stacking up the
individual

—

C0 column matrices to form the overall matrix. We then rewrite (2.100) in the form

(2.101)

where the voltage and current vectors are each B × 1 column matrices of the individual element voltages and
currents. We make the assumption that the matrix [A B], which is of dimension B × 2B is of maximum rank b.
This is the only assumption required for the procedure to be outlined to succeed, as will later be demonstrated.

An example will clarify things. Figure 2.59 is an example circuit. The correspondence between the edge
labels and the circuit elements is obvious; that is, for instance, a is the 4 V voltage source and its voltage
is –4 V (minus, because of the definition of positive voltage on edge a in the graph). We have shown a
tree on the graph. The f-cutset matrix is

(2.102)

Thus,

(2.103)

Although we could construct it from the Q matrix, we can just as easily read off the f-loop matrix from
the graph:

FIGURE 2.59  An example circuit and its graph.
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(2.104)

The element constraint equations are

(2.105)

In this case, both A0 and B0 are diagonal because all the elements are of the two-terminal variety.
The vector of all circuit variables is now expressed in terms of the basis in (2.88), the tree voltages and

link currents. We then have
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(2.106)

After multiplying the two matrices, we have a more compact matrix

(2.107)
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We leave it to the reader to show that the solution is given by (in transpose notation):

(2.108)

In general, one must solve the matrix equation

(2.109)

where H is the nonunit submatrix in the f-cutset matrix and C0 is the B × 1 column matrix of constants
(or independent functions of time). Here is the crucial result: [A0 B0] has dimensions B × 2B; if it has
rank B, then the product of it with the next matrix, which also has rank B, will be square (of dimensions
B × B) and of rank B by Sylvester’s inequality [13]. In this case, the resulting coefficient matrix will be
invertible, and a solution is possible.

The procedure just described, although involving more computation than, for example, nodal analysis,
is general. If one solves for all element currents and voltages for a general circuit, however, one must
anticipate additional complexity. Furthermore, the method outlined is algorithmic and can be computer
automated. The element constraint matrices A0 and B0 consist of stylized submatrices corresponding to
each type of element. These are referred to as stamps in the modified nodal technique described elsewhere
in this volume, and the preceding method is quite similar. The major difference is that is uses node
voltage as a basis for the branch voltage space of a circuit instead of the tree voltages described previously.

References

[1] P. W. Bridgman, The Logic of Modern Physics, New York: Macmillan, 1927.
[2] W.-K. Chen, Linear Networks and Systems, Monterey, CA: Brooks-Cole, 1983.
[3] J. Choma, Electrical Networks: Theory and Analysis, New York: Wiley, 1985.
[4] L. P. Huelsman, Basic Circuit Theory, Englewood Cliffs, NJ: Prentice Hall, 1927.
[5] A. M. Davis, “A unified theory of lumped circuits and differential system based on Heaviside

operators and causality,” IEEE Trans. Circuits Syst., vol. 41, no. 11, pp. 712–727, November, 1990.
[6] A. M. Davis, Linear Circuit Analysis, text in preparation.
[7] W.-K. Chen, Applied Graph Theory: Graphs and Electrical Networks, New York: North-Holland,

1976.
[8] Chan, Shu-Park, Introductory Topological Analysis of Electrical Networks, New York: Holt, Rinehart, &

Winston, 1969.
[9] A. M. Davis, unpublished notes.

[10] H. J. Carlin and D. C. Youla, “Network synthesis with negative resistors,” Proc. IEEE, vol. 49,
pp. 907–920, May 1961.

[11] V. Belevitch, “Four dimensional transformations of 4-pole matrices with applications to the syn-
thesis of reactance 4-poles,” IRE Trans. Circuit Theory, vol. CT-3, pp. 105–111, June 1956.

[12] B. D. H. Tellegen, “La Recherche pour une Serie Complete d’Elements de Circuit Ideaux Non-
Lineaires,” Rendiconti Del Seminario Mathematico e Fisico di Milano, vol. 25, pp. 134–144, April 1954.

[13] F. R. Gantmacher, Theory of Matrices, New York: Chelsea, 1959.

v v v v i i ib d e f a c g[ ]′ = − − −[ ]0 4 4 12 0 1 2

A B

U

H

H

U

v

i
C

T

C

      [ ] =
′

−



































=

0

0

0

0

© 2006 by Taylor & Francis Group, LLC



Network Laws and Theorems 2-39

2.2 Network Theorems

Marwan A. Simaan

In Section 2.1, we learned how to determine currents and voltages in a resistive circuit. Methods have
been developed, which are based on applying Kirchhoff ’s voltage law (KVL) and current law (KCL), to
derive a set of mesh or node equations which, when solved, will yield mesh currents or node voltages,
respectively. Frequently, and especially if the circuit is complex with many elements, the application of
these methods may be considerably simplified if the circuit itself is simplified. For example, we may wish
to replace a portion of the circuit consisting of resistors and sources by an equivalent circuit that has
fewer elements in order to write fewer mesh or node equations.

In this context, we introduce three important and related theorems known as the superposition, the
Thévenin and the Norton theorems. The superposition theorem shows how to solve for a variable in a
circuit that has many independent sources, by solving simpler circuits, each excited by only one source.
The Thévenin and Norton theorems can be used to replace a portion of a circuit at any two terminals
by an equivalent circuit which consists of a voltage source in series with a resistor (i.e., a nonideal voltage
source) or a current source in parallel with a resistor (i.e., a nonideal current source). Another important
result derived in this section concerns the calculation of power dissipated in a load resistor connected to
a circuit. This result is known as the maximum power transfer theorem, and is frequently used in circuit
design problems. Finally, a result known as the reciprocity theorem is also discussed.

An important property of linear resistive circuits is the type of relationship that exists between any
variable in the circuit and the independent sources. For linear resistive circuits the solution for a voltage
or current variable can always be expressed as a linear combination of the independent sources. Let us
elaborate on what we mean by this statement through an example.

2

can solve for v by first applying KCL at node a to get the equation

(2.110)

and then by making use of the fact that

(2.111)

This gives

(2.112)

Here, the voltage v is a linear combination of the independent sources v1 and i1.
The preceding observation indeed applies to every linear circuit. In general, if we let y denote a voltage

across, or a current in, any element in a linear circuit and if we let {x1, x2, …, xN} denote the independent
voltage and current sources in that circuit (assuming there is a total of N such sources), then we can write

(2.113)

where a1, a2, …, aN are constants which depend on the circuit parameters. Thus, in the circuit of
Figure 2.60, every current or voltage variable can be expressed as a linear combination of the form

y = a1V1 + a2 i1 
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Consider the circuit in Figure 2.60 and assume that we are interested in the voltage v across R . We
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where a1 and a2 are constants that depend on R1, R2, and β. For the voltage v across R2, this relationship
is given by expression (2.112).

Mathematically, the relationship between y and {x1, x2, …, xN} expressed in (2.113) is said to be linear
because it satisfies the following two conditions:

1. The superposition condition, which requires that:

2. The homogeneity condition, which requires that:

for any constant c.
The following example illustrates how these two conditions are satisfied for the circuit of Figure 2.60.

Example 2.1. For the circuit of Figure 2.60, let R1 = 2 Ω, R2 = 1 Ω, and β = 2. Show that the expression
for v in terms of v1 and i1 satisfies the superposition and homogeneity conditions.

Substituting the values of R1, R2, and β in (2.112), the expression for v becomes

(2.114)

To check the superposition property, let v1 = v̂1 and i1 = î1. Then, the voltage v̂ across R2 is

FIGURE 2.60  An example of a linear circuit.
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Similarly, let V1 = Ṽ1 and i1 = ĩ1. Then, the voltage Ṽ across R2 is

Now, assume that V1 = V̂1 + Ṽ1 and that i1 = î1 + ĩ1. Then, according to (2.114) the corresponding voltage V
across R2 is

Hence, the superposition condition is satisfied.
To check the homogeneity condition, let V1 = c V̂1 and i1 = cî1, where c is an arbitrary constant. Then,

according to (2.114) the corresponding voltage v across R2 is

The homogeneity condition is also satisfied.

The Superposition Theorem

Let us reexamine expression (2.112) for the voltage v in the circuit of Figure 2.60. To be more specific,
let us use this expression to calculate the voltage across R2 for the two circuits shown in Figures 2.61(a)
and 2.61(b), respectively. Observe that the first circuit is obtained from the original circuit by deactivating
the current source (i.e., setting i1 = 0) and leaving the voltage source to act alone. The second is obtained
by deactivating the voltage source (i.e., setting V1 = 0) and leaving the current source to act alone. If we
label the voltages across R2 in these two circuits as va and vb, respectively, then

ed and with (b) the voltage source deactivated.
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FIGURE 2.61 Circuit of Figure 2.60 with (a) the current source deactivat
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and

In other words, expression (2.112), which was used to derive the above two expressions, can itself be
written as:

or

Thus, we conclude that the voltage across R2 
across R2 due to two independent sources in the circuit acting individually.

The preceding result is in fact a direct consequence of the linearity property 

expressed in (2.113). Note that, from this expression, we can write

This means (2.113) can be rewritten as

The following theorem, known as the superposition theorem, is therefore directly implied from the
previous expression:

The voltage across any element (or current through any element) in a linear circuit may be calculated by
adding algebraically the individual voltages across that element (or currents through that element) due to
each independent source acting alone with all other independent sources deactivated.

In this statement, the word deactivated is used to imply that the source is set to zero. In this context,
we refer to a deactivated current source as one that is replaced by an open circuit and a deactivated
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in Figure 2.60 is actually equal to the sum of two voltages
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voltage source as one that is replaced by a short circuit. Note that the action of deactivating a source
refers only to independent sources. The following example illustrates how the superposition theorem
can be used to solve for a variable in a circuit with more than one independent source.

Example 2.2. For the circuit shown in Figure 2.62, apply superposition to calculate the current I in the
4 Ω resistor.

Because we are interested in calculating I using the superposition theorem, we need to consider the
two circuits shown in Figures 2.63(a) and (b). The first is obtained by deactivating the current source
and the second is obtained by deactivating the voltage source. Let Ia be the current in the 4 Ω resistor in
the first circuit and Ib be the current in the same resistor in the second. Then, by superposition

We can solve for Ia and Ib independently as follows. From Figure 2.63(a):

and from Figure 2.63(b), applying the current divider rule,

Thus,

FIGURE 2.62  Circuit for Example 2.2.

FIGURE 2.63  Circuit for Example 2.2 with (a) the current source deactivated and with (b) the voltage source
deactivated.
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The Thévenin Theorem

In the discussion on the superposition theorem, we interpreted (2.112) for the voltage V in the circuit
of Figure 2.60 as a superposition of two terms. Let us now examine a different interpretation of this
expression.

Suppose we factor the common term in expression (2.112), so that it can be written as

(2.115a)

or

(2.115b)

Now, suppose we define

(2.116)

and

(2.117)

Then, we can write (2.112) in the simple form

(2.118)

This expression can be interpreted as a voltage divider equation for a two-resistor circuit as shown in
Figure 2.64. This circuit has a voltage source v0 in series with two resistors R0 and R2. When this circuit
is compared with Figure 2.60, the combination of voltage source v0 in series with R0 can be interpreted
as an equivalent replacement of all the elements in the circuit connected to R2. That is, we could remove
that portion of the circuit of Figure 2.60 consisting of v1, R1, βix, and i1 and replace it with the voltage
source v0 in series with the resistor R0.

The fact that a portion of a circuit can be replaced by an equivalent circuit consisting of a voltage
source in series with a resistor is actually a direct result of the linearity property, and hence is true for
linear circuits in general. It is known as Thévenin’s theorem11 and is stated as follows:

FIGURE 2.64 Voltage divider circuit representing (2.118).

11For an interesting, brief discussion on the history of Thévenin’s theorem, see an article by James E. Brittain, in
IEEE Spectrum, p. 42, March 1990.
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Any portion of a linear circuit between two terminals a and b can be replaced by an equivalent circuit
consisting of a voltage source Vth in series with a resistor Rth. The voltage Vth is determined as the open
circuit voltage at terminals a-b. The resistor Rth is equal to the input resistance at terminals a-b with all
the independent sources deactivated. 

The various steps involved in the derivation of the Thévenin equivalent circuit are illustrated in
Figure 2.65. The Thévenin voltage vth is determined by solving for the voltage at terminals a-b when open
circuited, and the Thévenin resistance Rth is determined by calculating the input resistance of the circuit
at terminals a-b when all the independent sources have been deactivated. The following two examples
illustrate the application of this important theorem.

Example 2.3. For the circuit in Figure 2.66, determine the Thévenin equivalent of the portion of the
circuit to the left of terminals a-b; use it to calculate the current I in the 2 Ω resistor.

First, we determine Vth from the circuit of Figure 2.67(a). Note that because terminals a-b are open
circuited the current in the branch containing the 2 Ω resistor and 9 V source is equal to 3 A in the
direction shown. Applying KCL at the upper node of the 1 Ω resistor, we can calculate the current in

FIGURE 2.65 Steps in determining the Thévenin equivalent circuit.
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2-46 Circuit Analysis and Feedback Amplifier Theory

this resistor to be 3 + 2 = 5 A as shown. Writing a KVL equation around the inner loop (counterclockwise
at terminal b) we have

which yields

Now, for Rth the three sources are deactivated to obtain the circuit shown in Figure 2.67(b). From this
circuit, it is clear that

The circuit obtained by replacing the portion to the left of terminals a-b with its Thévenin equivalent is
shown in Figure 2.67(c). The current I is now easily computed as

Example 2.4. For the circuit shown in Figure 2.60, determine the Thévenin equivalent circuit for the
portion of the circuit to the left of resistor R2.

In deriving (2.118) from (2.110), we actually already determined the Thévenin equivalent for the
portion of the circuit to the left of R2. This was shown in Figure 2.64. Of course, this procedure is not
the most efficient way to determine the Thévenin equivalent. Let us now illustrate how the equivalent

FIGURE 2.66 Circuit for Example 2.3.

FIGURE 2.67 (a) Calculation of Vth, (b) calculation of Rth, and (c) the equivalent circuit for Example 2.3.
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circuit is obtained using the procedure described in Thévenin’s theorem. First, we determine vth from the
circuit of Figure 2.68(a) with R2 removed and terminals a-b left open. Applying KCL at node a, we have

or

Hence,

As for Rth, we need to consider the circuit shown in Figure 2.68(b), in which the two independent sources
were deactivated. Because of the presence of the dependent source βix, we determine Rth by exciting the
circuit with an external source. Let us use a current source i for this purpose and determine the voltage
v across it as shown in Figure 2.68(b). We stress that i is an arbitrary and completely independent source
and is in no way related to i1, which was deactivated. Applying KCL at node a, we have

or 

Also, applying Ohm’s law to R1,

or

Hence,

Note that vth and Rth determined previously are the same as v0 and R0 of (2.116) and (2.117).

FIGURE 2.68 Calculation of (a) vth and (b) Rth for the circuit of Figure 2.60 (Example 2.4).
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2-48 Circuit Analysis and Feedback Amplifier Theory

The Norton Theorem

Instead of a voltage source in series with a resistor, it is possible to replace a portion of a circuit by an
equivalent current source in parallel with a resistor. This result is formally known as Norton’s theorem
and is stated as follows:

Any portion of linear circuit between two terminals a and b can be replaced by an equivalent circuit
consisting of a current source in in parallel with a resistor Rn. The current in is determined as the current
that flows from a to b in a short circuit at terminals a-b. The resistor Rn is equal to the input resistance
at terminals a-b with all the independent sources deactivated. 

As in the case of Thévenin’s, the preceding theorem provides a procedure for determining the “Norton”
current source and “Norton” resistance in the Norton equivalent circuit. The various steps in this
procedure are illustrated in Figure 2.69. The Norton current is determined by solving for the current in
a short circuit at terminals a-b and the Norton resistance is determined by calculating the input resistance
to the circuit at terminals a-b when all independent sources have been deactivated. The Norton’s equiv-
alent of a portion of a circuit is, in effect, a nonideal current source representation of that portion. It
should be noted that the procedure to determine Rn is exactly the same as that for Rth. In other words,

FIGURE 2.69  Steps in determining the Norton equivalent circuit.
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Also, if we compare Thévenin’s and Norton’s equivalent circuits, we see that these are indeed related by
the voltage–current source transformation rule discussed earlier in this chapter. Each circuit is a source
transformation of the other. For this reason, the Thévenin and Norton equivalent circuits are often
referred to as dual circuits, and the two resistance Rth and Rn are frequently referred to as the source
resistance and denoted by Rs. Clearly, vth and in are related by

Example 2.5. For the circuit shown in Figure 2.70, determine the Norton equivalent circuit at terminals
a-b.

We determine Norton’s current In by placing a short circuit between a and b, as shown in Figure 2.71(a),
and solving for the current in it with a reference direction going from a to b. For this circuit, we could
use the mesh equation method. In matrix form, the mesh equations are

FIGURE 2.70  Circuit for Example 2.5.

FIGURE 2.71  (a) Calculation of In, (b) calculation of Rn and (c) Norton’s equivalent for the circuit of Example 2.5.
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2-50 Circuit Analysis and Feedback Amplifier Theory

and the solution for the mesh currents is 

From this, we extract In as

Norton’s resistance Rn is determined by deactivating the two voltage sources, as shown in Figure 2.71(b),
and calculating the input resistance at terminals a-b. Clearly,

Thus, the Norton equivalent for the circuit of Figure 2.70 is shown in Figure 2.71(c).

Example 2.6. For the circuit shown in Figure 2.72 determine the Norton equivalent circuit at terminals
a-b and use it to calculate the current and power dissipated in R.

With a short circuit placed at terminals a-b, as shown in Figure 2.73(a), the voltage Vx = 0. Hence, the
dependent source in this circuit is equal to zero. This means that the 8 A current source has the 9 Ω and
3 Ω resistors in parallel across it, and In is the current in the 3 Ω resistor. Using the current divider rule
we have

Now, deactivating the independent source to determine Rn,we excite the circuit with a voltage source V
at terminals a-b. Let I be the current in this source as shown in Figure 2.73(b). Applying KCL at node a
yields the current in the 3 Ω resistor to be I – (V/4) from right to left. Applying KVL around the outer
loop and making use of the fact that in this circuit Vx = V, we get

Solution of this equation yields

FIGURE 2.72 Circuit for Example 2.6.
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The Norton equivalent of the portion of the circuit to the left of terminals a–b, connected to the resistor
R is shown in Figure 2.73(c). Applying the current divider rule gives

and the power dissipated in R is

(2.119)

The Maximum Power Transfer Theorem

In the previous example, we replaced the entire circuit connected to the resistor R at terminals a-b by
its Norton equivalent in order to calculate the power P dissipated in R. Because R did not have a fixed
value, we determined an expression for P in terms of R. Suppose we are now interested in examining
how P varies as a function of R. A plot of P versus R as given by (2.119) is given in Figure 2.74.

The first noticeable characteristic of this plot is that it has a maximum. Naturally, we would be interested
in the value of R that results in maximum power delivered to it. This information is directly available
from the plot in Figure 2.74. To maximize P the value of R should be 2 Ω and the maximum power is
Pmax = 18 W. That is, 18 W is the most that this circuit can deliver at terminals a-b, and that occurs when
R = 2 Ω. Any other value of R will result in less power delivered to it.

The problem of finding the value of a load resistor RL such that maximum power is delivered to it is
obviously an important circuit design problem. Because it is possible to reduce any linear circuit con-
nected to RL into either its Thévenin or Norton equivalent, as illustrated in Figure 2.75, the problem
becomes quite simple. We need to consider only either the circuit of Figure 2.75(b) or that of 2.75(c).

FIGURE 2.73 (a) Calculation of In, (b) calculation of Rn, and (c) Norton’s equivalent for the circuit of Example 2.6.

−

−

+

+
a

a

b(a)

3Ω

9Ω 4Ω

3Ω

4Ω 2Ω

2Vx = 0

Vx = 08A

In

2Vx+ −

9Ω Vx

I

l −
+

−
−

+

I

b

a

V 6A

b(c)(b)

R

V
4V

4

I
R

R

=
+

=
+

6
2

2

12

2
A

P RI

P
R

R

=

=
+( )

2

2

144

2
W

© 2006 by Taylor & Francis Group, LLC



2-52 Circuit Analysis and Feedback Amplifier Theory

FIGURE 2.74  Plot of P vs. R for the circuit of Example 2.6.

FIGURE 2.75  (a) A load resistance RL in a circuit. (b) RL with the remainder of the circuit reduced to a Thévenin
equivalent. (c) RL with the remainder of the circuit reduced to a Norton equivalent.
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Let us first consider the circuit that uses the Thévenin equivalent. In this case, the power P delivered to
RL is given by

(2.120)

In general, we may not always be able to plot P vs. RL, as we did earlier, therefore, we need to maximize
P mathematically. We do this by solving the necessary condition

(2.121)

for RL. To guarantee that RL maximizes P, it must also satisfy the sufficiency condition

(2.122)

Thus, applying these conditions to (2.120), we have

(2.123)

Equating the right-hand side of (2.123) to zero and solving for RL yields

The sufficiency condition (2.122) yields

When RL is replaced with Rth, we get

Thus, RL = Rth satisfies both conditions (2.121) and (2.122), and hence is the maximizing value. This
result is often referred to as the maximum power transfer theorem. It says

The maximum power that can be transferred to a load resistance RL by a circuit represented by its Thévenin
equivalent is attained when RL is equal to Rth. 

The corresponding value of Pmax is obtained from (2.120) as

(2.124)
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2-54 Circuit Analysis and Feedback Amplifier Theory

In the case of Norton’s equivalent circuit of Figure 2.75(b), a similar derivation can be carried out. The
power P delivered to RL is given by

(2.125)

This expression has exactly the same form as (2.120). Consequently, its maximum is achieved when

and the corresponding maximum power is 

(2.126)

This leads to the following alternate statement of the maximum power transfer theorem:

The maximum power that can be transferred to a load resistance RL by a circuit represented by its Norton
equivalent is attained when RL is equal to Rn. 

Example 2.7. Consider the circuit of Example 2.3 in Figure 2.66. Determine the value of a load resistor
RL connected in place of the 2 Ω resistor at terminals a-b in order to achieve maximum power transfer
to the load.

Solution. The Thévenin equivalent for the circuit of Figure 2.66 already was determined and is shown
in Figure 2.67 (c). Using the results of the maximum power transfer theorem, we should have

The corresponding value of maximum power is

The Reciprocity Theorem

The reciprocity theorem is an important result that applies to circuits consisting of linear resistors and
one independent source (either a current source or a voltage source). It does not apply to nonlinear
circuits, and, in general, it does not apply to circuits containing dependent sources. The reciprocity
theorem is stated as follows:

The ratio of a voltage (or current) response in one part of the circuit to the current (or voltage) source is
the same if the locations of the response and the source are interchanged.

It is important to note that the reciprocity theorem applies only to circuits in which the source and
response are voltage and current or current and voltage, respectively. It does not apply to circuits in which
the source and response are of the same type (i.e., voltage and voltage or current and current).

Example 2.8. Verify the reciprocity theorem for the circuit shown in Figure 2.76(a).

Solution. If we interchange the location of the 40 V voltage source and current response I, we obtain the
circuit shown in Figure 2.76(b). The reciprocity theorem implies that I should be the same in both circuits.
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For the circuit in Figure 2.76(a), the current I1 in the 2 Ω resistor is equal to:

and the response I can be easily determined, using the current divider rule, as:

For the circuit in Figure 2.76(b), the current I2 in the 12 Ω resistor is equal to:

and the response I can be determined easily, using the current divider rule, as

Thus, the reciprocity theorem is satisfied.

FIGURE 2.76  (a) Circuit for Example 2.8. (b) Circuit with location of voltage source and current response inter-
changed.
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3.1 Introduction

Frequently, it is useful to decompose a large circuit into subcircuits and to consider the subcircuits
separately. Subcircuits are connected to other subcircuits using terminals or ports. Terminal and port
representations of a subcircuit describe how that subcircuit will act when connected to other subcircuits.
Terminal and port representations do not provide the details of mesh or node equations because these
details are not required to describe how a subcircuit interacts with other subcircuits.

In this chapter, terminal and port representations of circuits are described. Particular attention is given
to the distinction between terminals and ports. Applications show the usefulness of terminal and port
representations.

3.2 Terminal Representations

Figure 3.1 illustrates a subcircuit that can be connected to other subcircuits using terminals. The subcircuit
is shown symbolically on the left and an example is shown on the right. Nodes a, b, c, and d are terminals
and may be used to connect this circuit to other circuits. Node e is internal to the circuit and is not a
terminal. The terminal voltages Va, Vb, Vc, and Vd are node voltages with respect to an arbitrary reference
node. The terminal currents Ia, Ib, Ic, and Id describe currents that will exist when this subcircuit is
connected to other subcircuits. Terminal representations show how the terminal voltages and currents
are related. Several equivalent representations are possible, depending on which of the terminal currents
and voltages are selected as independent variables.

A terminal representation of the example network in Figure 3.1 can be obtained by writing a node
equation for the network. A simpler procedure is available for passive networks, i.e., networks consisting
entirely of resistors, capacitors, and inductors. Because the circuit in Figure 3.1 is a passive circuit, the
simpler procedure will be used to write terminal equations to represent this circuit.

The nodal admittance matrix of the example circuit will have five rows and five columns. The rows,
and also the columns, of this matrix will correspond to the five nodes of the circuit in the order a, b, c,
d and e. For example, the fourth row of the nodal admittance matrix corresponds to node d and the
third column corresponds to node c. Let yij denote the admittance of a branch of the network which is
incident with nodes i and j and let yij denote the element of the nodal admittance matrix that is in row
i and column j. Then,

James A. Svoboda
Clarkson University, New York
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3-2 Circuit Analysis and Feedback Amplifier Theory

(3.1)

i.e., the diagonal element of the nodal admittance matrix in row i and column i is equal to the sum of
the admittances of all branches in the circuit that are incident with node i. The off-diagonal elements of
the nodal admittance matrix are given by

(3.2)

The example circuit is represented by the node equation

(3.3)

Suppose that C1 = 1 F, C4 = 2 F, R1 = 1/2 Ω, R2 = 1/4 Ω, and R3 = 1 Ω. Then,

FIGURE 3.1  A four-terminal network.
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Terminal and Port Representations 3-3

No external current Ie exists because node e is not a terminal. Row 5 of this equation, corresponding to
node e, can be solved for Ve and then Ve can be eliminated. Doing so results in

(3.4)

The terminal voltages were selected to be the independent variables and the entries in the matrix are
admittances. Because none of the nodes of the subcircuit was chosen to be the reference node, the rows
and columns of the matrix both sum to zero. This matrix is called an indefinite admittance matrix.
Because it is singular, Eq. (3.4) cannot be solved directly. To see the utility of Eq. (3.4), consider Figure 3.2.
Here, the four-terminal network has been connected to a voltage source and an amplifier and node c has
been grounded. This external circuitry restricts the terminal currents and voltages of the four terminal
network. In particular,

(3.5)

Under these conditions, Eq. (3.4) becomes

(3.6)

Because Ib and Ic are not of interest, the second and third rows of this equation can be ignored. The first
and fourth rows can be solved to obtain the transfer function of this circuit

(3.7)

Next, consider Figure 3.3. The four terminal network is used in a second, different application. In this case,

FIGURE 3.2 First application of the four-terminal network.
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3-4 Circuit Analysis and Feedback Amplifier Theory

(3.8)

Because Va = Vb, the first two columns of Eq. (3.4) can be added together, replacing Va by Vb. Also, it is
convenient to add the first two rows together to obtain Ia + Ib. Then, Eq. (3.4) reduces to

(3.9)

Because Ic is not of interest, the second row of this equation can be ignored. The first and third rows of
this equation can be solved to obtain the transfer function

(3.10)

These examples illustrate the utility of the terminal equations. In these examples, the problem of
analyzing a network was divided into two parts. First, the terminal equation was obtained from the node
equation by eliminating the rows and columns corresponding to nodes that are not terminals. Second,
the terminal equation is combined with equations describing the external circuitry connected to the four
terminal network. When the external circuit is changed, only the second step must be redone. The
advantage of representing a subnetwork by terminal equations is greater when

1. The subnetwork has many nodes that are not terminals.
2. The subnetwork is expected to be a component of many different networks.

3.3 Port Representations

A port consists of two terminals with the restriction that the terminal currents have the same magnitude
but opposite sign. Figure 3.4 shows a two-port network. In this case, the two-port network was con-
structed from the four-terminal network by pairing terminals a and b form port 1 and pairing terminals
d and c to form port 2. The restrictions

(3.11)

must be satisfied in order for these two pairs of terminals to be ports.

FIGURE 3.3 Second application of the four-terminal network.
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Terminal and Port Representations 3-5

The behavior of the two-port network is described using four variables. These variables are the port
voltages, V1 and V2 and the port currents I1, and I2. Several equivalent representations are possible,
depending on which two of the port currents and voltages are selected as independent variables. The left
column of Table 3.1 shows the two-port representations corresponding to four of the possible choices of
independent variables. These representations are equivalent, and the right column of Table 3.1 shows
how one representation can be obtained from another.

In row 1 of Table 3.1, the port voltages are selected to be the independent variables. In this case, the
two-port circuit is represented by an equation of the form

(3.12)

The elements of the matrix in this equation have units of admittance. They are denoted using the
letter y to suggest admittance and are called the “y parameters” or the “admittance parameters” of the
two-port network.

In row 2 of Table 3.1, the port currents are selected to be the independent variables. Now the elements
of the matrix have units of impedance. They are denoted using the letter z to suggest impedance and are
called the “z parameters” or the “impedance parameters” of the two-port network.

In row 3 of Table 3.1, I1 and V2 are the independent variables. The elements of the matrix do not have
the same units. In this sense, this is a hybrid matrix. They are denoted using the letter h to suggest hybrid
and are called the “h parameters” or the “hybrid parameters” of the two-port network. Hybrid parameters
are frequently used to represent bipolar transistors.

In the last row of Table 3.1, the independent signals are V2 and –I2. In this case, the two-port parameters
are called “transmission parameters” or “ABCD parameters”. They are convenient when two-port networks
are connected in cascade.

Next, consider the problem of calculating or measuring the parameters of a two-port circuit. Equation
(3.12) suggests a procedure for calculating the y parameters of a two-port circuit. The first row of
Eq. (3.12) is

(3.13)

Setting V1 = 0 leads to

(3.14)

FIGURE 3.4  A two-port network.
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3-6 Circuit Analysis and Feedback Amplifier Theory

This equation describes a procedure that can be used to measure or calculate y12. A short circuit is
connected to port 1 to set V1 = 0. A voltage source having voltage V2 is connected across port 2 and the
current, I1, in the short circuit is calculated. Finally, y12 is calculated as the ratio of I1 to V2.

Similar procedures can be used to calculate any of the y, z, h, or transmission parameters. Table 3.2
tabulates these procedures.

As an example of how Table 3.2 can be used, consider calculating the y parameters of the two port
circuit shown in Figure 3.3. Recall that C1 = 1 F, C4 = 2 F, R1 = 1/2 Ω, R2 = 1/4 Ω, and R3 = 1 Ω.) According
to Table 3.2, two cases will have to be considered. In the first, a voltage source is connected to port 1 and
a short circuit is connected to port 2. In the second, a short circuit is connected across port 1 and a
voltage source is connected to port 2. The resulting circuits are shown in Figure 3.5. In Figure 3.5(a)

(3.15)

and

(3.16)

In Figure 3.5(b)

(3.17)

and

(3.18)

TABLE 3.1 Relationships between Two-Port Representations
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Terminal and Port Representations 3-7

TABLE 3.2 Calculation of Two-Port Parameters
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3-8 Circuit Analysis and Feedback Amplifier Theory

Finally, the two-port network is represented by

(3.19)

To continue the example, row 3 Table 3.1 illustrates how to convert these admittance parameters to
hybrid parameters. From Table 3.1,

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

To complete the example, notice that Table 3.2 shows how to calculate the hybrid parameters directly
from the circuit. According to Table 3.2, h22 is calculated by connecting an open circuit across port 1 and
a voltage source having voltage V2 across port 2. The resulting circuit is depicted in Figure 3.6. Now, h22

is determined from Figure 3.6(b) by calculating the port current I2.

(3.25)

Of course, this is the same expression as was calculated earlier from the y parameters of the circuit.
Next, consider the problem of analyzing a circuit consisting of a two-port network and some external

circuitry. Figure 3.7 depicts such a circuit. The currents in the resistors Rs and RL are given by

FIGURE 3.5 The test circuits used to calculate the y parameters of the example circuit.
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Terminal and Port Representations 3-9

(3.26)

Suppose the two-port network used in Figure 3.7 is the circuit shown in Figure 3.4 and represented by
y parameters in Eq. (3.19). Combining the previous expressions for I1 and I2 with Eq. (3.19) yields

(3.27)

This equation can then be solved, e.g., using Cramer’s Rule, for the transfer function

(3.28)

Next consider Figure 3.8. This circuit illustrates a caution regarding use of the port convention. The
use of ports assumes that the currents in the terminals comprising a port are equal in magnitude and
opposite in sign. This assumption is not satisfied in Figure 3.8 so port equations cannot be used to
represent the four-terminal network.

Table 3.3 presents three circuit models for two port networks. These three models are based on y, z,
and h parameters, respectively. Such models are useful when analyzing circuits that contain subcircuits

FIGURE 3.6 The test circuits used to calculate the h parameters of the example circuit.

FIGURE 3.7 An application of the two-port network.
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3-10 Circuit Analysis and Feedback Amplifier Theory

that are represented by port parameters. As an example, consider the circuit shown in Figure 3.9(a). This
circuit contains a two port network represented by h parameters. In Figure 3.9(b) the two-port network
has been replaced by the model corresponding to h parameters. Analysis of Figure 3.9(b) yields

(3.29)

After some algebra,

(3.30)

The circuits in Figure 3.9(a) and (b) are equivalent, so this is the voltage gain of the circuit in Figure 3.9(a).
H parameters are frequently used to describe bipolar transistors. Table 3.4 shows the popular methods

for converting this three terminal device into a two-port network. The three configurations shown in
Table 3.4 are called “common emitter,” “common collector,” and “common base” to indicate which
terminal is common to both ports. Table 3.4 also presents the notation that is commonly used to name
the h parameters when they are used to represent a transistor. For example, hfe is the forward gain when
the transistor is connected in the common emitter configuration. Comparing with Table 3.3, it can be
observed that hfe = h21.

FIGURE 3.8  An incorrect application of the two-port representation.

FIGURE 3.9  Application of the circuit model associated with H parameters.

RA IA

IB
IS

IS IB

IA−IB

−−

−

++

−IA −IS

V1 V2VS
+ RB

−−

−

−

−
−

+

+

+

+
+

+

Rs
Vs V1

I1

I1 I2

I2

Rs

Vs V1 V2

R2 V2Ha = 

ha11 ha12

ha21 ha22

h12 V2

h11

h21 I1 R2

a

b

I
h22

+
−

V R h I h V

V h
R

R h
I

s s= +( ) +

= −
+

11 1 12 2

2 21
2

2 22
11

V

V

h R

h h R h R h Rs

2 21 2

12 21 2 11 2 22 2 1
=

− +( ) +( )

© 2006 by Taylor & Francis Group, LLC



Terminal and Port Representations 3-11

Figure 3.10 depicts a popular model of a bipolar transistor. Suppose the h parameters are calculated
for the common emitter configuration. The result is 

(3.31)

This calculation makes a connection between the parameters of the circuit model of the transistor and
the h parameters used to describe the transistor, e.g., hfe = β.

the two-port network labeled A and B are connected in cascade. As illustrated in Figure 3.11, the
transmission matrix of the composite network is given by the product of the transmission matrices of
the subnetworks. This simple relationship makes it convenient to use transmission parameters to repre-
sent a composite network that consists of the cascade of two subnetworks.

In Figure 3.12, the two-port networks labeled A and B are connected in parallel. As shown in
Figure 3.12, the admittance matrix of the composite network is given by the sum of the admittance
matrices of the subnetworks. This simple relationship makes it convenient to use admittance parameters
to represent a composite network that consists of parallel subnetworks.

In Figure 3.13, the two-port network labeled A and B are connected in series. As illustrated in
Figure 3.13, the impedance matrix of the composite network is given by the sum of the impedance
matrices of the subnetworks. This simple relationship makes it convenient to use impedance parameters
to represent a composite network that consists of series subnetworks.

entire network can be calculated from the two-port parameters of the subnetworks. Let c denote the two-
port network consisting of network b connected in parallel with network a. Represent network c with y
parameters by converting the h parameters representing network a to y parameters and adding these y
parameters to the y parameters representing network b.

TABLE 3.3 Models of Two-Port Networks
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Figures 3.11 to 3.13 illustrate some common interconnections of two-port networks. In Figure 3.11,

Figure 3.14 is a circuit that consists of three two-port networks. Two-port parameters representing the
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(3.32)

Next, network c is connected in cascade with network d. Represent network d with transmission param-
eters by converting the y parameters representing network c to transmission parameters and multiplying
these transmissions parameters by the transmission parameters representing network d.

TABLE 3.4 Using H Parametes to Specify Bipolar Transistors

i input impedance or admittance
o output impedance or admittance
f forward gain 
r reverse gain
e common emitter
b common base
c common collector

FIGURE 3.10  The hybrid pi model of a transistor.
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(3.33)

FIGURE 3.11  Cascade connection of two-port networks.

FIGURE 3.12  Parallel connection of two-port networks.
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3-14 Circuit Analysis and Feedback Amplifier Theory

Finally, the circuit in Figure 3.14 is represented by

(3.34)

FIGURE 3.13  Series connection of two-port networks.

FIGURE 3.14  A circuit consisting of three two-port networks.
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3.4 Port Representations and Feedback Systems

Port representations of networks can be used to decompose a network into subnetworks. In this section,
the decomposition will be done in such a way as to establish a connection between the network and a
feedback system represented by the block diagram shown in Figure 3.15. Having established this con-
nection, the theory of feedback systems can be applied to the network. Here, the problem of determining
the relative stability of the network will be considered.

The theory of feedback systems [4] can be used to determine relative stability such as the one shown
in Figure 3.15. The transfer function of this system is

(3.35)

The phase and gain margins are parameters of a system that are used to measure relative stability. These
parameters can be calculated from A(ω) and β(ω). To calculate the phase margin, first identify ωm as the
frequency at which

(3.36)

The phase margin is then given by

(3.37)

The gain margin is calculated similarly. First, identify ωp as the frequency at which

(3.38)

The gain margin is given by

(3.39)

Next, consider an active circuit which can be represented as shown in Figure 3.16. For convenience,
it is assumed that the input and output of the circuit are both node voltages. An amplifier has been
selected and separated from the rest of the circuit. The rest of the circuit has been denoted as N.

FIGURE 3.15  A feedback system.
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3-16 Circuit Analysis and Feedback Amplifier Theory

Suppose that the amplifier is a voltage controlled voltage source (VCVS), e.g., an inverting or a
noninverting amplifier or an op amp. Replacing the VCVS by a simple model yields the circuit shown
in Figure 3.17. (The VCVS model accounts for input and output resistance and frequency dependent
gain.) Figure 3.17 shows how to identify the network Nβ which consists of the network N from Figure 3.16
together with the input and output resistances of the VCVS. The network Nβ has been called the “Beta
Network” [5].

Figure 3.18 illustrates a way of grouping the terminals of the five-terminal network Nβ to obtain a
four-port network. This four-port network can be represented by the hybrid equation

FIGURE 3.16  Identifying the network N.

FIGURE 3.17  Identifying the Beta Network, Nβ.

FIGURE 3.18  Identifying the ports of the Beta Network.
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(3.40)

Because I1 and I3 are not of interest, the first and third rows of this equation can be set aside. Then setting
I2 and I5 equal to zero yields

(3.41)

where, for example

when  (3.42)

and H21(ω), H23(ω) and H41(ω) are defined similarly.
The amplifier model requires that 

(3.43)

Combining these equations yields

(3.44)

Comparing this equation with the transfer function of the feedback system yields

(3.45)

These equations establish a correspondence between the feedback system in Figure 3.15 and the active
circuit in Figure 3.16. This correspondence can be used to identify A(s) and β(s) corresponding to a
particular circuit. Once A(s) and β(s) are known, the phase or gain margin can be calculated.

Figure 3.19 shows a Tow–Thomas bandpass biquad [3]. When the op amps are ideal devices the transfer
function of this circuit is 

(3.46)
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3-18 Circuit Analysis and Feedback Amplifier Theory

Figure 3.20 illustrates circuits that can be used to identify A(s) and β(s).

(3.47)

FIGURE 3.19  The Tow–Thomas biquad.

FIGURE 3.20  Calculating A(s) and β(s) for the Tow–Thomas biquad.
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Next,

(3.48)

The phase margin is given by

(3.49)

When Q is large,

(3.50)

When the op amps are not ideal, it is not practical to calculate the phase margin by hand. With
computer-aided analysis, accurate amplifier models, such as macromodels, can easily be incorporated
into this analysis [5].

3.5 Conclusions

It is frequently useful to decompose a large circuit into subcircuits. These subcircuits are connected
together at ports and terminals. Port and terminal parameters describe how the subcircuits interact with
other subcircuits but do not describe the inner workings of the subcircuit itself.

This section has presented procedures for determining port and terminal parameters and for analyzing
networks consisting of subcircuits which are represented by port or terminal parameters. Port equations
were used to establish a connection between electronic circuits and feedback systems.
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4.1 Formulation of Signal Flow Graphs for Linear Networks 

Any lumped network obeys three basic laws: Kirchhoff ’s voltage law (KVL), Kirchhoff ’s current law
(KCL), and the elements’ laws (branch characteristics). For filter applications, we write the frequency-
domain instead of the time-domain network equations. Three general methods for writing network
equations are described in Chapter 2.1. They are the node equations, the loop equations, and the hybrid
equations. This section outlines another method, the signal flow graph (SFG) method of characterizing
a linear network. 

Consider first the construction of signal flow graphs for linear networks without controlled sources.
For all practical networks, the independent voltage sources (E) contain no loops, and the independent
current sources (J) contain no cutsets. Under these conditions, it is always possible to select a tree T, such
that all voltage sources are included in the tree and all current sources are included in the co-tree. The
network branches are divided into four sets (each set may be empty) indicated by subscripts as follows:

E: independent voltage sources
J: independent current sources
Z: passive branches in the tree, characterized by impedances
Y: passive branches in the co-tree, characterized by admittances

A step-by-step procedure for constructing an SFG is given below.

Procedure 1 (for linear networks without controlled sources) 

Step 1. Apply KVL to express each VY (voltage of a passive branch in the co-tree) in terms of VE and VZ. 
Step 2. Apply KCL to express each IZ (current of a passive branch in the tree) in terms of IJ and IY .
Step 3. For each passive tree branch, consider its voltage as the product of impedance and current,

i.e., VZ = ZZ IZ .
Step 4. For each passive co-tree branch, consider its current as the product of admittance and voltage,

i.e., IY = YY VY .

Pen-Min Lin
Purdue University
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4-2 Circuit Analysis and Feedback Amplifier Theory

Example 1. Construct a signal flow graph for the low-pass filter network shown in Figure 4.1(a), and use
Mason’s formula to find the voltage gain function H(s) = Vo(s)/Vi(s).

Solution. The graph associated with the network is shown in Figure 4.1(b) in which the branch numbers
and reference directions (passive sign convention) have been assigned. The complexity of the SFG depends
on the choice of the tree. In the case of a ladder network, a good tree to use is a star tree which has all
tree branches connected to a common node. For the present network, we choose the tree to be T = {1, 2,
3, 4}, shown in heavy lines in Figure 4.1(b).

Step 1 yields:

Step 2 yields:

Step 3 yields:

Step 4 yields:

The SFG of Figure 4.1(c) displays all the preceding relationships.
Applying Mason’s gain formula to the SFG of Figure 4.1(c), we find

FIGURE 4.1  (a) A low-pass filter network. (b) Directed graph for the network and a chosen tree. (c) SFG based on
the chosen tree.
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Next, consider linear networks containing controlled sources. All four types of controlled sources may
be present. Our strategy is to utilize procedure 1 described previously with some pre-analysis manipu-
lations. The following is a step-by-step procedure.

Procedure 2 (for linear networks containing controlled sources) 

Step 1. Temporarily replace each controlled voltage source by an independent voltage source, and each
controlled current source by an independent current source, while retaining their original
reference directions. The resultant network has no controlled sources.

Step 2. Construct the SFG for the network obtained in step 1 using procedure 1.
Step 3. Express the desired outputs and all controlling variables, if they are not present in the SFG,

in terms of the quantities already present in the SFG.
Step 4. Reinstate the constraints of all controlled sources.

Example 2. Construct an SFG for the amplifier circuit depicted in Figure 4.2(a).

Solution. We first replace the controlled voltage source µVg by an independent voltage source Vx. A tree
is chosen to be (Vs, Ra, Vx). The result of step 1 of procedure 2 is depicted in Figure 4.2(b) where dashed
lines indicate co-tree branches.

For the links Rb and Rc, we have Ib = GbVb = Gb(Vs – Va + Vx), and Ic = GcVc = –GcVx. For the tree
branch Ra we have Va = Ra Ia = Rb Ib. The result of step 2 of procedure 2 is depicted in Figure 4.2(c). Note
that the simple relationships Vb = (Vs – Va + Vx ), Vc = –Vx and Ia = Ib have been used to eliminate the
variables Vb, Vc and Ia. As a result, these variables do not appear in Figure 4.2(c).

The desired output is Vo = –Vx and the controlling voltage is Vg = Vs – Va. After expressing these
relationships in the SFG, step 3 of procedure 2 results in Figure 4.2(d).

Finally, we reinstate the constraint of the controlled source, namely, Vx = µVg . The result of step 4 of
procedure 2, in Figure 4.2(e), is the desired SFG.

FIGURE 4.2  (a) A linear active network. (b) Result of step 1, procedure 2. (c) Result of step 2, procedure 2. (d) Result
of step 3, procedure 2. (e) The desired SFG.
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4-4 Circuit Analysis and Feedback Amplifier Theory

4.2 Synthesis of Active Filters Based on Signal Flow Graph 
Associated with a Passive Filter Circuit

The preceding section demonstrates that the equations governing a linear network can be described by
an SFG in which the branch weights (or transmittances) are either real constants or simple expressions
of the form Ks or K/s. All the cause–effect relationships displayed in such an SFG can, in turn, be
implemented with resistors, capacitors, and ideal operational amplifiers. The inductors are not needed
in the implementation. Whatever frequency response prevailing in the original linear circuit appears
exactly in the RC-op-amp circuit.

In active filter synthesis, the method described in Section 4.1 is applied to a passive filter in the form
of an LC (inductor-capacitor) ladder network terminated in a resistance at both ends as illustrated in
Figure 4.3. The reason is that this type of filter, with Rs = RL, has been proved to have the best sensitivity
property [1, p. 196]. By this, we mean that the frequency response is least sensitive with respect to the
changes in element values, when compared to other types of filter circuits. Because magnitude scaling
(i.e., multiplying all impedances in the network by a factor Km) does not affect the voltage gain function,
we always normalize the prototype passive filter network so that the source resistance becomes 1 Ω. The
advantage of this normalization will become evident in several examples given in this section.

The SFG illustrated in Figure 4.1(c) has many branches crossing each other. For a ladder network,
with a proper choice of the tree and a rearrangement of the SFG nodes, all crossings can be eliminated.
To achieve this, we first label a general ladder network as shown in Figure 4.4.

The following conventions are used in the labels of Figure 4.4:

1. All series branches are numbered odd and characterized by their admittances.
2. All shunt branches are numbered even and characterized by their impedances.
3. A single arrow is used to indicate the reference directions of both the voltage and the current of

each network branch. Passive sign convention is used.
4. If the LC ladder in Figure 4.4 has a series element at the source end, then Y1 represents that element

in series with Rs.
5. If the LC ladder in Figure 4.4 has a shunt element at the load end, then Z2n represents that element

in parallel with RL.

For constructing the SFG, choose a tree to consist of the voltage source and all shunt branches. The
SFG for the circuit may be constructed using procedure 1 of Section 4.1. First, list the equations obtained
in each step.

FIGURE 4.3 A doubly terminated passive filter.

FIGURE 4.4  A general ladder network.
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Signal Flow Graphs in Filter Analysis and Synthesis 4-5

These relationships are represented by the SFG in Figure 4.5 for the case of a four-element ladder
network. Note that the SFG graph nodes have been arranged in such a way that there are no branch
crossings. The pattern displayed in this SFG suggests the children’s game of leapfrog. Consequently, an
active filter synthesis based on the SFG of Figure 4.5 is called a leapfrog realization. The transmittance
of each SFG branch indicates the type of mathematical operation performed. For example, 1/s means
integration and is implemented by an op amp integrator. Likewise, 1/(s + a) is implemented by a lossy
op amp integrator. It is well known that inverting integrators and inverting summers can be designed
with singled-ended op amps (i.e., the noninverting input terminal of each op amp is grounded), [2–5].
Noninverting integrators and noninverting summers can also be designed, but require differential-input
op amps and more complex circuitry. Therefore, there is an advantage in using the inverting types. To
this end, we multiply all Z ’s and Y ’s in Figure 4.5 by –1, with the result shown in Figure 4.6. Note that
in Figure 4.6 we have removed the labels of internal SFG nodes because they are of no consequence in
determining the transfer function. The transfer function Vo /Vs is the same for both Figure 4.5 and
Figure 4.6. This is quite obvious from Mason’s gain formula, as all path weights and loop weights are
not affected by the modification. A branch transmittance of –1 indicates an inverting amplifier. In the
interest of reducing the total number of op amps used, we want to reduce the number of branches in
the SFG that have weight –1. This can be achieved by inserting branches weighted –1 in some strategic
places. Each insertion will lead to the change of the signs of one or two feedback branches. The rules are
(a) inserting a branch weighted –1 in a forward path segment shared by two feedback loops changes the
signs of the two feedback branch weights; (b) inserting a branch weighted –1 in a forward path segment
belonging to one feedback loop only changes the signs of that feedback branch weight. Figure 4.6 is
modified this way and the result is shown in Figure 4.7. The inserted branches are shown in heavy lines.

Comparing Figure 4.6 with Figure 4.7, we see that there is no change in path weights and loop weights.
Therefore, Mason’s gain formula assures that both SFG have the same transfer function. For a six-element
ladder network, three branches weighted –1 must be inserted. This leads to a sign change of the single
forward path weight in the SFG, and the output node variable now becomes –Vo. For filter applications

FIGURE 4.5 SFG for a 4-element ladder network.

FIGURE 4.6 Inverting integrators are used in this modified SFG.
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4-6 Circuit Analysis and Feedback Amplifier Theory

this change of sign in the transfer function is acceptable as we are concerned mainly with the magnitude
response.

An implementation of the SFG of Figure 4.7 may be accomplished easily by referring to Table 4.1 and
picking the component op amp circuits for realizing the SFG transmittances –1, –Y1, –Z2, etc. Figure 4.7
dictates how these component op amp circuits are interconnected to produce the desired voltage gain
function. An example will illustrate the procedure.

Example 3. Figure 4.8 shows a normalized Butterworth fourth-order, low-pass filter, where the 1-Ω source
resistance has been included in Y1, and the 1-Ω load resistance included in Z4.

FIGURE 4.7 Modification to reduce the number of inverting amplifiers.

TABLE 4.1 Component Op Amp Circuits for Synthesizing Active Low-Pass 
Filters by the Leapfrog Technique
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Signal Flow Graphs in Filter Analysis and Synthesis 4-7

The leapfrog-type SFG for this circuit, after suitable modifications, is shown in Figure 4.7, where

The SFG branch transmittance –Z2 and – Y3 are realized using item (2) of Table 4.1, while –Y1 and –Z4

use item (3). The two SFG branches with weight –1 in Figure 4.7 require item (1). The SFG branches
with weight 1 merely indicate how to feed the inputs to each component network. No additional op
amps are needed for such SFG branches. Thus, a total of six op amps are required. The interconnection
of these component circuits is described by Figure 4.7. The complete circuit is shown in Figure 4.9. One-
farad capacitances have been used in the circuit. Recall that the original passive low-pass filter has a 3-
dB frequency of 1 rad/s. By suitable magnitude scaling and frequency scaling, all element values in the
active filter of Figure 4.9 can be made practical. For example, if the 3-dB frequency is changed to 106

rad/s, then the capacitances in Figure 4.9 are divided by 106. We may arbitrarily magnitude scale the
resultant circuit by a factor of 103. Then, all resistances are multiplied by 103 and all capacitances are

FIGURE 4.8 A fourth-order, Butterworth low-pass filter.

FIGURE 4.9 Leapfrog realization of passive filter of Figure 4.8. For the normalized case of ω3dB = 1 r/sec, values are
in Ω and F. For a practical case of ω3dB = 106 rad/s, values are in kΩ and nF.
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4-8 Circuit Analysis and Feedback Amplifier Theory

further divided by 103. The final circuit is still the one shown in Figure 4.9, but with resistances in kΩ
and capacitance in nF. The parenthetical quantity beside each op amp indicates the type of transfer
function it produces.

If a doubly terminated passive filter has a shunt reactance at the source end and a series reactance the
load end, then its dual network has a series reactance at the source end and a shunt reactance at the load
end. The voltage gain functions of the original network and its dual differ at most by a multiplying
constant. We can apply the method to the dual network.

For doubly terminated Butterworth and Chebyshev low-pass filters of odd orders, the passive filter
either has series reactances or shunt reactances at both ends. The next example shows the additional SFG
manipulations needed to construct the RC-op-amp circuit.

Example 4. Obtain a leapfrog realization of the third-order Butterworth low-pass filter shown in
Figure 4.10(a).

Solution. The network is again a four-element ladder network with a modified SFG in terms of the series
admittances and shunt impedances as depicted in Figure 4.6. Note that the 1-Ω source resistance alone
constitutes the element Y1. Inserting a branch weighted –1 in front of –Y3 changes the weights of two
feedback branches from –1 to 1, and the output from Vo to –Vo. Figure 4.10(b) gives the result. Next,
apply the node absorption rule to remove nodes VA and VB in Figure 4.10b. The result is Figure 4.10(c).

FIGURE 4.10  Leapfrog realization of a third-order, Butterworth low-pass filter. (a) The passive prototype.
(b) Leapfrog SFG simulation. (c) Absorption of SFG nodes. (d) Final SFG for active filter realization.
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Signal Flow Graphs in Filter Analysis and Synthesis 4-9

Finally, we recognize that the left-most branch weight –1 is not contained in any loop weights, and
appears in the single forward path weight. Therefore, if this branch weight is changed from –1 to 1, the
output will be changed from –Vo to Vo. When this change is made, and all specific branch weights are
used, the final SFG is given in Figure 4.10(d). The circuit implementation is now a simple matter of
picking component networks from Table 4.1 and connecting them as in Figure 4.10(d). A total of four
op amps are required, one each for the branch transmittance –1/s, –1/(2s), –1/(s +1), and –1.

Passive bandpass filters may be derived from low-pass filters using the frequency transformation
technique described in Chapter 72. The configuration of a bandpass filter derived from the third-order
Butterworth filter of Figure 4.10(a) is given in Figure 4.11.

The impedance and admittance functions Z2, Y3, and Z4 are of the form

The SFG thus contains quadratic branch transmittances. Several single op amp realizations of the qua-
dratic transmittances are discussed in Chapter 82, while some multiple op amp realizations are presented
in the next subsection. The interconnection of the component networks, however, is completely specified
by an SFG similar to Figure 4.7 or Figure 4.10(d). Complete design examples of this type of bandpass
active filter may be found in many books [2–5].

The previous example shows the application of the leapfrog technique to low-pass and bandpass filters
of the Butterworth or Chebyshev types. The technique, when applied to a low-pass filter having an elliptic
response or an inverse Chebyshev response will require the use of some differentiators. The configuration
of a third order low-pass elliptic filter or inverse Chebyshev filter is depicted in Figure 4.12. Notice that
Y3 has the expression

The term a2 s in the voltage gain function of the component network clearly indicates the need of a
differentiator. An example of such a design may be found in [1, pp. 382–385].

FIGURE 4.11 A bandpass passive filter derived from the circuit of Figure 4.10(a).

FIGURE 4.12 Network configuration of a doubly terminated filter having a third-order, elliptic or inverse Chebyshev
low-pass response.
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4-10 Circuit Analysis and Feedback Amplifier Theory

As a final point in the leapfrog technique, consider the problem of impedance normalization. In all
the previous examples, the passive prototype filter has equal terminations and has been magnitude-scaled
so that Rs = RL = 1. Situations occur where the passive filter has unequal terminations. For example, the
passive filter may have Rs = 100 Ω and RL = 400 Ω in a four-element ladder network in Figure 4.8. Three
possibilities will be considered. 

(1) No impedance normalization is done on the passive filter. Then,

From Table 4.1, the lossy integrator realizing –Y1 has a resistance ratio of 100, and the resistance ratio
for the –Z4 circuit is 400. Such a large ratio is undesirable.

(2) An impedance normalization is done with Ro = 100 Ω so that Rs becomes 1 and RL becomes 4. Then

The resistance ratio in the lossy integrator now becomes 1 for the –Y1 circuit, and 4 for the –Z4 circuit —
an obvious improvement over the non-normalized case.

(3) An impedance normalization is done with Ro = = 200. Then Rs = 0.5, RL = 2, and 

The resistance ratio in the lossy integrator is now 2 for both the –Y1 circuit and the –Z4 circuit — a
further improvement over case (2) using Ro = Rs.

The conclusion is that, in the interest of reducing the spread of resistance values, the best choice of
Ro for normalizing the passive filter is Ro = . For the case of equal terminations, this choice leads
to Rs = RL = 1.

Instead of starting with a normalized passive filter, one can also construct a leapfrog-type SFG based
on the unnormalized passive filter. For a four-element ladder network, the result is given in Figure 4.7.
We now perform the following SFG manipulation, which has the same effect as the impedance normal-
ization of the passive filter: Select a normalization resistance, Ro and divide all Z’s in the SFG by Ro, and
multiply all Y ’s by Ro. The resultant SFG is given in Figure 4.13.

FIGURE 4.13  Result of normalization of the SFG of Figure 4.7.
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Signal Flow Graphs in Filter Analysis and Synthesis 4-11

It is easy to see that the SFG in both Figures 4.7 and 4.13 have the same loop weights and single forward
path weight. Therefore, the voltage gain function remains unchanged with the normalization process.
One advantage of using the normalized SFG is that the branch transmittances Yk Ro and Zk /Ro are
dimensionless, and truly represent voltage gain function of component op amp circuits [2, p. 288].

4.3 Synthesis of Active Filters Based on Signal Flow Graph 
Associated with a Filter Transfer Function

The preceding section describes one application of the SFG in the synthesis of active filters. The starting
point is a passive filter in the form of a doubly terminated LC ladder network. In this section, we describe
another way of using the SFG technique to synthesize an active filter. The starting point in this case is a
filter transfer function instead of a passive network. 

Let the transfer voltage ratio function of a filter be

 (4.1)

By properly selecting the coefficient a’s and b’s, all types of filter characteristics can be obtained: low-
pass, high-pass, bandpass, band elimination, and all-pass. We assume that these coefficients have been
determined. Our problem is how to realize the transfer function using SFG theory and RC-op-amp
circuits.

For the present application, we impose two constraints on the signal flow graph:

1. No second-order or higher-order loops are present. In other words, all loops in the SFG touch
each other.

2. Every forward path from the source node to the output node touches all loops.

For such a special kind of SFG, Mason’s gain formula reduces to

(4.2)

where Ln is the nth loop weight, Pk is the kth forward path weight, and summations are over all forward
paths and all loops. Our strategy is to manipulate Eq. (4.1) into the form of Eq. (4.2), and then construct
an SFG to have the desired loops and paths, meeting constraints (1) and (2). Integrators are preferred
over differentiators in actual circuit implementation, therefore, we want 1/s instead of s to appear as the
SFG branch transmittances. This suggests the division of both the numerator and denominator of
Eq. (4.1) by sn, the highest degree term in the denominator.

The result is

(4.3)

Comparing Eq. (4.3) with Eq. (4.2), we can identify the loop weights
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4-12 Circuit Analysis and Feedback Amplifier Theory

(4.4)

and the forward path weights

 (4.5)

Many SFGs may be constructed to have such loop and path weights, and the touching properties stated
previously in (1) and (2). Two simple ones are given in Figure 4.14(a) and (b) for the case n = m = 3.
The extension to higher-order transfer functions is obvious. In control theory, the system represented
by Figure 4.14(a) is said to be of the controllable canonical form, and Figure 4.14(b) the observable
canonical form. In a filter application, we need not be concerned about the controllability and observ-
ability of the system. The terms are used here merely for the purpose of circuit identification. Our major
concern here is how to implement the SFG by an RC-op-amp circuit.

An SFG branch having transmittance 1/s indicates an integrator. If the terminating node of the 1/s
branch has no other incoming branches [as in Figure 4.14(a)], then that node variable represents the
output of the integrator. On the other hand, if 1/s is the transmittance of only one of several incoming
branches incident at the node Vk [as in Figure 4.14(b)], then Vk is not the output of an integrator. In
order to identify the integrator outputs clearly for the purpose of circuit interconnection, we insert some
dummy branches with weight 1 in series with the branches weighted 1/s. When this is done to
Figure 4.14(b), the result is Figure 4.15 with the inserted dummy branches shown in heavy lines. An SFG
branch with weight –1/s represents an inverting integrator. As pointed out in Section 4.2, the circuitry
of an inverting integrator is simpler than that of a noninverting integrator. To have an implementation
utilizing inverting integrators, we replace all SFG branch weights 1/s in Figure 4.14 by –1/s. In order to

FIGURE 4.14  Two simple SFGs having a gain function given by Eq. (4.3). (a) Controllable canonical form.
(b) Observable canonical form.
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Signal Flow Graphs in Filter Analysis and Synthesis 4-13

maintain the original path and loop weights, the signs of some feedback branches and forward path
branches must be changed accordingly. When this is done, Figure 4.14(a) and Figure 4.15 become those
shown in Figure 4.16(a) and (b), respectively. Our next goal is to implement these SFGs by RC-op-amp
circuits. Because SFGs of the kind described in this section are widely used in the study of linear systems
by the state variable approach, the active filters based such SFGs are called state variable filters [6].

Example 5. Synthesize a state variable active filter to have a third order Butterworth low-pass response
having 3 dB frequency ωo = 106 rad/s. All op amps used are single-ended.

Solution. As usual in filter synthesis, we first construct the filter for the normalized case, i.e., ωo = 1 rad/s,
and then perform frequency scaling to obtain the required filter. The normalized voltage gain function
of the filter is

(4.6)

and the two SFGs in Figure 4.16 become those depicted in Figure 4.17.
Because we are concerned with the magnitude response only, –Vo instead of Vo can be accepted as the

desired output. Therefore, in Figure 4.17, the rightmost SFG branch with gain (–1) need not be imple-
mented. The implementation of the SFG as RC-op-amp circuits is now just a matter of looking up
Table 4.2, selecting proper component networks and connecting them as specified by Figure 4.17. The

FIGURE 4.15 Insertion of dummy branches to identify integrator outputs.

FIGURE 4.16 Simulation of H(s) by an SFG containing inverting integrators.
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4-14 Circuit Analysis and Feedback Amplifier Theory

FIGURE 4.17  Two SFG representations of Eq. (4.6).

TABLE 4.2 Single-Ended Op Amp Circuits for Implementing State Variable 
Active Filters

Signal flow graph RC-op-amp circuit
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results are given in Figure 4.18(a) and (b). These circuits, with element values in ohms and farads, realize
the normalized transfer function having ωc = 1 rad/s. To meet the original specification of ωc = 106 rad/s,
we frequency-scale the circuits by a factor 106 (i.e., divide all capacitances by 106). To have practical
resistance values, we further magnitude-scale the circuits by a factor of, say, 1000. The resistances are
multiplied by 1000, and the capacitances are further divided by 1000. The final circuits are still given by
Figure 4.18, but now with element values in kΩ and nF.

In example 5, both realizations require 4 op amps. In general, for an nth order transfer function given
by Eq. (4.1) with all coefficients nonzero, a synthesis based on Figure 4.16(a) (controllable canonical
form) requires n + 3 single-ended op amps. The breakdown is as follows [refer to Figure 4.16(a)]:

n inverting scaled integrators (item 2, Table 4.2) for the n SFG branches with weight –1/s 
2 op amps for the bipolarity summer (item 3, Table 4.2) to obtain Vo 
1 inverting scaled summer (item 1, Table 4.2) to invert and add up signals from branches with weights

–a1, –a3, etc., before applying to the left-most integrator

On the other hand, a synthesis based on Figure 4.16(b) (observable canonical form) requires only n + 2
single-ended op amps. To see this, we redraw Figure 4.16(b) as Figure 4.19 by inserting branches with
weight –1, and making all literal coefficients positive. The breakdown is as follows (referring to
Figure 4.19, extended to nth order H(s)):

n inverting scaled integrators (item 2, Table 4.2) for the n SFG branches with weight –1/s
1 inverting amplifier at the input end to provide –Vi

1 inverting amplifier at the output end to make available both Vo and –Vo

The number of op amps can be reduced if the restriction of using single-ended op amp is removed.
Table 4.3 describes several differential-input op amp circuits suitable for use in the state variable active filters.

FIGURE 4.18 Two op amp circuit realizations of H(s) given by Eq. (4.6).
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4-16 Circuit Analysis and Feedback Amplifier Theory

If differential-input op amps are used, then the number of op amps required for the realization of
Eq. (4.1) (with m = n) is reduced to (n + 1) for Figure 4.16(a) and n for Figure 4.16(b). The breakdowns
are as follows:

FIGURE 4.19 A modification of Figure 4.16(b) to use all positive a’s and b’s.

TABLE 4.3 Differential-Input Op Amp Circuit

Note: Calculation of element values in Table 4.3[7].
(i) The initial design uses 1Ω resistance or 1 F capacitance as the feedback element.
(ii) Either the g mho conductance or the G mho conductance (not both) is connected.
Choose the values of g or G such that the sum of all conductances connected to the inverting

input terminal equals the sum of all conductances connected to the noninverting input terminal.
(iii) Starting with the initial design, one may magnitude-scale all elements connected to the

inverting input terminal by one factor, and all elements connected to the noninverting input
terminal by the same or a different factor.
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For the controllable canonical form SFG of Figure 4.16(a):

n – 1 inverting integrators (item 2, Table 4.2 with one input) for the n SFG branches with weight
–1/s, except the leftmost

1 bipolarity-scaled summing integrator (item 2, Table 4.3) for the leftmost SFG branch with weight
–1/s

1 bipolarity-scaled summer (item 1, Table 4.3) to obtain Vo

For the observable canonical form SFG of Figure 4.16(b):

n bipolarity scaled summing integrator (item 2, Table 4.3), one for each SFG branch with weight
–1/s

To construct the op amp circuit, one refers to the SFG of Figure 4.14 and obtains the expression relating
the output of each op amp to the outputs of other op amps. After that is done, refer to Table 4.3, pick the
appropriate component circuits, and connect them as specified by the SFG. The next example outlines the
procedure of utilizing differential-input type op amps to reduce the total number of op amps to (n + 1) or n.

Example 6. Design a state-variable active low-pass filter to meet the following requirements: magnitude
response is of the inverse Chebyshev type

Solution. Using the method described in Chapter 71, the normalized transfer function (i.e., ωs = 1 rad/s)
is found to be

 (4.7)

The SFGs for this H(s) are simply obtained from Figure 4.16 by removing the two branches having weights
b3 and b1.The results are shown in Figure 4.20(a) for the case K = 1, and in Figure 4.20(b) for the case
K = –1. A four-op-amp circuit for the normalized H(s) may be constructed in accordance with the SFG of
Figure 4.20(a). The component op amp circuits are selected from Table 4.2 and 4.3 in the following manner:

FIGURE 4.20 Two SFGs realizing the transfer function of Eq. (4.7).
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Relationship from SFG Component op amp circuit

item 2, Table 4.2

item 2, Table 4.2

item 1, Table 4.2

After connecting these four-component op amp circuits as described in Figure 4.20(a), and frequency-
scaling the whole circuit by 1000, and magnitude-scaling by 1000, the final op amp circuit meeting the
low-pass filter specifications is shown in Figure 4.21(a).

In a similar manner, a three-op-amp circuit for the normalized H(s) may be constructed in accordance
with the SFG of Figure 4.20(b). The final op amp circuit meeting the lowpass filter specifications is shown
in Figure 4.21(b). Both circuits in Figure 4.21 achieve a gain constant �K� = 1 in Eq. (4.7). Should a
different value of �K� = 1/α be desired, it is only necessary to multiply the values of all resistors connected
to the input Vi by α.

When the method of this subsection is applied to a second order transfer function, the resultant op
amp circuit is called a state variable biquad. Biquads and first order op amp circuits are used as the basic
building blocks in the synthesis of a general nth order transfer function by the “cascade” approach.
Depending on the SFGs chosen and the types of op amps allowed (single-ended or differential-input),
a state variable biquad may require from 2 to 5 op amps. Some special but useful state variable biquads
are listed in Table 4.4 for reference purposes.

FIGURE 4.21 Two realizations of the third-order, inverse Chebyshev low-pass filter of Example 6. Element values
are in kΩ and µF.
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All the SFGs used in the previous examples are of the two types (controllable and observable canonical
forms) illustrated in Figure 4.16; however, many other possible SFGs produce the same transfer function.
For example, a third-order, low-pass Butterworth or Chebyshev filter has an all-pole transfer function.

 (4.8)

A total of six SFGs may be constructed in accordance with Eq. (4.2) to produce the desired H(s). These
are illustrated in Figure 4.22. Among these, six SFGs only two have been chosen for consideration in this
section.

Similarly, for a fourth-order, low-pass Butterworth or Chebyshev filter, a total of 20 SFGs may be
constructed. The reader should consult References [8–9] for details.

TABLE 4.4 Some Special State-Variable Biquads
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FIGURE 4.22  Six SFGs realizing a third-order, all-pole transfer function.
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5.1 Network Functions

Jiri Vlach

Definition of Network Functions

Network functions can be defined if the following constraints are satisfied:

1. The network is linear.
2. It is analyzed in the frequency domain using the Laplace transform.
3. All initial voltages and currents are zero (zero state conditions).

This chapter demonstrates how the various functions can be derived, but first we introduce some
explanations and definitions. If we analyze any linear network, we can take as output any nodal voltage,
or a difference of any two nodal voltages; denote such as output voltage by Vout. We can also take as the
output a current through any element of the network; we call it output current, Iout. If the network is
excited by a voltage source, E, then we can also calculate the current delivered into the network by this
source; this is the input current, Iin. If the network is excited by a current source, J, then the voltage across
the current source is the input voltage, Vin.

Suppose that we analyze the network and keep the letter E or J in our derivations. Then, we can define
the following network functions:

(5.1)
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5-2 Circuit Analysis and Feedback Amplifier Theory

Output impedance or output admittance are also used, but the concept is equivalent to the input
impedance or admittance. The only difference is that, for calculations, the source is placed temporarily
at a point from which the output normally will be taken. In the Laplace transform, it is common to use
capital letters, V for voltages and I for currents. We also deal with impedances, Z, and admittances, Y.
Their relationships are

The impedance of a capacitor is ZC = 1/sC, the imped-
ance of an inductor is ZL = sL, and the impedance of a
resistor is R. The inverse of these values are admittances:
YC = sC, YL = 1/sL, and the admittance of a resistor is
G = 1/R.

To demonstrate the derivations of the above func-
tions two examples are used. Consider the network in
Figure 5.1, with input delivered by the voltage source,
E. By Kirchhoff ’s current law (KCL), the sum of currents
flowing away from node 1 must be zero:

Similarly, the sum of currents flowing away from node 2 is

The independent source is denoted by the letter E, and is assumed to be known. In mathematics, we
transfer known quantities to the right. Doing so and collecting the equations into one matrix equation
results in

If numerical values from the figure are used, this system simplifies to

or

Any method can be used to solve this system, but for the sake of explanation it is advantageous to use
Cramer’s rule. First, find the determinant of the matrix,
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To obtain the solution for the variable V1 (V2), replace the first (second) column of Y by the right-hand
side and calculate the determinant of such a modified matrix. Denoting such a determinant by the letter
N with an appropriate subscript, evaluate

Then,

Now, divide the equation by E, which results in the voltage transfer function

To find the nodal voltage V2, replace the second column by the elements of the vector on the right-hand
side:

The voltage is

and another voltage transfer function of the same network is

Note that many network functions can be defined for any network. For instance, we may wish to calculate
the currents Iin or Iout, marked in Figure 5.1. Because the voltages are already known, they are used: For
the output current Iout = G3V2 and divided by E

The input current Iin = E – G1V1 = E – V1 = E(2s2 + 9s + 6)/(2s2 + 11s + 11) and dividing by E

In order to define the other possible network functions, we must use a current source, J, as in Figure 5.2,
where we also take the current through the inductor as an output variable. This method of formulating
the network equations is called modified nodal. The sum of currents flowing away from node 1 is
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5-4 Circuit Analysis and Feedback Amplifier Theory

from node 2 it is

and the properties of the inductor are expressed by the additional equation

Inserting numerical values and collecting in matrix form:

The determinant of the system is

To solve for V1, we replace the first column by the right-hand side and evaluate the determinant

Then, V1 = N1/D and dividing by J we obtain the network function

To obtain the inductor current, evaluate the determinant of a matrix in which the third column is replaced
by the right-hand side: N3 = –2J. Then, IL = N3 /D and

In general,

(5.2)

FIGURE 5.2  
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Any method that may be used to formulate the equations will lead to the same result. One example shows
this is true. Reconsider the network in Figure 5.2, but use the admittance of the inductor, YL = 1/sL, and
do not consider the current through the inductor. In such a case, the nodal equations are

We can proceed in two ways:

1. We can multiply each equation by s and thus remove the fractions. This provides the system
equation

The determinant of this matrix is D = 2s3 + 3s2 + 3s. To calculate V1, find N1 = s(2s + 1)J. Their
ratio is the same as before because one s in the numerator can be canceled against the denominator.

2. If we do not remove the fractions and go ahead with the solution, we have the matrix equation

The determinant is D = 2s + 3 + 3/s and the numerator for V1 is N1 = (1/s + 2)J. Taking their ratio

which is the same result as before.

We conclude that it does not matter which method is used to formulate the equations. The result is
always a ratio of two polynomials in the variable s.

Many additional conclusions can be drawn from these examples. The most important result so far is
that all network functions of any given network have the same denominator. It was easy to discover
this property because we used Cramer’s rule, with its evaluation by the ratio of two determinants. It
should be mentioned at this point that we may have network functions in which some terms of the
numerator can cancel against the same terms of the denominator. Such a cancellation represents a
mathematical simplification which does not change the validity of the above statement.

Occasionally, the network may have more than one source. In such cases, we apply the superposition
principle of linear networks. The contribution to the output can be calculated separately for each source
and the results added. All that must be done is to correctly remove those sources which are not considered
at the moment. All unused independent voltage sources must be replaced by short circuits. All unused
independent current sources are replaced by open circuits (removed from the network). Although we did
not use dependent sources in our examples, it is necessary to stress that such removal must not take place
for dependent sources.

Network functions can be used to find responses to any given input signal. First, multiply the network
function by E or J; this will give the expression for the output. Afterward, the letter E or J is replaced by
the Laplace transform of the signal. For instance, if the signal is a unit step, then the source is replaced
by 1/s. If it is cost ωt, then the source is replaced by the Laplace transform, s/(s2 + ω2), and so on.
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5-6 Circuit Analysis and Feedback Amplifier Theory

In the Laplace transform, one special signal exists, the Dirac impulse, commonly denoted by δ(t). It
can be represented as a rectangular pulse having width T and height 1/T. The area of the pulse is always
1, even if we go to lim T → 0, which is the Dirac impulse. Its Laplace transform is 1. Because multiplication
by 1 does not change the network function, we conclude that any network function is also the Laplace
transform of the network response to the Dirac impulse.

A word of caution: In the network function always divide by the independent voltage (current) source.
We cannot take two analysis results, for instance V1 and V2, derived for Figure 5.1, and take their ratio.
This will not be a network function.

Poles and Zeros

Networks with lumped elements have network functions which are always ratios of two polynomials with
real coefficients. For some applications the polynomials may be expressed as functions of some (or all)
elements, but the principle is unchanged.

Because we have a ratio of two polynomials, the network function can be written in two forms:

(5.3)

The middle form is what we obtain from analyses similar to those in the examples. Algebraically, a
polynomial of order N has exactly N roots. This leads to the form on the right. The multiplicative constant,
K, is the ratio

and is obtained by dividing each polynomial by the coefficient of its highest power.
It is easy to find roots of a first- and second-order polynomial because formulas are available, but in

all other cases iterative methods and a computer are utilized. However, even without actually finding the
roots, we can draw a number of important conclusions.

If the highest power of the polynomial is odd, then at least one real root will exist. The other roots
may be either real or complex, but if they are complex, then they always appear in complex conjugate
pairs. The roots of the numerator are called zeros, and those of the denominator are called poles. We
denote the zeros by

where j = . Either a or b may be zero. For the poles, we have similarly

The polynomial also may have multiple roots. For instance, the polynomial P(s) = (s + 1)2 (s + 2)3 has
a double root at s = –1 and a triple root at s = –2. The positions of the poles and zeros, with the constant K,
completely define the network function and also all network properties. The positions can be plotted in
a complex plane, the zeros indicated by small circles and poles by crosses. A multiple pole (zero) is
indicated by a number appearing at the cross (circle). Figure 5.3 shows a network function with two
complex conjugate zeros on the imaginary axis, two complex conjugate poles, and one double real pole.

As derived previously, all network functions of any given network have the same poles. Their positions
depend only on the structure of the network and are independent of the signal or where the signal is
applied. Because of this fundamental property, the poles are also called natural frequencies of the network.
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Analysis in the Frequency Domain 5-7

The zeros depend on the place at which we attach the source and also on the point where we take the
output.

It is possible to have networks in which a pole is in exactly the same position as a zero; mathematically,
such terms cancel. Figure 5.4 is an example. Writing the sum of currents at nodes 1, 2, and 3, we obtain

and in matrix form

By carefully evaluating the determinant we discover that we can keep the term (2s + 2) separate and get
D = (2s + 2)(s2 + 2s + 5). Replacing the third column by the right-hand side, we calculate the numerator
N3 = (2s + 2)(s2 + 1)E. Because the output is KV3, the voltage transfer function is

FIGURE 5.3  
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5-8 Circuit Analysis and Feedback Amplifier Theory

Mathematically, the term (2s + 2) cancels and the network function is sometimes written as

Such cancellation makes the denominator different from other network functions that we might derive
for the same network, but it is not a correct way to describe the properties of the network. The cancellation
gives the impression that we have a second-order network, while it is actually a third-order network.

Network Stability

Stability of the network depends entirely on the positions of its poles. The following is a list of the
conditions in order for the network to be stable, with subsequent explanation of the reasons:

1. The network is stable if all its poles are in the left half of the complex plane.
2. The network is unstable if at least one of its poles is in the right-half plane.
3. The network is marginally stable if all its poles are simple and exactly on the imaginary axis.
4. The network is unstable if it has all poles on the imaginary axis, but at least one of them has

multiplicity two or more.

Courses on mathematics teach the process of decomposing a rational function into partial fractions. We
show an example with one simple real pole and a pair of simple complex conjugate poles,

The poles are p1 = –1 and p2,3 = –1 ± j, all with negative real parts and all lying in the left-half plane.
Partial fraction decomposition is on the right of the preceding equation. It is always true, for any lumped
network, that the decomposition for a real pole has a real constant in the numerator. Complex poles
always appear in complex conjugate pairs and the decomposition constants, if complex, also are complex
conjugate. Once such a decomposition is available, tables can be used to invert the functions into time
domain. The decomposition may be quite a laborious process, however, only a few types of terms need
be considered for lumped networks. All are collected in Table 5.1. Each time domain expression is
multiplied by unit step, u(t), which is zero for t < 0 and is one for t ≥ 0. Such multiplication correctly
expresses the fact that the time functions start at t = 0.

Formula one in Table 5.1 shows that a real, single pole in the left-half plane will lead to a time-domain
function which decreases as e – ct. This response is called stable. If c = 0, then the response becomes u(t).

TABLE 5.1
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Analysis in the Frequency Domain 5-9

Should the pole be in the right-half plane, the exponent will be positive and ect will grow rapidly and
without bound. This network is said to be unstable.

Formula two shows what happens if the pole is real, with multiplicity n. If it is in the left-half plane,
then tn – 1 is a growing function, but e –ct decreases faster, and for large t the result tends to zero. The
function is still stable.

Formula three considers the case of two simple complex conjugate poles. Their real parts influence
the exponent, and the imaginary parts contribute to oscillations. If the real part is negative, the oscillations
will be damped, the response will become zero for large t, and the network will be stable. If the real part
is zero, then the oscillations continue indefinitely with constant amplitude. For the positive real part, the
network becomes unstable.

Formula four considers a pair of multiple complex conjugate poles. As long as the real part is negative,
the oscillations will decrease with time and the network will be stable. If a real part is zero or positive,
the network is unstable because the oscillations will grow.

Initial and Final Value Theorems

Finding the poles and evaluating the time domain response is a complicated process, which normally
requires the use of a computer. It is, therefore, advisable to use all possible steps that may provide
information about the network behavior without actually finding the full time-domain response.

Two Laplace transform theorems help in finding how the network behaves at t = 0 and at t → ∞. Both
theorems are derived from the Laplace transform formula for differentiation,

(5.4)

where 0– indicates that we are considering the instant just before the signal is applied. If we let s → 0,
then e 0 = 1, and the integral of the derivative becomes the function itself. Inserting the integrating limits
we get

Cancelling f (0–) on both sides, we arrive at the final value theorem

(5.5)

Another possibility is to let s → ∞ ; then e–st in (5.4) will be zero and the whole left side becomes zero.
This can be written as

and because f (0–) is nothing but the limit of f (t) for t → 0–, we obtain the initial value theorem

(5.6)

Note the similarity of the two theorems; we will apply them to the function used in the previous section.
Consider
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5-10 Circuit Analysis and Feedback Amplifier Theory

If we take any large value of s, the highest powers will dominate and in limit, for s → ∞, we get 3. This
is the value of the time-domain response at t = 0. The limit for s = 0 is zero, and from the final value
theorem we know that f (t) will be zero for t → ∞.

To extract still more information, use the example collected in Table 5.2. Scrolling down the table,
each Laplace domain function is s times that above it. Each multiplication by s means differentiation in
the time domain, as follows from (5.4). Scrolling down the second column of Table 5.2, each function
is the derivative of that above it. To apply the limiting theorems, take the Laplace domain formula, which
is one level lower, and insert the limits. The limiting is also shown and is confirmed by inserting either
t = 0 or t → ∞ into the time functions.

Although the two theorems are useful, the final value theorem is valid only if the function is stable.
Consider the unstable function with two poles in the right-half plane

Its time-domain response is

and the term e+t will cause the function to grow for large t. If the final value theorem is applied, we consider

Inserting s = 0, the theorem predicts that the time function will approach zero for large t. This is
disappointing, but some additional simple rules can be applied. The function is unstable if some coef-
ficients of the denominator are missing, or if the denominator coefficients do not all have the same sign
(all + or all –). Such situations are easily detected, but if all coefficients have the same sign, nothing can
be said about stability. Additional theorems exist (e.g., Hurwitz theorem), but if in doubt, it is probably
simplest to go to the computer and find the poles.

5.2 Advanced Network Analysis Concepts

John Choma, Jr.

Introduction

The systematic analysis of an electrical or electronic network entails formulating and solving the relevant
Kirchhoff equations of equilibrium. The analysis is conducted to acquire a theoretically sound under-
standing of circuit responses. Such an understanding minimally delineates the dynamical effects of
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topology, controllable circuit branch variables, and observable parameters for active devices embedded
in the circuit. It also illuminates circuit node and branch impedances to which the relevant responses of
the circuit undergoing investigation are especially sensitive. Unfortunately, the complexity of modern
networks, and particularly integrated analog electronic circuits, often inhibits the mathematical tracta-
bility that underpins an engineering understanding of circuit behavior. It is therefore not surprising that
when mathematical analyses accompany a computer-assisted circuit design venture, the subcircuits iden-
tified for manual study are simplified representations of the corresponding subcircuits in the draft design
solution. Unless care is exercised, these approximations can mask a satisfying understanding, and they
can even lead to erroneous results.

Analytical and modeling approximations notwithstanding, the key to assimilating a satisfying under-
standing of the electrical characteristics of complex circuits is appropriate studies of simpler partitions
of these circuits. To this end, Kron [1, 2] has provided, and others have explained and reinforced [3–5],
an elegant theory that allows the circuit response solutions of these network partitions to be coalesced
so that the desired response of the interconnected circuit is reconstructed exactly. Aside from formalizing
an analytical mechanism for studying complicated circuits in terms of the solutions gleaned for more
manageable subcircuits of the composite network [6], Kron’s work allows for a computationally efficient
study of feedback network responses. The theory also allows for the investigation of the sensitivity of
overall network performance with respect to both small and large parametric changes [7]. In view of the
exclusive focus on linear circuits in this section, it is worth interjecting that a form of Kron’s partitioning
theory is also applicable to certain classes of nonlinear circuits [8].

Fundamental Network Analysis Concepts

The derivation of Kron’s formula, as well as the development of a general methodology for applying
Kron’s partitioning mechanism to the analyses of complex circuits, requires a fundamental understanding
of the classical techniques exploited in the analysis of linear networks. Such an understanding begins by
considering the (n + 1) node, b branch linear network abstracted in Figure 5.5(a). The input port, which
is defined by the node pair, 1-2, is excited by a signal source whose Thévenin voltage is Vs and whose
Thévenin impedance is Zs. In response to this excitation, a load voltage, VL, is developed across a load
impedance, ZL, which shunts the output port consisting of the node pair, 3-4. Two other nodes, nodes
m and p, are explicitly delineated for future reference. In response to the applied signal source, the voltage
across the input port is VI, while the voltage established across the node pair, m-p is Vk. In addition, the
reference, or ground, node is labeled node 0. Either node 2, node 4, or both of these nodes can be incident
with the ground node; that is, the signal source and/or the load impedance can be terminated to the

FIGURE 5.5  (a) Generalized linear network driven by a voltage source. (b) The network of (a), but with the signal
excitation represented by its Norton equivalent circuit.

Vk

Vk

VIVS VL ZL

ZS

(b)

(a)

m p
1

2

3

40

+

+

++

−

−

−−

+

−

LINEAR
NETWORK

In
pu

t
Po

rt

O
ut

pu
t

Po
rt

VIIS VL ZLZS

m p
1

2

3

40

+++

−−−
LINEAR

NETWORK

In
pu

t
Po

rt

O
ut

pu
t

Po
rt

© 2006 by Taylor & Francis Group, LLC



5-12 Circuit Analysis and Feedback Amplifier Theory

network ground. The diagram in Figure 5.5(b) is identical to that of Figure 5.5(a) except for the fact that
the applied signal source is represented by its Norton equivalent circuit, where the Norton signal current,
Is, is

(5.7)

Assuming that a nodal admittance matrix exists for the linear (n + 1) node network at hand, the n
equilibrium KCL equations can be expressed as the matrix relationship

(5.8)

where J is an n-vector whose ith entry, Ji, is an independent current flowing into the ith circuit node, E
is an n-vector of node voltages such that its ith entry, Ei, is ith node voltage referenced to network ground,
and Y, a square matrix of order n, is the nodal admittance matrix of the circuit. If Y is nonsingular, the
node voltages follow as

(5.9)

Note that (5.9) is useful symbolically, but not necessarily computationally. In particular, (5.9) shows that
the n node voltages of the (n + 1) node, b branch network of Figure 5.5 can be straightforwardly computed
in terms of the known independent current source vector and the parameters embedded in the network
nodal admittance matrix. In an actual analytical environment, however, the nodal admittance matrix is
rarely formulated and inverted. Instead, some or all of the n node voltages of interest are determined
merely by algebraically manipulating and solving either the n independent KCL equations or the (b – n)
independent Kirchhoff ’s voltage law (KVL) equations that are required to establish the equilibrium
conditions of the subject network.

If the n vector, E, is indeed evaluated, all n independent node voltages are known, because

(5.10)

where the superscript T indicates the operation of matrix transposition. In general, Ei, for i = 1, 2, …, n,
is the voltage developed at node i with respect to ground. It follows that the voltage between any two
nodes derives directly from the network solution inferred by (5.9). For example, the input port voltage,
VI, is (E1 – E2), the output port voltage, VL, is (E3 – E4), and the voltage, Vk, from node m to node p is
Vk = (Em – Ep). 

The calculation of the voltage appearing between any two circuit nodes can be formalized with the
help of the generalized network diagrammed in Figure 5.6 and through the introduction of the connection
vector concept. In particular, let Aij denotes the (n × 1) connection vector for the port defined by the
node pair, i-j. Moreover, let the voltage, V, at node i be taken as positive with respect to node j, and allow
a current, I (which may be zero), to flow into node i and out of node j, as indicated in the diagram.
Then, the elements of the connection vector, Aij, are all zero except for a + 1 in its ith row and a – 1 in

FIGURE 5.6  Generalized network diagram used to define the connection vector concept.
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Analysis in the Frequency Domain 5-13

its jth row. If node j is the reference node, all elements of Aij, which in the case can be written simply as
Ai, are zero except for the ith row element, which remains +1. Thus, Aij has the form

(5.11)

For the special case in which a circuit branch element interconnects every pair of circuit nodes, Aij is the
appropriate column of the node to branch incidence matrix, which is a rectangular matrix of order (n × b),
for the (n + 1) node, b branch network at hand [9].

Returning to the calculation of VI, VL, and Vk, it follows from (5.9) through (5.11) that

(5.12)

(5.13)

and

(5.14)

Assuming that Is is the only independent source of excitation in the network of Figure 5.5

(5.15)

which is the mathematical equivalent of the observation that the Norton source current, IS, is entering
node 1 of the network and leaving node 2. Accordingly,

(5.16)

(5.17)

and

(5.18)

Several noteworthy features are implicit to the foregoing three relationships. First, each of the three
parenthesized matrix products on the right-hand sides of the equations is a scalar. This observation
follows from the facts that a transposed connection vector is a row matrix of order (1 × n), the inverse
nodal admittance matrix is an n-square, and a connection vector is an n-vector. Second, these scalar
products represent transimpedances from the input port to the port at which the voltage of interest is
extracted. In the case of (5.16), the ratio, VI IS, is actually the impedance, ZSS, seen by the Norton current,
IS; that is,

(5.19)

where, as asserted previously, IS is presumed to be the only source of energy applied to the network
undergoing study. Similarly,
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5-14 Circuit Analysis and Feedback Amplifier Theory

is the transimpedance from the input port to the output port, while

(5.21)

is the transimpedance from the input port to the port defined by the node pair, m-p.
The impedance in (5.19) and the transimpedances given by (5.20) and (5.21) are cast as explicit

algebraic functions of the inverse of the network nodal admittance matrix. However, similar to the node
voltages in (5.19) and (5.10), network transimpedances are rarely calculated manually through an actual
delineation and inversion of the nodal admittance matrix. Instead, they usually derive from a straight-
forward analysis of the considered network, subject to the proviso that all excitations applied to the
subject network, save for the single test current source, are reduced to zero. For example, in the abstraction
shown in Figure 5.7, the transimpedance, Zij, from any port j to any port i is

(5.22)

For the case of j = i, this transimpedance becomes the effective impedance seen at port i by the test
current source. In view of the preceding discussion, and the node pairs indicated in Figure 5.7, the
transimpedance (or impedance) quantity that derives from (5.22) is identical to the matrix relationship

(5.23)

The last result highlights the fact that all network transimpedances are directly related to the inverse
of the nodal admittance matrix. Hence, these transimpedances are inversely proportional to the deter-
minant, ∆Y(s), of the admittance matrix, Y. It follows that the poles of all transimpedances and effective
port impedances are the roots of the characteristic polynomial

(5.24)

Note from (5.7), (5.17), and (5.20) that the voltage gain of the considered linear network is

(5.25)

FIGURE 5.7  An illustration of a practical manual technique for computing the transimpedance between any port j
to any port i of a linear network.
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Thus, if the source impedance in Figure 5.5 is a real number, ZS = RS, the roots of (5.24) also comprise
the poles of the voltage transfer function and, indeed, of the linear network.

Kron’s Formula

Assume now that the network depicted in Figure 5.5 has been analyzed in the sense that all network node
voltages developed in response to the signal source have been determined. Assume further that subsequent
to this analysis, an impedance, Zk, appended to nodes m and p, as shown in Figure 5.8. In addition to
causing a current, I, to flow into node m and out of node p, this additional branch element is likely to
perturb the values of all of the originally computed circuit node and circuit branch voltages. The matrix,
E′, of new node voltages can be evaluated for the modified topology in Figure 5.8 by determining the
new nodal admittance matrix Y′, and the reapplying (5.9). The tedium associated with a second network
analysis, along with the inefficiency of discarding the results of a study performed on a network whose
topology differs only modestly from that of the original configuration, can be circumvented through the
use of Kron’s theorem. As illuminated next, this theorem derives from a methodical application of such
classical concepts as the theories of superposition, substitution, and Thévenin. In addition to providing
a computationally efficient mechanism for determining E′, Kron’s technique allows for a direct compar-
ison of E′ to the matrix, E, of original node voltages. It therefore allows for a convenient response
sensitivity analysis with respect to the appended branch element.

It is appropriate to interject that the problem postulated previously possesses more than mere academic
interest. It is, in fact, a problem that is commonly encountered, for example, in the analysis of electronic
circuits. In order to linearize these circuits around specified quiescent operating points, it is necessary to
supplant the utilized active devices by small signal equivalent circuits. Such models are invariably sim-
plified, often through the tacit neglect of presumably noncritical branch elements, to mitigate analytical
complexity and tedium. Thus, while the circuit properly identified for investigation might be of the
topological form appearing in Figure 5.8, the circuit actually subjected to manual circuit analysis is likely
the reduced structure depicted in Figure 5.5; that is, the ostensibly noncritical impedance, Zk

 is removed
in the interest of analytical tractability. Questions naturally arise in regard to the degree of error incurred
by the invoked circuit simplification. Kron’s method, as developed next, answers these questions in terms
of the results already deduced for the approximate network and without requiring explicit analytic results
for the “exact” network.

The process of evaluating the perturbation on network node voltages incurred by the action of shunting
nodes m and p in the circuit of Figure 5.5 by the impedance Zk begins by determining the Thévenin
equivalent circuit that drives the appended branch. To this end, Zk is removed in the diagram of Figure 5.8,
thereby collapsing the network to Figure 5.5(a). The relevant Thévenin voltage, Vth, at the node pair, m-p,
is, in fact, Vk, as defined by (5.18). Recalling (5.21), this voltage is 

(5.26)

FIGURE 5.8  The inclusion of an impedance, Zk, between nodes m And p, subsequent to the analysis of the network
in Figure 5.5.
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5-16 Circuit Analysis and Feedback Amplifier Theory

The corresponding Thévenin impedance, Zth, derives from a study of the test configuration of
Figure 5.9, in which the independent source current, IS, is nulled, the impedance, Zk, in Figure 5.8 is
replaced by a test current of value Itest, and the ratio of the resultant port voltage, Vtest, to Itest is understood
to be the desired Thévenin impedance. For this configuration, the network nodal admittance matrix, Y,
is unchanged, but the independent network current vector, J, becomes AmpItest. Thus, the resultant n-
vector, E″, of nodal voltages is

(5.27)

and by (5.8), the voltage, Vtest, is

(5.28)

It follows that the requisite Thévenin impedance, Zth, is

(5.29)

FIGURE 5.9 (a) Circuit diagram for evaluating the Thévenin impedance seen by the appended impedance Zk.
(b) Circuit diagram used to compute the current, I, conducted by Zk. (c) The application of the substitution theorem
with respect to Zk.
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Analysis in the Frequency Domain 5-17

Insofar as the appended impedance, Zk, is concerned, the network in Figure 5.8 behaves in accordance
with the circuit abstraction of Figure 5.9. The current, I, conducted by Zk is, without approximation,

(5.30)

where (5.26) has been used, and Zth is understood to be given by (5.29). However, by the substitution
theorem, the impedance, Zk in Figure 5.8 can be supplanted by an independent current source of value I,
as suggested in Figure 5.9(c). Specifically, this substitution of the impedance of interest with a current
source with a value that is dictated by (5.30) guarantees that the n-vector of node voltages for the modified
circuit in Figure 5.9(c) is identical to the n-vector, E′, of node voltages for the topology given in Figure 5.8.

The circuit of Figure 5.9(c) now has two independent excitations: the original current sources, IS, and
the current, I, substituted for the appended impedance, Zk. Accordingly, the current source vector for
the subject circuit superimposes two current components and is given by 

(5.31)

The corresponding vector of node voltages is, by (5.9),

(5.32)

If analytical attention focuses on the general output voltage, V̂ij , developed between nodes i and j in the
circuit of Figure 5.8,

(5.33)

where

(5.34)

The result in (5.34) is one of many possible versions of Kron’s formula. It states that when an impedance,
Zk, is appended between nodes m and p of a linear network whose nodal admittance matrix is Y, the
perturbed voltage established between any two nodes, i and j, can be determined as a function of the
parameters indigenous to the original network (prior to the inclusion of Zk ). In particular, the evaluation
is executed on the original network (with Zk absent) and exploits the original nodal admittance matrix,
Y, the original transimpedance, ZkS, between the input port and the port to which Zk is ultimately appended,
and the Thévenin impedance, Zth, is observed when looking into the terminal pair to which Zk is connected.

Engineering Application of Kron’s Formula

The engineering utility of Kron’s formula, (5.34), is best demonstrated by examining the voltage transfer
function of the network in Figure 5.8 in terms of the companion gain for the network depicted in
Figure 5.5(a). Using (5.7) and noting that the perturbed output voltage is developed from node 3 to node 4,
the perturbed voltage gain, Âv, is

(5.35)
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5-18 Circuit Analysis and Feedback Amplifier Theory

The first matrix product on the right-hand side of this relationship represents the transimpedance, ZLS,
from the input port to the output port of the original network, as given by (5.20). Moreover, the resultant
impedance ratio, ZLS /ZS, is the voltage gain, Av, of the original (Zk = ∞) network, as delineated in (5.25).
The second matrix product symbolizes the transimpedance, ZLK, from the port to which the appended
impedance, Zk, is connected to the output port; that is,

(5.36)

Assuming Av ≠ 0, (5.35) can then be reduced to

(5.37)

This result expresses the perturbed voltage gain as a function of the original voltage gain, Av, the input
to output transimpedance, ZLS, the transimpedance, ZkS, from the input port to the port at which Zk is
appended, and ZLK, the transimpedance from the port to which Zk is incident to the output port. Observe
that when the appended impedance is infinitely large, the perturbed gain reduces to the original voltage
gain, as expected.

In an actual analytical situation, however, all of the transimpedances indicated in (5.37) need not be
calculated. In order to demonstrate this contention, rewrite (5.37) in the form

(5.38)

where

(5.39)

is the admittance of the appended impedance, Zk. Now consider the test structure of Figure 5.10(a), which
is the modified circuit shown in Figure 5.8, but with the appended branch supplanted by a test current
source, Itest. With two sources, IS and Itest, activating the network, superposition yields a resultant output
port voltage, VLL, of

(5.40)

FIGURE 5.10 Network diagram pertinent to the computation of the null Thévenin impedance seen by the imped-
ance appended to the node pair, m-p.
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and a test port voltage, Vtest, of

(5.41)

For IS = 0, the network in Figure 5.10(a) reduces to the configuration in Figure 5.9(a), and (5.41) delivers
Vtest/Itest = Zkk. It follows that the impedance parameter, Zkk, is the Thévenin impedance seen by Zk, as
determined in conjunction with an analytical consideration of Figure 5.5(a); that is, (5.41) is equivalent
to the expression

(5.42)

Consider the case, suggested in Figure 5.10, in which the output port voltage, VLL, is constrained to
zero for any and all values of the load impedance, ZL. From (5.40), this case requires a source excitation
that satisfies

(5.43)

If this result is substituted into (5.42), the ratio, Vtest /Itest, is found to be

(5.44)

which mirrors the parenthesized numerator term on the right-hand side of (5.38). The ratio in (5.44)
might rightfully be termed a null Thévenin impedance, Ztho, seen by Zk, in the sense that it is indeed the
Thévenin impedance witnessed by Zk, but under the special circumstance of a nonzero source excitation
selected to null the output response variable of the network undergoing investigation. Thus, in Figure 5.10,

(5.45)

Equation (5.38) now reduces to the simpler result

(5.46)

Equation (5.46) is both computationally useful and philosophically important. From a computational
viewpoint, it allows for an efficient evaluation of the voltage transfer function of a linear network,
perturbed by the addition of an impedance element between two extant nodes of the network, in terms
of the voltage gain of the original, unperturbed circuit. As expected, this original voltage gain, Av, is the
voltage gain of the perturbed network for the special case of a perturbing impedance where the admittance
is zero (or whose impedance value is infinitely large). Only two other parameters are required to complete
the evaluation of the perturbed gain. The first is the Thévenin impedance, Zth, seen by the appended
impedance element. This Thévenin impedance is calculated traditionally by nulling all independent
sources applied to the subject network. The second parameter is the null Thévenin impedance, Ztho,
which is the value of Zth for the special circumstance of a test current source and independent source
excitations selected to constrain the output response variable to zero. Once Ztho and Zth are determined,
the degree to which the voltage transfer function is dependent on the appended impedance is easily
determined. For example, the per-unit change in gain owing to the addition of Zk between nodes m and
p in the network of Figure 5.8 is
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5-20 Circuit Analysis and Feedback Amplifier Theory

(5.47)

it is important to note that the transfer function sensitivity implied by (5.47) imposes no a priori
restrictions on the value of Zk. In particular, Zk can assume any value from that of a short circuit to that
of the opposite extreme of an open circuit.

From a philosophical perspective, when analytical attention focuses explicitly on feedback circuits,
(5.46) can be derived from signal flow theory [10, 11] and is actually Bode’s classical gain equation [12].
In the context of Bode’s theory Yk is referred to as a reference parameter, or a critical parameter, of the
feedback circuit. The product, YkZth, is termed the return ratio with respect to the critical parameter, while
the product YkZtho, is identified as the null return ratio with respect to the cricital parameter. Finally, when
(5.46) is applied as Bode’s equation, the transfer function, Av is termed the null transfer function, in the
sense that it is the actual transfer function of the network at hand, under the special case of a critical
parameter constrained to zero.

Example 5.1. In an attempt to demonstrate the engineering utility of the foregoing theoretical disclosures,
consider the problem of determining the voltage gain of the common emitter amplifier — a schematic
diagram is offered in Figure 5.11(a). Without detracting from the primary intent of this example, the
schematic diagram at hand has been simplified in that requisite biasing subcircuitry is not shown.
Assuming that the bipolar junction transistor embedded in the amplifier operates in its linear regime,
the pertinent small signal equivalent circuit is the topology depicted in Figure 5.11(b).

Assume that the amplifier source resistance, RS, is 600 Ω and that the load resistance, RK, is 10 kΩ.
Assume further that the model parameters for the transistor are as follows: rb (internal emitter resistance) =
2.5 Ω , r0 (forward early resistance) = 18 kΩ , β (forward short circuit current gain) = 90, and rc (internal
collector resistance) = 70 Ω. Determine the voltage gain of the amplifier and the effect exerted on the
gain by neglecting the Early resistance, R0.

Solution. 

1. Analytical simplicity traditionally dictates the tacit neglect of the forward Early resistance, r0. This
commonly invoked approximation reduces the model given in Figure 5.11(b) to the equivalent
circuit in Figure 5.12(a). By inspection of the latter diagram, the approximate gain of the common
emitter voltage is

FIGURE 5.11 (a) Simplified schematic diagram of a common emitter amplifier. (b) The small signal equivalent
circuit of the common emitter amplifier.
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2. In order to determine the impact that r0 has on this voltage gain, r0 is removed from the equivalent
circuit and replaced by a test current source, Itest, as depicted in Figure 5.12(b). With the indepen-
dent input voltage, VS, set to zero, the Thévenin resistance seen by r0, which is the ratio, Vtest /Itest,
is easily shown to be

On the other hand, if VX is constrained to zero, no current flows through the load resistance
branch, and therefore, Itest is necessarily βi. This condition gives a null Thévenin resistance of

3. With Av = –388.3 v/v, Zk = r0 = 18 kΩ, Zth = Rth = 9.10 kΩ, and Ztho = Rtho = – 27.78 × 10–3′ Ω ,
(5.46) produces a corrected voltage gain of

From (5.47), the presence of r0, as opposed to its absence, decreases the voltage gain of the subject
amplifier by almost 34%.

Example 5.2. As a second example, consider the series-shunt feedback amplifier whose schematic dia-
gram, neglecting requisite biasing circuitry, appears in Figure 5.13(a). The analysis of this circuit is
simplified by the removal of the connection of the feedback resistance, RF, at the emitter of transistor
Q1, as shown in Figure 5.13(b). If the voltage gain of the simplified topology is denoted as Av, the voltage
gain of the closed loop configuration in Figure 5.13(a) derives from (5.46), provided that the impedance,
Zk, between the indicated node pair, m-p, is taken as a short circuit; that is, Zk = 0.

Assume that the amplifier source resistance, RS, is 300 Ω , the load resistance, RL, is 3.5 kΩ , the feedback
resistance, RF, is 1.5 kΩ , and the emitter degeneration resistance, REE, is 100 Ω. The transistor model
invoked for small signal analysis is identical to that used in the preceding example, save for the proviso

FIGURE 5.12 (a) The approximate small signal equivalent circuit of the common emitter amplifier in Figure 5.11(a).
The approximation entails the tacit neglect of the forward Early resistance, r0. (b) The test equivalent circuit used to
compute the Thévenin and the null Thévenin resistances seen by r0 in (a).
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5-22 Circuit Analysis and Feedback Amplifier Theory

that the Early resistance, r0, is ignored herewith. Both transistors are presumed to have identical small
signal model parameters as follows: rb = 90 Ω , rπ = 1.4 kΩ,  re = 2.5 Ω,  β = 90, and rc = 70 Ω. Use Kron’s
theorem to determine the voltage gain of the closed loop series-shunt feedback amplifier.

Solution. 

1. The voltage gain of the pertinent equivalent circuit in Figure 5.14 is straightforwardly derived as

Observe that the feedback resistance, RF, does not enter into this calculation because of its
disconnection at the emitter of transistor Q1. Furthermore, the internal collector resistance, rc, is
inconsequential for both transistor stages because the neglect of the forward Early resistance, r0,
places rc in series with a controlled current source.

2. The Thévenin resistance, Rth, seen by the ultimately appended short circuit between nodes m and
p is now calculated through use of the model in Figure 5.14(b). For this calculation, the signal
voltage, VS, is reduced to zero. With VS = 0,

Noting that i2 = –βi1, KVL yields

Using the preceding result, introducing the resistance variable, RX, such that

and letting

FIGURE 5.13 (a) Simplified schematic diagram of a series-shunt feedback bipolar junction transistor amplifier. The
biasing subcircuitry is not shown. (b) The amplifier in (a), but with the feedback resistance connection to the emitter
of transistor Q1 removed. 
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Rth, which is the ratio Vtest /Itest, is found to be

3. For the evaluation of null Thévenin resistance, Rtho, the output voltage variable, VX, in
Figure 5.14(b) is nulled, thereby forcing the current relationship, Itest = –βi2 = +β2i1. Accordingly,

4. With Zk = 0, Zth = Rth = 260 kΩ , and Ztho = Rtho = 1601 Ω , (5.46) provides, after reconnection of
the feedback element, an amplifier gain of

FIGURE 5.14 (a) Small signal equivalent circuit of the feedback amplifier in Figure 5.13(b). This circuit is used to
compute the voltage gain with the feedback resistance disconnected at the emitter of transistor Q1. (b) The small
signal model used to compute the Thévenin and the null Thévenin resistances seen by the short circuit that is
ultimately appended to the node pair, m-p, in Figure 5.13(b).
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5-24 Circuit Analysis and Feedback Amplifier Theory

It is interesting to note that, if the transistors utilized in the feedback amplifier have very large β,
which is tantamount to very small RX and a ≈ 1, the voltage gain with the feedback element
disconnected is

Moreover,

and

It follows from (5.46) that the approximate voltage gain, subsequent to the reconnection of the
feedback resistance, RF, to the emitter of transistor Q1 is

which is within 2% of the accurately estimated voltage gain.

Generalization of Kron’s Formula

The Kron–Bode equation in (5.46) was derived expressly for investigating the voltage transfer function
of a linear network to which an impedance element is appended between two network nodes. This
equation also can be adapted to the problem of determining the explicit dependence of any type of
transfer relationship on any parameter within any linear network.

To this end, consider any linear network, such as the generalization shown in Figure 5.15, whose, load
impedance is ZL and whose source impedance is ZS. Identify a critical network parameter, say P, to which
the dependence on, and sensitivity to, the overall transfer performance of the network undergoing study
is of particular interest. This parameter can be, for example, a circuit branch impedance or an active
element gain factor where numerical values cannot be determined accurately or controlled adequately
in view of potentially unacceptable manufacturing tolerances or device fabrication uncertainties. Let the
transfer function of interest be

(5.48)

where XR(s) denotes the transform of the voltage or current response variable, and XS(s) is the transform
of the voltage or current input variable. The functional notation, H(P, ZS, ZL ), underscores the observation

FIGURE 5.15  Generalized block diagram nodal of the I-O transfer characteristics of a linear network. 
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that the transfer function of the liner network is likely to be dependent on the critical parameter, P, the
source impedance, ZS, and the load impedance, ZL. The corresponding extension of the Kron–Bode
relationship is

(5.49)

where H(0, ZS, ZL ), termed the null gain or zero parameter gain, signifies the value of the network transfer
function, H(P, ZS, ZL ), when P is set to zero. This null gain must be finite and nonzero. With reference
to the appended impedance formulation in (5.46), observe that the critical parameter, P, is Yk, the
admittance of the appended impedance element, while H(0, ZS, ZL ) is the gain, Av, of the network, under
the condition of an absent impedance element (Yk = 0).

The product, PQS (ZS, ZL ), is termed the return ratio with respect to parameter P, Ts (P, ZS, ZL ), and
the product, PQR (ZS, ZL ), is referred to as the null return ratio with respect to P, TR (P, ZS, ZL ); that is,

(5.50a)

(5.50b)

It is to be understood that both QS (ZS, ZL ) and QR (ZS, ZL ) are independent of the critical parameter,
P. With reference once again to (5.46), note that QS (ZS, ZL ) is the Thévenin impedance seen by the
appended admittance, Yk, while QS (ZS, ZL ) is the null Thévenin impedance facing YK.

Equation (5.49) can now be rewritten as

(5.51)

Alternatively,

(5.52)

where

(5.53a)

(5.53b)

respectively, denote the return difference with respect to P and the null return difference with respect to P.
An initial appreciation of the engineering significance of the zero parameter gain, H (0, ZS, ZL) ≡ H0

(⋅), the return ratio, TS (P, ZS, ZL) ≡ TS (⋅), and the null return ratio, TR (P, ZS, ZL) ≡ TR (⋅), is gleaned by
using (5.51) to write

(5.54)

In view of the generality of the Kron–Bode formula, this algebraic manipulation of (5.51) implies that
the dynamical input/output transfer relationship of all linear networks can be symbolically represented
by the block diagram offered in Figure 5.15. This block diagram makes clear that because TS (⋅) and TR (⋅)
are zero for P = 0, H0 (⋅) is the gain afforded by the network as a result of input–output electrical paths
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5-26 Circuit Analysis and Feedback Amplifier Theory

that exclude the parameter, P. The diagram also suggests that TS (⋅) is a measure of the amount of feedback
incurred by parameter P around that part of the circuit that excludes parameter P. Finally, the diagram
at hand implies that TR (⋅) is a measure of the amount of feedforward incurred by parameter P. In
particular, if feedback is removed, two paths remain for the transmission of a signal from the input port
to the output port of a linear network. One of these paths, the transmittance of which is measured by
H0 (⋅), is direct and entails the processing of the input signal by that part of the circuit that excludes P.
The other nonfeedback path has an effective transmittance of TR (⋅) H0 (⋅). The latter path is the
feedforward path in the sense that signal is processed through a signal path that is divorced from feedback
and is not a result of direct source coupling through the topological part of the network that excludes
parameter P.

Return Ratio Calculations

In the generalized transfer relationship of (5.49), the critical parameter, P, can assume one of only six
possible forms: circuit branch admittance, circuit branch impedance, transimpedance, transadmittance,
gain associated with a current-controlled current source (CCCS), and gain associated with a voltage-
controlled voltage source (VCVS) [13]. The methodology underlying the computation of the return ratio
and the null return ratio with respect to each of these critical parameter possibilities is given below. The
case of P = Yk, a circuit branch admittance, was investigated in the context of Kron’s partitioning theorem.
Nevertheless, it is reinvestigated next for the purpose of establishing an analytical common denominator
for return ratio calculations with respect to the five other reference parameter possibilities.

Circuit Branch Admittance

Consider the network abstraction of Figure 5.16(a), which identifies a branch admittance, Yk, as a critical
parameter for analysis; that is, P = Yk in (5.49). The input excitation can be either a voltage source, or a
current source and is therefore indicated as a general transformed input variable, XS(s). Similarly, the

FIGURE 5.16  (a) Linear circuit for which the identified critical parameter is a branch admittance, Yk. (b) The ratio,
XR (s)/XS (s), is the zero parameter gain H (0, ZS, ZL ). (c) The ratio, Vx /Ix, is the function QS (ZS, ZL ), in (5.49). (d)
The ratio, Vx /Ix, is the function, QR (ZS, ZL ), in (5.49). 
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output or response variable can be either a voltage or a current, thereby encouraging the generalized
transformed response notation, XR(s). The source and load impedances (or admittances) are absorbed
into the network. In order to evaluate the zero parameter gain, H (0, ZS, ZL ), Yk is set to zero by removing
it from the network. An analysis is then conducted to determine the ratio XR(s)/XS(s), of output to input
variables, as suggested in Figure (5.16(b)).

As demonstrated for the case of P = Yk, a circuit branch admittance, the function, QS (ZS, ZL ), in
(5.49) is the Thévenin impedance, Zth, facing Yk. This impedance is computed by determining the ratio,
Vx /Ix, with the signal source, XS(s), nulled, as indicated in Figure 5.16(c). Note in Figure 5.16(a), that the
volt–ampere relationship of the branch housing Yk is Ik = Yk Vk, where the direction of the branch current,
Ik, coincides with the direction of the test current source, Ix, used in the determination of Zth. A comparison
Figures 5.16(c) and 5.16(a) alludes to the methodology of replacing the admittance branch by a source
of excitation (a current source) where the electrical nature is identical to the dependent electrical variable
(a current, Ik ) of the branch volt–ampere characteristic. Note that the polarity of the voltage, Vx, used
in the determination of the test ratio, Vx /Ix, is opposite to that of the original branch voltage Vk. This is
to say that although Ik and Vk are in associated reference polarity in Figure 5.16(a), Ix and Vx in the test
cell of Figure 5.16(c) are in disassociated polarity.

The computation of the function, QR (ZS, ZL), in (5.49) mirrors the computation of QS (ZS, ZL ), except
for the fact that instead of setting the source excitation to zero, the output response, XR(s), is nulled. The
source excitation, XS(s), remains at some computationally unimportant nonzero value, such that its
effects, when superimposed over those of the test current, Ix, forces XR(s) to zero. The situation at hand
is diagrammed in Figure 5.16(d).

Example 5.3. Return to the series-shunt feedback amplifier of Figure 5.29(a). Evaluate the voltage gain
of the circuit, but, take the conductance, GF, of the feedback resistance, RF, as the critical parameter. The
circuit and device model parameters remain the same as in Example 5.2: RS = 300 Ω, RL = 3.5 kΩ, RF =
1.5 kΩ, REE = 100 Ω, rb = 90 Ω, rπ = 1.4 kΩ, re = 2.5 Ω, β = 90, and rc = 70 Ω .

Solution. 

1. The zero parameter voltage gain, Avo, of the subject amplifier is the voltage gain of the circuit with
GF = 0. But GF = 0 amounts to a removal of the feedback resistance, RF. Such removal is electrically
equivalent to open circuiting the indicated node pair, m-p, as diagrammed in the small signal
model of Figure 5.14(a). Thus, Avo is identical to the gain, computed in Step (1) of Example 5.2.
In particular, 

2. The model pertinent to computing the functions, QS (ZS, ZL ), and QR (ZS, ZL ), is offered in
Figure 5.17. Note that the test current source, Ix, which replaces the critical conductance element,
GF, and the resultant test response voltage, Vx, are in disassociated reference polarity. As in
Example 5.2, let
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5-28 Circuit Analysis and Feedback Amplifier Theory

Then, with VS = 0, and writing QS (ZS, ZL) as QS (RS, RL) because of the lack of energy storage
elements in the circuit undergoing study,

On the other hand,

3. Substituting the preceding results into (5.49), and recalling that GF = 1/RF, the voltage gain of the
series-shunt feedback amplifier is found to be

which is the gain result deduced previously.

Circuit Branch Impedance

In the circuit of Figure 5.18(a), a branch impedance, Zk, is selected as a critical parameter for analysis;
that is P = Zk in (5.49). The zero parameter gain, H(0, ZS, ZL ), is evaluated by replacing Zk with a short
circuit, as suggested in Figure 5.18(b).

The volt–ampere characteristic equation of the critical impedance branch is Vk = Zk Ik, where, of course,
the branch voltage, Vk, and the branch current, Ik, are in associated reference polarity. Because the
dependent variable in this volt–ampere expression is a branch voltage, the return and null return ratios
are calculated by replacing the subject branch impedance by a test voltage source, Vx . As suggested in
Figure 5.18(c), the ratio, Ix /Vx, under the condition of nulled independent sources, gives the function QS

(ZS, ZL ) in (5.49). On the other hand, and as depicted in Figure 5.18(d), the ratio Ix /Vx, with a nulled

FIGURE 5.17 Circuit used to compute the return ratio and the null return ratio with respect to the conductance,
GF, in the series-shunt feedback amplifier of Figure 5.13(a).
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response, yields QR (ZS, ZL ). Observe that in the present situation, the functions, QS (ZS, ZL ) and QR

(ZS, ZL ) are, respectively, the Thévenin and the null Thévenin admittances facing the branch impedance,
Zk.

Circuit Transimpedance

In the circuit of Figure 5.19(a), a circuit transimpedance, Zt, is selected as a critical parameter for analysis;
that is, P = Zt in (5.49). The zero parameter gain, H(0, ZS, ZL ), is evaluated by replacing the current-
controlled voltage source (CCVS) by a short circuit, as shown in Figure 5.19(b).

The volt–ampere characteristic equation of the critical transimpedance branch is Vk = Zt Ik, where Ik

is the controlling current for the controlled source branch. Because the dependent variable in this
volt–ampere expression is a branch voltage, the return and null return ratios are calculated by replacing
the CCVS with a test voltage source, Vx. However, as indicated in Figures 5.19(c) and (d), the polarity
of Vx mirrors that of the voltage, Vk, developed across the controlled branch. With Ix taken as a current
flowing in the controlling branch in a direction opposite to the polarity of the original controlling current,
Ik, the ratio, Ix /Vx, under the condition of nulled independent sources, gives the function, QS (ZS, ZL ) in
(5.49). On the other hand, and as depicted in Figure 5.19(d), the ratio, Ix /Vx, with a nulled response,
yields QR(ZS, ZL ).

Circuit Transadmittance

In the network of Figure 5.20(a), a circuit transadmittance, Yt, is selected as the critical parameter. The
zero parameter gain, H(0, ZS, ZL), is evaluated by replacing the voltage-controlled current source (VCCS)
with an open circuit, as shown in Figure 5.20(b).

The volt–ampere characteristic question of the critical transadmittance branch is Ik = Yt Vk, where Vk

is the controlling voltage for the VCCS. Because the dependent variable in this volt-ampere expression
is a branch current, the return and null return ratios are calculated by replacing the VCCS with a test
current source, Ix, where, as indicated in Figures 5.20(c) and (d), the polarity of Ix mirrors that of the
current, Ik, flowing through the controlled branch. With Vx taken as a voltage developed across the

FIGURE 5.18  (a) Linear circuit for which the identified critical parameter is a branch impedance, Zk. (b) The ratio,
XR (s)/XS (s), is the zero parameter gain, H (0, ZS, ZL ). (c) The ratio, Ix /Vx , is the function, QS (ZS, ZL ), in (5.49). (d)
The ratio, Ix /Vx, is the function, QR (ZS, ZL ), in (5.49).
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5-30 Circuit Analysis and Feedback Amplifier Theory

controlling branch in a direction opposite to the polarity of the original controlling voltage, Vk, the ratio,
Vx /Ix, under the condition of nulled independent sources, gives the function, QS (ZS, ZL ) in (5.43). On
the other hand, and as offered in Figure 5.20(d), the ratio, Vx /Ix, under the condition of a nulled response,
yields QR (ZS, ZL ).

FIGURE 5.19  (a) Linear circuit for which the identified critical parameter is a circuit transimpedance, Zt. (b) The
ratio, XR (s)/XS (s), is the zero parameter gain, H (0, ZS, ZL ). (c) The ratio, Ix /Vx , is the function, QS (ZS, ZL ), in (5.49).
(d) The ratio, Ix /Vx, is the function, QR (ZS, ZL ), in (5.49).

FIGURE 5.20  (a) Linear circuit for which the identified critical parameter is a circuit transadmittance, Yt, (b) The
ratio, XR (s)/XS (s), is the zero parameter gain, H (0, ZS, ZL). (c) The ratio, Vx /Ix, is the function QS (ZS, ZL ), in (5.49).
(d) The ratio, Vx /Ix, is the function QR (ZS, ZL ), in (5.49). 
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Example 5.4. The circuit in Figure 5.21(a) is a low-frequency, small-signal model of a voltage feedback
amplifier. With the transconductance, gm, selected as the reference parameter of interest, derive a general
expression for the voltage gain, Av = VO/VS. Approximate the final result for the special case of very large gm.

Solution. 

1. The zero parameter voltage gain, Avo, derives from an analysis of the circuit structure given in
Figure 5.21(b). The diagram differs from Figure 5.21(a) in that the current conducted by the
controlled source branch has been nulled by open circuiting said branch. By inspection of the
subject model,

2. The diagram given in Figure 5.21(c) is appropriate to the computation of the return ratio, TS(gm,
ZS, ZL ) = gmQS(RS, RL ) with respect to the critical transconductance, gm. A comparison of the
model at hand with the diagram in Figure 5.21(a) confirms that the controlled source, gmV, is
replaced by an independent current source, Ix, which flows in a direction identical to that of the
controlled source it supplants. The ratio, Vx /Ix, is to be computed, where Vx is developed, antiphase
to V, across the branch that supports the original controlling voltage for the VCCS. A straightfor-
ward analysis produces

3. The null return ratio, TR (gm, ZS, ZL ) = gmQR(RS, RL ), with respect to gm is obtained from an
analysis of the circuit in Figure 5.21(d). Observe a nulled output voltage, with zero current flow
through the load resistance, RL. Observe further that the signal source voltage is nonzero. The
specific value of this source voltage is not crucial, and is therefore not delineated. An analysis reveals

FIGURE 5.21  (a) The low-frequency, small-signal model of a voltage feedback amplifier. (b) The circuit used to
evaluate the zero parameter (gm = 0) gain. (c) The circuit used to evaluate the return ratio with respect to gm. (d) The
circuit used to computer the null return ratio with respect to gm.
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4. Using (5.49), the voltage gain of the circuit undergoing study is found to be

which, for large gm, reduces to

Gain of a Current-Controlled Current Source

For the network in Figure 5.22(a), the reference parameter is αk, the gain associated with a CCCS. The
zero parameter gain, H(0, ZS, ZL ), is evaluated by replacing this CCCS with an open circuit, as depicted
in Figure 5.22(b).

The volt–ampere characteristic equation of the branch in which the reference parameter is embedded
is Ik = αk Ij, where Ij is the controlling current for the CCCS. Because the dependent variable in this volt-
ampere characteristic is a branch current, the return and null return ratios are calculated by replacing
the CCCS with a test current source, Ix. As indicated in Figures 5.22(c) and (d), the polarity for Ix mirrors
that of the current, Ik, flowing through the controlled branch. Let Iy be the resultant current conducted
by the controlling branch, and let this current flow a direction opposite to the polarity of the original
controlling current. Then, the current ratio, Iy /Ix, computed under the condition of nulled independent
sources, is the function, QS (ZS, ZL) in (5.49). Similarly, and as suggested in Figure 5.22(d), the ratio, Iy /Ix,
under the condition of a nulled response, yields QR (ZS, ZL ).

FIGURE 5.22  (a) Linear circuit for which the identified critical parameter is the current gain αk associated with a
CCCS. (b) The ratio, XR (s)/XS (s), is the zero parameter gain, H (0, ZS, ZL ). (c) The ratio, Iy /Ix, is the function, QS (ZS,
ZL ), in (5.49). (d) The ratio, Iy /Ix, is the function, QR (ZS, ZL ), in (5.49).
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Gain of a Voltage-Controlled Voltage Source

In the network of Figure 5.23(a), the selected reference parameter is µk, the gain corresponding to a
VCVS. The zero parameter gain, H (0, ZS, ZL ), is evaluated by replacing this VCVS with a short circuit,
as per Figure 5.23(b).

The volt–ampere characteristic equation of the dependent generator branch is Vk = µkVj , where Vj is
the controlling voltage for the VCVS. Because the dependent variable in this volt–ampere expression is
a branch voltage, the return and null return ratios are calculated by replacing the VCVS with a test voltage
source, Vx, where as indicated in Figures 5.23(c) and (d), the polarity of Vx is identical to that of the
voltage, Vk, developed across the controlled branch. Let Vy be the resultant voltage established across the
controlling branch, and let the polarity of this voltage be in a direction opposite to that of the original
controlling voltage. Then, the voltage ratio, Vy /Vx, computed under the condition of nulled independent
sources, is the function, QS (ZS, ZL ), in (5.49). As suggested in Figure 5.23(d), the voltage ratio, Vy/Vx,
under the condition of a nulled response, yields QR (ZS, ZL ).

Evaluation of Driving Point Impedances

Having formulated generalized techniques for computing the return ratio and the null return ratio with
respect to any of the six possible types of critical circuit parameters, the application of (5.49) is established
as a powerful and computationally expedient vehicle for evaluating any transfer function of any linear
network. The only restriction limiting the utility of (5.49) is that parameter P must be selected in such
a way as to ensure that the zero parameter transfer function is finite and nonzero.

Equation (5.49) is commonly used to evaluate the voltage gain, current gain, transimpedance gain, or
transadmittance gain of feedback and other types of complex circuitry. However, the expression is equally
well suited to determining the driving point input impedance seen by the source impedance, as well as
the driving point output impedance seen by the terminating load impedance. In fact, once the return
ratios relevant to the gain of interest are found, these I-O impedances can be determined with minimal
additional analysis.

FIGURE 5.23  (a) Linear circuit for which the identified critical parameter is the voltage gain, µk1 associated with a
VCVS. (b) The ratio, XR (s)/XS (s), is the zero parameter gain, H (0, ZS, ZL ). (c) The ratio, Vy /Vx, is the function QS

(ZS, ZL ), in (5.49). (d) The ratio, Vy /Vx, is the function, QR (ZS, ZL ), in (5.49). 
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Without loss of generality, the foregoing contention is explicitly demonstrated in conjunction with a
transimpedance amplifier whose reference parameter is selected to be a branch impedance, Zk. To this
end, consider the circuit abstracted in Figure 5.24, for which the driving point input impedance, Zin, is
to be determined. The input excitation is a current, IS, and in response to this input, a signal voltage, VL,
is developed across the load impedance, ZL. Using (5.49), the I-O transimpedance, ZT (Zk, ZS, ZL ), is

(5.55)

where ZT (0, ZS, ZL ) is the circuit transimpedance for Zk = 0, Zk QR (ZS, ZL ) is the null return ratio with
respect to Zk, and ZK QS (ZS, ZL ) is the return ratio with respect to Zk. For future reference, the circuit
appropriate to the calculation of the function, QS (ZS, ZL ), is drawn in Figure 5.24(b).

The input impedance derives from an analytical consideration of the cell depicted in Figure 5.24(c),
in which the Norton representation of the signal source has been supplanted by a test current source of
value Iz. Note that the load impedance remains as the terminating element for the output port. The
transfer relationship of interest is the ratio, Vz /Iz, which is the desired driving point input impedance,
Zin. Taking care to choose Zk, the reference parameter for the gain enumeration, as the reference parameter
for the input impedance determination, (5.49) gives

(5.56)

In this expression, Zino generally derives straightforwardly because it is the Zk = 0 value of Zin; that is, Zin

is evaluated for the special case of a nulled reference parameter. Such a null in the present situation is
equivalent to short-circuiting Zk, as indicated in Figure 5.25(a). The function, QSS (ZS, ZL ), is the delineated

FIGURE 5.24  (a) A liner amplifier for which the input impedance is to be determined. (b) The circuit used for
calculating the return ratio with respect to Zk. (c) The circuit used for calculating the driving point input impedance.
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Ix /Vx ratio, for the case of a source excitation (Iz in the present case) set to zero. The pertinent circuit
diagram is the structure in Figure 5.25(b). This last circuit differs from the circuit, shown in
Figure 5.24(b), exploited to find QS (ZS, ZL ) in the gain relationship of (5.50) in only one way: ZS has
been removed, and thus, effectively, ZS has been set to an infinitely large value. It follows that

(5.57)

In other words, a circuit analysis aimed toward determining QSS (ZS, ZL ) is unnecessary. Instead, QSS

(ZS, ZL ) is found by evaluating QS(ZS, ZL ), which is already known from the gain analysis, at ZS = ∞.
To evaluate QRR (ZS, ZL ), the foregoing Ix /Vx ratio is calculated for the case of zero response. In the

present situation the response is the voltage, Vz, and accordingly, the appropriate circuit is depicted in
Figure 5.25(c). However, a comparison of the circuit at hand with the structure in Figure 5.24, which is
exploited to evaluate the return ratio in the gain equation, indicates that it differs only in that ZS is now
constrained to zero to ensure Vz = 0. It is therefore apparent that in (5.56)

(5.58)

Equation (5.56) is now expressible as

(5.59)

which is occasionally referred to as Blackman’s formula [14].

FIGURE 5.25  (a) The circuit used to evaluate the zero parameter driving point input impedance. (b) The compu-
tation, relative to input impedance, of the return ratio with respect to Zk. (c) The computation, relative to input
impedance, of the null return ratio with respect to Zk.
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5-36 Circuit Analysis and Feedback Amplifier Theory

Analogous considerations at the output port in the circuit of Figure 5.24(a) dictate a driving point
output impedance, Zout, of

(5.60)

where, similar to Zino, Zouto, the Zk = 0 value of Zout, must be finite and nonzero. Although the preceding
two relationships were derived for the case in which the selected reference parameter is a branch imped-
ance, both expressions are applicable for any reference parameter, P. In general,

(5.61a)

(5.61b)

Example 5.5. Use the pertinent results of Example 5.4 to derive expression for the driving point input
resistance, Rin, and the driving point output resistance, Rout, of the feedback amplifier in Figure 5.21(a).

Solution. 

1. With gm set to zero, an inspection of the circuit diagram in Figure 5.21(b) delivers

2. From the second step in the solution to Example 5.4, the function, QS (RS, RL ), to which the return
ratio, TS (gm, RS, RL ) is directly proportional, was found to be

It follows that

Moreover,

3. Equations (5.61a) and (b) resultantly yield
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for the driving point input resistance and

for the driving point output resistance.

Sensitivity Analysis

Yet another advantage of the Kron–Bode formula is its amenability to evaluating the impact exerted on
a circuit transfer relationship by potentially large fluctuations in the reference parameter P. This conve-
nience stems from the fact that parameter P is isolated in (5.49); that is, H (0, ZS, ZL ), QR (ZS, ZL ), and
(ZS, ZL ) are each independent of P. A quantification of this impact is achieved by exploiting the sensitivity
function,

(5.62)

which compares the per unit change in transfer function, ∆H/H, resulting from a specified per unit
change ∆P/P in a critical parameter. In particular, the notation in this definition is such that if H designates
the transfer characteristic, H (P0, ZS, ZL ), at the nominal parameter setting, P = P0, (H + ∆H) signifies
the perturbed characteristic, H(P0 + ∆P, ZS, ZL ) where P0 is altered by an amount ∆P0. Using (5.49) and
dropping the functional notation in (5.53a) and (5.53b), it can be demonstrated that

(5.63)

where FS and FR are understood to be evaluated at the nominal parameter setting, P = P0. It should be
emphasized that unlike a more traditional sensitivity analysis, such as that predicated on the adjoint
network [15], (5.63) is easy to use manually and does not rely on an a priori assumption of small
parametric changes.
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6.1 Introduction

Network analysis is based on formulation of the relevant equations and on their solutions. Various
approaches are possible. If we wish to get as much theoretical information as possible, we may resort to
hand analysis and keep the elements as variables (literal parameters). In such cases, it is an absolute
necessity to use a method that leads to the smallest possible number of equations. If we plan to use a
computer, then we can accept methods which lead to larger systems, but the methods must be relatively
easy to program. The purpose of this chapter is to give an overview of the various possibilities and point
out advantages and disadvantages. Many more details are available in [1, 2].

Section 6.2 is a summary of the nodal and mesh formulations. We review them because they are the
best ones for analysis of small networks. Tableau formulation, given in Section 6.3, is very general, but
requires special solution routines, probably not available to the reader. Section 6.4 describes the best
method for computerized solutions; it is used in many commercial simulators. If nonlinear elements are
involved, then iterative solution methods must be used; an introduction on how to deal with nonlinear
elements is given in Section 6.5. Finally, Section 6.6 presents a method that is suitable for hand solutions
of active networks and which automatically leads to the smallest system of equations.

6.2 Nodal and Mesh Formulations

Classical methods use two types of network equations formulation: the nodal and the mesh. The first
one is based on Kirchhoff ’s current law (KCL): the sum of currents flowing away from a node is equal
to zero. The mesh method is based on Kirchhoff ’s voltage law (KVL): the sum of voltages around any
loop is equal to zero.

For simple problems, both methods are about equivalent, but nodal formulation is more general. The
mesh formulation is suitable only for planar networks: It must be possible to draw the network without
any element crossing over any other element. Many practical networks are planar, but it is not always
easy to see that it is actually the case.

We first introduce some definitions. A positive current flows from a terminal with a higher potential
to a terminal with a lower potential. This is sketched on the two-terminal element in Figure 6.1. If we

Jiri Vlach
University of Waterloo, Canada
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6-2 Circuit Analysis and Feedback Amplifier Theory

use this definition, then the product of the current and of the voltage across the element, Vi – Vj , expresses
the power consumed by the element. If the current flows in opposite direction, then the element is
delivering power.

We will use the previous definition of a positive current for all elements of the network, irrespective
of what their role eventually may be. Thus, a positive current through an independent voltage source
will flow from the more positive terminal to the less positive terminal, as sketched in Figure 6.2(a). The
current flowing through an independent current source is indicated on its symbol, Figure 6.2(b), but the
voltage across it is not defined; it depends on the network.

The nodal formulation uses the principle that the sum of currents at any node must be equal to zero
at any instant of time. To apply this rule in an efficient way, we realize that before we solve the equations,
we do not know which way the currents will actually flow. All we know is that if a node is more positive
than all the other nodes, then all currents must flow away from this node.

In nodal formulation, the unknowns are nodal voltages and the equations express the sum of currents
flowing away from the node. To write the equations we use element admittances: in Laplace transform
YC = sC for a capacitor, YL = 1/sL for an inductor, and YG = G = 1/R for a resistor. It is advantageous to
use G, because we thus avoid fractions in the equations.

We demonstrate how to set up the equations by considering the network in Figure 6.3. The nodal
voltages are denoted V1 and V2 and ground (the lower line) is considered to be at zero potential. We do
not know which of these nodes is more positive, but we can assume that any node we consider at a given
moment is the most positive one. This assumption has the consequence that all currents must flow away

FIGURE 6.1 Definition of positive current direction with respect to
the voltage across the element.

FIGURE 6.2 (a) Direction of positive current through an independent
voltage source. (b) Direction of the current through an independent
current source.

FIGURE 6.3  Example for nodal formulation.
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from this node. For the given network, the current through G1 will flow down and its value will be IG1 =
G1V1, current through G2 will flow from left to right and will be IG2 = G2 (V1 – V2). Current from the
independent current source flows into the node and thus must be subtracted. Together, the sum of the
currents at node 1 will be zero:

Moving to the second node, we still do not know which node is more positive, but we can still make the
assumption that now it is this node that is the most positive one. If we make such an assumption, then
all currents must flow away from this node: The current through G3 will be IG3 = G3V2and will flow down,
the current through G2 will flow from right to left and will be IG2 = G2 (V2 – V1). In this expression, the
first voltage within the parentheses must be the assumed higher potential. This is expressed by the
equation

It is advantageous to put the equations into matrix form, with the known independent source transferred
to the right side:

The preceding steps were simple because we selected elements that can be handled by this formulation.
Unfortunately, many practical elements are not expressed in terms of currents. For instance, a voltage
source connected between nodes i and j, with its positive reference on node i, is described by the equation

A positive current does flow through such an element from i to j , but is not available in its defining
equation. In fact, all voltage sources, independent or dependent, will create this problem. Another element
which cannot be handled directly is a short circuit. It is described by the equation

and current is not a part of its definition.
We can always use transformations by applying various theorems such as the Thévenin and Norton

transformations or source splitting, and eventually arrive at a network in which all elements have voltage
as the independent variable. Such transformations are practical for hand analysis, but are not advanta-
geous for computerized solutions. This is the reason why other formulations have been invented.

Consider next the mesh equations where we use the KVL and impedances of the elements: ZL = sL
for the inductor, ZC = 1/sC for the capacitor, and R for the resistor. In this formulation, we sum the
voltages across the elements in a given closed loop. Because this method is suitable for planar networks
only, we usually use the concept or circulating mesh currents, indicated on the network in Figure 6.4.
The currents I1and I2 create voltage drops across the resistors. When considering the first mesh, we take
the current I1 as a positive one. The voltage across R1 is VR1 = R1I1. The voltage across R2 is VR2 = R2(I1

– I2) and the voltage source contributes a value E to the equation. According to our earlier definition, a
positive current flows from plus to minus, but I1 actually goes in the opposite direction through the
voltage source. Thus, the voltage across E must be taken with a negative sign and the sum of voltages
around the first mesh is
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6-4 Circuit Analysis and Feedback Amplifier Theory

When we move to the second mesh, we consider the current I2 as positive and the sum of voltage drops
around the second mesh is

The equations can be collected into one matrix equation

Each of these fundamental formulations has its problems.

In nodal formulation, we can deal directly with the following elements:

Current source, J
Conductance, G = 1/R
Capacitor admittance, sC
Voltage controlled current source, VC
Inductor admittance, 1/sL

In mesh formulation, we can deal directly with the elements:

Voltage source, E
Resistor, R
Inductor impedance, sL
Current controlled voltage source, CV
Capacitor impedance, 1/sC.

All other elements create problems and must be dealt with by the Thévenin and Norton theorems and/or
source splitting.

As an example, we take the network in Figure 6.5(a). It is directly suitable for mesh formulation, but
we demonstrate both. For simplicity, all resistors have unit values.

The mesh formulation, with the indicated circulating currents I1 and I2, leads to the equations

Inserting numerical values

The solution is I1 = E/3, I2 = –E/3 and V1 = R2(I1 – I2) = 2E/3. 

FIGURE 6.4 Example for mesh formulation.
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To use nodal formulation, we must apply several transformation steps. First, we must express the
controlling currents as I = G1(E – V1) = E – V1 and replace I in the definition of the current controlled
voltage source. This has been done in the figure. Afterward, applying Thévenin–Norton transformation
we change the voltage sources, in series with resistors, into current sources, in parallel with the same
resistors. We get the network in Figure 6.5(b). It has only one node for which the balance of current is

Inserting numerical values and solving, we get the same V1 as previously.
If we have a mixture of elements, such transformations will always be lengthy, will require redrawings,

and can lead to errors. To reduce the chance of such errors to a minimum, in computer applications we
need formulations that avoid transformations and use descriptions of the elements as they are given.
This is done in both the tableau and nodal formulations, the subjects of the following sections.

Although the nodal and mesh formulations are not always easy to apply, we must stress that they are
the best ones for hand solutions. They may require several steps of transformations and redrawings, but
ultimately they lead to the smallest possible systems of equations.

6.3 Graphs and Tableau Formulation

Tableau is the most general formulation because the solution simultaneously provides the voltages across
all elements, the currents through all elements, and all nodal voltages. The difficulty is that tableau leads
to such large systems of equations that complicated sparse matrix solvers are an absolute necessity. Most
readers will not have access to such routines, therefore, we will explain its properties only to the extent
necessary for understanding. We advise the reader not to use it. 

FIGURE 6.5  (a) Example of a network suitable for mesh formulation. (b) Modification of the network in Figure 6.5(a)
to be suitable for nodal formulation.
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6-6 Circuit Analysis and Feedback Amplifier Theory

Tableau formulation needs for its construction the concept of graphs and the concept of the incidence
matrix. Consider the network in Figure 6.6(a). A graph of the network replaces each element by a line.
We will use oriented graphs, with arrows, because they can be identified with the flow of currents. In all
passive elements, the current can flow in any direction and the orientation of the graph is entirely our
choice. We do not have such freedom when we consider sources. The direction of the current through
the current source is given by the arrow marked at its symbol and we use the same direction in the graph.
For the voltage source, the direction of the graph will be from plus to minus, in agreement with our
previous explanations. Each node is marked by the node voltage and the line representing the element
is given the name of the element. Following these rules, we have constructed the graph in Figure 6.6(b).
Because the directions of the arrows are the assumed directions of currents, we can write KCL for the
two nodes: positive direction is away from the node, negative is into the node. The sums of currents for
the nodes are

This can also be summarized in one matrix equation

or

(6.1)

The matrix A is called the incidence matrix. It has as many rows as there are ungrounded nodes, and as
many columns as the number of elements. Note that +1 in any given row indicates that we expect the
current to flow away from the node, –1 means the opposite.

Still more information can be extracted from this matrix. Denote the nodal voltages by subscripts n
in Vn1 and Vn2, as done in Figure 6.6. The voltages across the elements will have as subscripts the names
of the elements. We can write the following set of equations which couple the voltages across the elements
with the nodal voltages:

FIGURE 6.6  (a) A simple network; (b) its graph.
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In matrix form, this is equivalent to

The matrix is the transpose of the incidence matrix and we can generalize

(6.2)

Complete formulation needs expressions that couple the element currents and the element voltages.
Writing them in the same sequence as for the graph, and using Laplace transformation, we have 

For matrix notation, we need an expression that, with a proper choice of entries, will cover all possible
elements. Such an expression is

For instance, if we consider the current source, we set Y = 0, Z = 1 and W = J, which gives the preceding
equation. Similar choices can be made for the other elements.

The KCL equation, AI = 0, the KVL equation, Vel – AT Vn = 0, and the previous equation YVel + ZIel

= W are collected in one matrix equation. Any sequence can be used; we have chosen

(6.3)

and in matrix form

(6.4)

Once the incidence matrix is available, writing this matrix equation is actually quite simple. First deter-
mine its size: it will be twice the number of elements plus the number of nodes. For our example, it will
be 10. The system equation is in Figure 6.7 where all zero entries were omitted to clearly show the
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6-8 Circuit Analysis and Feedback Amplifier Theory

structure. In the top partition is a unit matrix and the negative of the transpose of the A matrix. In the
bottom partition is the incidence matrix, A. The middle portion is filled, element by element, using the
previous element equation. For better understanding, it is a good idea to write the variables above the
matrix, as shown, because each column of the matrix is multiplied by the variable which appears above it.

We have used this simple example to point out the main difficulty of the tableau formulation: the
system becomes very large. In nodal formulation, this problem would lead to only two equations.
However, the tableau system matrix has many zeros and is said to be sparse. Sparse systems are always
solved by special routines which, roughly speaking, do not store the zeros and do not operate on them.
Such codes are quite difficult to write, and in tableau we have the additional difficulty that the matrix
has a complicated structure. We discussed this formulation more as a warning instead of a recommen-
dation. Unless a suitable sparse matrix solver is already available, this formulation should be avoided.

6.4 Modified Nodal Formulation

Modified nodal formulation is an extension of the nodal formulation and is the method of choice for
computerized analysis. It is used in most commercial simulators, and we will explain it in considerable
detail.

When nodal formulation is taught in schools, inductors are usually taken as admittances, YL = 1/sL.
This is fine, as long as we work by hand and derive the network function. For instance, nodal equations
for the network in Figure 6.8 would be written in the form

FIGURE 6.7 Tableau formulation for the network in Figure 6.6.

FIGURE 6.8  Example for modified nodal formulation.
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Tableau and Modified Nodal Formulations 6-9

However, this creates a problem for computerized solutions. Multiplication by s represents differentiation
in the Laplace transform and 1/s represents integration. As a result, the two equations are actually a set
of two integro-differential equations, and we do not normally have methods to solve them directly in
such a form. In all computerized methods, we use integration of systems of first-order differential
equations and the preceding equations cannot be arranged into such a form. What we need is a method
which will keep all frequency-dependent elements in the form sC or sL, with the variable s in the
numerator. Such possibility exists if we take into account a new variable, the current through the inductor.
Writing KCL for the two nodes of Figure 6.8

We now have two equations but three variables. What we have not used yet is an expression which couples
the voltages across the inductor with the current through it. The relationship is V1 – V2 = sLIL, but because
we do not know any of these three variables, we transfer everything to the left and write the last equation

(6.5)

All three can be put into a matrix form

In this equation, the nodal portion is the 2 × 2 matrix in the upper left corner and information about
the inductor is collected in the right-most column and the lowest row. A larger network will have a larger
nodal portion, but we still increase the matrix by one row and column for each inductor. This can be
prepared as a general stamp as shown in Figure 6.9. The previous matrix is the empty box, separated by
the dashed lines, the voltages and the current above the stamp indicate the variables relevant to the
inductor, while on the left the letters i and j give the rows (node numbers) where L is connected. Should
we have a network with two inductors, we add one row and one column for each.

The next element we take is the voltage-controlled current source; it was already mentioned is
Section 6.2 as an element which can be taken into the nodal formulation. The VC is shown in Figure 6.10.

FIGURE 6.9  Stamp of an inductor.
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6-10 Circuit Analysis and Feedback Amplifier Theory

It adds the current g(Vi – Vj ) to node k and subtracts the same current at node l. It permits us to write
the stamp, Figure 6.10. The element influences the balance of currents at node i and j, and the variables
which multiply its transconductance are Vi and Vj .

Network theory defines two independent sources: the current and the voltage source. The current source
can be taken into consideration in the right-hand side (r.h.s.) of the nodal portion; its stamp is in Figure 6.11.
The independent voltage source cannot be taken directly and we must add its current as a new variable.
Consider the source with a resistor in series, shown in Figure 6.12. The voltage relationships are

(6.6)

The current IE adds to the balance of currents at node i, because it flows away from it. It is subtracted
from the balance of currents at node j. The current is taken as a new variable and the equation is attached
to previous equations. The stamp is as shown. It is, in fact, a combined stamp for several elements. If
we set r = 0, we have an ideal voltage source. If we set both r and E equal to zero, we have a stamp for
a short circuit. For better understanding, consider the example in Figure 6.13. The network has two
ungrounded nodes for which we can write the nodal equations:

FIGURE 6.10 Stamp for a voltage-controlled current source.

FIGURE 6.11 Stamp for an independent current source.

FIGURE 6.12  Stamp for an independent voltage source. The resistor value can be zero.
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Tableau and Modified Nodal Formulations 6-11

To these equations, we must add the equation describing the properties of the ideal voltage source,

 (6.7)

Collecting into matrix form

We still need stamps for the remaining three dependent sources. The voltage controlled voltage source,
VV, is shown in Figure 6.14. For generality, we added the internal resistor. The output is described by
the equation

 (6.8)

None of the voltages is known, so we transfer everything to the left side. Input terminals do not influence
the balance of currents, but the output terminals do. At node k we must add IVV, and subtract the same
at node l. The stamp is in Figure 6.14.

The current controlled current source, CC, is shown in Figure 6.15. The input terminals are short
circuited and

(6.9)

No information is available about the output voltages, but we know that the current is α times the input
current, and thus only one additional variable is needed. Balances of currents are influenced at all four
nodes: positive I at node i, negative at node j , positive current αI at node k, and negative αI at node l.

FIGURE 6.13 Example with a floating voltage source.

FIGURE 6.14 Stamp for a voltage-controlled voltage source. The resistor value can be zero.
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6-12 Circuit Analysis and Feedback Amplifier Theory

The stamp is in Figure 6.15, where the added column takes care of the currents and the additional row
describes the properties of the short circuit.

The most complicated dependent source is the current-controlled voltage source, CV, shown in
Figure 6.16. We can consider it as a combination of a short circuit and a voltage source. The equation
for the short circuit is the same as for the CC. The output is defined by the equation

(6.10)

and because none of the variables is known, we transfer everything to the left. This element adds two
rows and two columns to the previously defined matrix. Its stamp is in Figure 6.16. As before, the internal
resistor r can be set equal to zero.

Modified nodal formulation easily takes into account a transformer (see Figure 6.17). It is described
by the equations

FIGURE 6.15  Stamp for a current-controlled current source.

FIGURE 6.16  Stamp for a current-controlled voltage source. The resistor value can be zero.

FIGURE 6.17  Stamp for a transformer.
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(6.11)

None of the variables is known, and we transfer everything to the left. The currents influence the balance
of currents at all nodes. The stamp of the transformer is in Figure 6.17.

The last element we consider is an ideal operational amplifier. It is sometimes taken as a voltage-
controlled voltage source with very high gain, but it is preferable to have a stamp that can take into
account ideal properties as well. The element is shown in Figure 6.18. The terminal l is usually grounded,
but we will keep it floating to make the stamp more general. No current flows into the device at the
input terminals. The output equation is

 (6.12)

Because a computer cannot handle infinity, it is advantageous to introduce the inverted gain

(6.13)

and modify the previous equation to

(6.14)

This equation is attached to the set of equations and the balance of currents is influenced at nodes k and
l. This leads to the stamp in Figure 6.18. If we set B = 0, the operational amplifier becomes ideal, with
no approximation.

An example will show how the stamps are used. Consider the network in Figure 6.19. It has no practical
application, but serves well for the demonstration of how to set up the modified nodal matrix. A short
circuit, indicating the controlling current of the current-controlled voltage source is taken into account

FIGURE 6.18 Stamp for an ideal operational amplifier.

FIGURE 6.19  Example showing the use of modified nodal formulation.
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6-14 Circuit Analysis and Feedback Amplifier Theory

by increasing the number of nodes. The network has five nongrounded nodes, and thus the dimension
of its nodal portion will be 5. The voltage source will increase the system matrix by one row and one
column, the inductor also, and the CV will need two more rows and columns; altogether the matrix will
be 9 × 9. Write first the nodal portion by disregarding entirely the other elements. This creates the upper
left partition. Using the stamps we add first the voltage source, then the inductor, next the short circuit,
and finally the current-controlled voltage source. The system matrix is

Modified nodal formulation is the most important method for computer applications. The reader can
find additional information in the books [1, 2].

6.5 Nonlinear Elements

In previous sections, we used the Laplace transform to explain the various methods of formulation.
Because we dealt with linear elements, the systems of equations were linear and it was possible to cast
them into matrix forms.

If we must consider nonlinear elements, we face many restrictions. The Laplace transform cannot be
used. Various concepts based on it, like the network functions, the poles and the zeros, cannot be applied.
Only two types of analysis are available:

The dc solution (operating point)
Time-domain solution for a given input signal

Once we have nonlinear elements, we cannot write the equations in matrix form; all we can do is
write KCL equations. We must also find another method for the solution of such nonlinear equations.

Consider two differentiable equations in two unknowns

(6.15)

The functions can be expanded into Taylor series and the series truncated after the linear terms:
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We are not considering higher-order terms, so the equation will not be exactly zero, but we can still try
to find ∆v1 and ∆v2. Transferring the known function values to the right

This is a system of linear equations, and we can rewrite it in matrix form

 (6.16)

The matrix on the left is called the Jacobian; on the right is the negative of the functions. Once this linear
system is solved, we can get new values of the variables by writing

(6.17)

In this equation, we added the superscript to indicate iteration. The process is repeated until all ∆vi

become sufficiently small. This iterative method is usually referred to as the Newton–Raphson iteration
and is written in the form

 (6.18)

Suppose that we now take the network in Figure 6.3, consider the conductances G1 and G3 as linear and
replace G2 by a nonlinear function

where Vel is the voltage across this element,

and g represents a nonlinear function. The two KCL equations are

For the Newton–Raphson equation, we need the derivatives with respect to v1 and v2. Consider now only
the nonlinear element. Using the chain rule of differentiation we can write
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6-16 Circuit Analysis and Feedback Amplifier Theory

With these preliminary steps, we can now write the Newton–Raphson equation:

Comparing the Jacobian of the Newton–Raphson equation with the nodal formulation, we reach the
important conclusion, valid for networks of any size:

1. Linear elements will be in the Jacobian in the same position as they were in the linear system matrix.
2. Nonlinear elements will have entries in the same positions as if they were linear; only their

numerical values will be equal to the derivative ∂g/∂vel , evaluated with already available variables.

This conclusion will also be true for the other formulations, similar to the tableau or the modified nodal.
So far, we considered only nonlinear resistive elements and the operating point.

Nonlinear storage elements (capacitors and inductors) contribute to the equations with their fluxes
and charges. The current through the nonlinear capacitor is defined by

(6.19)

where q(vc ) is the charge and vc is the voltage across the capacitor. The voltage across the nonlinear
inductor is given by

(6.20) 

with φ denoting the flux.
Integration of systems with storage elements is always done by first replacing the derivative by a suitable

algebraic expression and then solving the resulting nonlinear algebraic system by the Newton–Raphson
method derived previously.

Many methods are available to replace the time domain derivatives by algebraic expressions. Books
on numerical analysis usually describe the Runge–Kutta method. We mention it here because it is not
suitable for solution of networks. There are several reasons for this, the main one being that the preferred
modified nodal formulation does not lead to systems of differential, but rather to systems of algebraic-
differential equations. Only two methods are widely used, the trapezoidal formula and a family of
backward differentiation formulas (BDF). Among the BDFs, the simplest is the backward Euler, and we
will base our explanations on this formula. It replaces the derivative by the difference of the previous
and new value, divided by the step size, h,
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Tableau and Modified Nodal Formulations 6-17

Consider the network in Figure 6.20 with nonlinear storage elements and with a linear conductance, G.
It can be described by three equations:

The time derivatives are replaced by the backward Euler formula

thus changing the system into an algebraic one. If we now differentiate with respect to the variables v1,
v2, and iL, we obtain the Jacobian

It can be observed that values of the derivatives are in the same places as would be the values of C(L) of
linear capacitors (inductors). In addition, the variable s from the Laplace domain is replaced by 1/h.

The example used a grounded capacitor and a grounded inductor. Figure 6.21 gives the stamps for
floating nonlinear elements and for the Newton–Raphson iteration, based on the backward Euler formula.

6.6 Nodal Analysis of Active Networks

Low-frequency analog filters are often built with active RC networks and the active elements are almost
always operational amplifiers. We have seen in Section 6.4 that each such element adds one row and one

FIGURE 6.20 Network with a nonlinear capacitor and inductor.
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6-18 Circuit Analysis and Feedback Amplifier Theory

column to the modified nodal system matrix, thus making the system too large for hand solutions. We
need a method that can reduce the size of the matrix to the minimum. Such reduction is possible [1, 2],
and becomes extremely simple if the voltage sources (dependent or independent) have one of their
terminals grounded. Almost all practical networks meet this condition.

To introduce the method, consider the network in Figure 6.22. If we are not interested in the current
through the voltage source, we can write only one nodal equation for the node on the right:

The source is known, the term in which it appears is transferred to the right side and, instead of three
equations of the modified nodal formulation, we must solve only one. Consider next the network in
Figure 6.23 with a voltage source and an ideal operational amplifier. One of the output terminals of the
operational amplifier is grounded. Such amplifier is described by the equation

(6.21)

FIGURE 6.21 Stamp for a nonlinear capacitor and inductor.

FIGURE 6.22 Example showing how to reduce the number of nodal equations.
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where A → ∞. Divide first by A and then substitute

(6.22)

This changes the equation into

(6.23)

If the operational amplifier is ideal, set B = 0 and in such case V+ = V–; the operational amplifier will
have the same voltages at its input terminals. We can take this into consideration, by simply writing the
voltage with the same subscript to both input terminals of the operational amplifier, as was done in
Figure 6.23. We are not interested in the current of the voltage source, nor in the current flowing into
the operational amplifier. We mark our lack of interest by crossing out the nodes that have grounded
voltage source; this was also done in Figure 6.23. Each node is given a voltage, but we write the nodal
equations only at nodes that were not crossed out. For our example:

Terms with the known source voltage are transferred to the right and we have the system

A modified modal formulation would have required six equations.
This method can be used for any network if one node of each voltage source, dependent or independent,

is grounded. All we have to do is assign every node a voltage, cross out nodes with voltage sources, and
write nodal equations for the rest. It is advantageous to use conductances for resistors, because this way
we avoid the fractions.

The method remains valid if the operational amplifier is not ideal and has the inverted gain B. The
only difference is that for a nonideal amplifier we cannot make any assumptions on the voltages at its
input terminals and the subscripts of such voltages must be different. This second case is also illustrated
in Figure 6.23 by the voltage V2 (in brackets) at the lower node. We still write nodal equations for the

FIGURE 6.23  Nodal analysis of a network with one ideal operational amplifier.
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6-20 Circuit Analysis and Feedback Amplifier Theory

two input terminals, but to complete the system we must also attach the equation of the operational
amplifier. The result is

and in matrix from

where B can be set zero for an ideal operational amplifier.
We will give one example of a practical network, Figure 6.24. The operational amplifiers are ideal and

thus the input voltage, E, appears at three terminals of the network. The other terminal voltages are
marked by V1 and V2. The terminals with voltage sources are marked by crosses and only nodes 3 and 5,
counting from left, remain for writing the KCL. They are

Transferring terms containing the independent voltage source, E, to the other side of the equation, we
arrive at the system

FIGURE 6.24  Nodal analysis of a network with two ideal operational amplifiers.
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Conclusion

It was demonstrated that hand calculations should use nodal or mesh formulations. Computer applica-
tions should be based on modified nodal formulation. For active networks, it is advantageous to use the
method of Section 6.6.
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7.1 Network Functions

Network functions are employed to characterize linear, time-invariant networks in the zero state for a
single excitation. Network functions contain information concerning a network’s stability and natural
modes. They allow a designer to focus on obtaining a desired output signal for a given input signal.

In this section, it is shown that the concept of network functions is obtained as an extension of the
(transformed) element defining equations for resistors, capacitors, and inductors. The relationships of
network functions to transformed loop and node equations are also described. As a result of these
relationships, a list of properties of network functions can be generated, which is useful in the analysis
of linear networks. Much is known about a network function for a given network even before an analysis
is performed and the function itself is obtained.

Ohm’s law, vR(t) = RiR(t) where R is in ohms, describes the relationship between the voltage across
the resistor and the current through the resistor. These variables and their reference polarity and direction
are depicted in Figure 7.1. If elements of the equation for Ohm’s law are transformed, we obtain V(s) =
RI(s) because R is a constant. Thus, we obtain an Ohm’s law-like expression in the frequency domain.

However, the capacitor’s voltage and current are related by the integral

(7.1)
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7-2 Circuit Analysis and Feedback Amplifier Theory

where the voltage reference polarity and the current reference direction are illustrated in Figure 7.2 and
the capacitance C is given in farads (F). Unlike the resistor, the relation between the capacitor voltage
and the capacitor current is not a simple Ohm’s law-like expression in the time domain. In addition, the
voltage across the capacitor at any time t, is dependent on the entire history of the current through the
capacitor.

The integral expression for the voltage across the capacitor can be split into two terms where the first
term is the initial voltage across the capacitor, V0 = vc(0). If the elements of the equation are transformed,
we obtain

(7.2)

Equation (7.2) shows that if V0 = 0, then the expression for the transform of the capacitor voltage becomes
more nearly Ohm’s law-like in its form. Furthermore, if we associate the s that arises because of the
integral of the current with the capacitor C, and define the impedance of the capacitor as Z(s) = Vc(s)/Ic(s)
= 1/(sC), then the equation becomes Ohm’s law-like in the frequency domain.

A similar process can be applied to the inductor. The current through the inductor is expressed as 

(7.3)

where L is expressed in henries (H) and I0 = iL(0) is the initial current through the inductor. Figure 7.3
depicts the reference polarity and direction for the inductor voltage and current. If the expression for
the current through the inductor is transformed, the result is:

(7.4)

Again, as with the capacitor, if I0 = 0 and if the s that is included because of the integral of vL(t) is
considered as associated with L, then the expression for the transform of the current through the inductor
has an Ohm’s law-like form if we define the impedance of the inductor as Z(s) = VL(s)/IL(s) = sL. 

FIGURE 7.1  Reference polarity and direction for Ohm’s law.

FIGURE 7.2  Capacitor representation showing refer-
ence polarities for voltages and reference direction for
current.

FIGURE 7.3  Inductor representation showing refer-
ence directions for currents and reference polarity for
voltage.
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Frequency Domain Methods 7-3

The impedance concept is an important one in network analysis. It allows us to combine dissimilar
elements in the frequency domain — something we cannot do in the time domain. In fact, impedance
is a frequency domain concept. It is the ratio of the transform of the voltage across the port of the network
to the transform of the current through the port with all independent sources within the network properly
removed and with all initial voltages across capacitors and initial currents through inductors set to zero.
Thus, when we indicate that independent sources are to be removed, we mean that initial conditions are
to be set to zero as well. 

The concept of impedance can be extended to linear, lumped, finite, time-invariant, one-port networks
in general. We denote these networks as LLFT networks. These networks are linear. That is, they are
composed of elements including resistors, capacitors, inductors, transformers, and dependent sources
with parameters that are not functions of the voltage across the element or the current through the
element. Thus, the differential equations describing these networks are linear. 

These networks are lumped and not distributed. That is, LLFT networks do not contain transmission
lines as network elements, and the differential equations describing these networks are ordinary and not
partial differential equations. 

LLFT networks are finite, meaning that they do not contain infinite networks and require only a finite
number of network elements in their representation. Infinite networks are sometimes useful in modeling
such things as ground connections in the surface of the earth, but we exclude the discussion of them here. 

LLFT networks are time-invariant or constant instead of time-varying. Thus, the ordinary, linear
differential equations describing LLFT networks have constant coefficients.

The steps for finding the impedance of an LLFT one-port network are:

1. Properly remove all independent sources in the network. By “properly” removing independent
sources, we mean that voltage sources are replaced by short circuits and current sources are replaced
by open circuits. Dependent sources are not removed.

2. Excite the network with a voltage source or a current source at the port, and find an equation or
equations to solve for the other port variable.

3. Form Z(s) = V(s)/I(s).

Simple networks do not need to be excited in order to determine their impedance, but in the general
case an excitation is required. The next example illustrates these concepts.

Example 1. Find the impedances of the one-port networks in Figure 7.4.

Solution. The network in Figure 7.4(a) is composed of three elements connected in series. No indepen-
dent sources are present, and there is zero initial voltage across the capacitor and zero initial current
through the inductor. The impedance is determined as:

The network in Figure 7.4(b) includes a dependent source that depends on the voltage across R1. The
impedance of this network is not obvious, and so we should excite the port. Also, the capacitor has an

FIGURE 7.4  (a) A simple network. (b) A network con-
taining a dependent source.
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7-4 Circuit Analysis and Feedback Amplifier Theory

initial voltage Vc across it. This voltage is set to zero to find the impedance. Figure 7.5 is the network in
Figure 7.4(b) prepared for finding the impedance. Using the impedance concept and two loop equations
or two node equations, we obtain:

▫

The expressions for impedance found in the previous example are rational functions of s, and the
coefficients of s are functions of the elements of the network including the coefficient K of the dependent
source in the network in Figure 7.4(b). We will demonstrate that these observations are general for LLFT
networks; but first we will extend the impedance concept in another direction.

We have defined the impedance of a one-port LLFT network. We can also define another network
function — the admittance Y(s). The admittance of a one-port LLFT network is the quotient of the
transform of the current through the port to the transform of the voltage across the port with all
independent sources within the network properly removed. One-port networks have only two linear
network functions, impedance and admittance. Furthermore, Z(s) = 1/Y(s) because both network func-
tions concern the same port of the network, and the impedance or admittance relating the response to
the excitation is the same whether a current excitation causes a voltage response or a voltage excitation
causes a current response. An additional implication of this observation is that either network function
can be determined with either type of excitation, voltage source or current source, applied to the network.

Figure 7.6 depicts a two-port network with the reference polarities and reference directions indicated for
the port variables. Port one of the two-port network is formed from the two terminals labeled 1 and 1′. The
two terminals labeled 2 and 2′ are associated to form port two. A two-port network has 12 network functions
associated with it instead of only two, and so we will employ the following notation for these functions:

where NRE(s) is a network function, the subscript “R” is the port at which the response variable exists, the
subscript “E” is the port at which the excitation is applied, R(s) is the transform of the response variable,
and E(s) is the transform of the excitation that may be a current source or a voltage source depending on
the particular network function. For example, for the two-port networks shown in Figure 7.7

(7.5)

FIGURE 7.5 The network in Figure 7.4(b) prepared for analysis.

FIGURE 7.6  Reference polarities and reference directions for port variables of a two-port network.
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Frequency Domain Methods 7-5

Note that a load impedance has been placed across port two, the response port for Z21(s), in Figure 7.7(a).
Also, a load has been connected across port one, the response port for G12(s) = V1(s)/V2(s) in Figure 7.7(b).
It is assumed that all independent sources have been properly removed in both networks in Figure 7.7,
and this assumption also applies to the loads. Of course, if a load impedance is changed, usually the
network function will change. Thus, the load, if any, must be specified.

Table 7.1 lists the network functions of a two-port network. “G” denotes a voltage ratio, and “α”
denotes a current ratio. The functions can also be grouped into driving-point and transfer functions.
Driving-point functions are ones in which the excitation and response occur at the same port, and transfer
network functions are ones in which the excitation and response occur at different ports. For example,
Z11(s) = V1(s)/I1(s) is a driving-point network function, and G21(s) = V2(s)/V1(s) is a transfer network
function. Of the twelve network functions for a two-port network, four are driving-point functions and
eight are transfer functions. The two network functions for a one-port network are, of necessity, driving-
point network functions.

Network functions are related to loop and node equations. Consider the LLFT network in Figure 7.8.
Independent sources within the network have been properly removed. Assume the network has n inde-
pendent nodes plus the ground node, and assume for simplicity that the network has no mutual induc-
tance or dependent sources. Let us determine Z11 = V1/I1 in terms of a quotient of determinants of the
nodal admittance matrix. The node equations, all written with currents leaving a node as positive currents,
are

(7.6)

FIGURE 7.7  (a) Network configured for finding Z21(s). (b) Network for determining G12(s).

TABLE 7.1 Network Functions of Two-Port Networks

Response Port

Excitation Port

1 2

1 Z11, Y11 Z12, Y12, G12, α12

2 Z21, Y21, G21, α21 Z22, Y22

FIGURE 7.8  An LLFT network with n independent nodes plus
the ground node.
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7-6 Circuit Analysis and Feedback Amplifier Theory

where Vi , i = 1,2,…, n, are the unknown node voltages. The elements yij, i, j = 1,2,…, n, of the nodal
admittance matrix above have the form

(7.7)

where the plus sign is taken if i = j and the minus sign is taken if i and j are unequal. The quantity gij is
the sum of the conductances connected to node i if i = j , and if i does not equal j , it is the sum of the
conductances connected between nodes i and j. A similar statement applies to Cij. The quantity Γij is the
sum of the reciprocal inductances (Γ = 1/L) connected to node i if i = j , and it is the sum of the reciprocal
inductances connected between nodes i and j if i does not equal j.

Solving for V1 using Cramer’s rule yields:

(7.8)

where ∆′ is the determinant of the nodal admittance matrix. Thus,

(7.9)

where ∆′11 is the cofactor of element y11 of the nodal admittance matrix. Thus, we can write

(7.10)

If mutual inductance and dependent sources exist in the LLFT network, the nodal admittance matrix
elements are modified. Furthermore, there may be more than one entry in the column matrix containing
excitations. However, Z11 can still be expressed as a quotient of determinants of the nodal admittance
matrix.

Next, consider the network in Figure 7.9, which is assumed to have n independent nodes plus a ground
node. The response port exists between terminals j and k. In this network, we are making the pair of
terminals j and k serve as the second port. Denote the transimpedance Vjk /I1 as Zj1. Let us express this
transfer function Zj l as a quotient of determinants. All independent sources within the network have
been properly removed. Note that the node voltages are measured with respect to the ground terminal
indicated, but the output voltage is the difference of the node voltages Vj and Vk. Thus, we have to solve

FIGURE 7.9  An LLFT network with two ports indicated.
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Frequency Domain Methods 7-7

for these two node voltages. Writing node equations, again taking currents leaving a node as positive
currents, and solving for Vj using Cramer’s rule we have

(7.11)

which can be written as

(7.12)

where ∆′1j is the cofactor of element y1j of the nodal admittance matrix. Similarly, we can solve for Vk

and obtain

(7.13)

Then, the transimpedance Zj1 can be expressed as

(7.14)

If terminal k in Figure 7.9 is common with the ground node so that the network is a grounded two-port
network, then Vk is zero, and Zj1 can be expressed as ∆′1j /∆′. This result can be extended so that if the
output voltage is taken between any node h and ground, then the transimpedance can be expressed as
Zh1 = ∆′1h /∆′.

These results can be used to obtain an expression for G21 in terms of the determinants of the nodal
admittance matrix. Figure 7.10 shows an LLFT network with a voltage excitation applied at port 1 and
with port 2 open. The current I1(s) is given by V1/Z11. Then, V2 is given by V2(s) = I1Z21. Thus,

(7.15)

Note that the determinants in the quotient are of equal order so that G21 is dimensionless.
Of course, network functions can also be expressed in terms of determinants of the loop impedance

matrix. Consider the two-port network in Figure 7.11, which is excited with a voltage source applied to

FIGURE 7.10  An LLFT network with port 2 open.
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7-8 Circuit Analysis and Feedback Amplifier Theory

port 1 and has a load ZL connected across port 2. Let us find the voltage transfer function G21 using loop
equations. Assume that n independent loops exist, of which two are illustrated explicitly in Figure 7.11,
and assume that no independent sources are present within the network. Also, assume for simplicity that
the network contains no dependent sources or mutual inductance and that the loops are chosen so that
V1 is in only one loop. The loop equations are:

(7.16)

where Ij, j = 1,3,…,n, and – I2 are the loop currents, and the elements zij of the loop impedance matrix
are given by:

(7.17)

where we have assumed that all loop currents are taken in the same direction such as clockwise. The plus
sign applies if i = j, and the minus sign is used if i ≠ j. Rij is the sum of the resistances in loop i if i = j,
and Rij is the sum of the resistances common to loops i and j if i ≠ j. Lij is the sum of the inductances in
loop i if i = j, and it is the sum of the inductances common to loops i and j if i ≠ j. A similar statement
applies to the reciprocal capacitances Dij(D = 1/C). However, the element z22 includes the extra term ZL

which could be a quotient of determinants itself. Solving for –I2 using Cramer’s rule, we have ∆, which
is the determinant of the n × n loop impedance matrix, and ∆12 is the cofactor of element z12 of the loop
impedance matrix.

(7.18)

The transform voltage V2 is given by –I2(s)ZL, and the transfer function G21 can be expressed as

(7.19)

Thus, G21 can be represented as a quotient of determinants of the loop impedance matrix multiplied by ZL.

FIGURE 7.11  An LLFT network with load ZL connected across port 2.
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In a similar manner, we can write

(7.20)

Then, we can use this result to write:

(7.21)

Thus,

(7.22)

Table 7.2 summarizes some of these results.

Properties of LLFT Network Functions

We now list properties of network functions of LLFT networks. These properties are useful as a check
of an analysis of such networks.

1. Network functions of LLFT networks are real, rational functions of s, and therefore have the form 

(7.23)

where the coefficients in both the numerator and denominator polynomials are real. 
A network function of an LLFT network is a rational function because network functions can be

expressed as quotients of determinants of nodal admittance matrices or of loop impedance matrices. The
elements of these determinants are at most simple rational functions, and when the determinants are
expanded and the fractions cleared, the result is always a rational function. The coefficients ai, i = 0,1,…,
m, and bj, j = 0,1,…, n, are functions of the real elements of the network R, L, C, M, and coefficients of
dependent sources. The constants R, L, C, and M are real. In most networks, the coefficients of dependent
sources are real constants. Thus, the coefficients of LLFT network functions are real, and therefore the
network function is a real function. It is possible for the “coefficients” of dependent sources in LLFT
networks to themselves be real, rational functions of s. But when all the fractions are cleared, the result
is a real, rational function.

2. An LLFT network function is completely defined by its self-poles, self-zeros, and the scale factor H. 
If the numerator and denominator polynomials are factored and there are no common factors, we have

(7.24)

where a0 /b0 = H is the scale factor. The values of s = z1, z2,…, zm are zeros of the polynomial P(s) and
self-zeros of the network function. Also, s = p1, p2,…,pn are zeros of the polynomial Q(s) and self-poles

TABLE 7.2 Network Function in 
Terms of Quotients of Determinants
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7-10 Circuit Analysis and Feedback Amplifier Theory

of the network function. In addition, N(s) may have other poles or zeros at infinity. We call these poles
and zeros mutual poles and mutual zeroes because they result from the difference in degrees of the
numerator and denominator polynomials.

3. Counting both self and mutual poles and zeros, and counting a kth order pole or zero k times,
N(s) has the same number of poles as zeros, and this number is equal to the highest power of s in N(s). 

If m = n, then there are n self-zeros and n self-poles and no mutual poles or zeros. If n > m, then there
are m self-zeros and n self-poles. There are also n – m mutual zeros. Thus, there are n poles and m +
(n – m) = n zeros. A similar statement can be constructed for n < m.

4. Complex roots of P(s) and Q(s) occur in conjugate pairs. 
This property follows from the fact that the coefficients of the numerator and denominator polynomials

are real. Thus, complex factors of these polynomials have the form

(7.25)

where c and d are real constants.
5. A driving point function of a network having no dependent sources can have neither poles nor

zeros in the right-half s-plane (RHP), and poles and zeros on the imaginary axis must be simple. The
same restrictions apply to the poles of transfer network functions of such networks but not to the
zeros of transfer network functions. 

Elsewhere in this handbook it is shown that the denominator polynomials of LLFT networks having no
dependent sources cannot have RHP roots, and roots on the imaginary axis, if any, must be simple. However,
the reciprocal of a driving-point network function is also a network function. For example, 1/Y22 = Z22. Thus,
restrictions on the locations of poles of driving-point network functions also apply to zeros of driving-point
network functions.

However, the reciprocal of a transfer network function is not a network function (see [5]). For example,
1/Y21 ≠ Z21. Thus, restrictions on the poles of a transfer function do not apply to its zeros.

We can make a classification of the factors corresponding to the allowed types of poles as follows:

The Type A factor corresponds to a pole on the –σ axis. If a = 0, then the factor corresponds to a pole
on the imaginary axis, and so only one such factor is allowed. Type B factors correspond to poles in the
left-half s-plane (LHP), and Type C factors correspond to poles on the imaginary axis.

6. The coefficients of the numerator and denominator polynomials of a driving-point network
function of an LLFT network with no dependent sources are positive. The coefficients of the denom-
inator polynomial of a transfer network function are all one sign. Without loss of generality, we take
the sign to be positive. But some or all of the coefficients of the numerator polynomial of a transfer
network function may be negative. 

A polynomial made up of the factors listed in Table 7.3 would have the form:

Note that all the constants are positive in the expression for Q(s), and so it is impossible for any of the
coefficients of Q(s) to be negative.

TABLE 7.3 A Classification of Factors 
of Network Functions of LLFT Networks 
Containing No Dependent Sources

Type Factor(s) Conditions

A (s + a) a ≥ 0
B (s + b + jc)(s + b – jc) b > 0, c > 0
C (s + jd)(s – jd) d > 0

s c jd s c jd s c d+ +( ) + −( ) = +( ) +[ ]2 2

Q s s a s b c s d( ) = +( ) +( ) +[ ] +( )1 1

2

1
2 2

1
2L L L
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Frequency Domain Methods 7-11

7. There are no missing powers of s in the numerator and denominator polynomials of a driving-
point network function of an LLFT network with no dependent sources unless all even or all odd
powers of s are missing or the constant term is missing. This statement holds for the denominator
polynomials of transfer functions of such networks, but there may be missing powers of s in the
numerator polynomials of transfer functions. 

Property 7 is easily illustrated by combining types of factors from Table 7.3. Thus, a polynomial
consisting only of type A factors contains all powers of s between the highest power and the constant
term unless one of the “a” constants is zero. Then, the constant term is missing. Two a constants cannot
be zero because then there would be two roots on the imaginary axis at the same location. The roots on
the imaginary axis would not be simple.

A polynomial made up of only type B factors contains all powers of s, and a polynomial containing
only type C factors contains only even powers of s. A polynomial constructed from type C factors except
for one A type factor with a = 0 contains only odd powers of s. If a polynomial is constructed from type
B and C factors, then it contains all power of s.

8. The orders of the numerator and denominator polynomials of a driving-point network function
of an LLFT network, which contains no dependent sources can differ by no more than one. 

The limiting behavior at high frequency must be that of an inductor, a resistor, or a capacitor. That
is, if Ndp(s) is a driving-point network function, then

where Ki, = 1, 2, 3, are real constants.
9. The terms of lowest order in the numerator and denominator polynomials of a driving-point

network function of an LLFT network containing no dependent sources can differ in order by no more
than one. 

The limiting behavior at low frequency must be that of an inductor, a resistor, or a capacitor. That is,

where the constants Ki, i = 4, 5, 6, are real constants.
10. The maximum order of the numerator polynomials of the dimensionless transfer functions G12,

G21, �12, and �21, of an LLFT network containing no dependent sources is equal to the order of the
denominator polynomials. The maximum order of the numerator polynomial of the transfer functions
Y12, Y21, Z12, and Z21 is equal to the order of the denominator polynomial plus 1. However, the minimum
order of the numerator polynomial of any transfer function may be zero. 

If dependent sources are included in an LLFT network, then it is possible for the network to have poles
in the RHP or multiple poles at locations on the imaginary axis. However, an important application of
stable networks containing dependent sources is to mimic (simulate) the behavior of LLFT networks that
contain no dependent sources. For example, networks that contain resistors, capacitors, and dependent
sources can mimic the behavior of networks containing only resistors, capacitors, and inductors. Thus,
low-frequency filters can be constructed without the need for heavy, expensive inductors that would
ordinarily be required in such applications.
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7-12 Circuit Analysis and Feedback Amplifier Theory

7.2 Network Theorems

In this section, we provide techniques, strategies, equivalences, and theorems for simplifying the analysis
of LLFT networks or for checking the results of an analysis. They can save much work in the analysis of
some networks if one remembers to apply them. Thus, it is convenient to have them listed in one place.
To begin, we list nine equivalences that are often called source transformations.

Source Transformations

Table 7.4 is a collection of memory aids for the nine source transformations. Source transformations are
simple ways the elements and sources externally connected to a network N can be combined or eliminated
without changing the voltages and currents within network N thereby simplifying the problem of finding
a voltage or current within N.

Source transformation one in Table 7.4 shows the equivalence between two voltage sources connected
in series and a single voltage source having a value that is the sum of the voltages of the two sources. A
double-headed arrow is shown between the two network representations because it is sometimes advan-
tageous to use this source transformation in reverse. For example, if a voltage source that has both DC
and AC components is applied to a linear network N, it may be useful to represent that voltage source
as two voltage sources in series — one a DC source and the other an AC source.

Source transformation two shows two voltage sources connected in parallel. Unless V1 and V2 are
equal, the network would not obey Kirchhoff ’s law as evidenced by a loop equation written in the loop
formed by the two voltage sources. A network that does not obey Kirchhoff ’s laws is termed a contra-
diction. Thus, a single-headed arrow is shown between the two network representations.

Source transformations three and four are duals, respectively, of source transformations two and one.
The current sources must be equal in transformation three or else Kirchhoff ’s law would not be valid at
the node indicated, and the circuit would be a contradiction.

Source transformation five shows that the circuit M1 can be removed without altering any of the
voltages and currents inside N. Whether M1 is connected as shown or is removed, the voltage applied to
N remains Vs. However, the current supplied by the source Vs changes from Is to I1.

Source transformation six shows that circuit M2 can be replaced by a short circuit without affecting
voltages and currents in N. Whether M2 is in series with the current source I1 as shown or removed, the
current applied to N is the same. However, if network M2 is removed, then the voltage across the current
source changes from Vs to V1.

Source transformation seven is sometimes termed a Thévenin circuit to Norton circuit transformation.
This transformation, as shown by the double-headed arrow, can be used in the reverse direction. Théve-
nin’s theorem is discussed thoroughly later in this section.

Source transformation eight is sometimes described as “pushing a voltage source through a node,”
but we will term it as “splitting a voltage source.” Loop equations remain the same with this transfor-
mation, and the current leaving network N through the lowest wire continues to be Is.

Source transformation nine shows that if a current source is not in parallel with one element, then
it can be “split” as shown. Now, each one of the current sources I1 has an impedance in parallel. Thus,
analysis of network N may be simplified because source transformation seven can be applied.

Source transformations cannot be applied to all networks, but when they can be employed, they usually
yield useful simplifications of the network.

Example 2. Use source transformations to find V0 for the network shown. Initial current through the
inductor in the network is zero.

Solution. The network can be readily simplified by employing source transformation five from Table 7.4
to eliminate R1 and also I2. Then, source transformation six can be used to eliminate V1 because it is an
element in series with a current source. The results to this point are illustrated in Figure 7.13(a). If we
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TABLE 7.4 Source Transformations

N is an arbitrary network in which analysis for a voltage or current is to be performed. M1 is an arbitrary one-
port network or network element except a voltage source. M2 is an arbitrary one-port network or network element
except a current source. It is assumed there is no magnetic coupling between N and M1 or M2. There are no
dependent sources in N in Source Transformation 5 that depend on Is. Furthermore, there are no dependent
sources in N in Source Transformation 6 that depend on Vs. However, M1 and M2 can have dependent sources
that depend on voltages or currents in N. Z, Z1 and Z2 are one-port impedances.
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7-14 Circuit Analysis and Feedback Amplifier Theory

then apply transformation seven, we obtain the network in Figure 7.13(b). Next, we can apply transfor-
mation four to obtain the single loop network in Figure 7.13(c). The output voltage can be written in
the frequency domain as

Source transformations can often be used advantageously with the following theorems. ▫

Dividers

Current dividers and voltage dividers are circuits that are employed frequently, especially in the design of
electronic circuits. Thus, dividers must be analyzed quickly. The relationships derived next satisfy this need.

Figure 7.14 is a current divider circuit. The source current Is divides between the two impedances, and
we wish to determine the current through Z2. Writing a loop equation for the loop indicated, we have

(7.26)

from which we obtain

(7.27)

FIGURE 7.12  Network for Example 2.

FIGURE 7.13  (a, b, c) Applications of source transformations to the network in Figure 7.12.

FIGURE 7.14  A current divider.
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A circuit that we term an enhanced voltage divider is depicted in Figure 7.15. This circuit contains
two voltage sources instead of the usual single source, but the enhanced voltage divider occurs more
often in electronic circuits. Writing a node equation at node A and solving for V0, we obtain

(7.28)

If V2, for example, is zero, then the results from the enhanced voltage divider reduce to those of the single
source voltage divider.

Example 3. Use (7.28) to find V0 for the network in Figure 7.16.

Solution. The network in Figure 7.16 matches with the network used to derive (7.28) even though it is
drawn somewhat differently and has three voltage sources instead of two. However, we can use (7.28) to
write the answer for V0 by inspection.

▫

The following example illustrates the use of source transformations together with the voltage divider.

Example 4. Find V0 for the network shown in Figure 7.17. The units of K, the coefficient of the dependent
source, are ohms, and the capacitor is initially uncharged.

Solution. We note that the dependent voltage source is not in series with any one particular element and
that the independent current source is not in parallel with any one particular element. However, we can
split both the voltage source and the current source using source transformations eight and nine,
respectively, from Table 7.4. Then, employing transformations five and seven, we obtain the network
configuration depicted in Figure 7.18, for which we can use the voltage divider to write:

FIGURE 7.15 Enhanced voltage divider.

  

FIGURE 7.16 Circuit for Example 3.

FIGURE 7.17 Network for Example 4.

Z1 Z2

V1 V2V0

A

− −−
+++

V
V Z V Z

Z Z0
1 2 2 1

1 2

= +
+

Z1

Z2

VA

VB

VO

V
s +

+

+
−

−

−

V
V V s Z V Z

Z Z
A z B

0

1

1 2

=
− ( )( ) −

+

−

−

+

+

C

R1 R2

KI VOI

© 2006 by Taylor & Francis Group, LLC



7-16 Circuit Analysis and Feedback Amplifier Theory

It should be mentioned that the method used to find V0 in this example is not the most efficient one.
For example, loops can be chosen for the network in Figure 7.17, so only one unknown loop is current.
However, source transformations and dividers become more powerful analysis tools as they are coupled
with additional network theorems.

Superposition

Superposition is a property of all linear networks, and whether it is used directly in the analysis of a
network or not, it is a concept that is valuable in thinking about LLFT networks. Consider the LLFT
network shown in Figure 7.19 in which, say, we wish to solve for I1. Assume the network has n independent
loops, and, for simplicity, assume no sources are within the box in the figure and that initial voltages
across capacitors and initial currents through inductors are zero or are represented by independent sources
external to the box. Note that one dependent source is shown in Figure 7.19 that depends on a voltage
Vx in the network and that two independent sources, V1 and V2, are applied to the network. If loops are
chosen so that each source has only one loop current flowing through it as indicated in Figure 7.19, then
the loop equations can be written as

(7.29)

FIGURE 7.18 Results after employing source transformations on
the network in Figure 7.17.

FIGURE 7.19  LLFT network with three volt-
age sources, of which one is dependent.
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where the elements of the loop impedance matrix are defined in the section describing network functions.
Solving for I1 using Cramer’s rule, we have:

(7.30)

where ∆ is the determinant of the loop impedance matrix, and ∆j1, j = 1, 2, 3, are cofactors. The expression
for I1 given in (7.30) is an intermediate and not a finished solution. The finished solution would express I1

in terms of the independent sources and the parameters (Rs, Ls, Cs, Ms, and Ks) of the network and not in
terms of an unknown Vx. Thus, one normally has to eliminate Vx from the expression for I1; but the
intermediate expression for I1 illustrates superposition. There are three components that add up to I1 in (7.30)
— one for each source including one for the dependent source. Furthermore, we see that each source is
multiplied by a transadmittance (or a driving-point admittance in the case of V1). Thus, we can write:

(7.31)

where each admittance is found from the port at which a voltage source (whether independent or
dependent) is applied. The response variable for each of these admittances is I1 at port 1.

The simple derivation that led to (7.30) is easily extended to both types of independent excitations
(voltage sources and current sources) and to all four types of dependent sources. The generalization of
(7.30) leads to the conclusion:

To apply superposition in the analysis of a network containing at least one independent source and a
variety of other sources, dependent or independent, one finds the contribution to the response from
each source in turn with all other source, dependent or independent, properly removed and then adds
the individual contributions to obtain the total response. No distinction is made between independent
and dependent sources in the application of superposition other than requiring the network to have
at least one independent source.

However, if dependent sources are present in the network, the quantities (call them Vx and Ix) on which
the dependent sources depend must often be eliminated from the answer by additional analysis if the
answer is to be useful unless Vx or Ix are themselves the variables of independent sources or the quantities
sought in the analysis.

Some examples will illustrate the procedure.

Example 5. Find V0 for the circuit shown using superposition. In this circuit, only independent sources
are present.

Solution. Two sources in the network, therefore, we abstract two fictitious networks from Figure 7.20.
The first is shown in Figure 7.21(a) and is obtained by properly removing the current source I1 from the
original network. The impedance of the capacitor can then be combined in parallel with R1 + R2, and
the contribution to V0 from V1 can be found using a voltage divider. The result is

FIGURE 7.20 Network for Example 5.
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7-18 Circuit Analysis and Feedback Amplifier Theory

The second fictitious network, shown in Figure 7.21(b), is obtained form the original network by
properly removing the voltage source V1. Redrawing the circuit and employing source transformation
seven (in reverse) yields the circuit in Figure 7.21(c). Again, employing a voltage divider, we have

Then, adding the two contributions, we obtain

The next example includes a dependent source.

Example 6. Find i in the network shown in Figure 7.22 using superposition.

Solution. Since there are two sources, we abstract two fictitious networks from Figure 7.22. The first one
is shown in Figure 7.23(a) and is obtained by properly removing the dependent current source. Thus,

FIGURE 7.21 (a, b, c) Steps in the use of superposition for finding the response to two independent sources.
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Next, voltage source v1 is properly removed yielding the fictitious network in Figure 7.23(b). An important
question immediately arises about this network. Namely, why is not i in this network zero? The reason
i is not zero is that the network in Figure 7.23(b) is merely an abstracted network that concerns a step
in the analysis of the original circuit. It is an artifice in the application of superposition, and the dependent
source is considered to be independent for this step. Thus,

Adding the two contributions, we obtain the intermediate result:

Collecting the terms containing i, we obtain the finished solution for i :

We note that the finished solution depends only on the independent source v1 and parameters of the
network, which are R1, R2, and β. ▫

The following example involves a network in which a dependent source depends on a voltage that is
neither the voltage of an independent source nor the voltage being sought in the analysis.

Example 7. Find V0 using superposition for the network shown in Figure 7.24. Note that K, the coefficient
of the VCCS, has the units of siemens.

Solution. When the dependent current source is properly removed, the network reduces to a simple
voltage divider, and the contribution to V0 due to V1 can be written as:

FIGURE 7.22  Network for Example 6.

FIGURE 7.23  (a, b) Steps in the application of superposition to the network in Figure 7.22.

FIGURE 7.24  Network for Example 7.
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7-20 Circuit Analysis and Feedback Amplifier Theory

Then, reinserting the current source and properly removing the voltage source, we obtain the fictitious
network shown in Figure 7.25. Using the current divider to obtain the current flowing through the
capacitor and then multiplying this current by the impedance of the capacitor, we have:

Adding the individual contributions to form V0 provides the equation

This is a valid expression for V0. It is not a finished expression however, because it includes Vx, an unknown
voltage. Superposition has taken us to this point in the analysis, but more work must be done to eliminate
Vx. However, superposition can be applied again to solve for Vx, or other analysis tools can be used. The
results for Vx are:

Then, eliminating Vx from the equation for V0, we obtain the finished solution as:

Clearly, superposition is not the most efficient technique to use to analyze the network in Figure 7.24.
Analysis based on a node equation written at the top end of the current source would yield a finished
result for V0 with less algebra. However, this example does illustrate the application of superposition
when a dependent source depends on a rather arbitrary voltage in the network. ▫

If the dependent current source in the previous example depended on V1 instead of on the voltage
across R1, the network would be a different network. This is illustrated by the next example.

Example 8. Use superposition to determine V0 for the circuit in Figure 7.26.

FIGURE 7.25 Fictitious network obtained when the voltage source is properly removed in Figure 7.24.

FIGURE 7.26  Network for Example 8.
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Solution. If the current source is properly removed, the results are the same as for the previous example. Thus,

Then, if the current source is reinserted, and the voltage source is properly removed, we have the circuit
depicted in Figure 7.27. A question that can be asked for this circuit is why include the dependent source
KV1 if the voltage on which it depends, namely V1, has been set to zero? However, the network shown
in Figure 7.27 is merely a fictitious network that serves as an aid in the application of superposition, and
superposition deals with all sources, whether they are dependent or independent, as if they were inde-
pendent. Thus, we can write:

Adding the contributions to form V0, we obtain

and this is the finished solution.
In this example, we did not have the task of eliminating an unknown quantity from an intermediate

result for V0 because the dependent source depended on an independent source V1, which is assumed to
be known. ▫

Superposition is often useful in the analysis of circuits having only independent sources, but it is
especially useful in the analysis of some circuits having both independent and dependent sources because
it deals with all sources as if they were independent.

Thévenin’s Theorem

Thévenin’s theorem is useful in reducing the complexity of a network so that analysis of the network for
a particular voltage or current can be performed more easily. For example, consider Figure 7.28(a), which
is composed of two subnetworks A and B that have only two nodes in common. In order to facilitate
analysis in subnetwork B, it is convenient to reduce subnetwork A to the network in Figure 7.28(b) which
is termed the Thévenin equivalent of subnetwork A. The requirement on the Thévenin’s equivalent

FIGURE 7.27 A step in the application of superposition to the network in Figure 7.26. 

FIGURE 7.28  (a) Two subnetworks having a common pair of terminals. (b) The Thévenin equivalent for subnetwork
A.
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7-22 Circuit Analysis and Feedback Amplifier Theory

network is that, when it replaces subnetwork A, the voltages and currents in subnetwork B remain
unchanged. We assume that no inductive coupling occurs between the subnetworks, and that dependent
sources in B are not dependent on voltages or currents in A. We also assume that subnetwork A is an
LLFT network, but subnetwork B does not have to meet this assumption.

To find the Thévenin equivalent network, we need only determine VTH and ZTH. VTH is found by
unhooking B from A and finding the voltage that appears across the terminals of A. In other words, we
abstract a fictitious network from the complete network as depicted in Figure 7.29(a), and find the voltage
that appears between the terminals that were common to B. This voltage is VTH.

ZTH is also obtained from a fictitious network that is created from the fictitious network used for
finding VTH by properly removing all independent sources. The effects that dependent sources have on
the procedure are discussed later in this section. The fictitious network used for finding ZTH is depicted
in Figure 7.29(b). Oftentimes, the expression for ZTH cannot be found by mere inspection of this network,
and, therefore, we must excite the network in Figure 7.29(b) by a voltage source or a current source and
find an expression for the other variable at the port in order to find ZTH.

Example 9. Find the Thévenin equivalent of subnetwork A in Figure 7.30.

Solution. No dependent sources exist in subnetwork A, but the capacitor has an initial voltage V across
it. However, the charged capacitor can be represented by an uncharged capacitor in series with a trans-
formed voltage source V/s. The fictitious network used for finding VTH is given in Figure 7.31(a).

It should be noted that although subnetwork B has been removed and the two terminals that were
connected to B are now “open circuited” in Figure 7.31(a), current is still flowing in network A. VTH is
easily obtained using a voltage divider:

FIGURE 7.29  (a) Network used for finding VTH. (b) Network used for obtaining ZTH.

FIGURE 7.30  Network for Example 9.

FIGURE 7.31  (a) Network of finding VTH. (b) Network that yields ZTH.
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ZTH is obtained from the fictitious network in Figure 7.31(b), which is obtained by properly removing the
independent source and the voltage representing the initial voltage across the capacitor in Figure 7.31(a).
We see by inspection that ZTH = R/(sCR + 1). Thus, if subnetwork A is removed from Figure 7.30 and
replaced by the Thévenin equivalent network, the voltages and currents in subnetwork B remain unchanged.

It is assumed that B in Figure 7.28 has no dependent sources that depend on voltages or currents in
A, although dependent sources in B can depend on voltages and currents in B. However, A can have
dependent sources, and these dependent sources create a modification in the procedure for finding the
Thévenin equivalent network. There may be dependent sources in A that depend on voltages and currents
that also exist in A. We call these dependent sources Case I-dependent sources. There may also be
dependent sources in A that depend on voltages and currents in B, and we label these sources as Case
II-dependent sources. Then, the procedure for finding the Thévenin equivalent network is:

VTH is the voltage across the terminals of Figure 7.29(a). The voltages and currents that Case I-
dependent sources depend on must be eliminated from the expression for VTH unless they happen to
be the voltages of independent voltage sources or the currents of independent current sources in A.
Otherwise, the expression for VTH would not be a finished solution. However, Case II-dependent
sources are handled as if they were independent sources. That is, Case II-dependent sources are
included in the results for VTH just as independent sources would be.

ZTH is the impedance looking into the terminals in Figure 7.29(b). In this fictitious network, indepen-
dent sources are properly removed and Case II-dependent sources are properly removed. Case I-depen-
dent sources remain in the network and influence the result for the Thévenin impedance. The finished
solution for ZTH is a function only of the parameters of the network in Figure 7.29(b) which are Rs,
Ls, Cs, Ms (there may be inductive coupling between coils in this network), and the coefficients of the
Case I-dependent sources.

Thus, Case II-dependent sources, sources that depend on voltages or currents in subnetwork B, are
uniformly treated as if they were independent sources in finding the Thévenin equivalent network. Some
examples will clarify the issue.

Example 10. Find the Thévenin equivalent network for subnetwork A in Figure 7.32. Assume the initial
current through the inductor is zero.

Solution. There is one independent source and one Case I-dependent source. Figure 7.33(a) depicts the
fictitious network to be analyzed to obtain VTH. No current is flowing through R2 in this figure, therefore,
we can write VTH = V1 – Vx. To eliminate Vx from our intermediate expression for VTH, we can use the
results of the enhanced voltage divider to write:

The finished solution for VTH is

FIGURE 7.32 Network for Example 10.
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7-24 Circuit Analysis and Feedback Amplifier Theory

ZTH is obtained from Figure 7.33(b) where a current source excitation is shown already applied to the
fictitious network. Two node equations, with unknown node voltages V and –Vx, enable us to obtain I
in terms of V while eliminating Vx. We also note that ZTH consists of resistor R2 in series with some
unknown impedance, so we could remove R2 (replaced it by a short) if we remember to add it back later.
The finished result for ZTH is

The following example involves a network having a Case II-dependent source. ▫

Example 11. Find the Thévenin equivalent network for subnetwork A in the network illustrated in
Figure 7.34. In this instance, subnetwork B is outlined explicitly.

Solution. Subnetwork A contains one independent source and one Case II-dependent source.
Figure 7.35(a) is the abstracted network for finding VTH. Thus,

Then, both V1 and the dependent source KI are deleted from Figure 7.35(a) to obtain Figure 7.35(b),
the network used for finding ZTH. Thus, ZTH = R1.

Of course, the subnetwork for which the Thévenin equivalent is being determined may have both
Case I- and Case II-dependent sources, but these sources can be handled concurrently using the proce-
dures given previously.

Special conditions can arise in the application of Thévenin’s theorem. One condition is ZTH = 0 and
the other is VTH = 0. The conditions for which ZTH is zero are:

FIGURE 7.33  (a) Abstracted network for finding VTH. (b) Abstracted network for finding ZTH.

FIGURE 7.34  Network for Example 11.

FIGURE 7.35  (a) Network used to find VTH. (b) Network for finding ZTH.
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1. If the circuit (subnetwork A) for which the Thévenin equivalent is being determined has an
independent voltage source connected between terminals 1 and 2, then ZTH = 0. Figure 7.36(a)
illustrates this case.

2. If subnetwork A has a dependent voltage source connected between terminals 1 and 2, then ZTH

is zero provided neither of the port variables associated with the port formed by terminals 1 and
2 is coupled back into the network. Figure 7.36(b) is a subnetwork A for which ZTH is zero. However,
Figure 7.36(c) depicts a subnetwork A in which the port variable I is coupled back into A by the
dependent source K1I. If I is considered to be a variable of subnetwork A so that K1I is a Case I-
dependent source, then ZTH is not zero.

The other special condition, VTH = 0, occurs if subnetwork A contains only Case I-dependent sources,
no independent sources, and no Case II-dependent sources. An example of such a network is given in
Figure 7.36(d). With subnetwork B disconnected, subnetwork A is a dead network, and its Thévenin
voltage is zero.

The network in Figure 7.36(c) is of interest because the dependent source K1I can be considered as a
Case I- or a Case II-dependent source hinging on whether I is considered a variable of subnetwork A or B.

Example 12. Solve for I in Figure 7.36(c) using two versions of the Thévenin equivalent for subnetwork
A. For the first version, consider I to be associated with A, and therefore both dependent sources are
Case I-dependent sources. In the second version, consider I to be associated with B.

FIGURE 7.36  Special cases of Thévenin’s theorem. (a, b) ZTH equals zero. (c) A port variable is coupled back into A.
(d) VTH is zero.
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7-26 Circuit Analysis and Feedback Amplifier Theory

Solution. If I is considered as associated with A, then VTH is zero by inspection because A contains only
Case I-dependent sources. Figure 7.37(a) depicts subnetwork A with a current excitation applied in order
to determine ZTH. Clearly, V = K2Vx. Also, writing a loop equation in the loop encompassed by the two
dependent sources, we obtain

Eliminating Vx, we have

Once ZTH is obtained, it is an easy matter to write from Figure 7.36(c):

If I is associated with B, then VTH is found from the network in Figure 7.37(b) with the source K1I
treated as if it were independent. The equation for VTH may contain the variable I, but Vx must be
eliminated from the finished expression for VTH. We obtain

Also, ZTH is zero because if K1I is removed, subnetwork A reduces to a network with only a Case I-
dependent source and a port variable is not coupled back into the network. Finally, I can be written as:

which yields the same result for I as was found previously. ▫

The following example illustrates the interplay that can be achieved among these theorems and source
transformations.

Example 13. Find V0/V1 for the bridged T network shown in Figure 7.38.

Solution. The application of source transformation eight to the network yields the ladder network in
Figure 7.39(a). Thévenin’s theorem is particularly useful in analyzing ladder networks. If it is applied to

FIGURE 7.37 (a) Network for finding ZTH when both sources are Case I-dependent sources. (b) Network for finding
VTH when a Case II-dependent source exists in the network.
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the left and right sides of the network, taking care not to obscure the nodes between which V0 exists, we
obtain the single loop network in Figure 7.39(b). Then, using a voltage divider, we obtain

Norton’s Theorem

If a source transformation is applied to the Thévenin equivalent network consisting of VTH and ZTH in

source Isc = VTH/ZTH, ZTH ≠ 0. If ZTH equals zero in Figure 7.28(b), then the Norton equivalent network does
not exist. The subscripts “sc” on the current source stand for short circuit and indicate a procedure for finding
the value of this current source. To find Isc for subnetwork A in Figure 7.28(a), we disconnet subnetwork B
and place a short circuit between nodes 1 and 2 of subnetwork A. Then, Isc is the current flowing through
the short circuit in the direction indicated in Figure 7.40(b). Isc is zero if subnetwork A has only Case
I-dependent sources and no other sources. ZTH is found in the same manner as for Thévenin’s theorem.

It is sometimes more convenient to find Isc and VTH instead of ZTH.

FIGURE 7.38 Network for Example 13.

FIGURE 7.39 (a) Results after applying source transformation eight to the network shown in Figure 7.38. (b) Results
of two applications of Thévenin’s theorem.

FIGURE 7.40  (a) Norton equivalent network. (b) Reference direction for Isc.
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Figure 7.28(b), then a Norton equivalent network, illustrated in Figure 7.40(a), is obtained. The current
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Example 14. Find the Norton equivalent for the network “seen” by ZL in Figure 7.41. That is, ZL is
subnetwork B and the rest of the network is A, and we wish to find the Norton equivalent network for A.

Solution. Figure 7.42(a) is the network with ZL replaced by a short circuit. An equation for Isc can be
obtained quickly using superposition. This yields

but I1 must be eliminated from this equation. I1 is obtained as: I1 = V1/(sL + R1). Thus,

VTH is found from the network shown in Figure 7.42(b). The results are:

ZTH can be found as VTH/Isc.

Thévenin’s and Norton’s Theorems and Network Equations

Thévenin’s and Norton’s theorems can be related to loop and node equations. Here, we examine the

N in Figure 7.43 has n independent loops with all the loop currents chosen in the same direction. Without
loss of generality, assume that only one loop current, say I1, flows through ZL as shown so that ZL appears

FIGURE 7.41 Network for Example 14.

FIGURE 7.42 (a) Network for finding Isc. (b) Network for VTH .
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relationship to loop equations by means of the LLFT network in Figure 7.43. Assume that the network
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in only one loop equation. For simplicity, assume that no dependent sources or inductive couplings in
N exist, and that all current sources have been source-transformed so that only voltage source excitations
remain. Then the loop equations are

(7.32)

where Vi, i = 1, 2, …, n, is the sum of all voltage sources in the ith loop. Thus, Vi may consist of several
terms, some of which may be negative depending on whether a voltage source is a voltage rise or a voltage
drop. Also, the impedances zij are given by

(7.33)

where i, j = 1, 2, …, n, and where the plus sign is taken if i = j, and the minus sign is used if i ≠ j. Rij is
the sum of the resistances in loop i if i = j, and Rij is the sum of the resistances common to loops i and
j if i ≠ j. Similar statements apply to the inductances Lij and to the reciprocal capacitances Dij. The currents
Ii, i = 1, 2, …, n, are the unknown loop currents.

Note that ZL is included only in z11 so that z11 can be written as z11 = z11A + ZL, where z11A is the sum
of all the impedances around loop one except ZL. Solving for I1 using Cramer’s rule, we have

(7.34)

where ∆ is the determinant of the loop impedance matrix. Thus, we can write

(7.35)

or

(7.36)

FIGURE 7.43  An LLFT network N with n independent loops.

I1 ZL

LLFT
Network

N

V

V

V

z z z

z z z

z z z

I

I

In

n

n

n n nn n

1

2

11 12 1

21 22 2

1 2

1

2

M

L

L

M M O M

L

M























=













































z R sL
D

sij ij ij
ij= ± + +











I

V z z

V z z

V z z

n

n

n n nn
1

1 12 1

2 22 2

2=
∆

L

L

M M O M

L

I
V V V

z z z
n n

n n
1

1 11 2 21 1

11 11 21 21 1 1

= ∆ + ∆ + + ∆
∆ + ∆ + + ∆

L

L

I

V V V

z z z

n
n

n
n

1

1 2
21

11

1

11

11 21
21

11
1

1

11

=
+ ∆

∆
+ + ∆

∆

+ ∆
∆

+ + ∆
∆

L

L

© 2006 by Taylor & Francis Group, LLC



7-30 Circuit Analysis and Feedback Amplifier Theory

where ∆ij are cofactors of the loop impedance matrix. Then, forming the product of I1 and ZL, we have:

(7.37)

If we take the limit of I1ZL as ZL approaches infinity, we obtain the “open circuit” voltage VTH. That is,

(7.38)

and if we take the limit of I1 as ZL approaches zero, we obtain the “short circuit” current Isc:

(7.39)

Finally, the quotient of VTH and Isc yields:

(7.40)

If network N contains coupled inductors (but not coupled to ZL ), then some elements of the loop
impedance matrix may be modified in value and sign. If network N contains dependent sources, then
auxiliary equations can be written to express the quantities on which the dependent sources depend in
terms of the independent excitations and/or the unknown loop currents. Thus, dependent sources may
modify the elements of the loop impedance matrix in value and sign, and they may modify the elements
of the excitation column matrix [Vi ]. Nevertheless, we can obtain expressions similar to those obtained
previously for VTH and Isc. Of course, we must exclude from this illustration dependent sources that
depend on the voltage across ZL because they violate the assumption that ZL appears in only one loop
equation and are beyond the scope of this discussion.

The π-T Conversion

The π-T conversion is employed for the simplification of circuits, especially in power systems analysis.
The “π” refers to a circuit having the topology shown in Figure 7.44. In this figure, the left-most and
right-most loop currents have been chosen to coincide with the port currents for convenience of notation
only.

determine equations for Z1, Z2, and Z3 in terms of ZA, ZB, and ZC so that the π can be replaced by a T

FIGURE 7.44  A π network shown with loop currents.
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A circuit having the topology shown in Figure 7.45 is referred to as a “T” or as a “Y.” We wish to
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without affecting any of the port variables. In other words, if an overall circuit contains a π subcircuit,
we wish to replace the π subscript with a T subscript without disturbing any of the other voltages and
currents within the overall circuit. To determine what Z1, Z2, and Z3 should be, we first write loop
equations for the π network. The results are:

(7.41)

(7.42)

(7.43)

But the T circuit has only two loop equations given by:

(7.44)

(7.45)

We must eliminate one of the loop equations for the π circuit, and so we solve for I3 in (7.43) and
substitute the result into (7.41) and (7.42) to obtain:

(7.46)

(7.47)

From a comparison of the coefficients of the currents in (7.46) and (7.47) with those in (7.44) and (7.45),
we obtain the following relationships.

Replacing � with T 

(7.48)

where

We can also replace a T network by a π network. To do this we need equations for ZA, ZB, and ZC in
terms of Z1, Z2, and Z3. The required equations can be obtained algebraically from (7.48).

FIGURE 7.45  A T network.
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From T to � 

(7.49)

Reciprocity

If an LLFT network contains only Rs, Ls, Cs, and transformers but contains no dependent sources, then
its loop impedance matrix is symmetrical with respect to the main diagonal. That is, if zij is an element
of the loop impedance matrix (see (7.17)), occupying the position at row i and column j, then zji = zij ,
where zji occupies the position at row j and column i. Such a network has the property of reciprocity
and is termed a reciprocal network.

Assume that a reciprocal network, depicted in Figure 7.46, has m loops and is in the zero state. It has
only one excitation — a voltage source in loop j. To solve for the loop current in loop k, we write the
loop equations:

(7.50)

The column excitation matrix has only one nonzero entry. To determine Ik using Cramer’s rule, we replace
column k by the excitation column and then expand along this column. Only one nonzero term is in
the column, therefore, we obtain a single term for Ik:

(7.51)

where ∆jk is the cofactor, and ∆ is the determinant of the loop impedance matrix.
Next, we replace the voltage source by a short circuit in loop j , cut the wire in loop k, and insert a

voltage source Vk. Figure 7.47 outlines the modifications to the circuit. Then, we solve for Ij obtaining

FIGURE 7.46  A reciprocal network with m independent loops.

FIGURE 7.47  Interchange of the ports of excitation in the network in Figure 7.46.
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(7.52)

Because the network is reciprocal, ∆jk = ∆kj so that

(7.53)

shown.
Figure 7.48(a) is a reciprocal network with a current excitation applied to node j and a voltage response,

labeled Vk, taken between nodes k and m. We assume the network has n independent nodes plus the
ground node indicated and is not a grounded network (does not have a common connection between
the input and output ports shown). If we write node equations to solve for Vk in Figure 7.48(a) and use
Cramer’s rule, we have:

(7.54)

where the primes indicate node-basis determinants. Then, we interchange the ports of excitation and
response as depicted in Figure 7.48(b). If we solve for Vj in Figure 7.48(b), we obtain

(7.55)

Because the corresponding determinants in (7.54) and (7.55) are equal because of reciprocity, we have:

(7.56)

Note that the excitations and responses are of the opposite type in Figures 7.46 and 7.48. The results
obtained in (7.53) and (7.56) do not apply if the excitation and response are both voltages or both
currents because when the ports of excitation and response are interchanged, the impedance levels of
the network are changed [2].

FIGURE 7.48 (a) Reciprocal ungrounded network with a current source excitation. (b) Interchange of the ports of
excitation and response.
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Eq. (7.53) is the statement of reciprocity for the network in Figures 7.46 and 7.47 with the excitations
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Middlebrook’s Extra Element Theorem

Middlebrook’s extra element theorem is useful in developing tests for analog circuits and for predicting
the effects that parasitic elements may have on a circuit. This theorem has two versions: the parallel
version and the series version. Both versions present the results of connecting an extra network element
in the circuit as the product of the network function obtained without the extra element times a correction
factor. This is a particularly convenient form for the results because it shows exactly the effects of the
extra element on the network function.

Parallel Version. Consider an arbitrary LLFT network having a transfer function A1(s). In the parallel
version of the theorem, an impedance is added between any two independent nodes of the network. The
modified transfer function is then obtained as A1(s) multiplied by a correction factor. Figure 7.49 is an
arbitrary network in which the quantities Ui and U0 represent a general input and a general output,
respectively, whether they are voltages or currents. The extra element is to be connected between terminals
1 and 1′ in Figure 7.49, and the port variables for this port are V2 and I2.

We can write:

(7.57)

where

(7.58)

Note that A1 is assumed to be known.
The extra element Z to be added across terminals 1 and 1′ is depicted in Figure 7.50. It can be described

as Z = V2/(–I2 ) which yields I2 = V2 /(–Z). Substituting this expression for I2 into (7.57) results in:

FIGURE 7.49  An arbitrary LLFT network.

  

FIGURE 7.50  The extra element Z.
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(7.59)

After eliminating V2 and solving for Uo /Ui, we obtain:

(7.60)

Next, we provide physical interpretations for the terms in (7.60). Clearly, B2 is the impedance seen looking
into the network between terminals 1 and 1′ with Ui = 0. Thus, rename B2 = Zd where d stands for “dead
network.”

To find a physical interpretation of (A1B2 – A2B1)/A1, examine the network in Figure 7.51. Here, two
excitations are applied to the network, namely Ui and I2. Simultaneously adjust both inputs so as to null
output Uo. Thus, with Uo = 0, we have from (7.57),

(7.61)

Substituting this result into the equation for V2 in (7.57), we have:

(7.62)

or

Because the quantity (A1B2 – A2B1)/A1 is the ratio of V2 to I2 with the output nulled, we rename this
quantity as ZN. Then rewriting (7.60) with Zd and ZN, we have:

(7.63)

Equation (7.63) demonstrates that the results of connecting the extra element Z into the circuit can be
expressed as the product of A1, which is the network function with Z set to infinity, times a correction
factor given in the brackets in (7.63).
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FIGURE 7.51 Network of Figure 7.49 with two excitations
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Example 15. Use the parallel version of Middlebrook’s extra element theorem to find the voltage transfer
function of the ideal op amp circuit in Figure 7.52 when a capacitor C is connected between terminals
1 and 1′.

Solution. With the capacitor not connected, the voltage transfer function is

Next, we determine Zd from the circuit illustrated in Figure 7.53(a), where a model has been included
for the ideal op amp, the excitation Vi has been properly removed, and a current excitation I2 has been
applied to the port formed by terminals 1 and 1′. Because no voltage flows across R1 in Figure 7.53(a),
no current flows through it, and all the current I2 flows through R2. Thus, V2 = I2R2, and Zd = R2. We
next find ZN from Figure 7.53(b). We observe in this figure that the right end of R2 is zero volts above
ground because Vi and I2 have been adjusted so that V0 is zero. Furthermore, the left end of R2 is zero
volts above ground because of the virtual ground of the op amp. Thus, zero is current flowing through
R2, and so V2 is zero. Consequently, ZN = V2/I2 = 0. Following the format of (7.63), we have:

Note that for V0 to be zero in Figure 7.53(b), Vi and I2 must be adjusted so that Vi /R1 = –I2, although
this information was not needed to work the example. ▫

Series Version. The series version of the theorem allows us to cut a loop of the network, add an impedance
Z in series, and obtain the modified network function as A1(s) multiplied by a correction factor. A1 is

The quantities Ui and U0 represent a general input and a general output, respectively, whether they be a
voltage or a current. Define

FIGURE 7.52 Ideal op amp circuit for Example 15.

FIGURE 7.53 (a) Network for finding Zd. (b) Network used to determine ZN.
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the network function when Z = 0. Figure 7.54 is an LLFT network with part of a loop illustrated explicitly.
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(7.64)

where V2 and I2 are depicted in Figure 7.54, and A1 is assumed to be known. Then using superposition,
we have:

(7.65)

The impedance of the extra element Z can be described by Z = V2 /(–I2) so that V2 = –I2 Z. Substituting
this relation for V2 into (7.65) and eliminating I2, we have:

(7.66)

Again, as we did for the parallel version of the theorem, we look for physical interpretations of the
quantities in the square bracket in (7.66). From (7.65) we see that B2 is the admittance looking into the
port formed by cutting the loop in Figure 7.54 with Ui = 0. This is depicted in Figure 7.55(a). Thus, B2

is the admittance looking into a dead network, and so let B2 = 1/Zd .
To find a physical interpretation of the quantity (A1B2 – A2B1)/A1, we examine Figure 7.55(b) in which

both inputs, V2 and Ui, are adjusted to null the output U0. From (7.65) with Uo = 0, we have:

(7.67)

FIGURE 7.54  LLFT network used for the series version of Mid-
dlebrook’s extra element theorem.

FIGURE 7.55  (a) Looking into the network with Ui equal zero. (b) Ui and V2 are simultaneously adjusted to null
the output U0.
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Then, eliminating Ui in (7.65) we obtain:

(7.68)

Because this quantity is the admittance looking into the port formed by terminals 1 and 1′ in

o nulled, rename it as 1/Zn. Thus, from (7.66) we can write

(7.69)

Eq. (7.69) is particularly convenient for determining the effects of adding an impedance Z into a loop
of a network.

Example 16. Use the series version of Middlebrook’s extra element theorem to determine the effects of

Solution. The voltage transfer function for the network without the capacitor is found to be:

Next, we find Zd 

The impedance Zn is found from Figure 7.57(b) where the two input sources, Vi and V, are adjusted so
that V0 equals zero. If V0 equals zero, then βIb equals zero because no current flows through RL. Thus, Ib

equals zero, which implies that VRe, the voltage across Re as indicated in Figure 7.57(b), is also zero. We
see that the null is propagating through the circuit. Continuing to analyze Figure 7.57(b), we see that IRb

is zero so that we conclude that I is zero. Because ZN = V/I, we conclude that ZN is infinite. Using the
format given by (7.69) with Z = 1/(sC), we obtain the result as: 

▫

It is interesting to note that to null the output so that ZN could be found in Example 16, Vi is set to
V, although this fact is not needed in the analysis. 

FIGURE 7.56 Network for Example 16.
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Figure 7.55(b) with U

inserting a capacitor C in the location indicated in Figure 7.56.

from Figure 7.57(a). This yields:
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Substitution Theorem

Figure 7.58(a) is an LLFT network consisting of two subnetworks A and B, which are connected to each
other by two wires. If the voltage v(t) is known, the voltages and currents in subnetwork A remain
unchanged if a voltage source of value v(t) is substituted for subnetwork B as illustrated in Figure 7.58(b).

1 1

analysis.

Solution. Because v1(t) is known, the substitution theorem can be applied to obtain the circuit in

FIGURE 7.57 (a) Network used to obtain Zd. (b) Network that yields ZN.

FIGURE 7.58 (a) An LLFT network consisting of two subnetworks A and B connected by two wires. (b) A voltage
source can be substituted for subnetwork B if v(t) is known in (a). (c) A current source can be substituted for B if
i is a known current.
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Example 17. Determine i (t) in the circuit in Figure 7.59. The voltage v (t) is known from a previous

Figure 7.60. Analysis of this simplified circuit yields:
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7.3 Sinusoidal Steady-State Analysis and Phasor Transforms

Sinusoidal Steady-State Analysis

In this section, we develop techniques for analyzing lumped, linear, finite, time invariant (LLFT) networks
in the sinusoidal steady state. These techniques are important for analyzing and designing networks
ranging from AC power generation systems to electronic filters.

To put the development of sinusoidal steady state analysis in its context, we list the following definitions
of responses of circuits:

A. The zero-input response is the response of a circuit to its initial conditions when the input
excitations are set to zero.

B. The zero-state response is the response of a circuit to a given input excitation or set of input
excitations when the initial conditions are all set to zero.

The sum of the zero-input response and the zero-state response yields the total response of the system
being analyzed. However, the total response can also be decomposed into the forced response and the
natural response if the input excitations are DC, real exponentials, sinusoids, and/or sinusoids multiplied
by real exponentials and if the exponent(s) in the input excitation differs from the exponents appearing
in the zero-input response. These excitations are very common in engineering applications, and the
decomposition of the response into forced and natural components corresponds to the particular and
complementary (homogeneous) solutions, respectively, of the linear, constant coefficient, ordinary dif-
ferential equations that characterize LLFT networks in the time domain. Therefore, we define:

C. The forced response is the portion of the total response that has the same exponents as the input
excitations.

D. The natural response is the portion of the total response that has the same exponents as the zero-
input response.

FIGURE 7.59 Circuit for Example 17.

FIGURE 7.60 Circuit that results when the Substitution Theorem is applied to the circuit in Figure 7.59.
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If the current i(t) is known in Figure 7.58(a), then the substitution in Figure 7.58(c) can be employed.
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The sum of the forced and natural responses is the total response of the system.
For a strictly stable LLFT network, meaning that the poles of the system transfer function T(s) are

confined to the open left-half s-plane (LHP), the natural response must decay to zero eventually. The
forced response may or may not decay to zero depending on the excitation and the network to which it
is applied, and so it is convenient to define the terms steady-state response and transient response:

E. The transient response is the portion of the response that dies away or decays to zero with time.
F. The steady-state response is the portion of the response that does not decay with time.

The sum of the transient and steady state responses is the total response, but a specific circuit with a
specific excitation may not have a transient response or it may not have a steady state response. The
following example illustrates aspects of these six definitions.

zero-input, forced, natural, transient, and steady-state portions of the response.

Solution. Note that a nonzero initial condition is represented by Vc. Using superposition and the simple
voltage divider concept, we can write:

The partial fraction expansion for V0 (s) is:

where 

Thus, for t ≥ 0, v0 (t) can be written as:

With the aid of the angle sum and difference formula 

FIGURE 7.61 Circuit for Example 18.
−

−

+

++
−vi = V1e−t + V2 sin t

Vc 1/2F vo (t)

1Ω

V s
V

s

V

s s

V

s

s

s
c

0
1 2

21 1

2

2 2
( ) =

+
+

+




 +

+
+







V s
A

s

B

s

Cs D

s0 21 2 1
( ) =

+
+

+
+ +

+

A V

B V V V

C V

D V

c

=

= − + +

= −

=

2

2 0 4

0 4

0 8

1

1 2

2

2

.

.

.

v t V e V e V e V e

V t V t

t t t
c

t
0 1 1

2
2

2 2

2 2

2 2 0 4

0 4 0 8

( ) = − + +

− +

− − − −.

  . cos . sin

sin sin cos cos sinα β α β α β±( ) = ±

© 2006 by Taylor & Francis Group, LLC

Example 18. Find the total response of the network shown in Figure 7.61, and identify the zero-state,
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and the sketch in Figure 7.62, we can combine the last two terms in the expression for v0 (t) to obtain:

where 

The terms of v0(t) are characterized by our definitions as follows:

As can be observed by comparing the preceding terms above with the total response, part of the forced
response is the steady state response, and the rest of the forced response is included in the transient
response in this example. ▫

If the generator voltage in the previous example had been vi = V1 + V2 sin(t), then there would have
been two terms in the steady state response — a DC term and a sinusoidal term. On the other hand, if
the transfer function from input to output had a pole at the origin and the excitation were purely
sinusoidal, there would also have been a DC term and a sinusoidal term in the steady state response. The
DC term would have arisen from the pole at the origin in the transfer function, and therefore would
also be classed as a term in the natural response.

Oftentimes, it is desirable to obtain only the sinusoidal steady state response, without having to solve
for other portions of the total response. The ability to solve for just the sinusoidal steady state response
is the goal of sinusoidal steady state analysis.

The sinusoidal steady state response can be obtained based on analysis of the network using Laplace

i

sin(ωt), where V is the peak amplitude of the sine wave and ω is the frequency of the sine wave in
radians/second. Assume that the poles of the network transfer function V0(s)/Vi(s) = T(s) are confined
to the open left-half s-plane (LHP) except possibly for a single pole at the origin. Then, the forced response
of the network is

FIGURE 7.62 Sketch for determining the phase angle θ.
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transforms. Figure 7.63 illustrates an LLFT network that is excited by the voltage sine wave v (t) = V
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(7.70)

where the extra subscripts “ss” on v0(t) indicate sinusoidal steady state, and where

(7.71)

The symbols � and � are read as “imaginary part of” and “real part of,” respectively. In other words,
the LLFT network modifies the sinusoidal input signal in only two ways at steady state. The network
multiplies the amplitude of the signal by �T(jω)� and shifts the phase by θ. If the transfer function of the
network is known beforehand, then the sinusoidal steady state portion of the total response can be easily
obtained by means of Eqs. (7.70) and (7.71).

To prove (7.70) and (7.71), we assume that T(s) = V0(s)/Vi(s) in Figure 7.63 is real for s real and that
the poles of T(s) are confined to the open LHP except possibly for a single pole at the origin. Without
loss of generality, assume the order of the numerator of T(s) is at most one greater than the order of the
denominator. Then the transform of the output voltage is

If V0(s) is expanded into partial fractions, we have:

The residue A is

But

Thus, we can write the residue A as

FIGURE 7.63  LLFT network with transfer function T (s).
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Also, B = A* where “*” denotes “conjugate,” and so

In the equation for the residue B, we can write T((jω)*) = T*(jω) because of the assumption that T(s)
is real for s real (see Property 1 in Section 7.1 on “Properties of LLFT Network Functions”).

All other terms in the partial fraction of V0(s) will yield, when inverse transformed, functions of time
that decay to zero except for a term arising from a pole at the origin of T(s). A pole at the origin yields,
when its partial fraction is inverse transformed, a DC term that is part of the steady-state solution in the
time domain. However, only the first two terms in V0(s) will ultimately yield a sinusoidal function. We
can rewrite these two terms as:

The extra subscripts “ss” denote sinusoidal steady state. The time-domain equation for the sinusoidal
steady state output voltage is

where θ is given by (7.71). This completes the proof.

Example 19. Verify the expression for the sinusoidal steady-state response found in the previous example.

the sinusoidal portion of vi (t) is ω = 1 rad/s. Thus,

where

i

of the network would be: 

(7.72)

where θ is given by (7.71). Similarly, if the excitation were vi(t) = V [cos(ωt + Φ)], then the sinusoidal
steady-state response would be expressed as: 

(7.73)

with θ again given by (7.71).
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Solution. The transfer function for the network in Figure 7.61 is T(s) = 2/(s + 2), and the frequency of

If the excitation in Figure 7.63 were v (t) = V sin (ωt + Φ), then the sinusoidal steady-state response
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Phasor Transforms

In the sinusoidal steady-state analysis of stable LLFT networks, we find that both the inputs and outputs
are sine waves of the same frequency. The network only modifies the amplitudes and the phases of the
sinusoidal input signals; it does not change their nature. Thus, we need only keep track of the amplitudes
and phases, and we do this by using phasor transforms. Phasor transforms are closely linked to Euler’s
identity:

(7.74)

If, for example, vi (t) = V sin(ωt + Φ), then we can write vi(t) as

(7.75)

Similarly, if vi (t) = V cos(ωt + Φ), then we can write

(7.76)

If we confine our analysis to single-frequency sine waves, then we can drop the imaginary sign and the
term e jωt in (7.75) to obtain the phasor transform. That is,

(7.77)

The first and last terms in (7.77) are read as “the phasor transform of vi(t) equals Ve jΦ”. Note that vi(t)
is not equal to Ve jΦ as can be seen from the fact that vi(t) is a function of time while Ve jΦ is not. Phasor
transforms will be denoted with bold letters that are underlined as in ℘[vi(t)] = V i.

If our analysis is confined to single-frequency cosine waves, we perform the phasor transform in the
following manner:

(7.78)

In other words, to perform the phasor transform of a cosine function, we drop both the real sign and
the term e jωt. Both sines and cosines are sinusoidal functions, but when we transform them, they lose
their identities. Thus, before starting an analysis, we must decide whether to perform the analysis all in
sines or all in cosines. The two functions must not be mixed when using phasor transforms. Furthermore,
we cannot simultaneously employ the phasor transforms of sinusoids at two different frequencies.
However, if a linear network has two excitations which have different frequencies, we can use super-
position in an analysis for a voltage or current, and add the solutions in the time domain.

Three equivalent representations are used for a phasor V :

(7.79)

If phasors are to be multiplied or divided by a complex number, the exponential or polar forms are
the most convenient. If phasors are to be added or subtracted, the rectangular form is the most convenient.

phasor V  is denoted by a point in the complex plane. The magnitude of the phasor, �V � = V, is illustrated
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The relationships among the equivalent representations are illustrated in Figure 7.64. In this figure, the
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by the length of the line drawn from the origin to the point. The phase of the phasor, Φ, is shown
measured counterclockwise from the horizontal axis. The real part of V is V cos Φ and the imaginary
part of V is V sin Φ.

Phasors can be developed in a way that parallels, to some extent, the usual development of Laplace
transforms. In the following theorems, we assume that the constants V1, V2,Φ1, and Φ2 are real.

Theorem 1: For sinusoids of the same type (either sines or cosines) and of the same frequency ω,℘[V1sin(ωt +
Φ1) + V2sin(ωt + Φ2)] = V1℘[sin(ωt + Φ1)] + V2℘[sin(ωt + Φ2)]. A similar relation can be written for
cosines. 

This theorem demonstrates that the phasor transform is a linear transform.

Theorem 2: If ℘[V1sin(ωt + Φ)] = V1e jΦ, then

(7.80)

To prove Theorem 2, we can write:

Note the interchange of the derivative and the imaginary sign in the proof of the theorem. Also, Theorem 2
can be generalized to:

(7.81)

These results are useful for finding the sinusoidal steady state solutions of linear, constant-coefficient,
ordinary differential equations assuming the roots of the characteristic polynomials lie in the open LHP
with possibly one at the origin.

Theorem 3: If ℘[V1sin(ωt + Φ)] = V1e jΦ, then

(7.82)

The proof of Theorem 3 is easily obtained by writing:

FIGURE 7.64  Relationships among phasor representations.
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It should be noted that no constant of integration is employed because a constant is not a sinusoidal
function and is therefore not permitted when using phasors. A constant of integration arises in LLFT
network analysis because of initial conditions, and we are interested only in the sinusoidal steady-state
response and not in a zero-input response. No limits are used with the integral either, because the (constant)
lower limit would also yield a constant, which would imply that we are not at sinusoidal steady state.

Theorem 3 is easily extended to the case of n integrals:

(7.83)

This result is useful for finding the sinusoidal steady-state solution of integro-differential equations.

Inverse Phasor Transforms

To obtain time domain results, we must be able to inverse transform phasors. The inverse transform
operation is denoted by ℘–1. This is an easy operation that consists of restoring the term e jωt, restoring
the imaginary sign (the real sign if cosines are used), and dropping the inverse transform sign. That is,

(7.84)

The following example illustrates both the use of Theorem 2 and the inverse transform procedure.

Example 23. Determine the sinusoidal steady-state solution for the differential equation:

Solution. We note that the characteristic polynomial, D2 + 4D + 3, has all its roots in the open LHP. The
next step is to phasor transform each term of the equation to obtain:

where F (jω) = ℘[ f(t)]. Therefore, when we solve for F , we obtain
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Thus,

To obtain a time-domain function, we inverse transform F to obtain:

In this example, we see that the sinusoidal steady-state solution consists of the sinusoidal forcing term,
V sin(ωt + Φ), modified in amplitude and shifted in phase.

Phasors and Networks

Phasors are time-independent representations of sinusoids. Thus, we can define impedances in the phasor
transform domain and obtain Ohm’s law-like expressions relating currents through network elements
with the voltages across those elements. In addition, the impedance concept allows us to combine
dissimilar elements, such as resistors with inductors, in the transform domain.

The time-domain expressions relating the voltages and currents for Rs, Ls, and Cs, repeated here for
convenience, are:

Note that initial conditions are set to zero. Then, performing the phasor transform of the time-domain
variables, we have

We can also write the admittances of these elements as YR = 1/ZR, YL = 1/ZL, and YC = 1/ZC. Then, we
can extend the impedance and admittance concepts for two-terminal elements to multiport networks in
the same manner as was done in the development of Laplace transform techniques for network analysis.
For example, the transfer function of the circuit shown in Figure 7.65 can be written as:

where the “jω” indicates that the analysis is being performed at sinusoidal steady state [1]. It is also
assumed that no other excitations exist in N in Figure 7.65. With impedances and transfer functions
defined, then all the theorems developed for Laplace transform analysis, including source transforma-
tions, have a phasor transform counterpart.

FIGURE 7.65  An LLFT network excited by a sinusoidal voltage source.
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Example 21. Use phasor analysis to find the transfer function G21 (jω) and voss (t) for the circuit in

Solution. The phasor transform of the output voltage can be obtained easily by means of the simple
voltage divider. Thus,

To obtain G21(jω), we form V0/V i, which yields

Expressing the numerator and denominator of G21 in exponential form produces:

where

Thus,

where

and

FIGURE 7.66 Circuit for Example 21.
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Figure 7.66.
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The phasor transform of vi (t) is

and, therefore, the time-domain expression for the sinusoidal steady-state output voltage is:

▫

Driving point impedances and admittances as well as transfer functions are not phasors because they
do not represent sinusoidal waveforms. However, an impedance or transfer function is a complex number
at a particular real frequency, and the product of a complex number times a phasor is a new phasor.

The product of two arbitrary phasors is not ordinarily defined because sin2 (ωt) or cos2 (ωt) are not
sinusoidal and have no phasor transforms. However, as we will see later, power relations for AC circuits
can be expressed in efficient ways as functions of products of phasors. Because such products have physical
interpretations, we permit them in the context of power calculations.

Division of one phasor by another is permitted only if the two phasors are related by a driving point
or transfer network function such as V0/V i = G21(jω).

Phase Lead and Phase Lag

The terms “phase lead” and “phase lag” are used to describe the phase shift between two or more sinusoids
of the same frequency. This phase shift can be expressed as an angle in degrees or radians, or it can be
expressed in time as seconds. For example, suppose we have three sinusoids given by:

where V1, V2, V3, and Φ are all positive. Then, we say that v2 leads v1 and that v3 lags v1. To see this more
clearly, we rewrite v2 and v3 as:

where the constant t0 = Φ/ω. Figure 7.67 plots the three sinusoids sketched on the same axis, and from
this graph we see that the zero crossings of v2(t) occur t0 seconds before the zero crossing of v1(t). Thus,
v2(t) leads v1(t) by t0 seconds. Similarly, we see that the zero crossings of v3(t) occur t0 seconds after the
zero crossings of v1(t). Thus, v3(t) lags v1(t). We can also say that v3(t) lags v2(t). When comparing the
phases of sine waves with V sin(ωt), the key thing to look for in the arguments of the sines are the signs
of the angles following ωt. A positive sign means lead and a negative sign means lag. If two sines or two
cosines have the same phase angle, then they are called “in phase.”

If we have i1(t) = I1 [cos(ωt – π/4)] and i2(t) = I2 [cos(ωt – π/3)], then i2 lags i1 by π/12 rad or 15°
because even though the phases of both cosines are negative, the phase of i1(t) is less negative than the
phase of i2(t). We can also say that i1 leads i2 by 15°.

FIGURE 7.67  Three sinusoids sketched on a time axis.
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Example 22. Suppose we have five signals with equal peak amplitudes and equal frequencies but with
differing phases. The signals are: i1 = I [sin (ωt)], i2 = I [cos(ωt)], i3 = I [cos(ωt + θ)], i4 = –I [sin(ωt + ψ)],
and i5 = –I [cos(ωt – Φ)]. Assume I, θ, ψ, and Φ are positive.

A. How much do the signals i2 through i5 lead i1?
B. How much do the signals i1 and i3 through i5 lead i2?

Solution. For part (A), we express i2 through i5 as sines with lead angles. That is,

Thus, i2 leads i1 by π/2 rad, and i3 leads i1 by θ + π/2. For i4, we can take the plus sign in the argument
of the sign to obtain ψ + π, or we can take the minus sign to obtain ψ – π. The current i5 leads i1 by
(3π/2 – Φ) or by (–π/2 – Φ). An angle of ± 2π can be added to the argument without affecting lead or
lag relationships. 

For part (B), we express i1 and i3 through i5 as cosines with lead angles yielding:

We conclude that i1 leads i2 by (–π/2) rad. (We could also say that i1 lags i2 by (π/2) rad.) Also, i3 leads
i2 by θ. The current i4 leads i2 by (ψ + π/2) where we have chosen the plus sign in the argument of the
cosine. Finally, i5 leads i2 by (π – Φ), where we have chosen the plus sign in the argument. ▫

In the previous example, we have made use of the identities:

The concepts of phase lead and phase lag are clearly illustrated by means of phasor diagrams, which
are described in the next section.
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Phasor Diagrams

Phasors are complex numbers that represent sinusoids, so phasors can be depicted graphically on a
complex plane. Such graphical illustrations are called phasor diagrams. Phasor diagrams are valuable
because they present a clear picture of the relationships among the currents and voltages in a network.
Furthermore, addition and subtraction of phasors can be performed graphically on a phasor diagram.
The construction of phasor diagrams is demonstrated in the next example.

Example 23. For the network in Figure 7.68(a), find I 1, V R1, and V C. For Figure 7.68(b), find I 2, V R2,
and V L. Construct phasor diagrams that illustrate the relations of the currents to the voltage excitation
and the other voltages of the networks.

Solution. For Figure 7.68(a), we have

Rewriting I1, we have:

where

Note that we have multiplied the numerator and denominator of I 1 by the conjugate of the denominator.
The resulting denominator of I1 is purely real, and so we need only consider the terms in the numerator
of I1 to obtain an expression for the phase. Thus, the resulting expression for the phase contains only
one term which has the form:

FIGURE 7.68  (a) An RC network. (b) An RL network.
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We could have obtained the same results without application of this artifice. In this case, we would have
obtained

For ωCR1 ≥ 0, it is easy to show that the two expressions for θ1 are equivalent.
Because the same current flows through both network elements, we have

and

where

For I2 

where θ2 is given by

The phasor current I2 flows through both R2 and L. So we have:

and

where

a vector corresponding to the phasor transform V = V∠0° of the excitation. Because the phase of this
phasor is zero, it is represented as a vector along the positive real axis. The length of this vector is � V �.
Then we construct the vector representing I1 = � I1 � e jθ1. Again, the length of the vector is � I1 �, and it is
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in Figure 7.68(b), we obtain

To construct the phasor diagram in Figure 7.69(a) for the RC network in Figure 7.68(a), we first draw
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drawn at the angle θ1. The vector representing V R1 lies along I1 because the voltage across a resistor is
always in phase or 180° out of phase with the current flowing through the resistor. The vector representing
the current leads V C by exactly 90°. It should be noted from the phasor diagram that V R1 and V C add
to produce V  as required by Kirchhoff ’s law. ▫

Figure 7.69(b) presents the phasor diagram for the RL network in Figure 7.68(b). For this network, I2

lags V L by exactly 90°. Also, the vector sum of the voltages V L and V R2 must be the excitation voltage V
as indicated by the dotted lines in Figure 7.69(b).

If the excitation V sin(ωt) had been V sin(ωt + Φ) in Figure 7.68 in the previous example, then the
vectors in the phasor diagrams in Figure 7.69 would have just been rotated around the origin by Φ. Thus,
for example, I1 in Figure 7.69(a) would have an angle equal to θ1 + Φ. The lengths of the vectors and the
relative phase shifts between the vectors would remain the same.

If R1 in Figure 7.68(a) is decreased, then from the expression for θ1 = tan–1 (1/(ωCR1)), we see that
the phase of I1 is increased. As R1 is reduced further, θ1 approaches 90°, and the circuit becomes more
nearly like a pure capacitor. However, as long as I1 leads V , we label the circuit as capacitive.

As R2 in Figure 7.68(b) is decreased, then θ2 in Figure 7.69(b) decreases (becomes more negative) and
approaches –90°. Nevertheless, as long as I2 lags V , we refer to the circuit as inductive.

If both inductors and capacitors are in a circuit, then it is possible for the circuit to appear capacitive at
some frequencies and inductive at others. An example of such a circuit is provided in the next section.

Resonance

Resonant networks come in two basic types: the parallel resonant network and the series resonant
(sometimes called antiresonant) network. More complicated networks may contain a variety of both
types of resonant circuits. To see what happens at resonance, we examine a parallel resonant network at
sinusoidal steady state [1]. Figure 7.70 is a network consisting of a capacitor and inductor connected in
parallel, often called a tank circuit or tank, and an additional resistor R1 connected in parallel with the
tank. The phasor transforms of the excitation and the currents through the elements in Figure 7.70 are:

(7.85)

Figure 7.68(b).

FIGURE 7.70  Parallel resonant circuit.
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FIGURE 7.69 (a) Phasor diagram for the voltages and currents in Figure 7.68(a). (b) Phasor diagram for
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where V is the peak value of the excitation. The transform of the current supplied by the source is

(7.86)

The peak value of the current i1(t) at steady state is

(7.87)

It is not difficult to determine that the minimum value of I1 occurs at

(7.88)

which is the condition for resonance, and I1min is given by

(7.89)

current to the tank at steady state. However, this result does not mean that the currents through the
capacitor and inductor are zero. In fact, for ω2 = 1/(LC) we have:

That is, the current through the inductor is 180° out of phase with the current through the capacitor,
and, because their magnitudes are equal, their sum is zero. Thus, at steady state and at the frequency
given by (7.88), the tank circuit looks like an open circuit to the voltage source. Yet, a circulating current
occurs in the tank, labeled  in Figure 7.71, which can be quite large depending on the values of C and
L. That is, at resonance,

(7.90)

Therefore, energy is being transferred back and forth between the inductor and the capacitor. If the
inductor and capacitor are ideal, the energy transferred would never decrease. In practice, parasitic
resistances, especially in a physical inductor, would eventually dissipate this energy. Of course, parasitic
resistances can be modeled as additional elements in the network.

FIGURE 7.71  Circuit of Figure 7.70 at resonance. No current is supplied to the tank by the source, but a circulating
current occurs in the tank.
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This result is somewhat surprising since it means that at resonance, the source in Figure 7.70 delivers no
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Another interesting aspect of the network in Figure 7.70 is that, at low frequencies (ω2 < 1/(LC)), I 1

lags V , and so the network appears inductive to the voltage source. At high frequencies (ω2 > 1/(LC)),
I 1 leads V , and the network looks capacitive to the voltage source. At resonance, the network appears as
only a resistor R1 to the source. Figure 7.72 depicts phasor diagrams of V and I 1 at low frequency, at
resonance, and at high frequency.

Figure 7.73 is the second basic type of resonant circuit — a series resonant circuit which is excited by
a sinusoidal current source with phasor transform I  = I ∠0°. This circuit is dual to the circuit in
Figure 7.70. The voltages across the network elements can be expressed as:

(7.91)

Then, the voltage V is

(7.92)

The peak value of V is

(7.93)

where I is the peak value of I . The minimum value of V is

(7.94)

and this occurs at the frequency ω = 1/ , which is the same resonance condition as for the circuit
in Figure 7.70.

Equation (7.94) demonstrates that at resonance, the voltage across the LC subcircuit in Figure 7.73 is
zero. However, the individual voltages across L and across C are not zero and can be quite large in
magnitude depending on the values of the capacitor and inductor. These voltages are given by:

FIGURE 7.72 Phasor diagrams for the circuit in Figure 7.70. (a) ω2 < 1/LC. (b) Diagram at resonance. (c) ω2 > 1/(LC).

FIGURE 7.73  Series resonant circuit.
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(7.95)

and therefore the voltage across the capacitor is exactly 180° out of phase with the voltage across the
inductor.

At frequencies below resonance, V lags I in Figure 7.73, and therefore the circuit looks capacitive to
the source. Above resonance, V leads I, and the circuit looks inductive to the source. If the frequency of
the source is ω = 1/  the circuit looks like a resistor of value R to the source.

Power in AC Circuits

If a sinusoidal voltage v(t) = V sin(ωt + θV) is applied to an LLFT network that possibly contains other
sinusoidal sources having the same frequency ω, then a sinusoidal current i(t) = I sin(ωt + θ1) flows at
steady state as depicted in Figure 7.74. The instantaneous power delivered to the circuit by the voltage
source is

(7.96)

where the units of p(t) are watts (W). With the aid of the trigonometric identity

we rewrite (7.96) as

(7.97)

The instantaneous power delivered to the network in Figure 7.74 has a component that is constant and
another component that has a frequency twice that of the excitation. At different instances of time, p(t)
can be positive or negative, meaning that the voltage source is delivering power to the network or receiving
power from the network, respectively.

In AC circuits, however, it is usually the average power P that is of more interest than the instantaneous
power p(t) because average power generates the heat or performs the work.

The average over a period of a periodic function f (t) with period T is

(7.98)

FIGURE 7.74  LLFT network that may contain other sinusoidal sources at the same frequency as the external
generator.
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The period of p(t) in (7.97) is T = π/ω, and so

(7.99)

The cosine term in (7.99) plays an important role in power calculations and so is designated as the Power
Factor (PF). Thus,

(7.100)

If �θV – θI� = π/2, then PF = 0, and the average power delivered to the network in Figure 7.74 is zero; but
if PF = 1, then P delivered to the network by the source is VI/2. If 0 < �θv – θI� < π/2, then P is positive,
and the source is delivering average power to the network. However, the network delivers average power
to the source when P is negative, and this occurs if π/2 < �θv – θI� < 3π/2.

If the current leads the voltage in Figure 7.74, the convention is to consider PF as leading, and if current
lags the voltage, the PF is regarded as lagging. However, it is not possible from PF alone to determine
whether a current leads or lags voltage.

Example 24. Determine the average power delivered to the network shown in Figure 7.68(a).

Solution. The phasor transform of the applied voltage is V = V �0°, and we determined in Example 23
that the current supplied was

The power factor is

which, with the aid of the triangle in Figure 7.75, can be rewritten as

Thus, the average power delivered to the circuit is

▫

We note that if R1 were zero in the previous example, then P = 0 because the circuit would be purely
capacitive, and PF would be zero.

FIGURE 7.75  Triangle for determining PF.
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If no sources are in the network in Figure 7.74, then the network terminal variables are related by:

(7.101)

where Z(jω) is the input impedance of the network. Because Z is, general and complex, we can write it as:

(7.102)

where

(7.103)

In (7.103), the (real) function X(ω) is termed the reactance. Employing the polar form of the phasors,
we can rewrite (7.101) as

(7.104)

Equating magnitudes and angles, we obtain

(7.105)

Thus, we can express P delivered to the network as

(7.106)

But �Z� cos(θz) = R(ω) so that

(7.107)

Eq. (7.107) indicates that the real part of the impedance absorbs the power. The imaginary part of the
impedance, X(ω), does not absorb average power. Example 24 in this section provides an illustration of
(7.107).

An expression for average power in terms of the input admittance Y(jω) = 1/Z(jω) can also be obtained.
Again, if no sources are within the network, then the terminal variables in Figure 7.74 are related by

(7.108)

The admittance Y(jω) can be written as

(7.109)

where G(ω) is conductance and B(ω) is susceptance, and where
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Then, average power delivered to the network can be expressed as:

(7.111)

If the network contains sinusoidal sources, then (7.99) should be employed to obtain P instead of
(7.107) or (7.111).

Consider a resistor R with a voltage v(t) = V sin(ωt) across it and therefore a current i(t) = I sin(ωt) =
v(t)/R through it. The instantaneous power dissipated by the resistor is

(7.112)

The average power dissipated in R is

(7.113)

where we have introduced the new constant Ieff . From (7.113), we can express Ieff as

(7.114)

This expression for Ieff can be read as “the square root of the mean (average) of the square of i(t)” or,
more simply, as “the root mean square value of i(t),” or, even more succinctly, as “the RMS value of i(t).”
Another designation for this constant is Irms. Equation (7.114) can be extended to any periodic voltage
or current.

The RMS value of a pure sine wave such as i(t) = I sin(ωt + θ1) or v(t) = V sin(ωt + θv) is

(7.115)

where I and V are the peak values of the sine waves. Normally, the voltages and currents listed on the
nameplates of power equipment and household appliances are given in terms of RMS values instead of
peak values. For example, a 120-V, 100-W lightbulb is expected to dissipate 100 W when a voltage
120( )[sin(ωt)] is impressed across it. The peak value of this voltage is 170 V.

If we employ RMS values, (7.99) can be rewritten as

(7.116)

Eq. (7.116) emphasizes the fact that the concept of RMS values of voltages and currents was developed
in order to simplify the calculation of average power.

Because PF = cos(θv – θ1), we can rewrite (7.116) as

(7.117)

where I∗ is the conjugate of I. If P = � [V I∗], the question arises as to what the imaginary part of V I∗

represents. This question leads naturally to the concept of complex power, denoted by the bold letter S,
which has the units of volt-amperes (VA). If P represents real power, then we can write
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(7.118)

where

(7.119)

and where

(7.120)

Thus, Q represents imaginary or reactive power. The units of Q are VARs, which stands for volt-amperes
reactive. Reactive power is not available for conversion into useful work. It is needed to establish and
maintain the electric and magnetic fields associated with capacitors and inductors [4]. It is an overhead
required for delivering P to loads, such as electric motors, that have a reactive part in their input
impedances.

The components of complex power can be represented on a power triangle. Figure 7.76 is a power
triangle for a capacitive circuit. Real and imaginary power are added as shown to yield the complex power
S. Note that (θv – θ1) and Q are both negative for capacitive circuits. The following example illustrates
the construction of a power triangle for an RL circuit.

Example 25. Determine the components of power delivered to the RL circuit in Figure 7.77. Provide a
phasor diagram for the current and the voltages, construct a power triangle for the circuit, and show
how the power diagram is related to the impedances of the circuit.

Solution. We have

where

FIGURE 7.76  Power triangle for a capacitive circuit.

FIGURE 7.77  Network for Example 25.
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Because θv = 0, PF is

and is lagging. The voltages across R and L are given by:

and Z is

The real and imaginary components of the complex power are simply calculated as:

Figure 7.78 presents the phasor diagram for this circuit in which we have taken the reference phasor as
I and therefore have shown V leading I by (θv – θ1). Also, we have moved V L parallel to itself to form a
triangle. These operations cause the phasor diagram to be similar to the power triangle. Figure 7.79(a)
shows a representation for the impedance in Figure 7.77. If each side of the triangle in Figure 7.79(a) is
multiplied by Irms, then we obtain voltage triangle in Figure 7.79(b). Next, we multiply the sides of the
voltage triangle by Irms again to obtain the power triangle in Figure 7.79(c). The horizontal side is the
average power P, the vertical side is Q, and the hypotenuse has a length that represents the magnitude of
the complex power S. All three triangles in Figure 7.79 are similar. The angles between sides are preserved. ▫

If P remains constant in Figure 7.76, but the magnitude of the angle becomes larger so that the
magnitude of Q increases, then [S] increases. If the magnitude of the voltage is fixed, then the magnitude
of the current supplied must increase. But then, either power would be lost in the form of heat in the
wires supplying the load or larger diameter, more expensive wires, would be needed. For this reason,
power companies that supply power to large manufacturing firms that have many large motors impose
unfavorable rates. However, the manufacturing firm can improve its rates if it improves its power factor.
The following example illustrates how improving (correcting) PF is done.

FIGURE 7.78  Phasor diagram for Example 25.
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Example 26. Determine the value of the capacitor to be connected in parallel with the RL circuit in
Figure 7.80 to improve the PF of the overall circuit to one. The excitation is a voltage source having an
amplitude of 120 V RMS and frequency 2π(60 Hz) = 377 rad/s. What are the RMS values of the current
supplied by the source at steady state before and after the capacitor is connected?

Solution. The current through the RL branch in Figure 7.80 is

and the current through the capacitor is

Thus, the current supplied by the source to the RLC network is

FIGURE 7.79  (a) Impedance triangle for circuit in Example 25. (b) Corresponding voltage triangle. (c) Power
triangle.

FIGURE 7.80  Circuit for Example 26.
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To improve the PF to one, the current I should be in phase with V. Thus, we set the imaginary term in
the equation for I equal to zero, yielding:

a rather large capacitor. Before this capacitor is connected, the RMS value of the current supplied by the
voltage source is Irms = 26.833 amps. After the capacitor is connected, the source has to supply only
12 amps RMS, a considerable reduction. In both cases, P delivered to the load is the same.

The following example also illustrates PF improvement.

Example 27. A load with PF = 0.7 lagging, depicted in Figure 7.81, consumes 12 kW of power. The line
voltage supplied is 220 V RMS at 60 Hz. Find the size of the capacitor needed to correct the PF to
0.9 lagging, and determine the values of the currents supplied by the source both before and after the
PF is corrected.

Solution. We will take the phase of the line voltage to be 0°. From P = Vrms Irms PF = 12 kW, we obtain
Irms = 77.922 amps. Because PF is 0.7 lagging, the phase of the current through the load relative to the
phase of the line voltage is –cos–1(0.7) = –45.57o. Therefore, I load = 77.922�(– 45.57°) amps RMS. When
C is connected in parallel with the load,

If the PF were to be corrected to unity, we would set the imaginary part of the previous expression for
current to zero; but this would require a larger capacitor (671 µF), which may be uneconomical. Instead,
to retain a lagging but improved PF = 0.9, and corresponding to the current lagging the voltage by 25.84°,
we write

Therefore, C = 352 µF. The line current is now

▫

Previous examples have employed ideal voltage sources to supply power to networks. However, in
many electronic applications, the source has a fixed impedance associated with it, and the problem is to

FIGURE 7.81  Circuit for Example 27 showing the load and the capacitor to be connected in parallel with the load
to improve the power factor.
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obtain the maximum average power transferred to the load [2]. Here, we assume that the resistance and
reactance of the load can be independently adjusted. Let the source impedance be:

The load impedance is denoted as

Figure 7.82 depicts these impedances. We assume that all the elements, including the voltage source,
within the box formed by the dotted lines are fixed. The voltage source is v(t) = V sin(ωt), and thus
i(t) = I sin(ωt+θ), where V and I are peak values and

The average power delivered to Z is

where Irms = I/  and

(7.121)

Thus, the average power delivered to Z can be written as

(7.122)

To maximize P, we first note that the term [Xs(ω) + X(ω)]2 is always positive, and so this term always
contributes to a larger denominator unless it is zero. Thus, we set

(7.123)

and (7.122) becomes

(7.124)

FIGURE 7.82  Zs is fixed, and Z is to be chosen so that maximum average power is transferred to Z.
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7-66 Circuit Analysis and Feedback Amplifier Theory

Second, we set the partial derivative with respect to R(ω) of the expression in (7.124) to zero to obtain

(7.125)

Eq. (7.125) is satisfied for

(7.126)

and this value of R(ω) together with X(ω) = –Xs(ω), yields maximum average power transferred to Z.
Thus, we should adjust Z to:

(7.127)

and we obtain

(7.128)

Example 28. Find Z for the network in Figure 7.83 so that maximum average power is transferred to Z.
Determine the value of Pmax.

Solution. We first obtain the Thévenin equivalent of the circuit to the left of the dotted arc in Figure 7.83
in order to reduce the circuit to the form of Figure 7.82.

Thus,

FIGURE 7.83 Circuit for Example 28.
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The term j(ωC) appears inductive (at a single frequency), and so we equate it to jωL to obtain:

The impedance Z is therefore formed by the parallel connection of a resistor R1 with the inductor L.
Figure 7.84 depicts the resulting circuit. To determine Pmax, we note that the capacitor and inductor
constitute a parallel circuit which is resonant at the frequency of excitation. It therefore appears as an
open circuit to the source. Thus, Pmax is easily obtained as:

where V is the peak value of v(t). ▫

Suppose Z is fixed and Zs is adjustable in Figure 7.82. What should Zs be so that maximum average
power is delivered to Z? This is a problem that is applicable in the design of electronic amplifiers. The
average power delivered to Z is given by (7.122), and to maximize P, we set Xs(ω) = –X(ω) as before. We
therefore obtain (7.124) again; but if Rs is adjustable instead of R, we see from (7.124) that Pmax is obtained
when Rs equals zero.
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8.1 Introduction and Definition

Symbolic circuit analysis, simply stated, is a term that describes the process of studying the behavior of
electrical circuits using symbols instead of, or in conjunction with, numerical values. As an example to
illustrate the concept, consider the input resistance of the simple circuit in Figure 8.1. Analyzing t8-he
circuit using the unique symbols for each resistor without assigning any numerical values to them yields
the input resistance of the circuit in the form:

(8.1)

Equation (8.1) is the symbolic expression for the input resistance of the circuit in Figure 8.1.
The formal definition of symbolic circuit analysis can be written as:

Definition 1. Symbolic circuit analysis is the process of producing an expression that describes a certain
behavioral aspect of the circuit with one, some, or all the circuit elements represented as symbols.

The idea of symbolic circuit analysis is not new; engineers and scientists have been using the process
to study circuits since the inception of the concept of circuits. Every engineer has used symbolic circuit
analysis during his or her education process. Most engineers still use it in their everyday job functions.
As an example, all electrical engineers have symbolically analyzed the circuit in Figure 8.2. The equivalent
resistance between nodes i and j is known to be:

or

This is the most primitive form of symbolic circuit analysis.
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8-2 Circuit Analysis and Feedback Amplifier Theory

The basic justification for performing symbolic analysis rather than numerical analysis on a circuit can be
illustrated by considering the circuit in Figure 8.1 again. Assume that the values of all the resistances R1 through
R4 are given as 1Ω and that the input resistance was analyzed numerically. The result obtained would be

(8.2)

Now, consider the problem of increasing the input resistance of the circuit by adjusting only one of the
resistor values. Equation (8.2) provides no insight into which resistor has the greatest impact on the input
resistance. However, Eq. (8.1) clearly demonstrates that changing R2, R3, or R4 would have very little impact
on the input resistance because the terms appear in both the numerator and the denominator of the
symbolic expression. It can also be observed that R1 should be the resistor to change because it only appears
in the numerator of the expression. Symbolic analysis has provided an insight into the problem.

From a circuit design perspective, numerical results from the simulation of a circuit can be obtained
by evaluating the results of the symbolic analysis at a specific numerical point for each symbol. Ideally,
only one simulation run is needed in order to analyze the circuit, and successive evaluations of the results
replaces the need for any extra iterations through the simulator. Other applications include sensitivity
analysis, circuit stability analysis, device modeling and circuit optimization [5, 18, 32, 41].

Although the previous “hand calculations” and somewhat trivial examples are used to illustrate sym-
bolic circuit analysis, the thrust of the methods developed for symbolic analysis are aimed at computer
implementations that are capable of symbolically analyzing circuits that cannot be analyzed “by hand.”
Several such implementations have been developed over the years [4, 10, 12, 15, 17, 22, 25, 26, 28, 29,
31, 34, 35, 37, 38, 47, 48, 53, 54, 56–61, 66].

Symbolic circuit analysis, referred to simply as symbolic analysis for the rest of this section, in its
current form is limited to linear,1 lumped, and time-invariant2 networks. The scope of the analysis is

FIGURE 8.1  Symbolic circuit analysis example.

FIGURE 8.2  Common symbolic analysis problem.

1Some references are made to the ability to analyze "weakly nonlinear" circuits [18, 63]; however, the actual
symbolic analysis is performed on a linearized model of the weakly nonlinear circuit. Other techniques are applicable
to circuits with only a single strongly nonlinear variable [65].

2One method is reported in Reference [36] that is briefly discussed in Section 8.6 that does deal with a limited
class of time-variant networks.
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primarily concentrated in the frequency domain, both s-domain [10, 12, 15, 17, 22, 25, 28, 29, 34, 38,
43, 47, 48, 54, 56, 59–61, 66] and z-domain [4, 31, 35, 44]; however, the predominant development has
been in the s-domain. Also, recent work has expanded symbolic analysis into the time domain [3, 24, 36].
The next few subsections will discuss the basic methods used in symbolic analysis for mainly s-domain
frequency analysis. However, Section 8.6 highlights the currently known time-domain techniques. 

8.2 Frequency-Domain Analysis

Traditional symbolic circuit analysis is performed in the frequency domain where the results are in terms
of the frequency variable s. The main goal of performing symbolic analysis on a circuit in the frequency
domain is to obtain a symbolic transfer function of the form

(8.3)

The expression is a rational function of the complex frequency variable s, and the variables x1 through
xp representing the variable circuit elements, where p is the number of variable circuit elements and pall

is the total number of circuit elements. Both the numerator and the denominator of H(s,x) are polyno-
mials in s with real coefficients. Therefore, we can write

Most symbolic methods to date concentrate on the first form of H(s,x) and several algorithms exist to
obtain coefficients ai(x) and bi(x) in fully symbolic, partially symbolic (semi-symbolic), or numerical
form. The zero/pole representation of H(s,x), although more useful in gaining insight into circuit behav-
ior, proved to be very difficult to obtain in symbolic form for anything but very simple circuits. For large
circuits, various approximation techniques must be employed [9, 26].

A more recent approach to representing the above network function emerged in the 1980s and is based
on a decomposed hierarchical form of Eq. (8.3) [22, 25, 51, 61, 62]. This hierarchical representation is
referred to as a sequence of expressions representation to distinguish it from the single expression repre-
sentation of Eq. (8.3) and is addressed in Section 8.4.

Several methodologies exist to perform symbolic analysis in the frequency domain. The early work was
to produce a transfer function H(s) with the frequency variable s being the only symbolic variable. Computer
programs with these capabilities include: CORNAP [54] and NASAP [47]. The interest in symbolic analysis
today is in the more general case when some or all of the circuit elements are represented by symbolic
variables. The methods developed for this type of analysis fall under one of the following categories:

Traditional methods (single expression):

1. Tree enumeration methods

• Single graph methods

• Two graph methods

2. Signal flow graph methods
3. Parameter extraction methods

• Modified nodal analysis-based methods

• Tableau formulation-based methods

4. Interpolation method
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8-4 Circuit Analysis and Feedback Amplifier Theory

Hierarchical methods (sequence of expressions):

1. Signal flow graph methods
2. Modified nodal analysis-based methods

The preceding classification includes the exact methods only. For large circuits, the traditional methods
suffer from exponential growth of the number of terms in the formula with circuit size. If a certain degree
of error is allowed, it may be possible to simplify the expression considerably, by including only the most
significant terms. Several approximate symbolic methods have been investigated [26, 28, 69].

The next three sections discuss the basic theory for the above methods. Circuit examples are illustrated
for all major methods except for the interpolation method due to its limited current usage3 and its
inability to analyze fully symbolic circuits.

8.3 Traditional Methods (Single Expressions)

This class of methods attempts to produce a single transfer function in the form of Eq. (8.3). The major
advantage of having a symbolic expression in that form is the insight that can be gained by observing
the terms in both the numerator and the denominator. The effects of the different terms can, perhaps,
be determined by inspection. This process is valid for the cases where relatively few symbolic terms are
in the expression.

Before indulging in the explanation of the different methods covered by this class, some definition of
terms is in order.

Definition 2. RLCgm circuit is one that may contain only resistors, inductors, capacitors, and voltage-
controlled current sources with the gain (transconductance) designated as gm.

Definition 3. Term cancellations is the process in which two equal symbolic terms cancel out each other
in the symbolic expression. This can happen in one of two ways: by having two equal terms with opposite
signs added together, or by having two equal terms (regardless of their signs) divided by each other. For
example, the equation

(8.4)

where a, b, c, d, e, f, g, and h are symbolic terms, can be reduced by observing that the terms ab in the
numerator and denominator cancel each other and the terms +cd and –cd cancel each other in the
numerator. The result is:

(8.5)

Definition 4. Cancellation-free: Equation (8.4) is said to be a cancellation-free equation (that is, no
possible cancellations exist in the expression) while Eq. (8.5) is not.

Definition 5. Cancellation-free algorithm: The process of term cancellation can occur during the execu-
tion of an algorithm where a cancellation-free equation is generated directly instead of generating an
expression with possible term cancellations in it. Cancellation-free algorithms are more desirable because,
otherwise, an overhead is needed to generate and keep the terms that are to be canceled later.

3The main applications of the polynomial interpolation method in symbolic analysis are currently in numerical
reference generation for symbolic approximation [14] and calculation of numerical coefficients in semi-symbolic
analysis [50].
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The different methods that fall under the traditional class are explained next.

1. The tree enumeration methods 
Several programs have been produced based on this method [6, 16, 42, 46]. Practical implementations
of the method can only handle small circuits in the range of 15 nodes and 30 branches [7]. The main
reason is the exponential growth in the number of symbolic terms generated. The method can only
handle one type of controlled source, namely, voltage controlled current sources. So only RLCgm circuits
can be analyzed. Also, the method does not produce any symbolic term cancellations for RLC circuits,
and produces only a few for RLCgm circuits.

The basic idea of the tree enumeration method is to construct an augmented circuit (a slightly modified
version of the original circuit), its associated directed graph, and then enumerating all the directed trees
of the graph. The admittance products of these trees are then used to find the node admittance matrix
determinant and cofactors (the matrix itself is never constructed) to produce the required symbolic
transfer functions. For a circuit with n nodes (with node n designated as the reference node) where the
input is an excitation between nodes 1 and n and the output is taken between nodes 2 and n, the transfer
functions of the circuit can be written as:

(8.6)

(8.7)

(8.8)

where ∆ is the determinant of the node admittance matrix Yn (dimension n-1 × n-1) and ∆ij is the ijth
cofactor of Yn. It can be shown that a simple method for obtaining ∆, ∆11, and ∆12 is to construct another
circuit comprised of the original circuit with an extra admittance ŷs in parallel with a voltage controlled
current source, ĝmV2, connected across the input terminals (nodes 1 and n). The determinant of Ŷn (the
node admittance matrix for the new, slightly modified, circuit) can be written as: 

(8.9)

This simple trick allows the construction of the determinant expression of the original circuit and its
two needed cofactors by simply formulating the expression for the new augmented circuit. Example 8.1
below illustrates this process.

The basic steps of the tree enumeration algorithm are (condensed from [7]):

1. Construct the augmented circuit from the original circuit by adding an admittance ŷs and a
transconductance ĝmV2, in parallel between the input node and the reference node.

2. Construct a directed graph Gind associated with the augmented circuit. The stamps used to generate
Gind are illustrated in Figure 8.3.

3. Find all directed trees for Gind. A directed tree rooted at node i is a subgraph of Gind with node i
having no incoming branches and each other node having exactly one incoming branch.

4. Find the admittance product for each directed tree. An admittance product of a directed tree is
simply a term that is the product of all the weights of the branches in that tree. 

5. Apply the following theorem:
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8-6 Circuit Analysis and Feedback Amplifier Theory

Theorem 8.1 [7]: For any RLCgm circuit, the determinant of the node admittance matrix (with any node
as the reference node) is equal to the sum of all directed tree admittance products of Gind (with any node
as the root).

In other words

(8.10)

Arranging Eq. (8.10) in the form of Eq. (8.9) results in the necessary determinant and cofactors of the
original circuit and the required transfer functions are generated from Eqs. (8.6), (8.7), and (8.8).

Example 1. A circuit and its augmented counterpart are illustrated in Figure 8.4. The circuit is the small-
signal model of a simple inverting CMOS amplifier, shown with the coupling capacitance CC taken into
account. Figure 8.5 depicts the directed graph associated with the augmented circuit constructed using
the rules in Figure 8.3. The figure also presents all the directed trees rooted at node 3 of the graph. Parallel
branches heading in the same direction are combined into one branch with a weight equal to the sum
of the weights of the individual parallel branches.

FIGURE 8.3 Element stamps for generating Gind.

FIGURE 8.4  Circuit of Example 8.1 and its augmented equivalent diagram.
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Symbolic Analysis 8-7

Applying Eq. (8.10) and rearranging the terms results in:

(8.11)

Note the fact that Eq. (8.11), which is the direct result of the algorithm, is not cancellation-free. Some
terms cancel out to result in the determinant of the original circuit and its two cofactors of interest. The
final transfer functions can be obtained readily by substituting the preceding results into Eq. (8.6)
through (8.8).

2. The signal flow graph method 
Two types of flow graphs are used in symbolic analysis. The first is referred to as a Mason’s SFG and the
second as Coates graph. Mason’s SFG is by far a more popular and well-known SFG that has been used
extensively in symbolic analysis among other controls applications. Both the Mason’s SFG and the Coates
graph are used as a basis for hierarchical symbolic analysis. However, the Coates graph was introduced
to symbolic analysis by Starzyk and Konczykowska [61] solely for the purpose of performing hierarchical
symbolic analysis. This section covers the Mason’s SFG only.

The symbolic methods developed here are based on the idea formalized by Mason [45] in the 1950s.
Formulation of the signal flowgraph and then the evaluation of the gain formula associated with it
(Mason’s formula) is the basis for symbolic analysis using this method. This method is used in the publicly
available programs NASAP [47, 49] and SNAP [38]. The method has the same circuit size limitations as
the tree enumeration method due to the exponential growth in the number of symbolic terms. However,

FIGURE 8.5  Graph and its directed trees of Example 8.1.
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8-8 Circuit Analysis and Feedback Amplifier Theory

the signal flowgraph method allows all four types of controlled sources to be analyzed which made it a
more popular method for symbolic analysis. The method is not cancellation-free, which contributes to
the circuit size limitation mentioned earlier. An improved signal flowgraph method that avoids term
cancellations was described in [48].

The analysis process of a circuit consists of two parts: the first is constructing the SFG for the given
circuit and the second is to perform the analysis on the SFG. Some definitions are needed before
proceeding to the details of these two parts.

Definition 6. Signal Flow Graph: An SFG is a weighted directed graph representing a system of simul-
taneous linear equations. Each node (xi) in the SFG represents a circuit variable (node voltage, branch
voltage, branch current, capacitor charge, or inductor flux) and each branch weight (wij) represents a
coefficient relating xi to xj. 

Every node in the SFG can be looked at as a summer. For a node xk with m incoming branches

(8.12)

where i spans the indices of all incoming branches from xi to xk. 

Definition 7. Path Weight: The weight of a path from xi to xj (Pij) is the product of all the branch weights
in the path. 

Definition 8. Loop Weight: The weight of a loop is the product of all the branch weights in that loop.
This also holds for a loop with only one branch in it (self-loop).

Definition 9. nth Order Loop: An nth order loop is a set of n loops that have no common nodes between
any two of them. The weight of an nth order loop is the product of the weights of all n loops.

Any transfer function xj /xi, where xi is a source node, can be found by the application of Mason’s
formula:

(8.13)

where

(8.14)

(8.15)

The use of the preceding equations can be illustrated via an example.
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∆k = ∆ with all loop contributions that are touching Pk eliminated

© 2006 by Taylor & Francis Group, LLC



Symbolic Analysis 8-9

Example 2. Consider the circuit in Figure 8.6. The formulation of the SFG for this circuit takes on the
following steps:

1. Find a tree and a co-tree of the circuit such that all current sources are in the co-tree and all
voltage sources are in the tree.

2. Use Kirchhoff ’s current law (KCL), branch admittances, and tree branch voltages to find an
expression for every co-tree link current. In the case of a controlled source, simply use the branch
relationship. For the previous example, this yields:

3. Use Kirchhoff ’s voltage law (KVL), branch impedances, and co-tree link currents to find an
expression for every tree branch voltage. In the case of a controlled source, simply use the branch
relationship. For the previous example, this yields:

4. Create the SFG by drawing a node for each current source, voltage source, tree branch voltage,
and co-tree link current.

5. Use Eq. (8.12) to draw the branches between the nodes that realize the linear equations developed
in the previous steps.

Figure 8.7 is the result of executing the preceding steps on the example circuit. This formulation is referred
to as the compact SFG. Any other variables that are linear combinations of the variables in the SFG (e.g.,
node voltages) can be added to the SFG by simply adding the extra node and implementing the linear
relationship using SFG branches. A more detailed discussion of SFGs can be found in [7] and [40].

Now applying Eqs. (8.14) and (8.15) yields:

FIGURE 8.6  Circuit for Example 8.2 with its tree highlighted.

FIGURE 8.7  SFG for Example 8.2.
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8-10 Circuit Analysis and Feedback Amplifier Theory

Equation (8.13) then produces the final transfer function

3. The parameter extraction method 
This method is best suited when few parameters in a circuit are symbolic while the rest of the parameters
are in numeric form (s being one of the symbolic variables). The method was introduced in 1973 [2].
Other variations on the method were proposed later in [50, 56, 59]. The advantage of the method is that
it is directly related to the basic determinant properties of widely used equation formulation methods such
as the modified nodal method [27] and the tableau method [21]. As the name of the method implies, it
provides a mechanism for extracting the symbolic parameters out of the matrix formulation, breaking the
matrix solution problem into a numeric part and a symbolic part. The numeric part can then be solved
using any number of standard techniques and recombined with the extracted symbolic part. The method
has the advantage of being able to handle larger circuits than the previously discussed fully symbolic
methods if only a few parameters are represented symbolically. If the number of symbolic parameters in
a circuit is high, the method will exhibit the same exponential growth in the number of symbolic terms
generated and will have the same circuit size limitations as the other algorithms previously discussed.

The method does not limit the type of matrix formulation used to analyze the circuit. However, the
extraction rules depend on the pattern of the symbolic parameters in the matrix. Alderson and Lin [1]
use the indefinite admittance matrix as the basis of the analysis and the rules depend on the appearance
of a symbolic parameter in four locations in the matrix: (i,i), (i,j), (j,i), and (j,j). Singhal and Vlach [59]
use the tableau equations and can handle a symbolic parameter that only appears once in the matrix.
Sannuti and Puri [56] force the symbolic parameters to appear only on the diagonal using a two-graph
method [7] to write the tableau equations. The parameter extraction method was further simplified in
[50], where the formula is given to calculate a coefficient (generally a polynomial in s) at every symbol
combination. Some invalid symbol combinations (i.e., the ones that do not appear in the final formula)
can be eliminated before calculations by topological considerations. To illustrate both approaches to
parameter extraction, this section presents the indefinite admittance matrix (IAM) formulation and the
most recent two-graph method. Details of other formulations can be found in [40, 48, 56, 59].

Indefinite Admittance Matrix Approach

One of the basic properties of the IAM is the symmetric nature of the entries sometimes referred to as
quadrantal entries [7, 40]. A symbolic variable α will always appear in four places in the indefinite
admittance matrix, +α in entries (i, k) and (j, m), and -α in entries (i, m) and (j, k) as demonstrated in
the following equation:

where i ≠ j and k ≠ m. For the case of an admittance y between nodes i and j, we have k = i and j = m.
The basic process of extracting the parameter (the symbol) α can be performed by applying the following
equation [2, 7]:
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Symbolic Analysis 8-11

(8.16)

where Yα is a matrix that does not contain α and is obtained by:

1. Adding row j to row i
2. Adding column m to column k
3. Deleting row j and column m

For the case where several symbols exist, the previous extraction process can be repeated and would
result in

where Pj is some product of symbolic parameters including the sign and Yj is a matrix with the frequency
variable s, possibly being the only symbolic variable. The cofactor of Yj may be evaluated using any of
the usual evaluation methods [7, 64]. Programs implementing this technique include NAPPE2 [40] and
SAPWIN [37].

Example 4 [7]. Consider the resistive circuit in Figure 8.8. The goal is to find the input impedance Z14

using the parameter extraction method where gm is the only symbolic variable in the circuit. In order to
use Eqs. (8.6) and (8.9), an admittance ŷs is added across the input terminals of the circuit to create the
augmented circuit.

The IAM is then written as (conductances in siemens [S])

Applying Eq. (8.16) to extract ŷs results in

FIGURE 8.8  Circuit for the parameter extraction method (resistances in ohms [Ω]).
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8-12 Circuit Analysis and Feedback Amplifier Theory

Applying Eq. (8.16) again to extract gm yields

After evaluating the cofactors numerically, the equation reduces to

From Eq. (8.9), this results in

Two-Graph-Based Tableau Approach [50]

This approach also employs the circuit augmentation by ŷs and ĝmVo, as in the tree enumeration method.
It calls for the construction of two graphs: the voltage graph (GV or V-graph) and the current graph (GI

or I-graph). For the purpose of parameter extraction (as well as generation of approximate symbolic
expressions; see Section 8.5), it is required that both graphs have the same number of nodes (n). This
means that the method can be directly applied only to RLCgm circuits. (All basic circuit components,
including ideal op amps, can be handled by this approach after some circuit transformations [40, 64].
For the sake of simplicity, however, only RLCgm circuits will be considered in this presentation.) The two
graphs are constructed based on the element stamps shown in Figure 8.9. Once the two graphs are
constructed, a common spanning tree (i.e., a set of n-1 branches that form a spanning tree in both voltage
and current graphs) is chosen. Choosing the common spanning tree (referred to just as “tree” in the
remainder of this section) uniquely determines the co-tree in each graph.

FIGURE 8.9  Element stamps for generating GV and GI.
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The tableau equation for such a network can be written as

(8.17)

The first and last row of the system matrix H in Eq. (8.17) consists of tree (●T ) and co-tree (●C ) branch
voltage-current relationships, and the second and third rows consist of fundamental loop and funda-
mental cut-set equations for GV and GI, respectively.

Let the circuit have n nodes and b branches and contain k symbolic components (YS1, …, YSk) in the
co-tree branches (links) and l symbolic components (ZS1, …, ZSl ) in the tree branches; we define w =
b – n – k + 1, t = n – l – 1. Diagonal matrices YC and ZT can be partitioned as follows

(8.18)

where subscript s denotes immitances of symbolic components and subscript n denotes immitances of
components given numerically.

Matrices BT (fundamental loop matrix in GV) and QC (fundamental cut-set matrix in GI) can also be
partitioned as follows:

(8.19)

Rows of B11 and B12 correspond to symbolic co-tree branches (in GV) and their columns correspond
to symbolic and numeric tree branches, respectively. Rows of B21 and B22 correspond to numeric co-tree
branches. Rows of Q11 and Q12 correspond to symbolic tree branches and their columns correspond to
symbolic and numeric co-tree branches, respectively. Rows of Q21 and Q22 correspond to numeric tree
branches. The submatrices are therefore of the following order: B11: k × l, B22: w × t, Q11: l × k, Q22: t × w.

Let Sx = {1, 2, …, x}. For a given matrix F of order a × b let F(Iu, Jv) be the submatrix of F consisting
of the rows and columns corresponding to the integers in the sets Iu, Jv, respectively. The sets Iu = {i1, i2,
…, iu} and Jv = {j1, j2, …, jv} are subsets of Sa and Sb, respectively. Let us also introduce the following notation:

The determinant of the system matrix H in Eq. (8.17), when some parameters take fixed numerical values,
is

(8.20)
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8-14 Circuit Analysis and Feedback Amplifier Theory

where the summations are taken over all possible symbol combinations αv (symbolic tree elements) and
βu (symbolic co-tree elements), and the numerical coefficients are given by:

(8.21)

In the preceding equations, 0 represents a zero matrix of appropriate order, and the submatrices B′ij
and Q′ij are defined as:

(8.22)

where the submatrix B21(Iw, Jv) is obtained from the submatrix B21 by including all of its rows and only
columns corresponding to a particular combination (αv) of symbolic tree elements; submatrix Q21(Jt, Iu)
is obtained from the submatrix Q21 by including all of its rows and only columns corresponding to a
particular combination (βu) of symbolic co-tree elements.

Application of Eqs. (8.20) and (8.21) for a circuit with m symbolic parameters requires, theoretically,
the calculation of 2m determinants. Not all of these determinants may need to be calculated due to the
following property of the determinants in Eq. (8.21). If a set of symbolic tree elements (αv) forms a cut-
set in GI (symbolic tree cut-set), then the corresponding coefficients b(αv) and d(αv βu) in Eq. (8.20) equal
to zero. Likewise, if the set of symbolic co-tree elements (βu) forms a loop in GV (symbolic co-tree loop),
the corresponding coefficients c(βu) and d(αv βu) in Eq. (8.20) equal to zero.

Once the determinant det(H) is obtained from Eq. (8.20), the sorting scheme, identical to that
expressed in Eq. (8.9), is applied and the required network function(s) can be calculated using Eqs. (8.6)
through (8.8).

The main feature of this approach is the fact that each coefficient at a valid symbol combination is
obtained directly by calculating a single, easily formulated determinant (a polynomial in s, in general
case). The method was implemented in a computer program called UTSSNAP [52]. The following
example illustrates this technique of parameter extraction.

Example 5. Consider again the circuit in Figure 8.8. Assume this time that two components, R1 and gm,
are given symbolically. The goal is again to find the input impedance Z41 in a semi-symbolic form using
the parameter extraction method based on the two-graph tableau formulation.

The voltage and current graphs of the circuit are shown in Figure 8.10. The common spanning tree
chosen is T = {R1, R2, R3} with one symbolic element. For this circuit, we have: n = 4, b = 7, k = 2, l = 1,
w = 2, and t = 2.
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The matrices YC , ZT, QC, and BT can now be determined as: 

Using Eq. (8.22), we can calculate matrices B′22 and Q′22:

Now, applying Eq. (8.21), the coefficient a in Eq. (8.20) is calculated as:

Because only one symbolic tree element exists, namely R1, we have: αv = {R1} and the associated sets:
Jv = {1}, Iw = {1,2}. Using Eq. (8.22), we calculate

The coefficient b(R1) can now be obtained from:

FIGURE 8.10 The current and voltage graphs for the circuit in Figure 8.8 with the common spanning tree highlighted.
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8-16 Circuit Analysis and Feedback Amplifier Theory

Other numerical coefficients in Eq. (8.20) are calculated in a similar way: 

Adding all terms, sorting according to Eq. (8.9), and applying Eq. (8.6) finally results in:

Matrices in Eq. (8.21) may contain terms dependent on the complex frequency s. Determinants of
such matrices are polynomials in s as long as all matrix elements are of the form: a = α + sβ. An
interpolation method may be used to calculate the coefficients of those polynomials. One such method
is briefly described in the next paragraph.

4. The interpolation method 
This method is best suited when s is the only symbolic variable. In such case, a transfer function has the
rational form

where N(s) and D(s) are polynomials in s with real coefficients and m ≤ n.
Coefficients of an nth-order polynomial

can be obtained by calculating the value of P(s) at n + 1 distinct points si and then solving the following
set of equations:

(8.23)
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Because the matrix in Eq. (8.23) is nonsingular, the unique solution exists. It is well known [58, 64] that
for numerical accuracy and stability, the best choice of the interpolation points is a set of q ≥ n + 1 points
si uniformly spaced on the unit circle in the complex plane. Once all the values of P(si) are known, the
polynomial coefficients can be calculated through the discrete Fourier transform (DFT).

To apply this technique to the problem of finding a transfer function, let us assume that a circuit
behavior is described by a linear equation

(8.24)

in which the coefficient matrix has entries of the form: a = α + sβ (both the modified nodal and the
tableau methods have this property). Then, each transfer function of such circuit has the same denom-
inator D(s) = �A�. If the circuit Eq. (8.24) is solved by LU factorization at s = si, both the transfer function
H(si) and its denominator D(si) are obtained simultaneously. The value of the numerator is then calculated
simply as N(si) = H(si)D(si). Repeating this process for all points si (i = 0, 1, …, q) and then applying
the DFT to both sets of values, D(si) and N(si), gives the required coefficients of the numerator and
denominator polynomials.

If the number of interpolation points is an integer power of 2 (q = 2k), the method has the advantage
that the fast Fourier transform can be used to find the coefficients. This greatly enhances the execution
time [40]. The method has been extended to handle several symbolic variables in addition to s [58]. The
program implementation [64] allows a maximum of five symbolic parameters in a circuit.

With the emergence of approximate symbolic analysis, the polynomial interpolation method has
attracted new interest. (It is desirable to know the accurate numerical value of polynomial coefficients
before one attempts an approximation.) Recently, a new adaptive scaling mechanism was proposed [14]
that significantly increases the circuit size that can be handled accurately and efficiently. 

Other classifications of symbolic methods have been reported [18]. These methods can be considered
as variations on the previous basic four methods. The reported methods include elimination algorithms,
recursive determinant-expansion algorithms, and nonrecursive nested-minors method. All three are
based on the use of Cramer’s rule to find the determinant and the cofactors of a matrix. Another reported
class of algorithms uses Modified Nodal Analysis [27] as the basis of the analysis, sometimes referred to
as a direct network approach [22, 36]. This class of methods is covered in the next section. 

The first generation of computer programs available for symbolic circuit simulation based on these
methods includes NASAP [47] and SNAP [38]. Research in the late 1980s and early 1990s produced
newer symbolic analysis programs. These programs include ISSAC [18], SCAPP [22], ASAP [12], EASY
[60], SYNAP [57], SAPEC [43], SAPWIN [37], SCYMBAL [31], GASCAP [29], SSPICE [66], and STAINS
[53].

8.4 Hierarchical Methods (Sequence of Expressions)

All the methods presented in the previous section have circuit size limitations. The main problem is the
exponential growth of the number of symbolic terms involved in the expression for the transfer function
in Eq. (8.3) as the circuit gets larger. The solution to analyzing large-scale circuits lies in a total departure
from the traditional procedure of trying to state the transfer function as a single expression and using a
sequence of expressions (SoE) procedure instead. The idea is to produce a succession of small expressions
with a backward hierarchical dependency on each other. The growth of the number of expressions in
this case will be, at worst case, quadratic [22].

The advantage of having the transfer function stated in a single expression lies in the ability to gain
insight to the relationship between the transfer function and the network elements by inspection [39].
For large expressions, though, this is not possible and the single expression loses that advantage. ISSAC
[67], ASAP [13], SYNAP [57], and Analog Insydes [26] attempt to handle larger circuits by maintaining
the single expression method and using circuit dependent approximation techniques. The tradeoff is

Ax b=
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8-18 Circuit Analysis and Feedback Amplifier Theory

accuracy for insight. Therefore, the SoE approach is more suitable for accurately handling large-scale
circuits. The following example illustrates the features of the sequence of expressions.

Example 6. Consider the resistance ladder network in Figure 8.11. The goal is to obtain the input
impedance function of the network, Zin = Vin /Iin. The single expression transfer function Z4 is:

The number of terms in the numerator and denominator are given by the Fibonacci numbers satisfying
the following difference equation: 

An explicit solution to the preceding equation is: 

The solution demonstrates that the number of terms in Zn increases exponentially with n. Any single
expression transfer function has this inherent limitation.

Now, using the SoE procedure, the input impedance can be obtained from the following expressions:

It is obvious for each additional resistance added, the sequence of expressions will grow by one expression,
either of the form Zi– 1 + Ri or Zi – 1Ri/Zi –1 + Ri. The number of terms in the sequence of expressions can
be calculated from the formula:

which exhibits a linear growth with respect to n. Therefore, to find the input impedance of a 100-resistor
ladder network, the single expression methods would produce 7.9 × 1020 terms, which requires unreal-
istically huge computer storage capabilities. On the other hand, the SoE method would produce only
248 terms, which is even within the scope of some desk calculators.

Another advantage of the SoE is the number of arithmetic operations needed to evaluate the transfer
function. To evaluate Z9, for example, the single expression methods would require 302 multiplications

FIGURE 8.11  Resistive ladder network.
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and 87 additions. The SoE method would only require eight multiplications and eight additions, a large
reduction in computer evaluation time. All this makes the concept of symbolic circuit simulation of
large-scale networks very possible.

Two topological analysis methods for symbolic simulation of large-scale circuits have been proposed
in [61] and in [25]. The first method utilizes the SoE idea to obtain the transfer functions. The method
operates on the Coates graph [8] representing the circuit. A partitioning is proposed onto the flowgraph
and not the physical network. The second method also utilizes the sequence of expressions and a Mason’s
signal flow graph [45] representation of the circuit. The method makes use of partitioning on the physical
level instead of on the graph level. Therefore, for a hierarchical circuit, the method can operate on the
subcircuits in a hierarchical fashion in order to produce a final solution. The fundamentals of both signal
flow graph methods were described in the previous section.

Another hierarchical approach is one that is based on Modified Nodal Analysis [27]. This method [22]
exhibits a linear growth (for practical circuits) in the number of terms in the symbolic solutions. The
analysis methodology introduces the concept of the RMNA (Reduced Modified Nodal Analysis) matrix.
This allows the characterization of symbolic circuits in terms of only a small subset of the network
variables (external variables) instead of the complete set of variables. The method was made even more
effective by introducing a locally optimal pivot selection scheme during the reduction process [53]. For
a circuit containing several identical4 subcircuits, the analysis algorithm is most efficient when network
partitioning is used. For other circuits, the best results (the most compact SoE) are obtained when the
entire circuit is analyzed without partitioning.

The SoE generation process starts with the formulation of a symbolic Modified Node Admittance
Matrix (MNAM) for a circuit [40, 64]. Then all internal variables are suppressed one by one using
Gaussian elimination with locally optimal pivot selection. Each elimination step produces a series of
expressions and modifies some entries in the remaining portion of the MNAM. When all internal variables
are suppressed, the resulting matrix is known as the Reduced Modified Node Admittance Matrix
(RMNAM). Usually it will be a 2 × 2 matrix of a two-port.5 Most transfer functions of interest to a circuit
designer can be represented by formulas involving the elements of RMNAM and the terminating admit-
tances. A detailed discussion of the method can be found in [53]. Based on this approach, a computer
program called STAINS was developed.

For a circuit with several identical subcircuits, the reduction process is first applied to all internal
variables6 of the subcircuit, resulting in an intermediate RMNAM describing the subcircuit. Those
RMNAMs are then recombined with the MNAM of the remaining circuit and the reduction process is
repeated on the resulting matrix.

To further illustrate the SoE approach, we present the following example.

Example 7. Consider a bipolar cascade stage with bootstrap capacitor CB illustrated in Figure 8.12 [18].
With the BJTs replaced by their low-frequency hybrid-π models (with rB, gm, and ro only), the full symbolic
analysis yields the output admittance formula outlined in Figure 8.13. The formula requires 48 additions
and 117 multiplication/division operations. STAINS can generate several different sequences of expres-
sions. One of them is presented in Figure 8.14. It requires only 24 additions and 17 multiplica-
tions/divisions.7

4The subcircuits have to be truly identical, i.e., they must have the same topology and component symbols. A
typical example would be a large active filter containing a number of identical, nonideal op amps. 

5In sensitivity calculations using SoE [5], the final RMNAM may need to be larger than 2 × 2. 
6The internal variables are the variables not directly associated with the subcircuit’s connections to the rest of the

circuit.
7Counting of visible arithmetic operations gives only a rough estimate of the SoE complexity, especially when

complex numbers are involved. Issues related to SoE computational efficiency are discussed in Reference [55].
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8-20 Circuit Analysis and Feedback Amplifier Theory

8.5 Approximate Symbolic Analysis

The SoE approach offers a solution for the exact symbolic analysis of large circuits. For some applications,
it may be more important to obtain a simpler inexact expression, but the one that would clearly identify
the dominant circuit components and their role in determining circuit behavior. Approximate symbolic

FIGURE 8.12  Bipolar cascode stage.

FIGURE 8.13  Full symbolic expression for Zo of the cascode in Figure 8.12.

FIGURE 8.14  The SoE generated by STAINS for the cascode in Figure 8.12.
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s*(Cb*Go1*G1*Gp1+Cb*Go1*Gp1*Gp2+Cb*Go1*G2*Gp1+Cb*Go1*G1*Go2+Cb*Go1*Go2*Gp2+…
Cb*Go1*G2*Go2)); 

d1 = -(G2+Gp2+s*Cb)/(s*Cb);

x1 = (Go1+Gm1)*d1-Gp2-Gm2;

x2 = -s*Cb-(G1+Gp1+Go1+Gm1+s*Cb)*d1;

d2 = Gp2/(s*Cb);

x3 = Go1+Gp2+Go2+Gm2+(Go1+Gm1)*d2;

x4 = -Go1-(G1+Gp1+Go1+Gm1+s*Cb)*d2;

d3 = x2/(x4);

x5 = Gm2+(Go2+Gm2)*d3;

x6 = x1-x3*d3;

Yo = Go2+x5*Go2/(x6);

Zo = 1/Yo;
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analysis provides the answer. Of course, manual approximation (simplification) techniques have been
known and practiced by engineers for decades. To obtain compact and meaningful expressions by
computer, symbolic analysis software must be capable of performing those approximations that are
applied in manual circuit analysis in an automatic fashion. In addition to that, computer algorithms
should be able to employ simplification strategies not available (or impractical) in manual approximation.

In the last decade, a number of symbolic approximation algorithms have been developed and imple-
mented in symbolic circuit analysis programs. Depending on the stage in the circuit analysis process in
which they are applied, these algorithms can be categorized as: simplification before generation (SBG),
simplification during generation (SDG), and simplification after generation (SAG). Figure 8.15, adapted
from [26], presents an overview of the three types of approximation algorithms.

SBG involves removing circuit components and/or individual entries in the circuit matrix (the sifting
approach [28]) or eliminating some graph branches (the sensitivity-based two-graph simplification [69])
that do not contribute significantly to the final formula.

SDG is based on generation of symbolic terms in a decreasing order of magnitude. The generation
process is stopped when the error reaches the specified level. The most successful approach to date is
based on the two-graph formulation [68]. It employs an algorithm to generate the common spanning
trees in strictly decreasing order of magnitude [30]. In the case of frequency-dependent circuit, this
procedure is applied separately to different powers of s. Mathematical formalism of matroids is well suited
to describe problems of SDG [69].

When applied alone, SAG is a very ineffective technique, because it requires generation and storage
of a large number of unnecessary terms. When combined with SBG and SDG methods, however, it can
produce the most compact expressions by pruning redundant terms not detected earlier in the simplifi-
cation process.

All simplification techniques require careful monitoring of the approximation amplitude and phase
errors (εA and εp). The error criteria can be expressed as follows:

FIGURE 8.15  Classification of symbolic approximation techniques [26].
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8-22 Circuit Analysis and Feedback Amplifier Theory

for s = jω, ω ∈ (ω1,ω2), and x ∈ (x1,x2), where H(s,x) is the exact transfer function, defined by Eq. (8.3),
and H*(s,x) is the approximating function. The majority of the approximation methods developed to
date use the simplified criteria, where the errors are measured only for a given set of circuit parameters
x0 (the nominal design point) [33].

The following example, although quite simple, illustrates very well the advantages of approximate
symbolic analysis.

Example 8 [18]. Consider again the bipolar cascode stage, depicted in Figure 8.12 and its fully symbolic
expression for the output impedance, depicted in Figure 8.13. Even for such a simple circuit, the full
symbolic result is very hard to interpret and therefore not able to provide insight into the circuit behavior.
Sequential form of the output impedance formula, presented in Figure 8.14, is more compact than the
full expression but also cannot be utilized for interpretation.

A plot of �Zo� for a nominal set of component values (rπ = 5 kΩ , gm = 20 mS, ro = 100 kΩ for both
BJTs), obtained numerically from the SoE in Figure 8.14, is plotted in Figure 8.16. By examining the plot,
one can appreciate the general behavior of the function, but it is difficult to predict the influence of
various circuit components on the output impedance.

Applying symbolic approximation techniques we can obtain less accurate but still more revealing
formulas. If a 10% maximum amplitude error is accepted, the simplified function takes the following
form:

If we allow a 25% magnitude error,8 the output impedance formula can be simplified further:

(8.25)

FIGURE 8.16 Plot of �Zo � of the cascode, obtained numerically from the exact formula.

8It is important to note that the approximate expressions were developed taking into account variations of BJT
parameters; the fact that both simplified formulas give identical results at the nominal design point is purely
coincidental.
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The impedance levels as well as pole and zero estimates can be easily obtained from Eq. (8.25):

(8.26)

An asymptotic plot of �Zo �, based on Eq. (8.26), is plotted in Figure 8.16. 

8.6 Time-Domain Analysis

The previous sections discussed the different frequency domain techniques for symbolic analysis. Sym-
bolic analysis methods in the transient domain did not appear until the beginning of the 1990s [3, 24,
36]. The main limitation to symbolic time-domain analysis is the difficulty in handling the symbolic
integration and differentiation needed to handle the energy storage elements (mainly capacitors and
inductors). This problem, of course, does not exist in the frequency domain because of the use of Laplace
transforms to represent these elements. Although symbolic algebra software packages are available, such
as MATHMATICA, MAXIMA, and MAPLE, which can be used to perform integration and differentia-
tions, they have not been applied to transient symbolic analysis due to the execution time complexity of
these programs. All but one of the approaches in the time domain are actually semi-symbolic. The semi-
symbolic algorithms use a mixture of symbolic and numeric techniques to perform the analysis. The
work here is still in its infancy. This section briefly discusses the three contributions published in the
literature thus far.

All symbolic time domain techniques deal with linear circuits and can be classified under one of the
two categories.

Fully Symbolic

Only one method has been reported in the literature that is fully symbolic [20]. This method utilizes a
direct and hierarchical symbolic transient analysis approach similar to the one reported in [22]. The
formulation is based on the well-known discrete models for numerical integration of linear differential

FIGURE 8.17 Asymptotic plot of �Zo � of the cascode based on Eq. (8.26).
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8-24 Circuit Analysis and Feedback Amplifier Theory

equations. Three of these integration methods are implemented symbolically: the Backward Euler, the
Trapezoidal, and Gear’s 2nd-Order Backward Differentiation [20]. The inherent accuracy problems due
to the approximations in these methods show up when the symbolic expressions are evaluated numeri-
cally. A detailed discussion of this method can be found in [20].

Semi-Symbolic

Three such algorithms have been reported in the literature thus far. Two of them [24, 36] simply take
the symbolic expressions in the frequency domain, evaluate them numerically for a range of frequencies,
and then perform a numeric inverse laplace transformation or a fast Fourier transformation (FFT) on
the results. The approach reported in [36] uses an MNA, then a state-variable symbolic formulation to
get the frequency domain response and can handle time-varying circuits, namely, switch power convert-
ers. The approach in [24] uses a hierarchical network approach [22] to generate the symbolic frequency
domain response. The third algorithm reported in [3] is a hierarchical approach that uses an MNA and
a state-variable symbolic formulation and then uses the eigenvalues of the system to find a closed-form
numerical transient solution.
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9.1 Signal Types

Introduction

Because information into and out of a circuit is carried via time domain signals we look first at some of
the basic signals used in continuous time circuits. All signals are taken to depend on continuous time t
over the full range –∞ < t < ∞. It is important to realize that not all signals of interest are functions in
the strict mathematical sense; we must go beyond them to generalized functions (e.g., the impulse),
which play a very important part in the signal processing theory of circuits.

Step, Impulse, and Ramp

The unit step function, denoted 1(·), characterizes sudden jumps, such as when a signal is turned on or
a switch is thrown; it can be used to form pulses, to select portions of other functions, and to define the
ramp and impulse as its integral and derivative. The unit step function is discontinuous and jumps
between two values, 0 and 1, with the time of jump between the two taken as t = 0. Precisely,

(9.1)

which is illustrated in Figure 9.1 along with some of the functions to follow.
Here, the value at the jump point, t = 0, purposely has been left free because normally it is immaterial

and specifying it can lead to paradoxical results. Physical step functions used in the laboratory are actually
continuous functions that have a continuous rise between 0 and 1, which occurs over a very short time.
Nevertheless, instances occur in which one may wish to set 1(0) equal to 0 or to 1 or to 1/2 (the latter,
for example, when calculating the values of a Fourier series at a discontinuity). By shifting the time

1
1 0

0 0
t

t

t
( ) =

>

<







if

if

Robert W. Newcomb
University of Maryland

© 2006 by Taylor & Francis Group, LLC



9-2 Circuit Analysis and Feedback Amplifier Theory

argument the jump can be made to occur at any time, and by multiplying by a factor the height can be
changed. For example, 1(t – t0) has a jump at time t0 and a[1(t) – 1(t – t0)] is a pulse of width t0 and
height a going up to a at t = 0 and down to 0 at time t0. If a = a(t) is a function of time, then that portion
of a(t) between 0 and t0 is selected. The unit ramp, r(·) is the continuous function which ramps up
linearly (with unit slope) from zero starting at t = 0; the ramp results from the unit step by integration

(9.2)

As a consequence the unit step is the derivative of the unit ramp, while differentiating the unit step yields
the unit impulse generalized function, δ(·) that is

(9.3)

In other words, the unit impulse is such that its integral is the unit step; that is, its area at the origin,
t = 0, is 1. The impulse acts to sample continuous functions which multiply it, i.e.,

(9.4)

This sampling property yields an important integral representation of a signal x(·)

(9.5)

where the validity of the first line is seen from the second line, and the fact that the integral of the impulse
through its jump point is unity. Equation (9.5) is actually valid even when x(·) is discontinuous and,
consequently, is a fundamental equation for linear circuit theory. Differentiating δ(t) yields an even more
discontinuous object, the doublet δ′(·). Strictly speaking, the impulse, all its derivatives, and signals of

FIGURE 9.1  Step, ramp, and impulse functions.
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that class are not functions in the classical sense, but rather they are operators [1] or functionals [2],
called generalized functions or, often, distributions. Their evaluations take place via test functions, just
as voltages are evaluated on test meters.

The importance of the impulse lies in the fact that if a linear time-invariant system is excited by the
unit impulse, then the response, naturally called the impulse response, is the inverse Laplace transform
of the network function. In fact, if h(t) is the impulse response of a linear time-invariant (continuous
and continuous time) circuit, the forced response y(t) to any input u(t) can be obtained without leaving
the time domain by use of the convolution integral, with the operation of convolution denoted by ∗,

(9.6)

Equation (9.6) is mathematically rigorous, but justified on physical grounds through (9.5) as follows. If
we let h(t) be the output when δ(t) is the input, then, by time invariance, h(t – τ) is the output when
the input is shifted to δ(t – τ). Scaling the latter by u(τ) and summing via the integral, as designated in
(9.5), we obtain a representation of the input u(t). This must result in the output representation being
in the form of (9.6) by linearity of the system through similar scaling and summing of h(t – τ), as was
performed on the input.

Sinusoids

Sinusoidal signals are important because they are self-reproducing functions (i.e., eigenfunctions) of
linear time-invariant circuits. This is true basically because the derivatives of sinusoids are sinusoidal. As
such, sinusoids are also the natural outputs of oscillators and are delivered in power sources, including
laboratory signal generators and electricity for the home derived from the power company.

Eternal

Eternal signals are defined as being of the same nature for all time, –∞ < t < ∞, in which case an eternal
cosine repeats itself eternally in both directions of time, with an origin of time, t = 0, being arbitrarily
fixed. Because eternal sinusoids have been turned on forever, they are useful in describing the steady
operation of circuits. In particular, the signal A cos(ωt + θ) over –∞ < t < ∞ defines an eternal cosine
of amplitude A, radian frequency ω = 2π f (with f being real frequency, in Hertz, which are cycles per
second), at phase angle θ (in radians and with respect to the origin of time), with A, ω, and θ real
numbers. When θ = π/2 this cosine also represents a sine, so that all eternal sinusoidal signals are
contained in the expression A cos (ωt + θ).

At times, it is important to work with sinusoids that have an exponential envelope, with the possibility
that the envelope increases or decreases with time, that is, with positively or negatively damped sinusoids.
These are described by Aest cos(ωt + θ), where the real number is the damping factor, giving signals that
damp out in time when the damping factor is positive and signals that increase with time when the
damping factor is negative. Of most importance when working with this class of signals is the identity

(9.7)

where s = σ + jω with j = . Here, s is called the complex frequency, with its imaginary part being
the real (radian) frequency, ω. When no damping is present, s = jω, in which case the exponential form
of (9.7) represents pure sinusoids. In fact, we see in this expression that the cosine is the real part of an
exponential and the sine is its imaginary part. Because exponentials are usually easier than sinusoids to
treat analytically, the consequence for real linear networks is that we can do most of the calculations with
exponentials and convert back to sinusoids at the end. In other words, if a real linear system has a cosine
or a damped cosine as a true input, it can be analyzed by using instead the exponential of which it is the
real part as its (fictitious) input, finding the resulting (fictitious) exponential output, and then taking
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the real part at the end of the calculations to obtain the true output for the true input. Because expo-
nentials are probably the easiest signals to work with in theory, the use of exponentials rather than
sinusoids usually greatly simplifies the theory and calculations for circuits operating under steady-state
conditions.

Causal

Because practical circuits have not existed since t = –∞ they usually begin to be considered at a suitable
starting time, taken to be t = 0, in which case the associated signals can be considered to be zero for
t < 0. Mathematically, these functions are said to have support bounded on the left. The support of a
signal is (the closure of) that set of times for which the signal is non-zero, therefore, the support of these
signals is bounded on the left by zero. When signals are discontinuous functions they have the important
property that they can be represented by multiplying with unit step functions signals which are differ-
entiable and have nonbounded support. For example, g(t) = est · 1(t) has a jump at t = 0 with support
at the half line 0 to ∞ but has est infinitely differential of “eternal” support.

A causal circuit is one for which the response is only nonzero after the input becomes nonzero. Thus,
if the inputs are zero for t < 0, the outputs of causal circuits are also zero for t < 0. In such cases the
impulse response, h(t), or the response to an input impulse of “infinite jump” at t = 0, satisfies h(t) = 0
for t < 0 and the convolution form of the output, (9.4), takes the form

(9.8)

Periodic and Aperiodic Waveforms

The pure sinusoids, although not the sinusoids with nonzero damping, are special cases of periodic
signals. In other words, ones which repeat themselves in time every T seconds, where T is the period.
Precisely, a time-domain signal g(·) is periodic of period T if g(t) = g(t + T), where normally T is taken
to be the smallest nonzero T for which this is true. In the case of the sinusoids, A cos(ωt + θ) with ω =
2πf, the period is given by T = 1/f because {2π[ f (t + T)] + θ} = {2π ft + 2π( fT) + θ} = {2π ft + (2π + θ)},
and sinusoids are unchanged by a change of 2π in the phase angle. Periodic signals need to be specified
over only one period of time, e.g., 0 ≤ t < T, and then can be extended periodically for all time by using
t = t mod(T) where mod(·) is the modulus function; in other words, periodic signals can be looked upon
as being defined on a circle, if we imagine the circle as being a clock face.

Periodic signals represent rhythms of a system and, as such, contain recurring information. As many
phycial systems, especially biomedical systems, either possess directly or to a very good approximation
such rhythms, the periodic signals are of considerable importance. Even though countless periodic signals
are available besides the sinusoids, it is important to note that almost all can be represented by a Fourier
series. Exponentials are eigenfunctions for linear circuits, thus, the Fourier series is most conveiently
expressed for circuit considerations in terms of the exponential form. If g(t) = g(t + T), then

(9.9)

where the coefficients are complex and are given by

(9.10)

Strictly speaking, the integral is over the half-open interval [0,T ) as seen by considering g(·) defined on
the circle. In (9.9), the symbol � is used to designate the expression on the right as a representation that
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may not exactly agree numerically with the left side at every point when g(·) is a function; for example,
at discontinuities the average is obtained on the right side. If g(·) is real, that is, g(t) = g(t)∗, where the
superscript * denotes complex conjugate, then the complex coefficients cn satisfy cn = c–n

∗ . In this case the
real coefficients an and bn in (9.10) are even and odd in the indices; n and the an combine to give a series
in terms of cosines, and the bn gives a series in terms of sines.

As an example the square wave, sqw(t), can be defined by 

(9.11)

and then extended periodically to –∞ < t < ∞ by taking t = tmod(T). The exponential Fourier series
coefficients are readily found from (9.10) to be

(9.12)

for which the Fourier series is

(9.13)

The derivative of sqw(t) is a periodic set of impulses

(9.13)

for which the exponential Fourier series is easily found by differentiating (9.13), or by direct calculation
from (9.10), to be

(9.15)

Combining the exponentials allows for a sine representation of the periodic generalized function signal.
Further differentiation can take place, and by integrating (9.15) we get the Fourier series for the square
wave if the appropriate constant of integration is added to give the DC value of the signal. Likewise, a
further integration will yield the Fourier series for the sawtooth periodic signal, and so on.

The importance of these Fourier series representations is that a circuit having periodic signals can
always be considered to be processing these signals as exponential signals, which are usually self-repro-
ducing signals for the system, making the design or analysis easy. The Fourier series also allows visual-
ization of which radian frequencies, 2πn/T, may be important to filter out or emphasize. In many common
cases, especially for periodically pulsed circuits, the series may be expressed in terms of impulses. Thus,
the impulse response of the circuit can be used in conjunction with the Fourier series.
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9-6 Circuit Analysis and Feedback Amplifier Theory

9.2 First-Order Circuits

Introduction

First-order circuits are fundamental to the design of circuits because higher order circuits can be con-
sidered to be constructed of them. Here, we limit ourselves to single-input-output linear time-invariant
circuits for which we take the definition of a first-order circuit to be one described by the differential
equation

(9.16)

where d0 and d1 are “denominator” constants and n0 and n1 are “numerator” constants, y = y (·) is the
output and u = u (·) is the input, and both u and y are generalized functions of time t. So that the circuit
truly will be first order, we require that d1 · n0 – d0 · n1 ≠ 0, which guarantees that at least one of the
derivatives is actually present, but if both derivatives occur, the expressions in y and in u are not
proportional, which would lead to cancellation, forcing y and u to be constant multiples of each other.
Because a factorization of real higher-order systems may lead to complex first-order systems, we will
allow the numerator and denominator constants to be complex numbers; thus, y and u may be complex-
valued functions.

If the derivative is treated as an operator, p = d[·]/dt, then (9.16) can be conveniently written as 

(9.17)

where the two cases in terms of d1 are of interest because they provide different forms of responses, each
of which frequently occurs in first-order circuits. As indicated by (9.17), the transfer function

(9.18)

is an operator (as a function of the derivative operator p), which characterizes the circuit. Table 9.1 lists
some of the more important types of different first-order circuits along with their transfer functions and
causal impulse responses.

The following treatment somewhat follows that given in [1], although with a slightly different orien-
tation in order to handle all linear time-invariant continuous time continuous circuits.

Zero-Input and Zero-State Response

The response of a linear circuit is, via the linearity, the sum of two responses, one due to the input when
the circuit is initially in the zero state, called the zero-state response, and the other due to the initial
state when no input is present, the zero-input response. By the linearity the total response is the sum
of the two separate responses, and thus we may proceed to find each separately. In order to investigate
these two types of responses, we introduce the state vector x(·) and the state-space representation (as
previously p = d[·]/dt)

(9.19)
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where A, B, C, D, E are constant matrices. For our first-order circuit two cases are exhibited, depending
upon d1 being zero or not. In the case of d1 = 0,

(9.20a)

Here, C = 0 and A and B can be chosen anything, including empty. When d1 ≠ 0, our first-order circuit
has the following set of (minimal size) state-variable equations

(9.20b)

By choosing u = 0 in (9.2), we obtain the equations that yield the zero input response. Specifically,
the zero-input response is

(9.21)

which is also true by direct substitution into (9.16). Here, we have set, in the d1 ≠ 0 case, the initial value
of the state, x(0), equal to the initial value of the output, y(0), which is valid by our choice of state-space
equations. Note that (9.21) is valid for all time and y at t = 0 assumes the assigned initial value y(0),
which must be zero when the input is zero and no derivative occurs on the output.

The zero-state response is explained as the solution of (9.21) when x(0) = 0. In the case that d1 = 0,
the zero-state response is

(9.22a)

TABLE 9.1 Typical Transfer Functions of First-Order Circuits
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9-8 Circuit Analysis and Feedback Amplifier Theory

where ∗ denotes convolution, δ(·) is the unit impulse, and 1(·) is the unit step function. While in the
case that d1 ≠ 0

(9.22b)

which is found by eliminating x from (9.20b) and can be checked by direct substitution into (9.16). The
terms in the braces are the causal impulse responses, h(t), which are checked by letting u = δ with
otherwise zero initial conditions, that is, with the circuit initially in the zero state. Actually, infinitely
many noncausal impulse responses could be used in (9.22b). One such response is found by replacing
1(t) by –1(–t)]. However, physically the causal responses are of most interest.

If d1 ≠ 0, the form of the responses is determined by the constant d0 /d1, the reciprocal of which (when
d0 ≠ 0) is called the time constant, tc, of the circuit because the circuit impulse response decays to 1/e at
time tc = d1 /d0. If the time constant is positive, the zero-input and the impulse responses asymptotically
decay to zero as time approaches positive infinity, and the circuit is said to be asymptotically stable. On
the other hand, if the time constant is negative, then these two responses grow without bounds as time
approaches plus infinity, and the circuit is called unstable. It should be noted that as time goes in the
reverse direction to minus infinity, the unstable zero-input response decays to zero. If d0 /d1 = 0 the zero-
input and impulse responses are still stable, but neither decay nor grow as time increases beyond zero.

By linearity of the circuit and its state-space equations, the total response is the sum of the zero-state
response and the zero-input response; thus, even when d0 = 0 or d1 = 0

(9.23)

Assuming that u and h are zero for t < 0 their convolution is also zero for t < 0, although not necessarily
at t = 0, where it may even take on impulsive behavior. In such a case, we see that y0 is the value of the
output instantaneously before t = 0. If we are interested only in the circuit for t > 0, surprisingly, an
input will yield the zero input response. That is, an equivalent input u0 exists, which will yield the zero
input response for t > 0, this being u0(t) = d1y0 exp(–td0 /d1)1(t). Thus, y = h ∗ (u + u0) gives the same
result as (9.23).

When d1 = 0, the circuit acts as a differentiator and within the state-space framework it is treated as
a special case. However, in practice it is not a special case because the current, i, versus voltage, v, for a
capacitor of capacitance C, in parallel with a resistor of conductance G is described by i = Cpv + Gv.
Consequently, it is worth noting that all cases can be handled identically in the semistate description

(9.24)

where x(·) is the semistate instead of the state, although the first components of the two vectors agree in
many cases. In other words, the semistate description is more general than the state description, and
handles all circuits in a more convenient fashion [2].

Transient and Steady-State Responses

This section considers stable circuits, although the techniques are developed so that they apply to other
situations. In the asymptotically stable case, the zero input response decays eventually to zero; that is,
transient responses due to initial conditions eventually will not be felt and concentration can be placed
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upon the zero-state response. Considering first eternal exponential inputs, u(t) = U exp(st) for –∞ < t
< ∞ at the complex frequency s = σ + jω, where s is chosen as different from the natural frequency sn =
–d0 /d1 = –1/tc and U is a constant, we note that the response is y(t) = Y(s) exp(st), as is observed by
direct substitution into (9.16); this substitution yields directly

(9.25)

where y(t) = Y(s) exp(st) for u(t) = U exp(st) over –∞ < t < ∞. That is, an exponential excitation yields
an exponential response at the same (complex) frequency s = σ + jω as that for the input. When σ = 0,
the excitation and response are both sinusoidal and the resulting response is called the sinusoidal steady
state (SSS). Equation (9.25) shows that the SSS response is found by substituting the complex frequency
s = jω into the transfer function, now evaluated on complex numbers instead of differential operators
as in (9.18),

(9.26)

This transfer function represents the impulse response, h(t), of which it is actually the Laplace transform,
and as we found earlier, the causal impulse response is

(9.27)

However, practical signals are started at some finite time, normalized here to t = 0, instead of at t =
–∞, as used for the preceding exponentials. Thus, consider an input of the same type but applied only
for t > 0; i.e., let u(t) = U exp(st)1(t). The output is found by using the convolution y = h ∗ u; after a
slight amount of calculation is evaluated to

(9.28)

For t > 0, the SSS remains present, while there is another term of importance when d1 ≠ 0. This is a
transient term, which disappears after a sufficient waiting time in the case of an asymptotically stable
circuit. That is, the SSS is truly a steady state, although one may have to wait for it to dominate. If a
nonzero zero-input response exists, it must be added to the right side of (9.28), but for t > 0 this is of
the same form as the transient already present, therefore, the conclusion is identical (the SSS eventually
predominates over the transient terms for an asymptotically stable circuit).

Because a cosine is the real part of a complex exponential and the real part is obtained as the sum of
two terms, we can use linearity of the circuit to quickly obtain the output to a cosine input when we
know the output due to an exponential. We merely write the input as the sum of two complex conjugate
exponentials and then take the complex conjugates of the outputs that are summed. In the case of real
coefficients in the transfer function, this is equivalent to taking the real part of the output when we take
the real part of the input; that is, y = �(h ∗ u3) = h ∗ u, when u = �(ue), if y is real for all real u.
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9-10 Circuit Analysis and Feedback Amplifier Theory

Network Time Constant

The time constant, tc, was defined earlier as the time for which a transient decays to 1/e of the intial
value. As such, the time constant shows up in signals throughout the circuit and is a very useful parameter
when identifying a circuit from its responses. In an RC circuit, the time constant physically results from
the interaction of the equivalent capacitor (of which only one exists in a first-order circuit) of capacitance
Ceq, and the Thévenin’s equivalent resistor, of resistance Req, that it sees. Thus, tc = ReqCeq.

Closely related to the time constant is the rise time. Considering the low-pass case, the rise time, tr is
defined as the time for the unit step response to go between 10% and 90% of its final value from its
initial value. This is easily calculated because the unit step response is given by

(9.29)

Assuming a stable circuit and setting this equal to 0.1 and 0.9 times the final value, n0/d0, it is readily
found that 

(9.30)

At this point, it is worth noting that for theoretical studies the time constant can be normalized to 1 by
normalizing the time scale. Thus, assuming d1 and d0 ≠ 0 the differential equation can be written as

(9.31)

where tn = (d0/d1)t is the normalized time.
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9.3 Second-Order Circuits

Introduction

Because real transfer functions can be factored into real second-order transfer functions, second-order
circuits are probably the most important circuits available; most designs are based upon them. As with
first-order circuits, this chapter is limited to single-input-single-output linear time-invariant circuits, and
unless otherwise stated, here real-valued quantities are assumed. By definition a second-order circuit is
described by the differential equation

(9.32)

where di and ni are “denominator” and “numerator” constants, i = 0, 1, 2, which, unless mentioned to
the contrary, are taken to be real. Continuing the notation used for first-order circuits, y = y(·) is the
output and u = u(·) is the input; both u and y are generalized functions of time t. Assume that d2 ≠ 0,
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which is the normal case because any of the other special cases can be considered as cascades of real
degree one circuits. 

Again, treating the derivative as an operator, p = d[·]/dt, (9.32) is written as

(9.33)

with the transfer function

(9.34)

where the second form results by long division of the denominator into the numerator. Because they
occur most frequently when second-order circuits are discussed, we rewrite the denominator in two
equivalent customarily used forms:

 (9.35)

where ωn is the undamped natural frequency ≥ 0, Q is the quality factor, and ζ is the damping factor =
1/(2Q). The transfer function is accordingly

(9.36)

Table 9.2 lists several of the more important transfer functions, which, as in the first-order case, are
operators as functions of the derivative operator p.

Zero-Input and Zero-State Response 

Again, as in the first-order case, a convenient tool for investigating the time-domain behavior of a second-
order circuit is the state variable description. Letting the state vector be x(·), the state-space represen-
tation is 

(9.37)

where, as above, p = d[·]/dt, and A, B, C, D are constant matrices. In the present case, these matrices are
real and one convenient choice, among many, is 

(9.38)
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9-12 Circuit Analysis and Feedback Amplifier Theory

Here, the state is the 2-vector x = [x1 x2]T, with the superscript T denoting transpose. Normally, the state
would consist of capacitor voltages and/or inductor currents, although at times one may wish to use
linear combinations of these. From these state variable equations, a generic operational-amplifier (op-
amp) RC circuit to realize any of this class of second-order circuits is readily designed and given in
Figure 9.2. In the figure, all voltages are referenced to ground and normalized capacitor and resistor
values are listed. Alternate designs in terms of only CMOS differential pairs and capacitors can also be
given [3], while a number of alternate circuits exist in the catalog of Sallen and Key [4].

TABLE 9.2 Typical Second-Order Circuit Transfer Functions

Transfer Function Description Impulse Response

Low-pass

High-pass

Bandpass

Band-stop

All-pass

Oscillator, 

when u = 0

FIGURE 9.2  Generic, second-order op-amp RC circuit.
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Analysis in the Time Domain 9-13

Because (9.38) represents a set of linear constant coefficient differential equations, superposition
applies and its solution can again be broken into two parts, the part due to initial conditions, x(0), called
the zero-input response, and the part due solely to the input u, the zero-state response.

The zero-input response is readily found by solving the state equations with u = 0 and initial conditions
x(0). The result is y(t) = C exp(At) x(0), which can be evaluated by several means, including the following.
Using a prime to designate the time derivative, first note that when u = 0, x1(t) = d2 y(t) and (from the
first row of A) x1(t)′ = x2(t) = d2 y(t)′. Thus, x1 (0) = d2 y(0) and x2 (0) = d2 y ′(0), which allow the initial
conditions to be expressed in terms of the measurable output quantities. To evaluate exp(At), note that
its terms are linear combinations of terms with complex frequencies that are zeroes of the characteristic
polynomial

(9.39)

For which the roots, called natural frequencies, are 

(9.40)

The case of equal roots will only occur when ζ2 = 1, which is the same as Q2 = 1/4, for which the roots
are real. Indeed, if the damping factor, ζ , is > 1 in magnitude, or equivalently, if the quality factor, Q, is
<1/2 in magnitude, the roots are real and the circuit can be considered a cascade of two first-order
circuits. Thus, assume here and in the following that unless otherwise stated, Q2 > 0.25, which is the
same as ζ2 < 1, in which case the roots are complex conjugates, s– = s+

∗

(9.41)

By writing y(t) = a · exp(s+t) + b · exp(s–t), for unknown constants a and b, differentiating and setting
t = 0 we can solve for a and b, and after some algebra and trigonometry obtain the zero-input response

(9.42)

where θ = arctan2(ζ/ )with arctan2(·) being the arc tangent function that incorporates the sign
of its argument.

The form given in (9.42) allows for some useful observations. Remembering that this assumes ζ2 < 1,
first note that if no damping occurs, that is, ζ = 0, then the natural frequencies are purely imaginary,
s+ = jωn and s– = –s+, and the response is purely oscillatory, taking the form shown in the last line of
Table 9.2. If the damping is positive, as it would be for a passive circuit having some loss, usually via
positive resistors, then the natural frequencies lie in the left half s-plane, and y decays to zero at positive
infinite time so that any transients in the circuit die out after a sufficient wait. The circuit is then called
asymptotically stable. However, if the damping is negative, as it could be for some positive feedback
circuits or those with negative resistance, then the response to nonzero initial conditions increases in
amplitude without bound, although in an oscillatory manner, as time increases, and the circuit is said
to be unstable. In the unstable case, as time decreases through negative time the amplitude also damps
out to zero, but usually the responses backward in time are not of as much interest as those forward in
time.
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9-14 Circuit Analysis and Feedback Amplifier Theory

For the zero-state response, the impulse response, h(t), is convoluted with the input, that is, y = h ∗ u,
for which we can use the fact that h(t) is the inverse Laplace transform of H(s) = C[sl2 – A]–1B. The
denominator of H(s) is det(sl2 – A) = s2 + 2ζωns + ω 2

n , for which the causal inverse Laplace transform is

(9.43)

Here, the bottom case is ruled out when only complex natural frequencies are considered, following the
assumption of handling real natural frequencies in first-order circuits, made previously. Consequently,

(9.44)

Again, assuming ζ2 < 1 using the preceding calculations give the zero-state response as 

(9.45)

The bottom equivalent form is easily seen to result from writing the transfer function H(p) as the product
of two terms 1/[d2(p2 + 2ζωn p + ω2

n) and [n2 p2 + n1 p + n0] convoluting the causal impulse response (the
inverse of the left half-plane converging Laplace transform), of each term. From (9.45), we directly read
the impulse response to be 

(9.46)

Equations (9.45) and (9.46) are readily evaluated further by noting that the convolution of a function
with the second derivative of the impulse, the first derivative of the impulse, and the impulse itself is the
second derivative of the function, the first derivative of the function, and the function itself, respectively.
For example, in the low-pass case we find the impulse response to be, using (9.46),

(9.47)

By differentiating we find the bandpass and then high-pass impulse responses to be, respectively,
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(9.48)

(9.49)

In both cases, the added phase angle is given, as in the zero input response, via θ = arctan2(ζ/ ).
By adding these last three impulse responses suitably scaled the impulse responses of the more general
second-order circuits are obtained.

Some comments on normalizations are worth mentioning in passing. Because d2 ≠ 0, one could
assume d2 to be 1 by absorbing its actual value in the transfer function numerator coefficients. If ωn ≠
0, time could also be scaled so that ωn = 1 could be taken, in which case a normalized time, tn, is
introduced. Thus, t = ωntn and, along with normalized time, comes a normalized differential operator
pn = d[·]/dtn = d[·]/d(t/ωn) = ωn p. This, in turn, leads to a normalized transfer function by substituting
p = pn /ωn into H(p). Thus, much of the treatment could be carried out on the normalized transfer
function x

(9.50)

In this normalized form, it appears that the most important parameter in fixing the form of the response
is the damping factor ζ = 1/(2Q).

Transient and Steady-State Responses

Let us now excite the circuit with an eternal exponential input, u(t) = U exp(st) for –∞ < t < ∞ at the
complex frequency s = σ + jω, where s is chosen as different from either of the natural frequencies, s± ,
and U is a constant. As with the first-order and, indeed, any higher-order, case the response is y(t) = Y(s)
exp(st), as is observed by direct substitution into (9.32). This substitution yields directly

 (9.51)

where y(t) = Y(s) exp(st) for u(t) = U exp(st) over –∞ < t < ∞. That is, an exponential excitation yields
an exponential response at the same (complex) frequency s = σ + jω as that for the input, as long as s
is not one of the two natural frequencies. (s may have positive as well as negative real parts and is best
considered as a frequency and not as the Laplace transform variable because the latter is limited to regions
of convergence.) Because the denominator polynomial of Y(·s) has roots which are the natural frequencies,
the magnitude of Y becomes infinite as the frequency of the excitation approaches s+ or s– . Thus, the
natural frequencies s+ and s– are also called poles of the transfer function.

When σ = 0 the excitation and response are both sinusoidal and the resulting response is called the
sinusoidal steady state (SSS). From (9.51), the SSS response is found by substituting the complex
frequency s = jω into the transfer function, now evaluated on complex numbers rather than differential
operators as above,

(9.52)

Next, an exponential input is applied, which starts at t = 0 instead of at t = –∞; i.e., u(t) = U exp(st)1(t).
Then, the output is found by using the convolution y = h ∗ u, which, from the discussion at (9.45), is
expressed as
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9-16 Circuit Analysis and Feedback Amplifier Theory

(9.53)

in which N(s) is the numerator of the transfer function and we have assumed that s is not equal to a
natural frequency. The second term on the right within the braces varies at the natural frequencies and
as such is called the transient response, while the first term is the term resulting directly from an eternal
exponential, but now with the negative time portion of the response removed. If the system is stable, the
transient response decays to zero as time increases and, thus, if we wait long enough the transient response
of a stable system can be ignored if the complex frequency of the input exponential has a real part that
is greater than that of the natural frequencies. Such is the case for exponentials that yield sinusoids; in
that case σ = 0, or s = jω. In other words, for an asymptotically stable circuit the output approaches that
of the SSS when the input frequency is purely imaginary. If we were to excite at a natural frequency then
the first part of (9.53) still could be evaluated using the time-multiplied exponential of (9.43); however,
the transient and the steady state are now mixed, both being at the same “frequency.”

Because actual sinusoidal signals are real, we use superposition and the fact that the real part of a
complex signal is given by adding complex conjugate terms:

(9.54)

This leads to the SSS response for an asymptotically stable circuit excited by u(t) = U cos (ωt)1(t) to be

(9.55)

Here, we assumed that the circuit has real-valued components such that H(– jω) is the complex conjugate
of H(jω). In which case, the second term in the middle expression is the complex conjugate of the first.

Network Characterization 

Although the impulse response is useful for theoretical studies, it is difficult to observe it experimentally
due to the impossibility of creating an impulse. However, the unit step response is readily measured, and
from it the impulse response actually can be obtained by numerical differentiation if needed. However,
it is more convenient to work directly with the unit step response and, consequently, practical charac-
terizations can be based upon it. The treatment most conveniently proceeds from the normalized low-
pass transfer function

(9.56)

The unit step response follows by applying the input u(t) = 1(t) and noting that the unit step is the
special case of an exponential multiplied unit step, where the frequency of the exponential is zero.
Conveniently, (9.43) can be used to obtain
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(9.57)

Typical unit step responses are plotted in Figure 9.3 where, for a small damping factor, overshoot can be
considerable, with oscillations around the final value and in addition, a long settling time before reaching
the final value. In contrast, with a large damping factor, although no overshoot or oscillation occurs, the
rise to the final value is long. A compromise for obtaining a quick rise to the final value with no oscillations
is given by choosing a damping factor of 0.7, this being called the critical value; i.e., critical damping
is ζcrit = 0.7.
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FIGURE 9.3  Unit step response for different damping factors.
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10.1 The Concept of States

For resistive (or memoryless) circuits, given the circuit structure, the present output depends only on
the present input. In order to analyze a dynamic circuit, however, in addition to the present input it is
also necessary to know the state of the circuit at some time t0. The state of the circuit at t0 represents the
condition of the circuit at t = t0, and is related to the energy storage of the circuit, or the voltage (or
electric charge) across the capacitor and the currents (or magnetic fluxes) through the inductors. These
voltages and currents are considered as the state of the circuit at t = t0. For t > t0, the behavior of the
circuit is completely characterized by these variables. In view of the preceding, a definition for the state
of a circuit can now be given.

Definition: The state of a circuit at time t0 is the minimum amount of information at t0 that, along with
the input to the circuit for t ≥ t0, uniquely determines the behavior of the circuit for t ≥ t0.

The concept of states is closely related to the order of complexity of the circuit. The order of complexity
of a circuit is the minimum number of initial conditions which, along with the input, is sufficient to
determine the future behavior of the circuit. Furthermore, if a circuit is described by an nth-order linear
differential equation, it is well known that the general solution for t ≥ t0 contains n arbitrary constants
which are determined by n initial conditions. This set of n initial conditions contains information
concerning the circuit prior to t = t0 and constitutes the state of the circuit at t = t0. Thus, the order of
complexity or the order of a circuit is the same as the order of the differential equation that describes
the circuit, and it is also the same as the number of state variables that can be defined in a circuit. For
an nth-order circuit, the state of the circuit at t = t0 consists of a set of n numbers that denotes a vector
in an n-dimensional state space spanned by the n corresponding state variables. This key number n can
simply be obtained by inspection of the circuit. Knowing the total number of energy storage elements,
nLC, the total number of independent capacitive loops, nC, and the total number of independent inductive
cutsets, nL, the order of complexity n of a circuit is given by

(10.1)

A capacitive loop is defined as one that consists of only capacitors and possibly voltage sources while an
inductive cutset represents a cutset that contains only inductors and possibly current sources. The
following two examples illustrate the concept of states.

n n n nLC L C= − −

K. S. Chao
Texas Tech University
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10-2 Circuit Analysis and Feedback Amplifier Theory

Example 1. Consider a simple RC-circuit in Figure 10.1. The circuit equation is

(10.2)

and the corresponding capacitor voltage is easily obtained as

(10.3)

For this first-order circuit, it is clear from (10.3) the capacitor voltage for t ≥ t0 is uniquely determined
by the initial condition vc(t0) and the input voltage vin for t ≥ t0. This is independent of the charging
circuit for the capacitor prior to t0. Hence, vc(t0) is the state of the circuit at t = t0 and vc(t) is regarded
as the state variable of the circuit.

Example 2. As another illustration, consider the circuit of Figure 10.2, which is a slight modification of
the circuit considered in the previous example. The circuit equation and its corresponding solution are
readily obtained as

(10.4)

and

(10.5)

respectively. Even though two energy storage elements exist, one can only arbitrarily specify one inde-
pendent initial condition. Once the initial condition on C1, vC1

(t0), is specified, the initial voltage on C2

is automatically constrained by the loop equation vC2
(t) = VC1

(t) – E at t0. The circuit is thus still first
order and only one state variable can be assigned for the circuit. It is clear from (10.5) that with the
input vin, vC1

(t0) is the minimum amount of information that is needed to uniquely determine the behavior
of this circuit. Hence, vC1

(t) is the state variable of the circuit. One can just as well analyze the circuit by
solving a first-order differential equation in terms of vC2

(t) with vC2
(t0) defined as the state of the circuit

at t = t0. The selection of state variables is thus not unique. In this example, either vC1
(t) or vC2

(t) can be
defined as the state variable of the circuit. In fact, it is easily shown that any linear combination of vC1

(t)
and vC2

(t) can also be regarded as state variables.

FIGURE 10.1  A simple RC circuit.

FIGURE 10.2  The circuit for Example 2.
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10.2 State-Variable Formulation via Network Topology

Various mathematical descriptions of circuits are available. Depending on the type of analysis used,
different formulations of circuit equations may result. In the state variable formulation, a system of n
first-order differential equations is written in the form

(10.6)

where x is an n x 1 vector consisting of n state variables for an nth-order circuit and t represents the time
variable. This set of equations is usually referred to as the state equation in normal form.

When compared with other circuit descriptions, the state-variable representation is not necessarily the
simplest. It does, however, simultaneously provide the solution of all state variables and hence yields the
behavior of the entire circuit. The state equation is also particularly suitable for analysis by numerical
techniques. Another distinct advantage of the state-variable approach is that it can be easily extended to
nonlinear and/or time varying circuits.

Example 3. Consider the linear circuit of Figure 10.3. By inspection, the order of complexity of this circuit
is three. Hence, three state variables are selected as x1 = vC1

, x2 = vC2
, and x3 = iL. Because the left-hand side

of the normal form equation is the derivative of the state vector, it is necessary to express the voltage across
the inductors and the currents through the capacitors in terms of the state variables and the input sources.

The current through C1 can be obtained by writing a Kirchhoff ’s current law (KCL) equation at node
1 to yield

or

(10.7)

In a similar manner, applying KCL to node 2 gives

or

(10.8)

FIGURE 10.3  The circuit for
Example 3.
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10-4 Circuit Analysis and Feedback Amplifier Theory

The expression for the inductor voltage is derived by applying KVL to the mesh containing L, R2, C2,
and C1 yielding

or

(10.9)

Equations (10.7), (10.8), and (10.9) are the state equations that can be expressed in matrix form as

(10.10)

Any number of branch voltages and/or currents may be chosen as output variables. If iR1
 and vR2

 are
considered as outputs for this example, then the output equations, written as a linear combination of
state variables and input sources become

(10.11)

(10.12)

or in matrix form

(10.13)

In general, for an nth-order linear circuit with r input sources and m outputs, the state and output
equations are represented by

(10.14)

and

(10.15)

where x is an n × 1 state vector, u is an r × 1 vector representing the r input sources, m × 1-vector y
denotes the m output variables, A, B, C, and D are of order n × n, n × r, m × n, and m × r, respectively.

In the preceding example, the state equations are obtained by inspection for a simple circuit by writing
voltage equations for inductors and current equations for capacitors and properly eliminating the non-
state variables. For more complicated circuits, a systematic procedure for eliminating the nonstate vari-
ables is desirable. Such a procedure can be generated with the aid of a proper tree. A proper tree is a tree
obtained from the associated network graph that contains all capacitors, independent voltage sources,
and possibly some resistive elements, but does not contain inductors and independent current sources.

L
di

dt
v v R iL

C C L= − −
1 2 2

di

dt L
v

L
v

R

L
iL

C C L= − −1 1
1 2

2

dv

dt
dv

dt
di

dt

R C C

R C C

L L

R

L

v

v

i

R C

C

C

C

L

c

c

L

1

2

1

2

1
0

1

0
1 1

1 1

1
0

0
1

0 0

1 1 1

3 2 2

2

1 1

2

























=

− −

−

− −









































+





































v

i

s

s

i
R

v vR s C1 1

1

1

= −( )
v R iR L2 2=

i

v
R

R

v

v

i

R
v

i

R

R

C

C

L

s

s

1

2

1

2

1
0 0

0 0

1
0

0 0
1

2

1













=
−

































+



























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State-Variable Techniques 10-5

The selection of such a tree is always possible if the circuit contains no capacitive loops and no inductive
cutsets. The reason for providing such a tree for writing state equations is obvious. With each tree branch,
there is a unique cutset known as the fundamental cutset that contains only one tree branch and some
links. Thus, if capacitors are in the tree, a fundamental cutset equation may be written for the corre-
sponding currents through the capacitors. Similarly, every link (together with some tree branches) forms
a unique loop called a fundamental loop. If inductors are selected as links, inductor voltages may be
obtained by writing the corresponding fundamental loop equations. With the selection of a proper tree,
state variables can be defined as the capacitor tree-branch voltages and inductive link currents. In view
of the above observation, a systematic procedure for writing state equations can now be stated as follows:

STEP 1: From the associated directed graph, pick a proper tree.

STEP 2: Write fundamental cutset equations for the capacitive tree branches and express the capacitor
currents in terms of link currents.

STEP 3: Write fundamental loop equations for the inductive links and express the inductor voltages in
terms of tree-branch voltages.

STEP 4: Define the state variables. Capacitive tree-branch voltages and inductive link currents are selected
as state variables. Other quantities such as capacitor charges and inductor fluxes may also be used.

STEP 5: Group the branch relations and the remaining fundamental equations according to their element
types into three sets: resistor, inductor, and capacitor equations. Solve for the nonstate variables that
appeared in the equations obtained in Steps 2 and 3 from the corresponding set of equations in terms
of the state variables and independent sources.

STEP 6: Substitute the result of Step 5 into the equations obtained in Steps 2 and 3, and rearrange them
in normal form.

Example 4. Consider again the same circuit in Figure 10.3. The various steps outlined previously are
used to write the state equations.

STEP 1: The associated graph and the proper tree of the circuit are shown in Figure 10.4. The tree
branches include vs, C1, C2, and R2.

STEP 2: The fundamental cutset associated with C1 consists of tree branch C1 and two links R1 and L.
By writing the current equation for this cutset, the capacitor current ic1

 is expressed in terms of link
currents as

(10.16)

FIGURE 10.4  The directed graph associated with the circuit of Figure 10.3.

i i iC R L1 1
= −

R2R1 L

R3C2C1

vs is
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10-6 Circuit Analysis and Feedback Amplifier Theory

Similarly, the fundamental cutset {L, C2, R3, is} associated with C2 leads to

(10.17)

STEP 3: The fundamental loop associated with link L consists of L and tree branches R2, C2, and C1. By
writing the voltage equation around this loop, the inductor voltage can be written in terms of tree-branch
voltages as

(10.18)

STEP 4: The tree-branch capacitor voltages vC1
, VC2

, and inductive link current iL are defined as the state
variables of the circuit.

STEP 5: The branch relation and the remaining two fundamental loops for R1 and R2, and the fundamental
cutset equation for R2 are grouped into three sets.

Resistor equations:

(10.19)

(10.20)

(10.21)

(10.22)

(10.23)

(10.24)

Inductor equations:

(10.25)

Capacitor equations:

(10.26)

(10.27)

The resistive link currents rR1
, iR3

, and resistive tree-branch voltage VR2
 are solved from (10.19)–(10.24)

in terms of the inductive link current iL, the capacitive tree-branch voltages vC1
 and vC2

, and sources as

(10.28)
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State-Variable Techniques 10-7

(10.29)

and

(10.30)

For this example, iL, vC1
, and vC2

 have already been defined as state variables.

STEP 6: Substituting (10.28)–(10.30) into (10.16), (10.17), and (10.18) yields the desired state equation
in matrix form:

(10.31)

which, as expected, is the same as (10.10) obtained previously by inspection.
As mentioned earlier, the selection of state variables is not unique. Instead of using capacitor voltages

and inductor currents as state variables, basic quantities such as the capacitor charges and inductor fluxes
may also be considered. If q1, q2, and φL are defined as state variables in Step 4, the inductive link current
iL and capacitive tree-branch voltages, vC1

 and vC2
, can be solved from the inductor and capacitor equations

in terms of state variables and possibly sources in Step 5 as

(10.32)

(10.33)

(10.34)

Finally, state equations are obtained by substituting Eqs. (10.28)–(10.30) and (10.32)–(10.34) into
(10.16)–(10.18) as

(10.35)

In the systematic procedure outlined previously, it is assumed that the network exists with neither
inductive cutsets nor capacitive loops so that the selection of proper tree is always guaranteed. For networks
that do have these constraints, it is not possible to include all the capacitors in a tree without forming a
closed path. Also, in order for a tree to contain all the nodes, some inductors will have to be included in a
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10-8 Circuit Analysis and Feedback Amplifier Theory

tree. A tree that includes independent voltage sources, some resistors, and a maximum number of
capacitors but no independent current sources is called a modified proper tree. In writing a state equation
for such networks, the same systematic procedure can be applied with the selection of a modified proper
tree. However, if capacitor tree-branch voltages and inductive link currents are defined as the state
variables, the standard (A, B, C, D) description (10.14) and (10.15) may not exist. In fact, if inductive
cutsets contain independent current sources and/or capacitive loops contain independent voltage sources,
the derivative of these sources will appear in the state equation and the general equation is of the form

(10.36)

where B1 and B2 are n × r matrices and A, x, and u are defined as before. To recast (10.36) into the
standard form, it is necessary to redefine.

(10.37)

as new state variables. Substituting (10.37) into (10.36), yields

(10.38)

where 

(10.39)

It is noted from (10.37), the new state variables represent a linear combination of sources and capacitor
voltages or inductor currents which, except for the mathematical convenience, may not have sound
physical significance. To avoid such state variables and transformation (10.37), Step 4 of the systematic
procedure described earlier needs to be modified. By defining state variables as the algebraic sum of
capacitor charges in the fundamental cutset associated with each of the capacitor tree branches, and the
algebraic sum of inductor fluxes in the fundamental loop associated with each of the inductive links, the
resulting state equation will be in the standard form. The preceding generalizations are illustrated by the
following two examples.

Example 5. As a simple illustration, consider the same circuits given in Figure 10.2, where the constant
DC voltage source E is replaced by a time-varying source e(t). It can easily be demonstrated that the
equation describing the circuit now becomes

(10.40)

The preceding equation is the same as the state Eq. (10.4) with the exception of an additional term
involving the first-order derivative of source e(t). Equation (10.40) is clearly not the standard state
equation described in (10.41) with capacitor voltage vC1

 defined as the state variable.

Example 6. As another illustration, consider the circuit shown in Figure 10.5 which consists of an
inductive cutset {L1, L2, is} and a capacitive loop (C1, vs2

, C2). The state equations are determined from
the systematic procedure by first using the transformation (10.37) and then by defining the algebraic
sum of charges and fluxes as state variables.

STEP 1: The directed graph of the circuit is shown in Figure 10.6 where branches denoted by vs1
, vs2

, C1,
R2, and L2 are selected to form a modified proper tree.
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STEP 2: The fundamental cutset associated with C1 consists of branches R1, C1, L1, is, C2, and R3. Applying
KCL to this cutset yields

(10.41)

STEP 3: The fundamental loop equation associated with the inductive link L1 is given by 

(10.42)

where the link voltage vL1
 has been expressed in terms of tree-branch voltages.

STEP 4: In the first illustration, the tree-branch capacitor voltage vC1
 and the inductive link current iL1

are defined as the state variables.

STEP 5: The branch relation and the remaining two fundamental equations are grouped into the following
three sets:

Resistor equations:

(10.43)

(10.44)

(10.45)

FIGURE 10.5  A circuit with a capacitive loop and an inductive cutset.

FIGURE 10.6  The directed graph associated with the circuit of Figure 10.5.
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(10.46)

(10.47)

(10.48)

Inductor equations:

(10.49)

(10.50)

(10.51)

Capacitor equations:

(10.52)

(10.53)

(10.54)

For this example, the nonstate variables are identified as iR1
, vR2

, iR3
, vL2

, and iC2
, from (10.41) and (10.42).

These variables are now solved from the corresponding group of equations in terms of state variables
and independent sources:

(10.55)

(10.56)

(10.57)

(10.58)

(10.59)

STEP 6: Assuming the existence of the first-order derivatives of sources with respect to time and substi-
tuting eqs. (10.50), (10.53), and (10.55)–(10.59) into (10.41) and (10.42) yields
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(10.60)

Clearly, Eq. (10.60) is not in the standard form. Applying transformation (10.37) with x1 = vc1
, x1 = iL2

,
u1 = vs1

, u2 = vs2
, and u3 = is gives the state equation in normal form

(10.61)

where new state variables are defined as

(10.62)

Alternatively, if the state variables are defined in Step 4 as

(10.63)

(10.64)
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10-12 Circuit Analysis and Feedback Amplifier Theory

then Eqs. (10.41) and (10.42) become

(10.65)

(10.66)

respectively. In Step 5, the resistive link currents iR1
, iR3

, and the resistive tree-branch voltage VR2
 are solved

from resistive eqs. (10.43)–(10.48) in terms of inductive link currents, capacitive tree-branch voltages,
and independent sources. The results are those given in (10.55)–(10.57). By solving the inductor Eqs.
(10.49), (10.50), and (10.64), inductive link current iL1

 is expressed as a function of state variables and
independent sources:

(10.67)

Similarly, solving vC1
 from capacitor Eqs. (10.52)–(10.54), and (10.63), yields the capacitor tree-branch

voltage

(10.68)

Finally, in Step 6, Eqs. (10.55)–(10.57), (10.67), and (10.68) are substituted into (10.65) and (10.66) to
form the state equation in normal form:

(10.69)

10.3 Natural Response and State Transition Matrix

In the preceding section, the state-variable description has been presented for linear time-invariant
circuits. The response of the circuit depends on the solution of the state equation. The behavior of the
circuit due to any arbitrary input sources can easily be obtained once the zero-input response or the
natural response of the circuit is known. In order to find its natural response, the homogeneous state
equation of the circuit

(10.70)

is considered, where independent source term u(t) has been set equal to zero. The preceding state equation
is analogous to the scalar equation

(10.71)

where the solution is given by 

(10.72)

for any arbitrary initial condition x(0) given at t = 0, or
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(10.73)

if the initial time is specified at t = t0.
It is thus reasonable to assume a solution for (10.70) of the form

(10.74)

where λ is a scalar constant and p is a constant n-vector. Substituting (10.74) into (10.70) leads to

(10.75)

Therefore, (10.74) is a solution of (10.70) precisely when p is an eigenvector of A associated with the
eigenvalue λ. For simplicity, it is assumed that A has n distinct eigenvalues λ1, λ2, …, λn. Because the
corresponding eigenvectors denoted by p1, p2, …, pn are linearly independent, the general solution of
(10.70) can be uniquely written as a linear combination of n distinct normal modes of the form (10.74):

(10.76)

where c1, c2, …, cn are n arbitrary constants determined by the given initial conditions. Specifically,

(10.77)

The general solution (10.76) can also be written in the form

(10.78)

where the exponential function of a matrix is defined by a power series:

(10.79)

In fact, taking the derivative of (10.78) with respect to t yields

(10.80)

Also, at t = t0, (10.78) gives
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10-14 Circuit Analysis and Feedback Amplifier Theory

(10.81)

Thus, expression (10.78) satisfies both eq. (10.70) and the initial conditions and hence is the unique
solution. The matrix e(t–t0)A, usually denoted by �(t – t0), is called the state transition matrix or the
fundamental matrix of the circuit described by (10.70). The transition of the initial state x(t0) to the state
x(t) at any time t is thus governed by

(10.82)

where

(10.83)

is an n × n matrix with the following properties:

(10.84)

(10.85)

(10.86)

(10.87)

(10.88)

Once the state transition matrix is known, the solution of the state equation can be obtained from (10.82).
In general, it is rather difficult to obtain a closed-form solution from the infinite series representation
of the state transition matrix. The formula given by (10.79) is useful only if numerical solution by digital
computer is desired. Several methods are available for finding a closed form expression for �(t – t0). The
relationship between solution (10.76) and the state transition matrix is first established.

For simplicity, let t0 = 0. According to (10.82), the first column of �(t) is the solution of the state
equation generated by the initial condition

(10.89)

Indeed, if (10.89) is substituted into (10.82), then

(10.90)
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which can be computed from (10.76) and the arbitrary constants ci =
∆ ci

(1) for i = 1, 2, …, n are solved
from (10.77). The first column of the state transition matrix is thus given by

(10.91)

Instead of (10.89), if

(10.92)

is used, the arbitrary constants c1, c2, …, cn denoted by c1
(2), c2

(2), … cn
(2) are solved. Then, the second column

of �(t) is given

(10.93)

In a similar manner, the remaining columns of �(t) are determined.
The closed form expression for state transition matrix can also be obtained by means of a similarity

transformation of the form

or

(10.94)

where P is a nonsingular matrix. If the eigenvalues of A, λ1, λ2, …, λn, are assumed to be distinct, J is a
diagonal matrix with eigenvalues on its main diagonal:

(10.95)

and

(10.96)
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10-16 Circuit Analysis and Feedback Amplifier Theory

where pi’s, for i = 1,2,… n, are the corresponding eigenvectors associated with the eigenvalue λi, for i =
1,2,….,n. Substituting (10.94) into (10.83), the state transition matrix can now be written in the closed form

(10.97)

where

(10.98)

is a diagonal matrix.
In the more general case, where the A matrix has repeated eigenvalues, a diagonal matrix of the form

(10.95) may not exist. However, it can be shown that any square matrix A can be transformed by a
similarity transformation to the Jordan canonical form

(10.99)

where Ji’s, for i = 1, 2,…, l are known as Jordan blocks. Assuming that A has m distinct eigenvalues, λi,
with multiplicity ri, for i = 1, 2, …, m, and r1 + r2 + ⋅ ⋅ ⋅ + rm = n. Associated with each λi there may exist
several Jordan blocks. A Jordon block is a block diagonal matrix of order k × k(k ≤ ri ) with λi on its main
diagonal, all 1’s on the superdiagonal, and zeros elsewhere. In the special case when k = 1, the Jordan
block reduces to a 1 × 1 scalar block with only one element λi.

In fact, the number of Jordan blocks associated with the eigenvalue λi is equal to the dimension of the
null space of (λi I – A). For each k × k Jordan block J(k) associated with the eigenvalue λi of the form

(10.100)

the exponential function of J(k) takes the form

(10.101)
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and the corresponding k columns of P, known as the generalized eigenvectors, satisfy the equations

(10.102)

The closed form expression �(t – t0) for this general case now becomes

(10.103)

where

(10.104)

and each of the e(t–t0)Ji, for i = 1, 2, …, l, is of the form given in (10.101).
The third approach for obtaining closed form expression for the state transition matrix involves the

Laplace transform technique. Taking the Laplace transform of (10.70) yields

sX(s) – x(0) = AX(s)

or

X(s) = (sI – A)–1 x(0)  (10.105)

where (sI – A)–1 is known as the resolvent matrix. The time response

(10.106)

is obtained by taking the inverse Laplace transform of (10.105). It is observed by comparing (10.106) to
(10.82) and (10.83) with t0 = 0 that

(10.107)

By way of illustration, the following example is considered. The state transition matrix is obtained by
using each of the three approaches presented previously.

Example 7. Consider the parallel RLC circuit in Figure 10.7. The state equation of the circuit is obtained as

(10.108)
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With R = 2/3 Ω, L = 1 H, and C = 1/2 F, the A matrix becomes

(10.109)

(a) Normal Mode Approach: The eigenvalues and the corresponding eigenvectors of the A are found to be

λ1 = –1 λ2 = –2 (10.110)

and

(10.111)

Therefore, the natural response of the circuit is given as a linear combination of the two distinct normal
modes as

(10.112)

When evaluated at t = 0, (10.112) becomes

(10.113)

In order to find the first column of �(t), it is assumed that

(10.114)

With this initial condition, the solution of (10.113) becomes 

(10.115)

Substituting (10.115) into (10.112) results in the first column of �(t):

(10.116)

FIGURE 10.7  A parallel RLC circuit.
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Similarly, for

(10.117)

constants c1 and c2 are solved from (10.113) to give

(10.118)

The second column of �(t):

(10.119)

is obtained by substituting (10.118) into (10.112). Combining (10.116) and (10.119) yields the state
transition matrix in closed form

(10.120)

(b) Similarity Transformation Method: The eigenvalues are distinct, so the nonsingular transformation P
is constructed from (10.96) by the eigenvectors of A:

(10.121)

with

(10.122)

Substituting λ1, λ2, and P into (10.97) and (10.98) yields the desired state transition matrix

(10.123)

which is in agreement with (10.120).

(c) Laplace Transform Technique: The state transition matrix can also be computed in the frequency
domain from (10.107). The resolvent matrix is

(10.124)
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10-20 Circuit Analysis and Feedback Amplifier Theory

where partial-fraction expansion has been applied. Taking the inverse Laplace transform of (10.124)
yields the same closed form expression as given previously in (10.120) for �(t).

10.4 Complete Response

When independent sources are present in the circuit, the complete response depends on the initial states
of the circuits as well as the input sources. It is well known that the complete response is the sum of the
zero-input (or natural) response and the zero-state (or forced) response and satisfies the nonhomoge-
neous state equation

(10.125)

subject to the given initial condition x(t0) = x0. Equation (10.125) is again analogous to the scalar equation

(10.126)

which has the unique solution of the form

(10.127)

It is thus assumed that the solution to the state equation is given by

(10.128)

Indeed, one can show by direct substitution that (10.128) satisfies the state Eq. (10.125). Differentiating
both sides of (10.128) with respect to t yields

(10.129)

Also, at t = t0, (10.128) becomes

(10.130)
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The assumed solution (10.128) thus satisfies both the state Eq. (10.125) and the given initial condition.
Hence, x(t) as given by (10.128) is the unique solution.

It is observed from (10.128) that if u(t) is set to zero, the solution reduces to the zero-input response
or the natural response given in (10.82). On the other hand, if the original circuit is relaxed, i.e., x(t0) =
0, the solution represented by the convolution integral, the second term on the right-hand side of (10.128),
is the forced response on the zero-state response. Thus, Eq. (10.128) verifies the fact that the complete
response is the sum of the zero-input response and the zero-state response. The previous result is
illustrated by means of the following example.

Example 8. Consider again the same circuit given in Example 7, where the input current source is assumed
to be a unit step function applied to the circuit at t = 0.

The state equation of the circuit is found from (10.108) to be

(10.131)

where the state transition matrix �(t) is given in (10.120).
The zero-state response for t > 0 is obtained by evaluating the convolution integral indicated in

(10.128):

(10.132)

By adding the zero-input response represented by �(t)x(0) to (10.132), the complete response for any
given initial condition x(0) becomes

(10.133)

for t > 0.
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11.1 Introduction

Feedback, whether intentional or parasitic, is pervasive of all electronic circuits and systems. In general,
feedback is comprised of a subcircuit that allows a fraction of the output signal of an overall network to
modify the effective input signal in such a way as to produce a circuit response that can differ substantially
from the response produced in the absence of such feedback. If the magnitude and relative phase angle
of the fed back signal decreases the magnitude of the signal applied to the input port of an amplifier, the
feedback is said to be negative or degenerative. On the other hand, positive (or regenerative) feedback,
which gives rise to oscillatory circuit responses, is the upshot of a feedback signal that increases the
magnitude of the effective input signal. Because negative feedback produces stable circuit responses, the
majority of all intentional feedback architectures is degenerative [1], [2]. However, parasitic feedback
incurred by the energy storage elements associated with circuit layout, circuit packaging, and second-
order high-frequency device phenomena often degrades an otherwise degenerative feedback circuit into
either a potentially regenerative or severely underdamped network.

Intentional degenerative feedback applied around an analog network produces four circuit perfor-
mance benefits. First, negative feedback desensitizes the gain of an open-loop amplifier (an amplifier
implemented without feedback) with respect to variations in circuit element and active device model
parameters. This desensitization property is crucial in view of parametric uncertainties caused by aging
phenomena, temperature variations, biasing perturbations, and nonzero fabrication and manufacturing
tolerances. Second, and principally because of the foregoing desensitization property, degenerative feed-
back reduces the dependence of circuit responses on the parameters of inherently nonlinear active devices,
thereby reducing the total harmonic distortion evidenced in open loops. Third, negative feedback broad-
bands the dominant pole of an open-loop amplifier, thereby affording at least the possibility of a closed-
loop network with improved high-frequency performance. Finally, by modifying the driving-point input
and output impedances of the open-loop circuit, negative feedback provides a convenient vehicle for
implementing voltage buffers, current buffers, and matched interstage impedances.

John Choma, Jr.
University of Southern California
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11-2 Circuit Analysis and Feedback Amplifier Theory

The disadvantages of negative feedback include gain attenuation, a closed-loop configuration that is
disposed to potential instability, and, in the absence of suitable frequency compensation, a reduction in
the open-loop gain-bandwidth product. In uncompensated feedback networks, open-loop amplifier gains
are reduced in almost direct proportion to the amount by which closed-loop amplifier gains are desen-
sitized with respect to open-loop gains. Although the 3-dB bandwidth of the open-loop circuit is increased
by a factor comparable to that by which the open-loop gain is decreased, the closed-loop gain-bandwidth
product resulting from uncompensated degenerative feedback is never greater than that of the open-loop
configuration [3]. Finally, if feedback is incorporated around an open-loop amplifier that does not have
a dominant pole [4], complex conjugate closed-loop poles yielding nonmonotonic frequency responses
are likely. Even positive feedback is possible if substantive negative feedback is applied around an open-
loop amplifier for which more than two poles significantly influence its frequency response.

Although the foregoing detail is common knowledge deriving from Bode’s pathfinding disclosures [5],
most circuit designers remain uncomfortable with analytical procedures for estimating the frequency
responses, I/O impedances, and other performance indices of practical feedback circuits. The purposes
of this section are to formulate systematic feedback circuit analysis procedures and ultimately, to dem-
onstrate their applicability to six specific types of commonly used feedback architectures. Four of these
feedback types, the series-shunt, shunt-series, shunt-shunt, and series-series configurations, are single-
loop architectures, while the remaining two types are the series-series/shunt-shunt and series-
shunt/shunt-series dual-loop configurations.

11.2 Methods of Analysis

Several standard techniques are used for analyzing linear feedback circuits [6]. The most straightforward
of these entails writing the Kirchhoff equilibrium equations for the small-signal model of the entire
feedback system. This analytical tack presumably leads to the idealized feedback circuit block diagram
abstracted in Figure 11.1. In this model, the circuit voltage or current response, XR, is related to the
source current or voltage excitation, XS, by

(11.1)

where Gcl is the closed-loop gain of the feedback circuit, the feedback factor ƒ is the proportion of circuit
response fed back for antiphase superposition with the source signal, and Go represents the open-loop
gain. The product ƒGo is termed the loop gain T.

Equation (11.1) demonstrates that, for loop gains with magnitudes that are much larger than one, the
closed-loop gain collapses to 1/ƒ, which is independent of the open-loop gain. To the extent that the

FIGURE 11.1  Block diagram model of a feedback network.
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open-loop amplifier, and not the feedback subcircuit, contains circuit elements and other parameters
that are susceptible to modeling uncertainties, variations in the fabrication of active and passive elements,
and nonzero manufacturing tolerances, large loop gain achieves a desirable parametric desensitization.
Unfortunately, the determination of Go and ƒ directly from the Kirchhoff relationships is a nontrivial
task, especially because Go is rarely independent of ƒ in practical electronics. Moreover, (11.1) does not
illuminate the manner in which the loop gain modifies the driving-point input and output impedances
of the open-loop amplifier.

A second approach to feedback network analysis involves modeling the open-loop, feedback, and
overall closed-loop networks by a homogeneous set of two-port parameters [7]. When the two-port
parameter model is selected judiciously, the two-port parameters for the closed-loop network derive from
a superposition of the respective two-port parameters of the open-loop and feedback subcircuits. Given
the resultant parameters of the closed-loop circuit, standard formulas can then be exploited to evaluate
closed-loop values of the circuit gain and the driving-point input and output impedances.

Unfortunately, several limitations plague the utility of feedback network analysis predicated on two-
port parameters. First, the computation of closed-loop two-port parameters is tedious if the open-loop
configuration is a multistage amplifier, or if multiloop feedback is utilized. Second, the two-loop method
of feedback circuit analysis is straightforwardly applicable to only those circuits that implement global
feedback (feedback applied from output port to input port). Many single-ended feedback amplifiers
exploit only local feedback, wherein a fraction of the signal developed at the output port is fed back to
a terminal pair other than that associated with the input port. Finally, the appropriate two-port param-
eters of the open-loop amplifier can be superimposed with the corresponding parameter set of the
feedback subcircuit if and only if the Brune condition is satisfied [8]. This requirement mandates equality
between the preconnection and postconnection values of the two-port parameters of open-loop and
feedback cells, respectively. The subject condition is often not satisfied when the open-loop amplifier is
not a simple three-terminal two-port configuration.

The third method of feedback circuit analysis exploits Mason’s signal flow theory [9–11]. The circuit
level application of this theory suffers few of the shortcomings indigenous to block diagram and two-
port methods of feedback circuit analysis [12]. Signal flow analyses applied to feedback networks effi-
ciently express I/O transfer functions, driving-point input impedances, and driving-point output imped-
ances in terms of an arbitrarily selected critical or reference circuit parameters, say P.

An implicit drawback of signal flow methods is the fact that unless P is selected to be the feedback
factor ƒ, which is not always transparent in feedback architectures, expressions for the loop gain and the
open-loop gain of feedback amplifiers are obscure. However, by applying signal flow theory to a feedback
circuit model engineered from insights that derive from the results of two-port network analyses, the
feedback factor can be isolated. The payoff of this hybrid analytical approach includes a conventional
block diagram model of the I/O transfer function, as well as convenient mathematical models for
evaluating the closed-loop driving-point input and output impedances. Yet, another attribute of hybrid
methods of feedback circuit analysis is its ability to delineate the cause, nature, and magnitude of the
feedforward transmittance produced by interconnecting a certain feedback subcircuit to a given open-
loop amplifier. This information is crucial in feedback network design because feedforward invariably
decreases gain and often causes undesirable phase shifts that can lead to significantly underdamped or
unstable closed-loop responses.

11.3 Signal Flow Analysis

Guidelines for feedback circuit analysis by hybrid signal flow methods can be established with the aid of
Figure 11.2 [13]. Figure 11.2(a) depicts a linear network whose output port is terminated in a resistance,
RL. The output signal variable is the voltage VO , which is generated in response to an input port signal
whose Thévenin voltage and resistance are respectively, VS and RS. Implicit to the linear network is a
current-controlled voltage source (CCVS) Pib, with a value that is directly proportional to the indicated
network branch current ib. The problem at hand is the deduction of the voltage gain Gv(RS, RL) = VO /VS ,
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11-4 Circuit Analysis and Feedback Amplifier Theory

the driving-point input resistance (or impedance) Rin, and the driving-point output resistance (or imped-
ance) Rout, as explicit functions of the critical transimpedance parameter P. Although the following
systematic procedure is developed in conjunction with the diagram in Figure 11.2, with obvious changes
in notation, it is applicable to determining any type of transfer relationship for any linear network in
terms of any type of reference parameter [14].

1. Set P = 0, as depicted in Figure 11.2(b), and compute the resultant voltage gain Gvo (RS, RL), where
the indicated notation suggests an anticipated dependence of gain on source and load resistances.
Also, compute the corresponding driving-point input and output resistances Rin, and Rout, respec-
tively. In this case, the “critical” parameter P is associated with a controlled voltage source.
Accordingly, P = 0 requires that the branch containing the controlled source be supplanted by a
short circuit. If, for example, P is associated with a controlled current source, P = 0 mandates the
replacement of the controlled source by an open circuit.

2. Set the Thévenin source voltage VS to zero, and replace the original controlled voltage source Pib

by an independent voltage source of symbolic value, vx. Then, calculate the ratio, iy /vx, where, as
illustrated in Figure 11.2(c), iy flows in the branch that originally conducts the controlling current
ib. Note, however, that the reference polarity of iy is opposite to that of ib. The computed transfer
function iy /vx is denoted by QS (RS, RL). This transfer relationship, which is a function of the source
and load resistances, is used to determine the return ratio Ts(P, RS, RL ) with respect to parameter
P of the original network. In particular,

FIGURE 11.2  (a) Linear network with an identified critical parameter P. (b) Model for calculating the P = 0 value
of voltage gain. (c) The return ratio with respect to P is PQs (RS, RL ). (d) The null return ratio with respect to P is
PQr (RS, RL ).
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(11.2)

If P is associated with a controlled current source, the controlled generator Pib is replaced by a
current source of value ix. If the controlling variable is a voltage, instead of a current, the ratio
vy /vx, is computed, where vy , where the polarity is opposite to that of the original controlling
voltage, is the voltage developed across the controlling branch.

3. The preceding computational step is repeated, but instead of setting VS to zero, the output variable,
which is the voltage VO in the present case, is nulled, as indicated in Figure 11.2(d). Let the
computed ratio iy /vx, be symbolized as Qr (RS, RL ). In turn, the null return ratio Tr (P, RS, RL ), with
respect to parameter P is

(11.3)

4. The desired voltage gain Gv (RS, RL ), of the linear network undergoing study can be shown to be
[5, 12]

(11.4)

5. Given the function Qs(RS, RL ), the driving-point input and output resistances follow straightfor-
wardly from [12]

(11.5)

(11.6)

An important special case entails a controlling electrical variable ib associated with the selected param-
eter P that is coincidentally the voltage or current output of the circuit under investigation. In this
situation, a factor P of the circuit response is fed back to the port (not necessarily the input port) defined
by the terminal pair across which the controlled source is incident. When the controlling variable ib is
the output voltage or current of the subject circuit Qr (RS, RL ), which is evaluated under the condition
of a nulled network response, is necessarily zero. With Qr (RS, RL ) = 0, the algebraic form of (11.4) is
identical to that of (11.1), where the loop gain T is the return ratio with respect to parameter P; that is,

(11.7)

Moreover, a comparison of (11.4) to (11.l) suggests that Gv(RS, RL) symbolizes the closed-loop gain of
the circuit, Gvo(RS, RL ) represents the corresponding open-loop gain, and the circuit feedback factor ƒ is

(11.8)

11.4 Global Single-Loop Feedback

Consider the global feedback scenario illustrated in Figure 11.3(a), in which a fraction P of the output
voltage VO is fed back to the voltage-driven input port. Figure 11.3(b) depicts the model used to calculate
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11-6 Circuit Analysis and Feedback Amplifier Theory

the return ratio Qs(RS, RL), where, in terms of the branch variables in the schematic diagram, Qs(RS, RL) =
vy /vx. An inspection of this diagram confirms that the transfer function vy/vx, is identical to the P = 0
value of the gain VO /VS, which derives from an analysis of the structure in Figure 11.3(a). Thus, for global
voltage feedback in which a fraction of the output voltage is fed back to a voltage-driven input port,
Qs(RS, RL) is the open-loop voltage gain; that is, Qs(RS, RL) ≡ Gvo(RS, RL). It follows from (11.8) that the
feedback factor ƒ is identical to the selected critical parameter P. Similarly, for the global current feedback
architecture of Figure 11.4(a), in which a fraction P of the output current, IO, is feed back to the current-
driven input port ƒ = P. As implied by the model of Figure 11.4(b), Qs(RS, RL) ≡ Gio(RS, RL), the open-
loop current gain.

FIGURE 11.3  (a) Voltage-driven linear network with global voltage feedback. (b) Model for the calculation of loop
gain.

FIGURE 11.4  (a) Current-driven linear network with global current feedback. (b) Model for the calculation of loop
gain. 
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Driving-Point I/O Resistances

Each of the two foregoing circuit architectures has a closed-loop gain where the algebraic form mirrors
(11.1). It follows that for sufficiently large loop gain [equal to either PGvo(RS, RL) or PGio(RS, RL)], the
closed-loop gain approaches (1/P) and is therefore desensitized with respect to open-loop gain param-
eters. However, such a desensitization with respect to the driving-point input and output resistances (or
impedances) cannot be achieved. For the voltage feedback circuit in Figure 11.3(a), Qs(∞, RL), is the RS

= ∞ value, Gvo(RS,RL), of the open-loop voltage gain. This particular open-loop gain is zero, because RS

= ∞ decouples the source voltage from the input port of the amplifier. On the other hand, Qs(0, RL) is
the RS = 0 value, Gvo(0, RL), of the open-loop voltage gain. This gain is at least as large as Gvo(RS, RL),
since a short circuited Thévenin source resistance implies lossless coupling of the Thévenin signal to the
amplifier input port. Recalling (11.5), the resultant driving-point input resistance of the voltage feedback
amplifier is

(11.9)

which shows that the closed-loop driving-point input resistance is larger than its open-loop counterpart
and is dependent on open-loop voltage gain parameters.

Conversely, the corresponding driving-point output resistance in Figure 11.3(a) is smaller than the
open-loop output resistance and approximately inversely proportional to the open-loop voltage gain.
These assertions derive from the facts that Qs(RS, 0) is the RL = 0 value of the open-loop voltage gain
Gvo(RS, RL). Because RL = 0 corresponds to the short-circuited load resistance, Gvo(RS, 0) = 0. In contrast,
Qs(RS, ∞), is the RL = ∞ value, Gvo(RS, ∞), of the open-loop gain, which is a least as large as Gvo(RS, RL).
By (11.6),

(11.10)

Similarly, the driving-point input and output resistances of the global current feedback configuration
of Figure 11.4(a) are sensitive to open-loop gain parameters. In contrast to the voltage amplifier of
Figure 11.3(a), the closed-loop, driving-point input resistance of current amplifier is smaller than its
open-loop value, while the driving-point output resistance is larger than its open-loop counterpart.
Noting that the open-loop current gain Gio(RS, RL) is zero for both RS = 0 (which short circuits the input
port), and RL = ∞ (which open circuits the load port), (11.5) and (11.6) give

(11.11)

(11.12)

Diminished Closed-Loop Damping Factor

In addition to illuminating the driving-point and forward transfer characteristics of single-loop feedback
architectures, the special case of global single-loop feedback illustrates the potenital instability problems
pervasive of almost all feedback circuits. An examination of these problems begins by returning to (11.1)
and letting the open-loop gain, Go, be replaced by the two-pole frequency-domain function,

(11.13)
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11-8 Circuit Analysis and Feedback Amplifier Theory

where Go(0) symbolizes the zero-frequency open-loop gain. The pole frequencies p1 and p2 in (11.13)
are either real numbers or complex conjugate pairs. Alternatively, (11.13) is expressible as

(11.14)

where

(11.15)

represents the undamped natural frequency of oscillation of the open-loop configuration, and

(11.16)

is the damping factor of the open-loop circuit.
In (11.1), let the feedback factor ƒ be the single left-half-plane zero function,

(11.17)

where z is the frequency of the real zero introduced by feedback, and ƒo is the zero-frequency value of
the feedback factor. The resultant loop gain is

(11.18)

the zero-frequency value of the loop gain is

(11.19)

and the zero frequency closed-loop gain Gcl(0), is

(11.20)

Upon inserting (11.14) and (11.17) into (11.1), the closed-loop transfer function is determined to be 

(11.21)

where the closed-loop undamped natural frequency of oscillation ωncl relates to its open-loop counterpart
ωnol, in accordance with

(11.22)
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Moreover, the closed-loop damping factor ζ cl is

(11.23)

A frequency invariant feedback factor ƒ (s) applied to the open-loop configuration whose transfer
function is given by (11.13) implies an infinitely large frequency, z, of the feedback zero. For this case,
(11.23) confirms a closed-loop damping factor that is always less than the open-loop damping factor.
Indeed, for a smaller than unity open-loop damping factor (which corresponds to complex conjugate
open-loop poles) and reasonable values of the zero-frequency loop gain T(0), ζ cl � 1. Thus, constant
feedback applied around an underdamped two-pole open-loop amplifier yields a severely underdamped
closed-loop configuration. It follows that the closed-loop circuit has a transient step response plagued
by overshoot and a frequency response that displays response peaking within the closed-loop passband.
Observe that underdamping is likely even in critically damped (identical real open-loop poles) or over-
damped (distinct real poles) open-loop amplifiers, which, respectively, correspond to ζol = 1 and ζol > 1,
when a large zero-frequency loop gain is exploited.

Underdamped closed-loop amplifiers are not unstable systems, but they are nonetheless unacceptable.
From a practical design perspective, closed-loop underdamping predicted by relatively simple mathe-
matical models of the loop gain portend undesirable amplifier responses or even closed-loop instability.
The problem is that simple transfer function models invoked in a manual circuit analysis are oblivious
to presumably second-order parasitic circuit layout and device model energy storage elements with effects
that include a deterioration of phase and gain margins.

Frequency Invariant Feedback Factor

Let the open-loop amplifier be overdamped, such that its real satisfy the relationship

(11.24)

If the open-loop amplifier pole p1 is dominant, κ2 is a real number that is greater than the magnitude,
�Go(0)�, of the open-loop zero frequency gain, which is presumed to be much larger than one. The open-
loop damping factor in (11.16) resultantly reduces to ζo1 ≈ κ/2. With κ2 > �Go(0)� � 1, which formally
reflects the dominant pole approximation, the 3-dB bandwidth Bol of the open-loop amplifier is given
approximately by [15]

(11.25)

As expected, (11.25) predicts an open-loop 3-dB bandwidth that is only slightly smaller than the frequency
of the open-loop dominant pole.

The frequency, z, in (11.23) is infinitely large if frequency invariant degenerative feedback is applied
around on open-loop amplifier. For a critically damped or overdamped closed-loop amplifier, ζcl > 1.
Assuming open-loop pole dominance, this constraint imposes the open-loop pole requirement,

(11.26)

Thus, for large zero-frequency loop gain, T(0), an underdamped closed-loop response is avoided if and
only if the frequency of the nondominant open-loop pole is substantially larger than that of the dominant
open-loop pole. Unless frequency compensation measures are exploited in the open loop, (11.26) is
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11-10 Circuit Analysis and Feedback Amplifier Theory

difficult to satisfy, especially if feedback is implemented expressly to realize a substantive desensitization
of response with respect to open-loop parameters. On the chance that (11.26) can be satisfied, and if the
closed-loop amplifier emulates a dominant pole response, the closed-loop bandwidth is, using (11.22),
(11.23), and (11.25),

(11.27)

Observe from (11.27) and (11.26) that the maximum possible closed-loop 3-dB bandwidth is 2 octaves
below the minimum acceptable frequency of the nondominant open-loop pole.

Although (11.27) theoretically confirms the broadbanding property of negative feedback amplifiers,
the attainment of very large closed-loop 3-dB bandwidths is nevertheless a challenging undertaking. The
problem is that (11.26) is rarely satisfied. As a result, the open-loop configuration must be suitably
compensated, usually by pole splitting methodology [16–18], to force the validity of (11.26). However,
the open-loop poles are not mutually independent, so any compensation that increases p2 is accompanied
by decreases in p1. The pragmatic upshot of the matter is that the closed-loop 3-dB bandwidth is not
directly proportional to the uncompensated value of p1 but instead, it is proportional to the smaller,
compensated value of p1.

Frequency Variant Feedback Factor (Compensation)

Consider now the case where the frequency, z, of the compensating feedback zero is finite and positive.
Equation (11.23) underscores the stabilizing property of a left-half-plane feedback zero in that a suffi-
ciently small positive z renders a closed-loop damping factor ζcl that can be made acceptably large,
regardless of the value of the open-loop damping factor ζol. To this end, ζcl > 1/  is a desirable design
objective in that it ensures a monotonically decreasing closed-loop frequency response. If, as is usually
a design goal, the open-loop amplifier subscribes to pole dominance, (11.23) translates the objective,
ζcl > 1/ , into the design constraint

(11.28)

where use is made of (11.25) to cast ζ in terms of the open-loop bandwidth Bol. When the closed-loop
damping factor is precisely equal to 1/  a maximally flat magnitude closed-loop response results for
which the 3-dB bandwidth is ωncl. Equation (11.28) can then be cast into the more useful form

(11.29)

where (11.20) is exploited, GBPol is the gain-bandwidth product of the open-loop circuit, and GBPcl is
the gain-bandwidth product of the resultant closed-loop network.

For a given open-loop gain-bandwidth product GBPol, a desired low-frequency closed-loop gain, Gcl(0),
and a desired closed-loop gain-bandwidth product, GBPcl, (11.29) provides a first-order estimate of the
requisite feedback compensation zero. Additionally, note that (11.29) imposes an upper limit on the
achievable high-frequency performance of the closed-loop configuration. In particular, because z must
be positive to ensure acceptable closed-loop damping, (11.29) implies
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(11.30)

In effect, (11.30) imposes a lower limit on the required open-loop gain-bandwidth product commensurate
with feedback compensation implemented to achieve a maximally flat, closed-loop frequency response.

11.5 Pole Splitting Open-Loop Compensation

Equation (11.26) underscores the desirability of achieving an open-loop dominant pole frequency
response in the design of a feedback network. In particular, (11.26) shows that if the ultimate design goal
is a closed-loop dominant pole frequency response, the frequency, p2, of the nondominant open-loop
amplifier pole must be substantially larger than its dominant pole counterpart, p1. Even if closed-loop
pole dominance is sacrificed as a trade-off for other performance merits, open-loop pole dominance is
nonetheless a laudable design objective. This contention follows from (11.23) and (11.16), which combine
to suggest that the larger p2 is in comparison to p1, the larger is the open-loop damping factor. In turn,
the unacceptably underdamped closed-loop responses that are indicative of small, closed-loop damping
factors are thereby eliminated. Moreover, (11.23) indicates that larger, open-loop damping factors impose
progressively less demanding restrictions on the feedback compensation zero that may be required to
achieve acceptable closed-loop damping. This observation is important because in an actual circuit design
setting, small z in (11.23) generally translates into a requirement of a correspondingly large RC time
constant, where implementation may prove difficult in monolithic circuit applications.

Unfortunately, many amplifiers, and particularly broadbanded amplifiers, earmarked for use as open-
loop cells in degenerative feedback networks, are not characterized by dominant pole frequency responses.
The frequency response of these amplifiers is therefore optimized in accordance with a standard design
practice known as pole splitting compensation. Such compensation entails the connection of a small
capacitor between two high impedance, phase inverting nodes of the open-loop topology [17, 19–21].
Pole splitting techniques increase the frequency p2 of the uncompensated nondominant open-loop pole
to a compensated value, say p2c. The frequency, p1, of the uncompensated dominant open-loop pole is
simultaneously reduced to a smaller frequency, say plc. Although these pole frequency translations com-
plement the design requirement implicit to (11.26) and (11.23), they do serve to limit the resultant
closed-loop bandwidth, as discussed earlier. As highlighted next, they also impose other performance
limitations on the open loop.

The Open-Loop Amplifier

The engineering methods, associated mathematics, and engineering trade-offs underlying pole splitting
compensation are best revealed in terms of the generalized, phase inverting linear network abstracted in
Figure 11.5. Although this amplifier may comprise the entire open-loop configuration, in the most general
case, it is an interstage of the open loop. Accordingly, Rst in this diagram is viewed as the Thévenin
equivalent resistance of either an input signal source or a preceding amplification stage. The response to
the Thévenin driver, Vst, is the indicated output voltage, Vl , which is developed across the Thévenin load
resistance, Rlt, seen by the stage under investigation. Note that the input current conducted by the
amplifier is Is, while the current flowing into the output port of the unit is denoted as Il. The dashed
branch containing the capacitor Cc, which is addressed later, is the pole splitting compensation element.

Because the amplifier under consideration is linear, any convenient set of two-port parameters can be
used to model its terminal volt–ampere characteristics. Assuming the existence of the short circuit
admittance, or y parameters,

(11.31)

GBP
GBP

2
ol

cl>

I

I

y y

y y

V

V

s

l

i

l













=
























11 12

21 2

© 2006 by Taylor & Francis Group, LLC



11-12 Circuit Analysis and Feedback Amplifier Theory

Defining

(11.32)

(11.31) implies

(11.33)

(11.34)

The last two expressions produce the y-parameter model depicted in Figure 7.6(a), in which yi represents
an effective shunt input admittance, yo is a shunt output admittance, yf is a forward transadmittance,
and yr reflects voltage feedback intrinsic to the amplifier.

Amplifiers amenable to pole splitting compensation have capacitive input and output admittances;
that is, yi and yo are of the form

(11.35)

Similarly,

(11.36)

In (11.36), the conductance component Gf of the forward transadmittance yf positive in a phase-inverting
amplifier. Moreover, the reactive component –sCf of yf produces an excess phase angle, and hence, a group

FIGURE 11.5 A linear amplifier for which a pole splitting compensation capacitance Cc is incorporated.
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delay, in the forward gain function. This component, which deteriorates phase margin, can be ignored
to first order if the signal frequencies of interest are not excessive in comparison to the upper-frequency
limit of performance of the amplifier. Finally, the feedback internal to many practical amplifiers is
predominantly capacitive so that the feedback resistance Rr can be ignored. These approximations allow
the model in Figure 7.6(a) to be drawn in the form offered in Figure 11.6(b).

It is worthwhile interjecting that the six parameters indigenous to the model in Figure 11.6(b) need
not be deduced analytically from the small-signal models of the active elements embedded in the subject
interstage. Instead, SPICE can be exploited to evaluate the y parameters in (11.31) at the pertinent biasing
level. Because these y parameters display dependencies on signal frequency, care should be exercised to
evaluate their real and imaginary components in the neighborhood of the open-loop, 3-dB bandwidth
to ensure acceptable computational accuracy at high frequencies. Once the y parameters in (11.31) are
deduced by computer-aided analysis, the alternate admittance parameters in (11.23), as well as numerical
estimates for the parameters, Ri, Ci, Ro, Co, Cr, and Gf , in (11.35) and (11.36) follow straightforwardly.

Pole Splitting Analysis

An analysis of the circuit in Figure 11.6(b) produces a voltage transfer function Av(s) of the form

(11.37)

Letting

(11.38)

FIGURE 11.6 (a) The y-parameter equivalent circuit of the phase-inverting linear amplifier in Fig. 11.5. (b) An
approximate form of the model in (a).
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an inspection of the circuit in Figure 11.6(b) confirms that

(11.39)

is the zero frequency voltage gain. Moreover, the frequency, zr, of the right-half-plane zero is

(11.40)

The lower pole frequency, p1, and the higher pole frequency, p2, derive implicitly from

(11.41)

and

(11.42)

where

(11.43)

Most practical amplifiers, and particularly amplifiers realized in bipolar junction transistor technology,
have very large forward transconductance, Gf , and small internal feedback capacitance, Cr. The combi-
nation of large Gf and small Cr renders the frequency in (11.40) so large as to be inconsequential to the
passband of interest. When utilized in a high-gain application, such as the open-loop signal path of a
feedback amplifier, these amplifiers also operate with a large effective load resistance, Rll. Accordingly,
(11.41) can be used to approximate the pole frequency p1 as

(11.44)

Substituting this result into (11.42), the approximate frequency p2 of the high-frequency pole is

(11.45)

Figure 11.7 illustrates asymptotic frequency responses corresponding to pole dominance and to a two-
pole response. Figure 11.7(a) depicts the frequency response of a dominant pole amplifier, which does
not require pole splitting compensation. Observe that its high-frequency response is determined by a
single pole (p1 in this case) through the signal frequency at which the gain ultimately degrades to unity.
In this interpretation of a dominant pole amplifier, p2 is not only much larger than p1, but is in fact larger
than the unity gain frequency, which is indicated as ωu in the figure. This unity gain frequency, which
can be viewed as an upper limit to the useful passband of the amplifier, is approximately, �Av(0)�p1. To
the extent that p1 is essentially the 3-dB bandwidth when p2 � p1, the unity gain frequency is also the
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gain-bandwidth product (GBP) of the subject amplifier. In short, with �Av(jωu)� =
∆ 1, p2 � p1 in (11.37)

implies

(11.46)

The contrasting situation of a response indigenous to the presence of two significant open-loop poles
is illustrated in Figure 11.7(b). In this case, the higher pole frequency p2 is smaller than ωu and hence, the
amplifier does not emulate a single-pole response throughout its theoretically useful frequency range. The
two critical frequencies, p1 and p2, remain real numbers, and as long as p2 ≠ p1, the corresponding damping
factor, is greater than one. However, the damping factor of the two-pole amplifier (its response is plotted
in Figure 11.7(b)) is nonetheless smaller than that of the dominant pole amplifier. It follows that, for
reasonable loop gains, unacceptable underdamping is more likely when feedback is invoked around the

FIGURE 11.7  (a) Asymptotic frequency response for a dominant pole amplifier. Such an amplifier does not require
pole splitting compensation because the two lowest frequency amplifier poles, p1 and p2, are already widely separated.
(b) The frequency response of an amplifier with high-frequency response that is strongly influenced by both of its
lowest frequency poles. The basic objective of pole splitting compensation is to transform the indicated frequency
response to a form that emulates that depicted in (a).
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11-16 Circuit Analysis and Feedback Amplifier Theory

two-pole amplifier, as opposed to the same amount of feedback applied around a dominant pole amplifier.
Pole splitting attempts to circumvent this problem by transforming the pole conglomeration of the two
pole amplifier into one that emulates the dominant pole situation inferred by Figure 11.7(a).

To the foregoing end, append the compensation capacitance Cc between the input and the output
ports of the phase-inverting linear amplifier, as suggested in Figure 11.5. With reference to the equivalent
circuit in Figure 11.6(b), the electrical impact of this additional element is the effective replacement of
the internal feedback capacitance Cr by the capacitance sum (Cr + Cc). Letting

(11.47)

it is apparent that (11.40)–(11.42) remain applicable, provided that Cr in these relationships is supplanted
by Cp. Because Cp is conceivably significantly larger than Cc, however, the approximate expressions for
the resultant pole locations differ from those of (11.44) and (11.45). In particular, a reasonable approx-
imation for the compensated value, say P1c, of the lower pole frequency is now

(11.48)

while the higher pole frequency, p2c, becomes

(11.49)

Clearly, p1c < p1 and p2c > p2. Moreover, for large Gf , p2c is potentially much larger than p1c. It should also
be noted that the compensated value, say, zrc, of the right-half-plane zero is smaller than its uncompen-
sated value, zr, because (11.40) demonstrates that

(11.50)

Although zrc can conceivably exert a significant influence on the high-frequency response of the com-
pensated amplifier, the following discussion presumes tacitly that zrc > p2c [2].

Assuming a dominant pole frequency response, the compensated unity gain frequency, ωuc, is, using
(11.39), (11.46), and (11.48),

(11.51)

It is interesting to note that

(11.52)

that is, the unity gain frequency is limited by the inverse of the RC time constant formed by the Thévenin
source resistance Rst and the net capacitance Cp appearing between the input port and the phase inverted
output port. The subject inequality comprises a significant performance limitation, for if p2c is indeed
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much larger than pic, ωuc is approximately the GBP of the compensated cell. Accordingly, for a given
source resistance, a required open-loop gain, and a desired open-loop bandwidth, (11.52) imposes an
upper limit on the compensation capacitance that can be exploited for pole splitting purposes.

In order for the compensated amplifier to behave as a dominant pole configuration, p2c must exceed
ωuc, as defined by (11.51). Recalling (11.49), the requisite constraint is found to be

(11.53)

Assuming Gf (Rss/Rll) � 1, (11.53) reduces to the useful simple form

(11.54)

which confirms the need for large forward transconductance Gf if pole splitting is to be an effective
compensation technique.

11.6 Summary

The use of negative feedback is fundamental to the design of reliable and reproducible analog electronic
networks. Accordingly, this chapter documents the salient features of the theory that underlies the efficient
analysis and design of commonly used feedback networks. Four especially significant points are postulated
in this section.

1. By judiciously exploiting signal flow theory, the classical expression, (11.1), for the I/O transfer
relationship of a linear feedback system is rendered applicable to a broad range of electronic
feedback circuits. This expression is convenient for design-oriented analysis because it clearly
identifies the open-loop gain, Go, and the loop gain, T. The successful application of signal flow
theory is predicated on the requirement that the feedback factor, to which T is proportional and
that appears in the signal flow literature as a “critical” or “reference” parameter, can be identified
in a given feedback circuit.

2. Signal flow theory, as applied to electronic feedback architectures, proves to be an especially expe-
dient analytical tool because once the loop gain T is identified, the driving-point input and output
impedances follow with minimal additional calculations. Moreover, the functional dependence of
T on the Thévenin source and terminating load impedances unambiguously brackets the magni-
tudes of the driving point I/O impedances attainable in particular types of feedback arrangements.

3. The damping factor concept is advanced herewith as a simple way of assessing the relative stability
of both the open and closed loops of a feedback circuit. The open-loop damping factor derives
directly from the critical frequencies of the open-loop gain, while these frequencies and any zeros
appearing in the loop gain unambiguously define the corresponding closed-loop damping factor.
Signal flow theory is once again used to confirm the propensity of closed loops toward instability
unless the open-loop subcircuit functions as a dominant pole network. Also confirmed is the
propriety of the common practice of implementing a feedback zero as a means of stabilizing an
otherwise potentially unstable closed loop.

4. Pole splitting as a means to achieve dominant pole open-loop responses is definitively discussed.
Generalized design criteria are formulated for this compensation scheme, and limits of perfor-
mance are established. Of particular interest is the fact that pole splitting limits the GBP of the
compensated amplifier to a value that is determined by a source resistance-compensation capac-
itance time constant.
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12.1 Introduction

Four basic types of single-loop feedback amplifiers are available: the series-shunt, shunt-series, shunt-
shunt, and series-series architectures [1]. Each of these cells is capable of a significant reduction of the
dependence of forward transfer characteristics on the ill-defined or ill-controlled parameters implicit to
the open-loop gain; but none of these architectures can simultaneously offer controlled driving-point
input and output impedances. Such additional control is afforded only by dual global loops comprised
of series and/or shunt feedback signal paths appended to an open-loop amplifier [2], [3]. Only two types
of global dual-loop feedback architectures are used: the series-series/shunt-shunt feedback amplifier
and the series-shunt/shunt-series feedback amplifier.

Although only bipolar technology is exploited in the analysis of the aforementioned four single-loop
and two dual-loop feedback cells, all disclosures are generally applicable to metaloxide-silicon (MOS),
heterostructure bipolar transistor (HBT), and III–V compound metal-semiconductor field-effect tran-
sistor (MESFET) technologies. All analytical results derive from an application of a hybrid, signal
flow/two-port parameter analytical tack. Because the thought processes underlying this technical
approach apply to all feedback circuits, the subject analytical procedure is developed in detail for only
the series-shunt feedback amplifier.

12.2 Series-Shunt Feedback Amplifier

Circuit Modeling and Analysis

Figure 12.1(a) depicts the ac schematic diagram (a circuit diagram divorced of biasing details) of a series-
shunt feedback amplifier. In this circuit, the output voltage VO, which is established in response to a
single source represented by the Thévenin voltage VST, and the Thévenin resistance, RST, is sampled by

John Choma, Jr.
University of Southern California
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12-2 Circuit Analysis and Feedback Amplifier Theory

the feedback network composed of the resistances, REE and RF. The sampled voltage is fed back in such
a way that the closed-loop input voltage, VI, is the sum of the voltage, V1A, across the input port of the
amplifier and the voltage V1F, developed across REE in the feedback subcircuit. Because VI = V1A + V1F,
the output port of the feedback configuration can be viewed as connected in series with the amplifier
input port. On the other hand, output voltage sampling constrains the net load current, IO, to be the
algebraic sum of the amplifier output port current, I2A, and the feedback network input current, I2F.
Accordingly, the output topology is indicative of a shunt connection between the feedback subcircuit
and the amplifier output port. The fact that voltage is fed back to a voltage-driven input port renders
the driving point input resistance, Rin, of the closed-loop amplifier large, whereas the driving-point output
resistance, Rout, seen by the terminating load resistance, RLT, is small. The resultant closed-loop amplifier
is therefore best suited for voltage amplification, in the sense that the closed-loop voltage gain, VO/VST,
can be made approximately independent of source and load resistances. For large loop gain, this voltage
transfer function is also nominally independent of transistor parameters.

Assuming that transistors Q1 and Q2 are identical devices that are biased identically, Figure 12.1(b)
is the applicable low-frequency equivalent circuit. This equivalent circuit exploits the hybrid-π model
[4] of a bipolar junction transistor, subject to the proviso that the forward Early resistance [5] used to
emulate base conductivity modulation is sufficiently large to warrant its neglect. Because an infinitely

FIGURE 12.1  (a) The ac schematic diagram of a bipolar series-shunt feedback amplifier. (b) Low-frequency small-
signal equivalent circuit of the feedback amplifier.
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Feedback Amplifier Configurations 12-3

large forward Early resistance places the internal collector resistance (not shown in the figure) of a bipolar
junction transistor in series with the current controlled current source, this collector resistance can be
ignored as well.

The equivalent circuit of Figure 12.1(b) can be reduced to a manageable topology by noting that the
ratio of the signal current, IV, flowing into the base of transistor Q2 to the signal current, I1A, flowing
into the base of transistor Q1 is

(12.1)

where

(12.2)

is the small-signal, short-circuit common base current gain, and

(12.3)

symbolizes the short-circuit input resistance of a common base amplifier. It follows that the current
source βIv in Figure 12.1(b) can be replaced by the equivalent current (–βKβI1A).

A second reduction of the equivalent circuit in Figure 12.1(b) results when the feedback subcircuit is
replaced by a model that reflects the h-parameter relationships

(12.4)

where V1F(VO) represents the signal voltage developed across the output (input) port of the feedback
subcircuit and I1F(I2F) symbolizes the corresponding current flowing into the feedback output (input)
port. Although any homogeneous set of two-port parameters can be used to model the feedback subcir-
cuit, h parameters are the most convenient selection herewith. In particular, the feedback amplifier
undergoing study is a series-shunt configuration. The h-parameter equivalent circuit represents its input
port as a Thévenin circuit and its input port as a Norton configuration, therefore, the h-parameter
equivalent circuit is likewise a series-shunt structure.

For the feedback network at hand, which is redrawn for convenience in Figure 12.2(a), the h-parameter
equivalent circuit is as depicted in Figure 12.2(b). The latter diagram exploits the facts that the short-
circuit input resistance hif is a parallel combination of the resistance REE and RF, and the open-circuit
output conductance hof , is 1/(REE + RF). The open-circuit reverse voltage gain hrf is

(12.5)

while the short-circuit forward current gain hff is

(12.6)

Figure 12.2(c) modifies the equivalent circuit in Figure 12.2(b) in accordance with the following two
arguments. First, hrf in (12.5) is recognized as the fraction of the feedback subcircuit input signal that is
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12-4 Circuit Analysis and Feedback Amplifier Theory

fed back as a component of the feedback subcircuit output voltage, V1F . But this subcircuit input voltage
is identical to the closed-loop amplifier output signal VO . Moreover, V1F superimposes with the Thévenin
input signal applied to the feedback amplifier to establish the amplifier input port voltage, V1A. It follows
that hrf is logically referenced as a feedback factor, say f, of the amplifier under consideration; that is,

(12.7)

and by (12.6),

(12.8)

Second, the feedback subcircuit output current, I1F, is, as indicated in Figure 12.1(b), the signal current,
(β + 1)I1A. Thus, in the model of Figure 12.2(b),

(12.9)

If the model in Figure 12.2(c) is used to replace the feedback network in Figure 12.1(b) the equivalent
circuit of the series-shunt feedback amplifier becomes the alternative structure offered in Figure 12.3. In

FIGURE 12.2 (a) The feedback subcircuit in the series-shunt feedback amplifier of Figure 12.1(a). (b) The h-
parameter equivalent circuit of the feedback subcircuit. (c) Alternative form of the h-parameter equivalent circuit.
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arriving at this model, care has been exercised to ensure that the current flowing through the emitter of
transistor Q1 is (β + 1)I1A. It is important to note that the modified equivalent circuit delivers transfer
and driving point impedance characteristics that are identical to those implicit to the equivalent circuit
of Figure 12.1(b). In particular, the traditional analytical approach to analyzing a series-shunt feedback
amplifier tacitly presumes the satisfaction of the Brune condition [6] to formulate a composite structure
where the h-parameter matrix is the sum of the respective h-parameter matrices for the open-loop and
feedback circuits. In contrast, the model of Figure 12.3 derives from Figure 12.1(b) without invoking the
Brune requirement, which is often not satisfied. It merely exploits the substitution theorem; that is, the
feedback network in Figure 12.1(b) is substituted by its h-parameter representation.

In addition to modeling accuracy, the equivalent circuit in Figure 12.3 boasts at least three other
advantages. The first is an illumination of the vehicle by which feedback is implemented in the series-
shunt configuration. This vehicle is the voltage controlled voltage source, f VO, which feeds back a fraction
of the output signal to produce a branch voltage that algebraically superimposes with, and thus modifies,
the applied source voltage effectively seen by the input port of the open-loop amplifier. Thus, with f =
0, no feedback is evidenced, and the model at hand emulates an open-loop configuration. But even with
f = 0, the transfer and driving-point impedance characteristics of the resultant open-loop circuit are
functionally dependent on the feedback elements, REE and RF, because appending the feedback network
to the open-loop amplifier incurs additional impedance loads at both the input and the output ports of
the amplifier.

The second advantage of the subject model is its revelation of the magnitude and nature of feed-
forward through the closed loop. In particular, note that the signal current, IN, driven into the effective
load resistance comprised of the parallel combination of (REE + RF) and RLT , is the sum of two current
components. One of these currents, βKβI1A, materializes from the transfer properties of the two transistors
utilized in the amplifier. The other current, f (β + 1)I1A, is the feed-forward current resulting from the
bilateral nature of the passive feedback network. In general, negligible feed-forward through the feedback
subcircuit is advantageous, particularly in high-frequency signal-processing applications. To this end, the
model in Figure 12.3 suggests the design requirement,

(12.10)

When the resistance, R, in Figure 12.1(a) is the resistance associated with the output port of a PNP
current source used to supply biasing current to the collector of transistor Q1 and the base of transistor
Q2, Kβ approaches β, and (12.10) is easily satisfied; however, PNP current sources are undesirable in
broadband low-noise amplifiers. In these applications, the requisite biasing current must be supplied by

FIGURE 12.3 Modified small-signal model of the series-shunt feedback amplifier.
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12-6 Circuit Analysis and Feedback Amplifier Theory

a passive resistance, R, connected between the positive supply voltage and the junction of the Q1 collector
and the Q2 base. Unfortunately, the corresponding value of Kβ can be considerably smaller than β, with
the result that (12.10) may be difficult to satisfy. Circumvention schemes for this situation are addressed later.

A third attribute of the model in Figure 12.3 is its disposition to an application of signal flow theory.
For example, with the feedback factor f selected as the reference parameter for signal flow analysis, the
open-loop voltage gain Gvo(RST, RLT), of the series-shunt feedback amplifier is computed by setting f to
zero. Assuming that (12.10) is satisfied, circuit analysis reveals this gain as

(12.11)

The corresponding input and output driving point resistances, Rino and Routo, respectively, are

(12.12)

and

(12.13)

It follows that the closed-loop gain Gv (RST, RLT) of the series-shunt feedback amplifier is

(12.14)

where the loop gain T is

(12.15)

For T � 1, which mandates a sufficiently large Kβ in (12.11), the closed-loop gain collapses to

(12.16)

which is independent of active element parameters. Moreover, to the extent that T � 1 the series-shunt
feedback amplifier behaves as an ideal voltage controlled voltage source in the sense that its closed-loop
voltage gain is independent of source and load terminations. The fact that the series-shut feedback
network behaves approximately as an ideal voltage amplifier implies that its closed-loop driving point
input resistance is very large and its closed-loop driving point output resistance is very small. These facts
are confirmed analytically by noting that

(12.17)
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and

(12.18)

To the extent that the interstage biasing resistance, R, is sufficiently large to allow Kβ to approach β,
observe that Rin in (12.17) is nominally proportional to β2, while Rout in (12.18) is inversely proportional
to β.

Feed-Forward Compensation

When practical design restrictions render the satisfaction of (12.10) difficult, feed-forward problems can
be circumvented by inserting an emitter follower between the output port of transistor Q2 in the circuit
diagram of Figure 12.1(a) and the node to which the load termination and the input terminal of the feedback
subcircuit are incident [2]. The resultant circuit diagram, inclusive now of simple biasing subcircuits, is
shown in Figure 12.4. The buffer transistor Q3 increases the original short-circuit forward current gain,
Kββ, of the open-loop amplifier by a factor approaching (β + 1), while not altering the feed-forward factor
implied by the feedback network in Figure 12.1(a). In effect, Kβ is increased by a factor of almost (β + 1),
thereby making (12.10) easy to satisfy. Because of the inherently low output resistance of an emitter follower,
the buffer also reduces the driving-point output resistance achievable by the original configuration.

The foregoing contentions can be confirmed through an analysis of the small-signal model for the
modified amplifier in Figure 12.4. Such an analysis is expedited by noting that the circuit to the left of
the current controlled current source, KββI1A, in Figure 12.3 remains applicable. For zero feedback, it
follows that the small-signal current I1A flowing into the base of transistor Q1 derives from

(12.19)

The pertinent small-signal model for the buffered series-shunt feedback amplifier is resultantly the
configuration offered in Figure 12.5.

FIGURE 12.4  A series-shunt feedback amplifier that incorporates an emitter follower output stage to reduce the
effects of feed-forward through the feedback network.
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12-8 Circuit Analysis and Feedback Amplifier Theory

Letting

(12.20)

an analysis of the structure in Figure 12.5 reveals

(12.21)

which suggests negligible feed-forward for

(12.22)

Note that for large R1, (12.22) implies the requirement f � βKβ, which is easier to satisfy than is (12.10).
Assuming the validity of (12.22), (12.21), and (12.19) deliver an open-loop voltage gain,. Gvo(RST, RLT), of

(12.23)

Recalling (12.1), which demonstrates that Kβ approaches β for large R, (12.23) suggests an open-loop
gain that is nominally proportional to β2 if R1 is also large.

FIGURE 12.5  Small-signal model of the buffered series-shunt feedback amplifier.
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Using the concepts evoked by (12.17) and (12.18), the driving-point input and output impedances can
now be determined. In a typical realization of the buffered series-shunt feedback amplifier, the resistance,
R2, in Figure 12.4 is very large because it is manifested as the output resistance of a common base current
sink that is employed to stabilize the operating point of transistor Q3. For this situation, and assuming
the resistance R1 is large, the resultant driving-point input resistance is larger than its predecessor input
resistance by a factor of approximately (β + 1). Similarly, it is easy to show that for large R1 and large R2,
the driving-point output resistance is smaller than that predicted by (12.18) by a factor approaching (β + 1).

Although the emitter follower output stage in Figure 12.4 all but eliminates feed-forward signal trans-
mission through the feedback network and increases both the driving point input resistance and output
conductance, a potential bandwidth penalty is paid by its incorporation into the basic series-shunt
feedback cell. The fundamental problem is that if R1 is too large, potentially significant Miller multipli-
cation of the base-collector transition capactiance of transistor Q2 materializes. The resultant capacitive
loading at the collector of transistor Q1 is exacerbated by large R, which may produce a dominant pole
at a frequency that is too low to satisfy closed-loop bandwidth requirements. The bandwidth problem
may be mitigated by coupling resistance R1 to the collector of Q2 through a common base cascode. This
stage appears as transistor Q4 in Figure 12.6.

Unfortunately, the use of the common base cascode indicated in Figure 12.6 may produce an open-
loop amplifier with transfer characteristics that do not emulate a dominant pole response. In other words,
the frequency of the compensated pole established by capacitive loading at the collector of transistor Q1
may be comparable to the frequencies of poles established elsewhere in the circuit, and particularly at
the base node of transistor Q1. In this event, frequency compensation aimed toward achieving acceptable
closed-loop damping can be implemented by replacing the feedback resistor RF with the parallel combi-
nation of RF and a feedback capacitance, say CF, as indicated by the dashed branch in Figure 12.6. The
resultant frequency-domain feedback factor f (s) is

(12.24)

FIGURE 12.6 Buffered series-shunt feedback amplifier with common base cascode compensation of the common
emitter amplifier formed by transistor Q2. A feedback zero is introduced by the capacitance CF to achieve acceptable
closed-loop damping.
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12-10 Circuit Analysis and Feedback Amplifier Theory

where f is the feedback factor given by (12.7) and z is the frequency of the introduced compensating zero, is

(12.25)

The pole in (12.24) is inconsequential if the closed-loop amplifier bandwidth Bcl satisfies the restriction,
f BclRFCF = Bcl(REE ��RF)CF �1.

12.3 Shunt-Series Feedback Amplifier

Although the series-shunt circuit functions as a voltage amplifier, the shunt-series configuration (see the
ac schematic diagram depicted in Figure 12.7(a)) is best suited as a current amplifier. In the subject
circuit, the Q2 emitter current, which is a factor of (1/α) of the output signal current, IO, is sampled by
the feedback network formed of the resistances, REE and RF. The sampled current is fed back as a current
in shunt with the amplifier input port. Because output current is fed back as a current to a current-

FIGURE 12.7  (a) AC schematic diagram of a bipolar shunt-series feedback amplifier. (b) Low-frequency small-
signal equivalent circuit of the feedback amplifier.
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Feedback Amplifier Configurations 12-11

driven input port, the resultant driving point output resistance is large, and the driving-point input
resistance is small. These characteristics allow for a closed-loop current gain, G1(RST, RLT) = Io /IST, that
is relatively independent of source and load resistances and insensitive to transistor parameters.

In the series-shunt amplifier, h parameters were selected to model the feedback network because the
topology of an h-parameter equivalent circuit is, similar to the amplifier in which the feedback network
is embedded, a series shunt, or Thévenin–Norton, topology, In analogous train of thought compels the
use of g-parameters to represent the feedback network in Figure 12.7(a). With reference to the branch
variables defined in the schematic diagram,

(12.26)

Noting that the feedback network current, I2F, relates to the amplifier output current, IO, in accordance
with

(12.27)

and letting the feedback factor, f, be

(12.28)

the small-signal equivalent circuit of shunt-series feedback amplifier becomes the network diagrammed
in Figure 12.7(b). Note that the voltage controlled voltage source, αf V1F, models the feed-forward transfer
mechanism of the feedback network, where the controlling voltage, V1F, is

(12.29)

An analysis of the model in Figure 12.7(b) confirms that the second-stage, signal-base current Iw relates
to the first-stage, signal-base current Iv as

(12.30)

For

(12.31)

which offsets feed-forward effects,

(12.32)

Observe that the constant Kr tends toward β for large R, as can be verified by an inspection of
Figure 12.7(b).
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12-12 Circuit Analysis and Feedback Amplifier Theory

Using (12.32), the open-loop current gain, found by setting f to zero, is

(12.33)

and, recalling (12.28), the loop gain T is

(12.34)

By inspection of the model in Figure 12.7(b), the open-loop input resistance, Rino, is

(12.35)

and, within the context of an infinitely large Early resistance, the open-loop output resistance, Routo, is
infinitely large.

The closed-loop current gain of the shunt-series feedback amplifier is now found to be

(12.36)

where the indicated approximation exploits the presumption that the loop gain T is much larger than
one. As a result of the large loop-gain assumption, note that the closed-loop gain is independent of the
source and load resistances and is invulnerable to uncertainties and perturbations in transistor param-
eters. The closed-loop output resistance, which exceeds its open-loop counterpart, remains infinitely
large. Finally, the closed-loop driving point input resistance of the shunt-series amplifier is

(12.37)

12.4 Shunt-Shunt Feedback Amplifier

Circuit Modeling and Analysis

The ac schematic diagram of the third type of single-loop feedback amplifier, the shunt-shunt triple, is
drawn in Figure 12.8(a). A cascade interconnection of three transistors Q1, Q2, and Q3, forms the open
loop, while the feedback subcircuit is the single resistance, RF. This resistance samples the output voltage,
VO, as a current fed back to the input port. Output voltage is fed back as a current to a current-driven
input port, so both the driving point input and output resistances are very small. Accordingly, the circuit
operates best as a transresistance amplifier in that its closed-loop transresistance, RM (RST, RLT) = VO /IST,
is nominally invariant with source resistance, load resistance, and transistor parameters.

The shunt-shunt nature of the subject amplifier suggests the propriety of y-parameter modeling of
the feedback network. For the electrical variables indicated in Figure 12.8(a),
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Feedback Amplifier Configurations 12-13

(12.38)

which implies that a resistance, RF, loads both the input and the output ports of the open-loop three-
stage cascade. The short-circuit admittance relationship in (12.38) also suggests a feedback factor, f, given
by

(12.39)

The foregoing observations and the small-signal modeling experience gained with the preceding two
feedback amplifiers lead to the equivalent circuit submitted in Figure 12.8(b). For analytical simplicity,
the model reflects the assumption that all three transistors in the open loop have identical small-signal
parameters. Moreover, the constant, Kε, which symbolizes the ratio of the signal base current flowing
into transistor Q3 to the signal base current conducted by transistor Q1, is given by

(12.40)

Finally, the voltage-controlled current source, f V1F, accounts for feed-forward signal transmission through
the feedback network. If such feed-forward is to be negligible, the magnitude of this controlled current

FIGURE 12.8  (a) AC schematic diagram of a bipolar shunt-shunt feedback amplifier. (b) Low-frequency small-
signal equivalent circuit of the feedback amplifier.
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12-14 Circuit Analysis and Feedback Amplifier Theory

must be significantly smaller than KεβIv, a current that emulates feed-forward through the open-loop
amplifier. Noting that the input port voltage, V1F, in the present case remains the same as that specified
by (12.29), negligible feed-forward through the feedback network mandates

(12.41)

Because the constant Kε in (12.40) tends toward β2 if R1 and R2 are large resistances, (12.41) is relatively
easy to satisfy.

With feed-forward through the feedback network ignored, an analysis of the model in Figure 12.8(b)
provides an open-loop transresistance, RMO(RST, RLT), of

(12.42)

while the loop gain is

(12.43)

For T � 1, the corresponding closed-loop transresistance RM (RST, RLT) is

(12.44)

Finally, the approximate driving-point input and output resistances are, respectively,

(12.45)

(12.46)

Design Considerations

Because the shunt-shunt triple uses three gain stages in the open-loop amplifier, its loop gain is signifi-
cantly larger than the loop gains provided by either of the previously considered feedback cells. Accord-
ingly, the feedback triple affords superior desensitization of the closed-loop gain with respect to transistor
parameters and source and load resistances; but the presence of a cascade of three common emitter gain
stages in the open loop of the amplifier complicates frequency compensation and limits the 3-dB band-
width. The problem is that, although each common emitter stage approximates a dominant pole amplifier,
none of the critical frequencies in the cluster of poles established by the cascade interconnection of these
units is likely to be dominant. The uncompensated closed loop is therefore predisposed to unacceptable
underdamping, thereby making compensation via an introduced feedback zero difficult.

At least three compensation techniques can be exploited to optimize the performance of the shunt-
shunt feedback amplifier [3], [7–9]. The first of these techniques entail pole splitting of the open-loop
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Feedback Amplifier Configurations 12-15

interstage through the introduction of a capacitance, Cc, between the base and the collector terminals of
transistor Q2, as depicted in the ac schematic diagram of Figure 12.9. In principle, pole splitting can be
invoked on any one of the three stages of the open loop; but pole splitting of the interstage is most
desirable because such compensation of the first stage proves effective only for large source resistance.
Moreover, the resultant dominant pole becomes dependent on the source termination. On the other
hand, pole splitting of the third stage produces a dominant pole that is sensitive to load termination. In
conjunction with pole splitting, a feedback zero can be introduced, if necessary, to increase closed-loop
damping by replacing the feedback resistance, RF, by the parallel combination of RF and a feedback
capacitance, CF, as illustrated in Figure 12.9. This compensation produces left-half-plane zero in the
feedback factor at s = –(1/RF).

A second compensation method broadbands the interstage of the open-loop amplifier through local
current feedback introduced by the resistance, RX, in Figure 12.10. Simultaneously, the third stage is broad-
banded by way of a common base cascode transistor Q4. Because emitter degeneration of the interstage
reduces the open-loop gain, an emitter follower (transistor Q5) is embedded between the feedback network

FIGURE 12.9  AC schematic diagram of a frequency compensated shunt-shunt triple. The capacitance, Cc, achieves
open-loop pole splitting, while the capacitance, CF, implements a compensating feedback network zero.

FIGURE 12.10  AC schematic diagram of an alternative compensation scheme for the shunt-shunt triple. Transistor
Q2 is broadbanded by the emitter degeneration resistance RX and transistor Q3 is broadbanded by the common base
cascode transistor Q4. The emitter follower transistor, Q5, minimizes feed-forward signal transmission through the
feedback network.
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12-16 Circuit Analysis and Feedback Amplifier Theory

and the output port of the open-loop third stage. As in the case of the series-shunt feedback amplifier,
the first-order effect of this emitter follower is to increase feed-forward signal transmission through the
open-loop amplifier by a factor that approaches (β + 1).

A final compensation method is available if shunt-shunt feedback is implemented as the balanced
differential architecture (see the ac schematic diagram offered in Figure 12.11). By exploiting the antiphase
nature of opposite collectors in a balanced common emitter topology, a shunt-shunt feedback amplifier
can be realized with only two gain stages in the open loop. The resultant closed loop 3-dB bandwidth is
invariably larger than that of its three-stage single-ended counterpart, because the open loop is now
characterized by only two, as opposed to three, fundamental critical frequencies. Because the forward
gain implicit to two amplifier stages is smaller than the gain afforded by three stages of amplification, a
balanced emitter follower (transistors Q3A and Q3B) is incorporated to circumvent the deleterious relative
effects of feed-forward signal transmission through the feedback network.

12.5 Series-Series Feedback Amplifier

Figure 12.12(a) is the ac schematic diagram of the series-series feedback amplifier. Three transistors, Q1,
Q2, and Q3, are embedded in the open-loop amplifier, while the feedback subcircuit is the wye config-
uration formed of the resistances RX, RY, and RZ. Although it is possible to realize series-series feedback
via emitter degeneration of a single-stage amplifier, the series-series triple offers substantially more loop
gain and thus better desensitization of the forward gain with respect to both transistor parameters and
source and load terminations.

FIGURE 12.11 AC schematic diagram of a differential realization of the compensated shunt-shunt feedback ampli-
fier. The balanced stage boasts improved bandwidth over its single-ended counterpart because of its use of only two
high-gain stages in the open loop. The emitter follower pair Q3A and Q3B diminishes feed-forward transmission
through the feedback network composed of the shunt interconnection of resistor RF with capacitor CF .
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Feedback Amplifier Configurations 12-17

In Figure 12.12(a), the feedback wye senses the Q3 emitter current, which is a factor of (1/α) of the
output signal current Io. This sampled current is fed back as a voltage in series with the emitter of Q1.
Because output current is fed back as a voltage to a voltage-driven input port, both the driving point
input and output resistances are large. The circuit is therefore best suited as a transconductance amplifier
in the sense that for large loop gain, its closed-loop transconductance, GM (RST, RLT) = IO/VST, is almost
independent of the source and load resistances.

The series-series topology of the subject amplifier conduces z-parameter modeling of the feedback
network. Noting the electrical variables delineated in the diagram of Figure 12.12(a),

(12.47)

Equation (12.47) suggests that the open-circuit feedback network resistances loading the emitters of
transistors Q1 and Q3 are (RX + RZ ) and (RY + RZ ), respectively, and the voltage fed back to the emitter
of transistor Q1 is RZI2F. Because the indicated feedback network current I2F is (–IO /α), this fed back
voltage is equivalent to (–RZIO /α), which suggests a feedback factor, f, of

FIGURE 12.12  (a) AC schematic diagram of a bipolar series-series feedback amplifier. (b) Low-frequency, small-
signal equivalent circuit of the feedback amplifier.
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12-18 Circuit Analysis and Feedback Amplifier Theory

(12.48)

Finally, the feed-forward through the feedback network if RZ I1F. Because I1F relates to the signal base
current IV flowing into transistor Q1 by I1F = (β + 1)Iv, this feed-forward voltage is also expressible as
(–f βIv). The foregoing observations and the hybrid-pi method of a bipolar junction transistor produce
the small-signal model depicted in Figure 12.12(b). In this model, all transistors are presumed to have
identical corresponding small-signal parameters, and the constant, K1, is

(12.49)

An analysis of the model of Figure 12.12(b) confirms that the ratio of the signal current, IW, flowing
into the base of transistor Q3 to the signal base current, IV, of transistor Q1 is

(12.50)

This result suggests that feed-forward effects through the feedback network are negligible if � f � � K1R2,
which requires

(12.51)

In view of the fact that the constant, K1, approaches β for large values of the resistance, R1, (12.51) is not
a troublesome inequality. Introducing a second constant, K2, such that

(12.52)

the ratio IW /IV in (12.50) becomes

(12.53)

assuming (12.51) is satisfied.
Given the propriety of (12.50) and using (12.53) the open-loop transconductance, GMO(RST, RLT) is

found to be

(12.54)

and recalling (12.48), the loop gain T is

(12.55)

It follows that for T � 1, the closed-loop transconductance is

(12.56)
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The Early resistance is large enough to justify its neglect, so the open-loop, and thus the closed-loop,
driving-point output resistances are infinitely large. On the other hand, the closed-loop driving point
input resistance Rin can be shown to be

(12.57)

Similar to its shunt-shunt counterpart, the series-series feedback amplifier uses three open-loop gain
stages to produce large loop gain. However, also similar to the shunt-shunt triple, frequency compensation
via an introduced feedback zero is difficult unless design care is exercised to realize a dominant pole
open-loop response. To this end, the most commonly used compensation is pole splitting in the open
loop, combined, if required, with the introduction of a zero in the feedback factor. The relevant ac
schematic diagram appears in Figure 12.13 where the indicated capacitance, Cc, inserted across the base-
collector terminals of transistor Q3 achieves the aforementioned pole splitting compensation. The capac-
itance, CF, in Figure 12.13 delivers a frequency-dependent feedback factor, f (s) of

(12.58)

where the frequency z of the introduced zero derives from

(12.59)

The corresponding pole in (12.58) is insignificant if the closed-loop amplifier is designed for a bandwidth,
Bcl that satisfies the inequality, Bc1(RX + RY)CF � 1.

As is the case with shunt-shunt feedback, an alternative frequency compensation scheme is available
if series-series feedback is implemented as a balanced differential architecture. The pertinent ac schematic

FIGURE 12.13  AC schematic diagram of a frequency compensated series-series feedback triple. The capacitance,
Cc, achieves pole splitting in the open-loop configuration, while the capacitance, CF, introduces a zero in the feedback
factor of the closed-loop amplifier.
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12-20 Circuit Analysis and Feedback Amplifier Theory

diagram, inclusive of feedback compensation, appears in Figure 12.14. This diagram exploits the fact that
the feedback wye consisting of the resistances, RX, RY, and RZ as utilized in the single-ended configurations
of Figures 12.12(a) and 12.13 can be transformed into the feedback delta of Figure 12.15. The terminal
volt-ampere characteristics of the two networks in Figure 12.15 are identical, provided that the delta
subcircuit elements, RF, RU, and RV, are chosen in accordance with

(12.60)

(12.61)

(12.62)

FIGURE 12.14 AC schematic diagram of a balanced differential version of the series-series feedback amplifier. The
circuit utilizes only two, as opposed to three, gain stages in the open loop.

FIGURE 12.15 Transformation of the wye feedback subcircuit used in the amplifier of Figure 12.13 to the delta
subcircuit exploited in Figure 12.14. The resistance transformation equations are given by (12.60)–(12.62).
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12.6 Dual-Loop Feedback

As mentioned previously, a simultaneous control of the driving point I/O resistances, as well as the closed-
loop gain, mandates the use of dual global loops comprised of series and shunt feedback signal paths.
The two global dual-loop feedback architectures are the series-series/shunt-shunt feedback amplifier
and the series-shunt/shunt-series feedback amplifier. In the following subsections, both of these units
are studied by judiciously applying the relevant analytical results established earlier for pertinent single-
loop feedback architectures. The ac schematic diagrams of these respective circuit realizations are pro-
vided, and engineering design considerations are offered.

Series-Series/Shunt-Shunt Feedback Amplifier

Figure 12.16 is a behavioral abstraction of the series-series/shunt-shunt feedback amplifier. Two port z
parameters are used to model the series-series feedback subcircuit, for which feed-forward is tacitly
ignored and the feedback factor associated with its current controlled voltage source is fss. On the other
hand, y parameters model the shunt-shunt feedback network, where the feedback factor relative to its
voltage controlled current source is fpp. As in the series-series network, feed-forward in the shunt-shunt
subcircuit is presumed negligible. The four-terminal amplifier around which the two feedback units are
connected has an open loop (meaning fss = 0 and fpp = 0, but with the loading effects of both feedback
circuits considered) transconductance of GMO (RST, RLT).

With fpp set to zero to deactivate shunt-shunt feedback, the resultant series-series feedback network is
a transconductance amplifier with a closed-loop transconductance, GMS (RST, RLT), is

(12.63)

where the loop gain, fssGMO (RST, RLT), is presumed much larger than one, and the loading effects of both
the series-series feedback subcircuit and the deactivated shunt-shunt feedback network are incorporated

FIGURE 12.16  System-level diagram of a series-series/shunt-shunt dual-loop feedback amplifier. Note that feed-
forward signal transmission through either feedback network is ignored.
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12-22 Circuit Analysis and Feedback Amplifier Theory

into GMO(RST, RLT). The transresistance, RMS(RST, RLT), implied by (12.63), which expedites the study of
the shunt-shunt component of the feedback configuration, is

(12.64)

The series-series feedback input and output resistances Rins and Routs, respectively, are large and given by

(12.65)

and

(12.66)

where the zero feedback ( fss = 0 and fpp = 0) values, Rino and Routo, of these driving point quantities are
computed with due consideration given to the loading effects imposed on the amplifier by both feedback
subcircuits.

When shunt-shunt feedback is applied around the series-series feedback cell, the configuration
becomes a transresistance amplifier. The effective open-loop transresistance is RMS(RST, RLT), as defined
by (12.64). Noting a feedback of fpp, the corresponding closed-loop transresistance is

(12.67)

which is independent of amplifier model parameters, despite the unlikely condition of an effective loop
gain fpp RST RLT /fss that is much larger than one. It should be interjected, however, that (12.67) presumes
negligible feed-forward through the shunt-shunt feedback network. This presumption may be inappro-
priate owing to the relatively low closed-loop gain afforded by the series-series feedback subcircuit.
Ignoring this potential problem temporarily, (12.67) suggests a closed-loop voltage gain AV (RST, RLT) of

(12.68)

The closed-loop, driving-point output resistance Rout, can be straightforwardly calculated by noting
that the open circuit (RLT → ∞) voltage gain, AVO, predicted by (12.68) is AVO = 1/fpp RST. Accordingly,
(12.68) is alternatively expressible as

(12.69)

Because (12.69) is a voltage divider relationship stemming from a Thévenin model of the output port of
the dual-loop feedback amplifier, as delineated in Figure 12.17, it follows that the driving-point output
resistance is

(12.70)
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Observe that, similar to the forward gain characteristics, the driving-point output resistance is nominally
insensitive to changes and other uncertainties in open-loop amplifier parameters. Moreover, this output
resistance is directly proportional to the ratio fss/fpp of feedback factors. As is illustrated in preceding
sections, the individual feedback factors, and thus the ratio of feedback factors, is likely to be proportional
to a ratio of resistances. In view of the fact that resistance ratios can be tightly controlled in a monolithic
fabrication process, Rout in (12.70) is accurately prescribed for a given source termination.

The driving-point input resistance Rin can be determined from a consideration of the input port
component of the system level equivalent circuit depicted in Figure 12.17. This resistance is the ratio of
VST to I, under the condition of RS = 0. With RS = 0, (12.68) yields VO = RLTVST /fss and thus, Kirchhoff ’s
voltage law (KVL) applied around the input port of the model at hand yields

 (12.71)

where the “open-loop” input resistance Rins, defined by (12.65), is presumed large. Similar to the driving-
point output resistance of the series-series/shunt-shunt feedback amplifier, the driving-point input resis-
tance is nominally independent of open-loop amplifier parameters.

It is interesting to observe that the input resistance in (12.71) is inversely proportional to the load
resistance by the same factor (fss /fpp) that the driving-point output resistance in (12.70) is inversely
proportional to the source resistance. As a result,

(12.72)

Thus, in addition to being stable performance indices for well-defined source and load terminations, the
driving-point input and output resistances track one another, despite manufacturing uncertainties and
changes in operating temperature that might perturb the individual values of the two feedback factors
fss and fpp.

FIGURE 12.17  Norton equivalent input and Thévenin equivalent output circuits for the series-series/shunt-shunt
dual-loop feedback amplifier.
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12-24 Circuit Analysis and Feedback Amplifier Theory

The circuit property stipulated by (12.72) has immediate utility in the design of wideband commun-
ication transceivers and other high-speed signal-processing systems [10–14]. In these and related appli-
cations, a cascade of several stages is generally required to satisfy frequency response, distortion, and
noise specifications. A convenient way of implementing a cascade interconnection is to force each member
of the cascade to operate under the match terminated case of RST = Rin = RLT = Rout =

∆ R. From (12.72)
match terminated operation demands feedback factors selected so that

(12.73)

which forces a match terminated closed-loop voltage gain A∗
V  of

(12.74)

The ac schematic diagram of a practical, single-ended series-series/shunt-shunt amplifier is submitted
in Figure 12.18. An inspection of this diagram reveals a topology that coalesces the series-series and
shunt-shunt triples studied earlier. In particular, the wye network formed of the three resistances, RXx,
RY, and RZ, comprises the series-series component of the dual-loop feedback amplifier. The capacitor,
Cc, narrowbands the open-loop amplifier to facilitate frequency compensation of the series-series loop
through the capacitance, CF1. Compensated shunt feedback of the network is achieved by the parallel
combination of the resistance, RF and the capacitance, CF2. If CF1 and Cc combine to deliver a dominant
pole series-series feedback amplifier, CF2 is not necessary. Conversely, CF1 is superfluous if CF2 and Cc

interact to provide a dominant pole shunt-shunt feedback amplifier. As in the single ended series-series
configuration, transistor Q3 can be broadbanded via a common base cascode. Moreover, if feedback
through the feedback networks poses a problem, an emitter follower can be inserted at the port to which
the shunt feedback path and the load termination are incident.

FIGURE 12.18  AC schematic diagram of a frequency-compensated, series-series/shunt-shunt, dual-loop feedback
amplifier. The compensation is affected by the capacitances CF1 and CF2, while Cc achieves pole splitting in the open-
loop amplifier.

R
f

f
ss

pp

=

A
f R f f

V
pp pp ss

∗ ≈ =1

2

1

2

RLTRST

VST

RX RY

RZ

IO

VO

Rout

RF

Rin

Cc

CF2

R2R1

CF1

Q1 Q2 Q3

+

−

© 2006 by Taylor & Francis Group, LLC



Feedback Amplifier Configurations 12-25

A low-frequency analysis of the circuit in Figure 12.18 is expedited by assuming high beta transistors
having identical corresponding small-signal model parameters. This analysis, which in contrast to the
simplified behavioral analysis, does not ignore the electrical effects of the aforementioned feed-forward
through the shunt-shunt feedback network, yields a voltage gain AV (RST, RLT), of

(12.75)

where the driving-point input resistance of the amplifier Rin is

(12.76)

The driving-point output resistance Rout is

(12.77)

As predicted by the behavioral analysis Rin, Rout, and AV (RST, RLT), are nominally independent of transistor
parameters. Observe that the functional dependence of Rin on the load resistance, RLT , is identical to the
manner in which Rout is related to the source resistance RST. In particular, Rin ≡ Rout if RST ≡ RLT . For the
match terminated case in which RST = Rin = RLT = Rout =

∆ R,

(12.78)

The corresponding match terminated voltage gain in (12.75) collapses to

(12.79)

Similar to the series-series and shunt-shunt triples, many of the frequency compensation problems
implicit to the presence of three open-loop stages can be circumvented by realizing the series-series/shunt-
shunt amplifier as a two-stage differential configuration. Figure 12.19 is the acschematic diagram of a
compensated differential series-series/shunt-shunt feedback dual.

Series-Shunt/Shunt-Series Feedback Amplifier

The only other type of global dual loop architecture is the series-shunt/shunt-series feedback amplifier;
the behavioral diagram appears in Figure 12.20. The series-shunt component of this system, which is
modeled by h-parameters, has a negligibly small feed-forward factor and a feedback factor of fsp. Hybrid
g-parameters model the shunt-series feedback structure, which has a feedback factor of fps and a presum-
ably negligible feed-forward factor. The four-terminal amplifier around which the two feedback units
are connected has an open-loop (meaning fsp = 0 and fps = 0, but with the loading effects of both feedback
circuits considered) voltage gain of AVO(RST, RLT).

For fps = 0, the series-shunt feedback circuit voltage gain AVS(RST, RLT), is

(12.80)
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12-26 Circuit Analysis and Feedback Amplifier Theory

FIGURE 12.19  AC schematic diagram of the differential realization of a compensated series-series/shunt-shunt
feedback amplifier.

FIGURE 12.20  System level diagram of a series-shunt/shunt-series, dual-loop feedback amplifier. Note that feed-
forward signal transmission through either feedback network is ignored.
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where the approximation reflects an assumption of a large loop gain. When the shunt-series component
of the feedback amplifier is activated, the dual-loop configuration functions as a current amplifier. Its
effective open-loop transfer function is the current gain, AIS (RST, RLT), established by the series-shunt
amplifier; namely,

(12.81)

It follows that the current gain, AI (RST, RLT), of the closed loop is

(12.82)

while the corresponding voltage gain, AV (RST, RLT), assuming negligible feed-forward through the shunt-
series feedback network, is

(12.83)

Repeating the analytical strategy employed to determine the input and output resistances of the series-
series/shunt-shunt configuration, (12.83) delivers a driving-point input resistance of

(12.84)

and a driving-point output resistance of

(12.85)

Similar to the forward voltage gain, the driving-point input and output resistances of the series-
shunt/shunt-series feedback amplifier are nominally independent of active element parameters. Note, how-
ever, that the input resistance is directly proportional to the load resistance by a factor (fsp /fps), which is the
inverse of the proportionality constant that links the output resistance to the source resistance. Specifically,

(12.86)

Thus, although Rin and Rout are reliably determined for well-defined load and source terminations, they
do not track one another as well as they do in the series-series/shunt-shunt amplifier. Using (12.86), the
voltage gain in (12.83) is expressible as

(12.87)
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The simplified ac schematic diagram of a practical series-shunt/shunt-series feedback amplifier appears
in Figure 12.21. In this circuit, series-shunt feedback derives from the resistances, REE1 and RF1, and shunt-
series feedback is determined by the resistances, REE2 and RF2. Because this circuit topology merges the
series-shunt and shunt-series pairs, requisite frequency compensation, which is not shown in the subject
figure, mirrors the relevant compensation schemes studied earlier. Note, however, that a cascade of only
two open-loop gain stages renders compensation easier to implement and larger 3-dB bandwidths easier
to achieve in the series-series/shunt-shunt circuit, which requires three open-loop gain stages for a single-
ended application.

For high beta transistors having identical corresponding small-signal model parameters, a low-fre-
quency analysis of the circuit in Figure 12.21 gives a voltage gain of

(12.88)

where the driving-point input resistance, Rin, of the subject amplifier is

(12.89)

The driving-point output resistance, Rout, is

(12.90)

FIGURE 12.21  AC schematic diagram of a series-shunt/shunt-series, dual-loop feedback amplifier.
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12.7 Summary

This section documents small-signal performance equations, general operating characteristics, and engi-
neering design guidelines for the six most commonly used global feedback circuits. These observations
derive from analyses based on the judicious application of signal flow theory to the small-signal model
that results when the subject feedback network is supplanted by an appropriate two-port parameter
equivalent circuit.

Four of the six fundamental feedback circuits are single-loop architectures.

1. The series-shunt feedback amplifier functions best as a voltage amplifier in that its input resistance
is large, and its output resistance is small. Because only two gain stages are required in the open
loop, the amplifier is relatively easy to compensate for acceptable closed-loop damping and features
potentially large 3-dB bandwidth. A computationally efficient analysis aimed toward determining
loop gain, closed-loop gain, I/O resistances, and the condition that renders feed-forward through
the feedback network inconsequential is predicated on replacing the feedback subcircuit with its
h-parameter model.

2. The shunt-series feedback amplifier is a current amplifier in that its input resistance is small, and
its output resistance is large. Similar to its series-shunt dual, only two gain stages are required in
the open loop. Computationally efficient analyses are conducted by replacing the feedback sub-
circuit with its g-parameter model.

3. The shunt-shunt feedback amplifier is a transresistance signal processor in that both its input and
output resistances are small. Although this amplifier can be realized theoretically with only a single
open-loop stage, a sufficiently large loop gain generally requires a cascade of three open-loop
stages. As a result, pole splitting is invariably required to ensure an open-loop dominant pole
response, thereby limiting the achievable closed-loop bandwidth. In addition compensation of the
feedback loop may be required for acceptable closed-loop damping. The bandwidth and stability
problems implicit to the use of three open-loop gain stages can be circumvented by a balanced
differential realization, which requires a cascade of only two open-loop gain stages. Computation-
ally efficient analyses are conducted by replacing the feedback subcircuit with its y-parameter
model.

4. The series-series feedback amplifier is a transconductance signal processor in that both its input
and output resistances are large. Similar to its shunt-shunt counterpart, its implementation gen-
erally requires a cascade of three open-loop gain stages. Computationally efficient analyses are
conducted by replacing the feedback subcircuit with its z-parameter model.

The two remaining feedback circuits are dual-loop topologies that can stabilize the driving-point input
and output resistances, as well as the forward gain characteristics, with respect to shifts in active element
parameters. One of these latter architectures, the series-series/shunt-shunt feedback amplifier, is partic-
ularly well suited to electronic applications that require a multistage cascade.

1. The series-series/shunt-shunt feedback amplifier coalesces the series-series architecture with its
shunt-shunt dual. It is particularly well suited to applications, such as wideband communication
networks, which require match terminated source and load resistances. Requisite frequency com-
pensation and broadbanding criteria mirror those incorporated in the series-series and shunt-
shunt single-loop feedback topologies.

2. The series-shunt/shunt-series feedback amplifier coalesces the series-shunt architecture with its
shunt-series dual. Although its input resistance can be designed to match the source resistance
seen by the input port of the amplifier, and its output resistance can be matched to the load
resistance driven by the amplifier, match terminated operating (Rin = RST = RLT = Rout) is not
feasible. Requisite frequency compensation and broadbanding criteria mirror those incorporated
in the series-shunt and shunt-series single-loop feedback topologies.
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13.1 Introduction

In Chapter 11.2, we used the ideal feedback model to study the properties of feedback amplifiers. The
model is useful only if we can separate a feedback amplifier into the basic amplifier µ(s) and the feedback
network β(s). The procedure is difficult and sometimes virtually impossible, because the forward path
may no be strictly unilateral, the feedback path is usually bilateral, and the input and output coupling
networks are often complicated. Thus, the ideal feedback model is not an adequate representation of a
practical amplifier. In the remainder of this section, we shall develop Bode’s feedback theory, which is
applicable to the general network configuration and avoids the necessity of identifying the transfer
functions µ(s) and β(s).

Bode’s feedback theory [2] is based on the concept of return difference, which is defined in terms of
network determinants. We show that the return difference is a generalization of the concept of the
feedback factor of the ideal feedback model, and can be measured physically from the amplifier itself.
We then introduce the notion of null return difference and discuss its physical significance. Because the
feedback theory will be formulated in terms of the first- and second-order cofactors of the elements of
the indefinite-admittance matrix of a feedback circuit, we first review briefly the formulation of the
indefinite-admittance matrix.

13.2 The Indefinite-Admittance Matrix

Figure 13.1 is an n-terminal network N composed of an arbitrary number of active and passive network
elements connected in any way whatsoever. Let V1, V2, …, Vn be the Laplace-transformed potentials
measured between terminals 1, 2, …, n and some arbitrary but unspecified reference point, and let I1,
I2, …, In be the Laplace-transformed currents entering the terminals 1, 2, …, n from outside the network.
The network N together with its load is linear, so the terminal current and voltages are related by the
equation

1References for this chapter can be found on page 16-17.

Wai-Kai Chen
University of Illinois, Chicago
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13-2 Circuit Analysis and Feedback Amplifier Theory

(13.1)

or more succinctly as

(13.2)

where Jk (k = 1,2, …, n) denotes the current flowing into the kth terminal when all terminals of N are
grounded to the reference point. The coefficient matrix Y(s) is called the indefinite-admittance matrix
because the reference point for the potentials is some arbitrary but unspecified point outside the network.
Notice that the symbol Y(s) is used to denote either the admittance matrix or the indefinite-admittance
matrix. This should not create any confusion because the context will tell. In the remainder of this section,
we shall deal exclusively with the indefinite-admittance matrix.

We remark that the short-circuit currents Jk result from the independent sources and/or initial con-
ditions in the interior of N. For our purposes, we shall consider all independent sources outside the
network and set all initial conditions to zero. Hence, J(s) is considered to be zero, and (13.2) becomes

(13.3)

where the elements yij of Y(s) can be obtained as

(13.4)

As an illustration, consider a small-signal equivalent model of a transistor in Figure 13.2. Its indefinite-
admittance matrix is found to be

(13.5)

FIGURE 13.1 The general symbolic representation of an n-terminal network.
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General Feedback Theory 13-3

Observe that the sum of elements of each row or column is equal to zero. The fact that these properties
are valid in general for the indefinite-admittance matrix will now be demonstrated.

To see that the sum of the elements in each column of Y(s) equals zero, we add all n equations of
(13.1) to yield

(13.6)

The last equation is obtained by appealing to Kirchhoff ’s current law (KCL) for the node corresponding
to the reference point. Setting all the terminal voltages to zero except the kth one, which is nonzero, gives

(13.7)

Because Vk ≠ 0, it follows that the sum of the elements of each column of Y(s) equals zero. Thus, the
indefinite-admittance matrix is always singular.

To demonstrate that each row sum of Y(s) is also zero, we recognize that because the point of zero
potential may be chosen arbitrarily, the currents Jk and Ik remain invariant when all the terminal voltages
Vk are changed by the same but arbitrary constant amount. Thus, if V0 is an n-vector, each element of
which is v0 ≠ 0, then

(13.8)

which after invoking (13.2) yields that

(13.9)

or

(13.10)

showing that each row sum of Y(s) equals zero.
Thus, if Yuv denotes the submatrix obtained from an indefinite-admittance matrix Y(s) by deleting the

uth row and vth column, then the (first-order) cofactor, denoted by the symbol Yuv, of the element yuv

of Y(s), is defined by

(13.11)

As a consequence of the zero-row-sum and zero-column-sum properties, all the cofactors of the elements
of the indefinite-admittance matrix are equal. Such a matrix is also referred to as the equicofactor matrix.
If Yuv and Yij are any two cofactors of the elements of Y(s), then

FIGURE 13.2  A small-signal equivalent network of a transistor.
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13-4 Circuit Analysis and Feedback Amplifier Theory

(13.12)

for all u, v, i and j. For the indefinite-admittance matrix Y(s) of (13.5) it is straightforward to verify that
all of its nine cofactors are equal to

(13.13)

for u, v = 1, 2, 3.
Denote by Yrp,sq the submatrix obtained from Y(s) by striking out rows r and s and columns p and q.

Then the second-order cofactor, denoted by the symbol Yrp,sq of the elements yrp, and ysq of Y(s) is a scalar
quantity defined by the relation

(13.14)

where r ≠ s and p ≠ q, and

(13.15a)

(13.15b)

The symbols Yuv and Yuv or Yrp,sq and Yrp,sq should not create any confusion because one is in boldface
whereas the other is italic. Also, for our purposes, it is convenient to define

(13.16a)

or

(13.16b)

This convention will be followed throughout the remainder of this section.
As an example, consider the hybrid-pi equivalent network of a transistor in Figure 13.3. Assume that

each node is an accessible terminal of a four-terminal network. Its indefinite-admittance matrix is:

(13.17)

FIGURE 13.3  The hybrid-pi equivalent network of a transistor.
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General Feedback Theory 13-5

The second-order cofactor Y31,42 and Y11,34 of the elements of Y(s) of (13.17) are computed as follows:

(13.18a)

(13.18b)

The usefulness of the indefinite-admittance matrix lies in the fact that it facilitates the computation of
the driving-point or transfer functions between any pair of nodes or from any pair of nodes to any other
pair. In the following, we present elegant, compact, and explicit formulas that express the network
functions in terms of the ratios of the first- and/or second-order cofactors of the elements of the indefinite-
admittance matrix.

Assume that a current source is connected between any two nodes r and s so that a current Isr is injected
into the rth node and at the same time is extracted from the sth node. Suppose that an ideal voltmeter
is connected from node p to node q so that it indicates the potential rise from q to p, as depicted
symbolically in Figure 13.4. Then the transfer impedance, denoted by the symbol zrp,sq, between the node
pairs rs and pq of the network of Figure 13. 4 is defined by the relation

(13.19)

with all initial conditions and independent sources inside N set to zero. The representation is, of course,
quite general. When r = p and s = q, the transfer impedance zrp,sq, becomes the driving-point impedance
zrr,ss between the terminal pair rs.

In Figure 13.4, set all initial conditions and independent sources in N to zero and choose terminal q
to be the reference-potential point for all other terminals. In terms of (13.1), these operations are
equivalent to setting J = 0, Vq = 0, Ix = 0 for x ≠ r, s and Ir = –Is = Isr. Because Y(s) is an equicofactor
matrix, the equations of (13.1) are not linearly independent and one of them is superfluous. Let us
suppress the sth equation from (13.1), which then reduces to

(13.20)

where I–s and V–q denote the subvectors obtained from I and V of (13.3) by deleting the sth row and qth
row, respectively. Applying Cramer’s rule to solve for Vp yields

FIGURE 13.4  The symbolic representation for the measurement of the transfer impedance.
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13-6 Circuit Analysis and Feedback Amplifier Theory

(13.21)

where Ỹsq is the matrix derived from Ysq by replacing the column corresponding to Vp by I–s. We recognize
that I–s is in the pth column if p < q but in the (p – 1)th column if p > q. Furthermore, the row in which
Isr appears is the rth row if r < s, but is the (r – 1)th row if r > s. Thus, we obtain

(13.22)

In addition, we have

(13.23)

Substituting these in (13.21) in conjunction with (13.19), we obtain

(13.24)

(13.25)

in which we have invoked the fact that Ysq = Yuv.
The voltage gain, denoted by grp, sq, between the node pairs rs and pq of the network of Figure 13.4 is

defined by

(13.26)

again with all initial conditions and independent sources in N being set to zero. Thus, from (13.24) and
(13.25) we obtain

(13.27)

The symbols have been chosen to help us remember. In the numerators of (13.24), (13.25), and (13.27),
the order of the subscripts is as follows: r, the current injecting node; p, the voltage measurement node;
s, the current extracting node; and q the voltage reference node. Nodes r and p designate the input and
output transfer measurement, and nodes s and q form a sort of double datum.

As an illustration, we consider the hybrid-pi transistor equivalent network of Figure 13.3. For this
transistor, suppose that we connect a 100-Ω load resistor between nodes 2 and 4, and excite the resulting
circuit by a voltage source V14, as depicted in Figure 13.5. To simplify our notation, let p = 10–9 s. The
indefinite-admittance matrix of the amplifier is:

(13.28)
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General Feedback Theory 13-7

To compute the voltage gain g12, 44, we appeal to (13.27) and obtain

(13.29)

The input impedance facing the voltage source V14 is determined by

(13.30)

To compute the current gain defined as the ratio of the current I24 in the 100-Ω resistor to the input
current I41, we apply (13.24) and obtain

(13.31)

Finally, to compute the transfer admittance defined as the ratio of the load current I24 to the input voltage
V14, we appeal to (13.27) and obtain

(13.32)

13.3 The Return Difference

In the study of feedback amplifier response, we are usually interested in how a particular element of the
amplifier affects that response. This element is either crucial in terms of its effect on the entire system
or of primary concern to the designer. It may be the transfer function of an active device, the gain of an
amplifier, or the immittance of a one-port network. For our purposes, we assume that this element x is
the controlling parameter of a voltage-controlled current source defined by the equation

(13.33)

To focus our attention on the element x, Figure 13.6 is the general configuration of a feedback amplifier
in which the controlled source is brought out as a two-port network connected to a general four-port
network, along with the input source combination of Is and admittance Y1 and the load admittance Y2.

We remark that the two-port representation of a controlled source (13.33) is quite general. It includes
the special situation where a one-port element is characterized by its immittance. In this case, the
controlling voltage V is the terminal voltage of the controlled current source I, and x become the one-
port admittance.

FIGURE 13.5 A transistor amplifier used to illustrate the computation of grp,sq.
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13-8 Circuit Analysis and Feedback Amplifier Theory

The return difference F(x) of a feedback amplifier with respect to an element x is defined as the ratio
of the two functional values assumed by the first-order cofactor of an element of its indefinite-admittance
matrix under the condition that the element x assumes its nominal value and the condition that the
element x assumes the value zero. To emphasize the importance of the feedback element x, we express
the indefinite-admittance matrix Y of the amplifier as a function of x, even though it is also a function
of the complex-frequency variable s, and write Y = Y(x). Then, we have [3]

(13.34)

where

(13.35)

The physical significance of the return difference will now be considered. In the network of Figure 13.6,
the input, the output, the controlling branch, and the controlled source are labeled as indicated. Then,
the element x enters the indefinite-admittance matrix Y(x) in a rectangular pattern as shown next:

(13.36)

If in Figure 13.6 we replace the controlled current source xV by an independent current source of x A
and set the excitation current source Is to zero, the indefinite-admittance matrix of the resulting network
is simply Y(0). By appealing to (13.24), the new voltage V ′ab appearing at terminals a and b of the
controlling branch is:

(13.37)

Notice that the current injecting point is terminal d, not c.

FIGURE 13.6  The general configuration of a feedback amplifier.
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General Feedback Theory 13-9

The preceding operation of replacing the controlled current source by an independent current source
and setting the excitation Is to zero can be represented symbolically as in Figure 13.7. Observe that the
controlling branch is broken off as marked and a 1-V voltage source is applied to the right of the breaking
mark. This 1-V sinusoidal voltage of a fixed angular frequency produces a current of x A at the controlled
current source. The voltage appearing at the left of the breaking mark caused by this 1-V excitation is
then V ′ab  as indicated. This returned voltage V ′ab has the same physical significance as the loop transmission

ideal feedback model to zero, break the forward path, and apply a unit input to the right of the break,
as depicted in Figure 13.8. The signal appearing at the left of the break is precisely the loop transmission.

For this reason, we introduce the concept of return ratio T, which is defined as the negative of the
voltage appearing at the controlling branch when the controlled current source is replaced by an inde-
pendent current source of x A and the input excitation is set to zero. Thus, the return ratio T is simply
the negative of the returned voltage V ′ab, or T = – V ′ab. With this in mind, we next compute the difference
between the 1-V excitation and the returned voltage V ′ab obtaining 

(13.38)

in which we have invoked the indentities Yuv = Yij and

FIGURE 13.7  The physical interpretation of the return difference with respect to the controlling parameter of a
voltage-controlled current source.

FIGURE 13.8  The physical interpretation of the loop transmission.
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µβ defined for the ideal feedback model in Chapter 11. To see this, we set the input excitation to the
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(13.39)

We remark that we write Yca,db (x) as Yca,db because it is independent of x. In other words, the return
difference F(x) is simply the difference of the 1-V excitation and the returned voltage V ′ab as illustrated
in Figure 13.7, and hence its name. Because

(13.40)

we conclude that the return difference has the same physical significance as the feedback factor of the
ideal feedback model. The significance of the previous physical interpretations is that it permits us to
determine the return ratio T or –µβ by measurement. Once the return ratio is measured, the other
quantities such as return difference and loop transmission are known.

To illustrate, consider the voltage-series or the series-parallel feedback amplifier of Figure 13.9. Assume
that the two transistors are identical with the following hybrid parameters:

(13.41)

After the biasing and coupling circuitry have been removed, the equivalent network is presented in
Figure 13.10. The effective load of the first transistor is composed of the parallel combination of the 10,
33, 47, and 1.1-kΩ resistors. The effect of the 150- and 47-kΩ resistors can be ignored; they are included
in the equivalent network to show their insignificance in the computation.

To simplify our notation, let 

(13.42)

FIGURE 13.9 A voltage-series feedback amplifier together with its biasing and coupling circuitry.
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The subscript k is used to distinguish the transconductances of the first and the second transistors. The
indefinite-admittance matrix of the feedback amplifier of Figure 13.9 is:

(13.43)

By applying (13.27), the amplifier voltage gain is computed as

(13.44)

To calculate the return differences with respect to the transconductances α̃k of the transistors, we short-
circuit the voltage source Vs. The resulting indefinite-admittance matrix is obtained from (13.43) by
adding the first row to the fifth row and the first column to the fifth column and then deleting the first
row and column. Its first-order cofactor is simply Y11,55. Thus, the return differences with respect to α̃k are: 

(13.45a)

(13.45b)

FIGURE 13.10 An equivalent network of the feedback amplifier of Figure 13.9.

����� µ���

�	� µ���

��


���
���

���

α∼����

α∼���


��

+

+

+
+

−

−

−

−�

�



�

�

�
	


�

µ�
�
�

	
�	
�
�
�
�

�
�

µ�
�
�

�
�
�
��

µ�
�
�

Y =

− −

− − −

− − − + −

− −

− − − − − +































−10

9 37 0 9 09 0 0 28

0 4 256 2 128 2 128

9 09 2 128 111 218 0 100

0 10 61 10 61

0 28 2 128 100 10 61 113 018

4

2 2

1 1

1 1

2 2

. . .

. . .

. . .

. .

. . . .

α α

α α

α α

α α

g
V

V

V

Vs
12 25

25 12 25

11 25

211 54

4 66
45 39,

,

,

.

.
.= = = ×

×
=10

10

–7

–7

F
Y

Y
˜

˜ .

.
.α

α
1

1

0

466 1

4 97
93 70( ) = ( )

( ) = ×
×

=11,55

11,55

–9

–9

10

10

F
Y

Y
˜

˜

.
.α

α
2

2

0 25 52
18 26( ) = ( )

( ) = ×
×

=11,55

11,55

–9

–9 
466.1 10

10

© 2006 by Taylor & Francis Group, LLC



13-12 Circuit Analysis and Feedback Amplifier Theory

13.4 The Null Return Difference

In this section, we introduce the notion of null return difference, which is found to be very useful in
measurement situations and in the computation of the sensitivity for the feedback amplifiers.

The null return difference F̂(x) of a feedback amplifier with respect to an element x is defined to be
the ratio of the two functional values assumed by the second-order cofactor Yrp,sq of the elements of its
indefinite-admittance matrix Y under the condition that the element x assumes its nominal value and
the condition that the element x assumes the value zero where r and s are input terminals, and p and q
are the output terminals of the amplifier, or 

(13.46)

Likewise, the null return ratio T̂, with respect to a voltage-controlled current source I = xV, is the
negative of the voltage appearing at the controlling branch when the controlled current source is replaced
by an independent current source of x A and when the input excitation is adjusted so that the output of
the amplifier is identically zero.

Now, we demonstrate that the null return difference is simply the return difference in the network
under the situation that the input excitation Is has been adjusted so that the output is identically zero.
In the network of Figure 13.6, suppose that we replace the controlled current source by an independent
current source of x A. Then by applying formula (13.24) and the superposition principle, the output
current Ipq at the load is:

(13.47)

Setting Ipq = 0 or Vpq = 0 yields

(13.48)

in which Ydp,cq is independent of x. This adjustment is possible only if a direct transmission occurs from
the input to the output when x is set to zero. Thus, in the network of Figure 13.7, if we connect an
independent current source of strength I0 at its input port, the voltage V ′ab is the negative of the null
return ratio T̂. Using (13.24), we obtain [4]

(13.49)

where

(13.50)
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This leads to

(13.51)

which demonstrates that the null return difference F̂(x) is simply the difference of the 1-V excitation
applied to the right of the breaking mark of the broken controlling branch of the controlled source and
the returned voltage V ′ab appearing at the left of the breaking mark under the situation that the input
signal Is is adjusted so that the output is identically zero.

As an illustration, consider the voltage-series feedback amplifier of Figure 13.9, an equivalent network
of which is presented in Figure 13.10. Using the indefinite-admittance matrix of (13.43) in conjunction
with (13.42), the null return differences with respect to α̂k are:

(13.52a)

(13.52b)

Alternatively, F̂(α̃1) can be computed by using its physical interpretation as follows. Replace the con-
trolled source α̃1V13 in Figure 13.10 by an independent current source of α̃1 A. We then adjust the voltage
source Vs so that the output current I25 is identically zero. Let I0 be the input current resulting from this
source. The corresponding network is presented in Figure 13.11. From this network, we obtain

(13.53)

Likewise, we can use the same procedure to compute the return difference F̂(α̃2).

FIGURE 13.11  The network used to compute the null return difference F̂(α̃ 1) by its physical interpretation.
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14-1

14
The Network Functions

and Feedback1

14.1 Blackman’s Formula......................................................... 14-1
14.2 The Sensitivity Function.................................................. 14-6

We now study the effects of feedback on amplifier impedance and gain and obtain some useful relations
among the return difference, the null return difference, and impedance functions in general.

Refer to the general feedback configuration of Figure 13.6. Let w be a transfer function. As before, to
emphasize the importance of the feedback element x, we write w = w(x). To be definite, let w (x) for the
time being be the current gain between the output and input ports. Then, from (13.24) we obtain

(14.1)

yielding

(14.2)

provided that w(0) ≠ 0. This gives a very useful formula for computing the current gain:

(14.3)

Equation (14.3) remains valid if w(x) represents the transfer impedance zrp,sq = Vpq /IS instead of the
current gain.

14.1 Blackman’s Formula

In particular, when r = p and s = q, w(x) represents the driving-point impedance zrr,ss(x) looking into the
terminals r and s, and we have a somewhat different interpretation. In this case, F(x) is the return
difference with respect to the element x under the condition Is = 0. Thus, F(x) is the return difference
for the situation when the port where the input impedance is defined is left open without a source and

1References for this chapter can be found on page 16-17.
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14-2 Circuit Analysis and Feedback Amplifier Theory

we write F(x) = F(input open circuited). Likewise, from Figure 13.6, F̂(x) is the return difference with
respect to x for the input excitation Is and output response Vrs under the condition Is is adjusted so that
Vrs is identically zero. Thus, F̂(x) is the return difference for the situation when the port where the input
impedance is defined is short circuited, and we write F̂(x) = F(input short-circuited). Consequently, the
input impedance Z(x) looking into a terminal pair can be conveniently expressed as

(14.4)

This is the well-known Blackman’s formula for computing an active impedance. The formula is extremely
useful because the right-hand side can usually be determined rather easily. If x represents the controlling
parameter of a controlled source in a single-loop feedback amplifier, then setting x = 0 opens the feedback
loop and Z(0) is simply a passive impedance. The return difference for x when the input port is short
circuited or open circuited is relatively simple to compute because shorting out or opening a terminal
pair frequently breaks the feedback loop. In addition, Blackman’s formula can be used to determine the
return difference by measurements. Because it involves two return differences, only one of them can be
identified and the other must be known in advance. In the case of a single-loop feedback amplifier, it is
usually possible to choose a terminal pair so that either the numerator or the denominator on the right-
hand side of (14.4) is unity. If F(input short circuited) = 1, F(input open circuited) becomes the return
difference under normal operating condition and we have

(14.5)

On the other hand, if F(input open-circuited) = 1, F(input short-circuited) becomes the return difference
under normal operating condition and we obtain

(14.6)

Example 1. The network of Figure 14.1 is a general active RC one-port realization of a rational impedance.
We use Blackman’s formula to verify that its input admittance is given by

(14.7)

Appealing to (14.4), the input admittance written as Y = Y(x) can be written as

(14.8)

where x = 2/Z3. By setting x to zero, the network used to compute Y(0) is shown in Figure 14.2. Its input
admittance is:

(14.9)

When the input port is open-circuited, the network of Figure 14.1 degenerates to that depicted in
Figure 14.3. The return difference with respect to x is:
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FIGURE 14.1  A general active RC one-port realization of a rational function.

FIGURE 14.2  The network used to compute Y(0).

FIGURE 14.3  The network used to compute F(input open-circuited).
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14-4 Circuit Analysis and Feedback Amplifier Theory

(14.10)

where the returned voltage V ′3 at the controlling branch is given by

(14.11)

To compute the return difference when the input port is short circuited, we use the network of Figure 14.4
and obtain

(14.12)

where the return voltage V″3 at the controlling branch is found to be

(14.13)

Substituting (14.9), (14.10), and (14.12) in (14.8) yields the desired result.

(14.14)

To determine the effect of feedback on the input and output impedances, we choose the series-parallel
feedback configuration of Figure 14.5. By shorting the terminals of Y2, we interrupt the feedback loop,
therefore, formula (14.5) applies and the output impedance across the load admittance Y2 becomes

(14.15)

FIGURE 14.4 The network used to compute F(input short-circuited).
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The Network Functions and Feedback 14-5

demonstrating that the impedance measured across the path of the feedback is reduced by the factor that
is the normal value of the return difference with respect to the element x, where x is an arbitrary element
of interest. For the input impedance of the amplifier looking into the voltage source Vs of Figure 14.5,
by open circuiting or removing the voltage source Vs, we break the feedback loop. Thus, formula (14.6)
applies and the input impedance becomes

(14.16)

meaning that the impedance measured in series lines is increased by the same factor F(x). Similar

man’s formula.
Again, refer to the general feedback configuration of Figure 13.6 If w(x) represents the voltage gain

Vpq/Vrs or the transfer admittance Ipq /Vrs. Then, from (13.27) we can write

(14.17)

The first term in the product on the right-hand side is the null return difference F̂(x) with respect to x
for the input terminals r and s and output terminals p and q. The second term is the reciprocal of the
null return difference with respect to x for the same input and output port at terminals r and s. This
reciprocal can then be interpreted as the return difference with respect to x when the input port of the
amplifier is short circuited. Thus, the voltage gain or the transfer admittance can be expressed as

(14.18)

Finally, if w (x)denotes the short circuit current gain Ipq /Is as Y2 approaches infinity, we obtain

(14.19)

The second term in the product on the right-hand side is the reciprocal of the return difference with
respect to x when the output port of the amplifier is short-circuited, giving a formula for the short circuit
current gain as

(14.20)

FIGURE 14.5 The series-parallel feedback configuration.
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Again, consider the voltage-series or series-parallel feedback amplifier of Figure 13.9 an equivalent
network of which is given in Figure 13.10. The return differences F(α̃ k ), the null return
differences F̂(α̃k) and the voltage gain w were computed earlier in (13.45), (13.52), and (13.44), and are
repeated next:

(14.21a)

(14.21b)

(14.21c)

We apply (14.18) to calculate the voltage gain w, as follows:

(14.22)

where

(14.23a)

(14.23b)

and

(14.24)

where

(14.25a)

(14.25b)

14.2 The Sensitivity Function

One of the most important effects of negative feedback is its ability to make an amplifier less sensitive
to the variations of its parameters because of aging, temperature variations, or other environment
changes. A useful quantitative measure for the degree of dependence of an amplifier on a particular
parameter is known as the sensitivity. The sensitivity function, written as �(x), for a given transfer
function with respect to an element x is defined as the ratio of the fractional change in a transfer function
to the fractional change in x for the situation when all changes concerned are differentially small. Thus,
if w(x) is the transfer function, the sensitivity function can be written as

(14.26)
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Refer to the general feedback configuration of Figure 13.6, and let w(x) represent either the current
gain Ipq/Is or the transfer impedance Vpq/Is for the time being. Then, we obtain from (13.24)

(14.27)

As before, we write

(14.28a)

(14.28b)

obtaining

(14.29a)

(14.29b)

Substituting (14.27) in (14.26), in conjunction with (14.29), yields

(14.30)

Combining this with (14.3), we obtain

(14.31)

Observe that if w(0) = 0, (14.31) becomes

(14.32)

meaning that sensitivity is equal to the reciprocal of the return difference. For the ideal feedback model,
the feedback path is unilateral. Hence, w(0) = 0 and

(14.33)

For a practical amplifier, w(0) is usually very much smaller than w(x) in the passband, and F ≈ 1/�
may be used as a good estimate of the reciprocal of the sensitivity in the same frequency band. A single-
loop feedback amplifier composed of a cascade of common-emitter stages with a passive network pro-
viding the desired feedback fulfills this requirements. If in such a structure any one of the transistors
fails, the forward transmission is nearly zero and w(0) is practically zero. Our conclusion is that if the
failure of any element will interrupt the transmission through the amplifier as a whole to nearly zero,
the sensitivity is approximately equal to the reciprocal of the return difference with respect to that element.
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14-8 Circuit Analysis and Feedback Amplifier Theory

In the case of driving-point impedance, w(0) is not usually smaller than w(x), and the reciprocity relation
is not generally valid.

Now assume that w(x) represents the voltage gain. Substituting (14.27) in (14.26) results in

(14.34)

Combining this with (14.18) gives

(14.35)

Finally, if w(x) denotes the short circuit current gain Ipq /Is as Y2 approaches infinity, the sensitivity function
can be written as

(14.36)

which when combined with (14.20) yields

(14.37)

We remark that formulas (14.31), (14.35), and (14.39) are quite similar. If the return difference F(x)
is interpreted properly, they can all be represented by the single relation (14.31). As before, if w(0) = 0,
the sensitivity for the voltage gain function is equal to the reciprocal of the return difference under the
situation that the input port of the amplifier is short-circuited, whereas the sensitivity for the short circuit
current gain is the reciprocal of the return difference when the output port is short-circuited.

Example 2. The network of Figure 14.6 is a common-emitter transistor amplifier. After removing the
biasing circuit and using the common-emitter hybrid model for the transistor at low frequencies, an
equivalent network of the amplifier is presented in Figure 14.7 with

FIGURE 14.6  A common-emitter transistor feedback amplifier.
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(14.38a)

(14.38b)

(14.38c)

The indefinite admittance matrix of the amplifier is:

(14.39)

Assume that the controlling parameter gm is the element of interest. The return difference and the null
return difference with respect to gm in Figure 14.7 with I ′s as the input port and R′2, as the output port, are:

(14.40)

(14.41)

The current gain I23/I ′s as defined in Figure 14.7, is computed as

(14.42)

Substituting these in (14.30) or (14.31) gives

(14.43)

FIGURE 14.7 An equivalent network of the feedback amplifier of Figure 14.6.
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14-10 Circuit Analysis and Feedback Amplifier Theory

Finally, we compute the sensitivity for the driving-point impedance facing the current source I′s . From
(14.31), we obtain

(14.44)

where

(14.45)
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15-1

15
Measurement of

Return Difference1

15.1 Blecher’s Procedure .......................................................... 15-2
15.2 Impedance Measurements ............................................... 15-3

The zeros of the network determinant are called the natural frequencies. Their locations in the complex-
frequency plane are extremely important in that they determine the stability of the network. A network
is said to be stable if all of its natural frequencies are restricted to the open left-half side (LHS) of the
complex-frequency plane. If a network determinant is known, its roots can readily be computed explicitly
with the aid of a computer if necessary, and the stability problem can then be settled directly. However,
for a physical network there remains the difficulty of getting an accurate formulation of the network
determinant itself, because every equivalent network is, to a greater or lesser extent, an idealization of
the physical reality. As frequency is increased, parasitic effects of the physical elements must be taken
into account. What is really needed is some kind of experimental verification that the network is stable
and will remain so under certain prescribed conditions. The measurement of the return difference
provides an elegant solution to this problem.

The return difference with respect to an element x in a feedback amplifier is defined by

(15.1)

Because Yuv(x) denotes the nodal determinant, the zeros of the return difference are exactly the same
as the zeros of the nodal determinant provided that there is no cancellation of common factors between
Yuv(x) and Yuv(0). Therefore, if Yuv(0) is known to have no zeros in the closed right-half side (RHS) of
the complex-frequency plane, which is usually the case in a single-loop feedback amplifier when x is set
to zero, F(x) gives precisely the same information about the stability of a feedback amplifier as does the
nodal determinant itself. The difficulty inherent in the measurement of the return difference with respect
to the controlling parameter of a controlled source is that, in a physical system, the controlling branch
and the controlled source both form part of a single device such as a transistor, and cannot be physically
separated. In the following, we present a scheme that does not require the physical decomposition of a
device.

Let a device of interest be brought out as a two-port network connected to a general four-port network
as shown in Figure 15.1. For our purposes, assume that this device is characterized by its y parameters,
and represented by its y-parameter equivalent two-port network as indicated in Figure 15.2, in which

1References for this chapter can be found on page 16-17.

F x
Y x

Y
uv

uv

( ) = ( )
( )0
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15-2 Circuit Analysis and Feedback Amplifier Theory

the parameter y21 controls signal transmission in the forward direction through the device, whereas y12

gives the reverse transmission, accounting for the internal feedback within the device. Our objective is
to measure the return difference with respect to the forward short circuit transfer admittance y21.

15.1 Blecher’s Procedure [1]

Let the two-port device be a transistor operated in the common-emitter configuration with terminals a,
b = d, and c representing, respectively, the base, emitter, and collector terminals. To simplify our notation,
let a = 1, b = d = 3 and c = 2, as exhibited explicitly in Figure 15.3.

To measure F(y21), we break the base terminal of the transistor and apply a 1-V excitation at its input
as exhibited in Figure 15.3. To ensure that the controlled current source y21V13 drives a replica of what it
sees during normal operation, we connect an active one-port network composed of a parallel combination
of the admittance y11 and a controlled current source y12V23 at terminals 1 and 3. The returned voltage
V13 is precisely the negative of the return ratio with respect to the element y21. If, in the frequency band
of interest, the externally applied feedback is large compared with the internal feedback of the transistor,
the controlled source y12V23 can be ignored. If, however, we find that this internal feedback cannot be
ignored, we can simulate it by using an additional transistor, connected as shown in Figure 15.4. This
additional transistor must be matched as closely as possible to the one in question. The one-port admit-
tance yo denotes the admittance presented to the output port of the transistor under consideration as
indicated in Figures 15.3 and 15.4. For a common-emitter state, it is perfectly reasonable to assume that
�yo� � �y12� and �y11� � �y12�. Under these assumptions, it is straightforward to show that the Norton equivalent
network looking into the two-port network at terminals 1 and 3 of Figure 15.4 can be approximated by

FIGURE 15.1 The general configuration of a feedback amplifier with a two-port device.

FIGURE 15.2 The representation of a two-port device in Figure 15.1 by its y parameters.
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Measurement of Return Difference 15-3

the parallel combination of y11 and y12V23, as indicated in Figure 15.3. In Figure 15.4, if the voltage sources
have very low internal impedances, we can join together the two base terminals of the transistors and
feed them both from a single voltage source of very low internal impedance. In this way, we avoid the
need of using two separate sources. For the procedure to be feasible, we must demonstrate the admittances
y11 and −y12 can be realized as the input admittances of one-port RC networks.

Consider the hybrid-pi equivalent network of a common-emitter transistor of Figure 15.5, the short
circuit admittance matrix of which is found to be

(15.2)

It is easy to confirm that the admittance y11 and −y12 can be realized by the one-port networks of Figure 15.6.

15.2 Impedance Measurements

In this section, we show that the return difference can be evaluated by measuring two driving-point
impedances at a convenient port in the feedback amplifier [8].

FIGURE 15.3 A physical interpretation of the return difference F(y21) for a transistor operated in the common-
emitter configuration and represented by its y parameters yij.

FIGURE 15.4 The measurement of return difference F(y21) for a transistor operated in the common-emitter con-
figuration and represented by its y parameters yij.
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15-4 Circuit Analysis and Feedback Amplifier Theory

Refer again to the general feedback configuration of Figure 15.2. Suppose that we wish to evaluate the
return difference with respect to the forward short circuit transfer admittance y21. The controlling
parameters y12 and y21 enter the indefinite-admittance matrix Y in the rectangular patterns as shown next:

(15.3)

To emphasize the importance of y12 and y21, we again write Yuv(x) as Yuv(y12, y21) and zaa,bb(x) as zaa,bb(y12,
y21). By appealing to formula (13.25), the impedance looking into terminals a and b of Figure 15.2 is:

(15.4)

The return difference with respect to y21 is given by

(15.5)

FIGURE 15.5 The hybrid-pi equivalent network of a common-emitter transistor.

FIGURE 15.6 (a) The realization of y11 and (b) the realization of −y12.
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Measurement of Return Difference 15-5

Combining these yields

(15.6)

obtaining a relation

(15.7)

among the return differences and the driving-point impedances. F(y12)�y21=0 is the return difference with
respect to y12 when y21 is set to zero. This quantity can be measured by the arrangement of Figure 15.7.
zaa,bb(y12, y21) is the driving-point impedance looking into terminals a and b of the network of Figure 15.2.
Finally, zaa,bb(0, 0) is the impedance to which zaa,bb(y12, y21) reduces when the controlling parameters y12

and y21 are both set to zero. This impedance can be measured by the arrangement of Figure 15.8. Note
that, in all three measurements, the independent current source Is is removed.

Suppose that we wish to measure the return difference F(y21) with respect to the forward transfer
admittance y21 of a common-emitter transistor shown in Figure 15.2. Then, the return difference F(y12)

FIGURE 15.7 The measurement of the return difference F(y12) with y21 set to zero.

FIGURE 15.8 The measurement of the driving-point impedance zaa,bb(0, 0).
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15-6 Circuit Analysis and Feedback Amplifier Theory

when y21 is set to zero, for all practical purposes, is indistinguishable from unity. Therefore, (15.7) reduces
to the following simpler form:

(15.8)

showing that the return difference F(y21) effectively equals the ratio of two functional values assumed by
the driving-point impedance looking into terminals 1 and 3 of Figure 15.2 under the condition that the
controlling parameters y12 and y21 are both set to zero and the condition that they assume their nominal
values. These two impedances can be measured by the network arrangements of Figures 15.9 and 15.10.

FIGURE 15.9 The measurement of the driving-point impedance z11,33(y12, y21).

FIGURE 15.10 The measurement of the driving-point impedance z11,33(0, 0).
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16
Multiple-Loop

Feedback Amplifiers

16.1 Multiple-Loop Feedback Amplifier Theory ................... 16-1
16.2 The Return Difference Matrix......................................... 16-5
16.3 The Null Return Difference Matrix ................................ 16-6
16.4 The Transfer-Function Matrix and Feedback ................ 16-8
16.5 The Sensitivity Matrix ................................................... 16-11
16.6 Multiparameter Sensitivity ............................................ 16-15

So far, we have studied the single-loop feedback amplifiers. The concept of feedback was introduced in
terms of return difference. We found that return difference is the difference between the unit applied
signal and the returned signal. The returned signal has the same physical meaning as the loop transmission
in the ideal feedback mode. It plays an important role in the study of amplifier stability, its sensitivity to
the variations of the parameters, and the determination of its transfer and driving point impedances.
The fact that return difference can be measured experimentally for many practical amplifiers indicates
that we can include all the parasitic effects in the stability study, and that stability problem can be reduced
to a Nyquist plot.

In this section, we study amplifiers that contain a multiplicity of inputs, outputs, and feedback loops.
They are referred to as the multiple-loop feedback amplifiers. As might be expected, the notion of return
difference with respect to an element is no longer applicable, because we are dealing with a group of
elements. For this, we generalize the concept of return difference for a controlled source to the notion
of return difference matrix for a multiplicity of controlled sources. For measurement situations, we
introduce the null return difference matrix and discuss its physical significance. We demonstrate that the
determinant of the overall transfer function matrix can be expressed explicity in terms of the determinants
of the return difference and the null return difference matrices, thereby allowing us to generalize Black-
man’s formula for the input impedance.

16.1 Multiple-Loop Feedback Amplifier Theory

The general configuration of a multiple-input, multiple-output, and multiple-loop feedback amplifier is
presented in Figure 16.1, in which the input, output, and feedback variables may be either currents or
voltages. For the specific arrangement of Figure 16.1, the input and output variables are represented by
an n-dimensional vector u and an m-dimensional vector y as

Wai-Kai Chen
Unitersity of Illinois, Chicago
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16-2 Circuit Analysis and Feedback Amplifier Theory

(16.1)

respectively. The elements of interest can be represented by a rectangular matrix X of order q × p relating
the controlled and controlling variables by the matrix equation

(16.2)

where the p-dimensional vector � is called the controlling vector, and the q-dimensional vector � is the
controlled vector. The controlled variables θk and the controlling variables Φk can either be currents or
voltages. The matrix X can represent either a transfer-function matrix or a driving-point function matrix.

FIGURE 16.1  The general configuration of a multiple-input, multiple-output, and multiple-loop feedback amplifier.
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Multiple-Loop Feedback Amplifiers 16-3

If X represents a driving-point function matrix, the vectors � and � are of the same dimension (q = p)
and their components are the currents and voltages of a p-port network.

The general configuration of Figure 16.1 can be represented equivalently by the block diagram of
Figure 16.2 in which N is a (p + q + m + n)-port network and the elements of interest are exhibited
explicitly by the block X. For the (p + q + m + n)-port network N, the vectors u and are � are its inputs,
and the vectors � and y its outputs. Since N is linear, the input and output vectors are related by the
matrix equations

(16.3a)

(16.3b)

where A, B, C, and D are transfer-function matrices of orders p × q, p × n, m × q, and m × n, respectively.
The vectors � and � are not independent and are related by 

(16.3c)

The relationships among the above three linear matrix equations can also be represented by a matrix
signal-flow graph as shown in Figure 16.3 know as the fundamental matrix feedback-flow graph. The
overall closed-loop transfer-function matrix of the multiple-loop feedback amplifier is defined by the
equation

(16.4)

where W(X) is of order m × n. As before, to emphasize the importance of X, the matrix W is written as
W(X) for the present discussion, even though it is also a function of the complex-frequency variable s.
Combining the previous matrix equations, the transfer-function matrix is: 

(16.5a)

FIGURE 16.2 The block diagram of the general feedback configuration of Figure 16.1.

FIGURE 16.3  The fundamental matrix feedback-flow
graph.
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16-4 Circuit Analysis and Feedback Amplifier Theory

or

(16.5b)

where 1p denotes the identity matrix of order p. Clearly, we have

(16.6)

In particular, when X is square and nonsingular, (16.5) can be written as

(16.7)

Example 3. Consider the voltage-series feedback amplifier of Figure 13.9. An equivalent network is shown
in Figure 16.4 in which we have assumed that the two transistors are identical with hie = 1.1 kΩ, hfe = 50,
hre = hoe = 0. Let the controlling parameters of the two controlled sources be the elements of interest.
Then we have 

(16.8)

Assume that the output voltage V25 and input current I51 are the output variables. Then the seven-
port network N defined by the variables V13, V45, V25, I51, Ia, Ib, and Vs can be characterized by the matrix
equations

(16.9a)

(16.9b)

FIGURE 16.4 An equivalent network of the voltage-series feedback amplifier of Figure 13.9.
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Multiple-Loop Feedback Amplifiers 16-5

According to (16.4), the transfer-function matrix of the amplifier is defined by the matrix equation

(16.10)

Because X is square and nonsingular, we can use (16.7) to calculate W(X):

(16.11)

where

(16.12)

obtaining the closed-loop voltage gain w11 and input impedance Zin facing the voltage source Vs as

(16.13)

16.2 The Return Different Matrix

In this section, we extend the concept of return difference with respect to an element to the notion of
return difference matrix with respect to a group of elements.

In the fundamental matrix feedback-flow graph of Figure 16.3, suppose that we break the input of the
branch with transmittance X, set the input excitation vector u to zero, and apply a signal p-vector g to
the right of the breaking mark, as depicted in Figure 16.5. Then the returned signal p-vector h to the left
of the breaking mark is found to be

(16.14)

The square matrix AX is called the loop-transmission matrix and its negative is referred to as the return
ratio matrix denoted by

(16.15)

FIGURE 16.5  The physical interpretation of the loop-transmission matrix.
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16-6 Circuit Analysis and Feedback Amplifier Theory

The difference between the applied signal vector g and the returned signal vector h is given by

(16.16)

The square matrix 1p – AX relating the applied signal vector g to the difference of the applied signal
vector g and the returned signal vector h is called the return difference matrix with respect to X and is
denoted by

(16.17)

Combining this with (16.15) gives

(16.18)

For the voltage-series feedback amplifier of Figure 16.4, let the controlling parameters of the two
controlled current sources be the elements of interest. Then the return ratio matrix is found from (16.8)
and (16.9a)

(16.19)

obtaining the return difference matrix as

(16.20)

16.3 The Null Return Difference Matrix

A direct extension of the null return difference for the single-loop feedback amplifier is the null return
difference matrix for the multiple-loop feedback networks.

Refer again to the fundamental matrix feedback-flow graph of Figure 16.3. As before, we break the
branch with transmittance X and apply a signal p-vector g to the right of the breaking mark, as illustrated
in Figure 16.6. We then adjust the input excitation n-vector u so that the total output m-vector y resulting
from the inputs g and u is zero. From Figure 16.6, the desired input excitation u is found:

(16.21)

or

(16.22)

provided that the matrix D is square and nonsingular. This requires that the output y be of the same
dimension as the input u or m = n. Physically, this requirement is reasonable because the effects at the
output caused by g can be neutralized by a unique input excitation u only when u and y are of the same
dimension. With these inputs u and g, the returned signal h to the left of the breaking mark in Figure 16.6
is computed as

g h 1 AX g– = −( )p

F X 1 AX( ) = −p

F X 1 T X( ) = + ( )p

T X AX( ) = − = −












×

×













=
−











−

−

– . .

– .

. .

.

90 782 45 391

942 507 0

455 10 0

0 455 10

4 131 2 065

42 884 0

4

4

F X 1 T X( ) = + ( ) =
−











2

5 131 2 065

42 884 1

. .

.

Du CXg 0+ =

u D CXg= − –1

© 2006 by Taylor & Francis Group, LLC



Multiple-Loop Feedback Amplifiers 16-7

(16.23)

obtaining

(16.24)

The square matrix

(16.25)

relating the input signal vector g to the difference of the input signal vector g, and the returned signal
vector h is called the null return difference matrix with respect to X, where

(16.26a)

(16.26b)

The square matrix T̂(X) is known as the null return ratio matrix.

Example 4. Consider again the voltage-series feedback amplifier of Figure 13.9, an equivalent network
of which is illustrated in Figure 16.4. Assume that the voltage V25 is the output variable. Then from (16.9)

(16.27a)

(16.27b)

Substituting the coefficient matrices in (16.26b), we obtain

(16.28)

FIGURE 16.6 The physical interpretation of the null return difference matrix.
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16-8 Circuit Analysis and Feedback Amplifier Theory

giving the null return difference matrix with respect to X as

(16.29)

Suppose that the input current I51 is chosen as the output variable. Then, from (16.9b) we have

(16.30)

The corresponding null return difference matrix becomes

(16.31)

where

(16.32)

16.4 The Transfer-Function Matrix and Feedback

In this section, we show the effect of feedback on the transfer-function matrix W(X). Specifically, we
express det W(X) in terms of the det X(0) and the determinants of the return difference and null return
difference matrices, thereby generalizing Blackman’s impedance formula for a single input to a multi-
plicity of inputs.

Before we proceed to develop the desired relation, we state the following determinant identity for two
arbitrary matrices M and N of order m × n and n × m:

(16.33)

a proof of which may be found in [5, 6]. Using this, we next establish the following generalization of
Blackman’s formula for input impedance.

Theorem 1. In a multiple-loop feedback amplifier, if W(0) = D is nonsingular, then the determinant of the
transfer-function matrix W(X) is related to the determinants of the return difference matrix F(X) and the
null return difference matrix F̂(X) by

(16.34)

PROOF: From (16.5a), we obtain

(16.35)
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Multiple-Loop Feedback Amplifiers 16-9

(16.36)

The second line follows directly from (16.33). This completes the proof of the theorem.
As indicated in (14.4), the input impedance Z(x) looking into a terminal pair can be conveniently

expressed as

(16.37)

A similar expression can be derived from (16.34) if W(X) denotes the impedance matrix of an n-port
network of Figure 16.1. In this case, F(X) is the return difference matrix with respect to X for the situation
when the n ports where the impedance matrix are defined are left open without any sources, and we
write F(X) = F(input open-circuited). Likewise, F̂(X) is the return difference matrix with respect to X
for the input port-current vector Is and the output port-voltage vector V under the condition that Is is
adjusted so that the port-voltage vector V is identically zero. In other words, F̂(X) is the return difference
matrix for the situation when the n ports, where the impedance matrix is defined, are short-circuited,
and we write F̂(X) = F(input short-circuited). Consequently, the determinant of the impedance matrix
Z(X) of an n-port network can be expressed from (16.34) as

(16.38)

Example 5. Refer again to the voltage-series feedback amplifier of Figure 13.9, an equivalent network of
which is illustrated in Figure 16.4. As computed in (16.20), the return difference matrix with respect to
the two controlling parameters is given by

(16.39)

the determinant of which is: 

(16.40)

If V25 of Figure 16.4 is chosen as the output and Vs as the input, the null return difference matrix is, from
(16.29),

(16.41)

the determinant of which is:
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16-10 Circuit Analysis and Feedback Amplifier Theory

(16.42)

By appealing to (16.34), the feedback amplifier voltage gain V25 /Vs can be written as

(16.43)

confirming (13.44), where w(0) = 0.04126, as given in (16.27b).
Suppose, instead, that the input current I51 is chosen as the output and Vs as the input. Then, from

(16.31), the null return difference matrix becomes

(16.44)

the determinant of which is:

(16.45)

By applying (16.34), the amplifier input admittance is obtained as 

(16.46)

or 27.1 kΩ, confirming (16.13), where w(0) = 862 µmho is found from (16.30).
Another useful application of the generalized Blackman’s formula (16.38) is that it provides the basis

of a procedure for the indirect measurement of return difference. Refer to the general feedback network
of Figure 16.2. Suppose that we wish to measure the return difference F(y21) with respect to the forward
short circuit transfer admittance y21 of a two-port device characterized by its y parameters yij. Choose
the two controlling parameters y21 and y12 to be the elements of interest. Then, from Figure 15.2 we obtain

(16.47)

where Ia and Ib are the currents of the voltage-controlled current sources. By appealing to (16.38), the
impedance looking into terminals a and b of Figure 15.2 can be written as

(16.48)

When the input terminals a and b are open-circuited, the resulting return difference matrix is exactly
the same as that found under normal operating conditions, and we have

(16.49)
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Because

(16.50)

the elements F11 and F21 are calculated with y12 = 0, whereas F12 and F22 are evaluated with y21 = 0. When
the input terminals a and b are short circuited, the feedback loop is interrupted and only the second row
and first column element of the matrix A is nonzero, and we obtain

(16.51)

Because X is diagonal, the return difference function F(y21) can be expressed in terms of det F(X) and
the cofactor of the first row and first column element of F(X):

(16.52)

Substituting these in (16.48) yields

(16.53)

where

(16.54)

and a22 is the second row and second column element of A. Formula (16.53) was derived earlier in (15.7)
using the network arrangements of Figures 15.7 and 15.8 to measure the elements F(y12)�y21=0 and
zaa,bb(0,0), respectively.

16.5 The Sensitivity Matrix

We have studied the sensitivity of a transfer function with respect to the change of a particular element
in the network. In a multiple-loop feedback network, we are usually interested in the sensitivity of a transfer
function with respect to the variation of a set of elements in the network. This set may include either elements
that are inherently sensitive to variation or elements where the effect on the overall amplifier performance
is of paramount importance to the designers. For this, we introduce a sensitivity matrix and develop formulas
for computing multiparameter sensitivity function for a multiple-loop feedback amplifier [7].

Figure 16.7 is the block diagram of a multivariable open-loop control system with n inputs and m
outputs, whereas Figure 16.8 is the general feedback structure. If all feedback signals are obtainable from
the output and if the controllers are linear, no loss of generality occurs by assuming the controller to be
of the form given in Figure 16.9.

Denote the set of Laplace-transformed input signals by the n-vector u, the set of inputs to the network
X in the open-loop configuration of Figure 16.7 by the p-vector �o, and the set of outputs of the network

FIGURE 16.7 The block diagram of a multivariable open-loop control system.
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16-12 Circuit Analysis and Feedback Amplifier Theory

X of Figure 16.7 by the m-vector yo. Let the corresponding signals for the closed-loop configuration of
Figure 16.9 be denoted by the n-vector u, the p-vector �c, and the m-vector yc, respectively. Then, from
Figures 16.7 and 16.9, we obtain the following relations:

(16.55a)

(16.55b)

(16.55c)

(16.55d)

where the transfer-function matrices X, H1, H2, and H3 are of order m × p, p × n, p × n and n × m,
respectively. Combining (16.55c) and (16.55d) yields

(16.56)

or

(16.57)

The closed-loop transfer function matrix W(X) that relates the input vector u to the output vector yc is
defined by the equation

(16.58)

identifying from (16.57) the m × n matrix

FIGURE 16.8 The general feedback structure.

FIGURE 16.9 The general feedback configuration. 
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(16.59)

Now, suppose that X is perturbed from X to X + �X. The outputs of the open-loop and closed-loop
systems of Figure 16.7 and 16.9 will no longer be the same as before. Distinguishing the new from the
old variables by the superscript +, we have

(16.60a)

(16.60b)

(16.60c)

where �o remains the same.
We next proceed to compare the relative effects of the variations of X on the performance of the open-

loop and the closed-loop systems. For a meaningful comparison, we assume that H1, H2, and H3 are such
that when there is no variation of X, yo = yc. Define the error vectors resulting from perturbation of X as

(16.61a)

(16.61b)

A square matrix relating Eo to Ec is called the sensitivity matrix �(X) for the transfer function matrix
W(X) with respect to the variations of X:

(16.62)

In the following, we express the sensitivity matrix �(X) in terms of the system matrices X, H2, and H3.
The input and output relation similar to that given in (16.57) for the perturbed system can be written as

(16.63)

Substituting (16.57) and (16.63) in (16.61b) gives

(16.64)

From (16.55d) and (16.58), we obtain

(16.65)

Because by assuming that yo = yc, we have

(16.66)

W X 1 XH H XH( ) = −( )−
m 2 3

1

2

y Xo o
+ += ΦΦ

y Xc c
+ + += ΦΦ

ΦΦc c
+ += +( )H u H y2 3

E y yo o o= − +

E y yc c c= − +

E X Ec o= ( )�

y 1 X H H X H uc m
+ + − += −( )2 3

1

2

E y y 1 XH H XH 1 X H H X H u

1 X H H 1 X X H H 1 XH H XH X X H u

1 X H H XH

c c c m m

m m m

m

= − = −( ) − −( )





= −( ) − +( )[ ] −( ) − +( ){ }
= −( )

+ − + − +

+ − −

+ −

2 3

1

2 2 3

1

2

2 3

1

2 3 2 3

1

2 2

2 3

1

δδ δδ

22 2 3 2 3

1

2 2 2

2 3

1

2 3

− −( ) − −[ ]
= − −( ) + ( )[ ]

−

+ −

δδ δδ

δδ

XH H 1 XH H XH XH XH u

1 X H H XH 1 H W X u

m

m n

ΦΦc n= + ( )[ ]H 1 H W X u2 3

ΦΦ ΦΦo c n= = + ( )[ ]H 1 H W X u2 3

© 2006 by Taylor & Francis Group, LLC



16-14 Circuit Analysis and Feedback Amplifier Theory

yielding

(16.67)

Combining (16.64) and (16.67) yields an expression relating the error vectors Ec and Eo of the closed-
loop and open-loop systems by

(16.68)

obtaining the sensitivity matrix as

(16.69)

For small variations of X, X+ is approximately equal to X. Thus, in Figure 16.9, if the matrix triple product
XH2H3 is regarded as the loop-transmission matrix and –XH2H3 as the return ratio matrix, then the
difference between the unit matrix and the loop-transmission matrix,

(16.70)

can be defined as the return difference matrix. Therefore, (16.69) is a direct extension of the sensitivity
function defined for a single-input, single-output system and for a single parameter. Recall that in (14.33)
we demonstrated that, using the ideal feedback model, the sensitivity function of the closed-loop transfer
function with respect to the forward amplifier gain is equal to the reciprocal of its return difference with
respect to the same parameter.

In particular, when W(X), �X, and X are square and nonsingular, from (16.55a), (16.55b), and (16.58),
(16.61) can be rewritten as 

(16.71a)

(16.71b)

If H1 is nonsingular, u in (16.71b) can be solved for and substituted in (16.71a) to give

(16.72)

As before, for meaningful comparison, we require that yo = yc or

(16.73)

From (16.72), we obtain

(16.74)

identifying that

(16.75)

This result is to be compared with the scalar sensitivity function defined in (14.26), which can be put in
the form

(16.76)

E y y X X XH 1 H W X uo o o o n= − = −( ) = − + ( )[ ]+ + ΦΦ δδ 2 3

E 1 X H H Ec m o= −( )+ −

2 3

1

� X 1 X H H( ) = −( )+ −

m 2 3

1

1 XH Hm − 2 3

E y y W X W X u W X uc c c= − = ( ) − ( )[ ] = − ( )+ + δδ

E y y XH X H u XH uo o o= − = −[ ] = −+ +
1 1 1δδ

E W X H X Ec o= ( ) ( )− −δδ δδ1
1 1

XH W X1 = ( )

E W X W X X X Ec o= ( ) ( ) ( )− −δδ δδ1 1

� X W X W X X X( ) = ( ) ( ) ( )− −
� �1 1

� x w w x x( ) = ( ) ( )− −δ δ1 1
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16.6 Multiparameter Sensitivity

In this section, we derive formulas for the effect of change of X on a scalar transfer function w(X).
Let xk, k = 1, 2, …, pq, be the elements of X. The multivariable Taylor series expansion of w(X) with

respect to xk is given by

(16.77)

The first-order perturbation can then be written as 

(16.78)

Using (14.26), we obtain

(16.79)

This expression gives the fractional change of the transfer function w in terms of the scalar sensitivity
functions �(xk).

Refer to the fundamental matrix feedback-flow graph of Figure 16.3. If the amplifier has a single input
and a single output from (16.35), the overall transfer function w(X) of the multiple-loop feedback
amplifier becomes

(16.80)

When X is perturbed to X+ = X + �X, the corresponding expression of (16.80) is given by

(16.81)

or

(16.82)

As �X approaches zero, we obtain

(16.83)

where C is a row q vector and B is a column p vector. Write

(16.84a)

δ δ
δ δ

w
w

x
x

w

x x

x x

k
k

j k

j k

k

pq

j

pq

k

pq

= ∂
∂

+ ∂
∂ ∂

+
===
∑∑∑

2

111 2!
L

δ δw
w

x
x

k
k

k

pq

≈ ∂
∂=

∑
1

δ δw

w
x

x

xk
k

kk

pq

≈ ( )
=
∑ �

1

w D pX CX 1 AX B( ) = + −( )−1

w w D pX X C X X 1 AX A X B( ) + ( ) = + +( ) − −( )−
δ δδ δδ

1

δw p pX C X X 1 AX A X X 1 AX B( ) = +( ) − −( ) − −( )





− −
δδ δδ

1 1

δw p p p

p p

q p

X C X X X 1 AX 1 AX A X 1 AX A X B

C X X 1 AX A X 1 AX A X B

C 1 XA X 1 AX A X B

C

( ) = +( ) − −( ) − −( )





− −( )
= + −( )



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− −( )
= −( ) ( ) − −( )
≈

− −

− −

− −

δδ δδ δδ

δδ δδ δδ

δδ δδ

1 1

1 1

1 1

11 XA X 1 AX Bq p−( ) ( ) −( )− −1 1
δδ

C = [ ]c c cq1 2 L
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(16.84b)

(16.84c)

The increment δw(X) can be expressed in terms of the elements of (16.84) and those of X. In the case
where X is diagonal with

(16.85)

where p = q, the expression for δw(X) can be succinctly written as

(16.86)

Comparing this with (16.79), we obtain an explicit form for the single-parameter sensitivity function as

(16.87)

Thus, knowing (16.84) and (16.85), we can calculate the multiparameter sensitivity function for the
scalar transfer function w(X) immediately.

Example 6. Consider again the voltage-series feedback amplifier of Figure 13.9, an equivalent network
of which is shown in Figure 16.4. Assume that Vs is the input and V25 the output. The transfer function
of interest is the amplifier voltage gain V25/Vs. The elements of main concern are the two controlling
parameters of the controlled sources. Thus, we let

(16.88)

From (16.27) we have

(16.89a)

(16.89b)

(16.89c)

yielding

(16.90)

′ = [ ]B b b bp1 2 L

˜ ˜W X 1 AX 1 XA X= −( ) = −( ) = [ ]− −

p q ijw
1 1

X = [ ]diag x x xp1 2 L
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p
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===

===
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˜ ˜

˜ ˜
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x wk
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Also, from (16.13) we have

(16.91)

To compute the sensitivity functions with respect to α̃1 and α̃2, we apply (16.87) and obtain

(16.92a)

(16.92b)

As a check, we use (14.30) to compute these sensitivities. From (13.45) and (13.52), we have 

 (16.93a)

 (16.93b)

 (16.93c)

 (16.93d)

Substituting these in (14.30) the sensitivity functions are: 

(16.94a)

(16.94b)

confirming (16.92).
Suppose that α̃1 is changed by 4% and α̃2 by 6%. The fractional change of the voltage gain w(X) is

found from (16.79) as

(16.95)

or 0.37%.
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