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Preface

Modern computing devices, ranging from smartphones and tablets up to powerful
servers, rely on complex silicon chips that integrate inside them hundreds or
thousands of processing elements. The design of such systems is not an easy task.
Efficient design methodologies are needed that would organize the designer’s work
and reduce the risk for a low-efficiency system. One of the main challenges that
the designer faces is how to connect the components inside the silicon chip, both
physically and logically, without compromising performance. The network-on-chip
(NoC) paradigm tries to answer this question by applying at the silicon chip level
well established networking principles, after suitably adapting them to the silicon
chip characteristics and to application demands. The routers are the heart and
the backbone of the NoC. Their main function is to route data from source to
destination, while they provide arbitrary connectivity between several inputs and
outputs that allows the implementation of arbitrary network topologies.

This book focuses on the microarchitecture of NoC routers that together, with the
network interfaces, execute all network functionalities. The routers implement the
transport and physical layers of the NoC, and their internal organization critically
affects the speed of the network in terms of clock frequency, the throughput of the
network in terms of how many packets can the network service per clock cycle and,
the network’s area and energy footprint on the silicon die.

The goal of this book is to describe the complex behavior of network routers in a
compositional approach following simple construction steps that can be repeated
by any designer in a straightforward manner. The micro-architectural features
presented in this book are built on top of detailed examples and abstracted models,
when necessary, that do not leave any dark spots on the operation of the presented
blocks and reveal the dependencies between the different parts of the router, thus
enabling any possible future optimization. The material of each chapter evolves
linearly, covering simpler cases before moving to more complex architectures.

Chapter 1 gives an overview of network-on-chip design at the system level and
discusses the layered approach followed for transforming the abstract read and
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viii Preface

write transactions between the modules of the system to actual bits that travel
in parallel on the links of the network finding their path towards their final
destination, using the routers of the network.

Chapter 2 deals with link-level flow control policies and associated buffering
requirements for guaranteeing lossless and full throughput operation for the
communication of a single sender and receiver pair connected with a simple
point-to-point link. The discussion includes both simple ready/valid flow control
as well as credit-based policies under a unified abstract flow control model. The
behavior of both flow control policies when used in pipelined links is analyzed
and analytical bounds are derived for each case. The chapter ends with the
packetization process and the enhancement needed to link-level flow control
policies for supporting multiword packets.

Chapter 3 departs from point-to-point links and discusses in a step-by-step man-
ner the organization of many-to-one and many-to-many switched connections
supporting either simple or fully unrolled datapaths. The interplay between
arbitration, multiplexing and flow control is analyzed in detail using both credits
and ready/valid protocols. The chapter ends with the design of a full wormhole
(or virtual-cut through) router that includes also a routing computation module
that allows routers to be embedded in arbitrary network topologies.

Chapter 4 departs from router microarchitecture and describes in detail the circuit-
level organization of the arbiters and multiplexers used in the control and the
datapath of the routers. A unified approach is presented that merges algorithmi-
cally the design of arbiters that employ various arbitration policies with that of
multiplexing and allows the design of efficient arbiter and multiplexing circuits.
Additionally, arbiters built on top of 2D relative priority state are also discussed
in detail.

Chapter 5 dives deeper in the microarchitecture of a wormhole router and discusses
in a compositional manner the pipeline alternatives of wormhole routers and their
implementation/performance characteristics. Multiple pipelined organizations
are derived based on two pipeline primitive modules. For each case, complete
running examples are given that highlight the pipeline idle cycles imposed by
the router’s structural dependencies, either across packets or inside packets of
the same input, and the way such dependencies are removed after appropriate
pipeline modifications.

Chapter 6 introduces virtual channels together with the flow control mechanism
and the buffering architectures needed to support their operation. Virtual chan-
nels correspond to adding lanes to a street network that allow cars (packets) to
utilize in a more efficient manner the available physical resources. Lanes are
added virtually and the packets that move in different lanes use the physical
channels of the network in a time-multiplexed manner. The interplay of buffering,
flow-control latencies and the chosen flow control mechanism (ready/valid or
credits) are analyzed in detail in this chapter and the requirements of each
configuration are identified.

Chapter 7 introduces the microarchitecture of routers that connect links that sup-
port multiple virtual channels. The design of virtual-channel-based switching
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connections begins from a simple many-to-one switching module and evolves
to a complete virtual-channel-based router. The operation of a virtual-channel-
based router involves several tasks that are analyzed in detail together with their
dependencies and their interaction with the flow-control mechanism.

Chapter 8 builds on top of Chap.7 and presents the organization of high-speed
allocators that speedup significantly the operation of a baseline single-cycle
virtual-channel-based router. Multiple alternatives are presented that allow either
the reduction of the needed allocation steps or their parallel execution that
effectively reduces the hardware delay of the router.

Chapter 9 deals with the pipelined organization and microarchitecture of virtual-
channel-based routers. The pipelined configurations of the virtual-channel-based
routers are described in a modular manner, beginning from the description of
the structure and operation of three primitive pipeline stages. Then, following a
compositional approach, several multi-stage pipelined configurations are derived
by connecting the presented primitive stages in a plug-and-play manner, which
helps in understanding better the operation of complex organizations and their
associated timing-throughput tradeoffs.

Overall, we expect system, architecture, circuit, and EDA researchers and
developers, who are interested in understanding the microarchitecture of network-
on-chip routers, the associated design challenges, and the available solutions, to
benefit from the material of this book and appreciate the order of presentation that
evolves in a step-by-step manner, from the basic design principles to sophisticated
design techniques.

Xanthi, Greece Giorgos Dimitrakopoulos
June 2014 Anastasios Psarras
Toannis Seitanidis
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Chapter 1
Introduction to Network-on-Chip Design

Computing technology affects every aspect of our modern society and is a
major catalyst for innovation across different sectors. Semiconductor technology
and computer architecture has provided the necessary infrastructure on top of
which every computer system has been developed offering high performance
for computationally-intensive applications and low-energy operation for less
demanding ones. Innovation in the semiconductors industry provided more
transistors for roughly constant cost per chip, while computer architecture exploited
the available transistor budget and discovered innovative techniques to scale
systems’ performance.

We have reached a point where transistor integration capacity will continue to
scale, though with limited performance and power benefit. Computer architects
reacted to this challenge with multicore architectures. The first systems devel-
oped followed an homogeneous architecture, while recent ones move gradually
to heterogeneous architectures that look like complex platform Systems-on-Chip
(SoCs) integrating in the same chip latency-optimized cores, throughput optimized
cores (like GPUs) and some specialized cores that together with the associated
memory hierarchies and memory controllers (mostly for off-chip DRAM) allows
them to cover the needs of many application domains. SoCs for mobile devices
were heterogeneous from the beginning including various specialized components
such as display controllers, camera interfaces, sensors, connectivity modules such
as Bluetooth, WiFi, FM radio, GNSS (Global Navigation Satellite System), and
multimedia subsystems. Programming such heterogeneous systems in a unified
manner is still an open challenge. Nevertheless, any revolutionary development in
heterogeneous systems programming should rely on a solid computation and com-
munication infrastructure that will aid and not limit the system-wide improvements.

Scalable interconnect architectures form the solid base on top of which
heterogeneous computing platforms and their unifying programming environments
will be developed; parallelism is all about cooperation that cannot be achieved
without the equivalent concurrency in communication. The interconnect implements

© Springer Science+Business Media New York 2015 1
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2 1 Introduction to Network-on-Chip Design

the physical and logical medium for any kind of data transfer and its latency,
bandwidth and energy efficiency directly affects overall system performance.
Interconnect design is a multidimensional problem involving hardware and software
components such as network interfaces, routers, topologies, routing algorithms and
communication programming interfaces.

Modern heterogeneous multiprocessing systems have adopted a Network-on-
Chip (NoC) technology that brings interconnect architectures inside the chip. The
NoC paradigm tries to find a scalable solution to the tough integration challenge
of modern SoCs, by applying at the silicon chip level well established networking
principles, after suitably adapting them to the silicon chip characteristics and to
application demands (Dally and Towles 2001; Benini and Micheli 2002; Arteris
2005). While the seminal idea of applying networking technology to address
the chip-level interconnect problem has been shown to be adequate for current
systems (Lecler and Baillieu 2011), the complexity of future computing platforms
demands new architectures that go beyond physical-related requirements and
equally participate in delivering high-performance, quality of service, and dynamic
adaptivity at the minimum energy and area overhead (Bertozzi et al. 2014; Dally
et al. 2013).

The NoC is expected to undertake the expanding demands of the ever increasing
numbers of processing elements, while at the same time technological and appli-
cation constraints increase the pressure for increased performance and efficiency
with limited resources. Although NoC research has evolved significantly the last
decade, crucial questions remain un-answered that call for fresh research ideas and
innovative solutions. Before diving in the details of the router microarchitecture that
is the focus of this book, we will briefly present in this chapter the technical issues
involved in the design of a NoC as a whole and how it serves its goal for offering
efficient system-wide communication.

1.1 The Physical Medium

The available resources that the designer has at the physical level are transistors and
wires. Using them appropriately the designer can construct complex circuits that
are designed at different abstraction levels, following either custom or automated
design methodologies. Interconnect architectures should use these resources in the
most efficient manner offering a globally optimum communication medium for the
components of the system.

The wires are used as the physical medium for transferring information between
any two peers. On-chip wires are implemented in multiple metal layers that are
organized in groups (Weste and Harris 2010), as shown in Fig. 1.1. Each group
satisfies a specific purpose for the on-chip connectivity. The first metal layers are
tailored for local connectivity and are optimized for on-chip connections spanning
up to several hundreds of pwm. They offer highly dense connections that allow
thousands of bits to be transferred in close distance. Upper metal layers, are built
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Fig. 1.2 2.5D and 3D integration possibilities for large SoCs

with larger cross sections, that offer lower resistance, and allow transferring bits
in longer distance with lower delay. Due to manufacturing limitations upper metal
layers should be placed further apart and should have a larger minimum width
thus limiting the designer to use less wires per connection bus. Still, the wires that
belong to the upper metal layers can be a very useful resource since they allow
crossing several mms of on-chip distance very fast (Golander et al. 2011; Passas
et al. 2010). In every case, using wisely the density of the upper and the lower
metal layers allows for the design of high-bandwidth connections between any two
components (Ho et al. 2001).

Technology improvement provides the designer with more connectivity. For
example 2.5D integration offers additional across-chip wires with good charac-
teristics allowing fast connections within the same package using the vertical
through-silicon vias of a silicon interposer (Maxfield 2012) as depicted in Fig. 1.2.
On the other hand, 3D integration promises even more dense connectivity by
allowing vertical connections across different chips that are stacked on top of
each other offering multiple layers of transistor and metal connections. Instead
of allowing stacked chips to communicate using wired connections, short-distance
wireless connectivity can be used instead, using, either inductive, or capacitive data
transfer across chips (Take et al. 2014). Finally, instead of providing more wiring
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connections as is the mainstream approach followed so far, several other research
efforts try to provide a better communication medium for the on-chip connections
utilizing on-chip optical connections (Bergman et al. 2014).

1.2 Flow Control

At the system level, using only a set of data wires in a communication channel
between two peers (a sender and a receiver module) is not enough. The receiver
should be able to distinguish the old data sent by the sender from the new data
that it sees at its input. Also, the sender should be informed if the data that has
sent has been actually accepted by the receiver or not. Therefore, some additional
form of information needs to be conveyed across the sender and the receiver
that would allow them to understand when a transaction between them has been
completed successfully. Such information is transferred both in the forward and
in the backward direction, as depicted in Fig. 1.3, and constitutes the flow-control
mechanism.

The flow control mechanism can be limited at the borders of a single wire (called
link-level flow control) or it can be expanded between any source and destination
possibly covering many links and thus called end-to-end flow control (Gerla and
Kleinrock 1980). Figure 1.3 tries to explain graphically the difference between
the local and the global flow control mechanisms. While link-level flow control
is explicitly implemented by the additional flow control wires of the link, end-
to-end flow control can be either explicitly or implicitly implemented in a NoC
environment. Explicit implementation requires several flow control wires arriving
at each node from different destinations, that each one would describe the status
of the corresponding connection. Implicit implementation means that any source or
destination node has a mechanism to understand the status of the other side using the
normal or special messages transmitted between them. Message transmission in this
case, would have used all the intermediate links between the source and destination
pair.

end-to-end data

- -~

-7 Link-Level =~
SRC Flow Control data DST
data
\ data //\{>/' ,
( >—>Q g
\ notify notlfy notn‘y

-
S~ —_——

end-to-end notification

Fig. 1.3 Link-level and end-to-end flow control
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Flow-control strategies are connected in one or in another way with the avail-
ability of buffering positions either at the other end of the link or at the destination.
Therefore, the semantics of the flow-control protocol lead to various constraints
regarding the implementation of the buffering alternatives.

The messages transferred across any two peers depend on the applications
running on the system. Therefore, it is very common the granularity of the messages
that are transferred at the application level to be different from the physical wiring
resources available on the links. The selection of the channel width depends on a
mix of constraints that span from application-level requirements down to physical
chip-level integration limitations.

The messages between a source and a destination can be short and fit the
channel width or can be longer and need to be serialized to many words that
traverse the link in multiple cycles. This attribute should be also reflected to
the flow-control mechanism that decides the granularity to which it allocates the
channels and the buffers at the receive side. Coarse-grained flow control treats each
message (or packet) as an atomic entity, while fine-grained flow control mechanisms
operate at the sub-message (sub-packet) level, allowing parts of the message to be
distributed to several stages.

1.3 Read-Write Transactions

Besides simple data transfers between two IP cores on the same chip, the exchange
of information across multiple IP cores requires the implementation of multiple
interfaces between them that would allow them to communicate efficiently and
implement high-level protocol semantics. In widely accepted interfaces such as
AMBA AXI and OCP-IP, each core should implement distinct and independently
flow-controlled interfaces for writing, and reading from another IP core, including
also interfaces for transferring additional notification messages (ARM 2013; Accel-
era2013). An example of two connected cores via a single channel, where each core
implements the full set of interfaces needed by AXI is shown in Fig. 1.4.

In most cases, where such address-based load/store transactions are used for
the communication of two IPs the interfaces shown in Fig. 1.4 suffice to describe
the needed functionality. The implementation of these interfaces and respect-
ing the rules that come with the associated interconnect protocol, e.g., AXI,
constitute the transaction layer of the network-on-chip communication architecture.
Every transaction is initiated by a core (called the master for this transaction) via
the request interface (read or write) and completed via the corresponding reply
interface, while it may include an additional transaction response. Each transaction
always involves a master and a slave core (that receives and services the request),
while the two peers of a transaction are identified by the address used in the request
and reply interfaces. Transaction-layer communication is an end-to-end operation
between a master and slave and its definition, besides the support for the necessary
physical interfaces, does not constrain the designer on how to implement it.
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Write Data

<— flow control ——{

Write Adr/Cmd

l<— flow control —>

/] Write Response
l<— flow control —>

IP core master interface

IP core slave interface

< Read Data
l<— flow control ——>|

Read Adr/Cmd >
<— flow control —>

Fig. 1.4 An example of master and slave interfaces as needed by the AXI transaction protocol

1.4 Transactions on the Network: The Transport Layer

Directly supporting all the interfaces of the transaction layer in all links of the
system is an overkill that requires an enormous number of wiring resources.
Following the encapsulation principle followed by any network, the required
interfaces can be substituted by transport layer interfaces that exchange packets
of information that include in their headers the information delivered by each
encapsulated interface (Mathewson 2010). Each packet can be either a read or
a write packet consisting of a header word and some payload words.The packet
header encodes the read/write address of the transaction and all other transaction
parameters and control signals included in the original transaction-layer interface.
Also, the header signal should include the necessary identification information that
would guide the packet to its appropriate destination.

1.4.1 Network Interfaces

Interfacing between the transport and the transaction layer of communication is
done at the network interfaces (NIs), located at the NoC periphery. The NI is respon-
sible for both sending packets to the network as well as receiving packets from the
network and after the appropriate manipulation to present it to the connected IP core
according to the semantics of the transaction-layer interface (Saponara et al. 2014).
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Fig. 1.5 Connection of the network interfaces using (a) simple connections to the network or
(b) separate request and reply connections

For example as shown in Fig. 1.5a, the NI connected to a master implements a slave
interface, while a NI connected to slave acts as a master to it. At the network’s side,
the send and receive paths at the edge of the NoC and the NI act as two independent
flow-controlled channels that transfer packets according to the rules imposed by the
transport layer.

The request and the responses of the transaction layer often assume that they
are completely independent and isolated from each other thus eliminating any
logical and architectural dependencies and allowing for deadlock-free operation at
the transaction-protocol level. Enabling this separation by default at the transaction
layers means that the transport and the physical layer provide a packet isolation
mechanism. At the transport layer, this means that different packet classes such as
request and reply packets should not interfere in the network in such a way that
creates dependencies between them that may lead to a deadlock condition.

This can happen by imposing isolation either in space or in time. Isolation in
space means that each packet class uses completely separated physical resources
(separate request/reply channels, different switching mechanism), e.g., like adding
different lanes on a road network for the different types of cars we don’t want to
interfere (see Fig. 1.5b) (Wentzlaff et al. 2007; Kistler et al. 2006). On the other
hand, isolation in time means that different time slots are used by different packet
classes. This time-sharing mechanism is equivalent to emulating the different lanes
of a road network by virtual lanes, called virtual channels that each one appears at
the physical channel in a different time instance (Dally 1992).

Any isolation mechanism implemented either in space or in time can be also
used for providing deadlock-free routing for the packets travelling in the network.
A routing deadlock can happen when a set of packets request access to already
allocated channels and the chain of dependencies evolve in a cyclic manner that
blocks any packet from moving forward (Duato et al. 1997).



8 1 Introduction to Network-on-Chip Design
1.4.2 The Network: The Physical Layer

The packets generated by the NIs reach their destination via a network of routers and
links that are independently flow-controlled and form an arbitrary topology (Balfour
and Dally 2006; Kim et al. 2007). Each router, in parallel to the network links, can
connect to one or multiple NIs thus allowing to some of the cores of the system to
communicate locally without their data to enter the network (Kumar et al. 2009).

At the network, the main issues that need to be resolved is handling connectivity
and contention. Connectivity means that any two IP cores connected to the network
via their NIs should be able to exchange information irrespective of their physical
placement on the chip. Contention on the other hand is the result of offering
connectivity via shared channels. Handling contention at the physical layer requires
arbitration, multiplexing and buffering. In the example shown in Fig. 1.6, many
IP cores are eligible to access the memory controller (RAM). However, in each
clock cycle only one of them will actually transfer its data to it. The selection of
the winning IP core is done by the arbitration logic and the movement of data is
done via the switching multiplexers that exist inside each router. The IPs that lost in
arbitration keep their data/packets in local buffers waiting to be selected in the next
arbitration rounds.

While link-level flow control enables lossless operation across a sender and a
receiver in a one-to-one connection, and arbitration and multiplexing enable sharing
a link by many peers, real networks involve more complex switching cases that
involve many to many connections. Each router should concurrently support all
input-output permutations and solve the contention to all outputs at once respecting
also the flow-control policy of the output links. Establishing a path between any
source and destination of a complex network topology is a matter of the routing
algorithm that is either implemented completely at the NIs or by the routers in a
step-by-step and distributed manner.

Fig. 1.6 A network-on-chip consisting of routers and links that reach the system’s modules via
the network interfaces (NI)
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1.5 Putting It All Together

Initially assume that the CPU of the example system shown in Fig. 1.7 wants to
read from an address that is stored in a memory in the other side of the chip. The
NI of the CPU packetizes the read transaction including all the necessary control
and addressing information that will allow the read request of the CPU to reach
the memory controller. The NI acting as a packet source sends the read request
packet to the first router. The router parses the header of the packet and understands
to which output it should forward the incoming packet. Assuming that no other
packet wants to leave from the same output and there is buffer space available to
the next router, the first router forwards the packet to the next router. The following
router will execute exactly the same tasks and finally the packet will reach the NI
of the memory (RAM). The NI of the RAM parses the incoming packet and presents
the read transaction to the slave memory controller. The memory (slave) produces
the requested data and tries to send it back to the master that requested them. The
NI of the RAM packetizes the reply data and using the network of routers allows
the reply packet to reach the NI of the CPU (master). The CPU gets the necessary
data in the appropriate interface of the transaction-layer protocol.

Using this network of routers multiple transactions could have completed in
parallel between different master and slave pairs. When two or more packets
want to move using the same link, the router solves the contention and serializes
appropriately the requesting packets.

As in any network, the fundamental operation of a NoC is based on protocol
layering that allows the decomposition of the network’s functionality to simpler
tasks, hides the implementation details of each layer and enables the network
resources to be shared by allowing multiple transactions to execute on the same
communication medium.

Following Fig. 1.8, each layer of the network acts as a service provider to the
higher layers while it acts as a service user of the lower layers. Each layer can
be implemented, optimized, and upgraded independently from the other layers
thus allowing for maximum flexibility at network design and SoC integration
phases. The main benefit of this layered design approach is that multiple different
implementations of a layer can exist depending on the application domain and the

Fig. 1.7 Transfer of information across the network between two system’s cores
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Fig. 1.8 Layered approach in network-on-chip design

technology node used for the system. For example, a network can employ different
link widths and flow control mechanisms (Mishra et al. 2011) or even clocking at
the physical layer without affecting the operation of the transport and transaction
layers of communication.

1.6 Take-Away Points

The Network-on-chip paradigm solves the problem of on-chip communication
by applying at the silicon chip level well established networking principles,
after suitably adapting them to the silicon chip characteristics and to application
demands. Network-on-chip design evolves in a layered approach that allows the
transformation of abstract load/store transactions to packets of bits that travel in
the network following the correct path from their source to their destination. The
transformation between transactions and packets is done at the network interfaces,
while the routers provide arbitrary lossless connectivity between inputs and outputs
and allow for the implementation of arbitrary network topologies.



Chapter 2
Link-Level Flow Control and Buffering

The simplest form of a network is composed of a single link with one sender and one
receiver. In parallel to the data wires, the sender and the receiver need to exchange
some extra information that will allow them to develop a common understanding on
the intentions of each side. Figure 2.1a shows a sender and a receiver that besides
the data wires drive two extra wires, a ready and a valid bit, that are responsible for
co-ordinating the flow of data from one side to the other.

When the sender wants to put new data on the link it asserts the valid signal. The
receiver samples new data from the link only when it sees valid = 1. If the sender
wants to stall transmission it just drives the valid signal to 0.

Equivalently, at the other side of the link, the receiver may stall too. If the sender
is not aware of the receiver’s stall, it will provide new words on the link that will not
be sampled by the receiver and destroyed by the subsequent words transmitted by
the sender. Therefore, a mechanism is required that will inform the sender for the
receiver’s availability to receive new words. This is achieved by the ready signal.
Any communication takes place only when the receiver is ready to get new data
(ready = 1) and the sender has actually sent new data (valid = 1). When the receiver
is not ready (ready = 0), the data on the link are not sampled and they should not
change until the receiver resumes from the stall. The sender locally knows that when
valid = 1 and ready = 1 the transmitted work is correctly consumed by the receiver
and can send a new one.

The different values of the ready/valid signals put the link, between the sender
and the receiver, in three possible states:

e Transfer: when valid = 1 and ready = 1, indicating that the sender is providing
valid data and the receiver is accepting them.

* Idle: when valid = 0, indicating that the sender is not providing any valid data,
irrespective the value of the ready signal.

e Wait: when valid = 1 and ready = 0, indicating that the sender is providing data
but the receiver is not able to accept it. The sender has a persistent behavior and
maintains the valid data until the receiver is able to read them.

© Springer Science+Business Media New York 2015 11
G. Dimitrakopoulos et al., Microarchitecture of Network-on-Chip Routers:
A Designer’s Perspective, DOI 10.1007/978-1-4614-4301-8_2
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Fig. 2.1 (a) A flow-controlled channel with ready/valid handshake and (b) an example of
transferring of three words between the sender and the receiver

Figure 2.1b shows an example of data transfers between a sender and a receiver
on a flow-controlled link. In cycle 2, the sender has a valid word on its output
(wordl), but the receiver cannot accept it. The channel is in wait state. In cycle
3, data transfer actually happens since the sender and the receiver independently
observe the channel’s valid and ready signals being true. In cycle 4, the channel is
in idle state since the receiver is ready but sender does not offer valid data. Channel
state changes in cycle 5, where the receiver is ready and word2 is immediately
transferred. The same happens in the next cycle. The sender is not obliged to wait
for the ready signal to be asserted before asserting the valid signal. However, once
valid data are on the link they should not change until the handshake occurs.

In this example, and in the rest of the book we assume that data transfer occurs
at the edges of the clock and all communicating modules belong to the same clock
domain, which is a reasonable assumption and holds for the majority of the cases.
When the sender and the receiver belong to different clock domains, some form
of synchronization needs to take place before the receiver actually receives the
transmitted word. A concrete description synchronization-related issues can be
found in Ginosar (2011).

2.1 Elastic Buffers

The ready/valid handshake allows the sender and the receiver to stop their operation
for an arbitrary amount of time. Therefore, some form of buffering should be
implemented in both sides to keep the available data that cannot be consumed during
a stall in either side of the link.

The elastic buffer is the most primitive form of a register (or buffer) that
implements the ready/valid handshake protocol. Elastic buffers can be attached to
the sender and the receiver as shown in Fig.2.2. The EB at the sender implements
a dual interface; it accepts (enqueues) new data from its internal logic and transfers
(dequeues) the available data to the link, when the valid and ready signal are both
equal to 1. The same holds for the EB at the receiver that enqueues new valid data
when it is ready and drains the stored words to its internal logic (Butts et al. 2007).
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Fig. 2.2 An elastic buffer attached at the sender and the receiver’s interfaces

data_in —————— —————> data_out
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valid_in pLISh pop ready_in
ready_out full empty valid_out

Fig. 2.3 An elastic buffer built around an abstract FIFO queue model

In an abstract form an EB can be built around a FIFO queue. An abstract FIFO
provides a push and a pop interface and informs its connecting modules when
it is full or empty. Figure 2.3 depicts how an abstract FIFO can be adapted to
the ready/valid protocol both in the upstream and the downstream connections.
The abstract FIFO model does not provide any guarantees on how a push to a
full queue or a pop from an empty queue is handled. The AND gates outside the
FIFO provide such protection. A push (write) is done when valid data are present
at the input of the FIFO and the FIFO is not full. At the read side, a pop (read)
occurs when the upstream channel is ready to receive new data and the FIFO is
not empty, i.e., it has valid data to send. In both sides of the EB we can observe
that a transfer to/from the FIFO occurs, when the corresponding ready/valid signals
are both asserted (as implemented by the AND gates in front of the push and pop
interfaces).

2.1.1 Half-Bandwidth Elastic Buffer

Using this abstract representation we can design EBs of arbitrary size. The simplest
form of an EB can be designed using one data register and letting the EB practically
act as a 1-slot FIFO queue. Besides the data register for each design we assume the
existence of one state flip-flop F that denotes if the 1-slot FIFO is Full (F=1) or
Empty (F = 0). The state flip-flop actually acts as an R-S flip flop. It is set (S) when
the EB writes a new valid data (push) and it is reset (R) when data are popped out
of the 1-slot FIFO. Figure 2.4 depicts the organization of the primitive EB including
also its abstract VHDL description. The AND gates connecting the full/empty
signals of the EB and the incoming valid and ready signals are the same as in the
abstract implementation shown in Fig.2.3. Any R-S register can be implemented
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Fig. 2.4 The primitive 1-slot elastic buffer
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Fig. 2.5 Data transfer between two flow-control channels connected via a half-bandwidth elastic
buffer

using simple registers after deciding on how the circuit will function when R
and S are both asserted (giving priority to R, giving priority to S or keeping the
register’s old value). For the implementation shown in Fig. 2.4, we assume that set
(write) has the highest priority although read (R) and write (S) cannot be asserted
simultaneously.

The presented EB allows either a push or a pop to take place in each cycle,
and never both. This characteristic imposes 50 % throughput on the incoming and
the outgoing links, since each EB should be first emptied in one cycle and then
filled with new data in the next cycle. Thus, we call this EB a Half-Bandwidth EB
(HBEB). A running example of data transfers that pass through a HBEB is shown
in Fig. 2.5. The HBEB, although slower in terms of throughput, is very scalable in
terms of timing. Every signal out of the HBEB is driven by a local register and
no direct combinational path connects any of its inputs to any of its outputs, thus
allowing the safe connection of many HBEB in series.
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2.1.2 Full-Bandwidth 2-Slot Elastic Buffer

The throughput limitation of HBEB can be resolved by adding two of them in each
EB stage and using them in a time-multiplexed manner. In each cycle, data are
written in one HBEB and read out from the second HBEB thus giving the impression
in the upstream and the downstream channel of 100 % of write/read throughput.
The design of the 2-slot EB that consists of two HBEBs needs some additional
control logic that indexes the read and writes position; the organization of the 2-slot
EB is shown in Fig. 2.6 along with its abstract VHDL description. When new data

2-slot EB

E tail head

pR—— E.B Ly read
in_ready <—
Y 2 out_ready
[}
. . K .
in_valid out_valid
in_data X out_data
- =

>HBEB > >

valid_out <= full1(0) or full(l);
ready_out <= not(ful1(0)) or not(full(l));
data_out <= data(Chead);

process(clk)
begin
if rising_edge(c1k) then
-- write
if valid_in="1" and full(tail)="0" then
full(tail) <= '1';
data(tail) <= data_in;
tail <= not(tail);
end if;
-- read
if ready_in="1"' and full(head)="1"' then
full(head) <= '0';
head <= not(head);
end if;
end if;
end process;

Fig. 2.6 The organization and the abstract VHDL description of a full-throughput 2-slot EB using
two HBEBs in parallel that are accessed in a time interleaved manner as guided by the head (for
read) and tail pointers (for write)
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Fig. 2.7 Data transfer between two flow-control channels connected via a 2-slot elastic buffer that
consists of a parallel set of HBEBs

are pushed in the buffer they are written in the position indexed by the 1-bit tail
pointer; on the same cycle the tail pointer is inverted pointing to the next available
buffer. Equivalently, when new data are popped from the buffer, the selected HBEB
is indexed by the 1-bit head pointer. During the dequeue the head pointer is inverted.
The 2-slot EB has valid data when at least one of the HBEB holds valid data and it
is ready when at least one of the two HBEBs is ready. The incoming valid and ready
signals are transferred via de-multiplexers to the appropriate HBEB depending on
the position shown by the head and tail pointers.

In overall the 2-slot EB offers 100 % throughput of operation, fully isolates
the timing paths between the input and output handshake signals and constitutes
a primitive form of buffering for NoCs. A running example of the 2-slot EB
connecting two channels is shown in Fig.2.7.

2.1.3 Alternative Full-Throughput Elastic Buffers

Full throughput operation does not need necessarily 2-slot EBs and can be achieved
even with 1-slot buffers that introduce a throughput-timing scalability tradeoff. The
1-slot EBs presented in this section can be designed by extending the functionality
of the HBEB in order to enable higher read/write concurrency.

The first approach increases the concurrency on the write port (push) of the
HBEB. New data can be written when the buffer is empty (as in the HBEB) or if it
becomes empty in the same cycle (enqueue on full if dequeue in the same cycle).
Adding this additional condition in the write side of the HBEB results in a new
implementation shown in Fig. 2.8 and called pipelined EB (PEB) according to the
terminology used in Arvind (2013). The PEB is ready to load new data even when
at Full state, given that a pop (ready_in) is requested in the same cycle, thus offering
100 % of data-transfer throughput.

The second approach, called a bypass EB (BEB), offers more concurrency on the
read port. In this case, a pop from the EB can occur even if the EB does not have
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Fig. 2.8 The pipelined EB that offers full throughput of data transfer and introduces direct
combinational paths between ready_in and ready_out backward notification signals

data_out <= data_in when full='0' else
data_r;
readv in valid_out <= full or valid_in;
v ready_out <= not(full);

A

process(c1k)
valid_out  begin
if rising_edge(clk) then
if ready_in='1l"' then

> -- read
valid_in full <= '0';
else
ready_out data_out -- write
» full <= valid_in;
data_in D Q f?dd;:; reg
9 data_r <= data_out;
> end if;
end process;

Fig. 2.9 The bypass EB that offers full throughput of data transfer and introduces direct
combinational paths between data_in (valid_in) and data_out (valid_out) forward signals

valid data, assuming that an enqueue is performed in the same cycle (dequeue on
empty if enqueue). In order for the incoming data to be available to the output of
the BEB on the same cycle, a data bypass path is required as shown in Fig.2.9. The
bypass condition is only met when the EB is empty. In the case of the BEB, the
priority of the R-S state flip flop is given to Reset.

Both buffers solve the low bandwidth problem of the HBEB and can propagate
data forward at full throughput. However, certain handshake signals propagate via
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a fully combinational logic path. This characteristic is a limiting factor in terms of
delay since in large pipelines of EBs, possibly spanning across many NoC routers,
the delay due to the combinational propagation of the handshake signals may exceed
the available delay budget.

The design of a 2-slot EB can be alternatively achieved by connecting in series
a pair of bypass EB and a pipelined EB. This organization leads to the designs
presented in Cortadella et al. (2006) where the 2-slot EB have been derived using
FSM logic synthesis. Also, in the same paper, it was shown how to implement a
2-slot EB using 2 latches in series, a main and an auxiliary one, by controlling
accordingly the clock phases, and the transparency of each latch.

2.2 Generic FIFO Queues

Even if the sender and the receiver can be “synchronized” by exchanging the
necessary flow control information via the ready/valid signals, the designer still
needs to answer several critical questions. For example, how can we keep the sender
busy before the receiver is stalled? The direct answer to this question is to replace
simple 2-slot EBs with larger FIFO buffers that will store many more incoming
words and implement the same handshake. In this way, when the receiver is stalled
the sender can be kept busy for some extra cycles. If the receiver remains stalled for
a long period of time then inevitably all the slots of the buffer will be occupied and
the sender should be informed and stop transmission. Actually, FIFOs are needed to
absorb any bursty incoming traffic at the receiver and effectively increase the overall
throughput, since the network can host a larger number of words per channel before
being stalled.

Larger FIFOs can be designed by adding more HBEBs in parallel and by
enhancing the tail and head pointers to address a larger set of buffer positions
for a push or a pop, respectively (Fig.2.10). When new data are pushed in the
FIFO they are written in the position indexed by the tail pointer; in the same cycle
the tail pointer is increased (modulo the size of the FIFO buffer) pointing to the
next available buffer. Equivalently, when new data are popped from the FIFO, the
selected EB is indexed by the head pointer. During the dequeue the head pointer
is increased (modulo the size of the FIFO buffer). The ready and valid signals sent
outside the FIFO are generated in exactly the same way as in the case of the 2-
slot EB. If the head and tail pointers follow the onehot encoding, their increment
operation does not include any logic and can be implemented using a simple cyclic
shift register (ring counter).

Designing a FIFO queue using multiple HBEBs in parallel can scale efficiently
to multiple queue positions. However, the read (pop) path of the queue involves a
large multiplexer that induces a non-negligible delay overhead. This read path can
be completely isolated by adding a 2-slot EB at the output of the parallel FIFO,
supported also by the appropriate bypass logic shown in Fig. 2.11. When the FIFO
is empty, data are written to the frontmost 2-slot EB. The parallel FIFO starts to fill
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valid_out <= or(full);
ready_out <= or(not(full);
data_out <= data(head);

process(c1k)
begin
if rising_edge(c1k) then
-- write
if valid_in="1"' and full(tail)="0" then
full(tail) <= '1';
data(tail) <= data_in;
tail <= tail+l;
end if;
-- read
if ready_in='1"' and full(head)='1" then
full(head) <= '0';
head <= head+1;
end if;
end if;
end process;

Fig. 2.10 The organization of a FIFO queue using many HBEBs in parallel and indexing the push
and pop operations via the tail and head pointers

with new data once the output EB becomes full. During a read the output interface
checks only the words stored in the EB. When the output EB becomes empty,
automatically data is transferred from the parallel FIFO to the output EB without
waiting any event from the output interfaces. The output EB should be seen as an
extension of the capacity of the main FIFO by two more positions.

For large FIFOs the buffer slots can be implemented by a two-port SRAM array
that supports two independent ports one for writing (enqueue) and one for reading
(dequeue). The read and write addresses are driven again by the head and tail
pointers and the control FSM produces the signals needed to interface the FIFO
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Fig. 2.11 A bypassable FIFO extended by a 2-slot EB to isolate the read delay path of the FIFO
from the rest modules of the system

with other system modules. SRAM-based buffers offer higher storage density than
the register-based implementation. In small buffers of 4-8 slots little benefits are
expected and both design options have the same characteristics.

2.3 Abstract Flow Control Model

Having described in detail the ready/valid flow control mechanism and the associ-
ated buffer structures that will be used in the developed NoC routers, in this section,
we will try to build a useful abstraction that will help us understand better the
operation of flow control and to clarify the similarities and differences between the
various flow control policies that are used widely today in real systems.

Every FIFO or simpler EB with 1 or 2 slots that implements a ready/valid
handshake can be modeled by an abstract flow-control model that includes a buffer
of arbitrary size that holds the arriving data and a counter. The abstract model for a
ready/valid flow-controlled channel is depicted in Fig. 2.1a. The counter counts the
free slots of the associated buffer, and thus, its value can move between O and the
maximum buffer size. The free-slots counter is updated by the buffer to increase its
value, when a new data item has left the buffer (update signal), and also notified by
the link to reduce its value, when a new data item has arrived at the buffer (incoming
valid signal). When the valid and the update signal are asserted in the same cycle the
number of free slots remains unchanged. The counter is responsible for producing
the ready signal that reveals to the sender the availability of at least one empty
position at the buffer.

The counter is nothing more than a mechanism to let the receiver manage the
available buffer slots it has available. In the buffers we have presented so far, this
counting procedure is implicitly implemented by the full flags of each EB or the
head and tail pointers.

Following the developed abstraction, we observe that there is no need for the
free slots counter to be associated directly with the receive part of the link and can
be placed anywhere, as shown in Fig. 2.12b, assuming that the connections with the
receiver (status update when a new data item leaves the buffer) and with the sender



2.4 Credit-Based Flow Control 21

a free slots
ready E counter
= ap <—| update
TTH] valid L
[ 1] data | I.I
sender receiver
free slots
ready 3 counter
= +<<—| update
1] vald i 1T
[ 1] data | | .I
sender receiver
¢ free slots
ready [ counter
== _aE |update
TTH] ! valid T
[ 1] data | I.I
sender receiver

Fig. 2.12 An abstract model of a ready-valid flow-controlled link including a free-slot counter (a)
at the receiver’s side, (b) in the middle and (c) at the sender

(ready signal that shows buffer availability and valid signal that declares the arrival
of a new data item at the receiver’s buffer) do not change.

Equivalently, we could move this counter at the sender’s side (see Fig.2.12c).
Then, the valid signal from the sender and the ready signal from the counter are
both local to the sender. The read signal tells to the sender which it can send a new
data item, while the receiver sends to the counter only the necessary status update
signals that denote the removal of a data item from the receiver’s buffer. Assuming
that the counter reflects the number of empty slots at the receive side, it should be
incremented when it receives a new status update from the receiver and decremented
when the sender wants to transmit a new data item. Also, the receiver is ready to
accept new data when the value of the free slots counter is larger than zero.

2.4 Credit-Based Flow Control

When the counter is attached to the sender, the derived flow control policy is called
credit-based flow control and gives to the sender all the necessary knowledge to
start, stop, and resume the transmission (Kung and Morris 1995; Dally and Towles
2004). In credit-based flow control, the sender explicitly keeps track of the available
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buffer slots of the receiver. The number of available slots is called credits and they
are stored at the sender side in a credit counter. When the number of credits is larger
than zero then the sender is allowed to send a new word consuming one available
credit. At each new transmission the credit counter is decremented by one reflecting
that one less buffer slot at the receive side is now available. When one word is
consumed at the receive side, leaving the input buffer of the receiver, the sender is
notified via a credit update signal to increase the available credit count.

An example of the operation of the credit-based flow control is shown in
Fig.2.13. At the beginning the available credits of the sender are reset to 3 meaning
that the sender can utilize at most 3 slots of the receiver’s buffer. When the number of
available credits is larger than O the sender sends out a new word. Whenever the sink
of the receiver consumes one new word, the receiver asserts a credit update signal
that reaches the sender one cycle later and it increases the credit counter. The credit
updates, although arrive with cycle delay, they are immediately consumed in the
same cycle. This immediate credit reuse is clearly shown in the clock cycles where
the available credits are denoted as 0*. In those clock cycles, the credit counter that
was originally equal to O stays at 0, since, it is simultaneously incremented due to
credit update and decremented due to the transmission of a new word. When the
words are not drained at the sink they are buffered at the receiver. No word can be
dropped or lost since each word reaches the receiver after having first consumed
the credit associated with a free buffer position.

2.5 Pipelined Data Transfer and the Round-Trip Time

When the delay of the link exceeds the desired clock period we need to cut the
link to smaller parts by inserting the appropriate number of pipeline registers. In
this case, it takes more cycles for the signals to propagate in both the forward and
the backward direction. This may also happen when the internal operation of the
sender and the receiver, requires multiple cycles to complete as done in the case of
pipelined routers that will be elaborated in the following chapters.

An example of a flow-controlled data transmission over a pipelined link is shown
in Fig.2.14, where the valid and ready pass through the pipeline registers at the
middle of link before reaching the receiver and the sender, accordingly. The sender,
before sending new data on the link by asserting its valid signal, should check its
local ready signal, i.e., the delayed version of the ready generated by the receiver.'
If the sender asserted the valid signal irrespective the value of the incoming ready
signal, then either the transmitted words would have been dropped, if the receiver’s
buffer was full, or, multiple copies of the same data would have been written in
the receiver, if buffer space was available. The second scenario occurs because the
sender is not aware of the ready status of the receiver and it does not dequeue the
corresponding data.

I'This is not needed in the case that two flow-controlled buffers communicate directly without any
intermediate pipeline registers.
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Fig. 2.13 An example of data transfers on a link between a sender and a receiver governed by

credit-based flow control. The figure includes the organization of the sender and receiver pair and
the flow of information in time and space

When the receiver stops draining incoming data, 5 words are assembled at its
input queue. If the receiver supported fewer positions some of them would have been
lost and replaced by newly arriving words. As shown by the example of Fig. 2.14, in
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Fig. 2.14 An example of data transfers on a pipelined link between a sender and a receiver
governed by ready/valid flow control

the case of pipelined links, the FIFO buffer at the receiver’s side needs to be sized
appropriately in order to guarantee safe lossless operation, i.e., every in flight word
finds a free buffer slot to use.

2.5.1 Pipelined Links with Ready/Valid Flow Control

The latency experienced by the forward and the backward flow control signals affect
not only the correct operation of the link but also the achieved throughput, i.e., the
number words delivered at the receiver per cycle. The behavior of the flow control
mechanism and how the latency and the slots per buffer interact will be highlighted
in the following paragraphs.

Let Ly and L, denote the number of pipeline registers in the forward and
in the backward direction, respectively, in the case of a pipelined flow-controlled
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Fig. 2.15 An abstract model of a pipelined link with L ; registers in the forward direction and L,
registers in the backward direction governed by the ready/valid flow control

link.?> The equivalent flow-control model for the ready/valid handshake is shown
in Fig.2.15. The slot counter that belongs to the receiver measures the number of
available buffer slots. The slot counter gets updated (incremented) with zero latency,
while it gets decremented (a new valid word arrives at the receiver) with a delay of
Ly cycles relative to the time that a new word has left the sender. Also, the ready
signal that is generated by the slot counter reaches the sender after L, cycles. Please
note that once the ready signal reaches the sender it can be directly consumed in the
same cycle thus not incurring any additional latency. Equivalently, at the receiver,
the arrival of a new word can stop the readiness of the receiver in the same cycle.
This behavior at the sender and at the receiver is depicted by the dotted lines in
Fig.2.15.

At first, we need to examine how many words the buffer of the receiver can host
to allow for safe and lossless operation. Let’s assume that the receiver declares its
readiness via the ready signal; ready is set to 1 when there is at least one empty slot,
e.g., freeSlots> 0. When the buffer at the receiver is empty, the counter asserts the
ready signal. The sender will observe the readiness of the receiver after L, cycles
and immediately starts to send new data by asserting its valid signal. The first data
item will arrive at the receiver after Ly + L; cycles. This is the first time that
the receiver can react by possibly de-asserting its ready signal. If this is done, i.e.,
ready =0, then under the worst case assumption, the receiver should be able to
accept the Ly — 1 words that are already on the link plus the L, words that may
arrive in the next cycles; the sender will be notified that the receiver is stalled L,
cycles later. Thus, once the receiver stalls, it should have at least L y + Ly, buffers
empty to ensure lossless operation.

Even if we have decided that L + L, positions are required for safe operation
the condition on which the ready signal is asserted or de-asserted needs further
elaboration. Assume for example that the receiver has the minimum number of
buffer slots required, i.e., Ly + L;,. We have shown already that once the ready
signal makes a transition from 1 to 0 it means that in the worst case L s + L, words

The internal latency imposed by the sender and receiver can be included in Ly and L,
respectively.
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may arrive. Therefore, if all the available words are equal to L r + L the ready is
asserted only when the buffer at the receiver is empty, i.e., freeSlots=L y + L.

Although this configuration allows for lossless operation, it experiences limited
transmission throughput. For example, assume that the receiver is full, storing
Ly + L, words, and stalled. Once the stall condition is removed, the receiver starts
dequeuing one word per cycle. The ready signal is equal to O until all L s + L
words are drained. In the meantime, although free slots exist at the receiver, they
are left unused until the sender is notified that the stall is over and new words can
be accepted. After L s + Ly cycles, all Ly + Ly slots are emptied and the ready
signal is set to 1. However, any new words will only arrive after L ; + L cycles.
During this time frame the receiver remains idle having its buffer empty. Therefore,
in a time frame of 2(L s 4 L;) cycles the receiver was able to drain L  + L; words.
This behavior translates to a throughput of 50 %.

More throughput can be gained by increasing the buffer size of the receiver to
Ly + Ly + k positions. In this scenario we can relax the condition for the assertion
of the ready signal to: ready = 1 when freeslots> L ¢ + L, (from just equality in the
baseline case). Therefore, if the buffer at the receiver is full with L ; + L +k words
at time Zo, L y + L, words should leave to allow the ready signal to return to one.
L ¢ + Ly cycles later the first new words will arrive due to the assertion of the ready
signal. In the meantime the receiver will be able to drain k more words. Therefore,

the throughput seen at the output of the receiver is % The throughput can
reach 100% when k = L, + Ly; the receiver has 2(L y + L;) buffer slots and
ready is asserted when the number of empty slots is at least L s + L.

The derived bounds hold for the general case. However, if we take into account
some small details that are present in most real implementations the derived bounds
can be relaxed showing that the ready/valid handshake protocol achieves full
throughput with slightly less buffer requirements.

First the minimum number of buffers required to achieve lossless operation can
drop from Ly + Lj to Ly + Lj — 1. This reduction is achieved since a ready =0
that reaches the sender can stop directly the transmission of a new word (as shown
by the dotted lines of Fig. 2.15) at the output of the sender. Therefore, the actual in-
flight words in the forward path are L r — 1 and not L s since the last one is actually
stopped at the output register of the sender itself. Therefore, the ready signal out of
the receiver is computed as follows: ready = 1 when freeSlots = L ; + L, —1 else 0.

Second, when a new word is dequeued from the receiver the slot counter is
updated in the same cycle. In this case, when a receiver with k + (L s + L — 1)
buffers is full and starts dequeuing one word per cycle, it will declare its readiness
the same time that it dequeues the (L y + Lj, — 1)th word. The first new word due
will arrive L y + L, — 1 cycles later. Thus, during 2(L r + L, — 1) clock cycles the
receiver can drain k + (L ; + Ly — 1) words. When k = Ly + L; — 1 the receiver
can achieve 100 % throughput; when the L y + L, — 1th word is dequeued the first
new word is enqueued thus leaving no gaps at the receiver’s buffer.
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Primitive Cases

The derived results can be applied even to the simple EBs presented in the beginning
of this chapter. An equivalent flow-control model for a 2-slot EB that operates under
ready/valid handshake experiences a forward latency of L ; = 1 due to the register
present at the output of the HBEBs and a backward latency L, = 1, since the
ready signal is produced by the full flags of the HBEBs. According to the analysis
presented, this configuration needs L s + L, — 1 = 1 buffer for lossless operation
and 2 times that for 100 % throughput as already supported by the 2-slot EB. The
configuration that uses only 1 slot, while keeping L  and L, equal to 1, corresponds
to the HBEB that offers lossless operation while allowing only for 50 % of link-level
throughput.

The derived model does not cover the degenerate case of 1-slot pipelined and
bypass EBs. For example even if the pipelined EB has L; = 0 (fully combinational
backpressure propagation) and Ly = 1, the ready backepressure signal spans
multiple stages of buffering and extend the borders of a single sender-receiver pair.

2.5.2 Pipelined Links with Elastic Buffers

As shown so far the use of simple pipeline registers between two flow-controlled
endpoints increases the round-trip time of the flow control mechanism and neces-
sitates the use of additional buffering at the receiver to accommodate all in-flight
words. In a NoC environment, it is possible and also desirable to replace the forward
and backward pipeline registers with flow-controlled EB stages, thus limiting the
flow-control notification cycle per stage (Concer et al. 2008; Michelogiannakis and
Dally 2013).

Figure 2.16a shows a pipelined link that uses only pipeline registers and needs
10 buffers at the receiver for achieving 100 % throughput and safe operation. Recall
that in this pipelined configuration the sender sets valid = 1 when it observes locally
a ready signal equal to 1 to avoid the receiver writing by mistake multiple copies
of the same word. If one stage of the pipeline is transformed to an EB, as shown in
Fig.2.16b, then the round-trip time at the second part of the link reduces by 2 and
thus a buffer with 6 slots suffices for the receiver. By extending this approach to all
pipeline stages, the same operation can be achieved by the architecture shown in
Fig.2.16¢ where the pipelined link consists of only EBs. In this case, the buffer at
the receiver can have only a 2-slot EB, since it experiences alocal L y = L, = 1 at
the last stage of the link. In overall, this strategy achieves both to isolate the timing
paths by registering both the data and the backpressure signals and to reduce the
total number of buffers required for lossless and full throughput communication. In
fact, in this example, with using only 3 stages of 2-slot EBs and one 2-slot EB at
the receiver achieves the same behavior as in the baseline case of Fig.2.16a using 8
buffers in total that are distributed at the receiver and on the link.
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Fig. 2.16 The replacement of pipeline registers with 2-slot EBs on the link

In general, if k pairs of forward and backward registers are replaced by k 2-slot
EBs, Ly and L, are reduced by k. Thus, the worst case buffering at the receiver
reduces from 2(Ls + Ly — 1) to 2((Ly — k) + (Lp — k) — 1). If we sum to
this number the amount of buffering present on the link, i.e., the k 2-slot EBs, we
end up having 2(L s + L, — 1) — 2k buffers in total (both at the receiver and on
the link). Therefore, under ready/valid flow-control the use of EBs in the place of
pipelining stages distributed across the link is always beneficial in terms of buffering
and should be always preferred.

2.5.3 Pipelined Links and Credit-Based Flow Control

The equivalent flow control model for credit-based flow control on pipelined links
is depicted in Fig. 2.17. In this case, the ready signal produced by the credit counter
and the valid signal that consumes the credits are generated locally at the sender
with zero latency. On the contrary, the credit update signal reaches the credit counter
through L, registers. The same holds also for the data in the forward direction that
pass through L f registers to get to the sender. At this point a critical detail needs to
be pointed out. With ready/valid handshake both the valid signal that decreased the
number of free slots and the associated data had to go through the same number
of registers after leaving the sender. However, in this case, the valid signal that
consumes the credit sees zero latency, while the data arrive at the receiver after L ¢
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Fig. 2.17 The abstract flow-control model of a pipelined link using credit-based flow control

cycles. Therefore, credit consumption and data transmission experience different
latencies. This detail will be extremely useful in understanding how to compute
the required number of buffers for achieving full throughput in pipelined router
implementations described in later chapters.

The throughput of transmission is closely related to the number of credits used
by the sender and the number of clock cycles that pass from the time a credit update
leaves the sender until the first new word that consumes this returned credit reaches
the input buffer of the receiver.

This relation is illustrated by the examples shown in Fig.2.18. In the first case,
the sender has only one credit available (possibly meaning that the receiver has only
1 buffer slot). It directly consumes this credit and sends out a new word in cycle 0.
Once the word reaches the receiver it is immediately drained from the receiver’s
buffer and a credit update is sent in the backward direction. The update needs one
cycle to reach the sender. Immediately the source consumes this credit update by
sending out a new word. Due to the forward and the backward delay of the data
and the credit-update signal, the receiver is utilized only once every 3 cycles. By
increasing the available credits to 2 that directly reflect more slots at the input buffer
of the receiver, this notification gap is partially filled and the throughput is increased
to 2/3. Finally, if the sender has 3 credits available the flow-control notification
loop is fully covered and the transmission achieves 100 % throughput keeping the
receiver busy in each cycle.

In the general case of having a L ; registers in the forward path and L, registers
in the backward (credit update) path the minimum number of buffers needed at the
receiver under credit-based flow control to guarantee lossless operation and 100 %
throughputis L ; + L;. Lossless operation is offered by default when using credit-
based flow control without a minimum buffering requirement, since the sender
does not send anything when there is not at least one available position at the
receiver side. As far as maximum throughput is concerned, when the receiver sends
backwards a credit update, a new word will arrive at the receiver that consumed this
credit after L ; + Ly, cycles (L, cycles are needed for the credit update to reach
the sender plus L ¢ cycles for the new word to reach the receiver). Therefore, the
number of words that will arrive at the receiver in a time window of L r + L cycles
is equal to the number of credit updates sent backwards leading a throughput of
%. Full throughput requires the number of credit updates being equal to
Ly + Lj reflecting an equal number buffer slots at the receiver.
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By changing the available credits relative to the round-trip delay of L s + L;, the
designer can adapt dynamically the rate of communication of each link. This feature
can be easily applied for allowing dynamic power adaptivity both on the NoC links
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as well as the buffers. Switching activity on the links besides data correlations is
directly related to the rate of new valid words appearing on the wires of the link,
while the buffers not used due to less credits can be gated to save dynamic (clock
gating) or idle power (power gating).

2.6 Request—-Acknowledge Handshake and Bufferless
Flow Control

Similar to ready/valid handshake, link level flow control can be implemented using
another 2-wire handshake protocol, called the req/ack protocol (Dally and Towles
2004; Bertozzi and Benini 2004). A request is made by the sender when it wants
to send a new valid word, while an acknowledgment (ack = 1) is returned by the
receiver when the word is actually written at the receiver. Equivalently, when there
is no buffer space available to store the new word a not acknowledgement (ack =0
or nack) is sent back to the sender. With reqg/ack protocol the sender is not aware of
receiver’s buffer status as done in ready/valid or credit-based flow control protocols.
Therefore, every issued request is always optimistic meaning “data are sent”. The
sender after issuing a request has two choices: Either to wait for an ack, possibly
arriving in the next cycles, before placing next available data on the channel or to
actually send new data and manage possible nacks as they arrive.

In the first case that the sender waits for an ack throughput is limited to 50 %
since a new transaction can begin every other cycle (one cycle to request, one cycle
to wait for an ack before trying to send a new piece of data). In the second version,
the sender puts a word in the channel in cycle i as long as an ack was received in
cycle i — 1 referring to a previous transmission. The next cycle, since no ack has
returned the sender prepares a new word to put on the channel. The previous one is
not erased but it is put on hold in an auxiliary buffer. If the receiver acknowledges the
receipt of data, the word in the auxiliary buffer is erased and replaced by the current
data on the channel. If not, the sender understands that the receiver was stalled and
stops transmission. In the next cycles, it continues trying to send its data but now
sends first the data in the auxiliary buffer that have not been acknowledged yet by the
receiver and delays the propagation of new data. This primitive form of speculative
req/ack protocol works just like a 2-slot EB which requires at least 2 extra places to
hold the in-flight data (not acknowledged in this case). For larger round-trip times
it can be proven that req/ack has the same buffering requirements as the ready/valid
protocol (Dally and Towles 2004), unless other hybrid flow control techniques are
employed (Minkenberg and Gusat 2009).

Another flow control strategy that was developed around the idea of minimum
buffering (equal to one register per stage) is bufferless flow control (Moscibroda
and Mutlu 2009). Bufferless flow control is a degenerate case of req/ack flow
control, where data that cannot be written at the receiver (that would have not been
acknowledged) are not kept at the sender and are dropped. In the next cycle, new
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data take their place and some upper-level protocol should care for retrieving the lost
data. Dropping in a NoC environment is of limited importance since the complexity
involved in retrieving the lost data is not substantiated by the hardware savings of
bufferless flow control; if the buffering cost at the sender or the receiver cannot
exceed the cost of one register, 1-slot EBs (or a 2-slot EB implemented with latches)
can be used that allow for lossless and full throughput operation.

2.7 Wide Message Transmission

On-chip processing elements may need to exchange wide piece of information.
Transferring wide messages in a single cycle may require close to thousands of wires
between a sender and a receiver. Such amount of wiring is hard to handle especially
in the case of an automated placement and routing design flow that performs routing
in an unstructured row-based substrate of placed gates and registers. Besides the
physical integration challenges that such wide links may cause, their utilization will
always be under question. In real systems a variety of messages is transferred from
time to time. Small memory request messages can be of the order of tens of bytes
or less, while long reply messages can carry hundreds of bytes. Therefore, making
the links equally wide to the largest message that the system can support is not a
cost effective solution and would leave the majority of the wires undriven most of
the time. Common practice keeps the link width close to the width of the most
commonly used message that is transferred in the system and impose the larger
messages to be serialized and pass the link in multiple clock cycles.

Wide messages are organized as packets of words. The first word, called
the header of the packet, denotes the beginning of the packet and contains the
identification and addressing information needed by the packet, including the
address of its source and its destination. The last word of the packet is called the
tail word and all intermediate words are called the body words. Each packet should
travel on each link of the network as a unified entity since only the header of the
packet carries all necessary information about the packet’s source and destination.
To differentiate from the words of a processor, the words that travel on the network
are described with the term flit (derived from flow-control digit). An example packet
format is depicted in Fig. 2.19.

Figure 2.19 depicts the wires needed in a network-on-chip channel that supports
many flit packets. Besides data wires and necessary flow control signals (ready/valid
is used in this example) two additional wires, e.g., isHead and isTail are needed that
encode the type of the flit that traverses the channel per cycle. isHead and isTail
signals are mutually exclusive and cannot be asserted simultaneously. When they
are both inactive and valid = 1, it means that the channel holds a body flit.

Figure 2.20 depicts the transmission of two 4-flit packets over 3 links separated
by 2 intermediate nodes. During packet transmission, when an output port is free
the received word is transferred to the next output immediately without waiting the
rest words of the packet, i.e., flit transmission is pipelined. The transfer of flits on
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Fig. 2.20 The pipelined flow of the flits of three consecutives packets crossing the links between
three nodes

each link follows the rules of the selected flow control policy independently per
link. Therefore, the buffers at the end of each link should provide the necessary
space for accommodating all incoming flits and offer full transmission throughput.
Store-and-forward required the entire packet to reach each node before initiating
next transmission for the next node.

The requirement of storing and not dropping the incoming flits to intermediate
nodes raises the following question. How much free buffering should be guaranteed
before sending the first word of a packet to the next node? The answer to this
question has two directions. Virtual Cut Through (VCT) requires that the available
downstream buffer slots to be equal to the number of flits of the packet (Kermani
and Kleinrock 1979). With this technique, each blocked packet stays together and
consumes the buffers of only one node since there is always enough room to fit the
whole packet. On the contrary, wormhole (WH) removes this limitation and each
node can host only a few flits of the packet (Dally and Seitz 1986). Then, inevitably,
in the case of a downstream blocking, the flits of the packet will be spread out in the
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buffers of more than one intermediate node. This spreading does not add any other
complication provided that all flits stay in their place and not dropped due to link-
level flow control. The selection of a link-level flow control policy is orthogonal to
either VCT or wormhole-based message flow. Any policy can be selected without
any other complication to the operation of the system. Even if WH does not impose
any limitation on the number of buffers slots required per link, still the round-trip
time of each link sets the lower limit for high throughput data transfer.

The difference in the granularity of buffer allocation, per packet or per flit,
imposed by the two policies is better clarified by the example shown in Fig.2.21.
Each flit moves to the downstream node as long as it has guaranteed an empty
buffer either via ready/valid or credit-based flow control. Both VCT and wormbhole
employ pipelined transfers where each flit is immediately transferred to the next
node irrespective the arrival of the next flits of the packet. When an output of a node
is blocked, the flits continue moving closer to the blockage point until all buffers are
full in front of them and oblige them to stop.

In the case of VCT, each intermediate node is obliged to have at least 5 buffer
slots (equal to the number of flits per packet) that allows a whole packet to be stored
in the blockage point. In the case of WH, arbitrary buffer slots can exist per node
(the minimum number depends on the lossless property of the link-level flow control
protocol). In our WH example, we selected to have 3 buffer slots per node. When
all downstream buffers are full the flits cannot move and remain buffered in the
node they are. In this way, the flits of the packet may occupy the buffers of a path
of intermediate nodes. The way the granularity of buffer allocation (flit or packet
level) affects the operation of NoC routers and how it can be actually implemented
will be clarified in the following chapter.
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2.8 Take-Away Points

Flow control is needed for guaranteeing lossless data transfer between any two
peers and its operation is directly related to the selected buffering architecture.
Buffers at the sender and the receiver can be from simple 1-slot and 2-slot elastic
elements to more sophisticated FIFO queues that can host multiple in-flight words.
Ready/valid and credit-based flow control are equivalent flow control mechanisms
but with different characteristics in terms of their minimum buffering requirements.
Pipelined links that increase the notification cycle of any flow-control mechanism
increase also the minimum buffering requirements for supporting full throughput
transmissions. The transmission of wide messages requires the packetization and
the serialization of each message to packets of smaller flits that travel in the network
one after the other passing all intermediate nodes in multiple cycles.



Chapter 3
Baseline Switching Modules and Routers

Having described the flow of data on a point-to-point link (1-to-1 connection)
and the implications of each design choice, in this chapter, we move one step
forward and describe the operation of modules that allow many to one and many
to many connections. The operation of such modules involves, besides flow control,
additional operations such as allocation and multiplexing that require the addition
of extra control state per input and per output.

In many cases, it is advantageous to allow two or more peers to share the same
link for transmitting data to one receiver. This is a common example in modern
systems like when many on-chip processors are trying to access the same off-chip
memory controller. An example of sharing a link by many peers is shown in Fig. 3.1.
In this example, each input (IP core) generates one packet that is heading towards
the memory controller (receiver). The link cannot accommodate the flits of many
packets simultaneously. Therefore, we need to develop a structure that would allow
both packets to share the wires of the link.

Sharing the wires of the link requires the addition of a multiplexer in front of the
link (at the output of the multiple-input sender). The multiplexer select signals are
driven the arbiter that determines which input will connect to the memory controller.
We have two design options on how to drive the select signals. The arbiter can select
in each cycle a different input or it can keep the selection fixed for many cycles until
one input is able to transmit a complete packet. VCT and WH switching policies
requires that each packet is sent on the link un-interrupted. In other words, once the
head of the packet passes the output multiplexer the connection is fixed until the tail
of the same packet passes from the output port of the sender.

Alternatively, we could change the value of the multiplexer’s select signal on
each cycle, thus allowing flits of different packets to be interleaved on the link on
consecutive cycles. This operation is prohibited for WH and VCT and can be applied
only when more state is kept for the packets stored at the receiver. This extra state
makes the input buffer of the receiver look like a parallel set of independent queues,
called virtual channels, and is the subject of the following book chapters.
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Fig. 3.1 Sharing a memory controller to multiple cores of the chip

The arbiter that drives the select signals of the multiplexer is a sequential
circuit that receives the requests from the inputs and decides which input to grant
based on its internal priority state. The priority state keeps track of the relative
priorities of the inputs using one or more bits depending on the complexity of
the priority selection policy. For example, a single priority bit per input suffices
for round-robin policy, while for more complex weight-based policies, such as
firstcome- first-served (FCFS) or age-based allocation, multi-bit priority state is
required. Round-robin arbitration logic, which is the most widely applied policy
and the easiest to implement, scans the input requests in a cyclic manner beginning
from the position that has the highest priority and grants the first active request. On
the next arbitration cycle, the position that was granted receives the lower priority.
The design details involved in arbiter design can be found in Chap. 4.

In this chapter, we begin our discussion on switching with the simple example
of many inputs sending data to a shared output via a common link and next we will
describe how this simple design can evolve gradually to support multiple outputs,
thus actually deriving a fully fledged NoC router.

3.1 Multiple Inputs Connecting to One Output

The design of a multiple-input to one output connection besides arbitration should
take also into account the output flow control mechanism for guaranteeing that the
flits leaving from each input will find the necessary buffer space in the shared output.

Without loss of generality we assume that each input is attached to the switching
module (arbiter and multiplexer) via a buffer that respects the ready/valid handshake
protocol. The same holds for the output. The output buffer accepts the valid and the
associated data from the output multiplexer and returns to all inputs one ready signal
that declares the availability of buffer space at the output. The buffers at the inputs
and outputs can be either simple 1-slot EBs, or 2-slot ones or even larger FIFOs
that can host many flits. An abstract organization of the multiple-input-one-output
connection is shown in the left upper side of Fig. 3.2.
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Fig. 3.2 The organization of a many-to-one connection including the necessary output and input
state variables as well as the request generation and grant handling logic that merges switching
operations with link-level flow control

Each input wants to send a packet that contains one head flit, a number of body
flits and a tail flit that declares the end of the packet. Since each flit should travel
on the shared link as an atomic entity the link should be allocated to the packet as a
whole: The head flit will arbitrate with the head flits of the other inputs and once it
wins it will lock the access to the output. This lock will be released only by the tail
flit of the packet. Therefore, an output state variable is needed, called outAvailable,
that declares the output’s availability to connect to a new input. The same state bit
exists also at each input and called outLock. When outLock[i] = 1 means that the
ith input has been connected to the output. Following Fig. 3.2, the outAvailable flag
is placed at the output of the switching module (arbiter and multiplexer). This is
the most reasonable placement since the outAvailable state bit is not a characteristic
variable of the output buffer (or the receiver in general) but a variable needed to
guide the arbitration decisions taken locally by the switching module at the sender’s
side.

Each input needs to declare its availability to connect to the output. This is done
via the valid bits of the input buffers. For the head flits, as shown in Fig. 3.2, the valid
bits are first qualified with the outAvailable state bit. If the output is not available, all
valid bits will be nullified or kept alive in the opposite case. Before transferring the
qualified valid bits to the arbiter we need also to guarantee that there is at least one
free buffer slot at the sink. Therefore, the qualified valid bits are masked with the
ready signal of the output that declares buffer availability. After those two masking
steps the valid signals from each input act as requests to the arbiter that will grant
only one of them. Once the arbiter finishes its operation it returns a set of grant wires
that play a triple role.

e They drive the select signals of the output multiplexer that will switch to the
output the flit of the selected input.
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* They set the outLock bit of the winning input. In the next cycles, the body and the
tail flits do not need to qualify their requests again with outAvailable but they are
driven directly from the outLock bit provided that they have valid data to sent.

* They drive the ready_in signals of the inputs. The assertion of the appropriate
ready_in signal will cause a dequeue operation to the corresponding input buffer
since both its valid_out and its ready_in signal will be asserted in the same cycle.
The inputs that did not win will see a ready_in = 0 and thus they will keep their
data in their buffer.

When the tail flit leaves the source it de-allocates the per-input and per-output
state bits outLock[i] and outAvailable, respectively, by driving them to their free
state. Once outAvailable is asserted, the inputs with valid head flits can try to win
arbitration and lock the output for them, provided that there is buffer space available
at the output.

Using this simple configuration, arbitration is actually performed in each cycle
for all flits. However, once outAvailable = 0, meaning that the output has been
allocated to a specific input, and outLock[i] = 1, meaning that the selected input is
the i th one, then only the requests of that input will reach the arbiter. The requests of
the rest inputs will be nullified expecting the output to be released. In the meantime,
the arbiter always grants input i and updates its priority to position i + 1 (next in
round-robin order so that input i has the least priority in the next cycle). During a
packet’s duration from a specific input, the priority of the arbiter will always return
to the same position since only one (and the same) request will be active every
cycle. Once the output is released by the tail of the packet the priority will move to
a different input depending on which input was finally granted.

In many real cases, it is necessary to isolate the timing path of the link from that
of the arbitration and multiplexing. The obvious choice is to add an EB, preferably
with 2 slots, that isolates the timing paths and provides additional buffering
space, i.e., outgoing data can stop independently at the output of the multiplexer.
In this configuration, shown in Fig. 3.3, the ready signals of the output that were
used as qualifiers in the example of Fig.3.2 are replaced by the ready signals
of the intermediate EB. The rest request generation logic remains the same and
the out Available flag is updated when a head/tail flit passes the output of the
multiplexer and moves to the intermediate EB.

] A
outLock outAvailable
request local flow control
generation
ready /. Link
= valid : | = ~
/,—; data
Input #0 from/to other input(s) Intermediate EB Output Buffer

Fig. 3.3 The addition of a local output EB isolates the operation of the switching module from
link traversal
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3.1.1 Credit-Based Flow Control at the Output Link

The baseline architecture involves a buffer at the output module as well as an
optional intermediate one. Assuming that the intermediate buffer is not present
we can re-draw the microarchitecture of the primitive switching element following
the abstract flow control model developed in Chap.2. In this case, illustrated in
Fig.3.4a, the output buffer consists of a data buffer and a free slots counter that
is updated by the output buffer for increasing its value and by the incoming valid
signals from the output of the multiplexer for reducing its value.
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Fig. 3.4 The changes required in order for the switching module to connect to a credit-based flow
controlled link. The output of the switching module may include an additional pipeline register for
isolating the internal timing paths from the link
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Equivalently the slot counter can be moved at the output of the switching module
(at the other side of the link) and act as a local output credit counter as shown in
Fig. 3.4b. The output credit counter mirrors the available buffer slots of the output.
It sends a ready signal to all inputs when the number of available buffer slots at the
output buffer is greater than zero. The inputs qualify their valid signals exactly the
same way as in the case of the ready/valid handshake. Therefore, when a certain
input is connected to the output (the output was available and the arbiter granted the
particular input), it knows exactly about the availability of new credits at the output
via the output credit counter.

It should be noted that the ready signal that is asserted when creditCounter > 0,
is only driven by the current state of the credit counter. The credit decrement and
increment signals update only the value of the credit counter and the new value
will be seen by the ready signal in the next clock cycle. Therefore, the dependency
cycle formed by credit decrement — ready — request generation — arbiter’s grant
— credit decrement is broken after the ready signal, which also helps in isolating
the timing paths starting request generation logic. Equivalently, each input buffer,
independent from the rest, sends also its own credit update in the backward direction
once it dequeues a new flit.

Using the output credit counter simplifies also the addition of pipeline stages on
the link. For example in Fig. 3.4c the output of the multiplexer is isolated by a simple
pipeline register, i.e., outgoing data cannot stop at this point, and the readiness of
the output buffer is handled via the output credit counter. As described also in the
previous chapter referring to a single point-to-point link, even if additional pipeline
stages are added between inputs and the output once the ready signal is consumed
by the input without any further delay the credit protocol guarantees maximum
throughput will the least buffering requirements. In this case, the receiver needs
to provide 3 buffer slots to absorb the in-flight traffic due to the increased forward
and backward latency Ly = 2, L, = 2.

3.1.2 Granularity of Buffer Allocation

Under WH switching principle, each flit of a packet can move to the output assuming
that at least one credit is available. On the contrary VCT requires flow control to
extend at the packet level by allocating any buffering resources at packet granularity.
In both cases the flits of the packets are not interleaved at the output. Interleaving is
enabled by virtual channels that will be presented in the following chapters.

In a packet-based flow control, which is commonly used in off-chip networks,
both the channels and the buffers are allocated in units of packets, while flit-based
flow control allocates both resources in units of flits. On-chip networks have often
utilized the flit-based flow control. The main difference between packet and flit-
level flow control is in how the buffer resource is allocated. With packet-based flow
control before any packet moves to an output, the buffer for the entire packet needs
to be allocated; thus, for a packet of L flits, an input needs to obtain L credits before
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the packet can be sent. Once the buffer for the entire packet has been allocated,
the channel resource can be allocated on flit granularity. A multi-flit packet can be
interrupted during transmission from input to output; the packet will not necessarily
be sent continuously. However, when the head flit arrives at an input, it reserves the
next L slots in the output buffer such that the whole packet to be kept at the output
in the case of downstream stall.

Even if using flit-level flow control, buffers can be allocated at the packet level
by employing atomic buffer allocation. In this case, the head flit of a packet is not
buffered behind the tail flit of another packet in the same buffer. In effect, buffers
are implicitly allocated on packet granularity, even if flit-based flow control is used.
This operation can be achieved by not releasing the outAvailable flag when the tail
flit arrives at the output buffer but when it leaves the output buffer. In this way, when
the next head flit arrives, it will find the output buffer empty. In every case that the
buffers are allocated at the packet level the amount of buffers required is equal to the
size of the longest packet, which inevitably leads to low buffer utilization for short
packets.

In the following we adopt the non-atomic buffer allocation principles. However,
in any case that atomic buffer allocation is needed the aforementioned rules can be
applied to enforce it.

3.1.3 Hierarchical Switching

Arbitration and multiplexing for reaching the output link can be performed hierar-
chically by merging at each step a group of inputs and allowing one flit from them
to progress to the output. An example of a hierarchical 1-output switch organization
is depicted in Fig.3.5a. The main difference of hierarchical switching relative to
single-step switching is that at each step a 2-input arbiter and a 2-to-1 multiplexer
is enough to switch the flits between two inputs, while in the single-step case the
arbiter and the multiplexer employed should have as many inputs as the inputs of
the whole switching module.

To achieve maximum flexibility and increase the throughput of the system by
allowing multiple packets to move in parallel closer to the output, we should modify
also the request generation logic of the baseline design. In the baseline case, every
input before issuing a request to the arbiter qualified its valid signal with the
outAvailable flag of the output and then masked the result with the ready signal
of the output buffer (see Fig.3.2). In the hierarchical implementation this is not
possible since there is no global arbiter to check the requests of all inputs. Instead,
we assume that each merging point can be considered as a partial output and has its
own outAvailable flag. In this way, at each merging point, we can use unchanged the
allocation and multiplexing logic designed for the baseline case (Fig. 3.2) including
also the outLock variable at the input of each merging step.
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Fig. 3.5 (a) The organization g
of a hierarchical multiple-
inputs to one output
switching module and (b) the
interleaving of flits from
different inputs at the
branches of the hierarchical
switching module
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In this hierarchical implementation of the switch, every two inputs either at
the first stage of arbitration or inside the multiplexing tree can gain access only
to the local output that they see in front of them (the output of a merging unit).
In this way, the flits of a packet can move atomically up to the point that they
see the corresponding outLock bits set. If another branch of the merging tree has
won access to the next intermediate node, then the flits of the packet stall and
wait the next required resource to be released. This partial blocking of packets
inside the merging tree is shown in Fig.3.5b. In this way, even if some branches
of the tree remain idle due to downstream blocking, the allocation of different
branches of the tree to different packets increases the overall throughput of the
switching module. Switching single-flit packets (acting both as head and tails) in
this configuration allows for maximum utilization since every local output or the
global one can be given to another branch on a per-cycle basis.
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3.2 The Reverse Connection: Splitting One Source
to Many Receivers

The opposite connection of one-to-many (splitting), i.e., distributing a result from
the output to the appropriate input is simpler than the many to one connection
(merging) described in the previous paragraphs. Once a new flit arrives at the
output it should know the input to which it should be distributed. Then transferring
the incoming flit is just a matter of flow control; to guarantee that the receiving
input buffer has at least one position available. From all ready signals of the input
receiving buffers only one is selected based on the destination id of the incoming flit.
Once the selected signal is asserted a transfer occurs between the transmitting buffer
at the output and the receiving buffer at the corresponding input. The organization
of this split connection is shown in Fig. 3.6.

Please note that the receiving buffers at the input shown in Fig.3.6 and the
transmitting buffer at the output are different from the buffers shown in Fig.3.2,
which play the opposite role, e.g., the input buffers transmit new flits while the
output buffer receives new flits.

In this splitting connection there is no obligation to send complete packets un-
interrupted and flits from different packets can be interleaved at the output of the
transmitting buffer, provided that they return to a different input. Additionally, when
an input is not ready to receive new returning flits, there is no need for the rest inputs
to remain idle. Allowing the output to distribute flits to the available inputs requires
splitting the transmitting buffers to multiple ones; one per destination and adding
the appropriate arbitration and multiplexing logic. In this case, the flits that move to
different inputs cannot block each other, thus allowing maximum freedom in terms
of distributing incoming flits to their destined inputs.
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Fig. 3.6 (a) Splitting flits to multiple receivers requires only checking the buffer availability at the
receiver’s side. (b) Per-destination buffers remove any flow-control dependency across different
receivers
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3.3 Multiple Inputs Connecting to Multiple Outputs
Using a Reduced Switching Datapath

The generalization of link sharing involves multiple outputs at the other side of the
link as shown in the upper left corner of Fig.3.7. In this case, each packet should
know in its head flit to which destination it is heading to. The link can host flits
from different sources provided that they move to a different output. Each output
independently from the rest should see the flits of a packet arriving atomically one
after the other from the same input. This limitation can be removed by adopting
virtual channels as it will be shown in later chapters.

Since the switching module serves multiple outputs it holds a different
outAvailable state bit for each output. When outAvailable[j] = 1 it means
that the jth output is free and has not been allocated by any packet. Also, the
switching module receives multiple ready bits; one from each output declaring
buffer availability of the corresponding output. As in the baseline case, we assume
that there is one arbiter and one multiplexer that should switch in a time-multiplexed
manner multiple inputs to multiple outputs.

Each source receives the outAvailable flags from each output and selects the one
that corresponds to the destination stored at the head flit of the packet. The selected
outAvailable flag is masked as in the baseline case of a single output with the valid
signal (not empty) of the buffer of the source. This is only done for the head flits in
order to check if the destined output is available. In parallel each input receives the
ready signals from all outputs and selects the one that corresponds to the selected
output port. Masking the qualified valid signal with the selected ready bit guarantees
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Fig. 3.7 The organization of a many-to-many connection using only one switching module
including the request generation, the output and input state variables and the distribution of the
necessary flow control signals for supporting N different output ports
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that if the head flit wins arbitration it will find an empty buffer slot at the output.
This request generation procedure is depicted in Fig. 3.7.

The arbiter receives the requests from all inputs and grants only one. The grant
signals are distributed to all inputs. When the head flit of the i th input wins a grant,
three parallel actions are triggered:

e The outLock[i] variable is asserted.

* A new state variable that is added per input, called outPort[i], stores the destined
output port indexed by the head flit. This new variable is needed per input since
after the head flit is gone, the body and the tail flits should know which output to
ask for.

* The head flit is dequeued from the input buffer by asserting the corresponding
ready_in signal.

The body and the tail flits drive their arbiter requests via their local outPort[i] and
outLock[i] variables. Although the outAvailable flags are checked only by the head
flits, the ready signals are checked every cycle by all flits of the packet. After the
two masking operations — one for availability (only for the head flits) and one for
readiness (for all flits) — are complete a new request is generated for the arbiter. The
arbiter in each cycle can select a different input and move the corresponding flits to
the appropriate output. In the next cycles, the packets from other inputs that will try
to get access to an un-available output port will delete their requests at the request
generation stage and thus only the locked input will be available for that output.

3.3.1 Credit-Based Flow Control at the Output Link

Under credit-based flow control, the inputs before sending any flits to their selected
output should guarantee that there are available credits at that output. If this is
true when a flit leaves the input buffer and moves to the output it consumes one
credit from the appropriate credit counter. The implementation of credit-based flow
control requires the addition of one credit counter for each output placed at the
output of the switching module, as shown in Fig.3.8. The credit counter reduces
the available credits every time a new valid flit reaches the output and increases the
available credits once an update signal arrives from the corresponding output buffer.
Multiple credit updates can arrive in each cycle, each one referring to a different
output buffer. Ready signals (one for each output) that declare credit availability, i.e.,
creditCounter[i] > 0, are generated by the counters at the output of the switching
module and distributed to all inputs.

Equivalently the input buffers when they dequeue a new flit they are obliged to
send backwards a credit update according to the credit-based flow-control policy.
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3.3.2 Adding More Switching Elements

Using one arbiter and one multiplexer for switching packets to many outputs limits
the throughput seen at each output since at most one flit per cycle is dequeued from
all inputs. We can increase the throughput of the whole switching module by adding
more datapath logic, as shown in Fig. 3.9. In this case, the router is able to deliver
two independent flits to any two available outputs. The internal datapath of the
router now consists of two arbiters and multiplexers that prepare two output results.
The flits that appear at the output of the multiplexers may belong to any output.
Therefore, we need to add additional multiplexers that distributed the intermediate
results to their correct output. In order for this circuit to operate correctly we need to
guarantee beforehand that the intermediate results are heading to a different output.
This means that the arbiters of the two multiplexers need to communicate and grant
only the requests that refer to different outputs. This inter-arbiter communication
serializes the allocation operation and limits the effectiveness of the switching
element. This problem is solved if we fully unroll the datapath and provide a
separate multiplexer per output that can connect directly to all inputs. The operation
of the unrolled-datapath architecture is described in detail in the following section.
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3.4 Multiple Inputs Connecting to Multiple Outputs
Using an Unrolled Switching Datapath

The design of switching elements has evolved so far from simple point-to-point
links (1-to-1 connections) that were useful in understanding the operation of flow
control, to many-to-one connections as well as many-to-many connections using
only one arbiter and one multiplexer. In this section, we focus on the many-to-many
connection but try to increase the throughput seen by the switch as whole. Our main
goal is to move from the 1 flit per cycle traversing the switch as shown in Fig. 3.7,
to many flits travelling to different outputs per cycle. To achieve this we need to
fully unroll the datapath presented in the previous section by adding a separate
multiplexer and arbiter pair at each output following the connection of Fig.3.10a.
In this way, each output independently from the rest can accept and forward to the
output link a new flit as shown in Fig.3.10b. The set of per-output multiplexers
constitute the crossbar of the switch that enables the implementation of an input-
output permutation, provided that each input selects a different output.

Besides the unrolling of the datapath, the input and output operations involved
remain more or less the same to the ones described for the reduced datapath. Each
input and each output has its own buffer space that employs a ready/valid protocol
and can be from a simple 1-slot EB to a fully fledged FIFO. The most simple choice
can be a 2-slot EB that provides lossless and full throughput operation without
allowing any backpressure combinational paths to propagate inside the switch and
increase inevitably the clock cycle. While a 2-slot EB is enough for most cases,
bursty traffic and high congestion in the network may call for more buffers that will
absorb the extra traffic.

As in all previous cases, each input holds 2 state variables. The outPort[i] that
holds the destined output port of the packet stored at the i th input and the outLock][i ]
bit that declares whether the packet of the particular source has gained an exclusive

s

Fig. 3.10 (a) The fully unrolled organization of the switching datapath that includes a separate
per output arbiter and multiplexer and (b) its parallel switching properties that allows different
input-output connections to occur concurrently
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Fig. 3.11 The organization of the request generation and grant handling logic per input port that
incorporates also flow control handshake and the necessary input and output state variables

access to outPort[i]. Recall that outPort[i] is a N-bit vector following the one hot
code. If the jth bit of outPort[i] is asserted, it means that the packet from the ith
input should connect to the jth output port of the switch. Also, each output holds
one state variable called outAvailable[ j ] (corresponds to the j th output) that denotes
if it is free or if it has been allocated to a selected input port. In all cases, the per-
input and per-output variables are set by the head flits and released by the tail flits
of a packet.

The details of the request generation and grant handling logic attached to each
input (or else called the input controller) is shown in Fig. 3.11. Each input receives
N outAvailable bits (one per output) and N ready signals that declare buffer
availability in the specific clock cycle. The flits of the packet select the outAvailable
and ready signals that correspond to their destined output port. In the case of head
flits this information comes directly from the bits of the packet (dst field) while in
the case of body and tail flits comes from the stored outPort[i] variable. For the
head flits, the valid bit of each source is masked with the selected availability flag.
If the output is available the valid bit will remain active. If the output is taken it will
be nullified. This qualified valid bit then should check for buffer availability at the
selected output port. Therefore, it is again masked with the selected ready signal
to produce the request sent to the output arbiters. If the selected output buffer is
available, the corresponding head flit can try to gain access to the selected output
port. The masked input requests should be distributed to the appropriate output
arbiter. As shown in Fig.3.11, this is done by an input demultiplexer that transfers
the qualified valid bits to the appropriate output. From each input, N request lines
connect to the outputs where only one of them is active.

The grants produced by the output arbiters are reshuffled and gathered per input.
The OR gate, depicted in Fig.3.11, merges the grant bits to one grant bit that is
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asserted when there is one grant bit equal to one. An asserted grant bit means that
the corresponding input has won in arbitration and can move to the selected output.
Concurrently the outLock bit is set to one and the outPort variable is set to the output
port pointed by the head flit. The input buffer receives a ready_in signal that causes
the head flit to be dequeued and transferred to all output ports. However, only one
output multiplexer, driven by its associated arbiter, will select this flit. When the
head flit arrives at the output it de-asserts the outAvailable flag, showing to the rest
inputs that this output port has been allocated and cannot be used by another packet.

As shown in Fig. 3.11, the rest flits of the packet will check first the outLock][i]
bits. If it is set, they will generate a new request using the stored outPort{i] variable.
For them winning arbitration will be easy since they will be the only flits that will
ask for the output indexed by outPort[i]. Of course, their requests (valid signal of
the input buffer) are also masked with the selected ready signal of the corresponding
output port to guarantee that, when they leave the input, there will be available buffer
space to host them at the output. Once the tail flit reaches the output of the switch it
re-asserts the local outAvailable flag allowing the requesting inputs to participate in
arbitration in the next cycles.

Credit-based flow control does not include any more details than the ones
presented in Sect.3.3.1. According to Fig.3.12, one credit counter is added per
output that receives the credit updates from the corresponding output buffer and
informs all inputs about the availability of free buffer slots using the ready signal.
Also, each input once it dequeues a new flit it sends backward a credit update.

In many cases, the outputs contain a simple pipeline register, instead of an
output buffer, that just isolates the intra and inter router timing paths. Under this
configuration the design of the switch remains the same. The only difference is
that the credit counter reflects the empty slots available at the buffer at the other
side of the link. As expected, this configuration increases the round-trip time of the
communication between two flow-controlled buffers since the data and the credit
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Fig. 3.12 The addition of a credit controller per output that may optionally include additional
pipeline registers, allows the connection of the unrolled switching module to multiple independent
credit-based flow-controlled links
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updates in the forward direction spend one more cycle before reaching an output
buffer. Without any further change, by just increasing the buffer size at the output,
full throughput communication is guaranteed.

3.5 Head-of-Line Blocking

Assume for example the case of a 3-input and 3-output switch shown in Fig. 3.13. If
two inputs request the same output, then contention arises and the arbiter will grant
only one of the two competing inputs. The one that won arbitration will pass to the
requested output and leave the router in the next clock cycle, provided that a buffer
is available downstream. The packet that lost arbitration will be blocked in the input
buffer until the tail of the winning packet leaves the router too. In our example,
input 2 participated in the arbitration for output 2 and lost. However, besides the
two flits heading to output 2, input 2 holds also flits that want to leave from output
1 that is currently idle. Unfortunately, those flits are behind the frontmost position
of the buffer at input 2 and are needlessly blocked, as depicted in Fig. 3.13. This
phenomenon is called head-of-line blocking and is a major performance limiter for
switches. It can be alleviated only by allowing more flexibility at the input buffers
that should allow multiple flits to compete in parallel during arbitration even if they
don’t hold the frontmost position.

A good way to understand HOL blocking is use the example presented in Medhi
and Ramasamy (2007): Think of yourself in a car traveling on a single-lane road.
You arrive at an intersection where you need to turn right. However, there is a car
ahead of you that is not turning and is waiting for the traffic signal to turn green.
Even though you are allowed to turn right at the light, you are blocked behind the
first car since you cannot pass on a single lane.

The throughput expected per output can be easily estimated if the traffic
distribution is known beforehand. Without loss of generality, assume that each input
wants to transmit a new flit per cycle, and that each flit is destined to each output
with equal probability P = 1/N. When more than one inputs are heading for the
same output only one will get through and the rest will be blocked. An output j
will be idle only when none of the inputs have a flit for this output. The probability
that input i chooses output j is P;; = 1/N. Thus, the probability of not selecting
the corresponding output is P;; = 1 — 1/N. An input sends or not to output j
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independently from the rest. Thus, the probability that all N inputs are not sending
to output j, thus rendering output j idle, is [] P;; = (1—1/N)". Therefore, output
J is accepting a new flit with probability 1—(1—1/N)". This value starts from 0.75
for 2 x 2 switch, moves to 0.703 for a 3 x 3 switch and converges to 0.63 for large
values of N. As proven in Karol et al. (1987), if we take into account that current
scheduling decisions are not independent from the previous ones then the maximum
throughput per output is lower and saturates around 58 % for large values of N.

3.6 Routers in the Network: Routing Computation

The need to connect many sources to many destinations in a regular manner and
without using many wires has led to the design of network topologies. A router is
placed at the crossroads of such network topologies as shown in Fig. 3.14 and should
forward to the correct output all traffic that arrives at its inputs. Each input/output
port of the router that is connected to the network’s links should be independently
flow controlled providing lossless operation and high communication throughput.
The router should support in parallel all input-output permutations. When only
one input requests a specific output, the router should connect the corresponding
input with the designated output. When two or more inputs compete for gaining
access to the same output in the same cycle the router is responsible for resolving
the contention. This means that only one input will gain access to the output port.
The flits of the input that lost stay it the input buffer of the current router and
retry in the next cycle. Alternatively, the flits of the lost input can be misrouted
to the first available output and move to another node of the network, hoping that

Arbitrary 10 Resolve Contentlon
Fig. 3.14 Routers are permutations

responsible for keeping the
network connected and
resolving contention for the
same resource while allowing
multiple packets to flow in
the network concurrently
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Fig. 3.15 Routing computation at each router is just a translation of the packet’s final destination
to a local output port request

they will reach from there their destination. Misrouting actually does not resolve
contention, but spreads it in space (in the network), while the baseline approach
spreads contention in time by allocating one output to one input in each clock
cycle (Moscibroda and Mutlu 2009).

Up to now we assumed that the packets arriving at the input of a router knew
beforehand their selected output port. In the case of a larger network, each packet
will pass through many routers before reaching its final destination. Therefore, a
mechanism is required that will inform the packet which output to follow at each
intermediate router, in order to get closer to its destination. This mechanism is
called routing computation. Routing computation implements the routing algorithm
that is a network wide operation, and manages the paths that the packets should
follow when travelling in the network. Consequently, each router should respect
the properties of the routing algorithm and forward the incoming packets to the
appropriate output following the path decided by the routing algorithm (Duato et al.
1997).

For routing computation to work, each packet that travels in the network should
provide to the router some form of addressing information. In the case of source
routing, the packet knows the exact path to its destination beforehand. The head
flit of each incoming packet contains the id of the output port that it is destined to
and the router just performs the connection. On the opposite case, when distributed
routing is employed, the packet carries at its head flit only the address of the
destination node. Selecting the appropriate output is a responsibility of the router
that should translate the packet’s destination address to a local output port request,
as shown in Fig. 3.15. The selection of the appropriate output port is a matter of the
routing algorithm that governs the flow of information in the network as a whole but
it is implemented in a distributed manner by the routers of the network.

Integrating routing computation logic in the routers is simple. In the simplest case
of source routing each packet knows the exact path to its destination and has already
stored the turns (output ports) that should follow at each router of the network. In
this scenario, the head flit of each packet already holds the request vector needed
at each router. Once the head flit reaches the frontmost position of the buffer the
corresponding bits of the header are matched directly with the outPort wires of
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Fig. 3.16 Routing computation selects the output port that each packet should follow according
to the packet’s destination address. The remaining request generation and grant handling logic
remains exactly the same

the request generation logic. The requests used at each router are thrown away by
shifting accordingly the bits of the head flit.

In the case of distributed routing the head flit carries only the address of the
destination node. Depending on the routing algorithm, each router should translate
the destination address to a local output request allowing each packet to move closer
to its destination. This translation is an obligation of the routing computation logic.
The routing computation logic can be implemented using a simple lookup table or
with simple turn-prohibiting logic (Flich and Duato 2008). Routing computation is
driven by the destination address of each packet and returns the id of the output
port that the packet should use for leaving the current router, as shown in Fig. 3.16.
This id will be used for selecting the appropriate output availability flags and ready
signals and will be stored to the outPort variable of each input controller.

In the case of adaptive routing where each packet is allowed to follow more
than one paths to reach its final destination the routing computation logic delivers
a set of eligible output ports instead of a single output. Selecting the output port to
which the packet can leave the router needs an extra selection step that may take
other network-level metrics into account such as the available credits of the eligible
outputs or additional congestion notification signals that will be provided outside
the routers (Ascia et al. 2008).

3.6.1 Lookahead Routing Computation

Routing computation reads the destination address of the head flit of a packet and
translates it to a local outPort request following the rules of the network-wide
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routing algorithm and the ID of the current router. In this way, request generation,
arbitration and multiplexing should wait first RC to complete before being executed.
This serial dependency can be removed if the head flit carries the output port request
for the current router in parallel to the destination address. Allowing such behavior
requires the head flit to compute the output port request before arriving at the current
router using lookahead routing computation. Lookahead routing computation (LRC)
was first employed in the SGI Spider switch (Galles 1997), and extended to adaptive
routing algorithms in Vaidya et al. (1999).

The implementation of LRC can take many forms. In the traditional case without
any lookahead in RC, shown in Fig. 3.17, each input port first executes RC and then
continues with the rest operations of the router. In this case, the RC unit of input X
selects to which outputs, A, B, or C, the arriving packets should move. Then, once
the packet arrived to the input of the next router it would repeat RC computation
for moving closer to its destination. Instead of implementing RC after a head flit
has arrived at the input buffer, we can change the order of execution and implement
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Fig. 3.17 (a) Baseline RC placement, (b) Lookahead RC in parallel to Link traversal, and (c) the
implementation of Lookahead RC at each input port that runs in parallel to arbitration and uses
multiple routing computation units one for each possible output port
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RC in parallel to link traversal. Therefore, at input X the head flit of the packet
has already computed RCy at the link, and presents to the router the pre-computed
outPort requests. The same happens also for inputs A, B, and C. Once the packet
follows the link towards these inputs it computes RC for the next router just before
it gets stored to the corresponding input buffer.

Lookahead routing computation can move one step forward and the let RCy,
RCp and RC¢ modules exist at input X instead of the links. When a packet arrives
at input X, it has already computed beforehand the output port that should select
for arbitration and multiplexing. The output port request vector of a head flit at
input X would point to one of the links connecting to the next inputs A, B or C.
Therefore, depending on which output the packet of input X is heading to, it should
select the result of the appropriate routing computation logic RC4, RCp, or RCc.
The organization of the LRC unit at input X is illustrated in Fig. 3.17c. All RC units
receive the destination address of the packet and based one the output port request
of the packet arriving at input X selects the output port request for the next router.
For example, if the incoming packet moves to input A of the next router, the output
port requests of RC4 should be selected and attached to the header.

In this way, LRC runs in parallel to the rest tasks of the router, since the outPort
request vector is ready on the header of the packet. The organization of the request
generation logic that relies on LRC is shown in Fig. 3.18. Instead of the RC’s result,
now the head flits use their own field containing the output port, that was calculated
at the previous router. In parallel to request generation, the same field feeds the LRC
unit that computes the output port for the next router.
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Fig. 3.18 In the traditional RC placement, a flit must wait for the RC result before being able to
perform request generation and arbitration. In Lookahead RC, the output port is pre-computed and
can be found in the flit’s header, thus allowing the tasks of the router to execute in parallel to the
LRC for the next router
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Please keep in mind that the full implementation of LRC requires the addition of
RC computation units at the network interfaces as well, which prepare the output
port requests for the routers that are connected at the edges of the network.

3.7 Hierarchical Switching

The operation of the switch described in the previous paragraphs can be easily
decomposed to primitive blocks that handle arbitration and multiplexing in a
distributed manner. By using the primitive merge units described in Sect.3.1.3
(see Fig.3.5) and splitting the data arriving at each input port to the correct
output, one can design an arbitrary distributed router architectures (Huan and
DeHon 2012; Roca et al. 2012; Balkan et al. 2009; Rahimi et al. 2011). An
example is shown in Fig. 3.19, which depicts a router with 4 inputs and 4 outputs.
Upon arrival at the input of the router, each packet performs routing computation
(RC). Subsequently, depending on buffer availability, output availability, and the
allocation steps involved in each merging unit — the flits of the packet are forwarded
to the merging unit of the appropriate output. Integration of the merging units
is straightforward, since they all operate under the same ready/valid handshake
protocol (or credit-based flow control). All router paths from input to output see
a pipeline of merging units of log, N stages. Moving to the next router involves one
extra cycle on the link; link traversal does not include any merging units and is just
a one-to-one connection of elastic buffers.
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Fig. 3.19 The parallel connection of multiple inputs to multiple outputs can be established using
a hierarchical merging tree of smaller switching elements at each output, and a split stage at the
inputs that guides incoming packets to their destined output based on the outcome of the routing
computation logic
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Due to the distributed nature of this architecture, the split connections can be
customized to reflect the turns allowed by the routing algorithm. For example, in a
5-port router for a 2D mesh employing XY dimensioned-ordered routing, splitting
from the Y+ input to the X4 output is not necessary since this turn is prohibited.
Several other deterministic and partially-adaptive routing algorithms can be defined
via turn prohibits (Flich et al. 2007; Flich and Duato 2008). When this customization
is utilized, significant area savings are expected, due to the removal of both buffering
and logic resources. This modular router construction enables packet flow to be
pipelined in a fine-grained manner, implementing all necessary steps of buffering,
port allocation, and multiplexing in a distributed way inside each merging unit, or
across merging units. Also, the placement of merge units does not need to follow
the floor-plan of the chosen NoC topology. Instead, merge units can be freely placed
in space, provided that they are appropriately connected.

3.8 Take-Away Points

Switching packets of flits from many inputs to one or multiple outputs is a combined
operation that merges link-level flow control with arbitration in order to resolve
contention for the same output and guaranteeing that there are available buffer
slots to host the selected flits. The implementation of flow control and arbitration
requires the addition of per-input and per-output state variables that guide all the
intermediate steps that a packet should complete before being able to move to the
selected output port. The addition of a routing computation module transforms a
switch to a network router that can participate in an arbitrary network topology
allowing incoming packets to find their path towards their destination.



Chapter 4
Arbitration Logic

The kernel of each switch module of the router involves arbiter and multiplexer
pairs that need to be carefully co-optimized in order to achieve an overall efficient
implementation. Even if the design choices for the multiplexer are practically
limited to one or two options, the design space for the arbiter is larger. The arbiter,
apart from resolving any conflicting requests for the same resource, it should
guarantee that this resource is allocated fairly to the contenders, granting first the
input with the highest priority. Therefore, for a fair allocation of resources, we
should be able to change dynamically the priority of the arbiter (Synopsys 2009).

The organization of a generic Dynamic Priority Arbiter (DPA) is shown in
Fig.4.1. The DPA consists of two parts; the arbitration logic that decides which
request to grant based on the current state of the priorities, and the priority update
logic that decides, according to the current grant vector, which inputs to promote.
The priority state associated with each input may be one or more bits, depending on
the complexity of the priority selection policy. For example, a single priority bit per
input suffices for round-robin policy, while for more complex weight-based policies
such as first come first served (FCFS), multibit priority quantities are needed.

In this chapter, we will present the design of various dynamic priority arbiters that
lead to fast implementations and can implement efficiently a large set of arbitration
policies.

4.1 Fixed Priority Arbitration

The simplest form of switch allocators is built using Fixed Priority Arbiters (FPAs),
also known as priority encoders. In this case, the priorities of the inputs are statically
allocated (no priority state is needed) and only the relative order of the inputs’
connections determines the outcome of the arbiter.

© Springer Science+Business Media New York 2015 61
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Fig. 4.1 Dynamic priority arbiter allows the priority of each position to change in a programmable
way. The selected arbitration policy is implemented in a synergistic way by the arbitration logic
and the priority-update logic

In any FPA, the request of position 0 (rightmost) has the highest priority and the
request of position N — 1 the lowest. For example, when an 8-port FPA receives
the request vector R7... Rp = 01100100, it would grant input 2 because it has the
rightmost active request. When at least one request is granted, an additional flag
AG (Any Grant (AQG)) is asserted. The FPA can be implemented in many ways.
We are interested only in high-speed implementations, where all grant signals are
computed in parallel for each bit position (Weste and Harris 2010). In this case,
the grant signal G; is computed via the well-known priority encoding relation G; =
R;-Ri_i-...-R|- Ry, where - represents the boolean-AND operation and R; denotes
the complement of R;.

An alternative fast implementation can be derived by employing fast adder
circuits in the place of priority encoders. At first, we need to derive an intermediate
sum by adding 1 to the inverted requests R. Then, the grant signals are derived
via the bitwise AND of the intermediate sum and the original request vector.
For example, the complement of the 8-bit request vector R = 01100100 is
‘R = 10011011. Incrementing by one this vector leads to an intermediate sum of
10011100. The bit-wise AND of the sum and the original request vector leads to
correct grant vector 00000100 that grants the request of input 2.

Alternatively, fixed priority arbitration can be achieved if we treat the request
signals of the FPA as numbers with values O and 1, and the fixed priority arbitration
as a sorting operation on these numbers (Dimitrakopoulos et al. 2013). Practically,
the selection of the rightmost 1, as dictated by the FPA, can be equivalently
described as the selection of the maximum number that lies in the rightmost position.
Selecting the maximum of a set of numbers can be performed either by a tree or a
linear comparison structure. Such structures compare recursively the elements of
the set in pairs and the maximum of each pair is propagated closer to the output.
Similarly, the sorting-based FPA can be implemented as a binary tree with N — 1
comparison nodes. Such a tree, for a 4-port FPA, is shown in Fig. 4.2a. Each node
receives two single-bit numbers as input and computes the maximum of the two,
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Fig. 4.2 Treating requests as 1-bit numbers transforms fixed-priority arbitration to a maximum
selection procedure that identifies the maximum number that lies in the rightmost position. Grant
signals are generated according to the values of the direction flags that identify the index of the
winning position

along with a flag, that denotes the origin, left or right, of the maximum number.
In case of a tie, when equal numbers are compared, the flag always points to the right
according to the FPA policy. Note though that when both numbers under comparison
are equal to 0 (i.e., between the two compared requests, none is active), the direction
flag is actually a don’t care value and does not need necessarily to point to the right.
In every case, the path that connects the winning input with the output is defined by
the direction flags of the MAX nodes.

Each MAX node should identify the maximum of two single-bit input requests,
denoted as R; and Rpg, and declare via the direction flag F' if the request with the
greatest value comes from the left (F = 1) or the right (F = 0). The first output of
the MAX node, that is the maximum, can be computed by the logical OR of R, and
Rp. The other output of the MAX node, flag F', is asserted when the left request R,
is the maximum. Therefore, F should be equal to 1 when R;, = 1 and Rg = 0.

4.1.1 Generation of the Grant Signals

The maximum-selection tree shown in Fig.4.2a that replaces the traditional FPA,
should be enhanced to facilitate the simultaneous generation of the corresponding
grant signals via the flag bits (F'). The AG signal at the output of the last MAX
is active when at least one grant is generated. Therefore generating grant signals
is equivalent to distributing the value of the AG bit to the appropriate input. If the
direction of the last node points to the left it means that the value of AG should
be propagated to the left subtree and the right subtree should get a zero grant. This
distribution is done by the de-multiplexer next to each comparison node shown in
Fig.4.2b. The demultiplexer’s input at the root node is the AG bit and its select
line is driven by the associated direction flag. When the AG bit propagates to the
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Fig. 4.3 The concurrent computation of the grant signals and the identification of the maximum
request

next level of the tree the same operation is performed recursively using a tree of
demultiplexers that guide the AG bit of the output to the winning input.

In this way, arbitration and grant generation evolves in two steps. In the first step
the maximum rightmost request is identified via the maximum comparison tree and
once it is found the winning position is notified by the demultiplexer tree. Instead of
waiting the maximum selection tree to finish and then produce the necessary grant
signals, the two operations can occur in parallel after the appropriate modification of
the grant generation logic that is depicted in Fig. 4.3. In this configuration, all inputs
assume speculatively that they will win a grant and thus set their local grant signal
to one. In the first level of comparison, each MAX node selects the maximum of
the two requests under comparison and its local F flag points to the direction of the
winning input. Thus, at this stage, one of the two requests is promoted to the next
level of comparison, while the other leaves arbitration. The lost request will never
receive a grant. Thus its corresponding grant bit can return to zero. On the contrary,
the grant bit of the winning request should be kept active. Keeping and nullifying the
grant signals is performed by the AND gates that mask at each level of the tree, the
intermediate grant vector of the previous level with the associated direction flags. In
the next levels of comparison the same operation is performed. However, when the
depth of the tree grows the direction flag should keep or nullify not only two grant
bits, but all the grant bits that correspond to the left or right subtree. After the last
comparison stage only one grant bit will remain alive pointing to the winning input.

Observe that, if we replace the invert-AND gates of Fig.4.3 with OR gates,
the outcome would be a thermometer-coded grant vector instead of the onehot
encoded one.
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4.2 Round-Robin Arbitration

Round-robin arbitration logic scans the input requests in a cyclic manner, beginning
from the position that has the highest priority, and grants the first active request.
For the next arbitration cycle, the priority vector points to the position next to the
granted input. In this way, the granted input receives the lowest priority in the next
arbitration cycle.

An example of the operation of a round-robin arbiter for 4 consecutive cycles is
shown in Fig. 4.4 (the boxes labeled with a letter correspond to the active requests).
In the first cycle, input B has the highest priority to receive a grant but does not
have an active request. The inputs with an active request are inputs A and C.
The arbitration logic scans all requests in a cyclic manner starting from position
B. The first active request visited in this cyclic search is input C that is actually
granted. In the next cycle, input C should receive the lowest priority according to
the round-robin policy. Therefore, priority moves to input D. In this case, the input
that is granted is input A since it the first input with an active request when starting
searching from input D. Arbitration in the next cycles evolves in a similar manner.

Although there are several approaches for building fast round-robin arbiters like
the ones presented in Dimitrakopoulos et al. (2008) and Gupta and McKeown
(1999), in this chapter we will describe another solution that leads to equally fast
arbiters and its operation is based on a simple algorithmic approach similar to the
one presented for FPA (Dimitrakopoulos et al. 2013). A complete overview of
all previously presented proposals regarding the logic-level design of round-robin
arbiters can be found in Dimitrakopoulos (2010).

The round-robin arbiter utilizes an N-bit priority vector P that follows the
thermometer code. As shown in the example of Fig.4.5, the priority vector splits
the input requests in two segments. The high-priority (HP) segment consists of the
requests that belong to high priority positions where P; = 1, while the requests,
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Fig. 4.4 An example of the operation of a round-robin arbiter. The input granted receives the
lower priority for the next arbitration round
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Fig. 4.5 The priority vector of the round-robin arbiter separates the requests to a high-priority and
a low-priority segment. Treating the requests and the priority bits at each position as independent
arithmetic symbols transforms the dynamic cyclic search of round-robin arbitration to an acyclic
process that selects the maximum number

which are placed in positions with P; = 0, belong to the low-priority (LP) segment.
The operation of the arbiter is to give a grant to the first (rightmost) active request of
the HP segment and, if not finding any, to give a grant to the first (rightmost) active
request of the LP segment. According to the already known solutions, this operation
involves, either implicitly or explicitly, a cyclic search of the requests, starting from
the HP segment and continuing to the LP segment.

Either at the HP or the LP segment, the pairs of bits (R;, P;) can assume any
value. We are interested in giving an arithmetic meaning to these pairs. Therefore,
we treat the bits R; P; as a 2-bit unsigned quantity with a value equal to 2R; + P;.
For example, in the case of an 8-input arbiter, the arithmetic symbols we get for
a randomly selected request and priority vector are also shown in Fig.4.5. From
the 4 possible arithmetic symbols, i.e., 3, 2, 1, 0, the symbols that represent an
active request are either 3 (from the HP segment) or 2 (from the LP segment). On
the contrary, the symbols 1 and O denote an inactive request that belongs to the
HP and the LP segment, respectively. According to the described arbitration policy
and the example priority vector of Fig.4.5, the arbiter should start looking for an
active request from position 3 moving upwards to positions 4, 5, 6, 7 and then to
0, 1, 2 until it finds the first active request. The request that should be granted lies
in position 4, which is the first (rightmost) request of the HP segment. Since this
request belongs to the HP segment, its corresponding arithmetic symbol is equal to
3. Therefore, granting the first (rightmost) request of the HP segment is equivalent to
giving a grant to the first maximum symbol that we find when searching from right
to left. This general principle also holds for the case that the HP segment does not
contain any active request. Then, all arithmetic symbols of the HP segment would
be equal to 1 and any active request of the LP segment would be mapped to a larger
number (arithmetic symbol 2).

Therefore, by treating the request and the priority bits as arithmetic symbols, we
can transform the round-robin cyclic search to the equivalent operation of selecting
the maximum arithmetic symbol that lies in the rightmost position. Searching for the
maximum symbol and reporting at the output only its first (rightmost) appearance,
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( Position 7 6 5[4]3 2 1 0 \( Poson 7 6 5 4 3 2[1]0 )
Requests 1 1 0(1({0 1 1 O Requests 0 0 0 0 O 1 (1[0
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Fig. 4.6 The round-robin arbiter selects the rightmost maximum symbol. Even if there are no
active requests in the HP segment, no cyclic-priority transfer is needed, and the first request of the
LP segment is given at the output

implicitly implements the cyclic transfer of the priority from the HP to the LP
segment, without requiring any true cycle in the circuit.

The round-robin arbiter that follows this algorithm, is built using a set of small
comparison nodes. Each node receives two arithmetic symbols, one coming from the
left and one from the right side. The maximum of the two symbols under comparison
appears at the output of each node. Also, each node generates one additional control
flag that denotes if the left or the right symbol has won, i.e., it was the largest. In
case of a tie, when equal symbols are compared, this flag always points to the right.
In this way, the first (rightmost) symbol is propagated to the output as dictated by the
operation of the arbiter. Two examples of the comparison procedure that implements
implicitly the cyclic search of a round-robin arbiter are illustrated in Fig. 4.6.

The associated grant generation logic is exactly the same as the one shown in
Fig.4.3. No change is required since, in both cases, the grants are generated based
solely on the local direction flags F' and are independent of the operation of the
maximum-selection nodes.

4.2.1 Merging Round-Robin Arbitration with Multiplexing

In every case, the winning path that connects the winning input with the output is
defined by the direction flags of the MAX nodes. Thus, if we use these flags to
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switch the data words that are associated with the input numbers (i.e., the requests),
we can route at the output the data word that is associated with the winning request.
This combined operation can be implemented by adding a 2-to-1 multiplexer next
to each MAX node and connecting the direction flag to the select line of the
multiplexer. The organization of this merged round robin arbiter and multiplexer
is shown in Fig.4.7.

4.3 Arbiters with 2D Priority State

Other arbitration policies require the addition of extra priority state bits that treat
arbitration and the relative priority of inputs in a different way (Dally and Towles
2004; Satpathy et al. 2012; Boucard and Montperrus 2009). Let’s assume that
priority is kept in a 2D matrix, where in each position i, j (ith row, jth column) a
priority bit is stored that records the relative priority between inputs i and j. When
Pli, j] = 1, the request from input i has higher priority than the request from input
Jj . To reflect the priority of i over j, the symmetric matrix element P[j, i] should be
set equal to 0. Also, the elements of the diagonal P[i, ] have no physical meaning
and can be assumed equal to 0. An example priority matrix is shown in Fig. 4.8. In
this case, input O has a higher priority than input 1 and 2, while input 2 has a higher
priority than input 1. By summing the number of ones per row, the total priority
order among all inputs is revealed. The input with the largest sum has the highest
priority and the rest inputs follow in a decreasing order of sums (priority).

The arbiter receives the current request and the priority matrix and decides which
input to grant. Assume at first the case that all requests are active at each arbitration
cycle. Then, if at least one 1 exists on column j of the priority matrix then the
request of input j cannot be granted, since there is at least one input with higher
priority than j. This condition for column j can be identified by ORing all bits of
the same column and nullifying the corresponding grant (jth output). However, in
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Fig. 4.8 The 2D priority matrix representing the relative priorities of the inputs together with an
example of grant generation for on an arbitrary request vector

the general case not all requests are active. Therefore, first the request from each
input are ANDed with the priority bits that belong to the same row. Then, from
the resulting matrix the inputs that their corresponding column is full of zeroes
are eligible to receive a grant (ready to grant). On the contrary, and respecting the
relative priority of the inputs, the columns with at least 1 bit asserted should be
excluded from the grants.

This operation of the arbiter that relies on a 2D matrix is also shown in Fig. 4.8.
Beginning from the priority matrix and masking each row with the corresponding
request per input leads to the matrix on the right side of Fig.4.8. Observing the
columns of the matrix we see that column 1 has at least 1 bit asserted which means
that another input (input 2 in this case) has a higher priority over input 1. Thus, input
1 cannot receive a grant. On the contrary, inputs 2 and O see their corresponding
columns filled with zeroes thus they are allowed to receive a grant. By masking the
ready to grant bits with the requests gives the final grant vector. Input 0 although
had the highest priority and sees a ready to grant bit asserted, it does not receive
a grant due to the lack of an active request in the current arbitration cycle. The
implementation of the arbitration logic of a 3-input arbiter is shown in Fig. 4.9.

Care should be taken with the priority values since the possibility of a deadlock
exists. For example in the case of a 3-input matrix arbiter with P[0, 1] = P[1,2] =
P[2,0] = 1 a circular priority dependency is produced, which blocks the arbiter
from producing any grant.

4.3.1 Priority Update Policies

Based on the 2D organization of the priority state, we can derive multiple arbitration
policies. The differentiating factor between the possible arbitration policies is on
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Fig. 4.9 The logic-level implementation of the arbitration logic that receives the input requests
and computes the necessary grants based on the relative priorities of the inputs. Priority update
logic (not shown in this figure) is designed according to the selected priority update policy

how the priority matrix is updated for the next arbitration round. The arbitration
logic remains exactly the same in all cases.

Least recently granted: Once the ith request is granted, its priority is updated
and set to be the lowest among all requestors. This is performed at first by
clearing all bits of the ith row, e.g., setting P|[i, %] to 0, and secondly by setting
the bits of the ith column, e.g., P[*,i] = 1, so that all other requests will have
higher priority over request i.

Most recently granted: Once the ith request is granted, its priority is updated
and set to be the highest among all requestors. This is performed at first by setting
all bits of the ith row, e.g., setting P[i, %] to 1, and secondly by clearing the bits
of the ith column, e.g., P[*,i] = 0, so that all other requests will have lower
priority over request i .

Incremental Round robin: Under round-robin policy the request that has been
granted in the current arbitration cycle should receive the lowest priority in the
next cycle. With 1D priority state this is performed in a relatively easy way but
becomes very complex in 2D priority representation. Round-robin like operation
(or incremental round-robin) proposed in Satpathy et al. (2012) can be achieved
by downgrading the position with the highest priority irrespective if it received
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a grant or not. The input with the highest priority can be identified by a logical
AND operation of all the per-row priority bits. The input that has all the priority
bits asserted, i.e., P[i, *] = 1, receives the lowest priority for the next arbitration
round: P[i,*] = 0 and P[*,i] = 1. With this update the priority of all other
inputs is upgraded by exactly one level.

e Hybrid First-Come First Served and Least Recently Used: This priority
update policy, proposed in Boucard and Montperrus (2009) tries to combine
the benefits of the first-come-first-served and least-recently-used priority-update
policies. When a new request arrives at input i and there is no new request at
input j, then P[i, j] = 1. An input is considered to have a new request, when
the request signal changes from O to 1 (the detection of this change requires an
edge detector with one extra flip-flop for each request line). If the new request
from input 7 is not granted in this cycle, the request is not considered new any
more. When, both inputs i and j receive a new request in the same cycle then
their relative priority P[i, j] does not change and keeps its old value. At the same
time, when the request of an input i is granted in the previous cycle it receives
the lowest request in this cycle P[i, j] = 0and P[j,i] = 1.

Any other priority update policy can be derived by changing the priority matrix
taking possibly into account its current state and the status of the grant signals as
depicted in Fig. 4.1.

4.4 Take-Away Points

The arbiter is responsible for resolving any conflicting requests for the same
resource and it should guarantee that this resource is allocated fairly to the
contenders. The fair allocation of the resources dictates that the arbiter should be
able to change dynamically the priority of the inputs and grant in each arbitration
round the one with the highest priority. Round-robin arbiters as well as arbiter that
store the relative priorities of the inputs in a 2D priority matrix are designed leading
to high-speed logic-level implementations.



Chapter 5
Pipelined Wormhole Routers

The single-cycle wormhole router performs all the tasks involved per input and per
output serially. Each packet should first complete routing computation (RC) (in the
cases that lookahead routing computation is not involved in the design of the router),
then fight for gaining access to the output via switch allocation/arbitration (SA) and
move to the appropriate output via the multiplexers of the crossbar (Switch Traversal
— ST). Eventually, the packet will reach the next router, after leaving the output
buffer and crossing the link (Link Traversal — LT). We assume that the input/output
links of the router are independently flow controlled, following the credit-based flow
control described in the previous chapters.

A block diagram of the single-cycle router is shown in Fig.5.1. The output
buffers of the router can be either simple pipeline registers or normal flow-controlled
buffers. In the first case, the credit counter refers to the available buffer slots of the
buffer at the input of the next router, while in the second case, the credit counter
mirrors the available buffers of the local output buffer. In the rest of this chapter,
we adopt the first design option and assume that the output of the router consists
of a simple pipeline register for the signals in the forward (valid, data) and in the
backward direction (credit update).

Depending on the system’s characteristics the network on chip should be able
to operate at low and at high clock frequencies. In the case of single-cycle routers
the clock frequency of the NoC router is limited by the cumulative delay of all
operations depicted in Fig. 5.1 plus the clocking overhead, which for register-based
implementations (edge-triggered flip-flops) is the sum of the clock to data out delay
and the register’s setup time (Weste and Harris 2010).

Achieving higher clock frequencies requires the separation of the timing paths
of the single-cycle implementation to multiple shorter ones in terms of delay, called
pipeline stages. In this way, the delay seen between any two registers is decreased,
which allows increasing the operating clock frequency. The separation involves
the addition of pipeline registers between selected tasks that retime the transfer of
information across stages to different cycles of operation. This inevitable retiming
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Fig. 5.1 An abstract organization of the single-cycle baseline wormhole router

complicates the operation of the router and introduces idle cycles, as seen by the
flits of each packet, until other dependent operations of previous flits or packets are
completed. The idle cycles imposed by such architectural dependencies are often
called bubbles (empty pieces that flow through the pipeline without doing any actual
work).

Pipelining is not only needed in high-speed configurations but it is also needed
in energy constrained cases that the NoC should be able to sustain an acceptable
operating frequency even under lowered voltage. Scaling the voltage of the circuit is
a useful alternative for increasing energy efficiency and reducing power consump-
tion especially in mobile devices that rely on a battery supply for their operation.
However, lowering the voltage of the circuits increases significantly the delay of
their constituent logic blocks that limits the maximum clock frequency of their
operation. Pipelining retrieves back some of the lost MHz of clock frequency due
to voltage scaling thus keeping a balance between energy efficiency and achievable
performance.

In this chapter, we will describe in detail all the pipelined alternatives for
wormbhole routers, their implementation and their runtime characteristics. For the
first time, the pipelined organization of routers is presented in a customizable
manner where pipelining decisions are derived through two basic pipeline prim-
itives: RC and SA pipeline. For each case, the cycle-by-cycle behavior will be
analyzed and any microarchitectural implications that limit the router’s throughput
by necessitating the insertion of pipeline bubbles will be discussed and appropriate
solutions will be derived.
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5.1 Review of Single-Cycle Router Organization

Before diving into the design details of pipelined routers, we review in a higher level
of abstraction the operations involved in a single-cycle router. The organization of
a single-cycle router focusing on the request generation logic is shown in Fig.5.2.
Apart from the 3 main tasks or RC, SA, and ST, some secondary, low complexity,
though critical tasks are involved. After the calculation of its destination output port
through RC, a packet must generate a proper request (req) to SA, according to the
current states of the input, as described by the outLock variable, and the destined
output, as declared by the outAvailable flag.

At the output side, if a flit has won in SA and is about to be stored at the output
buffer, it must consume a credit (Credit Consume — CC), that is, decrease the credit
counter’s value to reflect the current free slot availability of the output buffer (placed
at the input of the next router). If the granted flit was a head or a tail flit, the output’s
outAvailable flag must be set accordingly through State Update (SU). Recall that
when a head flit allocates output j, it sets outAvailable[j] = 0 in order to block
requests from any other input to that output. Equivalently, the output is released
(outAvailable[j] = 1) once the tail flit is granted, allowing head flits to fight again
for that port in the next cycle. Once granted, the flit is dequeued from the input
buffer (DQ). At the same time, the input buffer informs the previous router that a
buffer slot is emptied, using the credit update mechanism.

The router’s organization of Fig.5.2 reveals two distinct and converging paths.
The control path starts with RC and the request generation module (req), continues
with the SA stage, and ends up in the select signals of the crossbar (ST) as well
as the grant signals delivered at each input buffer (dequeue). On the contrary, the

outPort outAvailable[0...N-1] credit
| | | |ready out[O .N-1]
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Fig. 5.2 The organization of a single-cycle router and the details of the input request generation
logic. Output Credit consume (CC) and State Update (SU) operations can occur in parallel to SA
(per-output arbitration) by checking the existence of at least one active request to the corresponding
output
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data path involves only multiplexing operations inside the input buffer, driven by
the FIFO’s pointers and the per-output multiplexers of the crossbar that end up at
the output pipeline register.

5.1.1 Credit Consume and State Update

As explained in Chap. 3, updating the outAvailable flag and consuming the neces-
sary credits should be triggered once a flit traverses the output multiplexer, and is
about to be written to the output pipeline register. Although this might seem a safe
and reasonable choice — and it is indeed for a single cycle router — it introduces some
non negligible delay overhead. A closer elaboration reveals that in this organization,
SU and CC must occur only after SA is completed and, most importantly, after a
multiplexing of all inputs is performed (for example to check whether a head or tail
flit exists at the granted input). This multiplexing is non-trivial in terms of delay
and, in real-life applications, it may limit the benefits of pipelining.

The problem can be completely eliminated by making an important observation:
both CC and SU can be executed without the need of knowing specifically which
input allocates the output port or consumes an output credit. Simply knowing that
some input wins in arbitration or sends a flit forward, suffices. Therefore, since the
SA result is not required, those operations can occur in parallel to SA. For SU, this
translates to checking whether any request from a head or a tail flit exists, to lower or
raise the outAvailable flag, respectively. CC decrements the output credit counter if
the corresponding output receives at least one request. Notice that once the output’s
outAvailable flag is lowered, request generation forbids any requests to that output,
unless they originate from the winner input. The outAvailable flag is raised again
once a tail flit makes a request (receiving a grant is guaranteed) and its new updated
value will be visible to the rest inputs in the next clock cycle.

5.1.2 Example of Packet Flow in the Single-Cycle Router

The operations executed in the single-cycle wormhole router of Fig. 5.2 can be seen
in Fig.5.3. The execution diagram refers to the behavior of a single input that
receives a consecutive traffic of incoming packets consisting of 3 flits (one head,
one body and one tail flit). This kind of traffic is selected since it reveals easily
any latency/throughput-related inefficiencies of pipelined organizations that will be
presented in later sections. In parallel, the rest inputs follow a similar execution
assuming that their requests and data move to a different output. A certain output
can host the packet (on a flit-by-flit basis) of only one input at a time.

In cycle 0, a head flit is written at the input buffer (Buffer Write — BW), after
crossing the link (Link Traversal — LT). The flit immediately appears at the frontmost
position of the input buffer in cycle 1, and is able to execute all necessary operations
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Fig. 5.3 The execution of necessary operations on a single-cycle wormhole router

within a single cycle: (a) the flit’s destination field feeds the RC and the outPort
bypass path is used to feed the request generation logic; (b) supposing that the output
is available, the flit performs SA, while in parallel it consumes a credit (CC) and
updates (SU) the outAvailable flag; finally, (c) the grant produced by SA is used to
dequeue (DQ) the flit from the input buffer, in order to traverse the crossbar (ST).

As the head flit moves forward to the output pipeline register, a body flit is written
at the input buffer. The output buffer has enough credits available, thus allowing the
newly arrived body flit to use the stored outPort value and generate a request to SA.
Being the only active request (the requests of all other inputs are nullified, since
outAvailable = 0), the body flit is granted to move forward, after consuming a
credit. At the same cycle, the head flit is moving to the next router. In cycle 3, the
tail flit follows the same procedure, performing SU as well, in order to release the
allocated port (outAvailable = 1), while the next packet’s head flit arrives. In cycle
4, all previously allocated resources are already free and the following packet is able
to generate a request and participate in arbitration, whatever its destined output port
might be. Observing the rate of incoming and outgoing flits of this input, one would
notice that a flit only requires a single cycle to exit the router, and no extra cycles
are added in between packets. The only conditions under which a flit may be stalled
is (a) if all the output buffer’s slots are full, or (b) a head flit loses in arbitration (in
this case the output port is still utilized, but by a different input).

In the rest of this chapter, we will modify the baseline single-cycle organization
reviewed in this section in a step-by-step manner to derive pipelined implemen-
tations that isolate the RC and the SA stages from the rest with the goal to
increase the router’s clock frequency. Then the primitive RC and SA pipelined
organizations will be combined in a plug-and-play manner to derive three-stage
pipelined organizations that lead to even higher clock frequencies.

5.2 The Routing Computation Pipeline Stage

Pipelining RC from SA and ST is the simplest form of pipelining that can be
performed to the router. RC is the first operation of the control path of the router.
Thus, the RC pipelined organization will include only a pipeline register at the
control path of the router, resulting to the organization shown in Fig. 5.4.
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Fig. 5.4 The organization of the router that pipelines the RC stage of the control path from SA
and ST. The outPort state variable that holds the output port requests of each packet acts as the
pipeline register

The only difference compared to the un-pipelined version lies around the outPort
register of each input. In the single-cycle organization this register is bypassed via
a multiplexer when a head flit appears at the frontmost position of the input buffer.
This bypass is necessary for allowing the head flit to generate the requests to the
SA in the same cycle. In the RC pipelined organization this multiplexer is removed
allowing the outPort register to play the role of the pipeline register in the control
path that separates RC from SA and ST. In both cases, the outPort register is set
(storing the output port request of the corresponding packet), when the head flit
of the packet appears at the frontmost position of the input buffer (isHead(Q) =
true), and it resets when the tail flit of the packet is dequeued from the input buffer
(isTail(Q) = true and granted).

Using this organization the critical path of the router is reduced by the delay
of the RC unit and in most tested configurations starts from the outPort register,
passes through the request generation logic and arbitration and ends up at the
output pipeline register. Please note that, since now the delay of the control path
is shortened, depending on the exact delay profile of the pipelined control path, the
critical path of the router may migrate from the control path and move to the data
path of the design.

The cycle-by-cycle execution of the RC control pipelined version of the router is
shown in Fig. 5.5. In cycle O the head flit of a packet arrives at an input and is stored
in the input buffer (BW). Then in cycle 1 the head flit performs RC and stores the
output port requests of its packet to the outPort pipeline register. In parallel a body
flit arrives at the same input. During cycle 2 the head flit performs SA and, assuming
that it is successful, it dequeues (DQ) itself from the input buffer and moves to the
crossbar that implements ST. In parallel to SA, CC and SU operations take place,
consuming a credit and lowering the outAvailable flag. The body flit that arrived at
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Fig. 5.5 The operation of a router that pipelines RC from SA and ST
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Fig. 5.6 The operation of a pipelined router that executes RC in the first pipeline stage and SA-ST
in the second and exhibits idle cycles due to the unsuccessful switch allocation (SA) of the first
packet

cycle 1 waits in the buffer, while the tail flit of the same packet arrives in the same
cycle and occupies the next buffer position behind the body flit.

If the SA operation was not successful, either because another input was granted
access to the same output port, or because the output port didn’t have enough credits,
the head flit would continue trying. The only effect of such unsuccessful trials would
be to shift the execution example of this input, depicted in Fig. 5.5 some cycles to
the right, as shown in Fig. 5.6. The SU and CC operations would still take place, but
only for the winner input port that does not experience the idle cycles seen by the
input that lost SA and depicted in Fig. 5.6.

In cycle 3, of Fig.5.5, the head flit moves to the link (LT) and approaches next
router. Now, the body flit is at the frontmost position of the input buffer and performs
SA and CC. The output that was given to the head flit in the previous cycle is
now unavailable for all inputs except this one. Therefore, the request generated
by the body flit would be satisfied for sure since it will be the only active one.
Consequently, in cycle 3 the body flit would be dequeued and switched to the
selected output. The tail flit remains idle waiting its turn to arrive to the frontmost
position of the input buffer.

Assuming that the input buffer is allocated non-atomically, meaning that flits
from different packets can be present at the same time on the same input buffer, the
head flit of a second packet arrives in cycle 3 too. When atomic buffer allocation is
employed, no new flit would arrive at this input, until the buffer is completely empty
from the flits of the previous packet. Implementing atomic buffer allocation in terms
of flow control policy is discussed in Sect. 3.1.2.
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In cycle 4, the body flit of the first packet is on the link, and the tail flit of the
same packet completes SA, CC and ST, releasing in parallel the output port (SU).
Ideally, the head flit of the second packet could have completed RC. However, in
the examined configuration of the RC pipeline, overlapping of RC with the tail’s
SA operation is not allowed. The reason for this limitation is that the RC unit is fed
with the destination field of the head flit only when the head flit is at the frontmost
position of the input buffer. In cycle 4 the frontmost position is occupied by the tail
flit that will be dequeued at the end of the cycle and move to the output of the router.
Therefore, the head flit of the second packet can feed the RC unit with the necessary
info not earlier than cycle 5, e.g., when the tail flit is already on the link.

This bubble in the RC control pipeline will appear in any case that two different
packets arrive at the same input back-to-back in consecutive cycles and it occurs
only after the end of the first packet. Packets from different inputs are not affected.
For example, when the tail flit of a packet from input i is leaving from output k, it
does not impose any idle cycle to a packet from input j that allocates output k in
the next cycle.

Therefore, RC for the head flit of the second packet is completed in cycle 5 and
the flow of flits in the pipeline continue the same way as before in the following
cycles.

5.2.1 Idle-Cycle Free Operation of the RC Pipeline Stage

The bubble appearing in the RC control pipeline is an inherent problem of the
organization of the router that does not allow the control information carried over
by flits, not in the frontmost position of the buffer, to initiate the execution of a task,
such as RC, in parallel to the tasks executed for the flit that occupies the frontmost
position of the input buffer. In the RC control pipeline the information of both the
frontmost and the second frontmost position would have been required to eliminate
idle cycles across consecutive packets.

This requirement can be satisfied by adding in parallel to the control pipeline
register (outPort) a data pipeline register that acts as a 1-slot pipelined elastic buffer
(EB) (see Sect.2.1.3 for details). RC would be initiated by the frontmost position
of the normal input buffer, while all the rest tasks such as request generation, SA
and ST would start from the intermediate pipelined EB, thus allowing the parallel
execution of RC for the new packet and SA-ST for the tail of the old packet. This
organization is shown in Fig. 5.7.

In this configuration, when a head flit appears in the frontmost position of the
input buffer, it executes RC and updates the outPort register, while moving in
parallel to the intermediate EB. The EB will only write incoming data when empty,
or when it is about to become empty in the same cycle (dequeued). On the contrary,
when a tail flit moves to the intermediate EB it will reset the outPort register when
it is ready to leave the EB (it received a grant). If in the same cycle, the head flit of
a new packet tries to set the outPort register and move to the EB and the tail flit of
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Fig. 5.7 The organization of a router that pipelines RC from SA and ST using a pipeline register
both it the control and in the data path of the router. The pipeline register of the datapath acts as an
1-slot EB that holds the flits ready for request generation and SA

the old packet that lies in the EB tries to reset the outPort register and leave the EB,
priority is given to the head flit of the new packet. Notice that the outPort register
is protected, so that a previous packet’s saved request is not overwritten by the head
flit of the next packet. If a tail is stalled at the intermediate EB (e.g. if all of the
output buffer’s slots where occupied), setting a new value to the outPort register by
a head flit at the input buffer would not be allowed.

The intermediate EB acts as an extension of the input FIFO buffer. It receives the
grants produced by SA instead of the main input buffer and guides the generation of
the credit update signals send to the upstream connections. A credit update is sent
backwards, not when a flit leaves the input buffer, but instead, when it leaves the
intermediate 1-slot EB. Keep in mind that now, the input buffer can actually hold
b + 1 flits (b in the main input buffer plus 1 in the intermediate EB), implying that
the credit counter responsible for counting the free slots of this input (e.g. at the
output of the adjacent router), must have a maximum value of b + 1, instead of b.

An example of the operation of a router that includes both control and data
pipeline segments is depicted in Fig.5.8 using the same flow of flits as in the
previous example, where pipelining of the RC stage was done only in the control
path. The first true difference between the two cases appears in cycle 1. The head flit
once it completes RC it is dequeued from the input buffer and moves to the pipelined
EB. The head flit will wait there until it wins in SA and moves to its selected output.
As long as the head flit is stalled in the pipelined EB stage all the rest flits are stalled
inside the input buffer.

In cycle 2 two operations occur in parallel. The first one involves the operations
of the head flit that participates in SA, wins a grant, consumes a credit, updates the
outAvailable flag, and gets dequeued from the intermediate EB moving towards its
destined output port via ST. The second one involves the operation of the body flit
that moves from the input buffer to the intermediate 1-slot EB. The intermediate EB
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Fig. 5.8 The operation of the pipelined router that includes an RC pipeline register both in the
control and the datapath. The pipeline register of the datapaths acts as a 1-slot elastic buffer. The
EB task of the diagram implies writing to this intermediate EB

in this cycle enqueues the body flit while it dequeues the head flit that was stored in
the previous cycle. The same happens also in cycle 3 for the body and the tail flit. At
the end of cycle 3, the tail flit of the first packet has left the input buffer and moved
to the intermediate EB. Thus, at the beginning of cycle 4, the frontmost flit of the
input buffer is the head flit of the new packet. Since the tail flit that occupies the
intermediate EB is leaving, the head flit will take its position at the end of cycle 4,
completing RC in parallel. Since the tail flit updated the outAvailable flag in cycle
4, the head flit currently in the EB can make a request in cycle 5 even for the same
output port. In this way, the flits of the two consecutive packets arriving at the same
input pass through the router un-interrupted without experiencing any idle cycles,
even if they are heading to the same output port.

5.3 The Switch Allocation Pipeline Stage

The second interesting form of pipelining for the router is the separation of SA
from ST, which can be combined with unpipelined or pipelined RC organizations
(either in the control or both the control and datapath) and give efficient pipelined
architectures. The per-output arbiters that implement the SA stage receive the
requests from all inputs and produce a valid input-output match. In contrast to the
static and local nature of the RC operation, SA is a function of several dynamic
parameters that create dependencies across inputs and make the design of SA
pipeline stage challenging. In the following sections, three different approaches are
presented, that reveal those dependencies and offer realistic solutions.

5.3.1 Elementary Organization

Pipelining the router at the end of the SA stage means that the grant signals
produced by the arbiters are first registered and then, in the next cycle, distributed
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Fig. 5.9 The organization of the router that separates in different pipeline stages SA from ST using
a pipeline register at the output of the SA unit. New requests are generated only when the grants
of the previous requests have been first delivered thus allowing the generation of a new request per
input once every two cycles
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Fig. 5.10 The operation of the pipelined router that delays the delivery of the grants to the input
buffer and the crossbar

to the inputs and the output multiplexers of the router, as shown in Fig.5.9. This
organization corresponds to a purely control pipelined organization and faces an
inherent problem. Every flit that requests a certain output at cycle 7y, it will receive
a grant at cycle ¢y + 1, and should decide how to react in the next cycle. The first
obvious choice is to wait, meaning that a new flit will depart from its input every two
cycles; one cycle spent for the request and one for accepting the grant that appears
one cycle later. While waiting for the grants to come, an input should not send a new
request. To achieve this bevahior the requests produced in the current cycle should
be masked using the grants of the previous cycle (denoted as ‘mask’ in Fig. 5.9). If
the input was previously granted, then the current requests are nullified, thus causing
the arbiter to produce an empty grant vector for this input in the next cycle. Once
the masking logic understands the existence of an empty grant vector it allows the
requests to pass to the arbiter. In this way, a new grant vector is produced every two
cycles thus adding a bubble between any two flits that reach the SA stage.

The behavior of the pipelined router that follows the organization of Fig. 5.9, is
depicted in Fig. 5.10. In this example, the RC stage is considered to be unpipelined.
The head flit that arrives in cycle 0, performs RC and SA during cycle 1 and in
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parallel consumes the necessary credit and updates the state of its destined output.
The grants return in cycle 2 that causes the head flit to get dequeued from the input
buffer (DQ) and move to the crossbar. Since the head flit will leave at the end of
cycle 2, it should not produce a new request in this cycle. This is handled by the
request masking logic of Fig. 5.9 that cuts any requests generated in cycle 2 and in
effect cuts any grants delivered in cycle 3. The rest inputs, although they have not
received their grants, they don’t produce also any requests in cycle 2 for the same
output; their requests are blocked since the outAvailable flag of their destined output
has been lowered in cycle 1 during SU.

The body flit arrives at the frontmost position of the input buffer at the end of
cycle 2. In the beginning of cycle 3, it generates its own set of requests that will be
delivered in cycle 4. The requests of the body flit survive the request masking logic
since in cycle 3 the input does not receive any grants. Since the output is locked
by the grant given to the head flit of the packet, the body flit will receive a grant
for sure. The same operation continues in the next cycles where an empty cycle is
added for each flit after SA.

5.3.2 Alternative Organization of the SA Pipeline Stage

The delay between request generation and grant delivery leads to an idle cycle
between every pair of flits of the packet. By observing that the body and tail flits
do not need to generate any request and they can move directly to ST by inheriting
the grants produced by the head flit of the same packet, we can remove all the idle
cycles experienced by the non-head flits. The body and tail flits before moving to
ST should just check the availability of buffer slots at the output buffer.

In this configuration the grants produced by the SA should be kept constant for all
packet’s duration. According to the organization depicted in Fig. 5.11, the pipeline
register that was used to register the SA grants per output, is now replaced by a
register that is updated under the same conditions used to update the outAvailable
flag: grants are stored or erased when at least a request by a head or a tail flit is
made, respectively. Now, once a head flit wins arbitration, grants persist until the
tail flit resets them. Although the head flit should wait for the grants to return, the
body and tail flits are dequeued once they have an active request (a request is always
qualified by the status of the credit counters). This condition is implemented by the
multiplexer in the backward direction. Please notice that the request mask used in
Fig.5.9 is removed and the initial request generation logic is restored at the input
side.

The stored grants always drive the select lines of the output multiplexer transfer-
ring to the output register data and their valid signals. However, we should guarantee
that the valid signal seen at the output buffer corresponds always to a legal flit; a
flit is legal if it is both valid and the output buffer has enough credits to accept it.
Delivering to the output multiplexer the valid signal of the input buffer as done in
previous cases of Figs. 5.2, 5.4,5.7 and 5.9 is not enough in this configuration, since
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Fig. 5.11 The organization of the pipelined router that pipelines the grants of the SA unit and
keeps them for direct use by the body and tail flits of the same packet, thus breaking the dependency
across the request and the delayed arrival of the corresponding grants
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Fig. 5.12 The operation of the alternative SA pipelined router, where body and tail flits move
directly to ST once they have the necessary credits by inheriting the grants produced by the head
flit of the same packet and stored in the corresponding pipeline register

the output buffer will receive via the output multiplexer body/tail flits that have not
been qualified for the necessary credits. To resolve this issue a mutiplexer is added
in the forward direction, as shown in Fig. 5.11, that selects the qualified valid signal
produced by the request generation logic in the case of body/tail flits instead of the
normal valid signal.

The cycle-by-cycle operation of this alternative SA pipelined organization is
presented in Fig. 5.12. A head flit is written to the input buffer in cycle 0 and issues
arequest to SA in cycle 1 after having completed RC in the same cycle. The grants
from SA return in cycle 2 and saved for later use by the body and tail flits of the
same packet. In cycle 2, the head flit accepts the grant and gets dequeued moving
to its destined output via the output multiplexer (ST). In cycle 3, the body flit of the
same packet arrives at the frontmost position of the input buffer. Without sending
any request to the SA (requests are actually generated only for the purpose of ready
qualification) once the body flit has at least one credit for its selected output it gets
dequeued and moves to ST after consuming one credit. The ST stage will switch
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correctly this body flit driven by the stored grant signals at the corresponding output.
The tail flit in cycle 4 repeats the same procedure and moves to ST without waiting
for any SA grants. The head flit of the new incoming packet reaches the frontmost
position of the input buffer in cycle 5 initiating a new round of RC, SA and ST
operations, similar to the head flit of the previous packet.

This stored grants approach turns the previously presented “elementary” SA
pipeline an obsolete choice. It reduces bubbles significantly with only minimal
delay overhead to the router’s control path. It also looks as if it simplifies the
allocation procedure. However, in essence, it simply adds extra state registers to
the arbiter’s path and a multiplexer at both control and data paths. Therefore, this
approach is avoided in single cycle version, and the original request generation logic
is preferred. For the same reason, the stored grants, will not be used at the next
pipeline SA configuration that uses a pipeline register both in the control and in the
datapath although it could have been a possible choice. The stored-grants approach
for the body and tail flits is a useful pipeline alternative when SA is separated from
ST solely in the control path.

5.3.3 Idle-Cycle Free Operation of the SA Pipeline Stage

The dependencies arising from delaying the delivery of the grants of SA to the
crossbar and to the inputs of the routers can be alternatively resolved by adding an
extra input pipeline register to the data path. The added data pipeline register, shown
in Fig.5.13, does not have to be flow-controlled since no flit will ever stall in this
position. This data pipeline register is just used to align the arrival of the registered
grant signals with the arrival of the corresponding flit to the input of the crossbar.

Since the grant signals should be always aligned to the corresponding data, the
delivery of the grant signals to the inputs should move before the grant pipeline
register (as done in Fig.5.13). This is needed since the dequeued data will reach
the input of the crossbar one cycle later; they will spend one cycle passing the data
pipeline register. This extra cycle also requires an extra buffer slot at the output
buffer (at the input of the next router) for full throughput operation, since forward
latency L f is increased by 1.

The pipeline flow diagram that corresponds to the pipelined organization of
Fig.5.13 is shown in Fig.5.14. In this case, the head flit in cycle 1 performs RC
and SA and after accepting the grants in the same cycle it is dequeued and moves
to the data pipeline register after having consumed the necessary credit. In cycle 2,
the head flits leaves the data pipeline register and moves to the selected output using
the grants produced by the corresponding output arbiter in the previous cycle. In
the same cycle, the following body flit that arrived in cycle 1 and is placed now
in the frontmost position of the input buffer, can perform SA and once granted
it can move also to the data pipeline register consuming in parallel the necessary
downstream credit. The same holds for the following tail flit that can perform all
needed operations without experiencing any idle cycles. In cycle 4, the full overlap
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Fig. 5.13 The organization of the router that pipelines RC-SA from ST using a pipeline register
both in the control path, that registers the grants of SA, and in the data path, that registers the data
arriving at the input of the crossbar
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Fig. 5.14 The operation of a pipelined router that executes RC-SA in the first pipeline stage and
ST in the second, and uses pipeline registers both in the control path and in the datapath of the
router

allowed between the operations per pipeline stage is fully revealed. The body flit is
on the link, the tail flit performs ST, while the head flit of the next incoming packet
from the same input (it could be also from a different input), performs RC and SA
and at the end of the cycle moves to the data pipeline register after having consumed
an available credit.

The main contribution of the SA pipeline stage is the isolation of the crossbar
from the rest of the control and data path logic (the remaining data path logic
consists mostly of the data multiplexing inside the input buffers). Depending on
the radix of the router, its data width, and other placement options the crossbar may
have a significant contribution to the final delay. In low-radix cases, though, the
delay of the crossbar is not the critical factor that determines the speed of the router.

The idle cycles that appear in the straightforward SA pipelined organization
can be removed by either relying to a re-organization of the input request unit
that forwards the body and tail flits directly to ST, provided that they have credits
available, or by adding another data pipeline register placed at the inputs of the
crossbar that would align the arrival of grants and the corresponding data.
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5.4 Pipelined Routers with RC and SA Pipeline Stages

The RC and SA pipeline stages can be combined in pairs and derive 3-stage
pipelined implementations that schedule RC, SA, and ST in different clock cycles.
Some of the possible alternatives do not offer any real benefit to the design of
the router since they preserve certain architectural dependencies that introduce
significant number of bubbles in the pipeline. Instead, in this section, we will
describe two of the most useful alternatives that isolate the internal timing paths
of the router and minimize at the same time the idle cycles in the operation of the
router.

5.4.1 Pipelining the Router Only in the Control Path

One of the two organizations discussed in this chapter includes an RC pipeline and
a SA pipeline stage, where pipelining occurs, in both cases, only in the router’s
control path. For the SA-control pipeline we assume the organization presented in
Sect.5.3.2. In this case, the output of the SA is driven to a pipeline register that
returns the grants to the inputs, but also stores them for direct use by the body and
tail flits of the same packet that move directly to SA once they have available credits.
The complete organization of the 3-stage control-path pipelined router is shown in
Fig.5.15, while an example of its operation is shown in Fig. 5.16.
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Fig. 5.15 The organization of a 3-stage pipelined router that executes RC in the first pipeline
stage, SA in the second and ST in the last stage. Pipeline registers have been added only in the
control path of the router
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Fig. 5.16 The flow of flits in a 3-stage pipelined router where pipelining is employed only in the
control path of the RC and SA stages

The organization of the router is just a composition of the RC control-only
pipeline stage, shown in Fig.5.4, where the outPort register acts as the pipeline
register and SA control pipeline stage of Fig. 5.11, where the grants are stored at the
output of the SA and re-used by the body and tail flits of the packet.

First of all, since only one flit can deliver its control information per input (only
one in the frontmost position of the input buffer), there should be at least one idle
cycle between consecutive packets, as depicted in Fig. 5.16. This is revealed in cycle
5 where the head flit of the second packet waits unnecessarily for the tail flit to leave
the input buffer and complete RC in cycle 6, although it actually arrived at the input
of the router in cycle 3. Besides that, the rest flits experience an un-interrupted flow.
For example the body and tail flits re-use in cycles 4 and 5 the grants returned to
their input in cycle 3 after the request generated in cycle 2 by the head flit of the
same packet.

5.4.2 Pipelining the Router in the Control and the Datapath

The idle cycles can be removed by employing combined control and data pipelines
for both the RC and the SA stage. The organization of the router that employs
this pipelined configuration is shown in Fig.5.17. By observing closely the block
diagram of Fig.5.17, we can see that the organization presented is derived by
stitching together the RC and SA combined pipelines presented in Figs. 5.7 and 5.13,
respectively.

The pipelined operation experienced by the flits of a certain input that belong to
two consecutive packets is shown in Fig.5.18. The first flit (head flit) that arrives
in cycle 0 will leave the router four cycles later. In cycle 1 it completes routing
computation and at the end of the cycle it moves to the pipelined EB of the RC stage.
This movement required the dequeue of the head flit from the input buffer. In cycle
2, the requests stored in the outPort pipeline register are sent to SA that returns the
corresponding grants in the same cycle. These grants are used to dequeue the head
flit from the intermediate EB and place it to the pipeline register at the input of the
crossbar. In the meantime, the body flit of the same packet has arrived and moved
to the intermediate EB. During cycle 3 the head flit just moves through the crossbar
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Fig. 5.17 The organization of a 3-stage pipelined router derived by the composition of RC and
SA pipeline stages that includes pipeline registers both in the control and the datapath of the router
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Fig. 5.18 The operation of a 3-stage pipelined router that exhibits no idle cycles by employing
pipeline registers at the end of RC and SA both in the control and data path of the router

and reaches its selected output, while the body flit that follows takes its place in
the data register of the SA stage after receiving a grant and consuming its credit.
The position previously held by the body flit is now occupied by the incoming tail
flit that has been dequeued from the input buffer and moved to the EB of the RC
stage. Cycle 4 evolves in a similar manner. Due to the two data pipeline registers,
the frontmost position of the input buffer is free for the head flit of the next packet
that arrived at the same input. This characteristic allows the head flit to complete
RC and move to the intermediate EB accordingly.

In this configuration, idle cycles are neither experienced by the flits of the same
packet nor by the flits across different packets, and all flits continue moving to their
selected output at full throughput. Any idle cycles experienced would be a result
of output contention due to the characteristics of the traffic pattern and the routing
algorithm, and not a result of the internal microarchitecture of the router.

Between the two extremes 3-stage pipelined solutions of using pipelining only
in the control path or both in the control and the data path, there are other two
intermediate configurations. The first one employs control pipeline at the RC stage
and combined pipelined at the SA stage, while the second does the opposite; it
employs combined pipelining at the RC stage and control-path-only pipeline in the
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SA stage. The behavior of each solution in terms of throughput can be easily derived
by the behavior experienced by each sub-component analysis in Sects. 5.2 and 5.3.
Whenever the RC stage is pipelined only in the control path, one idle cycle should
be added between the end of a packet (tail flit) and the start of the next one (head flit)
that arrives at the same input in consecutive cycles, assuming that the input buffer
is allocated not atomically. On the contrary, when the SA stage is pipelined only in
the control path then an idle cycle is inserted for the head flit; the head flit is obliged
to wait in the input buffer for one cycle, until the grant from the SA arrives.

Depending on the exact delay profile of the modules that participate in the design
of a router, such as routing computation, request masking and arbitration, grant
handling and dequeue operations, as well as credit consume and crossbar traversal,
the presented pipelined solutions may lead to different designs in the energy-delay
space. In any case, the selection of the appropriate pipeline organization is purely
application-specific and needs scenario-specific design space exploration. In this
chapter, our goal was to present the major design alternatives in a customizable
manner, e.g., every design can be derived by combining the two primitive pipelined
organizations for the RC and SA stage that lead to reasonable configurations. Other
ad-hoc solutions that eliminate the idle cycles of the control pipeline without the
need for data pipeline stages may be possible after certain “architectural” tricks, but
their design remains out of the scope of this book.

5.5 Take-Away Points

The main tasks of a wormhole router includes RC, SA and ST. Executing the
tasks of the router, in an overlapped manner, in different pipeline stages can be
derived by following a compositional approach, where the primitive pipeline stages,
are stitched together to form many meaningful pipelined configurations. Pipeline
registers can be added either in the control or in the datapath of router, leading to
different tradeoffs in terms of the achieved clock frequency and the idle cycles that
appear in the flow of flits inside the router’s pipeline.



Chapter 6
Virtual-Channel Flow Control and Buffering

In all cases described so far when a packet allocated a link (or an output of a router)
the connection was kept until the tail of the packet traversed the link and released its
usage to other packets. This behavior was imposed by the fact that the buffers at the
other side of the link (or the input of the next router) kept the control information
of only one packet, thus prohibiting the interleaving of flits from different packets.
This flow of packets resembles a single-lane street where cars move one after the
other and even if a car wants to turn to a different direction it is obliged to wait the
rest cars to pass the turning point before being able to make the turn to its preferred
direction (see Fig. 6.1a). Also, this serial packet movement prohibits packet flow
isolation since all traffic is inevitably mixed in the one-lane streets of the network.

Allowing for flow separation and isolation needs the dedication of multiple
resources either in space (more physical lanes by adding extra wires on the links) or
in time (more virtual resources interleaved on the same physical resources in a well-
defined manner). This chapter deals with virtual channels that represent an efficient
flow control mechanism for adding lanes to a street network in an efficient and
versatile manner, as illustrated in Fig. 6.1b. Adding virtual channels to the network
removes the constraints that appear in single-lane streets and allow otherwise
blocked packets to continue moving by just turning to an empty (less congested)
lane of the same street (Dally and Aoki 1993; Dally 1992). Since the additional
lanes are virtually existent their implementation involves the time multiplexing of
the packets that belong to different lanes (virtual channels) on the same physical
channel. Briefly, virtual channels behave similar to having multiple wormhole
channels present in parallel. However, adding extra lanes (virtual channel) to each
link does not add bandwidth to the physical channel. It just enables better sharing
of the physical channel by different flows (Boura and Das 1997; Nachiondo et al.
2000).

Besides performance improvement, virtual channels are used for a variety of
other purposes. Initially, virtual channels were introduced for deadlock avoid-
ance (Dally and Aoki 1993). A cyclic network can be made deadlock-free by
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restricting routing so that there are no cycles in the channel dependency graph. The
channels can be thought as the resources of the network that are assigned to distinct
virtual channels. The transition between these resources in the packet’s routing path
is being restricted in order to enforce a partial order of resource acquisition, which
practically removes cyclic dependencies (Duato 1993).

In a similar manner, different types of packets, like requests and reply packets,
can be assigned to disjoint sets of virtual channels (VCs) to prevent protocol-
level deadlock that may appear at the terminal nodes of the network. For instance,
protocol-level restrictions in Chip Multi-Processors (CMP) employing directory-
based cache coherence necessitate the use of VCs. Coherence protocols require
isolation between the various message classes to avoid protocol-level deadlocks
(Martin et al. 2005). For example, the MOESI directory-based cache coherence
protocol requires at least three virtual networks to prevent protocol-level deadlocks.
A virtual network comprises of one VC (or a group of VCs) that handles a specific
message class of the protocol. Virtual networks and the isolation they provide are
also used for offering quality of service guarantees in terms of bandwidth allocation
and packet delivery deadlines (Grot et al. 2012).

Architectures supporting the use of VCs may reduce also on-chip physical
routing congestion, by trading off physical channel width with the number of VCs,
thereby creating a more layout-flexible SoC architecture. Instead of connecting two
nodes with many parallel links that are rarely used at the same time, one link can be
used instead that supports virtual channels, which allows the interleaving in time of
the initial parallel traffic, thus saving wires and increasing their utilization.

6.1 The Operation of Virtual-Channel Flow Control

To divide a physical channel into V' virtual channels, the input queue at the receiver
needs to be separated into as many independent queues as the number of virtual
channels. These virtual channels maintain control information that is computed only
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Fig. 6.2 Virtual channels require the addition of separate buffers for each VC at the receiver’s
side and at the same time call for enhancements to the flow control signaling to accommodate the
multiple and independent flows travelling in each VC

once per packet. To support the multiple independent queues link-level flow control
is also augmented and includes separate information per virtual channel.

Ready/valid handshake on each network channel cannot distinguish between
different flows. This feature prevents the interleaving of packets and the isolation
of traffic flows, while it complicates deadlock prevention. A channel that supports
VCs consists of a set of data wires that transfer one flit per clock cycle, and as many
pairs of control wires valid(i )/ready(7) as the number of VCs. Figure 6.2 shows an
example of a 3-VC elastic channel. Although multiple VCs may be active at the
sender, flits from only one VC can be sent per clock cycle; only one valid(i) signal
is asserted per cycle. The selection of the flit that will traverse the link requires
some form or arbitration that will select one VC from those that hold valid flits. At
the same time, the receiver may be ready to accept flits that can potentially belong
to any VC. Therefore, there is no limitation on how many ready(;j) signals can be
asserted per cycle.

In VC flow control, both the buffering resources and the flow-control handshake
wires have been multiplied with the number of VCs. Therefore, the abstract flow
control model developed for the single-lane case in Chap. 2 should be enhanced to
support virtual channels. As shown in Fig. 6.3a, we use a separate slot counter for
each VC that gets updated by the corresponding buffer and reflects via the ready
signal the status of the VC buffer. Normally, only one VC will drain a new flit
and thus the status of only one slot counter will be updated. Of course the case
of multiple VCs draining flits in parallel can be supported. Keeping the rate of
incoming flits equal to the rate of outgoing flits (leaving the receiver’s buffer), it
is safe to assume that only one update will be asserted in each clock cycle.

Moving the slot counters at the sender side, as shown in Fig. 6.3b transforms the
flow control mechanism to the equivalent credit-based flow control for VCs. The
ith VC is eligible to send a new flit as long as creditCount[i] > 0 meaning that
there is at least one empty slot at the downstream buffer for the ith VC. When a
new flit leaves the sender it decrements the corresponding credit counter, while the
credit updates returned per cycle are indexed by the corresponding credit update
wire (update[i]).

Instead of transferring V' valid signals and V' credit update signals in the forward
and in the backward direction, it is preferable to encode the id of the valid VC and
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Fig. 6.3 The abstract flow control model enhanced for supporting virtual channels. One free slot
(or credit) counter is added per VC that can be placed either at the receiver or at the sender. Multiple
ready signals can be asserted per cycle showing which VCs is ready to accept new flits. In the
simplest case only one VC will leave the receiver and update the status of the corresponding VC
buffer

the id of the VC that returns a new credit; the encoding minimizes the flow control
wires to 14-log, V' in each direction. This is possible since at most one VC will send
valid data to the receiver and the receiver will drain at most one flit for its buffers
thus updating the status of only one credit counter. Thus, in each direction a single
valid/update bit is used and a VCid that encodes the index of the selected VC in
log, V bits; the VCids arriving at the receiver via the valid signals and at the sender
via the update signals should be first decoded before being used in either side of
the link. The complete list of wires used in a physical channel that accommodates
V VCs is shown in Fig. 6.4, including also the appropriate packet framing signals
isHead and isTail that are used to describe the id of the flit that is currently on
the link.

The basic property of VC-based flow control is the interleaving of flits of
different packets. In each cycle, a flit from a different VC can be selected and appear
on the link after having consumed its corresponding credit. The flit once it arrives
at the receiver is placed at the appropriate VC buffer indexed by the VC ID of the
forward valid signals. Since the buffering resources of each VC at the receiver’s side
are completely separated, interleaving the flits of different packets does not create
any problems, assuming that the VC-based flow control mechanism does not involve
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any dependencies across VC, e.g., if the buffer of a certain VC is full to stop the
transmission of flits from another VC. Examples of such dependencies arising from
sharing the buffers used for the VCs will be discussed in the following sections.

6.2 Virtual-Channel Buffers

In the simplest form of single-cycle links the valid and the backpressure information
needs one cycle to propagate in the forward and in the backward direction.
Therefore, in a single-cycle channel without VCs, a 2-slot elastic buffer (EB) would
suffice to provide lossless operation and 100 % throughput. Equivalently, a primitive
VC buffer can be built by replicating one 2-slot EB per VC, and including a
multiplexer, following the connections shown in Fig. 6.5 for the case of 3 VCs. Each
EB will be responsible for driving the corresponding ready(i )/valid(i ) signals while
all of the them will be connected to the same data wires on the write side. When
more buffering space is required a FIFO buffer per VC can be used in the place of a
simple elastic buffer.
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Fig. 6.6 Flit flow on a channel between two primitive VC buffers that employ a 2-slot EB for
each VC

On the read side of the VC buffer, an arbitration mechanism will select only
one of the valid VCs, that is also ready downstream, to leave the buffer. A packet
that belongs to the ith VC can be hosted either to the same VC in the next buffer
or to a different VC provided that it has won exclusive access to this VC. VC-
based flow control does not impose any rules on how the VCs should be assigned
between a sender buffer and a receiver buffer. Allowing packets to change VC
in-flight can be employed when the routing algorithm does not impose any VC
restrictions (e.g., XY routing does not even require the presence of VCs). However,
if the routing algorithm and/or the upper-layer protocol (e.g., cache coherence)
place specific restrictions on the use of VCs, then arbitrary in-flight VC changes are
prohibited, because they may lead to deadlocks. In the presence of VC restrictions,
the allocator/arbiter should enforce all rules during VC allocation to ensure deadlock
freedom. The VC selection policies used inside the routers will be thoroughly
discussed in the next chapter.

Figure 6.6 depicts a running example of a VC-based pipeline using a 2-slot EB
per VC. The two active VCs each receive a throughput of 50 % and each VC uses
only one buffer out of the two available per VC. The second buffer is only used
when a VC stalls. This uniform utilization of the channel among different VCs
leads to high buffer underutilization. The buffer underutilization gets worse when
the number of VCs increases. In the case of V' active VCs, although the physical
channel will be fully utilized, each VC will receive a throughput of 1/V and use
only one of the two available buffer slots since it is accessed once every V cycles.
Only under extreme congestion will one see the majority of the second buffers
of each VC occupied. However, even under this condition, a single active VC is
allowed to stop and resume transmission at a full rate independently from the rest
VCs. This feature is indeed useful in the case of traffic originating only from a
single VC, where any extra cycles spent per link will severely increase the overall
latency of the packet. However, in the case of multiple active VCs, whereby each
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one receives only a portion of the overall throughput (1/M in the case of M active
VCs), allocating more than 1 buffer slot per VC is an overkill.

Larger buffers per VC are only needed for covering the increased round-trip time
of the flow control mechanism as it will be described in the second part of this
chapter or to absorb bursty traffic that rapidly fills up the buffers of the network
in a specific direction. Still in these cases, only a subset of the total VCs will be
active and the rest will stay idle leaving their buffers empty most of the time, thus
increasing the buffer underutilization.

6.3 Buffer Sharing

Naturally, the answer to the underutilization of the VC buffers is buffer sharing;
reuse some of the available buffer resources along many VCs (Tamir and Frazier
1992; Nicopoulos et al. 2006; Tran and Baas 2011). From a functional perspective,
all variants of shared buffer architectures exhibit the same overall behavior: They
manage multiple variable-length queues — one per VC in our case — and allow flits
to be removed from the head or added to the tail of each queue. The individual
variants differ in how they preserve the order of flits within each queue. At first, we
will describe a generic shared buffer architecture utilizing credit-based flow control
for each VC and then derive the minimum possible VC-based buffered architecture
that employs sharing too and can work with ready/valid handshake similar to the
primitive 2-slot EBs presented for the case of single-lane traffic.

In a shared buffer configuration, illustrated in an abstract form in Fig. 6.7, each
VC owns a private space of buffers. When the private space of one VC is full the
corresponding VC can utilize more space from a shared buffer pool. The minimum
private space required is equal to 1 slot, while the shared buffer space can be larger.

When credit-based flow control is applied at the VC level the available number
of credits for one VC directly reflects the available buffer slots for that VC. So,
the maximum number of credits is fixed and equal to the buffering positions of
each VC. In a shared buffer organizations any VC can hold an arbitrary number of
buffer slots both in its private region as well as in the shared buffer space. Therefore,

Private

1 VC#0
Fig. 6.7 The rough —
organization of a VC buffer | |
that employs sharing of buffer 1 VC#1
space across different VCs. Shared PEE
Each VC owns a private 1 1
buffer space and all of them ; T 1 VC#2
share the slots provided by a >
shared buffer module that is |1
dynamically allocated to the Private buffers connect directly

requirements of each VC to input when not using the shared buffer
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the maximum allowed value for each credit counter may change dynamically. This
feature may complicate a lot the update of the credit counters (Nicopoulos et al.
2000).

Instead, we present a different approach that keeps the depth of each credit
counter constant and simplifies a lot the handling of the credits of each VC
in a shared buffer configuration. The sender keeps one credit counter, for each
downstream VC that refers to its private buffer space and a counter for the shared
buffer that counts the available buffer slots in the shared region. A VC is eligible
to send a new flit when there is at least one free position either at the private or
the shared buffer (creditCounter[i] > 0 or creditShared > 0). Once the flit is sent
from the ith VC, it decrements the credit counter of the ith VC. If the credit counter
of the ith VC was already equal to or smaller than zero, this means that the flit
consumed a free slot of the shared buffer and the counter of the shared buffer is also
decremented.

Since the state of each VC is kept at the sender, the receiver only needs to send
backwards a credit-update signal, including a VC ID, which indexes the VC that
has one more available credit for the next cycle. On a credit update that refers to the
jth VC, the corresponding credit counter is increased. If the credit counter is still
smaller than zero, this means that this update refers to the shared buffer. Thus, the
credit counter of the shared buffer is also increased. Please note that even if there is a
separate credit counter for the shared buffer the forward valid signals and the credit
updates refer only to the VCs of the channel and no separate flow control wiring is
needed in the channel to implement a shared buffer at the receiver.

In this case, safe operation is guaranteed even if there is only 1 empty slot per
VC. In the case of single-cycle links (L y = 1, L, = 1), each VC can utilize up to 2
buffer slots before it stops, and those positions are enough for enabling safe and full
throughput operation per VC. Therefore, when each VC can utilize at least 2 buffer
slots of either private or shared buffer space it does not experience any throughput
limitations. If a certain VC sees only 1 buffer slot available then inevitably it should
limit its throughput to 50 % even if it is the only active VC on the link.

The generic shared buffer architecture that includes a private buffer space per
VC and a shared buffer space across VCs can be designed in a modular and
extensible manner if we follow certain design rules (operational principles). First,
any allocation decision regarding which VC should dequeue a flit from the buffer,
is taken based only on the status of the private VC buffers; the private buffers act
as parallel FIFOs each one presenting to the allocation logic just one frontmost flit
per VC. Second, when the private buffer per VC drains one flit that empties one
position, the free slot is refilled in the same cycle, either with a flit possibly present
in the shared buffer, or directly from the input, assuming the new flit belongs to the
same VC. Whenever the private buffer per VC cannot accommodate an incoming
flit, a shared slot is allocated, where the flit is stored. As soon as the private space
becomes available again, the flit is retrieved from the shared buffer and moves to the
corresponding private buffer.

Every time a VC dequeues a flit from its private buffer, it should check the shared
buffer for another flit that belongs to the same VC. Figure 6.8 demonstrates the
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Fig. 6.8 An example of the interaction between the shared buffer (3 slots) and the private buffers
(2 slots) per VC. Every time a flit is drained from the private VC buffer, the shared buffer is checked

for another flit that belongs to the same VC. A VC uses the shared buffer only when it runs out of
private buffer space

interaction between the shared buffer and the private buffer space per VC through
a simple example. In this configuration, each VC owns a private buffer of 2 slots
and all VCs share three extra buffer slots. In cycle 0, VC A owns 2 shared slots
and dequeues a flit from its private buffer that was previously full. The empty slot
in the private buffer of VC A should be refilled by a flit from the shared buffer.
Therefore, VC A accesses the shared buffer to find the flits that match VC A and
locate the oldest (the one that came first). The refill of the private buffer of VC A is
completed in cycle 1. Then, in cycle 2, the same procedure is followed, effectively
loading the private buffer of VC A with a new flit. The private buffer of a VC does
not necessarily get new data from the shared buffer, but it can be loaded directly
from the input, as done for VC C in cycle 0.

6.3.1 The Organization and Operation of a Generic
Shared Buffer

Maintaining the flits’ order of arrival among VCs is the main concern when
designing a shared buffer. It should be as flexible as possible, without imposing
any restrictions on the expected traffic patterns. The way this is achieved leads
to different implementations. For example, the self-compacting shared buffers (Ni
et al. 1998; Park et al. 1994) require the flits of a single VC to be stored in
contiguous buffer positions. To enable this continuity in the storage of flits of each
VC, every time a flit enters or leaves the queue of a certain VC the data of all
queues should be shifter either to make room for the incoming flit or to close the
gap left by the outgoing flit. To avoid shifting that may lead to increased power
consumption, the shared buffer can employ pointers that allow locating flits by
reference, although they may be stored in practically random addresses (Tamir and
Frazier 1992; Katevenis et al. 1998).

An example of such an approach is presented in Fig.6.9. Apart from the
main buffer space used to store flits (Buffer Memory), the shared buffer uses a
list of single-bit elements which tells whether an address actually contains data
(Availability List) and a Linked List, used to track flits’ order of arrival. If a flit
for VC k is stored in address a of the buffer memory, then the next flit for VC k
is stored in the address pointed by element a of the Linked List (a NULL pointer
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Fig. 6.9 Abstract organization of a shared buffer using pointer logic. pH and pT represent the
head and tail pointer of each queue

Enqueue NewfFlit at VC #k

fs = head(avail) // Get the first free slot

buffer[fs] <- flit new // Store the new flit

1 list[pT[k]] <- fs // Link previous tail of VC k to new flit
pT[k] <- fs // Update tail pointer of VC k

1 list[fs] <- NULL // Make new flit the last flit of the queue
avail[fs] <- 0 // Mark the slot as occupied

Dequeue OutputFlit from VC #k

flit_out <- buffer([pH[k]] // Read flit from the head address

avail[pH[k]] <- 1 // Mark the buffer slot as available

pH[k] <- 1 list[pH[k]] // Set the head pointer to point to the
// address of the next flit

Fig. 6.10 Operations involved when enqueuing or dequeuing a flit from the shared buffer

means that no other flit exists for VC k). Combined with its head and tail pointers
(pH and pT), a VC can always find its flits in the shared buffer, in the order they
initially arrived.

The necessary operations executed in case of enqueue or dequeue are shown
through the abstract description of Fig. 6.10. Assume that a flit arrives for VC A at
the input of the shared buffer, which is currently in the state of Fig.6.9. A search
is initiated and the first free slot is located using a fixed priority arbiter (in that
case, fs = 2). Then, in parallel, (a) the actual flit data are stored in address 2 of the
Buffer Memory, (b) the fs value is stored in slot 5 of the linked list, as pointed by
the tail pointer of VC A and (c) VC A’s tail pointer is replaced by the fs value. In
the opposite case, where a dequeue is requested by VC A, the shared buffer’s output
is driven by the data stored in the address pointed by head pointer (pH = 3 for VC
A). Then, the element 3 of the linked list is accessed to retrieve the address of the
next flit, and it is used to replace VC A’s head pointer, while the value of element 3
is reset to NULL. Finally, address 3 is marked as available in the availability list.

Notice that the use of a tail pointer is not mandatory. It would have been possible
to locate it implicitly, after following the path of the linked list’s pointers, starting
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from the head position until a NULL pointer is found. However, this would add
significant latency, that is not needed when being able access the last flit position
directly, with almost no overhead.

6.3.2 Primitive Shared Buffer for VCs: ElastiStore

Buffer sharing can be pushed to the limit and design low-cost VC buffers that offer
the minimum buffering possible and still allow to a single VC to enjoy 100 %
throughput of data transfer. The buffering architecture, called ElastiStore, utilizes
only V + 1 buffers for V VCs (Seitanidis et al. 2014a). Each VC owns a single
buffer, which is enough in the case of uniform utilization, where each VC receives
a throughput of 1/M, with 2 < M < V. Furthermore, when a single VC uses
the channel without any other VC being active, i.e., M = 1, it receives 100 %
throughput, and, in the case of a stall, it may use the additional buffer available in
ElastiStore. This additional buffer is shared dynamically by all VCs, although only
one VC can have it in each clock cycle. However, when all VCs, except one, are
blocked, and the shared buffer is utilized by a blocked VC, then the only active VC
will get 50 % of the throughput, since it effectively sees only one buffer available
per channel. Note that the baseline VC-based buffer of Fig. 6.5, which allocates 2
buffers to each VC would allow this active VC to enjoy full channel utilization.

Figure 6.11 illustrates an example of flit flow between two ElastiStores that each
one supports 2 VCs. In the first cycles, each VC receives 50 % of the throughput per
channel (M = 2), and, at each step, they utilize only one buffer slot. In those cycles,
the shared registers of the two ElastiStores are not utilized. The shared buffers are
used between cycles 4 and 7 to accommodate the stalled words of VC B. In those
cycles, VC A — which is not blocked — continues to deliver its words to the output
of the channel.

Elastistore#0 Elastistore#1

Input output
_>|:| channel IZ‘E_>
2 3 4 5

cycles 0 1
Input

|

VC B stalls VC B released

Output

Fig. 6.11 An example of the of flow of flits on a channel that supports 2 VCs and utilizes
ElastiStores at both ends of the link
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Fig. 6.12 The organization of an ElastiStore primitive for 3 VCs. ElastiStore consists of just a
single register per VC (main registers) along with a shared register that is dynamically shared by
all VCs

ElastiStore saves many buffer slots per VC buffer, as compared to the baseline
VC-based EB of Fig. 6.5, and limits throughput only under heavy congestion that
blocks all the VCs except one. In the case of light traffic, a single active VC receives
100 % throughput without any limitation.

ElastiStore can be designed using the datapath shown in Fig. 6.12, which consists
of a single register per VC (main registers) along with a shared register that is
dynamically shared by all VCs. The select signals of the bypass multiplexers, the
load enable signals of the registers, as well as the interface ready/valid signals are
all connected to ElastiStore control.

When a new flit that belongs to the ith VC arrives at the input of ElastiStore, it
may be placed either in the main register of the corresponding VC, or in the shared
register. If the main register of the ith VC is empty, or becomes empty in the same
cycle, the flit will occupy this position. If the main register is full, the incoming flit
will move to the shared buffer. Concurrently, once the shared buffer is utilized, all
the VCs that have their main register full will stop being ready to accept new data,
while those with an empty main register remain un-affected. In ElastiStore, any VC
is ready to accept a new flit if at least one of two registers is empty: either the main
register corresponding to said VC, or the shared one.

ElastiStore dequeues data only from the main registers. The shared register acts
only as an auxiliary storage and does not participate in any arbitration that selects
which VC should be dequeued. When the main register of a VC dequeues a new flit
and the shared buffer is occupied by the same VC, the main register of this VC is
refilled by the data stored in the shared buffer in the same cycle. The shared buffer
cannot receive a new word in the same cycle, since its readiness — which releases
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all VCs that have their main register full — will appear on the upstream channel
in the next clock cycle. The automatic data movement from the shared to main
buffer avoids any bubbles in the flow of flits of the same VC and achieves maximum
throughput.

ElastiStore should be considered as the equivalent of the primitive the 2-slot
EB used in the single-lane case where a main and an auxiliary HBEB are used for
allowing full transmission throughput. It allows the implementation of VC-based
flow control using close to the absolute minimum of one buffer slot per VC, without
sacrificing performance and without introducing any dependencies between VCs,
thus ensuring deadlock-free operation.

6.4 VC Flow Control on Pipelined Links

When the delay of the link exceeds the preferred clock cycle, one needs to segment
the link into smaller parts by inserting an appropriate number of pipeline stages. In
the case of single-lane channels, the role of the pipeline stages is covered by EBs,
which isolate the timing paths (all output signals — data, valid, and ready — are first
registered before being propagated in the forward or in the backward direction),
while still maintaining link-level flow control, as shown in Fig. 6.13a, and discussed
in Sect. 2.5. In the case of multi-lane channels that support VCs, we can achieve the
same result by replacing the EBs with the VC buffers of Fig. 6.5 or with ElastiStores
(see Fig. 6.13b). Although this approach works correctly and allows for distributed
buffer placement, while still supporting VC-based flow control, it is not easily
handled in complex SoCs, since the addition of many registers (at least one for each
VC) in arbitrary positions, may create layout and physical integration problems.
Using VC buffers at the ends of the link and simple EBs on the link introduces
dependencies across VCs, since the flow control information per VC needs to be
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serialized under a common ready/valid handshake; if one VC stops being ready,
all the words on the link should stop, irrespective of the VC they belong to. Such
dependencies ruin the isolation and deadlock-freedom properties of the VCs and
require ad-hoc modifications to the flow control mechanism.

6.4.1 Pipelined Links with VCs Using Ready/Valid Flow
Control

In the case of pipelined channels that employ ready/valid flow control for each
VC, we can rely on simple registers for pipelining the data and the ready/valid
handshakes signals on the link, as shown in Fig. 6.14. In this case, the flits cannot
stop in the middle of the link, since the pipeline registers do not employ any flow
control. Many words may be in-flight, since it takes L cycles for the signals
to propagate in the forward direction and L, cycles in the backward direction.
Therefore, the buffers at the receiver need to be sized appropriately to guarantee
lossless and full throughput operation. In the case of pipelined links, as also done in
the single-lane channels, any VC declares that it holds valid data after checking the
readiness of the corresponding downstream buffer, else multiple copies of the same
valid data will appear at the receiver’s VC buffer.

First of all, assume that only one VC, i.e., the i th one, is active and the remaining
VCs do not send or receive any data. When the buffer of the ith VC is empty, it
asserts the ready(i) signal. The sender will observe that ready(7) is asserted after L,
cycles and immediately starts to send new data to that VC. The first flit will arrive
at the receiver after L y + L, cycles. This is the first time that the receiver can react
by possibly de-asserting the ready(i) signal. If this is done, i.e., ready(i)=0, then
under the worst-case assumption, the receiver should be able to accept the L ; — 1
flits that are already on the link, plus the L, flits that may arrive in the next cycles
(the sender will be notified to stop with a delay of L;, cycles). Thus, when the ith
VC stalls, it should have at least L y + L; empty buffers to ensure lossless operation.
Actually, the minimum number of buffers for the ith VC reducesto Ly + L, — 1,
if we assume that the sender stops transmission in the same cycle it observes that

Lb registers

ready
<—f—|;|—<—|;|—<— I control
AN

valid _[E] update

¢ VC buffers

dat;
aa Lf registers —[E]

sender receiver

Fig. 6.14 Abstract model of a pipelined link with multiple VCs and independent ready/valid
handshake signals per VC
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ready(i) = 0. Thus, a channel with V' VCs and a round-trip time of L 4+ L; needs
atleast V(L s + L, — 1) slots. When many VCs are active on the channel, their flits
would be interleaved and the probability that all L ; + L, — 1 flits belong to the
same VC is small. However, the worst-case condition calls for providing as much
buffer space to each VC as needed to prevent the dropping of any flit, independent
of the traffic conditions on the remaining VCs.

Unfortunately, giving the minimum number of buffers to each VC has some
throughput limitations. Assume that the i th VC has occupied all its buffer slots at the
receiver and starts draining the stored flits downstream at a rate of one flit per cycle.
After Ly + Lj — 1 cycles, the buffer will be empty (no more flits to drain) and the
ready(i ) signal will be asserted, causing the fist new flit to arrive L s + L, — 1 cycles
later (the ready(7) signal is asserted in the same cycle that the last flit is drained).
Therefore, in a time frame of 2(L r 4+ L; — 1) cycles, the receiver was able to drain
only Ly + L; — 1 flits, which translates to 50 % throughput. Thus, a single active
VC can enjoy 100 % throughput when it has 2(L y + L, — 1) buffers and is ready
when the number of empty slots is at least L ; + L;, — 1. The baseline VC-based
EB of Fig. 6.5 employed in single-cycle links (L y = L;, = 1) is a sub-case of the
general pipelined link and achieves 100 % throughput of lossless operation using 2
buffers per VC.

Buffer Sharing on Pipelined Links

In the case of pipelined links the required buffer space per VC grows fast with
the increasing forward and backward latency of the flow control signals. Buffer
sharing should be employed in this case too in order to minimize the buffering
requirements. In the case of single-cycle links the private buffer space of each VC
and the shared buffer space across VCs can drop down to one slot of private space
and one shared buffer slot as shown by the primitive ElastiStore modules. In the
case of large latencies different configurations should be followed.

In the general case of multi-cycle links, instead of having 2(L s + L, — 1) bufter
slots for each VC, we dedicate L s + Lj — 1 slots private to each VC needed for
safe operation and L y + L, — 1 more, which can be dynamically shared by all VCs.
In this way, we remove Ly + L, — 1 of private buffer slots per VC and keep the
extra L  + Lj — 1 buffers needed only once in a dynamically shared manner. In this
configuration, any VC is ready, as long as there are L ; + L; — 1 empty slots either
in its private buffer, or accounting for the free space in the shared buffer as well.
Therefore, a single active VC can enjoy 100 % throughput, while, in the case where
the shared buffer is full, every active VC cannot get more than 50 % of throughput
(it can receive/send L ; 4+ Lj — 1 flits at most every 2(L y + Lj, — 1) cycles). Keep
in mind that when many VCs are active, the throughput per VC is much lower
than 50 %. Under high utilization, the channel is already shared by many VCs, and
achieving high-throughput per independent VC does not give much benefit, unless
it is the only active VC.
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If we try to minimize further the overall buffer space it means that we need to
minimize private buffering too; the shared buffer remains the same holding L +
Ly, —1flits. If the private buffer space per VC drops below L s+ L, —1 slots, say k, it
means that safety per VC cannot be guaranteed by the private buffer only. The L r +
Lj — 1 slots needed per VC for safety should be covered by using both the k private
buffers of each VC and some positions of the shared buffer. This configuration, and
using an independent ready/valid handshake for each VC, may create dependencies
across VCs that can possibly lead to a deadlock. Assume, for example, that the ith
VC uses its all of its private buffer, e.g., k slots with k < Ly 4+ L, — 1 and the
rest needed to cover Ly + Lj, — 1 buffers in total from the shared buffer; it leaves
less than L s + L, — 1 free slots in the shared buffer. Then, every other VC must
de-assert its ready signal, even if its private buffer is empty, since the available free
slots for each VC are less than L s + L, — 1, which are needed to guarantee safe
operation per VC. Under this scenario, the traffic on one VC is allowed to block
the traffic on another VC, which removes the needed isolation property across VCs.
Such dependencies are removed if the shared buffer has more buffers to share across
VCs and each VC limits the maximum number of slots it can use from the shared
buffer (Becker 2012a).

6.4.2 Pipelined Links with VCs Using Credit-Based
Flow Control

Using credits, safe operation is guaranteed even if there is only 1 empty slot per VC
of private space, but with very limited throughput due to the increased round-trip
time; no flit can be in flight if it has not consumed a credit beforehand thus there is
no minimum requirement for safe transmission. With credits, once a credit update
is sent backwards for a VC it means that a new flit will arrive for this VC after
Ly 4+ Ly —1 cycles. Therefore, offering to a single VC L r + L; — 1 buffers, means
that at the time the last flit is drained from the VC the first new one will arrive thus
leaving no gaps in the transmission and offering full throughput. A single active
VC can utilize both its private space and all the positions of the shared buffer and
achieve 100 % throughput, by effectively allowing this VC to use L y + L buffers
in total, as needed by credit-based flow control.

The Ly + L, buffers needed for one VC to achieve 100 % throughput in a
pipelined link with credit-based flow control can be achieved in many configurations
between the private and the shared buffer space. For example, the VC buffer can
allocate 1 buffer of private space per VC and have a shared buffer that can hold
L s + L, — 1 1lits. Equivalently, in another organization, each VC can have a 2-slots
of private buffering and the shared buffer can be sized to host a total of L s + L; —2
flits.
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6.5 Take-Away Points

Virtual channels is analogous to adding lanes in a street network although imple-
mented virtually and allowing flits that belong to different lanes to appear on the
physical link in a time-multiplexed manner. The existence of multiple VCs requires
the enhancement of the flow control mechanism and the associated buffering
architectures. Sharing the buffers across different VCs, when applied with care, can
increase buffer utilization and reduce the overall cost of supporting multiple VCs.
The latency in the forward and the backward propagation of the flow control signals
increases the minimum buffering requirements for supporting full transmission
throughput and complicates buffer sharing.



Chapter 7
Baseline Virtual-Channel Based Switching
Modules and Routers

In this chapter we describe the operation and the microarchitecture of a virtual
channel based router by analyzing in detail the subtasks involved, the dependencies
across these tasks, and the extra state needed for their implementation. This chapter
covers single-cycle implementations of virtual-channel-based routers, while high-
speed alternatives and pipelined organizations are left for the following chapters.
Every router should support arbitrary connections between inputs and output ports
that connect to independently flow-controlled links. The links in this case host many
virtual channels (VCs) that are interleaved in a time-multiplexed manner.

We start our discussion on the implementation VC-based switching by describing
the organization and the operation of a many-to-one connection that connects many
input links to one output link that each one supports a set of virtual channels. Then,
we generalize this design to a complete VC-based router that supports many-to-
many connections, while still allowing the existence of many VCs in parallel.

7.1 Many to One Connection with VCs

The abstract organization of a many-to-one connection that supports multiple VCs
at the input and the output channels is shown in Fig. 7.1. Each input is equipped with
as many parallel buffers as the number of VCs. The switching module connects the
input VC buffers to a single output via a simple physical link. The flits passing from
the output of the switching module should be placed to a buffer that corresponds to
the VC that they belong to. The parallel output VC buffers can be placed either at the
output of the switching module or at the other side of the link. In this configuration
we chose to include the output VC buffers at the other end of the link, and include
at the output of the switching module only a pipeline register that just isolates the
internal timing paths of the switching module from the link. Even if the output VC
buffers are placed far from the output of the switching module, any state variables
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Fig. 7.1 Multiple inputs connect to a single output, with multiple parallel queues on each side,
one for each VC

required per output VC are stored locally at the output of the switching module, but
refer to state of the VC buffers at the other side of the link.

Each input can receive the flit of only one VC in each clock cycle. Therefore, it
is enough for each input to try to send to the output at most one flit from a selected
input VC. To support this rate of outgoing traffic per input the switching module
consists of two levels of multiplexing. In the first level (per input) a multiplexer
selects one VC from all input VCs, while, in the second level (at the output), the
selected input VCs are multiplexed to the output. If we need a large rate of outgoing
flits per input, multiple VCs of the same input should be able to reach the output
multiplexer.

7.1.1 State Variables Required Per-Input and Per-Output VC

Similar to wormhole routers, the inputs and the outputs of the switching module
should be enhanced with some extra state variables that allow scheduling, both at
the VC-level and at the physical port level, to be performed and combined to the
flow control mechanism of the input and the output channels.

First of all, the state needed involves the flow control mechanism. In the examples
used in this chapter we adopt the credit-based flow control. Therefore, at the output
of the switching module a set of credit counters is used; one for each VC. The
maximum value of each counter is equal to the maximum number of positions
available per VC at the output VC buffers. The credit counters produce the necessary
ready signals for each VC, e.g., ready[i] = 1 when creditCounter[i] > 0. Once a
flit from an input VC leaves the output of the switching module (or when it knows
that it has gained access to the output) it consumes one credit by the corresponding
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credit counter. The credit counters are incremented depending on the update signals
they receive from the output VC buffers.

In wormhole routers, the output of the switching module in a many-to-one
connection, kept an outAvailable variable that denoted if the output has been
allocated to a certain input. The variable was set by the head flits and was locked
for the rest flits of the packet; the tail flit released the availability of the output.
In VC-based routers, each flit fights on its own for gaining access to the output port.
Output locking is avoided and different kinds of flits can be interleaved at the output,
provided that they belong to different output VCs and thus stored in different buffers
at the other end. Such flit interleaving reduces effectively head-of-line blocking and
increases the observed throughput per output.

In the case of VC-based routers, the output lock mechanism used in wormhole
connections is maintained, but at the output VC level. Each packet has to choose a
VC at the output before leaving an input VC. Matching input VCs to output VCs is
done once per packet via the head flit by the VC allocator (VA), while the rest flits
(body and tail) of the same packet inherit the allocated output VC. To support this
ownership mechanism V' outVCAvailable flags are maintained at the output of the
switching module, each one corresponding to a different VC of the output. When
outVCAvailable[i] = 1, it means that the i th output VC is available to be allocated
to any input VC (N x V input VCs are eligible to connect to this output VC; V VCs
per input). When outVCAvailable[i] = 0, it means that the i th output VC has been
allocated to a packet of a certain input VC and it will be released when the tail flit of
the packet passes through the output of the switching module. Allowing packets to
change VC in-flight can be employed when the routing algorithm and/or the upper-
layer protocol (e.g., cache coherence) do not place any specific restrictions on the
use of VCs. In the presence of VC restrictions, the VC allocator will enforce all
rules during VC allocation to ensure deadlock freedom.

Equivalently, the implementation of this input-output VC ownership mechanism,
requires each input VC to hold two state variables per input VC: outVCLock|[i] and
outVC[i]. When the single-bit outVCLock[i] is asserted, the ith input VC has been
matched to an output VC, while the id of the output VC assigned to this input VC
is specified by the value of outVCJi]. In the opposite case (outVCLock[i] = 0), the
ith input VC has not been assigned yet to an output VC and the value of outVCl[i] is
irrelevant.

7.1.2 Request Generation for the VC Allocator

Each input is equipped with an input controller that is responsible for the orchestra-
tion of all the intermediate steps needed before a flit from an input VC is transferred
to a certain output VC. The part of the input controller that is responsible for
preparing the requests to the VC allocator and gathering the corresponding grants
is shown in Fig.7.2. Once the input controller detects the presence of a head flit
of an input VC with un-assigned output VC (outVCLock[i] = 0), it should form
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the appropriate requests to the VC allocator. Each input VC i sends to the VC
allocator a set of candidate output VCs candidateOutVCli] (V bits). If the packet is
not allowed to change VC while traversing the network from source to destination,
then candidateOutVCli] = i. If there is no restriction on the selection of the output
VC then candidateOutVCJi] vector may have several bits asserted, even all V' of
them, meaning that it is requesting any available output VC.

The VC allocator should find a match between requesting input VCs (reqVCli])
and the available output VCs. By merging the reqVC vectors produced by all input
VCs, we can represent the requests given to the VC allocator in a matrix of N x
V rows and V' columns. When reqVCli][j] = 1 means that the ith input VC is
requesting output VC j. The ith input VC belongs to the kth input where k =
i =V . The example of Fig. 7.3 shows the output VC requests for a 2-input switching
module that hosts three VCs per physical channel. A valid match to the request
matrix should contain at most 1 bit asserted per row and per column, meaning that
an input VC cannot be assigned to more than one available output VC. Likewise,
an available output VC cannot be assigned to more than one input VC. The match
shown in Fig. 7.3 satisfies all required conditions. Please notice that the requests that
correspond to unavailable output VCs are filtered from the allocation process.

The VC allocator returns its decision to all input controllers, where the infor-
mation is organized per input VC, as shown in Fig.7.2. Each input VC gets the
selOutVCIi] (V bits in onehot form) which is a subset of the candidateOutVCli]
and indexes the output VC that the VC allocator selected for the ith input VC.
It also receives a single-bit flag VCgranted|[i], that when asserted informs the ith
input VC that the match with output VC selOutVC[i] was indeed successful. In
this case, outVC[i] <« selOutVC]Ji] for use by the rest flits of the packet, while
outVCLockli] variable is set to 1. Both variables will be reset once a tail flit is
dequeued. If VCgranted[i] = 0, the ith input VC has not received an output VC
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Fig. 7.3 An example output VC request matrix that feeds the VC allocator. The switching module
connects 2 inputs that each one hosts 3 VCs. An input VC may request any of the output VCs, while
the requests that correspond to unavailable output VCs are filtered from the allocation process.
The requested and available output VCs will be assigned to one of the requesting input VCs, while
making sure that no input VC is assigned to more than one output VC

yet and should retry in the next cycle. The assignment selected by the VC allocator,
besides the input controllers, is also used to update the status of the outVCAvailable
flags accordingly, so that no other input VC is allowed to request it on a future cycle,
until it is released by the tail flit of the same packet.

Once an input VC succeeds in allocating an output VC it should stop issuing
any requests to the VC allocator. This stop of requesting for an output VC is
critical, since the VC allocator does not have any mechanism to understand that
an input VC already holds an output VC, and may grant to it another available
output VC. Therefore, a head flit that has succeeded in VC allocation, but still
remains at the input VC buffer due to possible lack of available credit at the output
VC buffers, should not make any further request. The only condition that qualifies
candidateOutVCli] to reach the VC allocator, is when a head flit is present at
the frontmost position of an input VC buffer and observes its local outVCLock[i]
being 0.

7.1.3 Request Generation for the Switch Allocator

Once an output VC is allocated, the packet is allowed to move to the next stage
of switch allocation (SA), in which it has to fight with other input VCs for getting
access to the output port. Unlike VA, which is performed once per packet, switch
allocation is performed by every flit independently. The switch allocator of the
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many-to-one switching module takes many requests and grants only one of them.
An input VC can have a valid request to the switch allocator when three conditions
are satisfied:

Valid flit: The ith input VC is not empty in the current cycle, i.e., there is a valid
flit at the frontmost position of the corresponding input VC buffer.

Output VC already allocated: The input VC has been assigned to an output VC
either in the same or in a previous cycle. When outVCLock[i] = 1, the ith input
VC has already allocated an output VC with id equal to outVCJ[i]. In case that
outVCLock[i] = 0 but VCgranted[i] = 1, it means that the flit (for sure a head
flit) is allocated to an output VC in this cycle and the id of the output VC is equal
to selOutVCli].

The output VC has enough credits: A given input VC can only request access
to the output port if its destination VC has at least one credit available. Therefore,
the i th input VC should check whether ready[outVC[i]] = 1. The ready signal of
all output VC credit counters are distributed to all input VCs. The ready bit that
corresponds to the matched output VC is selected by outVC]i] or by selOutVCli],
depending on whether the corresponding flit has already allocated an output VC
in a previous cycle, or, it is allocated to a new output VC in the same cycle that
prepares the requests for SA (Fig.7.4).

The requests of all input VCs are gathered and sent to the switch allocator. The
switch allocator is responsible for selecting one eligible input VC, and driving the
per-input and output data multiplexers, according to that selection.
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Fig. 7.4 The per-input-VC logic that implements request generation and grant handling for both
VA and SA allocation stages in a many-to-one connection that supports VCs
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7.1.4 Gathering Grants and Moving to the Output

Each input VC receives a vector of wires from the switch allocator called
inputGrantSA. When inputGrantSA[i] = 1 it means that the ith input VC has
been granted to move in this cycle to the output port. The flit from the selected input
VC is dequeued and transferred to the data output of the input controller and from
there to the output multiplexers.

In the most generic configuration, the input VCs are allowed to change VC in
flight, i.e., when moving from input to output. Thus, the id of the input VC buffer
that currently holds the outgoing flit may be different from the id of the output
VC buffer that has been allocated to this packet. In this case, the departing flit,
while moving to the output, should also change accordingly the VCid field that
carries with it. The new VCid is needed at the output of the switching module for
consuming the credit from the appropriate credit counter as well as at the output VC
buffers for ensuring that the flit will be written to the correct buffer. The new VCid
of the outgoing flit is equal to outVCl[sel] where sel is the input VC that won switch
allocation, i.e., inputGrantSA[sel] = 1. Finally, keep in mind that when a tail flit
is leaving the ith input VC, it de-allocates all resources reserved per packet at the
input controller, by resetting both outVCLock[i] and outVC[i] variables.

The per-input and the output multiplexer of the switching module are driven by
the switch allocator and manage to carry the winning flit from the selected input VC
to the output. When the flit passes the output of the switching module it decrements
the credit counter of the new VC and in the next cycle it is forwarded to the link.
Since credit availability has been checked before switch allocation, the flit that
arrives at the output will always leave in the next cycle and cannot stop there. In the
case that the outgoing flit is a tail one, the output should also reset the corresponding
outVCAvailable.

In the place of the output pipeline register one could have used complete VC
buffers. In that case, the credits and the status of the output VCs would refer to these
local output VC buffers and not to the VC buffers at other side of the output link.
This configuration does not change the design of the VC-based switching module;
the only changes involve the credit-based flow control mechanism and to which
buffers it refers to.

7.1.5 The Internal Organization of the VC Allocator
Jor a Many-to-One Connection

The VC allocator receives the output VC requests of all input VCs and tries to find
a one-to-one matching between requesting input VCs and available output VCs. In
the most general case, each input VC may have many candidate output VCs, some
of which may refer to already allocated ones. Therefore, masking the requests with
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Fig. 7.5 The organization of a VC allocator for a many-to-one connection. In VA1, each input VC
independently selects to request one of the available output VCs. Then, after VA2, each output VC
selects to which input VC will be allocated

output VC availabilities should be performed first, before any arbitration occurs. The
first arbitration, called VA1, is done per input VC with the goal to select the output
VC that each input VC will finally ask for, thus limiting potential requests for output
VCs to only one. Since the first stage of arbitration is done independently per input
VC, many VCs may select the same output VC. As a result, a second arbitration
step is required, called VA2, which is performed per output VC, selecting only one
input VC to match the corresponding output VC. The organization of this two-step
allocation process between input and output VCs is shown in Fig. 7.5.

The VC allocator in the case of a many-to-one connection includes a V' : 1
arbiter per input VC and a N x V : 1 arbiter per output VC, as shown in Fig.7.5.
The selected output VC (selOutVCli]) for the ith input VC is decided during VAL.
If the selected output VC is indeed allocated to the ith input VC, is revealed by
VCgranted|i] that is produced after reorganizing the results of the output VC arbiters
and gathering the grants that correspond to the same input VC using a wide OR gate.

An example of the operation of the VC allocator, showing also the intermediate
grants produced by the VA1 stage of arbitration, is shown in Fig. 7.6. Please notice
that since VC allocation is done independently for each input VC, it is possible that
multiple VCs of the same input to allocate an output VC in the same cycle. In the
example shown in Fig. 7.6 VC#1 and VC#2, that both belong to input 0, are matched
to output VC#2 and VC#0 respectively in the same allocation round.
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Fig. 7.6 An example of the operation of a VC allocator for a 2-input-1-output connection that
hosts 3VCs. Multiple output VCs may be requested by a single input VC (Initial Requests), but
only the available ones will qualify to the per-input VC allocation stage, in which only one will
be selected. Then, each output VC will be assigned to one of the requesting input VCs. In this
way, no output VC can be assigned to more than one input VC and no input VC can allocate more
than one output VCs. The circles around the bullets illustrate the grants of VA1 (per-row) and VA2
(per-column) arbitration stages

7.1.6 The Internal Organization of the Switch Allocator
Jor a Many-to-One Connection

Switch allocator services the requests of all input VCs that have been matched to
an output VC and have also the available credits. Input VCs share an input port of
the output multiplexer (only one VC per input can be served in each clock cycle).
Therefore, switch allocation is done in two steps. The first step, called SA1, involves
a local per input arbitration that selects which input VC to promote to the output
arbiter. The second global arbitration step, called SA2, selects one valid input to
connect to the output.

The organization of the switch allocator is shown in Fig. 7.7. It receives an output
request bit per input VC and using a local V' : 1 arbiter (SA1) selects one input VC
from each input to participate to the next arbitration step. The global arbitration step
(SA2) sees one request per input. An input has a valid request as long as the local
arbiter gave at least one grant.! The grant signals of the output arbiter are given back
to all inputs and also given to the output multiplexer for setting up the appropriate
input-output connection. Each input receives 1 bit that denotes if any VC from this
input was granted. Once this information reaches the input, it is combined with the
decision of SA1 and prepares the winning input VC for sending a new flit to the
crossbar, as shown in Fig. 7.7.

!This can be performed in parallel to SA1 by checking if the input arbiters have at least one request.
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Fig. 7.7 The switch allocator for a many-to-one connection requires two stages of arbitration. One
per input that selects one input VC from each input port, and, one per output that finally grants on
the competing inputs

In the routers that do not support VCs and presented in Chaps. 3 and 5, an arbiter
updates its priority whenever it delivers at least one grant. However, SA1 arbiters
should update their priority only if a grant is also received by SA2, following the
iSlip rules (McKeown 1999). The reason why this is crucial can be perceived by
the following example, in which the arbiters of SA1 and SA2 update their priorities
independent of the result of each other.

Assume that input VC#3, that belongs to input port 1, has already allocated an
output VC and performs switch allocation using the round-robin arbiters of SA1
and SA2, respectively. Input VC#2, that belongs to input port 0, also owns an
output VC of the output port and participate in SA as well. Both input VCs win
in SAI (they belong to different inputs) and advance to SA2, in order to fight for
accessing the output port. SA2 arbiter’s priority favors input port 0, thus, input VC#2
is granted and priority is updated to point to input port 1. However, the SA1 of
input 1 has updated its priority to point to VC#4. As a result, in the next cycle,
input VC#4, which is also allocated to an output VC, wins in SA1 and possibly in
SA2 thus letting VC#3 loose for two consecutive cycles. Depending on the router’s
configuration and the traffic pattern, the above situation of VC#3 wining in SA1
but losing in SA2, may be repeated indefinitely. This situation can be avoided by
guaranteeing that if an input VC wins in SA1, it will remain the winner input VC
until it is granted in SA2 as well. Under this rule, an input VC may need to wait at
most N — 1 cycles to be granted in SA2.
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7.1.7 Output-First Allocation

The order of arbitration in either VA or SA can be changed from input first to output
first. In the case of output-first allocation all input VCs forward first their requests to
the output arbiters for SA and to the output VC arbiters for VA. In this way, in VA,
it is possible that one input VC receives a grant from more than one output VCs.
Selecting one of them requires an additional local per-input VC arbitration step.
Equivalently, in SA, with output-first arbitration it is possible that two input VCs
of the same input to receive simultaneously a grant from the same or a different
output. Then, since only one input VC can be served from each input, an additional
arbitration step should take place that would resolve the conflict.

Output first allocation has been proven superior in terms of matching quality
when compared to input-first allocation (Becker and Dally 2009). However, in
terms of hardware implementation input-first allocation is more delay efficient. The
reason for this efficiency is that input-first allocation decisions allow the concurrent
implementation of the necessary multiplexing. For example, the grants of SA1 can
be used directly to multiplex the flit of the winning VC in parallel to SA2 arbitration.
Thus, when SA2 finishes, the data to the output multiplexer are ready waiting for the
corresponding grants. On the contrary, in output-first allocation, the input and the
output multiplexers should wait both SA2 and SA1 to complete before switching
the flits from input VCs to the output. In the pipelined implementations those
differences are partially alleviated, while still observing that input-first allocation
provides faster circuits.

7.2 Many-to-Many Connections Using an Unrolled
Datapath: A Complete VC-Based Router

The design of a generic VC-based router that supports many-to-many connections
using a fully unrolled switching datapath, i.e., a crossbar, can be easily derived as
an extension to the already presented many-to-one switching module. The baseline
datapath of the generic VC-based router is shown in Fig. 7.8. Similarly to the many-
to-one case, a pipeline register is used at each output, which cuts off the timing path
of the link from the paths of the router.

The presented router is just an unrolled version of the baseline switching module
shown in Fig.7.1. Every output is equipped with an output multiplexer, while it
includes also V' credit counters used for the link-level flow control and the V
outVCAvailable flags that are used during VC allocation. The VA and SA stages
operate in a separable manner taking local per-input or per-input VC and global per
output or per output VC decisions that guide the assignment of input to output VCs
and the allocation of the output ports of the router on cycle-by-cycle basis.
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Fig. 7.8 The organization of a VC-based router connecting in parallel multiple inputs to multiple
outputs that each own supports many VCs. Routing computation (RC) is responsible for selecting
an output port for each input VC, while VC allocation (VA) and switch allocation (SA) handle
the allocation of the output VCs and the output ports to the requesting input VCs. The per-output
multiplexers of the crossbar implement the actual transfer of flits in the switch traversal stage (ST)

7.2.1 Routing Computation

The main difference of the generic many-to-many router versus the simpler many-
to-one switching module is the role of routing computation and the selection logic
that is involved. In the many-to-many organization every input VC is eligible to
connect to the output VC of any output of the router. Therefore, each input VC is
equipped with the outPort[i] variable that stores the output port that the packet,
currently in the ith input VC, needs to follow in order to reach its destination.
outPort[i] variable is updated after routing computation, which is performed only
when the head flit of a packet reaches the frontmost position of the ith input VC
buffer. The outPort variable is reset to zero once the last flit of the packet, i.e., the
tail flit, is granted to leave the corresponding input VC buffer.

The simplest implementation would introduce a routing computation unit per
input VC, as shown in Fig.7.9a. Depending on the complexity of the routing
computation unit this choice may not be the best one. Taking into account that
at most one new head flit will arrive per clock cycle at each input then routing
computation is needed only for one packet. Hence, the routing computation unit can
be shared between all input VCs, as depicted in Fig. 7.9b. Although a shared routing
computation unit seems like an area saver it does not represent the best choice in
area-delay sense. The delay overhead of the multiplexer and the arbitration unit
(just a simple fixed priority arbiter) may lead to increased implementation area when
the design is synthesized under strict delay constraints. In the rest of this book we
assume that each input VC is equipped with its own routing computation unit.
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Fig. 7.9 (a) Each input VC can have its own RC unit for performing routing computation
independent of the rest or (b) one RC unit can be shared by all input VCs of the same input

7.2.2 Requests to VC the Allocator

A head flit of a packet that has not been yet assigned an output VC to its destined
output port should send a request to the VC allocator. Depending on the limitations
imposed by the routing algorithm or some other upper level protocol, the packet
can request from one to many output VCs. Besides the requested VC (reqVCl[i]),
each input VC should also send its destination output port (reqgPort[i]), which will
be used for the per-output arbitration stage of VA, as depicted in Fig.7.10.

Similar to the many-to-one connection, the VC allocator returns per input VC the
selected output VC derived by the local VC arbitration step and a flag that denotes
if this input-output VC pair has been matched or not. Please keep in mind that since
VC allocation is performed in parallel across input and output VCs many input VCs
can be matched in parallel as long as they refer to different output VCs (or output
VCs that belong to different output ports).

7.2.3 Requests to the Switch Allocator

The packets that have been successfully assigned to an output VC can participate
in switch allocation. The output requests for the flits of each input VC are already
stored in the outPort variable. The head flits do not use the stored variable but the
one available via the bypass path of the outPort register shown in Fig.7.11. This is
necessary in the single-cycle router implementation described in this chapter. The
outPort[i] lines per input VC are actually driven to the switch allocator after being
qualified by three conditions:

The request corresponds to a valid flit:  The outPort[i] variable that was set by
the head flit of a packet may contain active output requests even if the buffer of
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Fig. 7.10 The request generation and grant handling logic for the output VC allocation process.
Each input VC forwards to the VA unit the candidate output VCs and the selected output port (as
computed by the RC unit) and receives the id of the selected output VC along with a flag that
reveals if the allocation process was successful or not

the ith input VC is empty in the current cycle. This can occur since flits are not
guaranteed to arrive contiguously for a single input VC. Therefore, masking the
requests with the valid[i] bit solves this issue.

The packet has allocated an output VC: The second condition dictates that the
input VC has been assigned an output VC. This is resolved by masking the
outVCLock[i] variable with the bits of the outPort[i] bit vector (see right side
of Fig.7.11). Similar to the many to one connection, a head flit is allowed to use
the VA result directly at the same cycle using selOutVC][i] instead of outVCli]
via a bypass multiplexer.

The output VC has enough credits: An input VC can send a request to the
switch allocator if the selected output VC has at least one credit available. This
checking requires first the selection of the appropriate ready signal. Therefore,
the i th input VC checks if ready|outPort[i||[outVC]i]] = 1. Thus, each input VC
should select from the N x V ready bits the one that corresponds to its destined
output port and allocated output VC. This selection is done by the multiplexers
shown in Fig.7.11. In the first selection stage the ready bits that belong to the
selected output are distinguished from the rest. In the second selection stage
the ready bit that belongs to the assigned output VC is selected and it is finally
masked with the outPort[i] requests.
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Fig. 7.11 The complete request generation and grant handling logic for a VC-based router that
supports many-to-many input-output connections. The requests to the switch allocator are driven
by the internal variables of each input VC that guarantee the allocation of an output VC and
qualified by the ready signals of the per-output VC credit counters

The requests seen by the switch allocator can be graphically represented in matrix
form: When reqgSA[i][j] = 1 means that input VC i is requesting output port j. The
ith input VC belongs to the kth input where k = i = V. The example of Fig.7.12a
shows the output requests for a 3 x 3 router that hosts two VCs per physical channel.
Please keep in mind that every active request of this matrix has already guaranteed
buffer availability to the destined output VC.

First of all, a valid match to the request matrix should contain at most 1 bit
asserted per row and per column meaning that an input VC cannot be assigned
to more than one output port and an output port cannot be assigned to more than
one input VCs respectively. If this was the only condition imposed by the switch
allocator, then more than one VC of the same input could receive a grant in the
same cycle. Satisfying multiple grants to the same input means that each input VC
sees a private input port of the crossbar. In the baseline case, all input VCs of the
same input share a common input port of the crossbar via a data multiplexer per
input. Thus, the switch allocator should grant at most one input VC from the same
input. Therefore, a valid match to the request matrix should contain at most one
asserted bit to the group of rows that belong to the same input with index i = V,
wherei = 0... N x V — 1. The match shown in Fig. 7.12a satisfies all the required
conditions. The requests of all input VCs and the corresponding grants are illustrated
in Fig. 7.12b using an equivalent bipartite graph representation.
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Fig. 7.12 (a) An example of a Requests SA Grants
the request and grant matrix
of switch allocation, and (b) VC#0 [ ) \/
its equivalent bipartite graph
representation. Although verr @
every input VC can request VCH2 o
any output, only one VC per
input can be granted vc#s @
VCH4 [ ]
VCH5 o v

7.2.4 Gathering Grants and Moving to the Output

The switch allocator’s decisions are distributed in the same cycle to the input
controllers and the crossbar. Each input VC receives a flag bit showing if it has
won access to the selected output port or not. Once granted, the corresponding input
VC dequeues its flit from the input VC buffers, and sends a credit update backwards,
informing that a buffer slot is emptied. The multiplexer that selects only one input
VC per input is also driven by the switch allocator’s output, so that only the selected
input VC to reach the crossbar. On dequeue, the flit updates its VC id field by using
the id stored in the local outVC][i] variable (or the one just returning from the VC
allocator). If a tail flit is preparing to leave the ith input VC, then it should de-
allocate all resources reserved per packet at the input controller, such as the state
variables outPort[i], outVCLock[i] and outVCli].

The crossbar knows how to handle the incoming flits from all input controllers
since the switch allocator has transferred to the crossbar the switching configuration
of the current cycle that describes the connections between inputs and outputs. As
the flit traverses the crossbar and moves to the output pipeline register, its VC ID
field is used to decrement appropriately creditCounter[VCid]. In the next cycle, the
flit is forwarded to the link where it cannot be stopped, since credit availability has
been checked before it was allowed to participate in switch allocation. In the case
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that the outgoing flit is a tail flit the output controller should reset the corresponding
output VC availability flags to available since the packet that used this output VC
has left the current router.

7.2.5 The Internal Organization of the VC Allocator
Jor a VC-Based Router

The VC allocator should be able to allocate in parallel the input VCs to the output
VCs of the router. In this case, the router consists of many outputs that each one
services a number of VCs. Therefore, the input VC should not only inform the VC
allocator on the candidate output VCs but it should also declare the output that these
candidate VCs belong to. Therefore, the VC allocator receives a pair of vectors from
each input VC: A vector that indexes the requested output port reqPort[i], and the
reqVCli] that indexes the requested output VC(s). The first step of VC allocation is
to filter out from the requested output VCs those that are not available. Each input
VC sees N x V output VC availability flags. From those flags selects the ones that
refer to the destined output port, that are later masked with the candidate output VCs
of each input VC.

The allocation process evolves in two steps, according to the organization
depicted in Fig.7.13. In the first step (VA1) each input VC selects one of the

outVCAvailable

T J[ J[ per input VC
reqPort[i] :
N v
VCgranted]i]

_ i per output VC
selOutVCli] :

__—@—v : _+_l_ NV:1

reqVCli] 7 v arb

[ ]

NV:1

Vlab | arb
total NV total NV
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Fig. 7.13 The VC allocator of a complete VC-based router. The requested output VCs (reqVC)
are masked with their corresponding outVCavailable flags and a single output VC is selected per
input VC after VA1 arbitration. During VA2, each available output VC is assigned to at most one
requesting input VC



128 7 Baseline Virtual-Channel Based Switching Modules and Routers

outVCAvailable
per input VC

Vo
selOutVCli] 1
reqPort[i] N /_I_H ]
arb |v _| &v
ﬁv

reqVCli]

V:1
arb |v

total N
V:1 arbiters

0L

Fig. 7.14 An alternative organization of VA1 stage of the VC allocator that offers delay benefits,
under small area overhead. It replaces a mux, one arbiter and a demux with N arbiters that run
in parallel and prepare the output VC requests of each input VC in a form that fits directly the
connections of the arbiters in the VA2 stage

available output VCs and then in VA2 each output VC selects at most one input
VC. The input VCs are informed by the arbiters of VA2 if their request was finally
accepted.

Faster Organization of the VA1 Stage

Implementation results prove that the (de)multiplexing logic at VA1 has a non trivial
contribution to the overall delay of VC allocation. A simple microarchitectural
change can completely eliminate this logic and speedup significantly VC allocation.
The new fast organization of VA1 is shown in Fig.7.14.

First all the output VC availability flags of all outputs are masked with the reqVC
vector of each input VC without any pre-selection step. The resulting availability
vectors, e.g., one for each output, are independently arbitrated by V' : 1 arbiters
selecting one available VC for each output. From the selected output VCs (one
available VC per output), each input VC needs only one of them; the one that
belongs to the destined output port. Selecting one does not require any multiplexing
but just an additional masking operation with the output port request (outPort{i]) of
the ith input VC. The selected output VC in all outputs will become zero except
the one that matches the destination output port. Therefore, after this last step, the
output VC request of an input VC is ready and aligned per output as needed by the
output VC arbiters of the second stage. Thus additional demultiplexing/alignment
logic is not needed and significant delay is saved. The cost of this method is that it
replaces a mux (outVCAvailable multiplexer of Fig. 7.13), one arbiter and a demux
(Fig.7.13), with N arbiters that run in parallel and offer faster implementation.

Please notice also that since the outPort{i] request bits are used only after the
V' : 1 arbitration step then routing computation can be overlapped in time with the
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per-input VC arbitration and additional delay can saved. Certainly, this time overlap
is only enabled if the generation of the candidateOutVC for each input VC is not
strictly dependent on the routing algorithm.

7.2.6 The Internal Organization of the Switch Allocator
Jor a VC-Based Router

Switch allocation involves both a per-input and a per output arbitration step.
Differently from the case of a many-to-one connection, in this case, the switch
allocator receives a request vector from each input VC that points to the requested
output port. When an input VC has an active output port request (at least one bit
of the request vector is asserted) it is eligible to participate in SA1. The input VC
that is selected by SA1 carries its request vector to the next arbitration step (SA2).
This is done via the multiplexer shown per input in Fig.7.15. Each arbiter of SA2
independently from the rest selects which input to grant, based on its local priority
status. The grant signals are distributed to the crossbar setting up the appropriate
input-output connections and to the inputs. Once this information reaches the inputs
it is combined with the decision of SA1 and prepares the winning input VC for
sending a new flit to the crossbar. An example of the grants generation process
by the switch allocator, including both arbitration stages’ results, is presented in
Fig.7.16.

per input
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Fig. 7.15 The switch Allocator for a complete VC-based router that supports many input/output
parallel connections. The SA1 stage promotes one VC per input that fights with the rest inputs in
SA2 to get access to the requested output port
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Fig. 7.16 An example of the requests seen by the switch allocator and the derived grants in SA1
and SA2 following (a) a matrix representation and (b) a bipartite graph model between input VCs
and outputs. Local arbitration (SA1) allows the request of at most one input VC to qualify per
input, while global arbitration (SA2) selects one input to access a specific output port

Please notice that, like in the many-to-one connection, the arbiters of the
SAL1 stage should update their priority only once their selected input VC is
also granted at the SA2 stage. Even though the arbiters operate independently,
their eventual outcomes in switch allocation are very much dependent each one
affecting each other port separately, as well as the aggregate matching quality of the
router (Mukherjee et al. 2002). In order to improve the efficiency of such separable
switch allocators that rely on independent per-input and per-output arbitration steps
we have two generic options. We can either try to “desynchronize” their bindings, so
that each input (output) requests a different output (input) on every new scheduling
cycle, or to employ multiple scheduling iterations until a good match with many
input-output pairs is constructed. Desynchronization is hard to achieve in the context
of NoCs since it requires the addition of many independent queues per input equal
to the number of output ports (McKeown 1999). This is either prohibitive, or it may
lead to very shallow buffers that will destroy throughput. On the other hand the
execution of multiple scheduling iterations for converging to one allocation remains
an unexplored alternative for NoCs mostly because it prolongs the scheduling
time; SA evolves in multiple iterations, where in each iteration the set of already
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matched input-output pairs is augmented with new matchings. Pipelining between
iterations is a viable alternative (Gupta and McKeown 1999), however a more
scalable solution is desirable.

Instead of letting a different input VC to connect to an output in each cycle,
other allocation strategies try to prolong the duration of an input and output
match by letting whole flows of packets to pass before changing the connec-
tion (Michelogiannakis et al. 2011; Ma et al. 2012). This approach allows for full
output utilization for many cycles but may create starvation phenomena. The main
implementation strategy for this exhaustive-like scheduling approach, involves some
form of weighted arbitration that is biased in favor of certain input-output pairs that
correspond to heavily backlogged flows (Ramabhadran and Pasquale 2003; Abts
and Weisser 2007).

Switch Allocation in the Case of Adaptive Routing

The presented organization of the SA unit assumed that each input VC will never
ask for more than one output port. In the case of adaptive routing this may not
be the case and the adaptive routing algorithm may allow each input VC to select
more than one possible output ports. In this case, SA1 and SA2 do not suffice for
completing the switch allocation process and an additional selection step is needed.
The additional selection steps can be done either at the beginning of SA letting each
input VC to select one candidate output port or at the end. The selection unit (not
shown in Fig. 7.11) either picks randomly a destination or decides after sensing the
state of the network (Ascia et al. 2008) and taking into account other network-level
criteria such as load balancing the traffic throughout the network or offering quality
of service guarantees.

7.3 VA and SA Built with Centralized Allocators

Besides separable allocation strategies that implement the allocation process sepa-
rately per input (or per input VC) and per output (or per output VC), VA and SA can
be built in a centralized manner that solves allocation at once by actually merging
input and output arbitration phases in one merged step.

A centralized allocator of N requesters and N resources receives the corre-
sponding requests in a matrix form. Each row of the matrix corresponds to the
requests of one requester that can ask for multiple resources. Equivalently, each
column of the request matrix corresponds to one resource that can accept multiple
requests. A valid schedule should contain at most a single 1 per row and per column
guaranteeing in this way a unique requester-resource connection. A centralized
allocator does not examine the requests independently per row and per column
as done by the separable allocators but solves the problem concurrently for many
requester-resource pairs. The request-resource pairs that can be matched at once
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Fig. 7.17 An example of the operation of a centralized allocator. All requests are examined
starting from the main diagonal of the request matrix. The active requests of a diagonal do not
cause any conflicts and they can be granted at once. A grant given to a certain request-resource
pair directly erases all the remaining requests of the same row and column

without any further checking are the requests that belong to the diagonals of the
matrix. Every element that belongs to a matrix diagonal corresponds to a different
request-resource pair and can be granted without causing any conflict. Once a
request of the ith row and jth column is granted then all the requests of the ith
row and the jth column should be nullified before moving to the next diagonal of
the matrix. An example, of this diagonal-based scheduling mechanism is shown
in Fig.7.17. The allocation process evolves in 4 steps (equal to the number of
diagonals) and at each step the non-conflicting requests are granted. The most
efficient centralized allocator is the wavefront arbiter (Tamir and Chi 1993; Hurt
et al. 1999; Becker 2012b).

Using a centralized allocator, such as the wavefront arbiter, we can design VC
and switch allocators. A VC allocator is built around a NV x NV centralized
allocator that receives the requests of all input VCs in parallel. Figure 7.18 illustrates
this organization. The rows of the centralized allocator correspond to input VCs
and the columns to output VCs, respectively. Each input VC may request many
output VCs of the same output, i.e., it asserts a request to multiple columns of the
centralized allocator. When allocation finishes the N x V' grant signals coming from
all output VCs are gathered per-input VC, while the OR function at each input VC
just detects if at least one output VC granted the corresponding input VC.

Equivalently, a switch allocator can be built using a N x N centralized allocator,
as illustrated in Fig.7.19. The rows of the centralized allocator correspond to the
inputs of the routers and the columns to the outputs. Since each input hosts many
VCs, a row of the request matrix can have many active requests that correspond to
the output requests of the input VCs. When the centralized allocator finishes, each
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output is matched to at most one input. The only thing that remains to be selected
is the VC per input that actually won. For each input, the VCs that requested the
matched output are kept alive through a masking process. Since these can be more
than one input VCs that requested the selected output port, a final V' : 1 arbiter is
used to select which input VC will finally send a flit to the selected output port.

7.4 Take-Away Points

The operation of a VC-based router includes multiple steps that should be executed
in the correct order in order to allow the packets placed at the input VCs to move to
their selected output port. The execution of each step such as routing computation,
VC allocation and switch allocation is supported by additional per-input VC and
per-output VC state variables that guide request generation and grant handling for
the allocation steps, and implement the virtual-channel flow control mechanism of
the input and output links. Input VCs allocate an output VC to their selected output
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port (decided by the routing computation logic) and then after checking the available
credits of their selected output VC proceed to switch allocation and traversal that
guides them to their destined output port. The organization of per-input VC and
per-output VC logic as well as the internal organization of the allocators has been
presented in detail and in a ready-to-use manner.



Chapter 8
High-Speed Allocators for VC-Based Routers

The packets arriving to a VC-based router should allocate two kinds of resources
before being able to move to their destined output port. Each packet should allocate
an output VC and each flit should guarantee exclusive access to a router’s output
port, on a cycle-by-cycle basis. The output VCs are allocated to the packets of the
input VCs during VC Allocation (VA), while Switch Allocation (SA) decides which
input VC will move to which output in each clock cycle. Both allocation operations
evolve in two steps.

For example, VA is split in two parts called VA1 and VA2. VA1 decides locally
the output VC that each input VC will ask for. In case that there are several candidate
output VCs, VA1 performs a local arbitration step and selects only one of them. Thus
after VA1 each input VC holds only one output VC request (the output port that the
output VC belongs to is known beforehand by routing computation). In a baseline
router organization, VA1 selects among output VC requests that are checked to be
available; an input VC will never ask for an output VC that is not currently available.
In a loosely coupled VA1 implementation, this availability check of output VCs is
not always necessary. In any case, after VA1, the second stage of VC allocation,
called VA2, is executed per output VC; each output VC receives at most one request
from each input VC and grants only them. After VA2, a match between input VCs
and output VCs has been derived that contains no conflicts. The matched output
VCs become un-available and the matching input VCs are set to a lock state using
the outVCLock state variables.

Equivalently, SA also evolves in two steps. In the first step, called SA1, one
input VC from each input is selected to try to reach the selected output port of the
router. Then, each output independent from the rest, in SA2, decides which input to
select. After SA1 and SA?2 the winning flits move to their destined output port. The
movement is done via the per-input and per-output multiplexers that get configured
by the grants produced by SA1 and SA2, respectively. Before SA begins, it is
assumed that the input VCs have already allocated an output VC. This conservative
assumption can be removed with care and let packets that have not yet allocated an
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output VC to try to win in SA and in parallel to receive an output VC. Depending on
the implementation, receiving an output VC in parallel to SA, can be done in several
ways.

In the rest paragraphs, we will analyze in detail all the possible alternatives of
implementing VA and SA, with the goal to minimize the delay of the allocation
process by letting the intermediate steps to execute in parallel when possible.
The material of this chapter should be considered as an enhancement of the
basic allocation strategies presented in Chap.7 that lead to high-speed router
implementations.

8.1 Virtual Networks: Reducing the Complexity
of VC Allocation

The baseline organization of a VC allocator requires a V' : 1 arbiter per input
VC for implementing VAI, followed by a N x V : 1 arbiter per output VC
for implementing VA2 and also some non trivial signal gathering, masking and
distribution logic. The complexity of the VC allocator can be reduced significantly
if the “freedom” enjoyed by each input VC is reduced. VCs can be used for the
definition of virtual networks (VNs). Packets that belong to a VN complete their
whole trip in the network it the same VN and jumping from a VN to another VN
is either prohibited or done with very restrictive rules that are used to guarantee
deadlock freedom (Azimi et al. 2009).

When a set VCs, say &, belong to a specific VN, the requests for VC allocation
are restricted to the VCs of the same VN. In this case, VC allocation is split into
parallel and smaller VC allocators where each one is serving N V/k input VCs. As
shown in Fig. 8.1, each input VC sends the requests and receives grants from the
smaller VC allocator (with N V/k inputs and N V/k outputs) that corresponds to
the same VN.

In the minimum case that each VC is always a VN, the design of the VC allocator
is further simplified since VA1 is completely removed. If an input VC does not want
or is not allowed to change the VC that it belongs to, then VA1 is not needed, since
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the ith input VC will always ask for the ith output VC. Even if the ith output VC
is not available, the i th input VC does not have any other choice rather than waiting
for the ith output VC to become available before trying to match to it.

8.2 Lookahead VA1

The second alternative for removing VA1 from the critical path of the VC allocator,
but still allow packets to change VC in flight irrespective the VN they belong,
is called lookahead VA1 (LVA1l) and works similar to the lookahead routing
computation. Instead of waiting each input VC to perform VA1, when it reaches
the frontmost position of its input VC buffer, we allow VA1 to complete beforehand.
Each input VC in parallel to the VA step performed in the previous router (or even in
parallel to the SA of the previous router) selects which output VC will ask for when
it reaches the next router; the selection is done via arbitration among the candidate
output VCs and is stored at a special field of the packet’s head flit. Thus, once a
head flit of a packet reaches the frontmost position of the input VC buffer it can
immediately participate in VA2 since it already stores in one of its fields the output
VC requests, as depicted in Fig.8.2. In parallel to VA2, each input VC performs
VA1 for selecting the output VC that will ask for when it reaches the next router.

In lookahead VA1 each input VC is oblivious of the state of the output VCs.
Therefore, there is the possibility that the selected output VC of the head flit to be
un-available when the flit asks for it in the VA2 of the next router. In this case, the

outVCAvailable  per input VC

nextReqVCl[i] |LVA1
reqPort[i]
N
VCgranted][i] l'
per output VC

reqVC[i] —

preparéd in the
previous router

NV:1
arb

total NV
NV:1 arbiters

Fig. 8.2 The organization of the VC allocator that accepts the pre-computed output VC requests
of each input VC that are directly propagated to VA2. In parallel, lookahead VA1 takes place in
parallel and saves the output VC request that will be used in the next router in the head flit of the
packet
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head flit does not have any choice rather than to wait for the selected output VC
to become available. Even if other eligible output VCs are available the head flit
cannot change its output VC request decided during LVA1. Instead of performing
the lookahead VA1 step in the previous router, VA1 can be also performed at the
end of link traversal. In this way, the head flit decides for an output VC request at
the time that it is written to the input VC buffer. If done this way, it is more easy for
the head flit to know the status of the output VCs since it already reached the next
router.

Inevitably, the lack of information about which output VCs are available during
lookahead VA1, will cause several input VCs to pre-select and fight for the same
output VC, even if there are other output VCs that are available to use. Depending
on the application and the number of VCs in the network this feature may limit
the throughput of the network. From our measurements only slight reductions are
expected that can be possibly alleviated by the increased operating speed offered by
lookahead VAI.

8.3 VC Allocation Without VA2: Combined Allocation

By either not letting a packet to change VC while it is traversing the network or
performing VA1 in a lookahead manner, we achieved to remove VAl from the
critical path of VC allocation. In this case, the needed allocation steps that should
be executed in series include VA2 to match an output VC to a certain input VC
and then the two steps of SA that match an input VC to an output port on a cycle-
by-cycle basis. Even in this reduced-complexity allocation organization, we assume
that all requesting input VCs can be allocated simultaneously to available output
VCs assuming that no other input VC is asking for the same output VC. However,
we know that due to SA1 only one input VC will be allowed to leave the router from
each input. This is a structural requirement imposed by the datapath of the router
(the input VCs of the same input share an input of the crossbar). Therefore, there is
no reason for letting more than one VCs per input to get matched to an output VC;
at the end, at most one VC per input will be allowed to leave the router.

The restriction that at most one new VC per input is allowed to match to a new
VC per output, can be applied by allocating an output VC only to the input VC that
won in SA. In this way, the allocation of an output port in SA is accompanied by
the allocation of an output VC. This combined allocation eliminates completely the
VA2 stage of VC allocation (Lu et al. 2012). VAL is still needed in order for every
input VC to know beforehand which output VC to request, when it wins in SA.

From the previous discussion we know that the VA1 step can be performed either
in series with SA, or using lookahead VA1. Since the selected output VC will be
used directly for driving SA, it should be checked both for availability and for
available credits. Credit masking can be performed prior to VC availability checking
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excluding those output VCs that even if they are free do not have available credits
to host a new incoming flit.

The relative placement of VA1 with respect to switch allocation (SA) for the
implementation of combined allocation is discussed in the following paragraphs.

8.3.1 Combined Allocation with VAI in Series to SA

The organization of the combined allocator that performs VA1 for each input VC in
series to the SA stage is shown in Fig. 8.3a. Each input VC s searching in VA1 for an
output VC that is available and has at least one credit available. The input VCs that
managed to find an output VC that fulfills both criteria are eligible to participate
in SA1. SA1 accepts also the requests of those input VCs that have allocated an
output VC in the past and secured the existence of at least one available credit. The
winning input VC as in traditional SA passes its input request via a multiplexer to
the output stage of switch allocation (SA2). The grants of the per-output arbiters are
gathered per input and the existence of at least one grant for each input is computed
via an OR gate. Then, each input taking into account the grants of SA1 knows which
input VC (if any) has won in switch allocation. The grants per input VC have a dual
meaning: First it allows the flit to move to the output, and, at the same time, if it is a
head flit that has not allocated an output VC, to receive the output VC that has been
selected during VAL.

8.3.2 Combined Allocation with VAl in Parallel to SA

In the previous paragraph before letting SA to begin, each input VC should select an
output VC to request, selecting one from the pool of available ones that had at least
one credit as well. The output VC that each input VC has selected after arbitration
(VA1) is not used before the end of SA2. Therefore, there is no reason for SA1
and SA2 to wait for VA1 to finish but can execute in parallel to it, as illustrated
in Fig. 8.3b. The only information that each input VC needs in order to participate
in SA1 is that there is at least one output VC at the selected output port that is
available and with credits. There is no need the input VC to know which output
VC exactly fulfills the two criteria of availability and readiness. This will be found
during VA1 that executes in parallel to SA1 and SA2. Then, once SA2 decided
which VC won per input, if this winning input VC has not allocated yet an output
VG, it gets allocated in the same cycle to the output VC that was selected by VA1 in
parallel. This is needed only for the head flits that acquire an output VC at the same
time they win in SA. The rest flits keep the output VC that has been allocated to them
in previous cycle and actually participate only in the SA part of combined allocation.
In Kumar et al. (2007), a similar approach has been followed that does not include
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VA1 but gives to the winning head flit the first available output VC. If routing
computation involves the selection of certain output VCs this last approach cannot
be applied.

8.3.3 Combined Allocation with Lookahead VA1

LVA1 in combined allocation is a degenerate case of the organization presented in
the previous paragraph that enables VA1 to evolve in parallel to SA. With LVA1 each
input VC knows already the requested output VC. Therefore, it can participate in
SAL after checking the availability of the corresponding output VC and its readiness
in terms of credits. If the pre-selected output VC satisfies the two needed criteria the
input VC moves in SAL. In the case that it wins SA2, it gets allocated to the pre-
selected output VC. Of course, in parallel to SA, the input VC should execute LVA1
for the next router. The input VCs that own already an output VC participate only
in the SA stage of the combined allocator.

Combined allocation removes the need for the VA2 stage of VC allocation. When
applied using the presented techniques that let VA1 execute in parallel to the SA, it
offers high-speed router implementations where the incoming packets are allowed
to change VC in flight while the critical path of allocation includes only the SA1
and SA?2 steps and none of the VA1 or VA2.

8.4 Speculative Switch Allocation

Following another school of thought the serial dependency that exists between VA
and SA can be removed by performing SA speculatively (Peh and Dally 2001;
Mullins et al. 2004). Under speculative switch allocation a head flit is allowed to
try to get access to an output port via switch allocation without having allocated
first an output VC. VA and SA run in parallel for the head flit of a packet, and
depending on the outcome of each module four cases can occur:

* A packet fails in both VC and switch allocation: The packet tries again in the
next cycle for both allocations.

* A packet is granted by the VC allocator and fails in switch allocation: Although
the head flit lost in switch allocation, it keeps the assignment made by the VC
allocator and retries for switch allocation in the next cycle (non speculatively this
time).

* A packet fails in VC allocation but is granted in switch allocation: This is the
case of miss-speculation and is the worst scenario that can occur. Although, a
head flit has allocated an output is obliged to not to use it in this cycle, since it
does not own yet an output VC.
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* A packet gets granted by both allocators: The head flit received all the necessary
resources and can leave the input VC buffer. This is the best case of speculative
switch allocation and is expected to happen often under low traffic conditions,
where the output resources (VCs and ports) are free most of the time and
contention probability is very low.

In order to reduce the probability of miss-speculation, the speculative VC-based
router involves two separate switch allocators. The first switch allocator receives
only the speculative requests, i.e., those coming from head flits that have not
allocated an output VC. The second switch allocator receives the remaining requests
including the requests from the head flits that have been assigned to an output VC
and the requests from the body and tail flits that always participate in SA non-
speculatively (always a preceding head flit has allocated for them an output VC).
If we give higher priority to the grants of the non-speculative switch allocator, we
guarantee that the winning flit can always move to the selected output. To satisfy this
feature the grants of the speculative switch allocator should be rejected, when there
is a grant for the same input—output pair from the non-speculative switch allocator.
The organization of the allocation logic in the case of a speculative VC-based router,
including the two switch allocators and the VC allocation logic that runs in parallel,
is illustrated in Fig. 8.4.

When an input VC has already allocated an output VC it participates only in the
non-speculative SA. On the contrary, the input VCs that do not have allocated yet an
output VC participate in VA and in the speculative SA. During VA, they try to match
to an output VC, but they should guarantee that the requested output VC selected
at VA1 not only is available (as needed in baseline VA), but it is also ready, i.e., it
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Fig. 8.4 The organization of the speculative VC-based router. Each input VC generates in parallel
requests to the VC allocator and to the speculative SA for the head flits and to the non-speculative
SA for the rest flits and the head flits that managed to allocate an output VC in a previous cycle.
The grants that return from the three allocation units are handled according to the four scenarios
described in the beginning of this section
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has enough credits (similar to combined allocation); else a grant from the SA will
be useless. At the same time, during speculative SA, they compete with other input
VCs that do not have allocated an output VC, after checking that there is at least
one available output VC and with credits. Although they don’t know which specific
output VC to check for availability and readiness (they will know only when VA1
that runs in parallel, finishes), checking the existence of at least one output VC
that satisfies both criteria is enough, since the same two-criteria qualify also the
candidates of VAL.

8.4.1 Handling the Speculative and the Non-speculative
Grants

Once the availability and readiness of the selected output VCs is checked for all flits
both switch allocators run in parallel. A grant from the speculative SA is considered
valid only when there is no other grant from the non-speculative SA referring to the
same input and output port. All invalid speculative grants are masked away and the
rest are kept and included in the final input-output SA match. Figure 8.5a depicts
the switch allocator and its two subcomponents used in the case of speculative
VC-based router including also the masking logic of the speculative grants.

Masking of the invalid speculative grants is done in two steps. In the first step,
we need to identify the input-output pairs that have been matched by the non-
speculative switch allocator that produces always valid matches. Two bit vectors,
named grantlnput and grantOutput are computed in parallel; grantlnput(i) =
1 when the ith input has received a grant from the non speculative SA, and
grantOutput(j) = 1 when the jth output has been granted from the non-speculative
SA. Then, using the grantInput and the grantOutput bit vectors a 2D matrix of bits
is computed called the free matrix; free(i, j) = 1 when input i and output j have
not received a grant from the non-speculative SA. Therefore, the input—output pair
i, j is a candidate for accepting a grant from the speculative switch allocator. Using
the free matrix we can derive the final valid grants of the speculative SA as follows:
validSpecGrants(i, j) = free(i, j) A initialSpecGrants(i, j).

Becker and Dally in (2009) observed that instead of waiting the non-speculative
SA to produce grants and mask afterwards the invalid grants of the non-speculative
SA, we can achieve the same result, if pessimistically, mask the speculative grants
with the corresponding non-speculative requests. The organization of the SA with
a pessimistic masking of the speculative grants is shown in Fig. 8.5b. Using this
approach, we are allowed to compute the row- and column-wise reduction trees
for computing the free bits, in parallel with allocation, removing them from the
critical path. This pessimism makes sense at low network traffic, where a non-
speculative request is likely to be granted due to the low contention in the network.
As the network traffic increases more and more speculative grants are unnecessarily
masked by non-speculative requests that fail to produce a grant.

The grants returning from the VC allocator, the speculative and the non-
speculative switch allocator should be treated accordingly so that no output with



144 8 High-Speed Allocators for VC-Based Routers
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a valid assignment remains idle. The four possible scenarios have been discussed
at the beginning of this section. A non-speculative grant always means that the
corresponding flit of the packet (the flit can be of any kind) has already allocated
an output VC and can leave the input VC buffer and move to the selected output in
this cycle. On the contrary, a speculative grant from the SA is not a guarantee for
success. The corresponding head flit that generated the speculative request should
match to an output VC in the same cycle. If not, the speculative grant is lost and
the head flit should retry in the next cycle. If the VA match is successful, the head
flit allocates at once two resources, e.g., an output VC and a time slot for an output
port, and leaves the input VC buffer. In the case that a head flit receives a grant
only from the VA and not the speculative SA, it stores the matched output VC and
in the next cycle it participates in the non-speculative SA. This last option actually
differentiates speculative switch allocation from combined allocation.
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8.5 VC-Based Routers with Input Speedup

Allocation efficiency can be improved by letting more than one VCs per input to
reach independently the crossbar thus allowing the switch to offer speedup at the
input side.! In the baseline organization of a VC-based router discussed so far, there
is only one input to the crossbar per input port, and thus only one virtual channel in
an input port can transmit a flit in a cycle. Allowing more than one VCs per input to
reach the crossbar directly, means that the inputs of the crossbar are multiplied with
the number of transmit ports per input. The input VCs can be separated in m groups
where each group receives a dedicated input port of the crossbar. This organization
is depicted in Fig. 8.6. In this case the one per-input multiplexer that switched V'
input VCs is replaced by m smaller multiplexers that select between V/m input
VCs. Equivalently, the input port that used only one input of crossbar, now sees m
inputs available. The output multiplexers of the router grow from N inputs to m x N
inputs, since now every input is allowed to send flits from m different VCs assuming
that they move to different outputs.

Virtual channel allocation does not need to change, unless it is simplified to treat
the group input VCs as virtual networks and thus limiting the set of output VCs
that each input VC can allocate. On the contrary, switch allocation should change in
order to support the input speedup of the VC-based routers. In this case, SA1 that
operated using a V' : 1 arbiter per input, now should support m arbiters that run in
parallel each one receiving V/m requests. At the output side the number of SA2
arbiters do not change and remains equal to one per output. However, since now
each input may receive the flits from the m x N different inputs of the crossbar,
each output arbiter should handle m x N requests. In overall, the delay of the SA
is not expected to change since the arbiter’s delay depends logarithmically on the
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number of inputs and thus the increase of the logic depth of the SA2 arbiters is
balanced by the decrease of the logic depth of the SA1 arbiters.

Input speedup is a useful technique for handling the possible inefficiencies of
separable switch allocation (Dally and Towles 2004; Rao et al. 2014). The only
drawback remains the increased wiring between the input VC buffers and the output
multiplexers of the crossbar that may limit the effectiveness of input speedup when
the network operates using very wide flits. At the same time, input speedup requires
changing also the flow-control mechanism, since in this case, multiple credits update
need to return in each cycle; one from each input VC that was selected by the switch
allocator.

Applying input speedup to its maximum extent and by assuming that each input
VC represents an isolated virtual network, allows us to design VC-based routers
using simple wormhole switches in parallel. Once each VC is a separate virtual
network, VA is not required, since no packet will ever change the VC that it
already uses. Also, since maximum speedup is enabled, the packets that belong
to the same VC but come from different inputs can be switched together using a
private wormhole router as shown in Fig. 8.7. For a router that supports V' VCs,
V' wormbhole routers are used in parallel that each one handles the flits of one VC
from all inputs (Gilabert et al. 2010). Each wormhole router independently from
the rest solves the output contention and prepares the flits that should depart from
each output. At the output of the VC-based router the flit of one sub-router should
be selected, effectively selecting which VC will use the output link in this cycle.
This requires an additional arbiter and multiplexer that selects which VC should be
served by each output. By keeping an independent flow control mechanism between
the input VC buffers and the inputs of the wormhole router, as well as, the output
of the VC-based router and the outputs of the wormhole routers, single, or multi-
cycle/pipelined configurations can be derived. For example, if we assume that each
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Fig. 8.7 Each VC of the router can be serviced by a private wormhole router. The results of all sub-
routers are merged at the output of the VC-based router using another arbitration and multiplexing
step that merges also the VC-based flow control of the output links
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smaller wormhole router has elastic buffers at its inputs and output ports, then each
flit of the VC-based routers will spend three cycles in the VC-based router: one for
moving from the input VC to the input of the wormhole router; the next to switch to
the selected output port of the sub-router, and the last one to move from the output
of the sub-router to the output of the VC-based router.

Using the freedom offered by input speed up we can design hierarchical
switching modules similar to the ones presented in Sect. 3.7 for wormhole routers
that instead of elastic buffers would include Elastistores at each merging point and
in the place of an arbiter and a multiplexer would contain a combined allocator
with a parallel VA1 stage. The design of such hierarchical VC-based networks
was proposed in ElastiNoC (Seitanidis et al. 2014b), and represent the first truly
distributed VC-based NoC architectures.

8.6 Take-Away Points

The allocation steps in a VC-based router are responsible for the largest part of the
router’s delay. Speeding up the allocation process requires either the application of
lookahead VA1 techniques that remove VA1 completely from the critical path, or the
adoption of combined allocation that removes the need for VA2. On the contrary,
instead of removing any of the required tasks, speculative allocation manages to
parallelize the execution of VA and SA by employing more hardware modules for
switch allocation. The employment of virtual networks or input speedup can further
simplify the allocation process with the cost of additional multiplexing area.



Chapter 9
Pipelined Virtual-Channel-Based Routers

The overall delay of a single-cycle VC-based router is the result of the delay
of the circuits that are responsible for executing the tasks of the router, and the
relative connections and dependencies between those tasks. Although the fast
allocation organizations presented in Chap.8 remove some of the across-tasks
dependencies and reduce the delay of the router, enjoying really fast VC-based
router implementations calls for pipelined organizations. The tasks involved per
packet and per flit in a VC-based pipelined router are executed in multiple cycles.
However, in each cycle, multiple operations evolve in parallel for several packets
and flits, thus achieving high throughput, while still operating under a high clock
frequency due to pipelining.

Pipelining the operation of a VC-based router has been the topic of both academic
and industrial research the recent years. Highly efficient pipelined organizations
have been presented, such as Hoskote et al. (2007), Howard et al. (2010), and Azimi
et al. (2009), that deal with both shallow or deep pipelined organizations. In any
case, the designs presented involve only one design point of the design space of
pipelined routers and the tradeoffs of adding or removing pipeline stages are not
discussed. This chapter aims at closing this gap and present the whole design space
of pipelined VC-based routers and the throughput-complexity implications of each
design choice.

Similar to the pipelined WH routers presented in Chap. 5, the pipelined orga-
nization of VC-based routers will be described in a modular manner, beginning
from the timing isolation through pipeline of the basic steps involved in a VC-
based router such as RC, VA, SA. Then, following a compositional approach,
multi-stage pipelined organizations will be derived by just combining the primitive
pipelined organizations of each stage. We believe that this customizable construction
of pipelined VC-based routers, that delivers pipelined configurations by connecting
simpler blocks in a plug-and-play manner, will help in understanding better the
operation of complex pipelined organization and the involved timing-throughput
tradeoffs.
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This chapter begins with a short revision of the operation and structure of
single-cycle VC-based routers that form the basis on top of which all pipelined
implementations will be developed.

9.1 Review of Single-Cycle VC-Based Router Organization

A VC-based router consists of parallel input VC buffers that hold the arriving flits
and using a multi-step procedure that includes routing computation (RC) and output
virtual-channel allocation (VA) for the head flits of the incoming packets as well as
switch allocation (SA) and traversal (ST) for all the flits, succeeds in transferring
in a time-multiplexed manner input VC flows to output VCs. The organization of
a single-cycle VC-based router is shown in Fig.9.1. A close inspection of Fig.9.1,
reveals that the router’s organization evolves in two parallel and converging paths.
The control path that includes the RC and the VA, SA allocation steps needed per
packet and per flit, and the data path that consists of the input multiplexers that select
one VC per input and the crossbar (a set of parallel output multiplexers) that connect
the inputs of the router to its output ports.

Each output port of the router is equipped with a simple pipeline register that is
not flow-controlled. Flow control spans from input VC buffers to output VC buffers
that are placed at the input of the next router, using credit-based flow control. To
support this operation, separate credit counters for each output VC are placed at
each output of the router including also the outVCAvailable flags that declare if an
output VC is allocated by an input VC or not. The outVCAvailable flags and the
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Fig. 9.1 The organization of a single-cycle VC-based router. All tasks of the router are computed
in one cycle, while in the next cycle, the flits that allocated all the needed resources are transferred
to the link, heading to the next router
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ready bits of the credit counters are distributed to all input VCs of the router thus
informing them about the availability and the readiness of the VCs of all output
ports. Each input VC for generating the corresponding requests to VA or to SA
checks the values of those bits as well as the corresponding local state variables

The allocation decisions taken for each packet during VA or for each flit during
SA, update effectively the state of each output VC both in terms of availability as
well as credit readiness. Therefore, every head flit that gets allocated to an output
VC during VA should in parallel update the state of the selected output VC (State
Update — SU), thus reflecting that it is currently occupied. Equivalently, when the
tail flit of the same packet is granted from SA and prepares to leave the router,
should release the allocated output VC, thus enabling its re-use by other packets of
the same or another input VC.

In a similar manner, every flit that is granted during SA and gets switched by the
crossbar (switch traversal — ST) should decrement the appropriate credit counter of
the selected output. According to Fig. 9.1, this credit consumption (CC) is done just
after ST but in the same cycle. Implementing CC earlier, after or in parallel to SA,
as done in pipelined WH routers in Chap. 5, is not easy. In VC-based routers, each
flit, once granted, should transfer to the credit counters the id of the allocated output
VC, in order to ensure that the correct counter is decremented. The transfer of the
output VC id to the credit counters actually requires a complete crossbar similar to
the one available in ST but of less bits (it should transfer only the output VC id of the
winning flit). Therefore, since ST already switches all the fields of a flit, including
its output VC id, there is no reason to add a second crossbar for implementing CC
earlier than normal ST. The following paragraphs present two running examples of
the operation of a single-cycle VC-based router that illustrate how the presented
operations evolve in time.

9.1.1 Example 1: Two Packets Arriving at the Same Input VC

The operations executed per-cycle by a single-cycle VC-based router are illustrated
in Fig.9.2. The diagram presents the behavior of a single input VC that receives
a 3-flit packet (head, body and tail) in consecutive cycles. Due to the interleaving
of flits among different VCs on the same input, this type of burst traffic may not
always be representative for a VC router. Irrespective of that, the un-interrupted
service of a packet arriving from an input VC, when the network is almost idle,
is a requirement for every NoC design. In the following examples, we assume that
a packet is not limited to which output VCs it can request; it is allowed to ask
for any available output VC of its destination. Whenever this assumption conceals
pipelining inefficiencies, it will be stated explicitly.

The head flit arrives from an input link (LT) and is written at an input VC
buffer (BW) in cycle 0. In cycle 1, it appears at the frontmost position of the
corresponding input VC buffer. The RC unit, dedicated to that input VC, reads the
packet’s destination from the flit’s header and calculates the requested output port.
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Fig. 9.2 An example of the operation of a single-cycle VC-based router that receives the flits of
two packets from the same input VC in consecutive cycles. Each flit spends one cycle inside the
router for completing all the required tasks and one cycle on the link that connects two neighbor
routers

Since the input VC has not yet allocated an output VC (outVCLock[i] = 0), it is
allowed to send a new output VC request to the VC allocator, which in turn,
successfully assigns an output VC from the available ones. The newly assigned
output VC is marked as unavailable (State Update — SU) and is used by the matched
input VC to generate a request to the switch allocator (SA). The flit wins in both
arbitration stages (SA1, SA2) and gets dequeued (DQ) from the input VC buffer,
eventually crossing both the per-input VC and the per-output multiplexers of the
router’s datapath. As the flit is about to be written to the output pipeline register,
the credit controller reads the flit’s output VC id and decreases its value (Credit
Consume — CC).

The next (body) flit arrives in cycle 1 and appears at the frontmost position of the
same input VC buffer in cycle 2, following the dequeue of the head flit. Therefore,
while the head flit crosses the link and is stored at the VC buffer of the next router,
the body flit inherits both the destined output port and the allocated VC, set in
the previous cycle by the head flit, and immediately performs SA. The body flit
is granted in the same cycle and is dequeued from the input VC buffer moving
towards the output pipeline register. When the body flit reaches the selected output
it decrements the corresponding credit counter using the id of the allocated output
VC.

The same procedure is followed by the tail flit of the packet in cycle 3. Since the
departing flit is the last flit of the packet, all state variables are reset at the input VC
side (outPorti], outVCLock[i], outVCJi]). The existence of a tail flit is also detected
at the output side, indicating that the output VC pointed by the flit’s VC id should
be released as well (SU). Therefore, the head flit of the next packet, which arrives in
cycle 3, finds all resources available and can initiate the execution of all the required
tasks without experiencing any idle cycle irrespective of its destined output port.

9.1.2 Example 2: Two Packets Arriving at Different Input VCs

Another example of the router’s cycle-by-cycle operations is presented in Fig. 9.3,
where two packets arrive in the same input, but interleaved in different input VCs.
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Fig. 9.3 An example of the operation of a single-cycle VC-based router receiving the flits of two
packets in consecutive cycles that arrive at the same input but belong to different VCs

The index next to each flit denotes different packet and thus, different input VCs
(e.g. HO is a head flit of packet 0 at input VC#0, B1 is a body flit of packet 1, at
input VC#1).

The head flit of the first packet arrives in cycle 0, and in cycle 1 executes
successfully all the needed tasks. In parallel, the head flit of the next packet arrives
and is stored in the input VC#1 buffer. In cycle 2, H1 performs RC and VA but fails
to allocate an output VC. In parallel, the body flit for packet O arrives, and it will
appear in the frontmost position of input VC#0 buffer in the next cycle. In cycle 3,
HI1 retries for VA and acquires successfully an output VC that allows it to participate
in SA. B1 participates also in SA in the same cycle. The priority of the arbiter in
SAL1 points to H1 after the grant given to HO in cycle 1. Therefore, BO loses and
HI is promoted to SA2. HI is granted in SA2 as well, that allows it to move to its
destined output port after consuming the necessary credit. The loser flit BO retries
in SA in cycle 4, and wins over B1 that arrived in the meantime, following the same
procedure as before to leave the router.

Unless none of the allocated output VCs are stalled, the flit flow carries on in a
similar manner without any interruption. The only cases under which an input port
is left unused is when (a) an input VC fails to succeed in VA, (b) a flit loses in SA2,
meaning that a different input utilizes the same output, or (c) the assigned output
VC is left without credits.

9.2 The Routing Computation Pipeline Stage

The control path of any VC-based router that does not employ lookahead techniques,
begins with routing computation that computes for each packet the destined output
port. Routing computation may just pick the appropriate output port for the packet
and let it select any of the available output VCs, or it may be more restrictive and
guide also output VC selection, by restricting the output VCs that the packet can
request. Pipelining RC from the rest tasks of the router’s control path follows the
same approach as in the case of wormhole routers. The first option involves the
isolation of RC only in the control path that inevitably introduces idle cycles in the
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flow of flits inside the pipeline. The second option pipelines also the datapath of the
router, allowing more than one flits per input VC to execute their tasks in parallel,
and thus removing the idle cycles experienced by the flits of a packet.

9.2.1 Pipelining the Router Only in the Control Path

The RC is stage is separated from the rest stages of the router via the outPort[i]
register available per input VC. In the single-cycle organization this register is
bypassed via a multiplexer when a head flit appears at the frontmost position of the
input VC buffer. This bypass is necessary for allowing the head flit to generate the
requests to the VA in the same cycle. In the RC pipelined organization, illustrated in
Fig. 9.4, this bypass multiplexer is removed allowing the outPort register to play
the role of the pipeline register in the control path that separates RC from VA,
SA and ST. In the case that routing computation guides also the generation of the
candidateOutVC vector for each input VC, an additional pipeline register should be
added to those signals as well, as shown in Fig. 9.4. Both pipeline registers storing
outPort and candidateOutVC are set when the head flit of the packet appears at the
frontmost position of the input VC buffer, and, they reset, when the tail flit of the
packet is dequeued from the input VC buffer.

An example of the operation of a pipelined router that executes RC and VA-SA-
ST in different cycles is depicted in Fig. 9.5. A head arrives in cycle 0 and appears
at the frontmost position of the input VC buffer in cycle 1. Routing computation
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Fig. 9.4 The organization of a 2-stage pipelined VC-based router that pipelines routing computa-
tion from the rest tasks of the router. The pipeline registers are added after RC only in the control
path of the router. Additional pipeline registers are not required and the outPort[i] register, or
possibly the candidateOutVCli] register, play the role of the pipeline registers after removing the
bypass path that exists in the single-cycle VC-based router implementation
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Fig. 9.5 An example of the operation of a 2-stage pipelined router that executes RC in the first
pipeline stage and VA-SA-ST in the next, for the flits of two packets that arrive at the same input
VC. The pipeline registers after RC are placed only in the control path of the router
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is executed in cycle 1 and the result is stored in outPort register (and possibly in
candidateOutVC register). In parallel, a body flit arrives at the input VC buffer and
remains behind the head flit in the same queue. Thus, the body flit is unable to
execute any operation in cycle 2, since the head flit has not been dequeued yet. The
head flit is dequeued in cycle 2 after having successfully performed all the required
tasks. The dequeue of the head flit brings the body flit to the frontmost position of the
input VC buffer. The body flit uses the values stored in outPort and outVC variables
to issue a request to SA in cycle 3. The body flit, once granted, gets dequeued and
traverses the crossbar heading to the appropriate output port. The same applies for
the tail flit that follows that also releases the per-packet allocated resources, when it
moves to the output of the router (SU just after ST).

The head flit of the next packet, that waited the departure of the tail flit in cycle
4, manages to perform RC in cycle 5, and finally use the selected output port in
cycle 6. Observing the router’s incoming and outgoing traffic under this scenario,
the router’s outputs always remain idle after a tail flit, whatever the next packet’s
destination might be. This idle cycle would never appear if the following packets
belong to different input VCs, of the same or a different input port.

9.2.2 Pipelining the Router in the Control and the Data Path

When the pipeline register after RC is placed only in the control path, the head flit
of a packet cannot perform RC, even if no flit is using the RC unit, until it reaches
the frontmost position of the corresponding input VC buffer. Allowing the head flit
to perform RC, while the tail of another packet in the same input VC performs SA
and ST, requires adding an extra pipeline register at the datapath of the VC-based
router. This pipeline register is in fact a 1-slot pipelined elastic buffer (EB) that
participates in the flow control mechanism and can be seen as an extension of the
input VC buffer. In this way, every flit that reaches the frontmost position of the
input buffer moves to this intermediate EB (if it is not full) and from there performs
the rest tasks of the VC-based router. A head flit while moving to the intermediate
EB performs RC and updates the outPort[i] and possibly the candidateOutVCli]
pipeline registers. In this way, once the tail flit reaches the frontmost position of the
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Fig. 9.6 The organization of a 2-stage pipelined VC-based router that pipelines routing computa-
tion from the rest tasks of the router. Pipeline registers are added after RC both in the control path
(outPort|i] and candidateOutVCli] registers) and the data path (pipelined EB)
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Fig. 9.7 An example of the operation of a 2-stage pipelined router that executes RC in the first
pipeline stage and VA-SA-ST in the next, for the flits of two packets that arrive at the same input
VC. The pipeline registers after RC are placed both in the control and the data path of the router.
The pipelined EB placed at each input VC allows the head flit of a packet to perform RC, while
the tail flit of a previous packet that belongs to the same input VC participates in SA

input VC buffer can move to the intermediate EB and allow the head flit in parallel
to perform RC. The organization that introduces a 1-slot EB in the data path of the
router together with the pipeline registers in the control path is shown in Fig. 9.6.

The adoption of the intermediate EB per input VC alters slightly the credit
update mechanism of each input VC. Now a new credit is returned to the previous
router once a flit is dequeued from the EB thus effectively increasing the available
credits per input VC by one. Since only one VC per input will win in SA then, one
intermediate EB will dequeue a flit and thus the credit of only one input VC needs
to be updated.

The router’s behavior under this pipeline configuration is presented in Fig.9.7.
The first noticeable difference, with respect to the example shown in Fig. 9.5 that
describes the behavior of pipelining RC only in the control path, appears in cycle 1,
where the head flit that arrived in cycle 0, moves to the intermediate EB as soon as
it performs RC. Now, the body flit that arrived in cycle 1 is at the frontmost position
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of the same input VC buffer. Once the head flit leaves the EB, it is replaced by the
body flit in cycle 2. The same procedure is repeated for the next flits of the same
packet. In cycle 3, when the tail flit moves to the intermediate EB, the frontmost
position of the input VC buffer holds the head flit of the next packet that is free to
perform RC, while the tail flit performs SA. Therefore, once the tail flit is dequeued
from the EB, after releasing any resources, the head flit of the next packet can be
immediately engaged in VA.

Please notice that, if the tail flit had lost in SA, it would continue occupying
the EB. This condition should prohibit the following head flit to update the outPort
register with the new result of RC, since the old output port id stored in outPort[i]
is needed by the tail flit to retry in SA in the next cycle. Although the input VC
would remain idle for one or more cycles, this would not be a result of the pipeline
configuration but of the current output contention of the router.

9.3 The VC Allocation Pipeline Stage

For the baseline router configuration, VC allocation is performed in series to RC,
and SA cannot begin before VA has produced a result. Depending on the router
configuration, the VC allocator of a single-cycle router may contribute to the critical
path as much as half of the total delay, especially, due to the second allocation stage
(VA2) that consists of N x V' : 1 arbiters. Apart from the architectural modifications
presented in Chap. 8 that try to “hide” the delay of VA, or even remove it completely,
the overhead of VA can be alleviated by isolating its operation in a different pipeline
stage from SA and ST.

As can be seen by the single-cycle organization of Fig. 9.1, VA contributes to the
router’s control path only for the part concerning the assembly of SA requests. A
flit is allowed to issue a request to SA, even if it has just allocated an output VC
in the same cycle. This feature adds some bypass logic at the output of outVC and
outVCLock registers respectively, that allow a head flit to use the result of VA in
the same cycle. Following a similar approach to the pipelining of the RC stage, the
control path can be cut off at this point, simply by removing those bypass paths. The
resulting router organization after pipelining the control path at the end of the VA
stage is presented in Fig.9.8.

The derived two-stage pipelined router’s control path is now split in two parts.
The first part begins with RC and ends up at the per-input VC registers that store
the VA result, while the second part starts with the request generation for SA and
may end up at three possible points after passing throughput ST: (a) the update of
the ouVCAvailable flags—SU, (b) the update of the credit counters per output VC —
CC or (c) the output pipeline register.
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Fig. 9.8 The organization of a 2-stage pipelined VC-based router that pipelines VA from switch
allocation and traversal. RC and VA are executed in series in one pipeline stage and SA, ST in
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Fig. 9.9 An example of the operation of a 2-stage pipelined router that executes RC and VA in the
first pipeline stage and SA-ST in the next, for the flits of two packets that arrive at the same input
VC

9.3.1 Example 1: Two Packets Arriving at the Same Input VC

Figure 9.9 depicts the effect of this pipeline configuration on the operation of the
router. In cycle 0, a head flit is written at the input VC buffer and is able to perform
RCin cycle 1, since it is at the frontmost position of the corresponding buffer. In the
same cycle, a set of candidate output VCs, along with the computed output port are
sent to the VC allocator, which replies, by asserting the VCgranted]i] signal, with
an allocated output VC, indexed by the selOutVC]i]. The state of the output VC is
updated, i.e., outVCAvailable[j] = 0, and so does the input VC’s state variables,
outVCli] and outVCLockli]. Due to the pipelined configuration, the update of the
input VC state variables will be visible in the SA request generation logic in the
next cycle. In the same cycle, a body flit arrives at the same input VC buffer. In cycle
2, the assertion of the outVCLock[i] variable passes to the next pipeline stage and
the new values of outVCl[i| and outPort[i] values are used to setup a request to SA.
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The request is granted in the same cycle, which allows the head flit to cross the
output multiplexer (ST) and consume an output VC credit. In the meantime, the tail
flit arrives, and the body flit remains idle at the input VC buffer, blocked by the head
flit that currently occupies the frontmost position of the input VC buffer.

In cycle 3, while the head flit crosses the link (LT), moving towards the next
router, the body flit performs SA. Once granted, it leaves the input VC buffer and the
frontmost position of the same input VC buffer is taken by the tail flit that follows.
The tail flit succeeds in cycle 4 in SA and it is written to the output pipeline register,
after releasing the availability of the allocated output VC. The head flit of the second
packet that arrived in cycle 3 for the same input VC, manages to appear at the
frontmost position of the input VC buffer in cycle 5; in this cycle, all input VC
state variables are already reset by the previously departed tail flit. The head flit
must first acquire an output VC, after performing RC and VA, and use the allocated
output VC in the next cycle, following the same procedure as the head flit of the
previous packet.

In this configuration, an input VC remains idle for a cycle between two
consecutive packets, i.e., a bubble appears in the flit flow after a tail flit departs.
This only affects packets arriving contiguously for a single input VC, or packets
that are heading to the same output VC, irrespective of the input VC they belong to.

9.3.2 Example 2: Two Packets Arriving at Different Input VCs

In this example, illustrated in Fig.9.10, we consider two packets arriving in the
same input but interleaved on two VCs. We assume that the arriving packets are
free to change VC, when they leave the current router towards their destination.
The router’s operation does not differ from the previous example, until cycle 2,
when the next packet’s head flit HI arrives. H1 is written to input VC#I1 buffer
and immediately appears at the frontmost position of its queue. From this point,
it can calculate its destination using the RC unit of VC#1, and issue VA requests

0 1 2 3 4 5 6 7
Ho | LT-BW ” RC-VA ” SA-DQ-ST || LT-BW |
BO SA-DQ-ST ” LT-BW |
H1 | LT-BW || RC-VA ” SA-DQ-ST || LT-BW |
TO | LT-BW ” SA || SA.DQ.S::T ” LT-BW |
B1 | LT-BW || SA ” SA-DQ-ST ” LT-BW ‘

Fig. 9.10 An example of the operation of a 2-stage pipelined router that executes RC and VA in
the first pipeline stage and SA-ST in the next, for the flits of two packets that arrive at two different
input VCs
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independently of the other input VC. Therefore, as BO is granted in SA and departs
in cycle 3, H1 manages to allocate an output VC in the same cycle. Since H1 requests
in VA any of the available output VCs, its destined output port can be the same with
that of packet 0 without any conflict. In the next cycle, it may participate in SA and
effectively win a grant.

In cycle 4, TO participates in SA but loses and remains in place. This does not
constitute a pipeline bubble, since the input is able to transmit a flit to the output
(flit H1). In cycle 5, TO retries and now wins over packet B1 that arrived in the
meantime. Observing the input port’s incoming and outgoing traffic, one would see
no idle cycles between the flits of the two packets. Any idle cycle, would appear if
both packets strictly requested the same output VC of the same output port. In this
case, the flits of the second packet should wait until the TO leaves the router and
releases the allocated output VC.

9.3.3 Obstactes in Removing the Deficiency of the VA Pipeline
Stage

The idle cycles that appear after adding the pipeline registers at the end of VA in
the control path of the router can be eliminated by pipelining also the datapath of
the router similar to the organization presented in the pipeline of the RC stage in
Sect.9.2.2. However, such an addition would cause dependencies across VCs that
may lead to a deadlock condition.

For example, if we followed this strategy of adding an intermediate EB in the
datapath, when a tail flit present at the intermediate EB performs SA, a head flit of
another packet behind it (at the frontmost position of the input VC buffer) would
be requesting an output VC. Assume that the tail flit owns output VC#I1 and tries
to gain access to it through SA, while the head flit successfully acquired in VA
VC#O. If the tail flit fails to move forward, either due to lack of credits, or simply
because it lost in SA, the same input VC will be found owning at the same time
two output VCs. This scenario creates a dependency across VCs: Output VC#0
cannot be accessed until output VC#1 is released. Since the two output VCs may
belong to different output ports, the dependency may even affect different routers.
To avoid such dependencies, requires atomic buffer allocation, i.e., a new head flit
arrives at an input VC buffer when the tail of the previous packet has departed (see
Sect. 3.1.2). However, complying to this requirement would lead to exactly the same
performance, as in the previous case, rendering the intermediate EB in the data path
redundant.

Thus, pipelining VA from switch allocation and traversal is performed only in
the control path and imposing an idle cycle between (a) two packets that arrive
contiguously to the same input VC, or between (b) two packets that are heading to
the same output VC, irrespective of the input VC they belong to.
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9.4 The Switch Allocation Pipeline Stage

Switch allocation is the last step that a flit is required to take before traversing the
crossbar (switch traversal) and reaching the output pipeline register. The SA unit
produces in each cycle the grants that are used to dequeue the winning flits from
their input VC buffers, and to setup appropriately the select lines of the per-input
and the per-output multiplexers of the router. In order to isolate the delay of SA
from the delay of ST we need to add pipeline registers at the select lines of the per-
output multiplexers of the crossbar as well as at each data input of the crossbar. This
pipelined organization is shown in Fig. 9.11.

The pipeline registers at the data path of the router are actually added at the output
of the per-input multiplexers and they are loaded with new data only if an input VC
that belongs to that input is granted in SA. Once data reach that point, they cannot
stall, since they are heading to an already allocated output VC that has for sure
enough credits (both conditions have been checked during the request generation of
SA).

The router’s operation, when RC-VA-SA are isolated from switch traversal using
pipelining, is illustrated in Fig.9.12. In cycle 0, a head flit is written to the input
VC buffer and executes successfully all allocation stages in cycle 1. Thus, in the
same cycle it is dequeued and moves to the data pipeline register at the input of the
crossbar. In parallel, the crossbar’s select signals are also registered, so that the head
flit can switch to the proper output port (ST) and consume a credit from the proper
output VC (CC), in cycle 2.
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Fig. 9.11 The router’s organization that separates SA stage from ST in a pipelined manner. RC,
VA and SA are performed in the first pipeline stage and in the next stage the flits move to ST and
reach the corresponding output link one cycle later. The pipeline registers added at the input of ST
are not flow controlled and outgoing data cannot stop there and are always forwarded in the next
cycle
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Fig. 9.12 An example of the operation of a 2-stage pipelined router that executes RC, VA, SA in
the first pipeline stage and ST in the next, for the flits of two packets that arrive at the same input
VC but acquire a different output VC in their selected output port

In cycle 3, while the head flit is crossing the link (LT) and is stored to the next
router’s input buffer (BW), the body flit is traversing the crossbar and the tail flit of
the same packet participates in SA. In cycle 4, the tail flit leaves the router, releasing
also the allocated output VC. The head flit of the following packet does not have to
wait the tail flit of the previous packet to leave, since in cycle 4, it allocated another
available output VC. Of course, if the second packet requested the same output VC
as the one already owned by the first packet, then, inevitably, the head flit would
complete VA not earlier than cycle 5 (after the tail flit releases the output VC in
cycle 4).

9.4.1 Credit Consume and State Update

Although this pipelined configuration is very similar to the pipelined configuration
of a wormhole router that separates SA from ST, still it presents a major difference:
now, CC and SU do not execute in parallel to SA, but are separated by a clock cycle.
The delayed SU translates inevitably to a bubble added by default in an output VC’s
flow after a tail leaves.

However, the delayed CC has a different outcome. Once a flit has been granted
in the previous cycle and is placed in the data pipeline register, another one may be
issuing a request to SA for the same output VC (both flits belong to the same packet).
The requesting flit has to qualify its request with the ready state of the output VC;
a request can be made only if enough slots exist at the destination buffer. However,
the in-flight flit (in the data pipeline register) has not consumed yet its credit, but
is about to consume it in the current cycle. This delayed CC causes the input VCs
that are preparing their requests to SA to see an outdated credit value. This situation
corresponds to an increased by one forward latency L r between two flow-controlled
end-points (the input VC buffers of two neighbor routers), which, according to the
analysis made in Chap. 6, leads to the following requirements: First, the input VC
buffers should be augmented with either one extra slot, to guarantee safe operation
due to the increased round trip time, or two slots, for full-throughput operation.
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Also, the condition under which an output VC is considered ready should be altered
from creditCounter[i] > 0 to creditCounter[i] > 1, irrespective of the number of
added buffer slots.

To avoid adding those extra buffer slots, requires to perform CC in the same cycle
as SA. Although requests reaching SA concern output ports (not VCs), each one of
them actually refers to a different output VC. Therefore, before knowing specifically
which input VC is granted, and thus, which output VC is allocated to the winning
flit, there is no way to determine which output VC’s credit counter to decrement,
unless the ids of all allocated output VCs are multiplexed to the credit counters.
This actually constitutes a complete crossbar of smaller width that would diminish
the delay-reduction benefits of pipelining, and could even lead to an overall delay
increase that could be even worse than the delay of a single-cycle VC-based router.

9.5 Multi-stage Pipelined Organizations for VC-Based
Routers

The primitive pipelined configurations, presented in the previous sections, cut the
operation of the router in a single pipeline point that separates the operation of the
router in two pipeline stages. For example the pipeline at the end of the VA stage
splits the router in two pipeline stages. The first one involves RC and VA tasks,
while the second one includes SA in series with ST/CC. The design of a router that
operates with a faster clock frequency than the 2-stage pipelined alternatives, needs
more pipeline stages. The design of deeper pipelined configurations does not need
any microarchitecture redesign but can be derived simply by stitching together the
primitive pipelined configurations presented so far. For example, by adding pipeline
registers at the end of RC (similar to Sect.9.2) and at the end of VC (similar to
Sect. 9.3), allows us to derive a 3-stage pipeline organization that executes RC in one
stage, VA in the second and SA-ST in the last pipeline stage, while the execution
of the tasks of the rest flits are overlapped in time, thus increasing utilization
and effectively router’s throughput. This pipelined organization can be graphically
represented as RCIVAISA-ST, where | denotes the placement of a pipelined register
and — represents the serial connection of two tasks in the same pipeline stage.
Depending on the selected configuration multiple 3-stage pipelined alternatives
can be derived. However, depending on the actual delay profile of each task not
every design point makes sense. In the following paragraphs, we present two
representative 3-stage pipelined organizations as well as a 4-stage version of a
pipelined router. Both cases increase the clock frequency of the router relative to
the single-cycle and the 2-stage pipelined organizations, but the frequency gains
of such deeper pipelined organizations diminish fast. The main reason for such
diminishing returns is the delay of the router’s main tasks such as VA and SA that
set an upper bound on the maximum achievable frequency. Also, the main tasks
of each router do not stand alone but include some secondary helper tasks that,
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although each one incurs a negligible delay overhead, their cumulative contribution
has a considerable effect. For example, the SA unit does not simply consists of two
arbiters in series, but includes also masking and multiplexing at the input side, which
cannot be avoided or pipelined separately.

9.5.1 Three-Stage Pipelined Organization: RC\VAISA-ST

The first 3-stage pipelined organization allows RC and VA to execute in their own
private pipeline stage and effectively get completely isolated in terms of timing from
SA and ST that execute in the same cycle.

The pipeline at the end of RC involves two possible options according to the
discussion of Sect. 5.2. For this example, we chose to describe the organization that
adds a pipeline register both at the control path as well as the datapath, using an
intermediate pipelined EB, and offer an idle-cycle-free flow of flits. On the contrary,
the pipeline registers for the VA stage are added only in the control path following
the organization of Sect. 9.3. The router’s organization that actually implements the
chosen configuration is depicted in Fig. 9.13.

It can be easily noticed that the derived 3-stage pipelined VC-based router
follows exactly the same organization with the single-cycle VC based router, and
the only differences appear at the registers of the state variables that now play the
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Fig. 9.13 The 3-stage pipelined organization of the VC-based router that executes RC in the first
pipeline stage, VA in the second and SA, ST in the last pipeline stage. SA and ST occur in the
same cycle and they are expected to represent the critical path in terms of delay of this pipelined
configuration
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Fig. 9.14 An example of the operation of the 3-stage pipelined router RCIVAISA-ST for the flits
of two packets arriving at VC#0 and VC#1 respectively

role of pipelined registers at each stage. In all cases, the bypass paths used for the
head flits have been removed and outPort[i] as well as outVC[i] and outVCLock][i]
are first written in one cycle and their values move to the next pipeline stage in the
next cycle.

An example of the router’s cycle-by-cycle operation is illustrated in Fig.9.14.
The first flit is written at input VC#0 buffer in cycle 0 and appears at its frontmost
position in cycle 1. The EB in front of the queue is currently empty, so the head
flit can occupy it, as it performs RC and writes its result in outPort[0] register.
From that point, it requests any available output VC from the output port pointed
by the outPort[0] variable. The VA returns one available output VC, and the id of
the allocated output VC is stored at the outVC[0] register at the end of cycle 2.
In cycle 3, the head flit is granted in SA, gets dequeued from the EB and reaches
the output pipeline register, while consuming a credit from its allocated output VC.
Since the EB will become empty in cycle 3, the combinational ready propagation
of the pipelined EB allows the body flit to get written in the same cycle in the
intermediate EB, thus leaving the frontmost position of the input VC#0 buffer for
the tail flit. In parallel, a head flit of another packet arrives at the same input that
belongs in VC#1.

In cycle 4, three flits are active. The body flit, which wins in SA and is dequeued
from the EB to reach the output; the tail flit behind it, that is written to the
intermediate EB, and the head flit, which moves to the intermediate EB of input
VC#1 after computing its destined output port and saves the result in outPort[1].
As the tail flit of input VC#0 is granted in SA and releases its output VC, input
VC#1 allocates a different output VC using VA. In cycle 6, while the tail flit of the
first packet crosses the link, the head flit that arrived in VC#1 succeeds in SA, gets
dequeued from the intermediate EB and moves to the selected output. Unless the two
incoming packets were heading to the same output VC of the same output port, the
flit flow remains uninterrupted. Of course, if the two packets had arrived in the router
using the same input VC, a bubble would be unavoidable, due to characteristics of
the pipeline after the VA stage.
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Fig. 9.15 The 3-stage pipelined organization of the VC-based router that executes RC and VA
in the first pipeline stage, SA in the second and ST in the last pipeline stage. RC and VA occur
in the same cycle and they are expected to represent the critical path in terms of delay of this
pipelined configuration. However, depending on the number of input/output ports of the router and
the number of VCs and the existence of virtual networks that separate VCs in smaller independent
groups, the critical path may move to the SA stage as well

9.5.2 Three-Stage Pipelined Organization: RC-VAISAIST

In the second 3-stage pipelined organization for a VC-based router, RC and VA
are serially executed in the first pipeline stage, while the last two pipeline stages
are dedicated to SA and ST, respectively. The implementation of this pipelined
configuration is shown in Fig. 9.15.

Since RC and VA occur in the same cycle, the outPort[i] register of the i th input
VC is bypassable, in order for the result of RC to reach the VC allocator in the same
cycle. The first pipeline stage ends up in the outVCJi] and outVCLock[i] pipeline
registers. The output of those registers is used for setting up the requests to SA. The
result of SA is distributed to all inputs causing the dequeue of the winning flits and
their transfer to the data pipeline resister at the input of the crossbar. The flits at the
input of the crossbar are switched to their selected output driven by the registered
select signals of the output multiplexers. The addition of the data pipeline register
increased the round-trip time between the two flow-control endpoints (input buffers
of two neighbor routers) and thus, as explained in Sect. 9.4.1, the ready condition
for each output VCs as well as the depth of the input VC buffers should be modified
accordingly.

The operation of this pipelined configuration is shown in Fig.9.16. In the first
two cycles, the head and the body flit of a packet arrive back-to-back. In cycle 1,
the head flit performs RC and uses the result to request and successfully allocate
an output VC. In cycle 2, it wins in SA moves forward to the intermediate pipeline
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Fig. 9.16 An example of the operation of the 3-stage pipelined router RC—VAISAIST for the flits
of two packets arriving back-to-back at same input VC

register, after crossing the corresponding per-input multiplexer. In the meantime, the
body flit remains in the input VC buffer waiting its turn. In cycle 3, as the head flit
traverses the crossbar and consumes a credit, the body flit performs SA and advances
towards the data pipeline register at the input of the crossbar.

In cycle 4, while the head flit is crossing the link moving to the next router, the
body flit leaves the intermediate pipeline register and moves to the selected output,
and the tail flit performs SA. The head flit of the following packet that arrives in the
same input VC remains in the buffer until it reaches the frontmost position of the
input VC buffer. Once the tail flit of the first packet is dequeued at the end of cycle
4, the head flit of the second packet performs RC and VA in cycle 5. If the second
packet arrived at a different input VC then it could have completed RC and VA one
cycle earlier, e.g., in cycle 4.

9.5.3 Four-Stage Pipelined Organization: RCIVAISAIST

The 4-stage pipelined organization of the router executes each task involved in a VC-
based router in a different pipeline stage. The implementation of this organization
is illustrated in Fig.9.17. For the separation of RC and VA, an intermediate EB
is put in front of the input VC buffer, while all per-input VC state variables are
turned to pipeline registers after removing any bypass connection. The dequeued
flits are registered in the data path prior to entering the crossbar, as required by
the SA pipeline stage, while the input VC buffers are augmented with more buffer
slots in order to support the increased round trip time imposed by the delayed credit
consumption (CC occurs in the last pipeline stage).

An example of the router’s cycle-by-cycle behavior is shown in Fig.9.18. The
first head flit arrives at an input VC of the router in cycle 0. Then, in cycle 1, in
parallel to the arrival of the body flit of the same packet, the head flit executes RC
and moves to the intermediate EB of the input VC. In cycle 1, the head flit allocates
an output VC, that is stored it in corresponding outVC register. In cycle 2, the head
flit having allocated an output VC, participates in SA and wins in the same cycle.
The received grant causes the head flit to dequeue from the intermediate EB and
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Fig. 9.17 The 4-stage pipelined organization of the VC-based router that executes RC, in the first
pipeline stage, VA in the second, SA in the third and ST in the last pipeline stage. The critical
path of the design is expected to be either at the VA or the SA stage, depending on the number
of input/output ports of the router and the number of VCs. As a first thought, VA should be more
delay critical than SA due to the larger arbiters involved in its operation. However, the delay of SA
is significantly augmented by the more involved request distribution and grant handling logic that
brings its final delay very close to that of VA
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Fig. 9.18 An example of the operation of the 4-stage pipelined router RCIVAISAIST for the flits
of two packets arriving back-to-back at the same input VC

move to the corresponding per-input data pipeline register of the crossbar. The body
flit that follows takes its place in the intermediate EB. At the same time, the head flit
of the next packet arrives at the same input VC, while the tail flit of the first packet
remains in the input VC buffer. As the head flit is written to the output pipeline
register and consumes a credit, in cycle 4, the body flit moves at the input of the
crossbar, and the EB of the same input VC is refilled with the tail flit. The following
packet’s head flit is unable to do anything, since it has not reached the frontmost
position of the input VC buffer yet. This idle cycle translates to a bubble on the
input’s outgoing traffic, which is unavoidable when all traffic arrives on the same
input VC.
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Fig. 9.19 An example of the operation of the 4-stage pipelined router RCIVAISAIST for the flits
of two packets that arrive back-to-back on VC#0 and VC#1 respectively

When the two input packets arrive on different input VCs, the first packet belongs
to VC#0 and the second one to VC#]1, the head flit of the second packet is at the
frontmost position of the input VC#1 buffer in cycle 3, according to Fig.9.19, and
not in cycle 4 as done in the previous case. Therefore, it is allowed to complete RC
and move to the intermediate EB of VC#1 one cycle earlier. This input traffic allows
in cycle 4 the concurrent use of all stages of the pipelined VC-based router. The
head flit of the first packet is in ST and moves to the selected output port; the body
flit performs SA, and the tail flit of VC#0 and the head flit of VC#1 are enqueued
on the corresponding EBs. Then, in cycle 5, while the tail flit of the first packet
participates in SA and wins, the head flit of the second packet is free to participate
to VA and allocate an output VC to its destined output port.

9.6 Take-Away Points

The operation of VC-based routers can be pipelined based on three primitive
pipelined organizations that separate the execution of the corresponding task RC,
VA, or SA from the ones that follow. Using such primitive pipeline stages, and
following a compositional approach that stitches together the primitive pipeline
stages for RC, VA and SA, multiple alternatives can be derived for the design
of deeper router pipelines. The derived designs achieve a high operating clock
frequency and overlap in time as much as possible the execution of the tasks required
per packet and per flit. The placement of pipeline registers can be done either in
the control path or in both the control and the datapath, depending on the chosen
organization and the number of idle cycles that can be sustained in the flow of flits
inside the router’s pipeline.
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