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Abstract 
This work presents a hybrid CMOS-RRAM integration of 

spiking nonvolatile computing-in-memory (nvCIM) pro-
cessing engine (PE) that includes a 64Kb RRAM macro and a 
novel in situ nonlinear activation (ISNA) module. We integrate 
the computing controller and nonlinear activation function on-
chip to compute convolutional or fully-connected neural net-
work. ISNA merges A/D conversion and activation computa-
tion by leveraging its nonlinear working region. This elimi-
nates the need for additional circuits to realize nonlinearity and 
reduces area by 43.7× w.r.t. the ADC scheme. The activation 
precision of ISNA can be configured from 1 to 8 bits to balance 
throughput, accuracy and power efficiency. The measurement 
of 4-layer LeNet shows such optimization improves 23.1% of 
computing speed via compromising a 2.5% relative accuracy 
drop. The proposed nvCIM PE achieves 16.9 TOPS/W power 
efficiency and a maximum spike frequency of 99.24 MHz. 
Keywords: activation precision, computing in memory, non-
volatile emerging memory, processing engine, RRAM, spiking. 

Introduction 
Designs of nvCIM use memory resistivity to locally store 

synaptic weights, significantly reducing memory accesses (Fig. 
1). Multiply-accumulate (MAC) operations are conducted 
through analog currents, necessitating A/D conversion to inter-
face with surrounding digital systems. Thereafter, a nonlinear 
activation function, e.g. tanh or rectified linear unit (relu), fil-
ters the MAC results. Previous designs use binary sense ampli-
fiers with 1-bit activation precision between perceptrons to 
avoid area-consuming ADC/DAC [1]. Neuron computation in 
multi-bit precision is then realized by accumulating the 1-bit 
MAC results followed by additional digital nonlinear activa-
tion function circuits (AFC). In this work, we demonstrate a 
compact RRAM-based spiking nvCIM PE (Fig. 1) which com-
prises a 64Kb RRAM macro for synaptic weight storage and 
MAC computation, and ISNA which executes activation func-
tion computation on the fly, obviating the need for the addi-
tional AFC and reducing design overheads.  

RRAM-based Spiking nvCIM PE Architecture 
The proposed RRAM PE (Fig. 2) is an integrated solution 

whose function can switch between memory storage and 
computation. Fig. 3 depicts the 1-transistor-1-RRAM 
(1T1R) array structure. BLs are parallel to SLs while verti-
cal to WLs. In the memory mode, the Read/Write (RD/WR) 
logic programs the pre-trained synaptic weights into the 
RRAM array or senses the RRAM cell resistances. In the 
computing mode, the macro conducts MAC operations, and 
ISNA performs the activation and outputs digital spikes. 
The SLs are tied to the ground. The input spikes are applied 
to WLs to control the ON/OFF status of 1T1R cells. ISNA 
drives the BLs to excite the computing currents. The BL 
current amplitude denotes the MAC result that is deter-
mined by the overall conductance of the ON cells in the col-
umn as well as the inputs. When deploying neural networks, 
the proposed macro can adopt binary (0, 1) or ternary (0, 
±1) weights and map each weight onto one or two 1T1R 

cells, respectively. 
Precision-Configurable In Situ Nonlinear Activation 

4-bit or higher activation precision is needed in many neural 
networks with binarized weights to attain high accuracy [2]. To 
achieve multi-bit A/D conversion, ISNA (Fig. 4) includes a 
current amplifier (CA) and an integrate & fire circuit (IFC). 
IFC generates spikes at a maximum frequency of 99.24 MHz 
(Fig. 5(a)). In this way, ISNA reshapes MAC results into time-
domain spike numbers. The OTA in CA holds a stable BL volt-
age at 300±1.0 mV in the load range of 0.3~60 KΩ determined 
by the RRAM characteristics (Fig. 6(a)). The phase compensa-
tion accelerates the convergence of the step response (Fig. 
6(b)). Our ISNA occupies 47.2% less area than the prior com-
pact spiking-based neuron circuit [3] and is 43.7× smaller than 
ADC [4]. Activation precision is reconfigurable through scal-
ing the output spike collecting time (Fig. 7). This flexibility 
allows a fabricated RRAM nvCIM PE chip to compute with 
various precisions in different NN layers for better design 
tradeoffs.  

ISNA module goes beyond ADC by filtering MAC results 
with nonlinear activation function (Fig. 5(b)). We call it “in 
situ nonlinear activation.” In Fig. 5(a), the saturation region 
originates from the intrinsic delay of the buffer in IFC and is 
purposely tuned by adjusting Vref and Vth in Fig. 4. By control-
ling WL width parallelism (numbers of ON RRAM cells in an 
BL, Fig. 8) to match ISNA input load, both the linear and sat-
uration region can be used during computing. Their combina-
tion provides a designated shape (tanh or clipped-relu) of non-
linear A/D conversion. Our ISNA is 1.99× faster than the ex-
isting scheme [5] by avoiding the additional AFC latency. 

Measurement Results 
We tested our prototype by deploying 1-layer (MLP-1), 2-

layer (MLP-2) perceptrons and 4-layer LeNet (CNN-1) on 
MNIST and 5-layer LeNet (CNN-2) on CIFAR-10. The accu-
racies of MNIST and CIFAR-10 are respectively 98.1% and 
95.9% compared with the “binarized” case (Fig. 9(a)) from 
software inference with binarized weights. In CNN-1, conv2 
layer occupies 9% of stored synapses but 51% of overall la-
tency due to its large number of MAC operations (Fig. 9(b)). 
To further improve the performance, we reconfigure the ISNA 
activation precision from 8-bit to 5/6/7-bit in the designated 
layers. Hence, the proposed PE reduces the overall latency by 
up to 2.11× with a slight accuracy drop (Fig. 9(c)). In general, 
we tune the activation precision to optimize the overall com-
puting latency, power and power efficiency of the PE (Fig. 10). 
Fig. 11 presents the die photo and chip summary. Table I com-
pares this work to state-of-the-art CIM macro and PE designs. 
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Fig. 1 PE comparison between the generic design [5], the con-
ventional nvCIM PE [6] and this work. 

Fig. 2 Proposed PE diagram. ISNA: in situ nonlinear activation; IFC: inte-
grate & fire circuit; CA: current amplifier; RD/WR: read/write. 

 
Fig. 3 RRAM array structure, device 
characteristics and encoding schemes. 

Fig. 4 ISNA design diagram: (a) CA+IFC 
diagram; (b) proposed ISNA vs. latest ADC. 

Fig. 5 (a) Measured ISNA behavior (points: meas-
ured, curves: fitting); (b) combined MAC & ISNA. 

 
Fig. 6 Simulated CA functions: (a) stabilize BL voltage; 
(b) reduce response time with low input currents. 

Fig. 7 Measured waveforms of real-time 
configuring activation precisions. 

Fig. 8 WL width parallelism for 
configuring activation precision. 

 
Fig. 9 Measured accuracy, measured hardware resource distribu-
tion and measured latency reduction by re-configuring activation 
precision. MLP-1: 1-layer perceptron, MLP-2: 2-layer perceptron, 
CNN-1: 4-layer LeNet, CNN-2: 5-layer LeNet. 

Fig. 10 Measured design space contour vs. different configurations for 
activation precisions: peak performance, average chip power and arith-
metic power efficiency. 

    
Technology 0.15µm CMOS + HfO RRAM 

Speed 200ns / layer @ 8-bit activation  
Cell size 1.66 µm2 

MAC Energy  0.257 pJ/MAC 
Clock 50 MHz 

Operation type Spiking 

Fig. 11 Die photo and chip summary. 
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TABLE I COMPARISON WITH RECENT WORK 
Type CIM Macro CIM PE Digital  

Processor 
Work [1] [6] [7] [8] This work† [9] TrueNorth [10] 

Technology 180nm 65nm 65nm 65nm 150nm 65nm 28nm 
Synapse 1T1R RRAM 1T1R RRAM 6T-SRAM 10T-SRAM 1T1R RRAM 6T-SRAM SRAM 

Nonvolatility Yes Yes No No Yes No No 
Standby current ~zero ~zero high high ~zero high high 

Spiking NN No No No No Yes No Yes 
Capacity 2M 1M 4K 16K 64K 128K 256M 

Cell area [F2] — 59 124 968 74 ~256 — 
Normalized die area 12× — — 30× 1×  11× ~17240× 
Chip power [mW] 15.8 — — — 1.52 — 204.4 

Activation precision 1 bit 3 bit 1 bit 7 bit 1~8 bit 8 bit 1 bit 
Power  

efficiency 
[TOPS/W] 

MAC only 20.7 16.95 55.8 28.1 — — — 
MAC 

+Activation — — — — 16.9 3.125 0.4 
On-chip Activation  
Function Integration No No No No Yes 

(clipped-relu) 
Yes 

(relu) 
Yes 

(relu) 
FoM* — 0.86 0.45 0.20 1.83 0.098 — 

* We introduce a figure of merit that measures the power efficiency at the maximum activation precision on unit cell area: 
FoM=power efficiency×maximum activation precision/cell area. 

† A real-time handwritten digit recognition demonstration on our PE chip is available online: https://bit.ly/AICHIP. 


