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ABSTRACT

An interesting technique for doing FIFO design is to perform asynchronous comparisons between the FIFO write and
read pointers that are generated in clock domains that are asynchronous to each other. The asynchronous FIFO
pointer comparison technique uses fewer synchronization flip-flops to build the FIFO. The asynchronous FIFO
comparison method requires additional techniques to correctly synthesize and analyze the design, which are detailed
in this paper.

To increase the speed of the FIFO, this design uses combined binary/Gray counters that take advantage of the built-
in binary ripple carry logic.

The fully coded, synthesized and analyzed RTL Verilog model (FIFO Style #2) is included.

This FIFO design paper builds on information already presented in another FIFO design paper where the FIFO
pointers are synchronized into the opposite clock domain before running "FIFO full" or "FIFO empty" tests. The
reader may benefit from first reviewing the FIFO Style #1 method before proceeding to this FIFO Style #2 method.

Post-SNUG Editorial Comment (by Cliff Cummings)
Although this paper was voted “Best Paper - 1st Place” by SNUG attendees, this paper builds off of a second FIFO
paper listed as reference [1]. The first FIFO paper laid the foundation for some of the content of this paper; therefore,
it is highly recommended that readers download and read the FIFO1 paper[1] to acquire background information
already assumed to be known by the reader of this paper.
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1.0  Introduction
An asynchronous FIFO refers to a FIFO design where data values are written sequentially into a FIFO buffer using
one clock domain, and the data values are sequentially read from the same FIFO buffer using another clock domain,
where the two clock domains are asynchronous to each other.

One common technique for designing an asynchronous FIFO is to use Gray[3] code pointers that are synchronized
into the opposite clock domain before generating synchronous FIFO full or empty status signals[1]. An interesting
and different approach to FIFO full and empty generation is to do an asynchronous comparison of the pointers and
then asynchronously set the full or empty status bits[6].

This paper discusses the FIFO design style with asynchronous pointer comparison and asynchronous full and empty
generation. Important details relating to this style of asynchronous FIFO design are included. The FIFO style
implemented in this paper uses efficient Gray code counters, whose implementation is described in the next section.

2.0 Gray code counter - style #2
One Gray code counter style uses a single set of flip-flops as the Gray code register with accompanying Gray-to-
binary conversion, binary increment, and binary-to-Gray conversion[1].

A second Gray code counter style, the one described in this paper, uses two sets of registers, one a binary counter
and a second to capture a binary-to-Gray converted value. The intent of this Gray code counter style #2 is to utilize
the binary carry structure, simplify the Gray-to-binary conversion; reduce combinational logic, and increase the
upper frequency limit of the Gray code counter.

The binary counter conditionally increments the binary value, which is passed to both the inputs of the binary
counter as the next-binary-count value, and is also passed to the simple binary-to-Gray conversion logic, consisting
of one 2-input XOR gate per bit position. The converted binary value is the next Gray-count value and drives the
Gray code register inputs.

Figure 1 shows the block diagram for an n-bit Gray code counter (style #2).

Figure 1 - Dual n-bit Gray code counter style #2
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This implementation requires twice the number of flip-flops, but reduces the combinatorial logic and can operate at a
higher frequency.  In FPGA designs, availability of extra flip-flops is rarely a problem since FPGAs typically contain
far more flip-flops than any design will ever use. In FPGA designs, reducing the amount of combinational logic
frequently translates into significant improvements in speed.

The ptr output of the block diagram in Figure 1 is an n-bit Gray code pointer.

Note: since the MSB of a binary sequence is equal to the MSB of a Gray code sequence, this design can be further
simplified by using the binary MSB-flip-flop as the Gray code MSB-flip-flop. The Verilog code in this paper did not
implement this additional optimization. This would save one flip-flop per pointer.

3.0 Full & empty detection
As with any FIFO design, correct implementation of full and empty is the most difficult part of the design.

There are two problems with the generation of full and empty:

First, both full and empty are indicated by the fact that the read and write pointers are identical. Therefore,
something else has to distinguish between full and empty. One known solution to this problem appends an extra bit
to both pointers and then compares the extra bit for equality (for FIFO empty) or inequality (for FIFO full), along
with equality of the other read and write pointer bits[1].

Another solution, the one described in this paper, divides the address space into four quadrants and decodes the two
MSBs of the two counters to determine whether the FIFO was going full or going empty at the time the two pointers
became equal.

Figure 2 - FIFO is going full because the wptr trails the rptr by one quadrant

If the write pointer is one quadrant behind the read pointer, this indicates a "possibly going full" situation as shown
in Figure 2. When this condition occurs, the direction latch of Figure 4 is set.
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Figure 3 - FIFO is going empty because the rptr trails the wptr by one quadrant

If the write pointer is one quadrant ahead of the read pointer, this indicates a "possibly going empty" situation as
shown in Figure 3. When this condition occurs, the direction latch of Figure 4 is cleared.

Figure 4 - FIFO direction quadrant detection circuitry

When the FIFO is reset the direction latch is also cleared to indicate that the FIFO “is going empty” (actually, it
is empty when both pointers are reset). Setting and resetting the direction latch is not timing-critical, and the
direction latch eliminates the ambiguity of the address identity decoder.
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The Xilinx FPGA logic to implement the decoding of the two wptr MSBs and the two rptr MSBs is easily
implemented as two 4-input look-up tables.

The second, and more difficult, problem stems from the asynchronous nature of the write and read clocks.
Comparing two counters that are clocked asynchronously can lead to unreliable decoding spikes when either or both
counters change multiple bits more or less simultaneously. The solution described in this paper uses a Gray count
sequence, where only one bit changes from any count to the next. Any decoder or comparator will then switch only
from one valid output to the next one, with no danger of spurious decoding glitches.

4.0 FIFO style #2
For the purposes of this paper, FIFO style #1 refers to a FIFO implementation style that synchronizes pointers from
one clock domain to another before generating full and empty flags [1].

The FIFO style described in this paper (FIFO style #2) does asynchronous comparison between Gray code pointers
to generate an asynchronous control signal to set and reset the full and empty flip-flops.

The block diagram for FIFO style #2 is shown in Figure 5.

Figure 5 - FIFO2 partitioning with asynchronous pointer comparison logic

To facilitate static timing analysis of the style #2 FIFO design, the design has been partitioned into the following five
Verilog modules with the following functionality and clock domains:

• fifo2.v - (see Example 1 in section 5.1) - this is the top-level wrapper-module that includes all clock
domains. The top module is only used as a wrapper to instantiate all of the other FIFO modules used in the
design. If this FIFO is used as part of a larger ASIC or FPGA design, this top-level wrapper would probably be
discarded to permit grouping of the other FIFO modules into their respective clock domains for improved
synthesis and static timing analysis.
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• fifomem.v - (see Example 2 in section 5.2) - this is the FIFO memory buffer that is accessed by both the write
and read clock domains. This buffer is most likely an instantiated, synchronous dual-port RAM. Other memory
styles can be adapted to function as the FIFO buffer.

• async_cmp.v - (see Example 3 in section 5.3) - this is an asynchronous pointer-comparison module that is
used to generate signals that control assertion of the asynchronous “full” and “empty” status bits. This module
only contains combinational comparison logic. No sequential logic is included in this module.

• rptr_empty.v - (see Example 4 in section 5.4) - this module is mostly synchronous to the read-clock domain
and contains the FIFO read pointer and empty-flag logic. Assertion of the aempty_n signal (an input to this
module) is synchronous to the rclk-domain, since aempty_n can only be asserted when the rptr
incremented, but de-assertion of the aempty_n signal happens when the wptr increments, which is
asynchronous to rclk.

• wptr_full.v - (see Example 5 in section 5.5) - this module is mostly synchronous to the write-clock domain
and contains the FIFO write pointer and full-flag logic. Assertion of the afull_n signal (an input to this
module) is synchronous to the wclk-domain, since afull_n can only be asserted when the wptr incremented
(and wrst_n), but de-assertion of the afull_n signal happens when the rptr increments, which is
asynchronous to wclk.
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5.0 RTL code for FIFO style #2
The Verilog RTL code for the FIFO style #2 model is listed in this section.

5.1 fifo2.v - FIFO top-level module

The fifo2 top-level module is a parameterized module with all sub-blocks instantiated following safe coding
practices using named port connections.

module fifo2 (rdata, wfull, rempty, wdata,
            winc, wclk, wrst_n, rinc, rclk, rrst_n);
  parameter DSIZE = 8;
  parameter ASIZE = 4;
  output [DSIZE-1:0] rdata;
  output             wfull;
  output             rempty;
  input  [DSIZE-1:0] wdata;
  input              winc, wclk, wrst_n;
  input              rinc, rclk, rrst_n;

  wire   [ASIZE-1:0] wptr, rptr;
  wire   [ASIZE-1:0] waddr, raddr;

  async_cmp  #(ASIZE)     async_cmp
                          (.aempty_n(aempty_n), .afull_n(afull_n),
                           .wptr(wptr), .rptr(rptr), .wrst_n(wrst_n));

  fifomem #(DSIZE, ASIZE) fifomem
                          (.rdata(rdata), .wdata(wdata),
                           .waddr(wptr), .raddr(rptr),
                           .wclken(winc), .wclk(wclk));

  rptr_empty #(ASIZE)     rptr_empty
                          (.rempty(rempty), .rptr(rptr),
                           .aempty_n(aempty_n), .rinc(rinc),
                           .rclk(rclk), .rrst_n(rrst_n));

  wptr_full  #(ASIZE)     wptr_full
                          (.wfull(wfull), .wptr(wptr),
                           .afull_n(afull_n), .winc(winc),
                           .wclk(wclk), .wrst_n(wrst_n));
endmodule

Example 1 - Top-level Verilog code for the FIFO style #2 design
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5.2 fifomem.v - FIFO memory buffer

The FIFO memory buffer could be an instantiated ASIC or FPGA dual-port, synchronous memory device. The
memory buffer could also be synthesized to ASIC or FPGA registers using the RTL code in this module.

If a vendor RAM is instantiated, it is highly recommended that the instantiation be done using named port
connections.

module fifomem (rdata, wdata, waddr, raddr, wclken, wclk);
  parameter DATASIZE = 8;        // Memory data word width
  parameter ADDRSIZE = 4;        // Number of memory address bits
  parameter DEPTH = 1<<ADDRSIZE; // DEPTH = 2**ADDRSIZE
  output [DATASIZE-1:0] rdata;
  input  [DATASIZE-1:0] wdata;
  input  [ADDRSIZE-1:0] waddr, raddr;
  input                 wclken, wclk;

  `ifdef VENDORRAM
    // instantiation of a vendor's dual-port RAM
    VENDOR_RAM MEM (.dout(rdata), .din(wdata),
                    .waddr(waddr), .raddr(raddr),
                    .wclken(wclken), .clk(wclk));
  `else
    reg [DATASIZE-1:0] MEM [0:DEPTH-1];

    assign rdata = MEM[raddr];

    always @(posedge wclk)
      if (wclken) MEM[waddr] <= wdata;
  `endif
endmodule

Example 2 - Verilog RTL code for the FIFO buffer memory array
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5.3 async_cmp.v - Asynchronous the full/empty comparison logic

The logic used to determine the full or empty status on the FIFO is the most distinctive difference between FIFO
style #1 and FIFO style #2.

Async_cmp is an asynchronous comparison module, used to compare the read and write pointers to detect full and
empty conditions.

module async_cmp (aempty_n, afull_n, wptr, rptr, wrst_n);
  parameter ADDRSIZE = 4;
  parameter N = ADDRSIZE-1;
  output       aempty_n, afull_n;
  input  [N:0] wptr, rptr;
  input        wrst_n;

  reg          direction;
  wire         high = 1'b1;

  wire dirset_n = ~(  (wptr[N]^rptr[N-1]) & ~(wptr[N-1]^rptr[N]));
  wire dirclr_n = ~((~(wptr[N]^rptr[N-1]) &  (wptr[N-1]^rptr[N])) |
                       ~wrst_n);

  always @(posedge high or negedge dirset_n or negedge dirclr_n)
    if      (!dirclr_n) direction <= 1'b0;
    else if (!dirset_n) direction <= 1'b1;
    else                direction <= high;

  //always @(negedge dirset_n or negedge dirclr_n)
    //if      (!dirclr_n) direction <= 1'b0;
    //else                direction <= 1'b1;

  assign aempty_n = ~((wptr == rptr) && !direction);
  assign afull_n  = ~((wptr == rptr) &&  direction);
endmodule

Example 3 - Verilog RTL code for the asynchronous comparator module

Three of the last seven lines of the Verilog code of Example 3 have been commented out in this model. In theory, a
synthesis tool should be capable of inferring an RS-flip-flop from the comment-removed code, but the LSI_10K
library that is included with the default installation of the Synopsys tools did not infer a correct RS-flip-flop with this
code when tested, so the always block immediately preceding the commented code was added to infer an RS-flip-
flop.

5.3.1 Asynchronous generation of full and empty

In the async_cmp code of Example 3, and shown in Figure 6, aempty_n and afull_n are the asynchronously
decoded signals. The aempty_n signal is asserted on the rising edge of an rclk, but is de-asserted on the rising
edge of a wclk. Similarly, the afull_n signal is asserted on a wclk and removed on an rclk.

The empty signal will be used to stop the next read operation, and the leading edge of aempty_n is properly
synchronous with the read clock, but the trailing edge needs to be synchronized to the read clock. This is done in a
two-stage synchronizer that generates rempty.

The wfull signal is generated in the symmetrically equivalent way.
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Figure 6 - Asynchronous pointer comparison to assert full and empty

5.3.2 Resetting the FIFO

The first FIFO event of interest takes place on a FIFO-reset operation. When the FIFO is reset, four important things
happen within the async_cmp module and accompanying full and empty synchronizers of the wptr_full and
rptr_empty modules (the connections between the async_cmp, wptr_full and rptr_empty modules are
shown in Figure 7):

1. The reset signal directly clears the wfull flag. The rempty flag is not cleared by a reset.
2. The reset signal clears both FIFO pointers, so the pointer comparator asserts that the pointers are equal.
3. The reset clears the direction bit.
4. With the pointers equal and the direction bit cleared, the aempty_n bit is asserted, which presets the

rempty flag.

5.3.3 FIFO-writes & FIFO full

The second FIFO operational event of interest takes place when a FIFO-write operation takes place and the wptr is
incremented. At this point, the FIFO pointers are no longer equal so the aempty_n signal is de-asserted, releasing
the preset control of the rempty flip-flops. After two rising edges on rclk, the FIFO will de-assert the rempty
signal. Because the de-assertion of aempty_n happens on a rising wclk and because the rempty signal is clocked
by the rclk, the two-flip-flop synchronizer as shown in Figure 8 is required to remove metastability that could be
generated by the first rempty flip-flop.

The second FIFO operational event of interest takes place when the wptr increments into the next Gray code
quadrant beyond the rptr (see section 3.0 for a discussion of Gray code quadrants). The direction bit is cleared
(but it was already clear).
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Figure 7 - async_cmp module connection to rptr_empty and wptr_full modules

The third FIFO operational event of interest occurs when the wptr is within one quadrant of catching up to the
rptr as described in section 3.0. When this happens, the dirset_n bit of Figure 6 is asserted low, which sets

the direction bit high. This means that the direction bit is set long before the FIFO is full and is not timing-
critical to assertion of the afull_n signal.

The fourth FIFO operational event of interest is when the wptr catches up to the rptr (and the direction bit is
set). When this happens, the afull_n signal presets the wfull flip-flops. The afull_n signal is asserted on a
FIFO-write operation and is synchronous to the rising edge of the wclk; therefore, asserting full is synchronous to
the wclk. See section 5.3.6 for a discussion of the critical timing path associated with assertion of the wfull
signal.

The fifth FIFO operational event of interest is when a FIFO-read operation takes place and the rptr is incremented.
At this point, the FIFO pointers are no longer equal so the afull_n signal is de-asserted, releasing the preset
control of the wfull flip-flops. After two rising edges on wclk, the FIFO will de-assert the wfull signal. Because
the de-assertion of afull_n happens on a rising rclk and because the wfull signal is clocked by the wclk, the
two-flip-flop synchronizer, shown in Figure 8, is required to remove metastability that could be generated by the first
wfull flip-flop capturing the inverted and asynchronously generated afull_n data input.

Figure 8 - Asynchronous empty and full generation

During operation, wfull is generated synchronous to the write clock, in a similar way that rempty is generated
synchronous to the read clock. The afull_n signal is asserted as a result of a write clock, and the leading (falling)
edge is thus naturally synchronous to the write clock. The trailing (rising) edge is, however caused by the read clock,
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and must, therefore be synchronized to the write clock. The same timing issues related to the setting of the full flag
also apply to the setting of the empty flag.

5.3.4 FIFO-reads & FIFO empty

The sixth FIFO operational event of interest takes place when the rptr increments into the next Gray code quadrant
beyond the wptr. The direction bit is again set (but it was already set).

The seventh FIFO operational event of interest occurs when the rptr is within one quadrant of catching up to the
wptr. When this happens, the dirrst bit of Figure 6 is asserted high , which clears the direction bit. This
means that the direction bit is cleared long before the FIFO is empty and is not timing critical to assertion of the
aempty_n signal.

The eighth FIFO operational event of interest is when the rptr catches up to the wptr (and the direction bit is
zero). When this happens, the aempty_n signal presets the rempty flip-flops. The aempty_n signal is asserted
on a FIFO-read operation and is synchronous to the rising edge of the rclk; therefore, asserting empty is
synchronous to the rclk. See section 5.3.6 for a discussion of the critical timing path associated with assertion of
the rempty signal.

Finally, when a FIFO-write operation takes place and the wptr is incremented. At this point, the FIFO pointers are
no longer equal so the aempty_n signal is de-asserted, releasing the preset control of the rempty flip-flops. After
two rising edges on rclk, the FIFO will de-assert the rempty signal. Because the de-assertion of aempty_n
happens on a rising wclk and because the rempty signal is clocked by the rclk, the two-flip-flop synchronizer as
shown in Figure 8 is required to remove metastability that could be generated by the first rempty flip-flop.

5.3.5 Alternate method to preset the full & empty flags

Figure 9 - Self-timed  preset assertion circuit

Another method for setting the rempty or wfull flags is to use a self-timed differentiating circuit as shown in
Figure 9. In this figure, the flip-flops are shown with high-true presets, similar to what is found on Xilinx FPGAs.
(equivalent circuitry could also be designed using low-true presets). When the aempty signal goes high, the
rempty output flip-flop is preset and assuming that the signal between the flip-flops was low, this signal combined
with aempty-high will drive the output of the and gate high and set the first flip-flop. When the first flip-flop is set,
the and gate will quit driving the preset signal to the first flip-flop. This is a self-timed preset signal that releases
preset immediately after preset occurs, well before the aempty signal goes low.

5.3.6 Full and empty critical timing paths

Using the asynchronous comparison technique described in this paper, there are critical timing paths associated with
the generation of both the rempty and wfull signals.

The rempty critical timing path, shown in Figure 10, consists of (1) the rclk-to-q incrementing of the rptr, (2)
comparison logic of the rptr to the wptr, (3) combining the comparator output with the direction latch output to
generate the aempty_n signal, (4) presetting the rempty signal, (5) any logic that is driven by the rempty signal,
and (6) resultant signals meeting the setup time of any down-stream flip-flops clocked within the
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Figure 10 - Critical timing paths for asserting rempty and wfull

rclk domain. This critical timing path has a symmetrically equivalent critical timing path for the generation of the
wfull signal, also shown in Figure 10.

5.3.7 Asynchronous concerns, questions and answers

While writing this paper, the authors asked and answered numerous questions to address concerns over the highly
asynchronous nature of the generation and removal of the full and empty bits for the FIFO style described in this
paper. This section captures a number of the questions, concerns and answers that lead both authors to believe this
coding style does indeed work.

Generation of the aempty_n control signal is straightforward. Whenever the read pointer (rptr) equals the write
pointer (wptr), and the direction latch is clear, the FIFO is empty.

The empty flag is used only in the read clock domain and since the read pointer, incremented by a read clock, causes
the empty flag to be set, assertion of the empty flag is always synchronous in the read clock domain. As long as the
empty flag meets the critical empty-assertion timing path described in section 5.3.6, there is no synchronization
problems associated with asserting the empty flag.

The de-assertion of aempty_n is caused by the write clock incrementing the write pointer, and is thus unrelated to
the read clock. The de-assertion of aempty_n must, therefore, be synchronized in a dual-flip-flop synchronizer,
clocked by the read clock. The first flip-flop is subject to metastability but the second flip-flop is included to wait for
the metastability to subside, just like any other multi-clock synchronizer[1].
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Since aempty_n is started by one clock and terminated by the other, it has an undefined duration, and might even
be a runt pulse. A runt pulse is a Low-High-Low signal transition where the transition to High may or may not pass
through the logic-“1” threshold level of the logic family being used.

If the aempty_n control signal is a runt pulse, there are four possible scenarios that should be addressed:

(1) the runt signal is not recognized by the rempty flip-flops and empty is not asserted. This is not a problem.

(2) The runt pulse might preset the first synchronizer flip-flop, but not the second flip-flop. This is highly unlikely,
but would result in an unnecessary, but properly synchronized rempty output, that will show up on the output
of the second flip-flop one read clock later. This is not a problem.

(3) The runt pulse might preset the second synchronizer flip-flop, but not the first flip-flop. This is highly unlikely,
but would result in an unnecessary, but properly synchronized rempty output (as long as the empty critical
timing is met), that will be set on the output of the second flip-flop until the next read clock, when it will be
cleared by the zero from the first flip-flop. This is not a problem.

(4) The most likely case is that the runt pulse sets both flip-flops, thus creating a properly synchronized rempty
output that is two read-clock periods long. The longer duration is caused by the two-flip-flop synchronizer ( to
avoid metastable problems as described below). This is not a problem.

The runt pulse cannot have any effect on the synchronizer data-input, since an aempty_n runt pulse can only occur
immediately after a read clock edge, thus long before the next read clock edge (as long as critical timing is met).

The aempty_n signal might also stay high longer and go low at any moment, even perhaps coincident with the next
read clock edge. If it goes low well before the set-up time of the first synchronize flip-flop, the result is like scenario
(4) above. If it goes low well after the set-up time, the synchronizer will stretch rempty by one more read clock
period.

If aempty_n goes low within the metstability-catching set-up time window, the first synchronizer flip-flop output
will be indeterminate for a few nanoseconds, but will then be either high or low. In either case, the output of the
second synchronizer flip-flop will create the appropriate synchronized rempty output.

The next question is, what happens if the write clock de-asserts the aempty_n signal coincident with the rising
rclk on the dual synchronizer? The first flip-flop could go metastable, which is why there is a second flip-flop in
the dual synchronizer.

But the removal of the setting signal on the second flip-flop will violate the recovery time of the second flip-flop.
Will this cause the second flip-flop to go metastable? The authors do not believe this can happen because the preset
to the flip-flop forced the output high and the input to the same flip-flop is already high, which we believe is not
subject to a recovery time instability on the flip-flop.

Challenge: if anyone can prove that a flip-flop that is set high, and is also driven by a high-data-input signal, can go
metastable if the preset signal is removed coincident with the rising edge of the clock to the same flip-flop, the
authors would like to be made aware of any such claim. The authors believe that recovery time parameters are with
respect to removing a preset when the data input value is zero. The authors could not find any published reference to
discount the possibility of metastability on the output of the second flip-flop but we believe that metastability in this
case is not possible.

Last question. Can a runt-preset pulse, where the trailing edge of the runt pulse is caused by the wclk, preset the
second synchronizer flip-flop in close proximity to a rising rclk, violate the preset recovery time and cause
metastability on the output of the second flip-flop? The answer is no as long as the aempty_n critical timing path is
met. Assuming that critical timing is met, the aempty_n signal going low should occur shortly after a rising rclk
and well before the rising edge of the second flip-flop, so runt pulses can only occur well before the rising edge of an
rclk.

Again, symmetrically equivalent scenarios and arguments can be made about the generation of the wfull flag.
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5.4 rptr_empty.v - Read pointer & empty generation logic

This module encloses all of the FIFO logic that is generated within the read clock domain (except synchronizers).
The read pointer is an n-bit Gray code counter. The FIFO rempty output is asserted when the aempty_n signal
goes low and the rempty output is de-asserted on the second rising rclk edge after aempty_n goes high (a rare
metastable state could cause the rempty output to be de-asserted on the third rising rclk edge). This module is
completely synchronous to the rclk for simplified static timing analysis, except for the aempty_n input, which is
de-asserted asynchronously to the rclk.

module rptr_empty (rempty, rptr, aempty_n, rinc, rclk, rrst_n);
  parameter ADDRSIZE = 4;
  output                rempty;
  output [ADDRSIZE-1:0] rptr;
  input                 aempty_n;
  input                 rinc, rclk, rrst_n;
  reg    [ADDRSIZE-1:0] rptr, rbin;
  reg                   rempty, rempty2;
  wire   [ADDRSIZE-1:0] rgnext, rbnext;

  //---------------------------------------------------------------
  // GRAYSTYLE2 pointer
  //---------------------------------------------------------------
  always @(posedge rclk or negedge rrst_n)
    if (!rrst_n) begin
      rbin     <= 0;
      rptr     <= 0;
    end
    else begin
      rbin     <= rbnext;
      rptr     <= rgnext;
    end

  //---------------------------------------------------------------
  // increment the binary count if not empty
  //---------------------------------------------------------------
  assign rbnext = !rempty ? rbin + rinc : rbin;
  assign rgnext = (rbnext>>1) ^ rbnext; // binary-to-gray conversion

  always @(posedge rclk or negedge aempty_n)
    if (!aempty_n) {rempty,rempty2} <= 2'b11;
    else           {rempty,rempty2} <= {rempty2,~aempty_n};
endmodule

Example 4 - Verilog RTL code for the read pointer and empty flag logic

The last always block in this module is the asynchronously preset rempty signal generation. The presetting signal is
the aempty_n input , which is asserted when the rptr is incremented by the rclk (synchronous to this block) as
long as the rempty critical timing path (described in section 5.3.6) is satisfied. Removal of the rempty signal
occurs when the write pointer increments, which is asynchronous to the rclk domain. Because reset removal is
asynchronous to the rclk domain, a two-flip-flop synchoronizer is required to synchronize aempty_n removal to
the rclk domain.
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5.5 wptr_full.v - Write pointer & full generation logic

This module encloses all of the FIFO logic that is generated within the write clock domain (except synchronizers).
The write pointer is an n-bit Gray code counter. The FIFO wfull output is asserted when the afull_n signal goes
low and the wfull output is de-asserted on the second rising wclk edge after afull_n goes high (a rare
metastable state could cause the wfull output to be de-asserted on the third rising wclk edge). This module is
completely synchronous to the wclk for simplified static timing analysis, except for the afull_n input, which is
de-asserted asynchronously to the wclk.

module wptr_full (wfull, wptr, afull_n, winc, wclk, wrst_n);
  parameter ADDRSIZE = 4;
  output                wfull;
  output [ADDRSIZE-1:0] wptr;
  input                 afull_n;
  input                 winc, wclk, wrst_n;
  reg    [ADDRSIZE-1:0] wptr, wbin;
  reg                   wfull, wfull2;
  wire   [ADDRSIZE-1:0] wgnext, wbnext;

  //---------------------------------------------------------------
  // GRAYSTYLE2 pointer
  //---------------------------------------------------------------
  always @(posedge wclk or negedge wrst_n)
    if (!wrst_n) begin
      wbin     <= 0;
      wptr     <= 0;
    end
    else begin
      wbin     <= wbnext;
      wptr     <= wgnext;
    end

  //---------------------------------------------------------------
  // increment the binary count if not full
  //---------------------------------------------------------------
  assign wbnext = !wfull ? wbin + winc : wbin;
  assign wgnext = (wbnext>>1) ^ wbnext; // binary-to-gray conversion

  always @(posedge wclk or negedge wrst_n or negedge afull_n)
    if      (!wrst_n ) {wfull,wfull2} <= 2'b00;
    else if (!afull_n) {wfull,wfull2} <= 2'b11;
    else               {wfull,wfull2} <= {wfull2,~afull_n};
endmodule

Example 5 - Verilog RTL code for the write pointer and full flag logic

The last always block in this module is the asynchronously preset wfull signal generation. The presetting signal is
the afull_n input , which is asserted when the wptr is incremented by the wclk (synchronous to this block) as
long as the wfull critical timing path (described in section 5.3.6) is satisfied. Removal of the wfull signal occurs
when the write pointer increments, which is asynchronous to the wclk domain. Because reset removal is
asynchronous to the wclk domain, a two-flip-flop synchoronizer is required to synchronize afull_n removal to
the wclk domain. The wfull signal must also go low when the FIFO is reset.
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6.0 Conclusion
This paper describes an efficient technique to implement a high-speed asynchronous FIFO, using dual-port RAMs
addressed by Gray counters This design uses an asynchronous comparator for detecting full and empty status.

The technique described implements an asynchronous assertion of the full and empty flags that requires more effort
to analyze for static timing verification.

The technique described also does not have registered full and empty status flags, so care must be taken to insure that
the generation of these flags meets the required timing to recognize assertion of full and empty in the rest of the
system.

This efficient and interesting approach to FIFO design worthy of consideration.

7.0 Additional Post-SNUG Editorial Comments (by Cliff Cummings)
Although this paper was voted “Best Paper - 1st Place” by SNUG attendees, this paper describes a FIFO design style
that is generally incompatible with static timing analysis (STA) and design-for-test (DFT). Readers should also
reference the FIFO design style described by reference [1] if a more STA-friendly and DFT-friendly style is desired.

Many of the techniques used in this paper can also be used in the FIFO1 design[1]. In particular, the “dual n-bit
counter” of the FIFO1 design can be replaced with the quadrant detection logic described in this paper. The FIFO1
Gray code counter style #1 can also be replaced with the faster Gray code counter style #2 described in this paper.
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