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Abstract—The forthcoming IEEE 802.3ba Ethernet standard
will provide data transmission at a bandwidth of 100Gbit/s. Cur-
rently, the fastest cryptographic primitive approved by the U.S.
National Institute for Standard and Technology, that combines
data encryption and authentication, is the Galois/Counter Mode
(GCM) of operation. If the feasibility to increase the speed of the
GCM up to 100Gbit/s on ASIC technologies has already been
demonstrated, the FPGA implementation of the GCM in secure
100G Ethernet network systems arises some important structural
issues. In this paper, we report on an efficient FPGA architecture
of the GCM combined with the AES block cipher. With the
parallelization of four pipelined AES-GCM cores we were able
to reach the speed required by the new Ethernet standard.
Furthermore, the time-critical binary field multiplication of the
authentication process relies on four pipelined 2-step Karatsuba-
Ofman multipliers.

I. INTRODUCTION

The Galois/Counter Mode (GCM) of operation [1] has been

standardized by the U.S National Institute for Standard and

Technology in order to provide a high-speed algorithm for

authenticated encryption and decryption. GCM was the answer

to the growing demand of confidentiality and data integrity

in modern multi-gigabit communication systems. In the last

years, GCM has indeed been applied in numerous standards,

such as the IETF RFC 4106 for IPsec Encapsulating Security

Payload [2] or the IEEE P1619.1 for authenticated encryption

with length expansion for storage devices [3]. Moreover, the

combination of the GCM with the counter mode of the block

cipher AES (Advanced Encryption Standard [4]) has been

recommended in the IEEE 802.1AE standard for Media Access

Control (MAC) Security. Several hardware implementations

have already been proposed; in [5] the authors presented a

97.9Gbps AES-GCM core in 0.13 µm CMOS technology for

the IEEE 802.1AE, while in [6] a complete link encryptor

based on the AES-GCM has been investigated and tested in

2G Fibre Channel networks.

Although in ASIC technologies, several architectures of

the AES-GCM reaching the 100Gbps throughput have been

demonstrated [7], [8], to the best of our knowledge no designs

for field-programmable gate array (FPGA) devices reaching

the same performances have been so far presented. Following

the road map of the IEEE P802.3ba standard for 40G and

100G Ethernet [9], the final approval is scheduled in June

2010. The possibility to secure Ethernet traffic at this speed

using reconfigurable hardware becomes therefore crucial.

In this work, we present a GCM architecture combined

with the AES, which is able to fully support 100Gbps speed.

Exploiting the parallelization of four cores plus the extensive

utilization of pipelining, we were able to design three different

100G AES-GCM implementations for Xilinx Virtex-5 FPGAs.

II. GCM AUTHENTICATED ENCRYPTION

The GCM is a block cipher mode of operation that is

able to encrypt or decrypt data, providing at the same time

authentication and data integrity . In practice, it combines a

block cipher in the counter mode with universal hashing over

the binary field GF(2128). In this work, we used the Advanced

Encryption Standard (AES) [4] for encryption and decryption,

supporting key sizes of 128, 192 and 256 bits.

The target AES-GCM algorithm takes as input a plain-

text P (or input message), split into 128-bit sequences

P1, P2, . . . , P
∗
n , an initialization vector IV , some additional

authenticated data A = (A1, A2, . . . , A
∗
m), and the secret key

K . The size in bits of the final blocks P ∗
n and A∗

m is defined

by u and v, with 1 ≤ u, v ≤ 128. The following equation
defines the authenticated encryption of GCM:

H = Enc(K, 0128)

Y0 =

{

IV ||0311 if len(IV ) = 96
GHASH(H, {}, IV ) otherwise

Yi = incr(Yi−1) i = 1, 2, . . . , n

Ci = Pi ⊕ Enc(K, Yi) i = 1, 2, . . . , n − 1
C∗

n = P ∗
n ⊕MSBu(Enc(K, Yn))

T = MSBt(GHASH(H, A, C) ⊕ Enc(K, Y0)).

(1)

Enc(K, Y ) denotes the AES encryption of the block Y with

the key K . The GHASH() function in the last lines takes the
(m + n + 1)-block input composed by H , A, and C, and

compresses it to a single 128-bit block. The compression is

performed by the sequential multiplication of A and C with

the pre-computed term H over the Galois field GF(2128).

The authentication tag T consists in the first t bits of the

exclusive-OR (XOR) between the encryption of the IV and

the output Xm+n+1 = GHASH(H, A, C), where

Xi =































0 i = 0
(Xi−1 ⊕ Ai) ·H i = 1, . . . , m − 1
(Xm−1 ⊕ (A∗

m||0128−v)) ·H i = m

(Xi−1 ⊕ Ci−m) ·H i = m + 1, . . . , m + n − 1
(Xm+n−1 ⊕ (C∗

n||0
128−u)) ·H i = m + n

(Xm+n ⊕ (len(A)||len(C))) ·H i = m + n + 1
(2)
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The last multiplication is computed using the concatenation

of the 64-bit sizes of A and C.

Since the block cipher is in the counter mode, the authenti-

cated decryption in GCM is simply computed by exchanging

the input of the GHASH function with the incoming data, in

this case the received ciphertext. The new generated tag T ′ is

then compared with the received tag T . In case of mismatch,

the decrypted plaintext is completely discarded.

A. Parallel Multiplication

Originally proposed in [1], [10], the parallelization process

of the multiply operation in (2) has been further investigated

in [8]. The goal is to divide the sequential multiplication-

addition steps into several parallel computations, which gen-

erate the same final result. By defining a parallelization degree

q, the final X block could indeed be expressed as the sum of

q sub-terms Qi:

Xm+n+1 = Qq ⊕ Qq−1 ⊕ . . . ⊕ Q1, (3)

where

Qq = (((I1H
q ⊕ Iq+1)H

q ⊕ I2q+1)H
q ⊕ . . .)Hq

Qq−1 = (((I2H
q ⊕ Iq+2)H

q ⊕ I2q+2)H
q ⊕ . . .)Hq−1

...

Q1 = (((IqH
q ⊕ I2q)H

q ⊕ I3q)H
q . . .)H,

(4)

and

(I1, I2, . . . , Im+n+1) =

(A1, . . . , A
∗
m||0128−v, C1, . . . , C

∗
n||0

128−u, len(A)||len(C)).
(5)

If the length of the input blocks m+n+1 is not a multiple
of q, the last q multiplications are accordingly shifted through

the Qi terms. More important is that the different Qi could be

computed separately and then XORed only at the end of the

authentication process.

III. ARCHITECTURE

The achievement of throughput rates up to 100Gbps in

state-of-the-art FPGA devices is almost impossible with a

single AES core in combination with a bit-parallel multiplier

computing the tag. Even with modern FPGAs the maximal

speed of a standard architecture is limited to 40-50Gbps [11],

[12]. In order to support the new Ethernet standard IEEE

802.3ba, we then decided to exploit parallelization and pipelin-

ing both in the AES and the GHASH function.

A. Multi-core AES Design

A block cipher in counter mode of operation does not

require to feedback the output of the previous block to

compute the next one. Aiming at speed, this feature allows

the insertion of pipeline stages in unrolled implementations.

In order to support the three key sizes, the AES architecture
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Figure 1. Block diagram of the multi-core AES-128. The blue blocks identify
pipeline register stages. Each round has an additional internal pipeline stage.
Connections are 128-bit wide, while i′ = 0, 1, . . . , ⌈n

4
⌉ − 1.

relies on 14 unrolled rounds separated by pipeline registers.

The most critical transformation within a single round is the

SubBytes process. Several approaches to design the SubBytes

have been developed and implemented in FPGA. We selected

three main solutions:

• The entire computation is replaced by a substitution table

S-box. Two 2048-bit S-boxes are then stored inside a

dual-port block RAM (BRAM).

• The use of composite field to reduce the complexity of

the SubBytes [13] leads to a plain combinatoric circuit

implemented in FPGA logic.

• As proposed in [14], a single 2048-bit S-box could

efficiently be stored in 32 6-input LUTs of a Xilinx

Virtex-5 FPGA.

Since the use of BRAMs introduces an additional cycle of

latency, we decided to add an in-round pipeline stage into the

composite and the LUT-based approaches.

Nevertheless, a single pipelined AES is not able to achieve

100Gbps. This limitation forces the introduction of a multi-

core construction. We instantiated four parallel AES cores

sharing the same circuit to perform the key expansion transfor-

mation. The four AES plain modules work consequently using

the same round keys. Fig. 1 shows a schematic overview of

the main components. The resulting multi-core design is thus

able to process a 512-bit block (4×128bits) of plaintext at
each clock cycle, since the ciphertext is generated by directly

XORing the four 128-bit blocks P4i′+1, P4i′+2, P4i′+3, and

P4i′+4 with the output strings of the four plain modules

(i′ = 0, 1, . . . , ⌈n
4 ⌉ − 1). Particular attention has to be taken

with the generation of these outputs. As pointed out in [15],

the same counter should not be used twice with the same

key. This means that the input counter should not be equal

for the four AES modules. This could easily be avoided, by

fixing with different values two bits of the four input counters

Y4i′+1, Y4i′+2, Y4i′+3, and Y4i′+4.

B. The Parallel Pipelined GHASH Design

To combine the authentication core with the multi-core

AES, a design solution based on four parallel binary-field

multipliers has been investigated. Due to the high-speed re-
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quirement, we were forced to further insert pipelining into

each multiplier. This is due to the fact that the speed of a

plain multiplier is mainly defined by the size of the binary

field, in this work the large GF(2128). We adopted the 2-

step Karatsuba-Ofman (KO) algorithm and designed a 4-stage

pipelined architecture similar to [16]. The overview of the

implemented multiplier is depicted in Fig. 2.

More precisely, the single step KO algorithm splits two

m-bit inputs A and B into four terms Ah, Al, Bh, and

Bl, where the index identifies the highest or lowest
m
2 bits

(split phase). The result R is the combination of the outputs

of three multiplications between these four terms:

Rl = AlBl

Rhl = (Ah + Al)(Bh + Bl)
Rh = AhBh

R = Rhxm + x
m
2 (Rh + Rhl + Rl) + Rl.

(6)

The last line computes the final result of the multiplication

between A and B, by aligning the intermediates results Rl,

Rhl, and Rh (align phase).

We applied this approach twice recursively, in order to

reduce a large 128-bit multiplier into nine 32-bit multipliers

(see the “2-s mult” region in Fig. 2). The basic bit-parallel

multiplier has then be implemented to carry out the 32-bit

multiplication. In this way, the overall complexity of the

computation could be decreased allowing the insertion of

registers to shorten the longest path. As can be seen in Fig. 2,

a single KO multiplier hosts four pipeline stages. The first

comes after the split phases, the second after the multipliers,

while the last two stages isolate the binary-field reduction from

the two align phases.

To preserve the correct tag computation, the paralleliza-

tion degree q has then been set to 16 (4 parallelization ×
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Figure 2. Architecture overview of the pipelined 2-step Karatsuba Multiplier.
The blue lines represent the four pipeline stages.
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4 pipelining). This means that the input blocks Ii are processed

into 16 independent accumulators Q1, Q2, . . . , Q16.

The block diagram of the resulting GHASH module is

illustrated in Fig. 3. Each input multiplexer selects the first

operand of the multiplication, while the second, i.e. the terms

Hk with 1 ≤ k ≤ 16, comes from a dedicated memory
module. The 16 accumulators Qi are also stored in register-

based memories. The authentication tag T is obtained by

XORing the 16 outputs of these memories.

C. GCM Design

The overall GCM architecture is based on the combination

of the multi-core AES and the parallel-pipelined authentication

core. The powers of H are computed whenever the key

is updated. After the encryption of the 128-bit zeros term,

17 cycles are indeed needed to compute and store inside a

dedicated memory the 16 Hk terms. After this task the AES-

GCM core is ready to encrypt messages with the new key.

In (4), the last multiplication of the accumulators Qi is

done using scaling power terms. This involves the a priori

knowledge by the GCM core of the total message length.

While most of the blocks are multiplied with H16, the last 14

blocks must be multiplied with lower power terms. In Table I

the input pairs of the four multipliers are given for a 18 128-

bit blocks plaintext with three 128-bit bl ocks of authenticated

data. Note that the sum of m + n + 1, i.e. 3 + 18 + 1 = 22,
is expressly not a multiple of q = 16.
In order to configure the correct Hk inputs, the GCM

controller needs to know already at the second cycle that the

block P5 must be multiplied with H15, scaling the powers

of H in the next four cycles. This problem is solved by

adding a 4-stage buffer at the input of the AES-GCM. The

gray module in Fig. 4 acts like a shift register with controlled

output. Thanks to this component, the AES-GCM is informed

in advance of the configuration and total length of the message.

The output multiplexer is used in case of small messages, i.e.

n < 16. The input controller selects indeed the correct buffer
output, depending on the computed size of the plaintext. In

spite of an increase of the total system latency by four cycles,

the AES-GCM is able to process data sequentially without

having any prior information on the message size.
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Table I
INPUT PAIRS OF THE FOUR MULTIPLIERS. THE FLOW CORRESPONDS TO A
288 BYTES PLAINTEXT WITH 48 BYTES OF AUTHENTICATED DATA.

Clk I4j+1 Hk I4j+2 Hk I4j+3 Hk I4j+4 Hk

1 A1 H16 A2 H16 A3 H16 P1 H16

2 P2 H16 P3 H16 P4 H16 P5 H15

3 P6 H14 P7 H13 P8 H12 P9 H11

4 P10 H10 P11 H9 P12 H8 P13 H7

5 P14 H6 P15 H5 P16 H4 P17 H3

6 P18 H2 lena H - - - -
a len(A)||len(C)

Because of the pipeling architecture applied in the GHASH

core, the correct authentication tag T appears four cycles after

the insertion of the last message blocks. In Table I, T would

then be generated at the 11th cycles.

IV. RESULTS AND COMPARISON

The parallel-pipelined AES-GCM core has been coded in

functional VHDL in three architectures, differing by their Sub-

Bytes implementation (see Sec. III-A). The three designs have

then been synthesized using Synplify Pro, while place and

route has been done with the Xilinx ISE Design Suite. Target

FPGAs were two Xilinx Virtex-5 chips, i.e., the XC5VLX220

with speed grade -2 for the cores with composite and LUT-

based SubBytes, and the XC5VSX240T (-2) for the BRAM

SubBytes. The choice of different FPGAs is motivated by

the large amount of required BRAMs in the last design. The

36Kb BRAMs are indeed dual-port memories that could store

only two S-box tables. In total, the mulit-core AES requires

450BRAMs (4×14×16 S-boxes for the rounds and four for
the key expansion). Such large amount of BRAMs is only

available in bigger Virtex-5 FPGAs like the XC5VSX240T

chip. Table II summarizes the performances and proposes a

comparison with the results of [16]. Note that their imple-

mentations are based on a single-core pipelined AES-GCM.

We optimized the area of the AES-GCM cores for the same

maximal frequency of 233MHz. The three designs locate in-

deed their crytical path inside the key expansion module of the

AES core. This frequency is suitably enough to guarantee the

speed requirements imposed by the forthcoming 100 Gigabit

Ethernet standard. Although the design using BRAMs for the

SubBytes operation consumes less logic, it is penalized by the

huge memory demand to store the S-boxes. We point out the

core, using the LUT approach. This core fits in 14.8 kslices,

about 43% of the total space available in the XC5VLX220

chip, without requiring additional storing capacity.
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4x12842
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Figure 4. Block diagram of the input buffer architecture, i′ =

0, 1, . . . , ⌈n

4
⌉ − 1.

Table II
FPGA PERFORMANCE COMPARISON OF THE HASH FUNCTIONS. FPGA

FAMILY IS THE XILINX VIRTEX-5 WITH SPEED GRADE -2.

Ref. SubBytes Area Freq. Thr’put FPGA
[Slices] [BRAM] [MHz] [Gbps] Type

Ours LUT 14’799 0 233 119.30 LX220
Ours Comp. 18’505 0 233 119.30 LX220
Ours BRAM 9’561 450 233 119.30 SX240T

[16] LUT 5’961 0 296 37.89 LX85
[16] Comp. 8’077 0 305 39.04 LX85
[16] BRAM 4’115 59 287 36.74 LX85

V. CONCLUSIONS

In this paper we have presented an efficient design method-

ology to implement in reconfigurable hardware devices the

GCM combined with the AES for authenticated encryption.

Thanks to the replication of four AES cores and four binary-

field multipliers we were able to demonstrate how to break

the 100Gbps speed bound in FPGA. In order to reduce the

critical path of the GHASH operation, four pipeline stages

have been inserted within the GF(2128) multiplication. The

final GCM architecture relies on a 4×4 construction and
achieves 119Gbps in Xilinx Virtex-5 devices.
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