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ABSTRACT
Verification of the on-die power grid is a key step in the design of
complex high-performance integrated circuits. For the very large
grids in modern designs, incremental verification is highly desir-
able, because it allows one to skip the verification of a certain sec-
tion of the grid (internal nodes) and instead, verify only the rest
of the grid (external nodes). We propose an efficient approach for
incremental verification in the context of vectorless constraints-
based grid verification, under dynamic conditions. The tradi-
tional difficulty is that the dynamic case requires iterative anal-
ysis of both the internal and external sections. This has been
previously overcome for simulation purposes, but we provide the
first solution for verification, through two key contributions: 1) a
bound on the internal nodes’ voltages is developed that elimi-
nates the need for iterative analysis, and 2) a multi-port Norton
approach is used to construct a reduced macromodel for the in-
ternal section. As a result, we demonstrate significant reductions
in runtime, with speed-ups in the range of 3-8x, with negligible
impact on accuracy.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids

General Terms
Performance, Algorithms, Verification

Keywords
Power Grid, voltage drop

1. INTRODUCTION
As supply voltages have decreased with technology scaling, the

performance and reliability of modern integrated circuits (IC)
have become increasingly susceptible to supply voltage fluctua-
tions. Reduced voltage levels degrade the circuit timing perfor-
mance and can lead to soft errors. Therefore, voltage integrity
verification has become crucial for reliable high-speed chip design.

Most grid verification techniques use some form of circuit simu-
lation to simulate the grid. Simulation-based approaches require
complete knowledge of current waveforms drawn by the underly-
ing logic circuitry, which are used to simulate the grid and deter-
mine the grid node voltage drops. However, verifying the grid in
this way is prohibitively expensive, because the number of current
traces required to cover all possible circuit behaviors is extremely
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large. Another disadvantage is that a simulation-based flow does
not allow for early grid verification (when changes to the grid can
most easily be incorporated) because no current traces may be
available at that time.

To overcome these issues, a vectorless verification approach
based on partial current specification in the form of current con-
straints was proposed in [1], and further developed in subsequent
work over the last decade. Grid verification is reduced to a prob-
lem of finding the worst-case voltage drop over all possible cur-
rents that satisfy certain current constraints. In [2], the authors
used an RC model of the power grid and gave an upper bound on
the worst-case voltage drop using an iterative approach. A closed
form expression for the upper bound was later proposed in [3],
which involved solving a linear program (LP) for every grid node.
An efficient way to reduce the size of the LPs based on the sparse
approximate inverse technique was proposed in [4].

This previous work is useful for verifying the entire power grid
but becomes an overkill when verification of only a part of the
grid is required, a scenario that we refer to as incremental verifica-
tion. In large modern grids, incremental verification has become
desirable because the grids can be so large that verification on
traditional workstations becomes impossible, and a divide-and-
conquer approach becomes a necessity. Alternatively, incremen-
tal verification is desirable when design changes are made to a
local region of a previously-verified grid, and the local impact of
these changes needs to be verified. There are also various other
cases, such as in case of IP reuse, where a portion of the grid
may not need to be verified. In [5], a technique is given for incre-
mental verification but only for the case of a resistive grid, under
the influence of DC currents. In this paper, we extend incremen-
tal verification to the case of transient currents, i.e., a dynamic
verification context, for the case of 𝑅𝐶 grids.

In our formulation, the user identifies a part of the grid that
does not need to be verified, which we refer to as the subgrid.
Verification is required only for grid nodes that are outside the
subgrid, referred to as external nodes (nodes inside the subgrid
are referred to as either internal nodes or port nodes, as we will
see). A subgrid can be an arbitrary section of the grid, but must
be a connected graph. Strictly speaking, the solution in the dy-
namic case requires an iterative relaxation-based analysis of both
the internal and external grid sections. This difficulty was over-
come in [6] for the purpose of circuit simulation (not vectorless
verification), through the use of a multi-port Norton theorem. In
this work, we provide the first solution in the dynamic case for
the purpose of incremental vectorless verification, based on two
contributions: 1) upper bounds on the voltage drops at internal
nodes are efficiently computed, and used in lieu of the worst-
case drops, and 2) a macromodel is constructed for the subgrid
based on the movement of internal current sources by adapting
the multi-port Norton theorem proposed in [6] to our verification
framework, followed by reduction of a passive 𝑅𝐶 circuit by com-
bining the moment-matching based approach as described in [7]
and [8] with the nodal elimination based approach of [9].

The remainder of the paper is organized as follows. In sec-
tion 2, we present the power grid model and the constraints-based
approach to vectorless verification. Section 3 describes our pro-
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posed incremental verification approach. Implementation details
are given in section 4, followed by experimental results in sec-
tion 5. Finally, the paper is concluded in section 6.

2. BACKGROUND
2.1 The Power Grid Model

Consider an 𝑅𝐶 model of the grid where each branch is rep-
resented by a resistor and where there exists a capacitor from
every node to ground. Some nodes have ideal current sources (to
ground) to represent the current drawn by underlying circuitry,
and some have ideal voltage sources to represent the connections
to external power supply. Let the power grid consist of 𝑛 + 𝑝
nodes, where nodes 1, 2, . . . , 𝑛 have no voltage sources attached,
and the remaining nodes are nodes where the 𝑝 voltage sources
are attached. Let 𝑖(𝑡) be the element-wise non-negative vector
of all current sources connected to the grid. We assume that
∀𝑘 = 1, . . . , 𝑛, 𝑖𝑘(𝑡) is well-defined, so that nodes with no cur-
rent source attached have 𝑖𝑘(𝑡) = 0. Let 𝑖(𝑡) be the vector of
all current sources 𝑖𝑘(𝑡) and 𝑢(𝑡) be the vector of nodal voltages.
Applying Modified Nodal Analysis (MNA) to the grid leads to:

G𝑢(𝑡) + C�̇�(𝑡) = −𝑖(𝑡) + G0𝑉𝑑𝑑 (1)

where G and G0 are 𝑛 × 𝑛 conductance matrices, C is a 𝑛 ×
𝑛 diagonal matrix of node capacitances, and 𝑉𝑑𝑑 is a constant
vector each entry of which is equal to the supply voltage value.
The matrix G is known to be diagonally-dominant, symmetric
positive-definite, and an ℳ-matrix (so that G−1 ≥ 0). Let 𝑣(𝑡) =
𝑉𝑑𝑑 − 𝑢(𝑡) be the vector of voltage drops. The 𝑅𝐶 model for the
power grid can then be written as [2]:

G𝑣(𝑡) + C�̇�(𝑡) = 𝑖(𝑡) (2)

Note that this equation can be obtained directly by writing the
MNA system for a modified network in which all voltage sources
are shorted (set to 0) and all current sources are reversed. In the
rest of this paper, it will be assumed that we are working with
this modified topology so that, for example, certain power grid
nodes may be connected to ground by a resistor.

In our proposed framework, the nodes inside the subgrid that
are connected to external nodes are called port nodes while all
the remaining subgrid nodes are referred to as internal nodes. Let
𝑛𝑒𝑥𝑡, 𝑛𝑝𝑟𝑡, and 𝑛𝑖𝑛𝑡 be the number of external nodes, port nodes,
and internal nodes respectively such that 𝑛𝑒𝑥𝑡 + 𝑛𝑝𝑟𝑡 + 𝑛𝑖𝑛𝑡 =
𝑛. Because external nodes connect only to port nodes, the grid
equation can now be written as:

⎡
⎣ G11 G12 0

G𝑇
12 G22 G23

0 G𝑇
23 G33

⎤
⎦
⎡
⎣ 𝑣𝑒𝑥𝑡(𝑡)

𝑣𝑝𝑟𝑡(𝑡)
𝑣𝑖𝑛𝑡(𝑡)

⎤
⎦ +

⎡
⎣ C𝑒𝑥𝑡 0 0

0 C𝑝𝑟𝑡 0
0 0 C𝑖𝑛𝑡

⎤
⎦

⎡
⎣ �̇�𝑒𝑥𝑡(𝑡)

�̇�𝑝𝑟𝑡(𝑡)
�̇�𝑖𝑛𝑡(𝑡)

⎤
⎦ =

⎡
⎣ 𝑖𝑒𝑥𝑡(𝑡)

𝑖𝑝𝑟𝑡(𝑡)
𝑖𝑖𝑛𝑡(𝑡)

⎤
⎦
(3)

where 𝑣𝑒𝑥𝑡 and 𝑖𝑒𝑥𝑡 are sub-vectors corresponding to voltage
drops and current sources at external nodes, 𝑣𝑝𝑟𝑡 and 𝑖𝑝𝑟𝑡 cor-
respond to voltage drops and current sources at port nodes, and
𝑣𝑖𝑛𝑡 and 𝑖𝑖𝑛𝑡 correspond to voltage drops and current sources
at internal nodes. The matrices G and C are partitioned into
sub-matrices of appropriate dimensions.

Using a finite difference approximation as in [2], the system (3)
can be written as:

A𝑣(𝑡) =
C

Δ𝑡
𝑣(𝑡− Δ𝑡) + 𝑖(𝑡) (4)

where A =
(
G + C

Δ𝑡

)
is also a symmetric positive-definite ℳ-

matrix, so that A−1 ≥ 0.

2.2 Current Constraints
We perform verification using a vectorless approach in which

the information about the currents drawn by underlying circuitry
is not known. Instead, current constraints [1] are used, which
capture the uncertainty about circuit behaviors and the fact that
one is uncertain about the circuit currents early in the design
flow. As in previous work, we use two types of constraints: local
constraints and global constraints.

Local constraints are upper bounds on the individual current
sources, where one specifies that the current 𝑖𝑘(𝑡) never exceeds
a certain fixed level 𝑖𝐿,𝑘. We assume that every current source
tied to the grid has an upper bound associated with it, so that if
a node does not have a current source attached, the upper bound
for that current is 0. We can express these constraints as:

0 ≤ 𝑖(𝑡) ≤ 𝑖𝐿, ∀𝑡 ≥ 0 (5)

If only local constraints are provided, the problem is much
simplified but the results become overly pessimistic, because it
can never be the case that all the components of the chip are
simultaneously drawing maximum currents. Global constraints
are upper bounds on the sums of currents for groups of current
sources. They represent the peak total power dissipation of a
group of circuit blocks. Assuming that we have a total of 𝑚
global constraints, then we can express them in matrix form as:

0 ≤ S𝑖(𝑡) ≤ 𝑖𝐺, ∀𝑡 ≥ 0 (6)

where S is a 𝑚 × 𝑛 matrix that contains only 0s and 1s, which
indicate which current sources are present in each global con-
straint. Together, local and global constraints define a feasible
space of currents, denoted by ℱ , such that 𝑖(𝑡) lies inside the
feasible space (𝑖(𝑡) ∈ ℱ) if and only if it satisfies (5) and (6).

2.3 Power Grid Verification
Given a power grid, we are interested in finding the worst-

case voltage drops at all the nodes, under all possible (transient)
current waveforms 𝑖(𝑡) that satisfy the current constraints. In [3],
the authors provide an upper bound 𝑣𝑢𝑏 on the worst-case voltage
drop vector, so that 𝑣(𝑡) ≤ 𝑣𝑢𝑏, ∀𝑡, and this bound is given by:

𝑣𝑢𝑏 =

(
I + G−1 C

Δ𝑡

)
𝑉𝑎 (7)

where 𝑉𝑎 is the worst-case voltage drop vector at 𝑡 = Δ𝑡 in the
special case when 𝑖(𝑡) = 0, ∀𝑡 ≤ 0. Since 𝑣(0) = 0 in this special
case, it follows from (4) that:

𝑣(Δ𝑡) = A−1𝑖(Δ𝑡) (8)

and 𝑉𝑎 can be expressed as:

𝑉𝑎 = emax
∀𝑖(Δ𝑡)∈ℱ

A−1𝑖(Δ𝑡) (9)
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where emax is an operator that denotes element-wise maximiza-
tion of its vector argument, under the given constraints. In other
words, 𝑉𝑎 is the result of the for-loop: for(𝑘 = 1, . . . , 𝑛){maximize
the 𝑘𝑡ℎ element of the vector A−1𝑖(Δ𝑡), over all 𝑖(Δ𝑡) ∈ ℱ}.
Maximizing each element becomes a linear program (LP). Note
that, because the definition of local and global constraints does
not depend on time, then ℱ is the same at every time point.
Therefore, 𝑉𝑎 is independent of 𝑡 and we can drop the Δ𝑡 argu-
ment, and write:

𝑉𝑎 = emax
∀𝑖∈ℱ

A−1𝑖 (10)

where, for the purpose of this optimization, 𝑖 can be viewed as
simply a “dummy variable”, a 𝑛 × 1 real vector with units of
current.Thus, the problem of finding the worst-case voltage drop
is reduced to performing element-wise maximization of A−1𝑖 over
all 𝑖 ∈ ℱ , to find 𝑉𝑎, followed by a standard linear system solve,
to find 𝑣𝑢𝑏.

3. PROPOSED APPROACH
In our proposed incremental verification approach, we are inter-

ested in the worst-case voltage drops at only the external nodes.
As our first contribution in this paper, we propose an efficient way
to compute the bounds on the worst-case voltage drops, benefit-
ing from the fact that voltage drops at internal nodes are not
required.

3.1 Efficient Bounds Computation
To compute 𝑣𝑢𝑏, we need to have an estimate of worst-case

voltage drop at internal nodes. From (3), we have:

G𝑇
23𝑣𝑝𝑟𝑡(𝑡) + G33𝑣𝑖𝑛𝑡(𝑡) + C𝑖𝑛𝑡�̇�𝑖𝑛𝑡(𝑡) = 𝑖𝑖𝑛𝑡(𝑡) (11)

which, after time-discretization, leads to:

𝑣𝑖𝑛𝑡(Δ𝑡) = A−1
𝑖𝑛𝑡𝑖𝑖𝑛𝑡(Δ𝑡) −A−1

𝑖𝑛𝑡G
𝑇
23𝑣𝑝𝑟𝑡(Δ𝑡) (12)

where A𝑖𝑛𝑡 =
(
G33 + C𝑖𝑛𝑡

Δ𝑡

)
is a symmetric positive-definite ℳ-

matrix, so that A−1
𝑖𝑛𝑡 ≥ 0. Because −G𝑇

23 and A−1
𝑖𝑛𝑡 are non-

negative matrices, then in the special case used above to define
𝑉𝑎, we can write:

emax
∀𝑖∈ℱ

(𝑣𝑖𝑛𝑡(Δ𝑡)) ≤ A−1
𝑖𝑛𝑡 emax

∀𝑖∈ℱ
(𝑖𝑖𝑛𝑡(Δ𝑡)) + T𝑇 emax

∀𝑖∈ℱ
(𝑣𝑝𝑟𝑡(Δ𝑡))

(13)

where T = −G23A
−1
𝑖𝑛𝑡 is a transformation matrix that will also

be useful later. Equation (13) gives an upper-bound on the worst-
case voltage drops at 𝑡 = Δ𝑡 for all internal nodes, so that we can
write:

𝑉𝑎 = emax
∀𝑖∈ℱ

(𝑣(Δ𝑡)) ≤
⎡
⎣ I𝑒𝑥𝑡 0 0

0 I𝑝𝑟𝑡 0

0 T𝑇 A−1
𝑖𝑛𝑡

⎤
⎦ emax

∀𝑖∈ℱ

⎡
⎣ 𝑣𝑒𝑥𝑡(Δ𝑡)

𝑣𝑝𝑟𝑡(Δ𝑡)
𝑖𝑖𝑛𝑡(Δ𝑡)

⎤
⎦

where I𝑒𝑥𝑡 and I𝑝𝑟𝑡 are identity matrices of sizes 𝑛𝑒𝑥𝑡 and 𝑛𝑝𝑟𝑡,

respectively. From this, and because G−1 ≥ 0, we have from (7)
that:

𝑣𝑢𝑏 ≤
(
I + G−1 C

Δ𝑡

)⎡
⎣ I𝑒𝑥𝑡 0 0

0 I𝑝𝑟𝑡 0

0 T𝑇 A−1
𝑖𝑛𝑡

⎤
⎦ emax

∀𝑖∈ℱ

⎡
⎣ 𝑣𝑒𝑥𝑡(Δ𝑡)

𝑣𝑝𝑟𝑡(Δ𝑡)
𝑖𝑖𝑛𝑡(Δ𝑡)

⎤
⎦

(14)

Because emax∀𝑖∈ℱ (𝑖𝑖𝑛𝑡(Δ𝑡)) = 𝑖𝐿 (the vector of local constraint
values), this gives a faster way to compute an upper bound on
𝑣𝑢𝑏 which involves solving LPs for external and port nodes only,
followed by standard linear solve. Our second contribution is the
macromodeling of the internals of the subgrid, as described in the
next sub-section.

3.2 Power Grid Macromodeling
Because the internals of the subgrid do not need to be verified,

further performance improvement can be obtained by reducing
or eliminating much of the subgrid network. Two steps are in-
volved in this: 1) moving the internal current sources to the port
nodes, which benefits from multi-port Norton theorem from previ-
ous work [6], and 2) reducing the remaining parasitic 𝑅𝐶 network
inside the subgrid using model order reduction.

3.2.1 Moving Internal Current Sources
Norton’s theorem is a fundamental theorem in circuit theory

that converts any linear two-terminal network into a simple paral-
lel circuit consisting of an equivalent current source, and an equiv-
alent internal impedance. The equivalent current source value is
the current that will flow through a short circuit between the two
terminals [10]. In HiPRIME [6], multi-port Norton equivalent cir-
cuits were used to move the current sources internal to a block,
to the ports. Previous work benefited from the multi-port Nor-
ton theorem for simulation purposes. In our work, we adapt this
theorem for use in verification, where the current sources are not
known, but are instead subject to current constraints.

Norton Equivalent Current Sources.
Applying the multi-port Norton theorem entails removing the

current sources internal to the subgrid and replacing them by new
current sources attached to the port nodes. The values of the new
port current sources are found by a familiar construction in which
1) the subgrid is disconnected from the rest of the grid, 2) each
port node is connected to ground via a short circuit, and 3) the
current flowing through these short circuit connections (due to
the applied internal current sources) is evaluated.

Consider a subgrid with 𝑛𝑖𝑛𝑡 internal nodes and which is con-
nected to the external grid through 𝑛𝑝𝑟𝑡 port nodes. The grid
equation of the subgrid when the port nodes are shorted to ground
is given by:

G33𝑣
′
𝑖𝑛𝑡(𝑡) + C𝑖𝑛𝑡�̇�

′
𝑖𝑛𝑡(𝑡) = 𝑖𝑖𝑛𝑡(𝑡) (15)

where 𝑣′𝑖𝑛𝑡 is the 𝑛𝑖𝑛𝑡 × 1 voltage drop vector at internal nodes.
Let us call an internal node that connects to a port node 𝑘, a
neighbor of 𝑘. The current through a port node to ground 𝑖′𝑘(𝑡)
is given by:

𝑖′𝑘(𝑡) =
∑

neighbors 𝑗 of 𝑘

𝑔𝑘𝑗𝑣
′
𝑖𝑛𝑡𝑗 (𝑡) (16)

where 𝑔𝑘𝑗 is the conductance through which port node 𝑘 is con-
nected to internal node 𝑗 and 𝑣′𝑖𝑛𝑡𝑗 (𝑡) is the voltage drop for

internal node 𝑗. In (3), G23 is the 𝑛𝑝𝑟𝑡 × 𝑛𝑖𝑛𝑡 matrix consist-
ing of all the conductance links from port nodes to internal nodes.
Therefore, using (16), the Norton current vector 𝑖′(𝑡) can be writ-
ten as:

𝑖′(𝑡) = −G23𝑣
′
𝑖𝑛𝑡(𝑡) (17)

Modified Grid.
The grid resulting after the internal current sources of the sub-

grid have been removed and replaced by the new port current
sources will be referred to as the modified grid. In this modified
grid, the voltage drops at the nodes will be denoted by 𝑣(𝑡), and
the system equation becomes:

G

⎡
⎣ 𝑣𝑒𝑥𝑡(𝑡)

𝑣𝑝𝑟𝑡(𝑡)
𝑣𝑖𝑛𝑡(𝑡)

⎤
⎦ + C

⎡
⎣

˙̂𝑣𝑒𝑥𝑡(𝑡)
˙̂𝑣𝑝𝑟𝑡(𝑡)
˙̂𝑣𝑖𝑛𝑡(𝑡)

⎤
⎦ =

⎡
⎣ I𝑒𝑥𝑡 0 0

0 I𝑝𝑟𝑡 0
0 0 0

⎤
⎦
⎡
⎣ 𝑖𝑒𝑥𝑡(𝑡)

𝑖𝑝𝑟𝑡(𝑡)
𝑖𝑖𝑛𝑡(𝑡)

⎤
⎦ +

⎡
⎣ 0

I𝑝𝑟𝑡
0

⎤
⎦ 𝑖′(𝑡)

which can also be written as:

G𝑣(𝑡) + C ˙̂𝑣(𝑡) =M𝑖(𝑡) + N𝑖′(𝑡) (18)

where M is a 𝑛× 𝑛 matrix consisting of I𝑒𝑥𝑡 and I𝑝𝑟𝑡, and N is
a 𝑛×𝑛𝑝𝑟𝑡 matrix consisting of I𝑝𝑟𝑡. Time-discretizing (18) gives:

G𝑣(𝑡) +
C

Δ𝑡

(
𝑣(𝑡) − 𝑣(𝑡− Δ𝑡)

)
= M𝑖(𝑡) + N𝑖′(𝑡) (19)

We now return to the special case situation used to define 𝑉𝑎

earlier. In that case, the voltage in the modified grid at time
𝑡 = Δ𝑡 is given by:

𝑣(Δ𝑡) = A−1
(
M𝑖(Δ𝑡) + N𝑖′(Δ𝑡)

)
(20)
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Figure 3: Macromodels for synthesis

Likewise, time discretizing (15) and evaluating at 𝑡 = Δ𝑡, we get:

𝑣′𝑖𝑛𝑡(Δ𝑡) = A−1
𝑖𝑛𝑡𝑖𝑖𝑛𝑡(Δ𝑡) (21)

From (17) and (21),

𝑖′(Δ𝑡) = −G23𝑣
′
𝑖𝑛𝑡(Δ𝑡)

= −G23A
−1
𝑖𝑛𝑡𝑖𝑖𝑛𝑡(Δ𝑡) ≡ T𝑖𝑖𝑛𝑡(Δ𝑡) (22)

which can also be written as:

𝑖′(Δ𝑡) =
[

0 0 T
] ⎡⎣ 𝑖𝑒𝑥𝑡(Δ𝑡)

𝑖𝑝𝑟𝑡(Δ𝑡)
𝑖𝑖𝑛𝑡(Δ𝑡)

⎤
⎦ = P𝑖(Δ𝑡) (23)

where P is a 𝑛𝑝𝑟𝑡×𝑛 matrix that contains T. Using (23) in (20),
we get:

𝑣(Δ𝑡) = A−1(M + NP)𝑖(Δ𝑡) = A−1M̂𝑖(Δ𝑡) (24)

where:

M̂ =

⎡
⎣ I𝑒𝑥𝑡 0 0

0 I𝑝𝑟𝑡 T
0 0 0

⎤
⎦ (25)

The above results will be used in the following to efficiently
verify the external nodes in the modified grid. From Norton’s
theorem, the modified grid will exhibit the same voltage response
at external and port nodes as the original grid. Therefore, ∀𝑖 ∈ ℱ :

𝑣𝑒𝑥𝑡(Δ𝑡) = 𝑣𝑒𝑥𝑡(Δ𝑡)

𝑣𝑝𝑟𝑡(Δ𝑡) = 𝑣𝑝𝑟𝑡(Δ𝑡)

so that:

emax
𝑖∈ℱ

(𝑣𝑒𝑥𝑡(Δ𝑡)) = emax
𝑖∈ℱ

(𝑣𝑒𝑥𝑡(Δ𝑡)) (26)

emax
𝑖∈ℱ

(𝑣𝑝𝑟𝑡(Δ𝑡)) = emax
𝑖∈ℱ

(𝑣𝑝𝑟𝑡(Δ𝑡)) (27)

Therefore, any verification that we will do below on the external
nodes in the modified grid will also verify the same nodes in the
original grid.

3.2.2 Subgrid Reduction
After moving the internal current sources, we are left with a

subgrid consisting only of parasitic 𝑅𝐶 elements. Therefore, we
can use a passive Model Order Reduction (MOR) technique to
reduce the internals of the subgrid. The reduction approach that
we have found applicable and beneficial for this work combines
the two standard techniques of moment-matching and node elim-
ination. Because this is a mix-and-match of various content from
previous work, it is useful for us to describe some existing tech-
niques, for clarity.

Calculation of Moments.
We use a nodal-formulation based method [8] to compute mo-

ments of the system transfer function. The passive subgrid is
first isolated from the rest of the grid by removing (i.e., make
into an open-circuit) the connections from all port nodes to ex-
ternal nodes. Therefore, the isolated subgrid can be represented
in the 𝑠-domain by:([

Ĝ22 G23

G𝑇
23 G33

]
+ 𝑠

[
C𝑝𝑟𝑡 0

0 C𝑖𝑛𝑡

])[
𝑣𝑝𝑟𝑡(𝑠)
𝑣𝑖𝑛𝑡(𝑠)

]

=

[
𝑖𝑝𝑟𝑡(𝑠) + 𝑖′(𝑠)

0

]
(28)

where Ĝ22 is an 𝑛𝑝𝑟𝑡 × 𝑛𝑝𝑟𝑡 conductance matrix that is derived
from G22 by removing the connections from port nodes to exter-
nal nodes represented by G𝑇

12. The admittance looking into the
ports of the subgrid, a matrix Y(𝑠), can be approximated as [11]:

Y(𝑠) ≈ M0 + M1𝑠 (29)

where M0 = Ĝ22 − G23V and M1 = C𝑝𝑟𝑡 + V𝑇C𝑖𝑛𝑡V are
the 𝑛𝑝𝑟𝑡 × 𝑛𝑝𝑟𝑡, zero and first-order moment matrices with V =

G−1
33 G𝑇

23. Because of the quadratic form of M1, it is clear that
it is a non-negative matrix and this will be useful below.

Moment-Matching.
For circuits with a non-negative M1 matrix, a 2𝜋-model be-

tween pairs of ports was constructed in [7] by matching the zero
and first-order moments. The circuit between a pair of ports is
synthesized using a T-model as shown in Fig. 3(a) and port-to-
ground elements are modeled with a parallel 𝑅𝐶 model as shown
in Fig. 3(b). The elements of the T-model are given by [7]:

𝑅𝑖𝑗1 =
−
√

𝑚𝑗𝑗
1

𝑚𝑖𝑗
0

(√
𝑚𝑖𝑖

1 +
√

𝑚𝑗𝑗
1

)

𝑅𝑖𝑗2 =
−
√

𝑚𝑖𝑖
1

𝑚𝑖𝑗
0

(√
𝑚𝑖𝑖

1 +
√

𝑚𝑗𝑗
1

) (30)

𝐶𝑖𝑗 =

(√
𝑚𝑖𝑖

1 +
√

𝑚𝑗𝑗
1

)2

𝑚𝑖𝑗
1√

𝑚𝑖𝑖
1 𝑚𝑗𝑗

1

where 𝑚𝑖𝑗
0 and 𝑚𝑖𝑗

1 are the (𝑖, 𝑗)𝑡ℎ elements of M0 and M1,
respectively. To macromodel the port-to-ground connections for
port 𝑖, the authors [7] provide:

𝑅𝑖𝑖 =

⎛
⎜⎜⎝𝑚𝑖𝑖

0 +

𝑛𝑝𝑟𝑡∑
𝑗=1
𝑖 ∕=𝑗

𝑚𝑖𝑗
0

⎞
⎟⎟⎠

−1

, 𝐶𝑖𝑖 = 𝑚𝑖𝑖
1 −

𝑛𝑝𝑟𝑡∑
𝑗=1
𝑖 ∕=𝑗

𝐶𝑖𝑗𝑅
2
𝑖𝑗2

(𝑅𝑖𝑗1 + 𝑅𝑖𝑗2)2

(31)

Node Elimination.
Note that the above T-model generates an extra node (a new

internal node) for each pair of ports. If we have 𝑛𝑝𝑟𝑡 port nodes,
generating a T-model for every pair of ports can be expensive
because it will result in 𝑛𝑝𝑟𝑡(𝑛𝑝𝑟𝑡−1)/2 new nodes. To overcome
this issue, we can eliminate many of the new internal nodes by
using the nodal elimination based reduction approach proposed
in [9]. For every new internal node, the nodal time constant [9]
is given by:

𝜏 =
𝐶𝑖𝑗𝑅𝑖𝑗1𝑅𝑖𝑗2

𝑅𝑖𝑗1 + 𝑅𝑖𝑗2
(32)

If 𝜏 < 𝜏𝑁 where 𝜏𝑁 is a user specified nodal time constant value,
the internal node can be eliminated by adding capacitors 𝐶𝑖 and
𝐶𝑗 to port nodes 𝑖 and 𝑗 and resistors 𝑅𝑖𝑗 between 𝑖 and 𝑗. The
capacitors and resistors are given by:

𝑅𝑖𝑗 = 𝑅𝑖𝑗1 + 𝑅𝑖𝑗2

𝐶𝑖 =
𝐶𝑖𝑗𝑅𝑖𝑗2

𝑅𝑖𝑗1 + 𝑅𝑖𝑗2
, 𝐶𝑗 =

𝐶𝑖𝑗𝑅𝑖𝑗1

𝑅𝑖𝑗1 + 𝑅𝑖𝑗2
(33)

Sparsification.
Once the system matrices of the reduced model are formed, it

turns out that they contain large numbers of negligible (near zero)
entries. As a final step in the reduction, therefore, we have found
it useful to apply a final sparsification step, where entries whose
absolute value is below a small value 𝜅 are automatically set to
0. We have found the error resulting from this to be insignificant
and very much worth the effort.
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Algorithm 1 INCR VERIFY

Input: Partitioned power grid matrices in (3), 𝜏𝑁 , 𝜅, 𝛿1 and 𝛿2
Output: Upper bounds on worst-case voltage drops for external

nodes
1: Construct subgrid matrices in (28)

2: (T, G̃𝑠𝑢𝑏, C̃𝑠𝑢𝑏) = MACRO(subgrid matrices, 𝜏𝑁 , 𝜅, 𝛿2)

3: Construct M̃, G̃, C̃ and Ã
4: for (𝑗 = 1, . . . , 𝑛𝑒𝑥𝑡 + 𝑛𝑝𝑟𝑡) do

5: Compute 𝑗𝑡ℎ row of Ã−1 using SPAI [4] with 𝛿 = 𝛿1
6: Multiply that row by the columns of M̃, get row vector d
7: Maximize: d ⋅ 𝑖, subject to: 𝑖 ∈ ℱ
8: end for
9: Compute 𝑣𝑢𝑏 using (37)

Final Reduced Model.
After applying all the reduction techniques discussed above,

we end up with new conductance (G̃𝑠𝑢𝑏) and capacitance (C̃𝑠𝑢𝑏)
matrices for the isolated subgrid, given by:

G̃𝑠𝑢𝑏 =

[
G̃22 G̃23

G̃𝑇
23 G̃33

]
; C̃𝑠𝑢𝑏 =

[
C̃𝑝𝑟𝑡 0

0 C̃𝑖𝑛𝑡

]
(34)

where G̃22 and C̃𝑝𝑟𝑡 are the modified port-to-port conductance

matrix and capacitance matrix respectively, G̃33 and C̃𝑖𝑛𝑡 are
�̃�𝑖𝑛𝑡 × �̃�𝑖𝑛𝑡 conductance and capacitance matrices for the �̃�𝑖𝑛𝑡

new internal nodes, and G̃23 and G̃𝑇
23 are matrices consisting of

connections between port nodes and newly formed internal nodes.

3.2.3 Verification after Macromodeling
After macromodeling, the reduced grid matrices can be con-

structed by stitching together the reduced subgrid and external
grid matrices using the connections from external nodes to port
nodes. The reduced grid matrices are given by:

G̃ =

⎡
⎣ G11 G12 0

G𝑇
12 G̃′

22 G̃23

0 G̃𝑇
23 G̃33

⎤
⎦ , C̃ =

⎡
⎣ C𝑒𝑥𝑡 0 0

0 C̃𝑝𝑟𝑡 0

0 0 C̃𝑖𝑛𝑡

⎤
⎦

(35)

where G̃′
22 is the updated port-to-port conductance matrix in

which the connections from external nodes to port nodes have
been added. Since we have used a realizable macromodeling ap-
proach, G̃ is also a �̃�× �̃� symmetric positive-definite ℳ-matrix,
where �̃� = 𝑛𝑒𝑥𝑡 + 𝑛𝑝𝑟𝑡 + �̃�𝑖𝑛𝑡. From (24), the voltage at time
𝑡 = Δ𝑡 for the modified grid in the special case is given by:

𝑣(Δ𝑡) = Ã−1M̃𝑖(Δ𝑡) (36)

where 𝑣 is a �̃�-vector of voltage drops at external, port and new

internal nodes, Ã =
(
G̃ + C̃

Δ𝑡

)
is a ℳ-matrix and M̃ is a �̃�× 𝑛

matrix with the first 𝑛𝑒𝑥𝑡 +𝑛𝑝𝑟𝑡 rows equal to M̂ defined in (25),
and the remaining rows have all entries equal to 0. The worst-
case voltage drop at external and port nodes can be found by
element-wise maximization of 𝑣𝑒𝑥𝑡 and 𝑣𝑝𝑟𝑡. The upper bound
on worst-case voltage drops can be computed by using (14) and
is given by:

𝑣𝑢𝑏 =

(
I + G−1 C

Δ𝑡

)⎡
⎣ I𝑒𝑥𝑡 0 0

0 I𝑝𝑟𝑡 0

0 T𝑇 A−1
𝑖𝑛𝑡

⎤
⎦ emax

∀𝑖∈ℱ

⎡
⎣ 𝑣𝑒𝑥𝑡(Δ𝑡)

𝑣𝑝𝑟𝑡(Δ𝑡)
𝑖𝑖𝑛𝑡(Δ𝑡)

⎤
⎦

(37)

where 𝑣𝑢𝑏 is the �̃�-vector of upper bounds on worst-case voltage
drops with the first 𝑛𝑒𝑥𝑡 entries corresponding to upper bounds
for external nodes.

4. IMPLEMENTATION
The overall flow of the proposed incremental verification ap-

proach is given in Algorithm 1. We start with a user-specified
power grid and subgrid, along with parameter values for 𝜏𝑁 , 𝜅,

Algorithm 2 MACRO(subgrid matrices, 𝜏𝑁 , 𝜅, 𝛿2)

Output: T in (13), G̃𝑠𝑢𝑏 and C̃𝑠𝑢𝑏 in (34)
1: Construct A𝑖𝑛𝑡

2: for (every port node 𝑘) do
3: Find neighbors of 𝑘 and 𝑔𝑘𝑗 in (16)
4: for (every neighbor 𝑗 of 𝑘) do

5: Compute the 𝑗𝑡ℎ row of A−1
𝑖𝑛𝑡 using SPAI [4] with 𝛿 = 𝛿2

6: Multiply the row entries by 𝑔𝑘𝑗
7: Add the row entries to the 𝑘𝑡ℎ row of T
8: end for
9: end for
10: Compute M0 and M1

11: for (every pair of ports 𝑖, 𝑗) do
12: Compute 𝑅𝑖𝑗1, 𝑅𝑖𝑗2 and 𝐶𝑖𝑗 using (30)
13: end for
14: for (every port node 𝑘) do
15: Compute 𝑅𝑘𝑘 and 𝐶𝑘𝑘 using (31)
16: end for
17: for (every new internal node created) do
18: Compute 𝜏 using (32)
19: if 𝜏 < 𝜏𝑁 then
20: Compute 𝑅𝑖𝑗 , 𝐶𝑖 and 𝐶𝑗 using (33)
21: Eliminate the new internal node
22: end if
23: end for
24: Drop insignificant connections with conductance less than 𝜅
25: Construct G̃𝑠𝑢𝑏 and C̃𝑠𝑢𝑏

and error tolerance values (𝛿1, 𝛿2) for the sparse approximate
inverse (SPAI [4]) engine. The grid matrices are appropriately
partitioned and macromodeling of the subgrid is performed. As
a result of macromodeling, the size of the original power grid
gets reduced and the internal current sources are moved to port
nodes. The inverse of the matrix Ã is then computed, and every
row is multiplied by M̃ to account for the effect of movement
of internal current sources. Next, we maximize the voltage drop
at external and port nodes, and compute the upper bounds on
worst-case voltage drops by using the efficient bounds computa-
tion approach.

The macromodeling algorithm is presented in Algorithm 2. To
avoid the cost of constructing the full matrix A−1

𝑖𝑛𝑡, we generate

one row of the transformation matrix T = −G23A
−1
𝑖𝑛𝑡 at a time,

and that is possible through the use of SPAI [4] which is inher-
ently parallelizable and can compute a single column/row of the
approximate inverse. For a port node, we first identify the neigh-
bors (𝑘), and the connections (𝑔𝑘𝑗) to the neighbors. Then, we
compute the corresponding row of the approximate inverse, mul-
tiply the row vector by 𝑔𝑘𝑗 , and add the result to the 𝑘𝑡ℎ row of
T. Calculation of moments is also efficiently done by factorizing
G33, followed by standard system solves.

5. EXPERIMENTAL RESULTS
A C++ implementation has been written to test the proposed

approach. We use SPAI [4] to compute the approximate inverses,
and solve the linear programs using MOSEK [12]. The test grids
were generated from user specifications, including grid dimen-
sions, metal layers, pitch and width per layer, and supply voltage
sites and current sources distribution. The supply voltages and
current sources were randomly placed on the grid. The technology
specifications were consistent with 1.1 V 65nm CMOS technology.
A global constraint is specified for the subgrid and other global
constraints were specified to cover the entire chip. The subgrid
nodes are also identified by the user. Computations were done
using a 2.6 GHz Linux machine with 24 GB of RAM. A SPAI
error tolerance value of 𝛿1 = 0.1mV is used to compute the ap-
proximate inverse for the original and modified power grids. A
lower value of tolerance 𝛿2 = 0.01mV is used to construct T.

Table 1 shows the speed and accuracy of the proposed bounds
computation approach (section 3.1). Since we are interested in
analyzing only the external nodes, we report maximum error and
average percentage error values for the upper bounds on worst-
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Table 1: Speed and accuracy after using efficient bounds computation
Power Grid Subgrid Max Error Avg. % CPU time Speed

Name Nodes 𝑛𝑖𝑛𝑡 𝑛𝑝𝑟𝑡 (mV) Error Original Fast 𝑣𝑢𝑏 Up
G1 8,413 3,891 118 0.08 0.075 22.92 min. 10.58 min. 2.16x
G2 18,678 10,788 176 0.08 0.102 68.19 min. 24.97 min. 2.73x
G3 32,554 15,714 208 0.07 0.057 2.61 h. 1.12 h. 2.33x
G4 50,444 29,458 290 0.07 0.055 4.5 h. 1.77 h. 2.54x
G5 72,692 42,764 348 0.07 0.047 7.71 h. 3.11 h. 2.47x
G6 98,162 68,972 402 0.08 0.079 11.87 h. 3.10 h. 3.82x
G7 128,241 95,294 413 0.08 0.064 18.71 h. 4.19 h. 4.46x
G8 162,087 124,824 518 0.08 0.078 25.30 h. 5.27 h. 4.8x

Table 2: Speed and accuracy after applying macromodeling
Power Max Error Avg. % CPU time Speed Up Total Speed Up
Grid (mV) Error Fast 𝑣𝑢𝑏 Reduced Reduced 𝑣𝑠 Fast 𝑣𝑢𝑏 Reduced 𝑣𝑠 Original
G1 2.4 1.96 10.58 min. 5.03 min. 2.1x 4.55x
G2 2.06 2.05 24.97 min. 12.26 min. 2.03x 5.56x
G3 1.4 1.20 1.12 h. 0.93 h. 1.2x 2.81x
G4 2.04 1.29 1.77 h. 1.26 h. 1.4x 3.57x
G5 2.01 0.88 3.11 h. 2.36 h. 1.31x 3.26x
G6 2.79 1.14 3.10 h. 2.22 h. 1.39x 5.34x
G7 3.13 1.11 4.19 h. 2.64 h. 1.58x 7.08x
G8 2.6 1.14 5.27 h. 3.14 h. 1.67x 8.05x

case voltage drops at external nodes only. The runtime and ac-
curacy are compared with the original approach based on finding
the worst-case voltage drop at every node, and then computing
the upper bound using (7). The results show that we are able to
achieve significant runtime savings with negligible error values.

The macromodeling approach was tested with user-specified
values for nodal time constant (𝜏𝑁 = 5𝑝𝑠), and conductance
threshold (𝜅 = 5×10−3℧). Table 2 gives the speed and accuracy
obtained after applying macromodeling. The runtime for the re-
duced grid includes the time taken to perform macromodeling of
the subgrid, and then using the efficient bounds computation ap-
proach to find the upper bounds. The accuracy is compared with
the original approach while speed-up is measured with respect to
the efficient bounds computation approach. We also report the
total speed-up with respect to the original approach. The results
show that we incurred an average error of about 1% for large grids
while extracting a total speed-up in the range of 3-8x.

Of course, it is to be expected that, if fewer nodes are to be
verified, then corresponding time savings would be the result.
However, in our case, the speed-ups are much higher than would
be obtained based solely on this argument. For example, if one
wants to verify only 15% of the grid nodes, one would expect a
speed-up of 100/15=6.67x. However, we can verify 15% of the
nodes with a typical total speed-up of 27x. Thus, the benefits
of our upper-bounding and macromodeling techniques are quite
significant.

6. CONCLUSIONS
We describe an early incremental verification approach for 𝑅𝐶

grids under a constraints-based power grid verification framework,
in which only the nodes that are external to a subgrid region are
to be verified. Our approach gives a fast and accurate way to
compute the upper bounds on worst-case voltage drops at ex-
ternal nodes, based on two contributions: 1) an upper-bound
method that eliminates the need to perform multiple iterations,
and 2) a macromodeling method that drastically reduces the in-
ternals of the subgrid. As a result, 3-8x speed-ups are obtained,
with negligible 1-2% error. With this proposed approach, it be-
comes practical to perform early incremental design verification
of the on-die power grid under dynamic conditions.
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