Enabling Productivity

RTL Coding
Guidelines

DEC, 1999
WA Professional Service G
‘-;\/\/3‘ Synopsys, IncI:. Asia Paé?f?c (;ggll?ations
co é@ﬂg%lAl Disclosure of information shared to other than
£6153 those authorized, is strictly prohibited.
SYNoPsys:

© 1999 Synopsys, Inc. . .
1 Confidential Professional Service Group

rﬂ Introductions

Enabling Productivity
1 A common set of problems facing everyone who is
designing design-reuse ASICs:
= Time-to-market pressures demand rapid development

= Quality of results, in performance and area, are keys to
market success

= Increasing chip complexity makes verification more difficult

= The development team has different levels and areas of
expertise

= Design team members may have worked on similar designs
in the past, but cannot reuse these designs because the
design flow, tools, and guidelines have changed

1 The “Design Reuse Coding Style” offers design team
members a collection of coding rules and guidelines.

1 A high quality HDL code is a prerequisite for a high
quality product.

© 1999 Synopsys, Inc. S‘/"UPS‘/S®

2 Confidential Professional Service Group

rﬁ Agenda

Presentation:
HDL Coding Style Guidelines

J

I Iy Iy I Ry Ay Iy I

General HDL Code Structure
Partitioning

Implying Logic Structure

Safe Coding & Avoiding Problems
Source Code Readability

Coding Style for Design Reuse
Design for Testability

Practices

Enabling Productivity

© 1999 Synopsys, Inc.
3 Confidential

Professional Service Group

rﬂ HDL for Synthesis Guidelines

Presentation:
HDL Coding Style Guidelines

I Ty Iy I Ry Ay Iy I

General HDL Code Structure
Partitioning

Implying Logic Structure

Safe Coding & Avoiding Problems
Source Code Readability

Coding Style for Design Reuse
Design for Testability

Practices

Enabling Productivity

© 1999 Synopsys, Inc.
4 Confidential

Professional Service Group

rﬂ General HDL Code Structure: Checklist Items

Enabling Productivity

Standard File Headers (101)

File Naming Conventions (102)
Architecture Naming Conventions (103)
Signal Naming Conventions (104)

Use of Labels (105)

Linking in Verilog (106)

Clear & Meaningful Comments (107)

Iy Ny Ny N Ry Iy Iy I

© 1999 Synopsys, Inc. . .
5 Confidential Professional Service Group

rﬂ Standard File Headers(101)

Enabling Productivity

(1 Make sure the code look familiar, no matter who writes the module.
(1 Make sure every file has a file header containing information on

= file name or module function, author, creation date, abstract or
summary, modification history

= copyright, licensing agreement (if need)

[171711117777777777777777777777777/77777777777777777777777777
// FILE: design.v

// AUTHOR: Brooke Tioga
// Id <

// ABSTRACT: Description of the design object [USGd by RCS!
// KEYWORDS: dsp, telecom, graphi

// MODIFICATION HI :

// Log

// Brooke 11/9/97 original
// Susie 3/3/98 revised as follows...

// (C) Copyright 1997 Synopsys Inc. All rights reserved
[1171777

© 1999 Synopsys, Inc. . .
6 Confidential Professional Service Group

r:d Headers for Major Constructs (101)

Enabling Productivity
L1177 7 7777777777777 777777777777 7777777777777 7777777777777 777
// FUNCTION: double trouble

// AUTHOR: Ornithal Shapiro

// $1dS

// ABSTRACT: to double throughput of filter

// MODIFICATION HISTORY:

// SLog$

// Ornithal 12/9/97 original

// Brooke 4/4/98 revised as follows...

// This function performs the interpolation of data ...

[1777 7777777777777

(1 Use for each function and task
(1 Use for each major section of code

© 1999 Synopsys, Inc. . .
7 Confidential Professional Service Group

rﬂ File Naming Conventions (102)

Enabling Productivity

1 A consistent approach to naming files greatly improves

communication among designers.

1 Create individual files for each module:

Convention Object Example
design.v Module arbiter.v
tb _design.v | Verilog Testbench | tb_arbiter.v

1 Use module/function name as part of file name.

IEIRRIN

——

O (|0 C(FD [

© 1999 Synopsys, Inc.

8

Confidential

Professional Service Group

rﬂ Architecture Naming Conventions (103)

Enabling Productivity

d While the term “architecture” is a VHDL construct, it is

used to categorize VHDL modules based on their level of
abstraction.

1 Keep the same file names for all architectures, and

manage the design data with different file directories for
each architecture.

© 1999 Synopsys, Inc. . .
9 Confidential Professional Service Group

r:d Signal Naming Conventions (104)

Enabling Productivity

(d Verilog reserved words (module, endmodule, wire, reg, always, begin,
end, if, else, case, endcase, ...)

= must use lower case (Verilog requirement)

(1 Names (module names, function names, block nhames, wires, regs,
integers, ...)

= use lower case
4 Names (macro ...)
= UsSe upper case
(1 Names (Clock Signal)
= use clk1, clk2, or clk_interface

= Use the same name for all clock signals that are driven from the
same source.

(d Names (Reset Signal)
= use rst for reset signal

© 1999 Synopsys, Inc. S‘/"UPS‘/S®

10 Confidential Professional Service Group

rﬂ Signal Naming Conventions (104)

Enabling Productivity

(1 Names (active low signal)

= end the signal name with an underscore followed by a lowercase
character

= example_b, example_n
(1 Names (multibit-buses)
= Use a consistent ordering of bits
= for VHDL (y downto x) or (x to y)
= for Verilog [x:0] or [0:x]
(1 Names (meaningful)
= don’t use ra for a RAM address, instead, use ram_addr
(1 Check with your vendor for their name restrictions
= (e.g. case, length)
(4 Nounl/verb paradigm
= Spot_run not run_spot
= processor_interrupt not interrupt_processor

© 1999 Synopsys, Inc. S‘/"UPS‘/S®

11 Confidential Professional Service Group

rﬂ Signal Naming Conventions (104)

Enabling Productivity

(d For net names, use the same name throughout the hierarchy

(1 Consider dc_shell commands when choosing names:
= set input delay 7.0 find(pin, "“"xi pci*”)

© 1999 Synopsys, Inc. S‘/"UPS‘/S®

12 Confidential Professional Service Group

rﬂ Signal Naming Conventions (104)

1 Use naming conventions to indicate type of signal:

d Examples:

= input, output, register output, etc.

clk *

Clock signal

Reset signal

Negative logic (active low)
Output of a register
Asynchronous signal

Signal used in the “n” phase
Data before being registered
Three-state internal signal
Primary chip input

Primary chip output

Primary chip three state
Primary chip bidirectional

Enabling Productivity

© 1999 Synopsys, Inc.

13

Confidential

SYNOPSYS:

Professional Service Group

B Use of Labels (105)

Enabling Productivity

Labels improve readability & debugging

If labels are not specified, arbitrary labels are generated internal to
simulation/synthesis tools

(1 Labeled always@ facilitate repartitioning with the group command.

always(@ (posedge CLK)
begin: CHT2BIT<;—__________‘_—
if (RESET == 1'bl) — .
0OUT <= 27500; Use Labels at begin

else

QOUT <= QOUT + 1’bl;
end dc_shell_script:
group -hdl_block CHT2BIT

Use Labels on always@), & function constructs

© 1999 Synopsys, Inc. . .
14 Confidential Professional Service Group

rﬂ Linking Modules(106): Avoid Modules linked
with “include

Enabling Productivity

O Avoid modules linked with ‘include’ top

(1 Reasons:

= Locating the file

= The included file has to reside in the same
directory from which the tool(simulation or
synthesis) is invoked, or a path to the file
must be specified in the source code.

= Compilation

= The included file may complicate the
design partitioning and may result in

.) module a ();
greater effort when developing a bottoms- ;"n%dn‘i'oedtjg 0: I endmodule
up compile strategy. ‘include “b.v”

‘include “a.v” . “w
include “c.v

module top ();

endmodule module a ();
‘include “a.v” endmodule
‘include “c.v” ‘include “b.v”

© 1999 Synopsys, Inc. S‘/"UPS‘/S®

15 Confidential Professional Service Group

rﬂ Linking Modules (106): Avoid Multiple
Modules in a Single File

O Avoid multiple modules in single file. top

Enabling Productivity

(1 Reasons:

= Locating the file

= Determining which files contain which modules a c
cannot be inferred using the file name
conventions.

= Compilation

= Performing incremental compiles in DC due to
small changes become more complex and
timing consuming.

module top ();

= Revision Control (RCS) mogu:e s 0;
= Revision control and bug tracing become mbre mgdﬂé C(())

complicated.

module top (); module a ();
module ¢ (); module b ();

© 1999 Synopsys, Inc. S‘/"UPS‘/S®

16 Confidential Professional Service Group

rﬁ Linking Functions (106): Avoid Multiple
Functions in a Single File

Enabling Productivity
O Avoid: Multiple functions in single file top
1 Reasons:
= Revision Control (RCS) 3 c
= Revision control and bug tracing become more
complicated.
b C

module a ();
module top (); ‘include “f1.v”
‘include “f2.v”

module b(); module ¢ ();
1include “f1.v” ‘include “f2.v”
‘include “f3.v” ‘include “f4.v”

© 1999 Synopsys, Inc. S‘/"UPS‘/S®

17 Confidential Professional Service Group

rﬂ Clear Meaningful Comments (107)

Enabling Productivity

(d Improve readability, maintainability, ability to reuse, easy review, traceability
(d Typical engineers response ...

= ‘I don’t have the time to comment now”

= When complete do you go back & comment or do you move on to the
next assignment ?

© 1999 Synopsys, Inc. S‘/"UPS‘/S®

18 Confidential Professional Service Group

rﬂ HDL for Synthesis Guidelines

Presentation:
HDL for Synthesis Guidelines

J

I T Iy Iy Iy M |

General HDL Code Structure
Partitioning

Implying Logic Structure

Safe Coding & Avoiding Problems
Source Code Readability

Coding Style for Design Reuse
Design for Testability

Practices

Enabling Productivity

© 1999 Synopsys, Inc.
19 Confidential

Professional Service Group

rﬂ Partitioning Effects

Enabling Productivity

d Partitioning is not just a functional issue. It can
significantly affect the following process:

= Synthesis Quality-of-Result (QOR)
= Synthesis constraints

= Synthesis scripts

= Synthesis compile time

= Static timing analysis

= Floorplanning

= Layout

© 1999 Synopsys, Inc. S‘/"UPS‘/S®

20 Confidential Professional Service Group

rﬂ Partitioning Aims

Enabling Productivity

1 Physical Implementation Issues
- Keep related combinational logic together
= Combine shareable resource
= Merge user-defined resources and driven logic
= Partition based on design goals
1 Partitioning to Speed Up the Compile Process
= Eliminate glue logic
= NMaintain a reasonable gate size
= Maintain a reasonable number of levels
= Isolate point-to-point exceptions in the same module

© 1999 Synopsys, Inc. S‘/"UPS‘/S®

21 Confidential Professional Service Group

rﬂ Partition Aims

Enabling Productivity

1 Partitioning to Simplify Scripts and Constraint Files
= Register all outputs

= At chip-level create core logic, pad ring, and test
hierarchy

1 Commands that Manipulate Hierarchy

= |f artificial and suboptimal barriers exist in critical
combinational logic path, you can rearrange the
hierarchy to eliminate the suboptimal interface.

= DC command: group
= DC command: ungroup

© 1999 Synopsys, Inc. S‘/"UPS‘/S®

22 Confidential Professional Service Group

rﬂ Partitioning: Checklist Items

Enabling Productivity

4 Physical Implementation Issues
= No snake paths in critical paths (201)
= Combine sharable resources (202)
= Merge User-Defined Resources with the logic they drive (203)

= Separate logic with different synthesis goals
= area vs. speed sensitive (204)

= random vs. structured (205)
= Separate Clock Generation Module (206)
= Separate Asynchronous Logic (207)
= Separate Finite State Machines (208)

© 1999 Synopsys, Inc. S‘/"UPS‘/S®

23 Confidential Professional Service Group

rﬂ Partitioning: Checklist Items

Enabling Productivity

1 Partitioning to Speed Up the Compile Process
= Eliminate glue logic (209)
= Reasonable design size (210)
= Reasonable hierarchy (211)
= |solate Point-to-Point Exceptions (212)
1 Partitioning to Simplify Scripts and Constraints Files
= Register the outputs (213)
= Chip-Level Partitioning (214)

1 Commands that Manipulate Hierarchy
= Ungroup
= Group

© 1999 Synopsys, Inc. S‘/"UPS‘/S®

24 Confidential Professional Service Group

rﬂ AVOid Snake Paths (in critical path) (201)

.] - — Enabling Productivity
1 Design Compiler cannot move logic across hierarchical

boundaries.

1 Dividing related combinational logic into separate
modules introduces artificial barriers restrict logic
optimization

Critical Path

Poor Partitioning of Related Logic Keep Related Logic in the Same Module

© 1999 Synopsys, Inc. . .
25 Confidential Professional Service Group

rﬂ Avaid Snake Paths (in critical path) (201)

Enabling Productivity

(1 Snake Path - combinational logic path distributed over multiple modules

(1 DC does not allow cross boundary optimization & requires time budgeting

| time1 + time2 + time3 < time_clk
Module 1 Module2 Module 3 —| Re
(Comb. only) /| (Comb. ”\.__ (Comb. Only) N
only) CLK —
time1 time2 time3
SYNoPsys:

© 1999 Synopsys, Inc.

26 Confidential

Professional Service Group

rﬂ Combine Sharable Resources (202)

Enabling Productivity

(1 Resources (e.g. adders) can be shared if they are never used at
the same time.

(1 For HDL Compiler to determine this, the resources MUST be in
the same module and always@ block

BAD GOOD
Module case (sel)
2'b00 :¥Y = a + Db;
Module 2"b01 :Y = c + d;
2'bl0 ¥ = e + £;
2"bll :Y = g + h;
default:Y = 8’'bx;

endcase i

[~~~

| — A
- —(+)
(Cannot Share

Across Modules) |

S
i

O O] O] |®
7

© 1999 Synopsys, Inc. . .
27 Confidential Professional Service Group

Fﬁ Merge User-Defined Resources with the Logic
" They Drive(203)

(d A user defined resource is any logic that drives a large fanout .

Enabling Productivity

= (e.g. mux-select for 100 muxes)
1 You may want to replicate user defined resources to balance the load.
= (e.g. 10 mux-selects to drive 10 muxes)

\ D Q [e—

\ \

| D D op—— Emor N |

| Em —l\) | | \ ol |
\ | \

| % > \ |

USG'—DeﬁI’Ed { D 0 _I‘ ‘ L@r_[bﬁnw | D Q I—

Resource . Resource |

} > | |

| o > |

‘ A D O e \ \ \

| A) | \ \ (|

| I P L D O
L - —

|

\ User-Defined N |

| Resource o |

|

© 1999 Synopsys, Inc. . .
28 Confidential Professional Service Group

rﬁ Merge User-Defined Resources with the Logic
: Th ey Drive(203) Enabling Productivity

4 A poor partitioning might bring more synthesis and timing analysis problems.

r - - - - - — — . T T =

1 S

ERROR |

\ \

| > |

\ \

************ L . . _ _ 4
e

‘ i |

User-Defined | | |

Resource | D Q

| |

\ | |

L - - - - - — — — — - ‘ > [

| |

L= = = = =4

I

|

|

| > |

Lo a

© 1999 Synopsys, Inc.

29 Confidential Professional Service Group

rﬂ Separate Area & Speed Logic (204)

Enabling Productivity

(1 Area and Speed Critical Logic are best optimized with different compile

strategies

(1 Separate the logic so you can apply these strategies individually

BAD

CRITICAL)" | REG
PATH B

NON |
CRITICAL REG
LOGIC \ A |

set structure ???

GOOD
Spe_ed_ —>| CrRITICAI] | REG
Optimized PATH

Area

Optimized

i

B

_> Bl

Might need to be flattened
to make timing

—>

Should not be flattened

© 1999 Synopsys, Inc.

30

Confidential

Professional Service Group

r;d Separate Random & Structured Logic (205)

Enabling Productivity

(1 Random and Structured Logic are best optimized with different compile
strategies.

(1 Separate logic so you can apply these strategies individually.

BAD GOOD

Contains—— | /Randon —

Random | | REG B random hogie RiG
Logic A logic —> -
—D —

Might need to be flattened
to make timing

Highly —
Structured

set structure ??7?

Should not be flattened

© 1999 Synopsys, Inc. . .
31 Confidential Professional Service Group

rﬂ Separate Clock Generation Module (2006)

Enabling Productivity

1 Clock generation logic is typically handcrafted and often
requires special timing analysis.

1 Itis often recommended that clock generation logic be
put into its own module.

iiiiiiiiiiii B B
) Clock Generation k
| | -
| A || |
| |
|
| D 0 — > |
| | |
| || |
\ L - - - - - - - - - - - _ d
-~
L - — - 4

© 1999 Synopsys, Inc. . .
32 Confidential Professional Service Group

rﬁ Separate Asynchronous Logic (207)

Enabling Productivity

1 Asynchronous logic is sometimes technology-dependent,
and typically requires gate-level instantiation and a
special synthesis methodology.

1 Asynchronous logic typically requires special test
considerations and verification strategies.

WRITE[>

K > >Q WE N
Sopolypolyalo

S A I I O B
WRITE [1
WE N 1]

© 1999 Synopsys, Inc. . .
33 Confidential Professional Service Group

rﬁ Separate Finite State Machines (208)

Enabling Productivity

1 A state machine may benefit from the state machine
compiler or from a flattening optimization strategy.

1 Modules that contain only state machines simplify the
state extraction and optimization process.

State, Machine

© 1999 Synopsys, Inc. . .
34 Confidential Professional Service Group

rﬂ Eliminate Glue Logic (209)

Enabling Productivity

1 Design should only contain gates at the leaf level of the hierarchy tree
= Reduces CPU time to compile small amounts of logic for glue.
= Synthesis compile scripts are simplified when glue logic is removed.

Top Level

D

“Glue Logic”/
(BAD)

© 1999 Synopsys, Inc. S‘/"UPS‘/S®

35 Confidential Professional Service Group

rd Reasonable Design Size (210)

Enabling Productivity

1 Symptom: Too many lines of code in block

1 Pitfalls:
= analyze [elaborate steps are slow
= code is difficult to read / inspect

4 Recommendation:
= blocks should contain only clock
= blocks should have few timing exceptions
= add a new level of hierarchy

© 1999 Synopsys, Inc. S‘/"UPS‘/S®

36 Confidential Professional Service Group

rﬂ Reasonable Hierarchy (211)

Enabling Productivity

1 Use a reasonable number of levels in the hierarchy

1 Pitfalls:
= reduced readability
= longer compile times
= more error prone (more places for error)

d Recommend:
= Use 2-3 levels per major function block or algorithm,
= Use no more than 8 levels per design.
= A new level is introduced via DesignWare
(can be eliminated by ungroup)

© 1999 Synopsys, Inc. S‘/"UPS‘/S®

37 Confidential Professional Service Group

rﬁ Isolate Point-to-Point Exceptions (212)

.] . - - Enabling Productivity
1 If a design contains point-to-point exceptions (false

path/multiple cycles), keep those exceptions within a
module.

1 By containing the point-to-point exception within one
module, execution-time in static timing analysis or

| set false path -from D _reg -to S_reg top |
O _reg
| D 0 S_reg |
\ D 0 |—
\ |
| |
| |
| D reg \
— D Q ‘
| / |
* % *
| |
| > |
| |
U I 2\ Y i a T e |

© 1999 Synopsys, Inc. . .
38 Confidential Professional Service Group

rﬂ Register the Qutputs (213)

Enabling Productivity
1 To simplify the constraints and scripts process, register
all outputs of a block.

set_drive dr|ve of <my_flop/Q> all_inputs
set input_delay 2 -clock CLK <input_port>

L

The drive strength of the inputs is predictable.

L

The input delays from the previous block are predictable.

L

It speeds up simulation, since the process activate only
once per clock cycle.

© 1999 Synopsys, Inc. . .
39 Confidential Professional Service Group

rﬁ Chip-Level Partitioning (214)

Enabling Productivity

1 The partitioning recommendation for the top of an ASIC

r—— - - - - - - - - - — — —/— 1
| Top |
| |
| r——— —— —=—=—=—=—=— |
| " ek 7l corelogic ||
oc e Logic

| l'| Generation | | |I | Pads
| | — — 1 | |

|E-n-undary| | |
| | Scan | |
| == | =
L1 midare | NI
| L — _— _ _t=—===—=" |
| |
L - . o - —_—_— —— a

1 The clock generation circuitry is isolated from the rest of
the design, since typically it is handcrafted and carefully
simulated.

© 1999 Synopsys, Inc. . .
40 Confidential Professional Service Group

rﬁ Ungrouping a Design Hierarchy

Enabling Productivity

1 The ungroup command collapses hierarchy.

| | |
| | |
T o
| | | | |
: ,I__::_JI :"::‘:}\'_:{ ungroup -all - :E}J—|
|
|

© 1999 Synopsys, Inc. . .
41 Confidential Professional Service Group

rﬁ Group Cells into a Module

Enabling Productivity

1 The group command allows you to create new levels of
hierarchy from the objects at this level.

group {U1 U2} -design_name new

r— - - - - - — — — 1 —_— e - - - - — — T
I top | top |
I I

I I I
I I

— e e - — - - |

I I naw | I
I—@:o— | _JD—IIl
I I I
| [Bl ol
L e e e e e e — J L = - - - . |

© 1999 Synopsys, Inc. . .
42 Confidential Professional Service Group

rﬁ Group Cells into a Module

Enabling Productivity

1 You can group individual HDL blocks with the -
hdl_block option of the group command.

Block label examples for Verilog source code
/[This is a named always block

always @(A or B or C) begin: My Process

! | group

group -hdl_block My Process -design My Block

© 1999 Synopsys, Inc. S‘/"UPS‘/S®

43 Confidential Professional Service Group

rﬂ HDL for Synthesis Guidelines

Presentation:
HDL for Synthesis Guidelines

J

RN EEEEEN NN NE N

General HDL Code Structure
Partitioning

Implying Logic Structure

Safe Coding & Avoiding Problems
Source Code Readability

Coding Style for Design Reuse
Design for Testability

Practices

Enabling Productivity

© 1999 Synopsys, Inc.
44 Confidential

Professional Service Group

rﬂ Implying Logic Structure: Checklist Items

Enabling Productivity

Unintentional latches (301)

If vs. Case statement (302)

Code organization & optimization (303)
Resource sharing (304)

Finite Statement Machines (305)

Don’t care inference (306)

Coding of repetitive structures (307)

Sharing Common Subexpression (308)

Avoid Redundant Logic and Subexpress. (309)
Inferring the Correct Register (310)

Structure for Minimum Delay (311)

L 0 d0OdoQddodod

Inferring Tri-State Drivers (312)

© 1999 Synopsys, Inc. . .
45 Confidential Professional Service Group

rﬂ Imply Structure

Enabling Productivity

(4 Poor structure may never converge on the
right results

(1 Poor structure usually means at least an
increase in synthesis run times

1 Designers imply lots of structure!

You get what you write!

© 1999 Synopsys, Inc. . .
46 Confidential Professional Service Group

rﬁ Unintentional Latches (301)

Enabling Productivity

An IF statement with outputs not fully specified synthesizes
to a latch. Example:

module oops latch ...

always @ (GATE or A)

begin A -
if (GATE == 1) S
Q = A; GATE — _
end
endmodule

1 hdlin_check_no_latch = ‘false’ is default If set to “true” HDL Compiler
will issue a warning if a latch is synthesized.

© 1999 Synopsys, Inc. S‘/"UPS‘/S®

47 Confidential Professional Service Group

rﬁ Unintentional Latches (301)

Enabling Productivity

latch. Example:

A ‘case’ statement with paths that bypass reg assignment synthesizes to a

module oops_ latch (bus_err, par err, sys err, irq err, err_code);
input bus _err, par err, sys err, irq err;

output [1:0] err code,
reg [1:0] err_code,

always @ (bus_err or par err or sys_err or irq err)

begin

case ({bus_err, par err, sys_err, irq err})

4'bl1000: err code
4'b0100: erp_code
4'b0010: err code
4'b0001: err code
endcase;
end

endmodule

wl\)l-‘o

I

I
.
14
4

bus_err
par_err
sys_err
irqg_err

YY

YY

—> err_code[1]

—> err_code[0]

Assign a value under all conditions. Assign value to all variables. Use
a ‘default’ clause. Use ‘full_case’ directive.

© 1999 Synopsys, Inc.
48 Confidential

SYNOPSYS:

Professional Service Group

rﬂ If vs. Case Statements (302)

* Priority Encoder :
if (sel[0])

z = dat[0];
else if (sel[l1])
z = dat[l];
else if (sel[2])
z = dat[2];

else
z = dat[3];

e Simple “One Hot”Encoder:

Enabling Productivity

If HDL compiler cannot statically
determine that branches are parallel,
It synthesizes hardware that include a

priority encode.

case (1’bl) // synopsys parallel case

sel[0] : z = dat[0];
sel[l] : z = dat[l];

sel[2] : z = dat[2];
sel[3] : z = dat[3];
endcase;

Parallel _case: no cases overlap

Is synopsys directive needed ?

© 1999 Synopsys, Inc.
49 Confidential

SYNOPSYS:

Professional Service Group

rﬂ Code Organization & Optimization (303)

Enabling Productivity

1 Organize code such that the latest arriving (design speed) or
most frequent (simulation speed) event is evaluated first:

if (often)
else if (rare)

case (state)
often: ...
lessoften: ...
rare:

1 This approach speeds up design speed since the latest arriving
signal is further down the logic cone

1 This approach speeds simulation since the first condition
evaluated is usually true eliminating the need for further
processing.

© 1999 Synopsys, Inc. . .
50 Confidential Professional Service Group

rﬁ Resource Sharing (304)

Enabling Productivity

1 Design Compiler can share resources like adders or
multipliers.

(1 Resource sharing can only occur if the resource
allocation do not violate the limitations of scope and
restrictions.

Unshared Resources

-|
|
4

=

=

— 4

© 1999 Synopsys, Inc. . .
51 Confidential Professional Service Group

rﬂ Resource Sharing (304)

Enabling Productivity

Resource Sharing =

Resource Allocation

)=

Implementation Selection

© 1999 Synopsys, Inc. . .
52 Confidential Professional Service Group

rﬁ Resource Allocation (304)

Enabling Productivity

(1 Resource Allocation is the process of determining the number of
resources in your design.
One adder
or two?
arees_ g

(¥

// Depending upon adder control,
// select correct inputs.

if (adder control)

adder output = busa + busb;
else

adder output = busc + busd;

© 1999 Synopsys, Inc.

53 Confidential Professional Service Group

rﬁ Implementation Selection (304)

Enabling Productivity

1 Implementation selection is the process of choosing the correct
DesignWare architecture according to your constraints.

Carry look-ahead

/[FAST]\

\[SMALL]/

Ripple Adder

Timing

© 1999 Synopsys, Inc. . .
54 Confidential Professional Service Group

rﬁ Limitations of Resource Sharing (304)

Enabling Productivity

(1 Not all operations in your design can be shared. The
following operators can be shared.

= *, +,and -
= >, >=, < and <=

1 Operations can be shared only if they lie in the same
always block.

1 Two operations can be shared only if no execution path
exists from the start of the block to the end of the block
that reaches both operations. (Control Flow Conflicts)

1 Operations cannot be shared if doing so cause a
combinational feedback loop. (Data Flow Conflicts)

© 1999 Synopsys, Inc. . .
55 Confidential Professional Service Group

rﬂ Resource Sharing (304): Scope

Enabling Productivity

always @ (Al or
begin
if (COND_1)
Zzl = Al + Bl;
else

Bl or Cl or D1 or COND_1) always @ (A2 or B2 or C2 or D2 or COND_2)

begin
if (COND_2)
Z2 = A2 + B2;
else
Zl = C1 + D1; Z2 = C2 + D2;

end end process P2;

Allowed & Disallowed Sharing

A1+B1|C1+D1 | A2+B2 | C2+D2
A1+B1 - yes no no
C1+D1| yes - no no
A2+B2| no no - yes
C2+D2| no no yes -

Only Operators in the same always@ block can be SHARED !
SYNoPsys:

Professional Service Group

© 1999 Synopsys, Inc.
56 Confidential

FﬂResource Sharing (304): Control Flow Conflicts

always @ (A or B or C or D or E or F or G

or Hor I or Jd

begin: ADDER SELECT

Zl = A + B;

case (OP)
2'b00 : 2Z2
2'b01 : Z2
2'bl0 : Z2
2'bll : Z2

endcase;

end

H Q®Q

Disable resource sharing only if logic is in CRITICAL PATH

© 1999 Synopsys, Inc.
57 Confidential

Enabling Productivity
or OP)
+ D;
+ F;
+ H; _ _
+ J; Allowed & Disallowed Sharings
A+B C+D E+F G+H I+J
A+B - no no no no
C+D no - yes yes yes
E+F no yes - yes yes
G+H no yes yes - yes
I+J no yes yes yes -
SYNoPSYs

Professional Service Group

rﬂ Resource Sharing (304): Control Flow Conflicts

Enabling Productivity

1 Operations in separate branches of a ?: (conditional)
construct cannot share the same hardware.

1 Consider the following line of code where expressions_n
represents any expressions.

= Z = expression_1 ? expression_2 : expression_3;

HDL Compiler interprets this code as | | HDL Compiler evaluates both expression 2
and expression_3, regardless of the value

temp_ 1 = expression_1,; of the conditional.

temp 2 = expression_2;

temp_ 3 = expression_3; Therefore, operations in expression_2
cannot share the same resource as

z=temp 1 ?temp 2:temp_ 3; operations expression_3.

© 1999 Synopsys, Inc. . .
58 Confidential Professional Service Group

r:d Resource Sharing (304): Data Flow Conflicts

- Enabling Productivity
1 To understand how sharing can cause a feedback loop,

consider the following example.

//Data Flow Conflict
always @(AorBorCorDorEorF orZor ADD B)
begin

if(ADD_B) begin

TEMP_1=A+B; | When the A+B addition is shared with the
Z=TEMP_1+C; | TEMP_2+F addition on an adder call R1 and
end the D+E addition is shared with the TEMP_1+C

else begin addition on an adder called R2, a feedback loop
TEMP_2=D+E; | results

Z=TEMP_ 2 + F;
end
end

© 1999 Synopsys, Inc.

59 Confidential Professional Service Group

r:d Resource Sharing (304): Data Flow Conflicts

Enabling Productivity

1 Feedback Loop For the previous example.

A— TEMP_2

MUK | —7

B_
”"DD—EJ | MuXx J J
ac0 B8

ADD B—

HDL Compiler resource sharing mechanism does not allow
combinational feedback paths to be created because most
timing verifiers cannot handle them properly.

© 1999 Synopsys, Inc. . .
60 Confidential Professional Service Group

rﬁ Critical Path Considerations...(304)

Enabling Productivity

(1 To enable automatic sharing for all designs, set the dc_shell variable
as shown before you execute the compile command.

dc_shell> hlo_resource_allocation = constraint_driven
[The default value for this variable is constraint driven.

1 To disable automatic sharing for uncompiled designs, and enable
resource sharing only for selected designs, enter the following
commands:

dc_shell> hlo_resource_allocation = none
dc _shell> current design = MY DESIGN
dc_shell> set_resource_allocation constraint_driven

© 1999 Synopsys, Inc. . .
61 Confidential Professional Service Group

Ooptional

Ooptional

Optional

optlional

Optional

Design or Metlist

read -farmat fonmat

k! i
compile {if unmappad)

set_fem_state_wvector
group -design_name fsm_name -fsm
current_daesign = fsm_nama

]

sat_fsm_state_wecior

I
set_fam_encoding
1

axtract

I
recluca_fsm

J

write -format st -oulput f5mdesign.sf

Siate Tahle

Read Dhesign

Map Design

Group FSM

Extract F&M

Save Fih

Finite State Machines (305): Extracting

Enabling Productivity

© 1999 Synopsys, Inc.

62

Confidential

SYNOPSYS:

Professional Service Group

Finite State Machines (305): Compile

Optional

optional

Ooptional

Optional

Optional

Ooptional

Ooptional

Optional

Optional

read -format st

!

set_fsm_state_vector

sel_fsm_ancading

sat_fsm_order

sel_fsm_ancoding_shyla

k1

sat_fsm_minimize

set_fsm_presenve_state

report_fsm

I
compile

I
repor_1sm

Ruad FSM

L Control
State Assignmant

Control
State Minimizatic

+ Unmpile

wirite -format formal

Save Design

Enabling Productivity

© 1999 Synopsys, Inc.
63 Confidential

SYNOPSYS:

Professional Service Group

rﬁ Finite State Machines (305)

Enabling Productivity

(1 Design Compiler uses logic and gate-level optimization techniques
for synthesis.

1 Two additional techniques are available for FSMs:

= State Minimization
removal of redundant states

= State Assignment
encoding styles (e.g. binary, gray, one-hot)

1 Technique: (1) read in design, (2) map to gates, and (3) extract FSM

© 1999 Synopsys, Inc. . .
64 Confidential Professional Service Group

rﬂ State Machine Extraction (305)

Enabling Productivity

1 Extract out the state machine when:

= Number of states is from 15-32
AND

= States and surrounding logic are random
AND

= Best state ordering and number of bits is unpredictable
AND

= Constraints are a mix of timing and area

© 1999 Synopsys, Inc. S‘/"UPS‘/S®

65 Confidential Professional Service Group

rﬂ State Machine Syntax (305)

Enabling Productivity

(1 Use Synopsys’ directives and style if you wish to extract out a state
machine.

d Synopsys Style:
= Separate state machine into two processes
= Create an enumerated type for the state vector
= Drive FSM with embedded Synopsys directives
= Read HDL Compiler for Verilog manual for detailed information

After FSM extraction and optimization, back-annotate states into HDL code -
but do not routinely flow through the extraction process.

© 1999 Synopsys, Inc. S‘/"UPS‘/S®

66 Confidential Professional Service Group

rﬂ FSM Verilog Example (305)

Enabling Productivity

/I This finite-state machine (Mealy type) reads 1 bit
/I per cycle and detects 3 or more consecutive 1s.

module enum2_V(signal, clock, detect);
input signal, clock;

output detect;

reg detect;

/I Declare the symbolic names for states
parameter [1:0]/synopsys enum state info
NO_ONES = 2’h0,
ONE_ONE = 2’h1,
TWO_ONES = 2'h2,
AT _LEAST THREE_ONES = 2'h3;

/I Declare current state and next state variables.
reg [1:0] /* synopsys enum state _info */ cs;
reg [1:0] /* synopsys enum state _info */ ns;

/Il synopsys state_vector cs
always @ (cs or signal)
begin
detect = 0;// default values
if (signal == 0)
ns = NO_ONES;
else
case (cs) // synopsys full_case
NO_ONES: ns = ONE_ONE;
ONE_ONE: ns = TWO_ONES;
TWO_ONES,
AT _LEAST THREE_ONES:
begin
ns =
AT LEAST THREE_ONES;
detect = 1;
end
endcase
end
always @ (posedge clock) begin
CS = ns;
end
endmodule

© 1999 Synopsys, Inc.

67

Confidential

Professional Service Group

a Example Synopsys (Non Verilog) FSM Code

Enabling Productivity

Soft drink machine -- Price is 15 cents

.design soft_drink_machine

Inputs: clock and reset signals;

nickel, dime, and quarter input signals
Inputnames clk reset nickel in dime_in quarter_in
Outputs: nickel change, dime change, dispense drink
.outputnames nickel out dime_out dispense

Clock signal name and type Refer to the Design Compiler

clock clk rising_edge Family Reference Manual ‘s
Asynchronous reset signal, type, and reset state appendix for more information

.asynchronous_reset reset rising IDLE i
State table regarding Synopys FSM Code

100 IDLE FIVE 000
010 IDLE TEN 000

%%% OWE_DIME IDLE 010

Wait in current state until money is deposited
000 IDLE IDLE 000

000 FIVE FIVE 000

000 TEN TEN 000

© 1999 Synopsys, Inc. S‘/"UPS‘/S®

68 Confidential Professional Service Group

rﬂ Don’t Care Inference (306)
Enabling Productivity

(4 You can greatly reduce circuit area with don’t-cares in your design.
= Use X, z, ? in case items of the casex statement to infer don’t-care conditions.

= Use z, ? In case items of the casez statement to infer don’t-care conditions.

module decoder8_c(A, Z);
parameter N = 8;
parameter log2N = 3;
input [N-1:0] A;

output [log2N-1:0] Z;

reg [log2N-1:0] Z;

always @(A) begin: encode
casex (A) // synopsys full_case parallel_case

8 00000001:Z=3 000;
8 0000001x:Z=3 001;
8 000001xx:Z=3 010;
8 00001xxx:Z=3 011;
8 0001xxxx:Z=3 100;
8 001xxxxx:Z=3 101;
8 OIxxxxxx:Z=3 110;
8 1Ixxxxxxx:Z=3 111;
endcase
end
endmodule

© 1999 Synopsys, Inc. . .
69 Confidential Professional Service Group

rﬂ Coding of Repetitive Structures (307)

module foo (j, k, 1, z);
input [3:0] 3, k, 1;
output [3:0] z;

reg [3:0] z;

integer 1i;

always @(j or k or 1)

begin

z[0] = (3[0] + k[O])
z[1] = (3[1] + k[1])
z[2] = (3[2] + k[2])
z[3] = (3[3] + kI[3])
z[4] = (3[4] + k[4])
z[5] = (3[5] + kI[5])
z[6] = (j[6] + k[6])
z[7] = (3[7] + kI[7])

end

endmodule

> > > > > > > >

1[0];
1[1];
1[2];
1[3];
1[4];
1[5];
1[6];
1[7];

Enabling Productivity

module foo (j, k, 1, z);
input [7:0] 3, k, 1;
output [7:0] z;

reg [7:0] =z;

integer 1i;

always Q(j or k or 1)
begin
for (i=0; i <=7; i=i+l)
z[i] = (3[i] + kI[i]) *~ 1[i];
end

endmodule

© 1999 Synopsys, Inc.

70

Confidential

Professional Service Group

rﬁ Sharing Common subexpressions (308)

Enabling Productivity

1 Sharing common subexpressions might reduce the area
of your circuit.

1 You can manually force common subexpressions to be
shared by declaring a temporary variable to store the
subexpression, then use the temporary variable where
you want to repeat the subexpressions.

// Simple Additions with a Common Subexpression

temp =a + b;
X = temp;
y =temp + C;

© 1999 Synopsys, Inc.

71 Confidential Professional Service Group

rﬁ Sharing Common subexpressions (308)

Enabling Productivity

1 You can let Design Compiler automatically determine
whether sharing common subexpressions improves your
circuit; however, there are some limitations that you

should know.

I/l Unidentifled Command Subexpression

Y=A+B+C;

You can force the parser to recognize
the common subexpression by rewriting
the second assignment statements.

Z=D+A+B
The parser does not recognize A+B
as a common subexpression, because
the second equation as (D+A).

U

Z=A+B+D:
or
Z=D+(A+B)

© 1999 Synopsys, Inc.
72 Confidential

Professional Service Group

%Avoid Redundant Logic and subexpressions (309)

Enabling Productivity

1 Minimize redundant recalculation

// Bad - Will synthesize four adders
X =A+ B + C;
Y =D+ C + A;

// Better - Will only synthesize three adders
T = A + C;
X =T + B;
Y = T + D;

// Bad - Will synthesize 4 multipliers and 3 adders
Z = A*C + A*D + B*C + B*D;

// Better - Will synthesize 1 multiplier and 2
adders
Z = (A + B) * (C + D);

© 1999 Synopsys, Inc.

73

Confidential

SYNaprsys

Professional Service Group

void Redundant Logic and subexpressions (309)

Enabling Productivity

d Don’t include statements in loops when their values don’t change!

for (1i=0; 1i<=7; 1i=i+1)
begin
proc_data = pci_data;

fifo(i) = cache(i-1);
end

if (flag)
begin
proc_data = pci_data;
proc _add = cache add;
end
else
begin
proc_data = pci_data;
proc add = int add;
end

Better

proc_data = pci_data;
for (1=0; 1i<=7; 1i=1i+1)
begin

fifo(i) = cache(i-1);
end

proc_data = pci_data;
if (flag)
begin
proc add = cache add;
end
else
begin
proc_add = int add;
end

© 1999 Synopsys, Inc.
74 Confidential

SYNOPSYS:

Professional Service Group

rl Inferring the Correct Register - Synchronous Resets
(310)

Enabling Productivity

1 An attribute is needed to guide DC in inferring synchronous
sets or resets in a design.

module dff sync reset (data, clk, s _reset, q);
input data, clk, s reset;
output q;

reg q;

// synopsys sync set reset “s_reset”

DATA — DATA Q|—
always @ (posedge clk) a—Q
if (s_reset) CLK —) Qnp—
q = 1'b0; S_RESET
else

q = data; S reset—

endmodule

Check Your Technology Library For Sync Set/Reset Cells
SYNoPsys:
© 1999 Synopsys, Inc.

75 Confidential

Professional Service Group

rl Inferring the Correct Register - Asynchronous Resets
(310)

Enabling Productivity

1 No attribute is needed to guide DC in inferring asynchronous
sets or resets in a design. (Guidance is via coding style)

module dff async reset (data, clk, a reset, q);
input data, clk, a reset;
output q;

reg q;

always @ (posedge clk or posedge a reset)

if (a reset)
— DATA — _
g = 1'b0; DATA Q|— @
else CLK —) anf—
q = data; A RESET
endmodule a_reset

Check Your Technology Library For Async. Set/Reset Cells
SYNoPsys:
© 1999 Synopsys, Inc.

76 Confidential Professional Service Group

rﬂ Check Inference Report

Enabling Productivity

(1 During Elaboration an Inference report is produced:

dc _shell> elaborate top level -arch rtl -1lib WORK > elaborate.output

or

dc shell> read -format verilog top.v > elaborate.output

Sample Inference Report:
Inferred memory devices in process 'synchronizer_reg' in routine mé68k line 334 in file
''Thome/design/syn/try8/hdi/m68k.v".

| Register Name

| Type |Width|Bus|AR|AS|SR|SS|ST|

asn_d _reg
asn_s_reg
Idsn_d_reg
Idsn_s_reg
mrwn_d_reg
mrwn_s_reg
udsn_d_reg
udsn_s_reg

| Flip-flop |
| Flip-flop |

| Flip-flop |

| Flip-flop |

| Flip-flop | -
| Flip-flop |
| Flip-flop |

| Flip-flop |

_) e o = A =
2ZzZ22Z22Z2Z2
2Z22Z2Z222Z2Z2
Z2Z2ZZ2Z2Z22Z2Z22Z2
h— -1
<< <<<=<=<=
Z2Z2Z2ZZ2Z222Z

© 1999 Synopsys, Inc.

77

Confidential

SYNOPSYS:

Professional Service Group

rﬁ Environment Var’s for FF Inference

Enabling Productivity

J hdlin ff always sync set reset = 'true’

Each object in the reference design is interpreted as if
sync_set_reset attribute/directive is present

H hdlin check no latch = ‘true’

Used to generate a warning message during elaborate
if a memory element is inferred in reference design.

See Synthesis Reference Manual for Others

© 1999 Synopsys, Inc. . .
78 Confidential Professional Service Group

rﬁ Structure for Minimum Delay (311)

Enabling Productivity

1 You can define the synthesis structure starting point and
possibly obtains better quality of results.

A B
A B C D
C
gzeEfg+T(:ri%Structure D Balanced Tree Structure
or Z=(A+B)+(C+D)
Z=(A+B)+C+D;
yields yields
> >
Synthesis start point Z Synthesis start point

SYNOPSYS:

Professional Service Group

© 1999 Synopsys, Inc.
79 Confidential

rﬂ Structure for Minimum Delay (311)

Enabling Productivity

1 Consider the signal arrival times.

I/ Expression Tree with Minimum Delay I/l Expression Tree with Minimum Delay

// Signal A arrives Last I/ Same Arrival Times for All Signals
Z= ((B+C) + D) + A; Z=(A+B)+(C+D)
B C
A B C D
D
A
Z
Z
SYNoPSYs

© 1999 Synopsys, Inc. . .
80 Confidential Professional Service Group

rﬂ Inferring Tri-State Drivers (312)

Enabling Productivity

1 Tri-state logic is synthesized on the output driver when
the output signal is assigned “Z”.

1 It’s important to know that each always block can
generate only one Tri-state buffer as an output driver. j

always @(from_table or enable)
begin: DRIVE_OUTPUT
if (enable)
to bus = from_table;
else
to bus = 8bz;
end

always @(SELA or SELB or A or B) begin:
T=1bz;
if (SELA)
T=A;
If(SELB)
T =B;
end

/

© 1999 Synopsys, Inc.
81 Confidential

Professional Service Group

r;d Inferring Tri-State Drivers - Multiple Tri-state Drive

“ Inference (312)

module tristate _a (a, b, sela, selb, out1);
input a, b, sela, selb;
output out1;
reg out1;
always @(slea or a)
out1 = (sela) ? a: 1’bz;

always @(selb or b) begin
if (selb)
out1=b;
else
out1=1'bz;
end
endmodule

Enabling Productivity

module tristate_a (a, b, sela, selb, out1);
input a, b, sela, selb;

output out1;

wire out1;

assign out1= (sela) ? a: 1’bz;
assign out1= (selb) ? b : 1’bz;

endmodule

© 1999 Synopsys, Inc.
82 Confidential

Professional Service Group

rﬂ HDL for Synthesis Guidelines

Presentation:
HDL for Synthesis Guidelines

J

iy i W Wiy Ry NN

General HDL Code Structure
Partitioning

Implying Logic Structure

Safe Coding & Avoiding Problems
Source Code Readability

Coding Style for Design Reuse
Design for Testability

Practices

Enabling Productivity

© 1999 Synopsys, Inc.
83 Confidential

Professional Service Group

rﬁ Safe Coding & Problems: Checklist Items

Enabling Productivity

One clock per module (401)

Separate Sequential & Combination Processes (402)
Proper sensitivity lists (403)

Blocking Statement vs. Non-blocking Statement (404)
Named association (405)

Instantiation of Sensitive or Asynch Circuits (406)
Avoid Continuous Signal Assignments (407)

Reset Strategy Consistency and properly coded (408)
Instantiation of black-box (no timing) cells (409)
Avoid Initialization (410)

Avoid Mixed-Edge Sensitivity (411)

Constant Propagation (412)

L 00 0Od0Qdoo0dod

© 1999 Synopsys, Inc. . .
84 Confidential Professional Service Group

rﬂ One Clock per Module (401)

Enabling Productivity

1 Synthesis was designed to optimize combinational logic clocked
by a register driven from a single clock source

(1 Synthesis script development becomes much more complex
with multiple clocks

(1 Asynchronous logic is often introduced as a result of logic with
clock interfaces

1 However it’'s sometimes unavoidable. If more than one clock
in a module then:
= Estimate impact on testability
= Estimate impact on synthesis
= Estimate impact on mixed clocks timing analysis

© 1999 Synopsys, Inc. . .
85 Confidential Professional Service Group

rﬁ Separate Sequential & Combination Processes
8 402)

module count (CLOCK, RESET, RESULT);
input CLOCK, RESET,
output RESULT;
reg RESULT, AND BITS, OR_BITS, XOR_BITS;
reg [2:0] COUNT;

Enabling Productivity

always @(posedge CLOCK) begin : BAD_EXAMPLE
if (RESET) begin
COUNT <=0; Code That Implies Extra
RESULT <= 0;
end
else begin
COUNT <= COUNT + 1;
AND_BITS <= & COUNT; // AND_BITS gets a Flip Flop
OR _BITS <= | COUNT; // OR_BITS gets Flip Flop
XOR BITS <= COUNT; // XOR BITS get a Flip Flop
RESULT <= AND _BITS & OR_BITS & XOR_BITS;
end
end // BAD_EXAMPLE

Unwanted Registers

endmodule

© 1999 Synopsys, Inc. . .
86 Confidential Professional Service Group

rﬁ Separate Sequential & Combination Processes
8 402)

module count (CLOCK, RESET, RESULT);

input CLOCK, RESET;

output RESULT;

reg RESULT, AND BITS, OR_BITS, XOR_BITS;
reg [2:0] COUNT;

Enabling Productivity

always @(posedge CLOCK) begin : SEQ_BLK
if (RESET) begin

COUNT <=0;) :
RESULT <= 0: Code Without Implying

end
else begin
COUNT <= COUNT + 1;
RESULT <= AND_BITS & OR_BITS & XOR_BITS;
end
end // SEQ_BLK

Extra Registers

always @(COUNT) begin : COMB_BLK
AND_BITS = & COUNT:;
OR_BITS =| COUNT:;
XOR_BITS = A COUNT:

end // COMB_BLK

endmodule

© 1999 Synopsys, Inc. . .
87 Confidential Professional Service Group

rﬂ Proper Sensitivity Lists (403)

Enabling Productivity
1 Pitfall: gate-level simulation mismatch
d Symptoms:
= Warnings during DC read/elaborate
= Inconsistent behavior with slight change in stimulus
1
a
always @(a or b) b—t
begin e
f=a&b&c; 0
end Presynthesis Simulation
i — H—1 «
c __/ b —L
Synthesis Result c m
s
Postsynthesis Simulation
Incomplete Sensitivity List
SYNOPSYS

© 1999 Synopsys, Inc. . .
88 Confidential Professional Service Group

rﬂ Blocking vs. Non-blocking Assignments (404)

Enabling Productivity

(1 Blocking procedural assignments are more like S/IW
= reg changes immediately
= Sensitive to dependence
= Sensitive to assignment order
= Simulation speed improvement

(1 Non-blocking procedural assignments are more like H/W
= reg changes scheduled
= Insensitive to dependence
= Insensitive to assignment order

© 1999 Synopsys, Inc. S‘/"UPS‘/S®

89 Confidential Professional Service Group

r:j Blocking vs. Non-blocking Assignments (404)

1 Example of Blocking vs. Non-blocking

always @(a or b or sel) begin : My Mux
if (sel == 1’b0)
out = a;
else
out = b;
end

Blocking Assignment

always @(posedge CLK) begin :
Shift_reg

st1 reg <=data in;

st2 reg <=st1 _reg;

out_reg <= st2 regq;
end

Non-blocking Assignment

Enabling Productivity

© 1999 Synopsys, Inc.

90

Confidential

SYNOPSYS:

Professional Service Group

rﬂ Blocking vs. Non-blocking Assignments (404)

Enabling Productivity

1 Proper Use of Blocking and Non-blocking assignment in

the sequential always block.

reg0

data ——

)

clk

)

— reg1

:

Synthesis Result

reg0

data

clk >

Synthesis Result

reg1

/[Proper use of Non-blocking assignment
always @(posedge clk) begin

reg0 <= data;

reg1 <= reg0;

end

/lImproper use of Blocking assignment
always @(posedge clk) begin

reg0 = data;

reg1 = regO;
end

© 1999 Synopsys, Inc.

91

Confidential

Professional Service Group

rﬂ Blocking vs. Non-blocking Assignments (404)

Enabling Productivity

1 Improper use of blocking assignment might cause race
condition.

1 Potential Race

= The intention here is that a is shifted to b and b is shifted to ¢ on
the positive edge of the clock. However, since Verilog HDL does
not specify the order where the always blocks are scheduled, the
simulator may schedule that statement b=a before the statement
c=b.

//Potential Race
always @(posedge clk)
c=b;

always @(posedge clk)

b=a;

© 1999 Synopsys, Inc. . .
92 Confidential Professional Service Group

r:d Named Association (405)

Enabling Productivity

1 Instantiation port connection via order (implicit)

my adder Ul (base, offset, eff);
- 1s not equivalent to -
my adder Ul (base, eff, offset);

1 Instantiation port connection via name (explicit)

my adder Ul (.A(base), .B(offset), .SUM(eff));
- is equivalent to -
my adder Ul (.SUM(eff), .B(offset), .A(base));

Recommend: Always use name based port association.

© 1999 Synopsys, Inc. . .
93 Confidential Professional Service Group

rﬁ Instantiation of Sensitive or Asynchronous
Circuits (406)

Enabling Productivity

d Asynchronous logic is difficult to describe in an HDL or to time
accurately through static timing analysis.

Instantiated state

Hierarchy
\

asynch_real

asynch_input

~

asynch_input is only valid during certain states!

INSTANTIATION and GATE SIMULATION is the correct
methodology for asynchronous logic.

© 1999 Synopsys, Inc. S‘/"UPS‘/S®

94 Confidential Professional Service Group

rﬁ Avoid Continuous Signal Assignment (407)

Enabling Productivity

1 Continuous assignment are executed in no defined order and
synthesize to combinational logic.

d To facilitate the option to repartition in synthesis, and to
improve code readability, you should place the logic in a
combinational always block instead.

// Continuous Assignment Example -- Not Recommended
assignsum=a in*b in”*c in;
assignc out=(a_in&b_in)|[(b_in&c_in)|(a_in &c_in);

// Combinational process -- Recommended
always @(a_in or b_in or c_in) begin: Full_Adder
sum=a in“b_ in*c in;
cout=(@ in&b_in)|(b_in&c_in)|(a_in & c_in);
end // Full_Adder

© 1999 Synopsys, Inc. . .
95 Confidential Professional Service Group

rﬁ Reset Strategy Consistency (408)

Enabling Productivity

(A Synchronous or asynchronous external reset ?
1 What FF cells are available in the library ?

= Sync set/reset

= Async set/reset

(1 Which strategy does the ASIC vendor prefer ?

L

What attributes should | set in source code?

(1 How can | audit proper inference of registers ?

Plan a Reset Strategy & Then Use it Consistently

© 1999 Synopsys, Inc. . .
96 Confidential Professional Service Group

rﬂ Reset Strategy Consistency (408)

Enabling Productivity
1 Example: Synchronous Reset
// synopsys sync set reset “RESET”
always (@ (posedge CLK)
begin
if (RESET) DATA —p q—Q
Q@ = 1'b0; CLK —) anf—
else
O = DATA; RESET]
end RESET
SYNOPSYS’

© 1999 Synopsys, Inc. . .
97 Confidential Professional Service Group

rﬁ Reset Strategy Consistency (408)

Enabling Productivity

4 Example: Asynchronous Reset

always (@ (posedge CLK or posedge RESET)
if (RESET) CLK —) Qnk—
Q <= 1'b0; ARESET
1
eise RESET
Q <= DATA;
end

© 1999 Synopsys, Inc. S‘/"UPS‘/S®

98 Confidential Professional Service Group

rﬂ Reset Strategy Consistency (408)

Enabling Productivity

1 Apply a consistent reset strategy, synchronous or
asynchronous.

= Simplify Synthesis, DFT...efforts.

d Infer minimum area D flip-flop cells only when the

designer is 100 percent certain that the circuit will self-
initialize with no ambiguity.

1 Make sure that the circuit will self-initialize.

= Simulate the gate level design before logic
implementation.

© 1999 Synopsys, Inc. . .
99 Confidential Professional Service Group

rﬂ Instantiation of Black-Box Cells (409)

Enabling Productivity

4 Timing-Driven Synthesis Requires Timing to be Defined for all
Components

1 Static-Timing Analysis is also Dependent on Full Timing
d Synthesis Timing Models:

= Vendor Supplied (ie. LS| RAM Model)

= Designer Created with Library Compiler Constructs

= No Special Library License Required (cell’s don’t have function
statements - thus cannot be inferred)

© 1999 Synopsys, Inc. S‘/"UPS‘/S®

100 Confidential Professional Service Group

rﬂ Example Synthesis-Timing Model (409)

library (RAM_LIBRARY) {

cell(RAM_64x8) {
area : 0;
pin(WE) {
direction : input;
capacitance : 1;
}
bus (A) {
bus_type : BUS6 ;
direction : input;
capacitance : 1;

}

Enabling Productivity

© 1999 Synopsys, Inc.
101 Confidential

Professional Service Group

rﬂ Ex. Synthesis-Timing Model-cntd (409)

Enabling Productivity

bus (D_IN) {
bus_type : BUSS ;
direction : input;
capacitance : 1;
}
bus (D_OUT) {
bus_type : BUSS ;
direction : output ;
pin(D_OUTI[0]) {
timing () {
intrinsic_rise : 25.0;
intrinsic_fall : 25.0;
related_pin : "A[5] A[4] A[3] A[2] A[1] A[0] D_IN[0] WE" ;}
}

© 1999 Synopsys, Inc. . .
102 Confidential Professional Service Group

B Avoid Initialization (410)

Enabling Productivity
1 Do not initialize; synthesis will ignore !
initial
begin
count = 0;
end
always (@ (posedge CLK)
begin
count = count + 1;
end
What will synthesis produce?
SYNOPSYS’

© 1999 Synopsys, Inc. . .
103 Confidential Professional Service Group

Avoid Mixed-Edge Sensitivity (411)

always @ (posedge CLK or negedge CLK)

begin
if (CLK)
countA = countA + 1;
else 1if (!CLK)
countA = countA + 2;

end
always

begin
@ (posedge CLK) ;
countB = countB + 1;
@ (negedge CLK) ;
countB = countB + 2;

end

Mixing Clock Edges Example

g

Enabling Productivity
Si Si
D O Q

1.The duty cycle of the clock becomes a critical
issue in timing analysis, in addition to the clock
frequency itself.

2. Most scan-based testing methodologies requires
separate handling of positive and negative edge

triggered flops.

© 1999 Synopsys, Inc.
104 Confidential

SYNOPSYS:

Professional Service Group

rﬁ Constant Propagation -1 (412)

Enabling Productivity
Case A Case B (Better)

VY

.||_|

VY

a Tie-off pins on subdesigns at the lowest level and
don’t propagate as a primary port if not necessary

(4 This will help avoid:
- problems with constant propagation
- possible unconnected port issues
- netlist translation issues (VHDL, Verilog, EDIF, etc.)

DC can’t eliminate redundant logic across boundaries when connected to ports

© 1999 Synopsys, Inc. . .
105 Confidential Professional Service Group

rﬂ HDL for Synthesis Guidelines

Presentation:
HDL for Synthesis Guidelines

J

MR Wi NN Ry Wy Wy

General HDL Code Structure
Partitioning

Implying Logic Structure

Safe Coding & Avoiding Problems
Source Code Readability
Coding Style for Design Reuse
Design for Testability

Practices

Enabling Productivity

© 1999 Synopsys, Inc.
106 Confidential

Professional Service Group

rﬁ Readability: Checklist Items

Meaningful embedded comments (501)

Use of Loops & Arrays (502)

Use of Constants (503)

Reduction Operators (504)

Proper use of ‘define & parameter’ (505)

Enabling Productivity

© 1999 Synopsys, Inc.

107

Confidential

Professional Service Group

rﬁ Meaningful Embedded Comments (501)

Enabling Productivity

d Improve readability, maintainability, ability to reuse, easy review,
trace-ability to spec, etc.

(1 Typical engineers response ...
“l don’t have the time to comment now”

1 When complete do you go back & comment or do you move on to
the next assignment ?

© 1999 Synopsys, Inc. . .
108 Confidential Professional Service Group

rﬁ Use of Arrays and Loops (502)

Enabling Productivity

(1 Use Higher-Level Looping Constructs
= For Loop & While Loop

A For Verilog: use ‘defines

(1 Use Arrays instead of group of bits (see example next)

© 1999 Synopsys, Inc. S‘/"UPS‘/S®

109 Confidential Professional Service Group

Example of Register Bank (502)

Enabling Productivity

module RGBANK (CLK, WE, ADDR, DATA IN, DATA OUT);
input CLK, WE;

input [1:0] ADDR:

input [7:0] DATA_ IN;

output [7:0] DATA OUT;

reg [7:0] DATA OUT;

reg [7:0] RG_0, RG_1, RG_2, RG_3;

always (@ (ADDR or RG_0 or RG_1 or RG_2 or RG_3)
begin
DATA OUT = O0;
case (ADDR)

0: DATA OUT = RG 0;
1: DATA OUT = RG_1;
2: DATA OUT = RG_2;
3: DATA OUT = RG_3;
endcase;
end

always (@ (posedge CLK)
begin
if (WE)
case (ADDR)
0: RG_0 = DATA IN;

1: RG_1 = DATA IN;

2: RG_2 = DATA IN;

3: RG_3 = DATA IN;
endcase;

end
endmodule // RGBANK

© 1999 Synopsys, Inc. . .
110 Confidential Professional Service Group

Register Bank Using Arrays (502)

Enabling Productivity

module RGBANK (CLK, WE, ADDR, DATA IN, DATA OUT) ;
input CLK, WE; - -
input [3:0] ADDR:

input [7:0] DATA IN;

output [7:0] DATA OUT;

reg [7:0] RG[3:0];
assign DATA OUT = RG[ADDR] ;

always @ (posedge CLK)
begin
if (WE)
RG[ADDR] = DATA IN;
end
endmodule // RGBANK

© 1999 Synopsys, Inc. . .
111 Confidential Professional Service Group

rﬂ Use of Constants (503)

Enabling Productivity

1 Constants are a very simple way of improving Verilog
source code readability and code quality by eliminating
typographical errors.

1 Sometimes, if the architecture changes, only the
constants need to be updated.

//'in a header file, declare all constants shared by more than
// one module

“define INTBUS_WIDTH 16

‘define EXTBUS _WIDTH 32

‘-a-efine DEVICE_ID 16’h0007
"define REVISION_ID 16’h0002

© 1999 Synopsys, Inc. . .
112 Confidential Professional Service Group

rﬂ Use of Constants (503)

/I within module files, declare all local constants
“define CONTROL_OFFSET = 3'b000

“define STATUS_OFFSET = 3'b001

“define MASK_OFFSET = 3’'b010

“define INT_OFFSET = 3’b011

I/l Register Read Mux

case (addr)
"CONTROL_OFFSET : data_out = control_reg;
"STATUS OFFSET : data out = status_reg;
"MASK_OFFSET - data_out = mask_reg;
INT_OFFSET - data_out = int_reg;

© 1999 Synopsys, Inc.

113

Confidential

Enabling Productivity

SYNOPSYS:

Professional Service Group

rﬂ Use of Reduction Operators (504)

These verbosity...
AND z
OR z = a[0]
XOR z
NAND z
NOR z
XNOR z

= a[0] & a[l]
| all]l | al[2];
= a[0] % a[l]
= ~(a[0] & a[1]
= ~(a[0] | a[1]
= ~(a[0] * a[1l]

Enabling Productivity
& al[2];
~ al[2];
& a[2]);
| al2]);
~al2]);
. become these concise statements.
AND zZ = &a;
OR z = |a;
XOR z = “a;
NAND Z = ~&a;
NOR z = ~|a;
XNOR zZ = ~*a;

© 1999 Synopsys, Inc.
114 Confidential

SYNOPSYS:

Professional Service Group

rﬁ Use of Reduction Operators (500)

Enabling Productivity

d Parity Logic:

EVEN PARITY = “DATA[7:0];

ODD_ PARITY = ~"DATA[7:0];

-Or-

EVEN PARITY = DATA[7] ~ DATA[6] ~ DATA[5] ~ DATA[4]
~ DATA[3] ~ DATA[2] “~ DATA[1l] ~ DATAI[O];

ODD PARITY = DATA[7] ~” DATA[6] ~* DATA[S5] ~” DATA[4]
~~ DATA[3] ~~ DATA[2] ~~ DATA[l1l] ~~ DATAI[O];

© 1999 Synopsys, Inc. S‘/"UPS‘/S®

115 Confidential Professional Service Group

rﬂ Proper Use of defines & parameters (505)

d “define
= Text substitution
= Typical uses include

= constants
= readability improvement

(1 parameter
= Represents constants
= Can be modified at compile time
= Modified via

= defparam statement
= module instance statement

= Typical uses include
= delay specification
= width of variables

Enabling Productivity

© 1999 Synopsys, Inc.
116 Confidential

SYNaprsys

Professional Service Group

Proper Use of ‘defines & parameters (5035)

Enabling Productivity
pc_defines.v
"define SERIAL CS 167h1050
"define PARALLEL CS 16"h23ff
"define FLOPPY CS 16"h4b80
Do you have a preference?

lo_control.v

"include “pc defines.v”

if (ADDR == "SERIAL CS) if (ADDR == 16"h1050)

else if (ADDR == "PARALLEL CS) else 1if (ADDR == 16'h23ff)

else 1f (ADDR == "FLOPPY CS) else 1if (ADDR == 16"h4b80)

© 1999 Synopsys, Inc. S‘/"UPS‘/S®

117 Confidential Professional Service Group

Proper Use of defines & parameters (505)

Enabling Productivity

module regbank
parameter size

input [size-1
output [size-1
reg [size-1

always @ (posedge clk)
#delay data_in;

data_out =

endmodule

(clk, data_in, data_out);
= 8, delay = 1;
:0] data_in;
:0] data_out;
:0] data_out;

module top;

reg clk;

reg [15:0] inA;

reg [3:0] inB;

wire [15:0] outA; // need delay of 3
wire [3:0] outB; // need delay of 2

regbank # (16, 3) Ul (clk, inA, outd);
regbank U2 (clk, inB, outB);

endmodule

module annotate;

defparam
top.U2.size = 4
top.U2.delay =

endmodule

© 1999 Synopsys, Inc.
118 Confidential

SYNOPSYS:

Professional Service Group

rﬂ HDL for Synthesis Guidelines

Presentation:
HDL for Synthesis Guidelines

J

MO AN I Iy Iy Wy

General HDL Code Structure
Partitioning

Implying Logic Structure

Safe Coding & Avoiding Problems
Source Code Readability

Coding Style for Design Reuse
Design for Testability

Practices

Enabling Productivity

© 1999 Synopsys, Inc.
119 Confidential

Professional Service Group

rﬁ Code Reuse: Checklist Items

Enabling Productivity

(1 Don’t Embed Synthesis scripts in source code (601)

1 Maintain technology independence (602)

(1 Use GTECH for simple cell instantiation (603)

1 Databook Quality Description (604)

(1 Parameterize modules (605)

© 1999 Synopsys, Inc. . .
120 Confidential Professional Service Group

rﬁ Code Reuse Principal

Enabling Productivity

(1 Design reuse is the action of utilizing objects in the form of macros,
subsystems, and systems in the development of new systems

1 Design object - with it’s associated views (interface, functional spec, etc.) is
intended for use in an “object oriented” way

(d For example, an implementation of CCITT H.261 (Video Compression Std)
should be implemented such that it can be reused in other systems with
minimal effort

(d Other examples: PCIl bus, ADPCM, MPEG decoder, JPEG, etc.

© 1999 Synopsys, Inc. . .
121 Confidential Professional Service Group

rﬂ Levels of Code Reuse

Enabling Productivity
1 Reuse by the individual
= Commonly done, but limited
= For example: Counter, Mux, RAM Model, etc.
(d Reuse within a group
= Short lifetime, but improved
= For example: Adaptive Equalizer
(1 Reuse by department/lab
= Reasonable lifetime, significant productivity benefits
= For example: MPEG Decoder
(1 Reuse across enterprise Highest level of reuse

= Significant competitive advantage

© 1999 Synopsys, Inc. S‘/"UPS‘/S®

122 Confidential Professional Service Group

rﬂ Don’t Embed Synthesis Scripts in Source
Code(601)

Enabling Productivity

d Example of embedded dc_shell script:

// synopsys dc_script begin
// set max area 2500.0

// set drive -rise 1 port b
// synopsys dc_script end

(d Or hiding simulation constructs or other (e.g. FPGA) from
synthesis compiler

-— translate_pff
initial

-— translate_on

-— then set hdlin translate off skip text = false
to have DC analyze and elaborate the module

© 1999 Synopsys, Inc. S‘/"UPS‘/S®

123 Confidential Professional Service Group

rﬂ Maintain Technology Independence (602)

Enabling Productivity

4 Use DesignWare components

= DesignWare components are pre-verified for synthesis and
can save you time coding and testing your design.

= Using DesignWare components can also improve your
quality of results.

4 The DesignWare Library is extensive and is broken down into
five families:

= Standard Family(adder, subtractor, multiplier, comparator, etc)

= ALU Family(barrel, shifter, incrementer/decrementer, etc)

= Advanced Math Family(advanced multiplier, vector add/subtract, etc)
= Sequential Family(FIFOs, Gray-Scale counters, stack, etc)

= Fault Tolerant Family(parity checker, CRC generator, etc)

= Refer to DesignWare Library documentation for detailed
information.

© 1999 Synopsys, Inc. S‘/"UPS‘/S®

124 Confidential Professional Service Group

’:ﬂ Synthetic Parts: Using DesignWare (602)
Enabling Productivity

Through HDL inference

if (OPCODE 1) then e
mult output <= bus ia *)ausb;
K

l

Through HDL instantiation, -~

7
P o
£
’

iﬁWOZMUL_T ¥ (wordlengthl,
U1 (inl, in2, control, product)
Reference Synthesis Binds Synthesis Selects Implementation
Design to Synthetic Module Proper Implementation =~ Optimized for Context
Professional Service Group

© 1999 Synopsys, Inc.
125 Confidential

[
d Use GTECH for simple cell instantiation (603)

Enabling Productivity

(1 When necessary to instantiate ... use GTECH !
= Provides technology independence

= Typical GTECH cells (AND, NAND, OR, NOR, XOR, FA, HA, FF,
LATCH, AOI, MUX, etc.)

= Use map only attribute to prevent DC from ungrouping or
= In dc_shell:

set map only { find(reference “my gtech cell” }

© 1999 Synopsys, Inc. S‘/"UPS‘/S®

126 Confidential Professional Service Group

rﬂ Using GTECH - verilog (603)

Enabling Productivity

“include “<SYNOPSYS ROOT>/packages/gtech/src_ver/gtech lib.v”

module top (...);

GTECH_AND2 Ul (.A(inl), .B(in2), .Z(outl));
GTECH_NAND2 U2 (in3, in4, out2);

endmodule

GTECH instantiation allows a technology
independent HDL description.

© 1999 Synopsys, Inc. S‘/"UPS‘/S®

127 Confidential Professional Service Group

rﬂ Databook Quality Description (604)

Enabling Productivity

1 Databook-like quality implies published quality
documentation.

d It’s worth spending the effort to produce databook-like
comments and consider the following characteristics:

= Readable Documentation

= Traceability to Specification
® Block diagrams
® Functional specification
® Description of parameters and their use
® Interface signal descriptions
® Timing diagrams and requirements
® Verification strategy

® Synthesis constraints

© 1999 Synopsys, Inc. . .
128 Confidential Professional Service Group

rﬂ Databook Quality Description (604)

Enabling Productivity

1 Continue...
= Useful Examples of How To Use the Module
= A complete Testbench for the Module

® Verification reports (what was tested)

® Technology used

© 1999 Synopsys, Inc. S‘/"UPS‘/S®

129 Confidential Professional Service Group

rﬂ Parameterize Modules (605)

Enabling Productivity

1 The use of the parameter construct improve the ability to
reuse this module because of the parameterization
provided by the parameter statement.

module FIFO (CLK, WRITE_ENABLE, WRITE_SELECT, READ_SELECT,
DATA_IN, DATA_OUT):

parameter SELECT WIDTH = 3;
parameter DATA WIDTH = 8;
parameter FIFO_DEPTH = §;

input CLK, WRITE_ENABLE:
input [SELECT _WIDTH-1:0] READ_SELECT, WRITE_SELECT:
input [DATA_WIDTH-1:0] DATA_IN:

You can change the parameter value in a module

during instantiation or elaborating designs in synthesis.

module _name #(parameter _value,.....) instance _name(port list)
or

elaborate design _name -parameters parameter _list

© 1999 Synopsys, Inc. . .
130 Confidential Professional Service Group

rﬁ HDL for Synthesis Guidelines

Presentation:
HDL for Synthesis Guidelines

J

MEINN Iy Iy Iy Iy

General HDL Code Structure
Partitioning

Implying Logic Structure

Safe Coding & Avoiding Problems
Source Code Readability

Coding Style for Design Reuse
Design for Testability

Practices

Enabling Productivity

© 1999 Synopsys, Inc.

131

Confidential

Professional Service Group

rﬂ Why Design for Test?

Enabling Productivity

40 ¢
\.
Test Dev. Time 30 @
Total Design Time \.
Yo 20

0 A

AN

0 20 40 60 80 100
Controllability & Observability as Percentage of Circuit

Source of Graph: “ASIC Testing Upgraded”, by Marc Levitt, IEEE Spectrum, May 1992, pp26-29

© 1999 Synopsys, Inc. . .
132 Confidential Professional Service Group

rﬁ Use Synchronous Design Style

Enabling Productivity
» Avoid One Shots
 Avoid Asynchronous State Machines
* Isolate Asynchronous Logic
data 1in — data
-
O
: ADDR
addr 1in —|bECODE
ack
as op
(@)
xfer ovr |
Fig. 1 Example Asynchronous Bus Interface
SYNOPSYS
© 1999 Synopsys, Inc. . .
Professional Service Group

133 Confidential

Exercise: Make Asyn. Xface Testable

module bus_xface (data_in, addr_in, as, xfer_ovr, ack,data);
input [3:0] data_in;

input [3:0] addr_in;

input as, xfer_ovr;

output [3:0] data;

output ack;

reg [3:0] data;
reg ack;

always @ (negedge as or negedge xfer_over)
if(~xfer_over)
ack <= 1’b0;
else
ack <= addr_dec;

ADDR_DECODE U1(addr_in, addr_dec);

always @ (posedge ack or negedge xfer_over)
if(~xfer_over)
data <= 4'b0000;
else
data <= data_in;
endmodule

Enabling Productivity
data in — data
>
[«]
ddr ADDR | addr dec
adar_in —prcopr |
ack
as o>
[]
xfer ovr l

© 1999 Synopsys, Inc.

134

Confidential

SYNOPSYS:

Professional Service Group

rﬂ Bypass Internally Created Clock

Enabling Productivity

data_in

test mode

—

1

0

as?

ff2

—— data

. ADDR
addr 1in —
— DE DE
€O ff1
as o>
(@)
|

xfer_ovr

ack

Fig 2. Testable “Asynchronous” Xface with Controlled Clock Ckt.

« Internal clock is not controllable: bypass it during test.

« Two phases of clock used: route scan chain ff1 to ff2 to prevent “shoot thru”.

« Assume “as” is available at chip I/O and synchronous relative to other clocks

during test.

© 1999 Synopsys, Inc.

135

Confidential

Professional Service Group

module bus_xface (data_in, addr_in, as, xfer_ovr, ack,data,test_ mode);
input [3:0] data_in;

input [3:0] addr_in;

input as, xfer_ovr; test mode;

output [3:0] data;

output ack;

reg addr_dec;
reg [3:0] data;
reg ack;

wire as2;

assign as2 = test_ mode ? as : ack;

always @ (negedge as or negedge xfer_over)
if(~xfer_over)
ack <= 1’b0;
else
ack <= addr_dec;

ADDR_DECODE U1(addr_in, addr_dec);

always @ (posedge a or negedge xfer_over)
if(~xfer_over)
data <= 4'b0000;
else
data <= data_in;
endmodule

Verilog Code for Bypassed Asyn Ckt

Enabling Productivity

© 1999 Synopsys, Inc.

136

Confidential

SYNOPSYS:

Professional Service Group

rﬂ Avoid Internal Three State Buses

Enabling Productivity
en ¢
N
N
d1 e
N
d2 P tribus

Fig. 3 Example Three-State Circuit

Rule: Cannot have multiple drivers active at the same time.

« Can potentially cause bus contention and a power sink, if the values driven
by the drivers are different.

Rule: Must have at least one driver active at all times.

« Cannot test enable signal, if disabling drivers causes bus to float.

© 1999 Synopsys, Inc. . .
137 Confidential Professional Service Group

rﬂ Exercise: Make 3 States Testable

Enabling Productivity
module tri_state (en,d1,d2,tribus); en ——
input d1, d2; :l
input [1:0] en; d1
output tribus; ‘ /
reg tribus; :|
d2 4 tribus

always @(d1 or en)

if (en)

tribus = d1;
else

tribus = 1'bz;

always @(d2 or en)

if (en)

tribus = d2;
else

tribus = 1'bz

endmodule

© 1999 Synopsys, Inc. S‘/"UPS‘/S®

138 Confidential Professional Service Group

rﬁ Use Pull-Ups & Muxed Enables

Enabling Productivity

(e]

en1 —*—

d1

“one hot mux”

DT
En

+5v

d2

Pull-up

AN

tribus

Fig. 4 Example Three-State w/ Pull-ups & Multiplexed Enables

« All tri-state controls are preferably fully decoded to ensure one active driver

© 1999 Synopsys, Inc.
139 Confidential

Professional Service Group

module tri_state (en1, en2,d1,d2,tribus);

input d1, d2;
input en1,en2;
output tribus;
reg tribus;

always @(d1 or en1 or en2)
if (en1 & ~en2)
tribus = d2;
else
tribus = 1’bz;

always @(d2 or en1 or en2)
if (~en1 & en2)
tribus = d1;
else
tribus = 1'bz;

pullup (tribus); // not synthesizable

endmodule

Verilog Code for Pull-ups & 3-States

Enabling Productivity

* Pull-ups can ONLY be instantiated, not inferred in Verilog code.

© 1999 Synopsys, Inc.

140

Confidential

SYNOPSYS:

Professional Service Group

&
Use Mux Instead of Three -State

Enabling Productivity
en
d1 —J\
module mux_example (en,d1,d2,tribus);

tribus
g2 —
input d1, d2;

Fig. 5 Example Multiplexed Bus input en;
output tribus;

reg tribus;

o S|mp|er to code. always @(d1 or d1 or en)
if (en)

o) tribus = d1;
» No possibility of bus contention else

tribus = d2;
endmodule

© 1999 Synopsys, Inc. S‘/"UPS‘/S®

141 Confidential Professional Service Group

rﬂ Avoid Uncontrollable Clocks

Enabling Productivity

D Q

clk2

clk > QN

Fig. 6 Example Clock Divider Circuit

Rule: All clocks must be controllable and accessible from top level ports.
» Chip tester would require multiple tester cycles per serial scan chain data item.

» Clock dividers inherently untestable, belong to asynchronous circuit category.

© 1999 Synopsys, Inc. . .
142 Confidential Professional Service Group

rﬂ Exercise: Make CIk2 Controllable

module clk_gen (d, clk, q);

input clk, d;

output q;

reg clk2;

always @ (posedge clk)
clk2 <= ~clk2;

always @ (posedge clk2)
q<=d;

endmodule

Enabling Productivity
L D Q d—D Qq—4d
clk > QN L clk2 1 oNn

© 1999 Synopsys, Inc.
143 Confidential

SYNOPSYS:

Professional Service Group

rﬂ Bypass Bad Clocks During Test

Enabling Productivity

chip

‘ clk2 b Q—

Lo o }| .

1|c out S
> QB
clk ‘ //
clk_gen core logic

test_mode

Fig. 7 Example Asynchronous Clock Generator Bypass

« Bypass circuitry added to source code by designer.
» During test: use chip level clock, during regular operation: use derived clock.

« TEST _MODE signal is active high during test, and requires a dedicated port.

© 1999 Synopsys, Inc. . .
144 Confidential Professional Service Group

rﬁ Verilog Code for Clock Bypass Logic

Enabling Productivity

» General Rule: Isolate clock generation circuit into its own level of hierarchy.

module clk_gen (d, clk, test mode, q,clk_out);
input clk, d, test_ mode;
output q,clk_out;

reg clk2,clk_out;

always @ (posedge clk)
clk2 <= ~clk2;

always @ (posedge clk_out)
q<=d;

always @ (test_mode or clk or clk2)
if (test_mode)
clk_out = clk;
else
clk_out = clk2;

endmodule

module chip (clk, test._ mode, data_in, instr_in, data_out);
input clk, test_mode;

input [31:0] data_in;

input[7:0] instr_in;

output [15:0] data_out;

wire [15:0] data_out;
wire clk_inner;

clk_gen clk_gen_0(clk,test_mode,clk_inner);
core_logic core_logic_O(clk_inner, data_in, instr_in,data_out);

endmodule

© 1999 Synopsys, Inc.
145 Confidential

Professional Service Group

rﬂ Avoid Using Clocks as Data Inputs

Enabling Productivity

set l
] s
reset

Fig. 8 Example Set - Reset Latch

Rule: DO NOT Use Clocks as Data Inputs.
» Race condition could exist between the enable and data of the latch.
» Even if race condition fixed - it's very difficult to detect and correct such problems.

 Falls under category of asynchronous logic.

© 1999 Synopsys, Inc. . .
146 Confidential Professional Service Group

rﬂ Exercise: Make Clock Testable

module s_r_latch(set, reset, q);
input set, reset;
output q

reg q;
always @ (set or reset)
if(set |reset)
g <= set;

endmodule

Enabling Productivity

set
reset

o

© 1999 Synopsys, Inc.

147

Confidential

SYNOPSYS:

Professional Service Group

r:j Use a S-R Flip-flop

Enabling Productivity

module s r ff (set, reset, clk, q);
— S Q |— input set, reset, clk;
output q;

reg q,

7

—1 /I synopsys sync_set_reset “set, reset
always @ (posedge clk)
if (set
Fig. 9 Example S-R FF T o
else if (reset)
g <= 1'b0;

endmodule

© 1999 Synopsys, Inc. S‘/"UPS‘/S®

148 Confidential Professional Service Group

rﬂ Uncontrollable Asynchronous Resets

Enabling Productivity

reset

d1—

>

QB

d2 —

_

— qout

Fig. 10 Example Uncontrollable Reset During Test

Rule: All asynchronous reset / set signals should be controllable through a

chip level port.

» The integrity of data scanned through the register during scan shifting must be

upheld.

» Uncontrolled reset/set signals could overwrite/erase parts of the scan chain data

© 1999 Synopsys, Inc.
149 Confidential

Professional Service Group

rﬁ Exercise: Fix Uncontrollable Reseft

Enabling Productivity

module asyn_reset (clk,d1,d2, reset,qout);
input d1, d2, clk, reset;
output qout;

reg ar,

always @ (posedge clk or negedge reset)
if (~reset)

ar <= 1b0;
else

ar <=d1,

always @ (posedge clk or negedge ar)
if (~ar)

qgout <= 1'b0;
else

qgout <= d2;

endmodule

d1—p

d2 |

D q|— qout

QB

\/

-

ar

© 1999 Synopsys, Inc.

150

Confidential

SYNOPSYS:

Professional Service Group

rﬂ Controlling Asynchronous Resets

Enabling Productivity

d1

clk

d2 —

reset

ar

clk

D

>

q|— 9out

QB

scan_enable

T

n

Fig. 11 Example Test Override of Asynchronous Reset

» During scan shift operation, reset held inactive, scan data integrity upheld.

» During capture cycle of test, scan_enable is low and thus asynchronous reset

signal can be tested.

© 1999 Synopsys, Inc.
151 Confidential

Professional Service Group

%
ﬁ Vevilog Code to Control Asynch. Reset

Enabling Productivity

module asyn_reset (clk, d1, d2, reset, scan_enable, qout);
input d1, d2, clk, reset, scan_enable;
output qout;

reg ar,

always @ (posedge clk or negedge reset)
if (~reset)
. ar <= 1b0;

Internal reset clse

signal “gated” within ar <= d1;

asynchronous reset ———~—__
description wire ar_n = ar | scan_enable;

always @ (posedge clk or negedge ar_n)
if (~ar_n)

qgout <= 1'b0;
else

qgout <= d2;

endmodule

© 1999 Synopsys, Inc. . .
152 Confidential Professional Service Group

rﬂ Testable Reset Synchronizer

Enabling Productivity

asyn_reset
clk

scan_enable

VDD

s
|—D Q'V—l—D Q2 :> e QJ;H
NG

> QB ‘—> QB

other inputs

int_reset_n

Optional Reset
Decoding Logic

Fig. 12 Example Testable Reset Synchronizer Circuit

« Extension of controlling asynchronous signals scheme.

* The synchronized reset signal, syn _reset n can be combined with other inputs
if necessary, then gated with scan_enable .

» Don’t forget to identify the scan_enable port as part of your test circuitry.

© 1999 Synopsys, Inc.
153 Confidential

Professional Service Group

Module syn_reset(clk,asyn_reset,scan_enable, int_reset n);
input clk, asyn_reset, scan_enable;
output int_reset _n;

reg q1, q2;

always @ (posedge clk or negedge asyn_reset)
if (~asyn_reset)
q1 <= 1°b0;
else
ql <= 1’b1;

always @ (posedge clk)
q2 <= qf;

wire int_reset_n = scan_enable | d1;

endmodule

Verilog Code for Reset Synchronizer

Enabling Productivity

© 1999 Synopsys, Inc.

154

Confidential

SYNOPSYS:

Professional Service Group

rﬂ Avoid Combinational Feedback Loops

Enabling Productivity
reset \
[_J Jo q

D

Fig. 13 Example S-R Latch

Rule: Do not have combinational feedback loops in design.
* Introduces states in the design which cannot be synchronously controlled.
 Faults within the logic of the combinational feedback loop may not be testable.

« Asynchronous feedback loops cause problems with synthesis.

© 1999 Synopsys, Inc. . .
155 Confidential Professional Service Group

rﬂ Exercise: Make S-R Latch Testable

Enabling Productivity

reset

setﬂ >o_|_' OT ?

module s_r_latch (set, reset, q);
input set, reset;

output q;

wire tmp;

nor (q, reset, tmp);
nor (tmp, set, q);

endmodule

© 1999 Synopsys, Inc. S‘/"UPS‘/S®

156 Confidential Professional Service Group

rﬂ Model S-R Latch as a Leaf Cell

Enabling Productivity
s_r_latch
reset r q q
set S

Fig.14 Example s_r_latch as a leaf cell

 If SR Latch is modelled as a leaf cell in the technology library, then internal
feedback loop not visible to the test generation software.

« Should not be a problem IF a scannable equivalent of the cell exists in the
library.

» Otherwise must treat latch as you treat other latches in your design (latches
discussed in Test Schemes).

© 1999 Synopsys, Inc. . .
157 Confidential Professional Service Group

rﬁ Bi-di Pads Introduce Feedback Loops

Enabling Productivity
/' A
P A | :I

Core Logi |
ore;Logic (>

e \/F)

Bidirectional Pad

Fig. 15 Example of Feedback Loop w/Bi-Directional Pad

« Combinational feedback path might exist from the input driver thru the internal
core logic to the enable or data pin of the output driver.

« Feedback is evident only when the pad is in “output mode”.
« Feedback may or may not be detected by test design rule checker.

» Feedback loop might have to be explicitly broken. Best practice: eliminate
loops altogether from design.

© 1999 Synopsys, Inc. . .
158 Confidential Professional Service Group

rﬂ Design for Test Rules Summary

Enabling Productivity

Use Synchronous design styles.

Avoid Asynchronous designs

Asynchronous: Isolate Asynchronous logic

Avoid Three-State Drivers

3States: Cannot have more than one driver active at a time

3States: Must have at least one driver active at all times (or use a pullup)
All clocks must be controllable and accessible from top level ports.

Do NOT use clocks as data inputs.

All asynchronous reset/set signals must be controllable thru top level port

Do not have combinational feedback loops in the design.

© 1999 Synopsys, Inc. . .
159 Confidential Professional Service Group

ﬂ Test Schemes

Enabling Productivity
M Latches in Flip-flop Based Designs
M Improving Control & Observability
M Techniques for Testing RAMs
SYNoPSYs

© 1999 Synopsys, Inc. . .
160 Confidential Professional Service Group

rﬂ Latches in Flip-flop Based Designs

Enabling Productivity

d3

d1

d2 D Q D Q— res

G G
latch
ohi1 latch
phi2
Fig. 16 Example Latches in a Design
You can:

Leave them as is - let test tool deal with them.

Replace them with a scannable equivalent (for example use a LSSD cell).

Model them as black boxes, with the resultant loss of fault coverage

Hold them transparent during test (watch out for combinational feedback loops!)

© 1999 Synopsys, Inc. . .
161 Confidential Professional Service Group

rﬁ Making Latches Transparent

Enabling Productivity
data D
inputs - lateh™ g
hold = ‘1’ \ “transparent”
during test latch model

Fig. 17 Example Transparent Model for a Latch

 Latch is modelled as a combinational circuit which represents a latch in active
(pass thru) mode.

« Lose some fault coverage on enable pin of latch.
« Treat enable pin as data, do not “hook” it up to clock source.

 This treatment of latches is tool specific (ie. beyond Verilog coding style).

© 1999 Synopsys, Inc. . .
162 Confidential Professional Service Group

r:d Improving Control & Observability

Enabling Productivity

» Given: Scan chains improve testability by providing access to internal registers.

* You can make a design more observable and/or controllable and thus better for
test by adding flip-flops at crucial points.

c4 c3 c2 c1 cO

N
£

N
|~

Fig.18 Example “Difficult to Test” Circuit

© 1999 Synopsys, Inc. . .
163 Confidential Professional Service Group

%
dAdding FF’s to Improve Controllability

Enabling Productivity

c4 c3 c2 c1 cO

Fig.19 Example Design with Improved Testability

« Simplifies the timing constraints of the design (increases latency, decreases
critical paths).

« Can test adder without adding primary input/outputs to the multipliers.

© 1999 Synopsys, Inc. . .
164 Confidential Professional Service Group

rﬂ Partitioning to Improve Testability

Enabling Productivity

Rule: Do not allow hierarchical boundaries in combinational paths.

TOIT]’ B

— e
1 B U1>4 *‘f)__e\ Always @ 0

— ﬂ . Thus no test
1 U4 v\ available for
L SA0 @ U1!

Blocks test

P

Fig. 20 Testing for a Stuck-At-0 Fault with a Reconvergent Fanout Design

Reconvergent fanout : different paths from the same signal converge again at
the same component downstream in the logic.

© 1999 Synopsys, Inc. . .
165 Confidential Professional Service Group

rﬁ Techniques for Testing RAMSs

Enabling Productivity

Multiplexed 1/O

Register Bounding

Transparent RAMs

Built-In-Self-Test (BIST)

i} datain DI DO dataout@—
addrin
ﬂi ™

Fig.21 Example RAM with surrounding logic

© 1999 Synopsys, Inc. S‘/"UPS‘/S®

166 Confidential Professional Service Group

"
ﬁ Multiplexed I/0 for RAMs

Enabling Productivity
M1
™
b DO dataout 0 \
datain /L
| RAM
—_— addrin | \p to other functional
pins or scan ff’'s
.\ M2
N
normal /7 {9 _
inputs _((
ram_test

Fig.22 Example Multiplexed I/O Test Scheme applied

© 1999 Synopsys, Inc. . .
167 Confidential Professional Service Group

rﬂ Multiplexed 1/0 Test Scheme

Enabling Productivity

Increases the observability of the data input to the RAM.

Increases the controllability of the data output by the RAM.

Increases the observability of the address driving the RAM.

If the RAM has a known state during test, then output mux is not needed.

© 1999 Synopsys, Inc. . .
168 Confidential Professional Service Group

rﬂ Register Bounding for RAMs

Enabling Productivity

\

scan chain

DI DO
RAM

AD

si so

pi -

test mode

Fig.23 Example Register Bounding Scheme applied to RAM

© 1999 Synopsys, Inc.

169

Confidential

Professional Service Group

rﬁ Register Bounding Scheme

Enabling Productivity

In normal mode, the bounding registers are bypassed.

The rest of the ASIC is isolated from the memory and can be tested independently.

Bounding registers can be used to access & test RAM array.

All memory arrays to be tested are usually connected into one scan chain.

Not appropriate for memory arrays more than 1K words.

Muxes only necessary if combo logic in between internal registers and RAM pins.

RAM read/write control might need to be controlled by scan_enable signal.

© 1999 Synopsys, Inc. . .
170 Confidential Professional Service Group

rﬂ Transparent RAMs

Enabling Productivity

=

=¢

DO

DI

D Q
AD latch

G
TOE

RAM

trans_mode

{ij___

Fig.24 Example Transparent RAM

© 1999 Synopsys, Inc.

171

Confidential

SYNOPSYS:

Professional Service Group

rﬂ Transparent RAM Scheme

Enabling Productivity

Treats the RAM array as if it consists of an array of latches.

Meant to allow observability of data inputs at data output.

Must have technology library support from vendor.

Does not test address inputs or RAM array.

© 1999 Synopsys, Inc. . .
172 Confidential Professional Service Group

rﬁ Comparison of RAM Test Schemes

Enabling Productivity
Implementation
Test Method Coverage & Ease Limitations Comments
Multiplexed I/O Easiest Adds mux delay to paths
Tests Logic Only
Register Tests Logic & RAM Mux if combo logic;
Bounding Arrays<1K words
Transparent No Additional Muxes Additional Test Protocol Limited ASIC
Mode Tests Logic Only Library Support
BIST Tests RAM only Additional real-estate Limited by
Comprehensive available S/W
tools

Table 1 Comparison of RAM Test Schemes

© 1999 Synopsys, Inc. . .
173 Confidential Professional Service Group

&
38 Recommended Test Schemes for RAMs

Enabling Productivity

« If the address, datain, and dataout pins of the RAM are connected directly to
internal registers with no combinational logic in between, then use register
bounding (ie. make surrounding registers part of a scan chain).

« If combinational logic exists between internal registers and the address & data
pins of the RAM, consider the following in the order given:

Small / Medium Arrays Large Arrays
Register Bounding BIST

Multiplexed 1/O Register Bounding
BIST Multiplexed 1/0

Table 2: Test Schemes For Combo Logic Surrounding RAM

© 1999 Synopsys, Inc. . .
174 Confidential Professional Service Group

ﬂ Test Scheme Summary

Enabling Productivity

M Hold Latches in transparent mode.
M Add flip-flops to a design to increase controllability & observability
M Do not partition a combinational logic path across hierarchical boundaries.

M Use register bounding to test RAMs (as a first choice).

© 1999 Synopsys, Inc. S‘/"UPS‘/S®

175 Confidential Professional Service Group

rﬁ Test Methodology Summary

Enabling Productivity

M Test is a design methodology. It has it's own testability rules, created to
insure that scan chains can be added to a design, with the ultimate goal of
using an Automated Test Pattern Generator (ATPG) to create test patterns
for the chip.

M Most problems associated with test can be avoided or anticipated and
corrected up front, during the INITIAL synthesis of the source Verilog code to
gates.

© 1999 Synopsys, Inc. . .
176 Confidential Professional Service Group

rﬂ HDL for Synthesis Guidelines

Presentation:
HDL for Synthesis Guidelines

J

[T Ty Iy Iy Iy

General HDL Code Structure
Partitioning

Implying Logic Structure

Safe Coding & Avoiding Problems
Source Code Readability

Coding Style for Design Reuse
Design for Testability

Practices

Enabling Productivity

© 1999 Synopsys, Inc.
177 Confidential

Professional Service Group

rﬁ Practices

Unsupported Verilog Language Constructs

Enabling Productivity

Limitations of Blocking and Non-blocking Assignments
Limitations of D Flip-Flop Inferences

while Loops Limitations

forever Loops Limitations

Handling Comparisons to X and Z

Limitations of Using Delay Specification

Limitations of Tri-State Inferences
Limitations of Arithmetic Operators
Limitations of casex and casez Statement

Case Statement usage

L O 00 oo dd Qo odo

Register Inferring

© 1999 Synopsys, Inc. . .
178 Confidential Professional Service Group

rﬂ Unsupported Verilog Language Constructs

Enabling Productivity

1 Unsupported Definitions and Declarations
= time declaration
= event declaration
= triand, trior, tri1, tri0, and trireg net types
= Ranges and arrays for integers
1 Unsupported operators
= Case equality and inequality operators (=== and !==)
= Division and modules operators for variables
1 Unsupported gate-level constructs

= NMOS, pMOs, cCMos, rpmos, rcmos, pullup, pulldown,
tranif0, tranif1, rtran, rtranif0, and rtranif1 gate types

© 1999 Synopsys, Inc. S‘/"UPS‘/S®

179 Confidential Professional Service Group

rﬂ Unsupported Verilog Language Constructs

Enabling Productivity

1 Unsupported Statements
= defparam statement
= Initial statement
= repeat statement
= delay control
= event control
= wait statement
= fork statement
= deassign statement
= force statement
= release statement
= procedural continuous assignment

© 1999 Synopsys, Inc. S‘/"UPS‘/S®

180 Confidential Professional Service Group

rﬁ Limitations of Blocking and Non-blocking
Assignments

Enabling Productivity

1 A variable can follow only one assignment method and
cannot be the target of both Blocking and Non-blocking
assighments.

// ' Unsynthesizable Example
always @(posedge clk or negedge reset)
begin

if (Ireset) begin
é\, Mixing Blocking and

Non-Blocking assignments

O o
o O

© 1999 Synopsys, Inc. S‘/"UPS‘/S®

181 Confidential Professional Service Group

rﬁ Limitations of Blocking and Non-blocking
N Assignments

Enabling Productivity
(d RTL assignments are allowed only when no blocking delays are used

= #1 a<=b ---- unsythesizable

(If variables in two always blocks having dependencies are used in
mixing Blocking and Non-blocking statements, they might case the
design unsynthesizable.

always @(posedge clk or negedge reset) always @(posedge clk or negedge reset)

on begin
eg:1[](|reset)begin if@' SSeegin
_ end synthesizable
else beqin / @
a= #1 data1;
end end end
end

wir But DC reports:
Error :RTL assignments are allowed only when no

blocking delays are used.

A blocking delay is implied here.

© 1999 Synopsys, Inc. . .
182 Confidential Professional Service Group

rﬂ Limitations of D Flip-Flop Inferences

Enabling Productivity

1 The signal in an edge expression cannot be an indexed
expression.

1 Set and reset conditions must be single-bit variables.

1 Set and reset conditions cannot use complex
expressions.

1 An if statement must occur at the top level of the always
block.

© 1999 Synopsys, Inc. . .
183 Confidential Professional Service Group

rﬂ Limitations of D Flip-Flop Inferences

Enabling Productivity

// Unsynthesizable ExamV Invalid: it uses an indexed expression
always @(posedge clk[1]

always @(posedge clk and negedge reset _bus)
if (Ireset_bus[1])

— | Invalid: it uses a bused variable

always @(posedge clk and negedge reset)
if (reset == (1-1))

— | Invalid: it uses a complex expression

always @(posedge clk or posedge reset) begin

#1:
if (reset)\, Invalid: the if statements does

not occur at the top level

© 1999 Synopsys, Inc. S‘/"UPS‘/S®

184 Confidential Professional Service Group

rﬁ while Loops Limitations

Enabling Productivity

1 A while loop creates a conditional branch that must be
broken by one of the following statements to prevent
combinational feedback.

= @(posedge clock)
= @(negedge clock)

/Il Supported while loop

/' Unsupported while loop always begin
always begin @(posedge clock)
while (x <y) while (x <y)
X=X+ Z begin
@(posedge clock)
X=X+2Z
end
end

© 1999 Synopsys, Inc. S‘/"UPS‘/S®

185 Confidential Professional Service Group

rﬁ forever Loops Limitations

Enabling Productivity
1 Infinite loops in Verilog use the keyword forever.

1 You must break up an infinite loop with the following
statements to prevent combinational feedback.

= @(posedge clock)
= @(negedge clock)

I/Supported forever Loop
always
forever
begin
@ (posedge clock);
X=X+ 2z
end

© 1999 Synopsys, Inc. S‘/"UPS‘/S®

186 Confidential Professional Service Group

rﬁ Handling Comparison to X and Z

Enabling Productivity

1 Comparison to an X or a Z, a warning message is
displayed in DC indicating that the comparison always
evaluated to false, which might cause simulation to
disagree with synthesis.

// Comparison to X Ignored
always begin
if (A===1bx)
B=0;
else
B=1:;
end

© 1999 Synopsys, Inc. . .
187 Confidential Professional Service Group

C@ﬂ Handling Comparison to X and Z

Enabling Productivity

1 Improper using of case statement might cause synthesis
not to agree with simulation.

module case withxz(q, a, b, ¢, d, sel);

input a, b, ¢, d; = Synopsys Design Analyzer i
input [1 O] Sel; Setus File Edib Hicu Bkeributes fralusis Tools Help
output q;

reg q,

always @(sel ora or b orcord)

Case(sel) 4/

I
endcase - s
Current Designi case_withxz Schematic Yiew
Left Buttont Select - HMiddle Button: Adds/Modify Select - Right Buttoni Menu
endmodule

© 1999 Synopsys, Inc. . .
188 Confidential Professional Service Group

rﬂ Limitations of Using Delay Specification

Enabling Productivity

d You can use delay specification information for modeling,
but Design Compiler ignores delay information.

1 If the functionality of your circuit depends on the delay
information, Design Compiler might create logic whose
behavior does not agree with the behavior of the
simulated circuit.

module top(a, c, d, clk);
reg b;...

flip_flop F1(a, clk, c);
flip_flop F2(b, clk, d);

always @(a or c or d or clk)
begin
b <=#100 a;
end
endmodule

© 1999 Synopsys, Inc. . .
189 Confidential Professional Service Group

ﬂ Limitations of Tri-State Inferences

Enabling Productivity

(1 When a variable is registered in the same block in which it

is three-stated, HDL Compiler also registers the enable of
this type of code.

/I Three-State Driver with Enable
module ff_3state (DATA, CLK, THREE_STATE, OUT1);
input DATA, CLK, THREE_STATE;
output OUT1,
reg OUT1,;

always @ (posedge CLK) begin

if (THREE_STATE)
OUT1 = 1bz: R o "

else AT A |—| T =T

OUT1 = DATA;

THREE_STATEL = N

end
endmodule

© 1999 Synopsys, Inc. . .
190 Confidential Professional Service Group

ﬂ Limitations of Tri-State Inferences

Enabling Productivity

1 An example for Three-State Driver without Registered
Enable

I/l Three-State Driver without Registered Enable

module ff _3state (DATA, CLK, THREE_STATE, OUT1);
input DATA, CLK, THREE_STATE;

output OUT1,

reg OUT1,;
reg TEMP:; THREE_STATEL >

always @(posedge CLK) _|—[:’J>—D>|1IT:|.
TEMP = DATA: AT

always @(THREE_STATE or TE
if (THREE_STATE) e —
OUT1 = TEMP;
else
OUT1 =1bz;
endmodule

© 1999 Synopsys, Inc. S‘/"UPS‘/S®

191 Confidential

Professional Service Group

rﬂ Limitations of Arithmetic Operators

Enabling Productivity

1 Arithmetic operators perform simple arithmetic on
operands. The Verilog arithmetic operators are

= Addition (+)
= Subtraction (-)

= Multiplication (*)
= Division (/)
= Modules (%)

1 HDL Compiler requires that / and % operators have
constant-valued operands.

© 1999 Synopsys, Inc. . .
192 Confidential Professional Service Group

B
; Limitations of casex and casez Statements

Enabling Productivity

1 HDL Compiler allows ?, z, x bits in casex items in a casex
statement, but not in casex expressions.

1 HDL Compiler allows ?, z in casez items in a casez
statements, but not in casez expressions.

/I Invalid casex Expression /I Invalid casez Expression
express = 3’bxz?; express = 1'bz;

/lillegal testing of an expression /llllegal testing of an expression
casex (express) casez (express)

i—fndcase Endcase

© 1999 Synopsys, Inc. . .
193 Confidential Professional Service Group

E Case Statement: Full Case

Enabling Productivity

1 A case statement is full if all possible branches are

specified.

1 A full case statement does not infer latches.

module casetest1(q, a, b, c, d, sel);
input a, b, ¢, d;

input [1:0] sel;

output q;

reg q,

always @(sel ora or b or c or d)
case(sel)
2'b00: g=3a;
2'b01: g=b;
2'b10: g=c;
2'b11: q=d;
endcase

endmodule

— Synopsys Design Analyzer

Setup File Edit Yiew Attributes Analysiz Tools

£

I

Current Design: casetestl

Left Button: Select - HMiddle Button: Add Modify Select -

Schematic Yiew

Right Button: He -

© 1999 Synopsys, Inc.
194 Confidential

Professional Service Group

E Case Statement: No-full Case

Enabling Productivity
1 A case statement that is not full case infers latches.

module casetest2(q, a, b, c, sel);
input a, b, c; =

Synopsys Design Analyzer E iJ
Input [1 O] Sel, Setup File Edit Yiew Attributes Anslysis Tools Help
output q;
reg Qq, ﬁ
B
always @(sel ora or b or c) |
case(sel) i
2'b00: g=a;
2'b01: g=b;
2'b10: g=c;
endcase
| 2] i |
Current Dlesign: casetest2 Schenatic View
endmOdL”e E Left Button: Select - Middle Button: Add/Modify Select - Right Button: Menu

© 1999 Synopsys, Inc. . .
195 Confidential Professional Service Group

’;ﬂ Case Statement: Compile Directive

Enabling Productivity

A compile directive “synopsys full _case” guides Design
Compiler not to synthesize latches.

module casetest3(q, a, b, c, sel);

input a, b, C, ~i Synopsys Design Analyzer E iJ
input [1 .O] Sel; Setup File Edit Yiew Attributes Analysis Tools Help
output q;
reg q; o
)
always @(sel ora or b or c) 7]
case(sel) //synopsys full _case 2l
2'b00: g=a;
2'b01: g=b;
2'b10: g=c;
endcase
[I=d i P
Current Designi casetest3 Schematic VWiew
endmOdL”e 4 Left Button: Select - Middle Button: Add/Modify Select - Right Button: Menu

© 1999 Synopsys, Inc. . .
196 Confidential Professional Service Group

E Case Statement: Default Clause

Enabling Productivity
1 A case statement that is not full case with the default
clause does not infer latches.

module casetest4(q, a, b, ¢, sel);

|nput a, b, c; = Synopsys Design Analyzer B

Input [1 O] Sel, Setup File Edit Miew Attributes Analysis Tools Help
output q;

reg q;

always @(sel ora or b or c)
case(sel)
2'b00: g=a;
2'b01: g=b;
2'b10: g=c;
default: g=a;
endcase =

Current Design: casetest Schematic Yiew

EI
=
T]
N

I

Left Button: Select - Middle Button: Add/Modify Select - Right Button: Henu

endmodule

© 1999 Synopsys, Inc. . .
197 Confidential Professional Service Group

% Case Statement: with Priority Encoder

Enabling Productivity

1 A case statement is parallel case if no case items overlap.

d In the following example, a priority encoder is

synthesized.

module casetest5(q, a, b);
input [1:0] a, b;

output [1:0] q;

reg [1:0] q;

always @(a or b)
case(2'b10)
a: q=2b10;
b: q=2'b01;
endcase

endmodule

— Synopsys Design Analyzer \ 20| Bl

Setup File Edit View Attributes Analysis Tools

W =NES

kil

=

I it

Current Design: casetesth

Left Button: Select -

Hiddle Button: Add/Modify Select -

Schematic Yiew

Fight Button: Henu

© 1999 Synopsys, Inc.

198

Confidential

Professional Service Group

E Case Statement: without Priority Encoder

Enabling Productivity

1 A compiler directive “synopsys parallel_case” guides
Design Compiler not to synthesize a priority encoder.

- Synopsys Design Analyzer \ 21|

module casetest6(q, a, b);
input [1:0] a, b;

output [1:0] q;

reg [1:0] q;

always @(a or b)
case(2'b10) //synopsys parallel _case

< ==

a: q=2D10;
b: q =2'b01:
endcase
= i
end mOd u |e Current Designt casetesth Schematic Yiew

Left Buttont Select - Middle Button: Add/Modify Select - Right Button: Henu

© 1999 Synopsys, Inc. . .
199 Confidential Professional Service Group

"B SR Latch

module sr_latch (SET, RESET, Q);
input SET, RESET;

output Q;

reg Q;

always @(RESET or SET)
if (~\RESET)
Q=0;
else if (~SET)
Q=1,;

endmodule

//lsynopsys async_set reset "SET, RESET”

Enabling Productivity

T —o |—Tn

RERET_~—f T

© 1999 Synopsys, Inc.
200 Confidential

Professional Service Group

rﬂ Latch Inference Using an if Statement

/l Latch Inference Using an if Statement
always @ (DATA or GATE) begin
if (GATE) begin
Q = DATA;
end

// Avoiding Latch Inference
always @ (DATA, GATE) begin
Q=0;
if (GATE)
Q = DATA;
end

/I Another Way to Avoid Latch Inference
always @ (DATA, GATE) begin
if (GATE)
Q = DATA;
else
Q=0;
end

Enabling Productivity

DT — ~u

EATE e

D Latch

© 1999 Synopsys, Inc.

201

Confidential

Professional Service Group

& D Latch with Asynchronous Set

/I D Latch with Asynchronous Set

module d_latch_async_set (GATE, DATA, SET, Q);
input GATE, DATA, SET,;

output Q;

reg Q;

//lsynopsys async_set reset “SET”
always @(GATE or DATA or SET)
if (~SET)
Q=1Db1;
else if (GATE)
Q = DATA;
endmodule

Enabling Productivity

TATH— ;::-:—} s
TR
]
s _}’7

Ps. Because the target technology library does
not contain a latch with an asynchronous set,
Design Compiler synthesizes the set logic,
using combinational logic.

© 1999 Synopsys, Inc.
202 Confidential

Professional Service Group

& D Latch with Asynchronous Reset

/I D Latch with Asynchronous Reset

module d_latch_async_reset (RESET, GATE, DATA,
Q);

input RESET, GATE, DATA;

output Q;

reg Q;

//lsynopsys async_set reset “RESET”
always @ (RESET or GATE or DATA)
if (~RESET)
Q <= 1'b0;
else if (GATE)
Q <= DATA;
endmodule

Enabling Productivity
DATAL =— — >
BATE ~— Fo

HEEEI'E}—IT

© 1999 Synopsys, Inc.

203

Confidential

Professional Service Group

rﬁ D Latch with Asynchronous Set and Reset

/I D Latch with Asynchronous Set and Reset

module d_latch_async (GATE, DATA, RESET, SET, Q);
input GATE, DATA, RESET, SET;

output Q;

reg Q;

Il synopsys async_set reset “RESET, SET”
I/l synopsys one_cold “RESET, SET”
always @ (GATE or DATA or RESET or SET)
begin : infer
if (ISET)
Q <=1b1;
else if (IRESET)
Q <= 1’b0;
else if (GATE)
Q <= DATA;
end

Enabling Productivity
AT »
— 1 -
mTD-‘[>C >_Df -
AE=ET] = & >l3

© 1999 Synopsys, Inc.

204

Confidential

Professional Service Group

"B Simple D Flip-Flop

Enabling Productivity

// Positive Edge-Triggered D Flip-Flop
module dff pos (DATA, CLK, Q);
input DATA, CLK;

output Q; ITAL — [=@

reg Q;

always @(posedge CLK)
Q <= DATA;
endmodule

/I Negative Edge-Triggered D Flip-Flop

module dff neg (DATA, CLK, Q); [[
input DATA, CLK; DAt I:I

output Q;
reg Q;

always @(negedge CLK) a_r:D—[:i:bct;:- .l
Q <= DATA;

endmodule

© 1999 Synopsys, Inc. . .
205 Confidential Professional Service Group

& D Flip-Flop with Asynchronous Set

Enabling Productivity

/I D Flip-Flop with Asynchronous Set
module dff async_set (DATA, CLK, SET, Q);

input DATA, CLK, SET,; =
output Q;

reg Q; DATA =] =

always @(posedge CLK or negedge SET)
if (~SET)
Q<=1b1;
else w0 Ba
Q <= DATA;
endmodule

© 1999 Synopsys, Inc. . .
206 Confidential Professional Service Group

rﬁ D Flip-Flop with Asynchronous Reset

/I D Flip-Flop with Asynchronous Reset

module dff_async_reset (DATA, CLK, RESET, Q);
input DATA, CLK, RESET;

output Q;

reg Q;

always @(posedge CLK or posedge RESET)
if (RESET)
Q <=1'b0;
else
Q <= DATA;
endmodule

Enabling Productivity
OATA — >0
oL e o

e ol

© 1999 Synopsys, Inc.

207

Confidential

Professional Service Group

rﬂ D Flip-Flop with Asynchronous Set and Reset

Enabling Productivity

/I D Flip-Flop with Asynchronous Set and Reset
module dff_async (RESET, SET, DATA, Q, CLK);
input CLK;

input RESET, SET, DATA;
output Q; E@—Eﬁﬂﬂ

reg Q; DT =0

I/l synopsys one_hot “RESET, SET”
always @(posedge CLK or posedge RESET or posedge SET)
if (RESET)
Q <=1'b0; N ;
else if (SET) REFET] -
Q <= 1b1; *’:}:
else
Q <= DATA;
endmodule

© 1999 Synopsys, Inc. . .
208 Confidential Professional Service Group

rﬁ D Flip-Flop with Synchronous Set

Enabling Productivity

/I D Flip-Flop with Synchronous Set

module dff sync_set (DATA, CLK, SET, Q);
input DATA, CLK, SET;

output Q;

reg Q;
s D

//synopsys sync_set reset "SET”
always @(posedge CLK)
if (SET)
Q <=1b1;
else e = =
Q <= DATA;
endmodule

© 1999 Synopsys, Inc. . .
209 Confidential Professional Service Group

ﬂ D Flip-Flop with Synchronous Reset

/I D Flip-Flop with Synchronous Reset

module dff_sync _reset (DATA, CLK, RESET, Q);
input DATA, CLK, RESET;

output Q;

reg Q;

//synopsys sync_set reset “RESET”
always @(posedge CLK)
if (~RESET)
Q <=1'b0;
else
Q <= DATA;
endmodule

Enabling Productivity

RESET —]7 —
BRTA] H

Ok = s

© 1999 Synopsys, Inc.

210

Confidential

Professional Service Group

rﬁ D Flip-Flop with Synchronous and
- Asynchronous Load

Enabling Productivity

// D Flip-Flop with Synchronous and Asynchronous Load

module dff a_s load (ALOAD, SLOAD, ADATA, SDATA, CLK, Q);
input ALOAD, ADATA, SLOAD, SDATA, CLK;

output Q;

reg Q;

always @ (posedge CLK or posedge ALOAD)
if (ALOAD)
Q <= ADATA;
else if (SLOAD)
Q <= SDATA;
endmodule

AL A0 = | :
B) e
=1 O é_FD_r

B '

QN[=

| ATAD--_E_>£\

© 1999 Synopsys, Inc. . .
211 Confidential Professional Service Group

