
Static Mapping of Mixed-Critical Applications for
Fault-Tolerant MPSoCs

Shin-haeng Kang*, Hoeseok Yang**, Sungchan Kim†, Iuliana Bacivarov‡, Soonhoi Ha*, and Lothar Thiele‡

*School of EECS, Seoul National University, Seoul, Korea, {shkang,sha}@iris.snu.ac.kr
**Department of ECE, Ajou University, Suwon, Korea, hyang@ajou.ac.kr

†Division of CSE, Chonbuk National University, Jeonju, Korea, sungchan.kim@chonbuk.ac.kr
‡TIK Laboratory, ETH Zurich, Zurich, Switzerland, {firstname.lastname}@tik.ee.ethz.ch

ABSTRACT

This paper presents a static mapping optimization technique
for fault-tolerant mixed-criticality MPSoCs. The uncertain-
ties imposed by system hardening and mixed criticality algo-
rithms, such as dynamic task dropping, make the worst-case
response time analysis difficult for such systems. We tackle
this challenge and propose a worst-case analysis framework
that considers both reliability and mixed-criticality con-
cerns. On top of that, we build up a design space explo-
ration engine that optimizes fault-tolerant mixed-criticality
MPSoCs and provides worst-case guarantees. We study the
mapping optimization considering judicious task dropping,
that may impose a certain service degradation. Extensive
experiments with real-life and synthetic benchmarks confirm
the effectiveness of the proposed technique.

Categories and Subject Descriptors

B.8.2 [Performance and Reliability]: Performance Anal-
ysis and Design Aids; C.4 [Performance of Systems]:
Reliability, availability, and serviceability; D.2.4 [Software

Engineering]: Software/Program Verification—Reliability

General Terms

Design, Performance, Reliability

Keywords

Mixed-Criticality, Replication, Re-execution, Task Drop-
ping, Worst-Case Response Time

1. INTRODUCTION
Today’s multi-processor systems-on-chip (MPSoCs) come

with a great performance potential, but also with strong
requirements in terms of reliability, due to the increased
power density from scaling in manufacturing technology that
accelerates the temperature- and current-dependent faults
[1]. These architectures enable the parallel execution of sev-
eral applications that have different requirements in terms of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC ’14, June 01 - 05 2014, San Francisco, CA, USA

Copyright is held by the owner/author(s).
Publication rights licensed to ACM. ACM 978-1-4503-2730-5/14/06
http://dx.doi.org/10.1145/2593069.2593221 ...$15.00.

Table 1: Comparison of scheduling/analysis techniques in
previous fault-tolerant mapping techniques.

Mixed-Criticality Scheduling Analysis

[2] none static makespan
[3] FI/FD/FT static makespan
[4] none dynamic simulation
[5] FI/FT dynamic probabilistic
[6] failure probability dynamic worst-case

FT: Fault-Tolerance, FD: Fault-Detection, FI: Fault-Ignorance.

timing and reliability, resulting in so-called mixed-criticality
systems. An automotive or avionic system is a typical exam-
ple, where control, signal processing, and multimedia appli-
cations co-exist with different safety and reliability require-
ment levels.

This paper addresses the fault-tolerant mapping prob-
lem of mixed-criticality MPSoCs, in case of transient faults.
We consider conventional hardening techniques such as re-
execution and replication, that come with respective over-
heads in terms of time and resources, additional to the classi-
cal task-to-processor mapping optimization trade-offs. Sev-
eral research efforts have been focusing on this fault-tolerant
mapping optimization problem [2]–[6], as summarized in Ta-
ble 1. However, when considering mixed-criticality applica-
tions, the support for multi-tasking and scheduling anal-
ysis is fairly limited. Mixed-criticality systems have in
place different scheduling algorithms to certify that high-
criticality tasks keep providing the intended service. Drop-
ping low-criticality tasks during execution to ensure that
high-criticality tasks keep deadlines is a typical approach
[7], that we also consider in this paper. To the best of our
knowledge, the dynamic behavior of such mixed-criticality
systems, with task dropping, has not been considered in the
context of worst-case response time (WCRT) guarantees and
mapping optimization so far.

Figure 1 is explaining by a motivational example why the
mixed-criticality scheduling is more efficient. Let us con-
sider three task graphs with two criticality levels, high and
low (Figure 1(a)). Figure 1(b) illustrates a possible mapping
and scheduling solution, in the case where no fault occurs
and all three applications are schedulable within the imposed
deadline. Let us consider that tasks A and B in the high-
criticality graph are hardened by re-execution and replica-
tion, respectively. If a fault occurs at A, an additional execu-
tion is triggered and the high-critical task E will violate the
deadline in Figure 1(c). In this case, previous approaches
would be allocating more resources to accommodate tasks
E or G. But if one considers the possibility of discarding

(a) (b)

(c) (d)

Figure 1: A motivational example: (a) task graphs with
mixed criticality, (b) a mapping/scheduling candidate that
satisfies the deadline constraint in normal situations, (c) the
same configuration fails to meet the deadline constraint due
to the re-execution of A, and (d) the constraint is respected
by discarding the low-criticality tasks, G, H, and I.

low-criticality tasks during mixed-criticality scheduling, a
still valid mapping solution can be found. For instance, in
Figure 1(d), tasks G, H, and I with low-criticality, are not
triggered, allowing the high-criticality task E to be sched-
uled on time.1

The main challenge in adopting this mixed-criticality
scheduling is the analysis and guarantees on the WCRT.
Previous approaches (see Table 1) use ordinary scheduling
policies and base their analysis on either statically deter-
mined makespan [2], [3] or do not guarantee the WCRT
[4], [5] relying on simulation or probabilistic analysis. The
static scheduling may simplify the optimization complexity
but it is inefficient in terms of resource usage [8], and too
rigid to be reactive to dynamic system mode changes. At
compile time, a static schedule should be synthesized for
each possible fault scenario. For instance, in [2], 19 different
schedules had to be pre-calculated at compile time for an
application with five tasks. Scheduling uncertainties caused
by re-execution and passive replication were analyzed in [6]
with respect to WCRT, but the effects of task dropping have
not been considered.
In this paper we are tackling this challenge and adopt

static hardening-mapping/dynamic scheduling policy. That
is, once the hardening and mapping decisions of all process-
ing elements (PEs) are done, the tasks mapped on each PE
are locally scheduled according to the scheduling policy of
that PE. Our proposed WCRT analysis technique, that is
designed as a general wrapper of an existing analysis frame-
work such as [9], is safely analyzing the system in the pres-
ence of uncertainties caused by hardening and run-time task
droppings.
Leveraging on this analysis method, we propose a generic

mapping optimization framework for fault-tolerant mixed-
criticality MPSoCs, where different hardening techniques

1For brevity, fault-detection and voting overheads are not illus-
trated in this example.

can be explored and optimized with WCRT guarantees con-
sidering a mixed-criticality scheduling. We judiciously de-
cide the droppable task set during optimization in order to
maintain the quality of service as high as possible. The
effectiveness of the proposed technique is demonstrated by
extensive experiments with real-life and synthetic examples.

2. PRELIMINARY
This section presents the models we use for applications

and architecture, as well as considered hardening techniques
and mixed criticality concerns.

2.1 System Model
We assume a general MPSoC architecture A := (P, nw)

that consists of a set of (heterogeneous) processors P con-
nected through an on-chip communication fabric nw, such as
a shared bus, crossbar switch, or a network-on-chip. In this
work, we assume that faults in the communication links are
transparent at system level, as typically they are protected
by low-level error-resilient techniques [10]. Each processor
p ∈ P is characterized by its typep, leakage power statp, dy-
namic power dynp, and a constant fault rate per time unit
λp, as also assumed in [11], [12]. The maximum bandwidth
provided by the communication fabric nw is bwnw.

Multiple applications with different levels of criticality are
sharing the system, each of them being described as a task
graph such as a Kahn process network (KPN). The applica-
tion set is defined as T , whose elements are the task graphs
t := (Vt, Et, prt, ft, svt) ∈ T . Each task graph t consists
of a set of tasks Vt, a set of channels Et, and an invocation
period prt ∈ Z. System designers distinguish between ‘drop-
pable’ and ‘non-droppable’ tasks. Non-droppable tasks must
always be schedulable even in case of faults, whereas drop-
pable tasks might be dropped by the scheduler. To specify
this distinction in the model, non-droppable tasks have a
reliability constraint ft ∈ (0, 1]. The reliability constraint ft
denotes the number of maximum allowable failures per unit
time. The lower the reliability constraint ft is, the higher the
criticality level is. An instance of the task graph is released
every prt time units, and the probability of unsafe execution
should be smaller than ft. Each droppable task graph t is
associated with the relative importance of the service svt,
while setting ft to -1. When a certain set of task graphs is
dropped, the quality of service is defined as the sum of sv of
alive (non-dropped) task graphs. This value should be set
by the system designer as a part of system specification. For
non-droppable tasks, sv values are set to ∞, as they are not
allowed to be dropped.

Each task v ∈ Vt of the task graph t is characterized by
(bcetv, wcetv, vev, dtv), i.e., best-case execution time bcet,
worst-case execution time wcet, voting overhead ve, and
detection overhead dt. The voting overhead is related to
replication, while detection overhead includes fault detec-
tion, storing/restoring the context, and rolling-back for re-
execution. These will be explained in detail in the follow-
ing subsection. A channel e := (srce, dste) ∈ Et, where
srce, dste ∈ Vt, represents a data dependency from task srce
to dste, and each transmission causes a data transfer of size
se.

2.2 Hardening Techniques
Choosing an appropriate hardening technique for a task

comes with a trade-off between resource usage and time,

(a) (b)

Figure 2: Hardening examples: (a) active replication of v0
and re-execution of v1, and (b) passive replication of v0 and
v1.

and it has been extensively studied [2], [3]. Recently it has
been even extended to consider mixed-criticality concerns
[6]. This subsection briefly summarizes the hardening tech-
niques we consider, and the related trade-offs. More precise
formulation of determining hardening techniques is summa-
rized in [6].
Re-execution. The re-execution scheme assumes that a

fault is locally detected at the end of the task execution.
Therefore, other than the overhead of re-executing the task,
the detection imposes additional overhead. All the stateful
variables are rolled-back to the initial state and the same
task instance is executed again. In Figure 2(a) v1 of a simple
producer(v0)-consumer(v1) application is hardened by re-
execution. In this case, the task graph topology remains
unchanged, but the task wcetv is modified to

wcet
′
v = (wcetv + dtv)× (k + 1) (1)

with k being the maximum number of re-executions.
Active replication. Active replication uses multiple in-

stances of the hardened task mapped on different processing
elements. The quality of replication is usually larger than
two, to enable majority voting. For a task that is only du-
plicated, only detection is possible which is the use case of
[5]. Contrary to re-execution, replication will modify the
task graph topology. In active replication, the replicated
tasks are always executed at runtime. Task v0 is actively
triplicated in Figure 2(a).
Passive replication. In passive replication, not all

cloned tasks are proactively instantiated, but only on re-
quest of the voter. This is particularly beneficial when the
system is to be optimized to minimize the average utiliza-
tion or the average power dissipation. In Figure 2(b), v∗,0
and v∗,1 are actively duplicated. When a faulty situation is
detected by the voter, a third replica v∗,2 is instantiated to
break the tie (highlighted with dashed arrows in the figure).

2.3 Problem Definition
Given the architecture A and the application set T , the

problem is defined to determine a hardening technique that
results in a modified application T ′, and for each v such that
v ∈ Vt and t ∈ T ′ to determine a mapping map, where map :
V → P is mapping tasks to processors, with V =

⋃
t∈T ′ Vt.

In addition, the dropped task set Td(⊂ T), s.t. ∀t ∈
Td, svt 6= ∞, needs to be decided. The proposed technique
is not specific to a certain objective, thus any formulatable
objectives can be minimized/maximized. In this work, we
minimize the expected power consumption, considering all
possible cases, i.e., minimize {

∑
p∈P

(statp + dynp · up)},
with up the average utilization of processor p. Further, the
quality of service after the task dropping can also be consid-

ered as a secondary objective: maximize
∑

t∈T \Td
svt. Due

to space limitation, we do not present the formulations of
reliability and architectural mapping constraints, which can
be found in [6].

2.4 Mixed-Criticality
From the definition of mixed criticality systems, a task

is characterized by different values of wcet, in nominal and
critical modes [7]. In order to certify the schedulability (or
the continuation of service) of higher critical tasks in such
systems, many scheduling policies such as [7], [13] have been
proposed. In this work, we interpret the variability in wcet

as coming from the re-execution scheme, as shown in (1).
That is, the nominal execution time (k = 0) is the case
when there is no fault, while the critical case includes the
re-execution and variations in wcet′. This is a well-known
source of wcet variation, considered in fault-tolerant system
designs like [2], [4] and mixed-criticality systems like [5].

3. SCHEDULING ANALYSIS
The hardening techniques introduced above impose un-

certainties in the scheduling, thus making it hard to analyze
the WCRT. First, in passive replication, the passively repli-
cated tasks are only invoked when the voter detects different
values from actively replicated tasks. It cannot be naively
assumed that invoking all replicas all the time results in a
worst-case response time due to the well-known scheduling
anomaly [14], which is a situation where a local worst-case
execution time does not contribute to the global worst-case.
Second, re-execution may alter the execution time of the
application too. A task no longer releases a single job in
a period, but may release several jobs, as the re-execution
scheme allows. Similarly, it cannot be assumed that releas-
ing as many jobs as possible results in a worst-case response
time.

These two issues can easily be addressed by modifying the
best/worst-case execution time (bcet and wcet) of the tasks.
If a task is passively replicated, its original bcet is replaced
with 0 to model the case when it is not invoked (no fault).
Similarly, the re-execution can also be handled with a new
value for wcet as shown in Eq. (1).

Another uncertainty originates from task dropping.
Whenever a fault occurs, the system enters the critical state,
where non-droppable tasks should seamlessly continue their
execution (i.e., being schedulable), while droppable tasks
might be dropped to save space for the high-criticality ones.
In other words, ‘droppable tasks’ become a candidate to be
dropped when the system enters the critical state. The de-
cision on which tasks of these candidates will actually be
dropped during the critical state is an optimization goal.

We assume that passive replication and re-execution of
any task trigger the critical state, while in case of active
replication, faults are transparently tolerated and do not
introduce any additional timing overhead or system state
transition. To be more specific, as soon as a task v exceeds
its nominal wcetv + dtv, the scheduler starts dropping low-
criticality tasks. The system goes back to the normal state at
the end of the hyperperiod, restoring all the dropped tasks.

Task dropping could also be handled by setting bcet to
zero, which would enable it to be statically taken into con-
sideration during analysis. This is a naive approach, how-
ever, which would result in very pessimistic results as shown
in Section 5.2. As a matter of fact, once the system switches

Figure 3: Analysis modes: when v is triggering the system
state change, all tasks finished earlier than minStartv (such
as w1) are assumed to be operating in the normal state
without re-executions. All droppable tasks starting later
than maxFinishv (such as w2) will never release their jobs.

to the critical state, the dropped tasks are no longer condi-
tionally invoked but actually detached from the scheduler.
In order to consider this fact and reducing the pessimism in
the estimates, we conduct an individual scheduling analysis
for each possible state transition. The proposed scheduling
analysis is presented in Algorithm 1. First, we analyze the
system without considering any fault, i.e., neither passive
replica or re-executed jobs are released. The preprocessing
for this configuration is shown in lines 2-6. The normal state
analysis is conducted for all tasks in lines 7-9, where the min-
imum starting time (minStart) and maximum completion
time (maxFinish) are calculated for all tasks in the ‘normal
state’. This information is exploited later on to distinguish
between ‘criticality states’.
Then, all possible state transitions are investigated in the

for-loop starting at line 10. That is, for the re-executable
and passively replicated task v that experiences a fault for
the first time in the hyperperiod, all other tasks are con-
sidered as operating in either normal or critical state, as
follows:

• normal state: If task w completes earlier than
minStartv (maxFinishw < minStartv), it is considered
to be operating in the ‘normal state’ (i.e., neither drop-
ping nor re-execution happens for w). Therefore, the
[bcet, wcet] bounds are preserved for w (lines 14-17). This
case is illustrated in task w1 in Figure 3, where w1 already
completes its execution before the first fault occurring mo-
ment (minStartv).

• critical state: Otherwise, task w possibly goes into the
critical state. If w cannot be dropped, its [bcet, wcet]
bounds are adjusted according to (1) (line 26). Then,
for tasks that can be dropped, we distinguish between two
cases:

– If task w starts later than maxFinishv (minStartw >

maxFinishv), this task is certainly dropped and never
executed as the transition to the critical state has al-
ready been completed. Thus, it does not appear in the
schedule, and it is modeled with [0, 0] bound (lines 20-
21). Task w2 in Figure 3 exemplifies this case. It is
noteworthy that it is assumed that the task dropping
can be accomplished quick enough before the trigger-
ing task completes its original execution. Thus, from
the moment of maxFinishv on, all droppable tasks
completely disappear in the system.

– Otherwise, both possibilities are open, i.e., it can either
be dropped (as implied by a bcet of zero) or normally
executed (line 23) as implied in transition mode in
Figure 3.

With the modified [bcet, wcet] bounds, we perform the
schedulability test again at line 30. If the result exceeds
the current maximum response time, the return value is up-
dated (lines 31-32). Then, the loop continues for all tasks
v ∈ V that may trigger system state transitions.

Algorithm 1 Given the architecture A, applications T ,
hardening decisions, mapping, and dropped application set
Td, return the maximum completion time of vin ∈ V =⋃

t∈T ′ Vt

1: ret← 0 ⊲ Initialize return value

2: for all v ∈ V do ⊲ Pre-processing for normal state

3: if v is passively replicated then
4: [bcetv, wcetv]← [0, 0]
5: end if
6: end for
7: for all v ∈ V do ⊲ normal state analysis

8: [minStartv ,maxFinishv] = sched(v,map)
9: end for
10: for all v ∈ V s.t. re-executable or passively replicated do
11: ⊲ For each task v that may trigger state changes

12: for all w ∈ V such that w 6= v do ⊲ For all other tasks

13: if maxFinishw ≤ minStartv then ⊲ normal state

14: [bcet′w, wcet′w]← [bcet, wcet]
15: if w is passively replicated then
16: [bcet′w, wcet′w]← [0, 0]
17: end if
18: else ⊲ critical state

19: if w ∈ Vt s.t. t ∈ Td then ⊲ For droppable tasks

20: if minStartw > maxFinishv then ⊲ Dropped

21: [bcet′w, wcet′w]← [0, 0]
22: else ⊲ Either executed or dropped

23: [bcet′w, wcet′w]← [0, wcetw]
24: end if
25: else ⊲ Non-droppable tasks

26: [bcet′w, wcet′w]← [bcetw, Eq.(1)]
27: end if
28: end if
29: end for
30: temp = sched(vin,map) with [bcet′, wcet′]s ⊲ Re-analyze

31: if temp > ret then ⊲ and update if necessary

32: ret← temp

33: end if
34: end for
35: return ret

It is worth mentioning that sched function in Algorithm 1
is not specific to a certain analysis method, thus any other
schedulability analysis can be alternatively used as a back-
end as long as it can derive the worst-case/best-case comple-
tion/starting time of tasks. While our implementation uses
[9], other WCRT estimate techniques such as [15]–[17] can
replace it once assisted with a proper best-case starting time
estimation. The time complexity of the proposed analysis is
O(|V |2+ |V |C), where C is the time complexity of the sched
function. For instance, the time complexity of [9] is O(|V |3),
so the overall time complexity of the proposed algorithm is
O(|V |4).

4. DESIGN SPACE EXPLORATION
Due to the well-known complexity of the mapping opti-

mization problem, we use a genetic algorithm (GA) to ex-
plore the solution space. The structure of a chromosome
in the proposed GA is illustrated in Figure 4, consisting of
three sections that represent the allocation of processors,
selection of (non-)droppable applications during the criti-
cal mode, and binding/hardening information. For the al-

Figure 4: Design of the genotype, and translation of a geno-
type into a phenotype.

location information, a binary variable is allocated for each
processor in the target architecture. Processors that are al-
located set on this variable to 1 (otherwise off). For the
selection of non-droppable applications, a binary variable
set to 1 indicates that the application will not be dropped
regardless of mode changes. Otherwise, the application will
be dropped when entering the critical mode. The mapping
and hardening configurations are determined simultaneously
for each task. So, for each task, the degree of re-execution,
mappings for active and passive replicas, and mapping of
the voter are configured as described in Figure 4.
Before evaluating the fitness of a candidate solution, its

feasibility is checked. Infeasibility may come from an ab-
normal mapping or hardening decision. In such a case, we
repair the candidate according to a randomized heuristic
that is designed depending on the violation. For example,
the reliability constraint is violated, random hardening tech-
niques among active/passive replication and re-execution are
applied until the solution meets the constraint. If the candi-
date map tasks on unallocated processors (a so-called invalid
mapping), those illegally mapped tasks will be reassigned to
a randomly chosen processor among valid ones. In case of
other violated constraints, we penalize the solution with an
exceedingly bad fitness value in order to guide the algorithm
towards feasible solutions. Once their feasibility has been de-
cided, candidates are quantitatively evaluated as described
in Section 2.3. Evaluations of solutions are independent,
so they are implemented in a parallel way, using multiple
threads to boost the optimization speed.
During GA, new offsprings are iteratively generated by

crossovers and mutations of the current population of can-
didate mappings. The population is maintained constant
by discarding individuals with lower fitness values. We use
an open-source framework OPT4J [18] as GA engine and
SPEA-II [19] as population selector. The population size,
number of parent individuals, and number of offsprings are
all set to 100 in the experiments. The optimization proce-
dure is set to terminate after 5, 000 generations.

5. EXPERIMENTS

Table 2: WCRT [ms] of two critical applications in the
Cruise example, for three sample mappings.

Mapping 1 Mapping 2 Mapping 3

Adhoc 661 462 819 723 771 525
WC-Sim 661 521 649 568 678 480
Proposed 666 552 842 815 810 563
Naive 796 641 1035 981 1007 915

We show the effectiveness of the proposed technique with
two synthetic examples that are randomly generated and
three real-life applications. We use a cruise control applica-
tion Cruise from [20], to which we add three synthetic appli-
cations, to increase the benchmark complexity. We also use
two control benchmarks, “medium/large distributed non-
preemptive real-time CORBA application” (DT-med/large)
inspired from [21], and to which we add complexity and un-
certainty by multiplying the invocation period and execu-
tion time of the original tasks by 20 times. A more detailed
description of the benchmarks can be found in [6].

5.1 Scheduling Analysis
To illustrate the safety of WCRT estimates calculated

with Algorithm 1, three different mappings of the Cruise
benchmark are analyzed and compared in Table 2. First,
we built up an artificial scheduling trace that estimates the
worst-case in an ‘ad-hoc’ manner. That is, we assumed that
the system enters the critical state at the beginning of the
hyperperiod, all re-executable tasks being (maximally) re-
executed with wcet′ from (1) and all droppable tasks being
dropped from the beginning. The WCRT observed in these
traces is recorded as Adhoc in Table 2. Then, for each sam-
ple mapping, we conducted Monte-Carlo simulations that
repeat on 10,000 different failure profiles, and recorded the
maximumWCRTs inWC-Sim. The last comparison is made
against Naive, where the WCRT is naively estimated by just
assuming zero bcet to have (0, wcet) range of execution time
for all droppable tasks, as explained in Section 3.

The proposed analysis always upper-bounds the simula-
tion and ad-hoc worst-case results. Note that the Adhoc ap-
proach gives worse results than the simulation in some cases,
which confirms that simulation coverage is not enough for
WCRT analysis. Even though Naive also safely bounds the
WCRT, it is too pessimistic compared to the proposed anal-
ysis. The pessimism comes from not considering the chrono-
logical information of changes in the system status. That is,
even though re-execution and task dropping never happen
until the fault occurring moment, this hint is not considered
in Naive, but only in the proposed technique. The WCRT
estimates of the proposed technique are not tight, but only
represent a safe upper bound. However, this is related to
the implementation of the underlying schedulability analy-
sis method, and it is beyond the scope of this paper.

5.2 Effect of Task Dropping
In order to illustrate how mixed-criticality scheduling with

task dropping improves the optimality of the system, we
have compared the optimized power consumptions with and
without task droppings in three benchmarks DT-med, DT-
large, and Cruise. They spend 14.66%, 16.16%, and 18.52%
more power without task droppings, respectively.

Further, we keep track of all solutions during design space
exploration and calculate the ratio of solutions that are in-

Figure 5: Co-optimization of service and power consumption
for DT-med benchmark.

feasible without task dropping, but that become feasible
if dropping is enabled. The ratios are 0.02% in Synth-1,
0.685% in Synth-2, 29.00% in DT-med, 22.49% in DT-large,
and 99.98% in Cruise. Generally, it is observed that task
dropping is particularly helpful when the deadline is close
to the scheduling make-span. The more tasks hardened by
re-execution, the bigger the ratio is likely to be. For exam-
ple, 87.03%, 98.66%, and 83.23% of applied hardening tech-
niques are re-executions for DT-med, DT-large, and Cruise,
while only 44.29% is for Synth-1. During experiments, it is
also observed that this ratio increases as the design space
exploration converges to optimum.

5.3 Service-Optimality Trade-Off
The gain of task droppings, explained above, comes at

the cost of service degradation. We judiciously decide the
dropped task set Td, to maximize the quality of service af-
ter task dropping. As explained in Section 2.3, the map-
ping is optimized with respect to two objectives, one being
the minimization of the average power consumption, i.e.,
minimize {

∑
p∈P

(statp + dynp · up)}, while the second ob-
jective is the maximization of the quality of service after
task dropping, i.e., maximize

∑
t∈T \Td

svt.
The Pareto-front of power-service pairs as output of the

optimization is shown in Figure 5 for DT-med. When all
task are dropped, φ, the power optimality is the best as ex-
pected. In contrast, the case of no task dropping, {t1, t2, t3},
shows the maximum quality of service. In total, five Pareto-
optimal design points have been obtained, as an outcome of
the exploration of the trade-off between service and power
efficiency. The proposed technique enables the automatic
and systematic exploration of this complex decision prob-
lem, and without proper quantification of the effect of the
task dropping, it is not trivial to make the decision.

6. CONCLUSION
In this paper, we propose a static mapping optimization

technique with worst-case guarantees for mixed-critical ap-
plications executing on fault tolerant MPSoCs. In addition
to the classical hardening techniques by re-execution and
replication, a mixed-criticality scheduling with task drop-
ping is proposed that certifies that high-criticality applica-
tions provide their service, and their worst-case response
times are guaranteed. Experimental results prove that the
proposed analysis technique is able to safely bound the
worst-case response times during mixed-criticality schedul-
ing, and can be used to explore the service-optimality trade-

off during mapping optimization.

7. ACKNOWLEDGEMENTS
This work was supported by Bio-Mimetic Robot Research

Center funded by Defense Acquisition Program Admin-
istration (UD130070ID), by the MSIP, Korea, under the
ITRC support program supervised by the NIPA (NIPA-
2013-H0301-13-1011), by EU FP7 projects EURETILE and
CERTAINTY under grant numbers 247846 and 288175,
and by Basic Science Research Program through the NRF
funded by the Ministry of Education, Science and Technol-
ogy (NRF-2013R1A1A1012715).

References
[1] Y. Xiang et al., “System-level reliability modeling for mpsocs,”

in CODES+ISSS, Scottsdale, AZ, USA, 2010, pp. 297 –306.
[2] P. Pop et al., “Design optimization of time- and cost-

constrained fault-tolerant embedded systems with checkpoint-
ing and replication,” Very Large Scale Integration Systems,
IEEE Transactions on, vol. 17, no. 3, pp. 389 –402, 2009.

[3] C. Bolchini et al., “Reliability-driven system-level synthesis for
mixed-critical embedded systems,” Computers, IEEE Trans-
actions on, vol. 62, no. 12, pp. 2489–2502, 2013.

[4] P. v. Stralen et al., “A safe approach towards early design
space exploration of fault-tolerant multimedia mpsocs,” in
CODES+ISSS, Tampere, Finland: ACM, 2012, pp. 393–402.

[5] P. Axer et al., “Reliability analysis for mpsocs with mixed-
critical, hard real-time constraints,” in CODES+ISSS, Taipei,
Taiwan, 2011, pp. 149 –158.

[6] S.-H. Kang et al., “Reliability-aware mapping optimization of
multi-core systems with mixed-criticality,” in DATE, Dresden,
Germany, 2014.

[7] S. Baruah et al., “Towards the design of certifiable mixed-
criticality systems,” in RTAS, IEEE, Stockholm, Sweden, 2010,
pp. 13–22.

[8] V. Izosimov et al., “Synthesis of fault-tolerant schedules with
transparency/performance trade-offs for distributed embedded
systems,” in DATE, Munich, Germany, 2006, pp. 706–711.

[9] J. Kim et al., “A novel analytical method for worst case re-
sponse time estimation of distributed embedded systems,” in
DAC, ACM, Austin, TX, USA, 2013, p. 129.

[10] H. Kopetz et al., “The time-triggered architecture,”Proceedings
of the IEEE, vol. 91, no. 1, pp. 112–126, 2003.

[11] A. Sanyal et al., “An improved soft-error rate measurement
technique,”Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, vol. 28, no. 4, pp. 596–600,
2009.

[12] P. Shivakumar et al., “Modeling the effect of technology trends
on the soft error rate of combinational logic,” in DSN, Bethesda,
MD, USA, 2002, pp. 389–398.

[13] D. de Niz et al., “On the scheduling of mixed-criticality real-
time task sets,” in RTSS, Washington, DC, USA, 2009, pp. 291–
300.

[14] R. Wilhelm et al., “Memory hierarchies, pipelines, and buses
for future architectures in time-critical embedded systems,”
Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, vol. 28, no. 7, pp. 966–978, 2009.

[15] E. Wandeler et al., “System Architecture Evaluation Using
Modular Performance Analysis - A Case Study,” in Proc.
ISoLA, Paphos, Cyprus, 2004.

[16] R. Henia et al., “System level performance analysis–the symta/s
approach,” IEE Proceedings-Computers and Digital Tech-
niques, vol. 152, no. 2, pp. 148–166, 2005.

[17] A. Brekling et al., “Models and formal verification of multipro-
cessor system-on-chips,” The Journal of Logic and Algebraic
Programming, vol. 77, no. 1, pp. 1–19, 2008.

[18] M. Lukasiewycz et al., “Opt4J - A Modular Framework for
Meta-heuristic Optimization,” in GECCO, Dublin, Ireland,
2011, pp. 1723–1730.

[19] E. Zitzler et al., “Spea2: improving the strength pareto evolu-
tionary algorithm,” Tech. Rep., 2001.

[20] N. Kandasamy et al., “Dependable communication synthesis for
distributed embedded systems,” in Computer Safety, Reliabil-
ity, and Security, Springer, 2003, pp. 275–288.

[21] G. Madl et al., “Tutorial for the open-source dream tool,”Univ.
California, Irvine, CA, CECS Tech. Rep, 2006.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20120516081844
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 320
 None
 Up
 0.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryList_V1
 qi2base

