
INVITED: Formal Verification of Security Critical
Hardware-Firmware Interactions in Commercial SoCs

Sayak Ray, Nishant Ghosh, Ramya Jayaram Masti, Arun Kanuparthi, Jason M. Fung
{sayak.ray,nishant.ghosh,ramya.jayaram.masti,arun.kanuparthi,jason.m.fung}@intel.com

ABSTRACT

Wepresent an effectivemethodology for formally verifying security-

critical flows in a commercial System-on-Chip (SoC) which involve

extensive interaction between firmware (FW) and hardware (HW).

We describe several HW-FW interaction scenarios that are typical in

commercial SoCs. We highlight unique challenges associated with

formal verification of security properties of such interactions and

discuss our approach of property-specific abstraction and software

model checking to circumvent those challenges. To the best of our

knowledge, this is the first exposition on formal co-verification of

security-specific HW-FW interactions in the context and scale of

a commercial SoCs. Despite traditional scalability challenges, we

demonstrate that many such flows are amenable to effective formal

verification.

KEYWORDS

HW-FW co-verification, System Security, Model Checking

1 INTRODUCTION

Security evaluation of system-on-chips (SoCs) involves opportunis-

tic use of different techniques such as simulation, emulation, formal

verification, post-silicon debugging as well as manual design/code

review. Manual review is particularly important for security analy-

sis of SoCs as currently available automated verification tools are

often defeated by quirky security bugs which can only be uncov-

ered through careful manual reasoning. The manual review process,

however, has its own challenges. It is hardly scalable or repeatable.

It tends to be tedious and error-prone, particularly while dealing

with hardware-firmware (HW-FW) interactions. HW-FW semantic

differences, concurrency and asynchronous nature of transactions

make manual co-verification of HW-FW interactions extremely

challenging. While automated verification tools could have aided

manual review of HW-FW interactions, there is a serious void in the

tool space as all such tools available today apply either to software

or to hardware, but not across their boundary.

This gap has led to preliminary research on automated HW-

FW co-verification techniques that would effectively complement

manual analysis [6, 7, 9, 13, 15, 16]. These approaches are divided

into two categories – (i) hardware is abstracted as software and

the subsequent interaction is analyzed as a software verification

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

DAC ’19, June 2–6, 2019, Las Vegas, NV, USA

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6725-7/19/06. . . $15.00
https://doi.org/10.1145/3316781.3323478

problem [6, 16] (ii) firmware is compiled into assembly code and

composedwith hardware or its instruction level abstraction; the sub-

sequent interaction is analyzed as a hardware verification problem

[7, 9, 13, 15]. While the second approach leverages the engineering

advances in hardware verification technologies, capturing a typical

HW-FW interaction at the instruction level abstraction is often

too detailed to scale for commercial SoCs. In contrast, the first ap-

proach abstracts away many hardware-specific details and retains

only those firmware-visible architectural and micro-architectural

states that are relevant for a particular security property [6]. We

believe that the first approach is more promising than the second

one to prove security properties of various HW-FW interactions

in commercial scale SoCs. It is particularly true for the security

properties for which cycle-accurate models are not needed.

In this paper, we present a case study of formally verifying se-

curity properties of several security-critical flows in a commercial

SoC, by leveraging and improving upon the software verification ap-

proach presented in [6]. We focus on the model checking approach

despite its known scalability issues because of its effectiveness

in uncovering corner case bugs that are otherwise hard to find

manually. This makes model checking suitable for bug hunting in

security-critical modules such as bootROMs that may not be patch-

able in-field and could result in challenges for chip manufacturers

if such vulnerabilities were to be discovered post-production. The

performance and modeling costs associated with model checking

in this case are justified by the higher level of security assurance.

Every commercial SoC includes a bootROM that plays a crucial

role in ensuring that the SoC boots securely. Its primary objective

is to ensure that only an authenticated bootloader is loaded and

executed in the system. In that sense, it is the very first stage of

the chain of trust which guarantees that the SoC will eventually

run an authenticated operating system. Typical bootROM flows

involve close interactions with hardware that are difficult to verify

manually. This makes bootROM an ideal candidate for security

analysis through a HW-FW co-verification framework using model

checking.

Formal verification, particularly its bounded model checking

capability, is typically used for bug hunting. In our case study,

however, we emphasize its utility as a framework for regression. We

successfully ran the model checking experiments on our target SoC

and uncovered counterexamples to our defined security properties.

Through manual analysis, we confirmed that the counterexamples

we obtained were indeed security vulnerabilities and worked with

designers to mitigate them before tape in. However, it may be

prohibitively challenging to repeat the same manual analysis on

different derivatives of the same products and over their successive

generations. We highlight that our formal verification framework

demonstrates the ability to automate this regression for known

security issues on related products. More specifically, we make the

following contributions:

Figure 1: Typical System-On-Chip (SoC) Architecture

• We describe specific HW-FW interaction patterns that we

observed during secure boot, runtime, and secure debug of

a commercial SoC. We also identify specific challenges in

formal verification of such interaction patterns.

• We demonstrate that property-specific abstraction of hard-

ware operations in software do offer a viable methodology

for formal verification of HW-FW interactions.

We are the first to identify and document the common patterns that

most HW-FW co-verification frameworks should handle in order

to provide security assurance. We believe that our approach offers

a robust security assurance framework when used in tandem with

existing HW-only and FW-only verification techniques.

2 RELATEDWORK

Security architecture of SoCs is an active area of research [10, 19].

As new security architectures are being proposed to mitigate new

security threats, need for their verification is also growing at equal

pace. However, being a new paradigm, security co-verification of

HW-FW interactions is not so well-understood as its functional

counterpart [7, 9, 13, 16, 20]. Preliminary research results avail-

able for security co-verification can be divided into two categories,

viz. information flow analysis [12, 14] and property verification

through model checking [6, 8, 15]. Our work belongs to the second

category as we use a software model checker to verify security

properties of HW-FW interactions. The general approach of ab-

stracting hardware-specific details into software and then using

software model checkers on the composition to verify HW-FW

interactions is not new [1, 6, 16]. However, the patterns of HW-

FW interactions that we encountered in our experiments are not

yet explored. Similarly, our focus on concrete model checking ex-

periments distinguishes our work from previous work on security

architecture of commercial SoCs [18] and its formal modeling for se-

curity analysis [17]. Abstraction is critical for successful verification

in our approach. While various abstraction methods for HW-FW

co-verification are available [9, 13], we found them not readily appli-

cable to our problem. We thus propose our own property-directed

abstraction method. Similar to prior work [2, 6], our abstraction

method also avoids expensive bit-precise reasoning to speed up

verification.

3 HW-FW SECURITY FLOWS

Figure 1 shows the high-level architecture of a generic SoC. The

main processing core is accompanied by a cryptographic engine

and a DMA engine. An interconnect fabric connects the bus masters

to the peripherals, such as local RAM, a flash controller, a power

management unit (PMU), a memory controller, and the ROM. The

debug module provides an interface for debugging the SoC through

interfaces such as JTAG. We consider software adversary and an

adversary who can access the debug interface to be in scope. Table

1 shows a set of fundamental security-critical flows observed in

such SoCs and the typical verification approach for each flow1.

Flow 1 through 4 in Table 1 have a purely HW implementation and

are verified using HW-only verification techniques such as RTL

simulation, FPGA-based emulation, HW model checking, etc. Flow

5 has a purely FW implementation and these type of properties are

verified using FW-only verification techniques such as static and

dynamic code analysis tools, fuzzing, etc. Flow 6 and 7, on the other

hand, can be implemented either using purely HW mechanism or

using purely FW mechanism. If they are implemented using purely

HWmechanism, HW-only verification techniques are used to verify

their security claims. Otherwise, FW-only verification techniques

are used. Industry-strength verification tools with well-established

methodologies are available for verifying such HW-only and FW-

only security flows. These methodologies, however, do not directly

apply to security flows that involve HW-FW interactions. Flows 8

through 12 in Table 1 belong to this category. Effective verification

methodology for such properties is an open and active area of

research. In the subsequent sections, we present our methodology

and experiments on formally verifying the security flows marked

in bold in Table 1 (Flow 10-12). Below we explain niche of these

flows in securing the system during boot, runtime, and debug.

3.1 HW-FW Interactions in Bootloaders

Bootloaders play a critical role in security of commercial SoCs

[3–5, 11]. To help limit the impact of malicious code, bootloaders

verify both the integrity and provenance of the software that an

SoC executes. SoC bootloaders contain a chain of loaders with each

one verifying the integrity and authenticity of the next. This creates

a chain of trust, which stems from an immutable root of trust. In

our case, this immutable root of trust is the bootROM. As the core

in the SoC is powered on, it executes the immutable boot code that

is stored in the bootROM. Primary tasks of this boot code include:

(i) Reading system security configuration from the fuses and

initializing the SoC by writing (and locking) configuration values

into numerous registers through MMIO write operations (Flow 11).

(ii) Loading the primary boot loader (PBL) either from the exter-

nal flash or from an IO channel to the on-chip RAM (Flow 12).

(iii) Supporting test mode boot (described later) to allow for chip

manufacturer debug during the early boot stage (Flow 10).

We will now discuss these tasks in detail below.

3.1.1 Configuration Register Locking. The configuration registers

set by the bootROM are used in several critical hardware security

1Note that this is neither a comprehensive description of the SoC architecture nor the
security property list is exhaustive. For the sake of brevity, we only described modules
and properties that fall within the scope of this work.

Index Security Property HW Only FW Only HW-FW

1 Overlapping MMIO or memory ranges should follow principle of least privilege � � �

2 When lock bit is set, locked register cannot be modified � � �

3 Write-once registers cannot be set to 0 without a reset � � �

4 Untrusted entities cannot trigger IP reset to release the lock � � �

5 No related ranges are configured with conflicting settings � � �

6 Firewalls should implement access control policy � � �

7 Untrusted entities cannot bypass authentication for debug � � �

8 No asset is exposed before protected ranges are properly configured � � �

9 Signature verification from ROM to PBL or PBL to next boot stage cannot be bypassed � � �

10 Authorized users cannot access more debug capabilities than allowed � � �

11 Trusted FW locks sensitive registers before execution of untrusted FW � � �

12 Correct image (download/copied) is selected based on boot configuration � � �

Table 1: Various security flows in commercial SoCs and their verification strategy

flows. They can be used to store keys, configuration of access con-

trol filters, temperature sensor configuration, thermal trip settings,

etc. The content of these registers are considered assets and need

to be protected. BootROM, therefore, locks these registers after

writing the configuration values and before control is transferred to

untrusted firmware. Locks provide the benefit of protection against

modification of assets by untrusted agents in case of a compro-

mise through privilege escalation. Bit fields in registers can also

be used as locks to protect other assets in the system or to protect

themselves from further modification. Once a lock bit is set, the

protected assets are locked off from future write accesses and are

modifiable only when the lock is released, which usually happens

when the system is reset.

3.1.2 Control Transfer to PBL. After signatures of PBL images are

verified, whether control will be transferred to a PBL image copied

from local memory (eg. flash memory) or downloaded from an IO in-

terface (eg. PCIe interface) depends on various boot configurations.

BootROM reads various fuse values and configuration registers

through MMIO read operations to make this decision. Since the

decision depends on tens of such parameters, it is easy to make

implementation mistakes and deviate from the intended decision

based on boot configuration. It is, therefore, important to formally

verify that the implementation matches designers’ intent.

3.1.3 Test Boot Mode. To facilitate debug of the boot process, cer-

tain SoCs introduce a test boot mode. This allows a privileged user

to run test code of their choice to boot the system. In order to pre-

vent the test code from making persistent changes to the system,

this mode is time-limited by a watchdog timer.

4 METHODOLOGY

4.1 Source-level Modeling and Verification

All firmware modules in our case study are written in C. We cap-

ture all hardware behavior relevant to our flows as C subroutines.

We observe that for our case study, the software abstraction is not

required to be cycle accurate or bit-precise for proving the security

properties under consideration. This results in significant improve-

ment in both modeling and verification efficiency compared to

hardware-based approaches [7, 9, 13]. The HW-FW interactions

considered in this paper rely heavily on MMIO write operations.

Our software modeling thus captures firmware-visible functional

behavior of pertinent MMIO write operations and their side effects.

4.2 Verification Framework and Engines

The high-level security properties are broken down to assertions

at the source code level. All HW-FW interactions are replaced by

software abstraction models and assertions are compiled into an

intermediate representation using LLVM compiler framework. The

resulting code is then analyzed with SMACK model checker [21].

We note that any scalable model checker that supports verification

of multi-threaded C code can be used for our purpose.

4.3 Verification Flow

Our verification flows begins with the given C code for firmware,

RTL for hardware and supporting documents such as security ar-

chitecture specification, register description etc. We analyze the

HW-FW interaction under verification and its security objective.

We then construct a software model of the underlying hardware

using property-specific abstraction. The software model is com-

posed with the firmware and the security objective is translated

into assertions which are inserted in the composed model. The

assertions are then verified using a software model checker.

5 SECURITY FLOW VERIFICATION RESULTS

We first consider Flow 10 from Table 1 which is associated with

test boot mode. We present the security property associated with

this flow and the corresponding abstraction and verification run

time. We then present the same for two other flows, viz. hardware

locking performed by firmware (Flow 11) and invocation of the

proper authenticated bootloader (Flow 12).

5.1 Test Boot Mode

Certain SoCs offer two boot modes, viz. normal boot mode and

test boot mode. In normal mode, the system boots up for normal

operations by executing system boot code. Test boot mode, on the

other hand, is a privileged mode that allows an authorized user to

run test code of his/her choice to boot the system. Since the user

gets full control of the system in this mode, security architecture

of the SoC must ensure that the security objectives of the system

are not violated in case a privileged user runs malicious test code.

This is particularly important for protecting OEMs’ secrets from

the possibility of insider attacks. In this flow, a watchdog timer is

triggered to ensure that the system is restarted after the test code

execution ends and the following property must be satisfied:

5.1.1 Security Property ϕ. In test boot mode, if execution of the

user-supplied test code ends before the watchdog timer expires,

operation of the system must halt.

5.1.2 Result. As SMACK manages to hit the property in 3 minutes,

it demonstrates that it is possible to continue normal execution

after user code execution completes. This indicates that not enough

protection is placed in the implementation to prevent control from

flowing into normal boot code, thus violating ϕ. We confirmed this

bug through manual review and mitigated it subsequently.

5.2 Verification of register locks

Register locking is a hardware access control mechanism where a

register (target register) or certain bit field within a register (target

bits) is protected by another bit (lock bit) in such a way that the

target register/bits can be written only when the lock bit is in reset

state. Locking is heavily used during secure boot where the trusted

boot code writes security-critical data to configuration registers

and then locks them by setting designated lock bits to protect them

from malicious overwriting during runtime.

5.2.1 Security Property. Security of the system relies on the as-

sumption that the security sensitive configuration registers are

properly locked by calling appropriate functions by the firmware.

It is, therefore, required to guarantee that the respective locking

functions are always called in every secure boot flow.

5.2.2 Result. SMACK takes less than 25 seconds to find conditions

for bypassing lock functions we studied. In all such cases, SMACK

has to analyze nomore than 500 lines of user code (excluding library

functions). While SMACK finds these conditions as counterexample

to a reachability property, this counterexample is not a security bug

in the implementation. An analysis of the counterexample cross-

checks that the implementation indeed matches with designer’s

intent.

5.3 Signature verification flow

The bootROM decides which bootloader image to execute based on

a number of factors including the availability and validity of the

images retrieved from local storage and downloaded over the IO

interface. The function first retrieves the bootloader image, verifies

its integrity and authenticity, and finally invokes a deeply nested

decision tree to call the appropriate function to execute the validated

image based on its selection logic.

5.3.1 Security Property. The primary security requirement on this

control flow is that the decision tree must implement the bootloader

selection logic correctly. For example, under no circumstances,

the bootloader retrieved from the local storage shall be executed

when the image that is downloaded over the IO interface should be

executed or no image should be executed at all (and vice versa).

5.3.2 Result. This flow amounts to analyzing around thousand

lines of code. SMACK takes around 400 seconds on an average

to derive a trace to a target call-site. Again, the counterexamples

produced by SMACK are not implementation bugs. They are rather

paths in the decision tree which cross-checks that the decision tree

implementation is correct.

6 DISCUSSION, NEXT STEPS & CONCLUSION

Our approach of model checking is more effective when the un-

derlying HW-FW interactions do not require extensive hardware

modeling, handling of nested interrupts, or heavy multi-threading

at the firmware level. In our observation, many fundamental secu-

rity flows do not involve such complex HW-FW interactions. They

involve only up to a few hundred lines of code (including both RTL

and C) and can be analyzed by scoping out a bulk of context code.

Such flows are, therefore, amenable to formal analysis through our

methodology. The software models created in our methodology can

be used beyond formal verification. For example, they can be used

for emulation testing before the SoC is fabricated.

To conclude, we presented a low-cost methodology for formally

verifying security properties of various HW-FW interactions. We

verified important security flows taking no more than 400 seconds.

Abstracting hardware into software models for all flows discussed

in the paper together took only one day of work by one engineer.

We argue that formal verification, though not scalable in general,

has strong potential in verifying interesting security properties

for HW-FW interactions in commercial SoCs. We hope that our

approach will serve as a baseline for the development of new and

improved verification techniques in the future.

REFERENCES
[1] A. Horn, et al. 2013. Formal co-validation of low-level hardware/software inter-

faces.. In FMCAD. 121–128.
[2] A. Lal, et al. 2012. A solver for reachability modulo theories. In CAV. Springer,

427–443.
[3] AMD. 2012. AMD SB800-Series Southbridges BIOS Developer’s Guide. https:

//www.amd.com/system/files/TechDocs/45483.pdf.
[4] Apple. 2018. Apple BootROM 574.4. https://goo.gl/q3m5Ky.
[5] ARM. 2012. Principles of ARM® Memory Maps. https://goo.gl/oPVv55.
[6] B. Huang et al. 2018. Formal Security Verification of Concurrent Firmware in

SoCs using Instruction-Level Abstraction for Hardware. 55th DAC (2018).
[7] B. Schmidt, et al. 2013. A computational model for SAT-based verification of

hardware-dependent low-level embedded system software. In 18th ASP-DAC.
[8] Cook, B. et al. 2018. Model Checking Boot Code from AWS Data Centers. In

Computer Aided Verification (CAV) (LNCS), Vol. 10982. Springer, 467–486.
[9] D. Groβe et al. 2006. HW/SW co-verification of embedded systems using bounded

model checking. In 16th ACM GLSVLSI. ACM, 43–48.
[10] E. Peeters, et al. 2015. SoC Security Architecture: Current Practices and Emerging

Needs. In 52nd DAC. Article 144, 6 pages.
[11] Intel. 2010. Minimal Intel Architecture Boot Loader. https://goo.gl/KLdq6a.
[12] M. Balliu, et al. 2014. Automating Information Flow Analysis of Low Level Code.

In ACM CCS. 1080–1091.
[13] M. D. Nguyen, et al. 2011. Formal hardware/software co-verification by interval

property checking with abstraction. In 48th DAC. 510–515.
[14] P. Subramanyan, et al. 2016. Verifying Information Flow Properties of Firmware

Using Symbolic Execution. In DATE. 337–342.
[15] P. Subramanyan et al. 2017. Template-based Parameterized Synthesis of Uni-

form Instruction-Level Abstractions for SoC Verification. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (2017).

[16] R. Mukherjee, et al. 2017. Formal Techniques for Effective Co-verification of
Hardware/Software Co-designs. In 54th DAC. Article 35, 6 pages.

[17] S. Krstic, et al. 2014. Security of SoC firmware load protocols. In HOST. IEEE,
70–75.

[18] S. Ray, et al. 2015. Security Policy Enforcement in Modern SoC Designs. In ICCAD
(ICCAD ’15). 345–350.

[19] S. Ray, et al. 2018. System-on-Chip platform security assurance: architecture and
validation. Proc. IEEE 106, 1 (2018), 21–37.

[20] Y. Abarbanel, et al. 2014. Validation of SoC Firmware-Hardware Flows: Challenges
and Solution Directions. In 51st DAC (DAC ’14). Article 2, 4 pages.

[21] Z. Rakamarić, et al. 2014. SMACK: Decoupling source language details from
verifier implementations. In CAV. Springer, 106–113.

