
 

 
Abstract — We propose to achieve and maintain ultra-high 

quality of digital circuits on a per-design basis by (i) monitoring the 
type of failures that occur through volume diagnosis, and (ii) 
changing the test patterns to match the current failure population 
characteristics. Opposed to the current approach that assumes 
sufficient quality levels are maintained using the tests developed 
during the time of design, the methodology described here 
presupposes that fallout characteristics can change over time but 
with a time constant that is sufficiently slow, thereby allowing test 
content to be altered so as to maximize coverage of the failure types 
actually occurring. Even if this assumption proves to be false, the 
test content can be tuned to match the characteristics of the fallout 
population if the fallout characteristics are unchanging. Under 
either scenario, it should be then possible to minimize DPPM for a 
given constraint on test costs, or alternatively ensure that DPPM 
does not exceed some pre-determined threshold. Our approach does 
not have to cope with situations where fallout characteristics change 
rapidly (e.g. excursion), since there are existing methods to deal with 
them. Our methodology uses a diagnosis technique that can extract 
defect activation conditions, a new model for estimating DPPM, and 
an efficient test selection method for reducing DPPM based on 
volume diagnosis results. Circuit-level simulation involving various 
types of defects shows that DPPM could be reduced by 30% using 
our methodology. In addition, experiments on a real silicon chip 
failures show that DPPM can be significantly reduced, without 
additional test execution cost, by altering the content (but not the 
size) of the applied test set.  

 
Key words: test quality, DPPM, defect level, defect behavior 
classification, test selection, volume diagnosis. 

I. INTRODUCTION 
The manufacturing test of integrated circuits (ICs) has 

traditionally been viewed as a filtering activity, that is, the main 
purpose of test has and continues to be to separate good ICs from 
ones that do not meet the desired operational characteristics. For 
several years now, test is being expanded as a value-added 
endeavor [1, 19, 20]. In particular, the diagnosis of test data for 
improving yield is a topic of great interest [2-8]. For example, the 
work in [3] uses diagnosis results to track failure rates for various 
design features. These empirically-observed failure rates are 
compared with expected failure rates to identify anomalies in the 
design and/or manufacturing process. The thinking is that 
identified anomalies can be remedied in order to improve yield. 

Test data can also be used to continuously monitor quality. In 
[8], LSI describes the use of fallout (i.e., chips identified to be 
failing through test) from separate types of tests to determine the 
fraction of delay failures caused by front-end transistor defects 
and the portion due to back-end, in-line resistance defects. They 
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suggest the use of adaptive testing and/or corrective action to 
improve test quality when a change in the relative occurrence rate 
of these defect types is identified. Here, we propose to use 
diagnosis-extracted models of chip failures along with a new 
model for estimating DPPM (number of defective parts per 
million shipped). Both are incorporated in an on-line, 
quality-monitoring methodology that ensures a desired level of 
quality by changing test content to match current fallout 
characteristics. This approach to quality is dynamic in nature and 
thus differs from the typical approach that assumes sufficient 
quality levels are maintained using the tests developed during the 
time of design or first silicon. Opposed to the aforementioned 
static approach, the methodology described here presupposes that 
fallout characteristics can change over time but with a time 
constant that is sufficiently slow, thereby allowing test content to 
be altered so as to maximize coverage of the failure types actually 
occurring. Even if this assumption is not true, it will then be 
possible to tune the test set to match the characteristics of the 
fallout population if the fallout characteristics are unchanging. 
Under either scenario, it is therefore possible to minimize DPPM 
for a given constraint on test costs, or alternatively, ensure that 
DPPM does not exceed some pre-determined threshold. Figure 1 
illustrates the scenario where DPPM changes over time. At ݐଵ, we 
start to predict DPPM based on a sufficient amount of data 
obtained during the period between ݐ଴  and ݐଵ . When predicted 
DPPM approaches a specific DPPM limit at ݐଶ, test content is 
altered to lower DPPM at ݐଷ. When DPPM is sufficiently low 
(e.g., ݐହ), we can trade-off test quality to reduce test application 
time, which leads to the slight increase in DPPM shown at ݐ଺. 
Notice, however, at ݐସ, an excursion is assumed to have occurred. 
Our approach does not necessarily have to cope with excursions 
since techniques already exist to deal with them [18]. 

 
 

Figure 1. Illustration of how DPPM can change over time. 
 
The rest of this paper is organized as follows. In section II, we 

describe the methodology employed for partitioning the failure 
population of a manufactured design into several categories that 
include front-end cell defects, back-end interconnect opens, and 
back-end bridges. The method is demonstrated using real silicon 
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fail data from industrial test chips. In section III, we present a new 
model for estimating DPPM using diagnosis results. The method 
is used to estimate DPPM from the defect classification results 
derived in section II for various assumed values of yield. In 
section IV, we show how DPPM can be reduced, without 
additional test cost, by altering the content (but not the size) of the 
applied test set. In section V, we summarize our contributions, 
and finally, in section VI, we describe our on-going work in this 
area. 

II. DEFECT CLASSIFICATION 
In this section, we describe the methodology for classifying 

defects of a manufactured design into several categories that 
include front-end cell defects, back-end interconnect opens, 
back-end signal bridges, and supply bridges (i.e., permanent 
stuck-at defects). Specifically, conditions for various defects are 
analyzed in section IIA, defect classification based on various 
activation criteria is described in section IIB, and the calculation 
of expected frequencies of occurrence for various defect types is 
given in section IIC, and finally in section IID, real silicon data 
from industrial chips are used to demonstrate the defect 
classification. 

A. Activation Conditions for Various Defects 
The neighborhood of a site f is defined to be the inputs of the 

cell driving f, f’s physical neighbors (i.e., lines that are within 
some well-chosen distance of f), the inputs of the cells driving f’s 
physical neighbors, and the side inputs of f’s downstream gates 
[9]. If a site f is faulty, it is assumed that its faulty value is 
controlled by its neighborhood but not necessarily its entire 
neighborhood. In other words, depending on the nature of the 
defect that affects f, it may be only a portion of f’s neighborhood 
that controls f. We define the relevant neighborhood of a defect 
located at a site f as the set of signal lines in the neighborhood of f 
that influence the activation of the defect. The activation 
condition for a static defect (i.e., a defect that can be detected with 
a single test pattern) can be expressed as a function of its relevant 
neighborhood states, which are the sets of values on the signal 
lines in the relevant neighborhood. Next, we analyze the 
activation conditions for different types of defects and deduce 
their corresponding relevant neighborhoods. 

Front-end cell: A front-end defect affecting a cell manifests as 
a change in the cell function. If a cell G driving a signal line f is 
affected by a front-end defect, f behaves like a temporary 
stuck-at-v fault (v א  ሼ0, 1ሽሻ  for one or more input value 
combinations of G, where the faulty implementation produces a 
different logic value from the defect-free implementation. Such 
defects can be modeled as input pattern faults [21]. Therefore, the 
relevant neighborhood of a front-end defect affecting a cell G 
driving a signal line f consists of the inputs of G, i.e., the inputs of 
the cell driving f.  

Supply bridge: If a signal line f behaves like a bridge to one of 
the supply rails (power or ground), then f is permanently 
stuck-at-v (v ∈{0, 1}) regardless of its neighborhood state. 
Therefore, a supply bridge does not have a relevant neighborhood. 

Signal bridge: If there is a connection between two normally 
unconnected lines f and g, which is referred to as a back-end, 
signal-bridge defect between f and g, then f has a faulty value 0 (1) 
if the following conditions are satisfied.  First, g is driven to a 

value 0 (1), while f is driven to the opposite value 1 (0). Second, a 
downstream gate of f interprets the voltage on f as an incorrect 
logic 0 (1). After a circuit is manufactured, the resistance and the 
position of the unexpected connection, the transistor sizing of the 
gates driving f and g, and the threshold voltage of f’s downstream 
logic are fixed (but unknown). Therefore, the interpretation of the 
voltage on f changes only when the logic values at the inputs of 
the gates driving f and g changes, which leads to a change in the 
drive strength of the cells driving f and g. Since two normally 
unconnected lines are only likely connected by a defect only if 
there is physical proximity between the two lines, the relevant 
neighborhood of a back-end bridge defect affecting a signal line f 
consists of (i) f’s physical neighbors, (ii) the inputs of the cell 
driving f, and (iii) the inputs of the cells driving f’s physical 
neighbors. 

Open: If a signal line f is affected by a back-end interconnect 
open defect, the voltage on f can depend on (i) the voltage on the 
signal lines in the physical neighborhood of f, (ii) the voltage on 
the side inputs of f’s downstream gates, and (iii) the charge on f. 
Whether the voltage on f is interpreted as a logic 0 or 1 depends on 
the threshold voltage of f’s downstream gates. When the chip is 
manufactured, the threshold voltage of f’s downstream gates can 
be safely assumed to be constant within a certain period of time 
and the charge on f is also constant if gate leakage is negligible. 
Thus, the interpretation of the voltage on f changes only when the 
values of f’s physical neighborhood change and/or signal lines 
that are side inputs of f’s downstream gates change. Therefore, the 
relevant neighborhood of a back-end interconnect open defect 
consists of (i) f’s physical neighbors, and (ii) side inputs of f’s 
downstream gates. 

B. Defect Classification 
Based on the observation that the activation of a defect is a 

function of its corresponding relevant neighborhood state, if the 
activation condition of a defect affecting some site can be 
deduced from diagnosis, we can predict the type of the defect 
affecting the site. We use the technique of [9] to perform 
diagnosis of scan-based failures. The output of this diagnosis 
technique for a given failing chip is an extracted fault model that 
consists of a group of suspected defective sites. For each suspect 
site f, activation conditions that describe when f becomes faulty 
are expressed as a minimized logical function of its relevant 
neighborhood values. Each group of suspect sites along with their 
corresponding activation conditions “explain” all passing and 
failing patterns, that is, simulation of the extracted fault produces 
a simulation response that exactly matches what was observed on 
the tester [9]. We assume that only one defect affects a suspect 
site but multiple defects in the circuit are allowed. For each group 
of suspect sites, if the activation of a defect at a signal line g 
depends on the value at a signal line f and the converse is true, the 
only possibility is that f and g are affected by the same 2-line, 
back-end bridge defect. This notion is easily generalized to 
multiple lines. Otherwise, a defect affects only one signal line. 

Each diagnosed defect is placed into one of five categories that 
include: (1) front-end cell, (2) back-end signal bridge, (3) 
back-end interconnect open, (4) supply bridge, or (5) unknown. 
The defect classification guidelines for each category are 
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summarized in Table 1. For a defective site f, let ܴ ௙ܰ be the set of 
signal lines that appear in the deduced activation function for the 
defect affecting f, ܲ ௙ܰ be the set of physical neighbors of f, ܦ ௙ܸ  
be the inputs of the cell driving f, ܲܦ ௙ܰ be the inputs of the cells 
driving physical neighbors of f, and ܵܫ௙ be the set of side inputs of 
the cells driven by f. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Table 1. Defect classification guidelines for various defects. 

C. Defect Count Prediction 
Assume there are F failing chips in total and for the ݅௧௛ failing 

chip ܥ௜ , the diagnosis technique from [9] reports ݉௜  groups of 
potential defective sites, where ݉௜ is some integer constant. For 
the ݆௧௛  group of the potential defective sites of ܥ௜ , denoted as 
group ܩ௜௝ , assume there are ݀௜௝  defects, which have been 
classified using the rules described in Section IIB. Assume that 
each group of defects, ܩ௜௝, is equally likely to be the actual group 
of defects affecting ܥ௜ . In other words, the probability of each 
group of defects, ܩ௜௝, being the actual group of defects affecting ܥ௜ is ଵ௠೔. Therefore, we can derive the expected number of defects 

of each type (E[X]), where E[X] is the number of defects of type X  
in F, and X ∈ {supply bridge, front-end cell, back-end signal 
bridge, back-end interconnect open, unknown}, and the expected 
total number of defects in F by applying “linearity of expectation” 
as follows [10]. ܧሾܺሿ ൌ ෍ ሾܺሿ௜ிܧ

௜ୀଵ ൌ ෍ ෍ ሾܺሿ௜௝ܧ ൈ௠೔
௝ୀଵ

ி
௜ୀଵ

1݉௜ 
where ܧሾܺሿ௜ is number of defects of type X in  ݅௧௛ failing chip, 
and ܧሾܺሿ௜௝  is the number of defects of type X in group ܩ௜௝ . 
Similarly, ܧሾܶ݋ܰ ݈ܽݐ݋. ሿݏ݌݄݅ܿ ݈݂݃݊݅݅ܽ ܨ ݊݅ ݏݐ݂ܿ݁݁ܦ ݂݋ ൌ ෍  ෍  ݀௜௝ ൈ௠೔

௝ୀଵ
ி

௜ୀଵ
1݉௜ 

D. Silicon Failure Classification 
In our experiment, we perform diagnosis on F = 553 failing 

ALUs from LSI.  Based on the diagnosis results, defects are 
classified according to the method described in Section IIB. Then, 
the expected number of defects of each type and the expected total 
number of defects are derived using the equations provided in 
Section IIC. A pie chart showing the defect type distribution is 
given in Figure 2. It shows that for the failure sample utilized in 
our experiment, a majority of defects are either back-end bridges 
involving signal lines or supply bridges. The expected number of 
defects for these 553 chips was calculated to be 669, indicating 
that some of the chips are affected by more than one defect. 

 
Figure 2. Defect type distribution for 553 failing chips 

diagnosed using DIAGNOSIX [9]. 

III. DPPM 
In this section, we present a new model for estimating DPPM 

using the categorization of diagnosis-extracted faults. The 
derivation of the new model for estimating DPPM is given in 
Section IIIA, and the DPPM estimation for various assumed 
values of yield using the defect classification results from Section 
IID is provided in Section IIIB.  

A. Defect Level Model 
Defect level (DL) is the percentage of defective chips among 

the chips that are shipped to customers. Many models for 
predicting defect level have been proposed. For example, a model 
that predicts DL using multi-model fault coverage is proposed in 
[11]. It is based on the assumption that defects of different types 
are equally likely to occur, which of course may not be true in 
reality. In [12], a DL model that is based on the number of times 
each site is observed is described. The particular activation 
conditions of a given defect type however are not taken into 
account. It is quite likely that the values on the relevant neighbors 
of a defect that affects a site i are the same for many patterns 
where i is observed. In such cases, using a test set with a repeated 
number of observations does not necessarily lead to lower defect 
level especially for the static defects considered here. In addition, 
the model of [12] assumes that a defective chip passes the testing 
process and therefore is shipped if the erroneous effect of at least 
one actual defective site is not observed. However, in the context 
of multiple defects, a defective chip passes test only if no error 
from any of the actual defective sites are observed. So, the 
assumption in [12] can lead to an overestimation of defect level.  
We present here a new DL model that deals with the shortcomings 
just outlined and has some additional benefits as well.  

For each site i, we define the following probabilities. ௜ܲ(defective) = Probability of i affected by a defect. ௜ܲ(detected) = Probability of detecting the defect that affects i. ௜ܲሺ݆ሻ = Probability of a defect of type j affecting i. 

supply bridge

back-end signal bridge

front-end cell

open

unknown

Defect type Site Classification guidelines 
Supply bridge f ܴ ௙ܰ = ∅ 
Front-end cell f ܴ ௙ܰ ≠ ∅ and ܴ ௙ܰ \ ܦ ௙ܸ = ∅ and ܴ ௙ܰ ∩ ܲ ௙ܰ = ∅ 
Back-end signal 
bridge 

f, g f ∈ ܴ ௚ܰ, g ∈ ܴ ௙ܰ 
f ܴ ௙ܰ ∩ ܲܦ ௙ܰ \ ܲ ௙ܰ ≠ ∅ and ܴ ௙ܰ ∩ ܵܫ௙ \ ܲ ௙ܰ = ∅   
f ܴ ௙ܰ ∩ ܦ ௙ܸ \ ܲ ௙ܰ ≠ ∅  and ܴ ௙ܰ ∩ ܲ ௙ܰ \ ܦ ௙ܸ ≠ ∅ and ܴ ௙ܰ ∩ ܵܫ௙ \ ܲ ௙ܰ = ∅   

Back-end 
interconnect open 

f ܴ ௙ܰ ∩ ܵܫ௙ \ ܲ ௙ܰ ≠ ∅ and ܴ ௙ܰ ∩ (ܦ ௙ܸ U ܲܦ ௙ܰ) \ ܲ ௙ܰ=∅ 
Either front-end cell 
or back-end signal 
bridge 

f ܴ ௙ܰ \ ܦ ௙ܸ = ∅ and ܴ ௙ܰ ∩ ܲ ௙ܰ ≠ ∅ 

Either back-end signal 
bridge or back-end 
interconnect open 

f ܴ ௙ܰ ≠ ∅ and ܴ ௙ܰ \ ܲ ௙ܰ = ∅ 
 

Unknown None of above 
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௜ܲ(j detected) = Probability of detecting a defect of type j that 
affects site i.  ௜ܲ(j activated | state k) = Probability of activating a defect of 
type j that affects a site i when the corresponding relevant 
neighborhood has state k. 

To make the problem more tractable, we assume independence 
among the defect activation and corresponding error-propagation 
conditions for defects affecting different locations, and assume 
that a given site is affected by at most one defect. (As mentioned 
before, multiple defects are assumed possible but just not at the 
same site i.) A chip C is shipped if (i) C is defect-free, or (ii) none 
of the defects affecting C is detected by the testing process. In 
other words, a chip C is shipped if for every site i, there is no 
defect that affects i, or if there is one, it is not detected. Thus, the 
probability of C being shipped, ௦ܲ௛௜௣, is computed as follows. ௦ܲ௛௜௣ ൌ  ෑ ሺ1 െ ௜ܲሺ݂݀݁݁ܿ݁ݒ݅ݐሻ ൈ ௜ܲሺ݀݁݀݁ݐܿ݁ݐሻሻ௜ א ሼ௔௟௟ ௦௜௧௘௦ሽ   

     ൌ  ∏ ሺ1 െ ∑ ௜ܲሺ݆ሻ ൈ ௜ܲሺ݆ ݀݁݀݁ݐܿ݁ݐሻ௝ ఢ ሼ௔௟௟ ௗ௘௙௘௖௧ ௧௬௣௘௦ሽ ሻ௜ א ሼ௔௟௟ ௦௜௧௘௦ሽ  
 

Derivation of ௜ܲ(defective) and ௜ܲሺ݆ሻ are described next. 
A defect of type j affecting a site i is detected if there is a test 

pattern t where the defect is activated and i is sensitized (despite 
the possible existence of other defects) to some observable point. 
Therefore, ௜ܲሺ݆ ݀݁݀݁ݐܿ݁ݐሻ  
= 1 – P(j is not activated for all patterns where i is sensitized)  ൌ  1 െ ෑ ሺ1 െ ௜ܲሺ݆ ܽܿ݁ݐܽݐݏ|݀݁ݐܽݒ݅ݐ ݇ሻሻ௞אோேௌ೔ೕ  

where ܴܰ ௜ܵ௝  consists of all the states for the relevant 
neighborhood for a defect of type j at site i for the test patterns 
where site i is sensitized. This information is easily obtained from 
analyzing the applied test set. 

Assume the probability of a defect of type j affecting a site i is 
the same for all sites. Thus, the fraction of a failure population 
affected by a defect of type j, which can be derived using the 
defect categorization method described in Section IIA, is equal to ௉೔ሺ௝ሻ∑ ௉೔ሺ௝ሻೕ ച ሼೌ೗೗ ೏೐೑೐೎೟ ೟೤೛೐ೞሽ . Moreover, yield, which is the percentage 

of the manufactured chips that are defect-free, can be expressed as 
 ܻ݈݅݁݀ ൌ  ∏ ሺ1 െ ∑ ௜ܲሺ݆ሻ௝אሼ௔௟௟ ௗ௘௙௘௖௧ ௧௬௣௘௦ሽ ሻ௜אሼ௔௟௟ ௦௜௧௘௦ሽ . We therefore 
have ∑ ௜ܲሺ݆ሻ௝אሼ௔௟௟ ௗ௘௙௘௖௧ ௧௬௣௘௦ሽ ൌ 1 െ √ܻ݈݅݁݀∑ భ೔ . Therefore, ௜ܲሺ݆ሻ can 
be computed for all types of defects at every site i for a certain 
yield value. 

Using the equations for ௜ܲሺ݆ ݀݁݀݁ݐܿ݁ݐሻ  and ௜ܲሺ݆ሻ , we can 
derive ௦ܲ௛௜௣  for a given test set. Defect level can therefore be 
expressed as ܮܦ ൌ ௉ೞ೓೔೛ି௒௜௘௟ௗ௉ೞ೓೔೛ . 

B. Experiment Results 
Given that the level of yield is proprietary, we perform 

experiments for several assumed values of yield. For each yield 
value, ௦ܲ௛௜௣  and DL are computed according to the method 
described in Section IIIA using the defect categorization results 
derived in Section IID. 

For simplicity, we assume for a defect of type j that affects a 
site i that for any state ݇ א ܴܰ ௜ܵ௝,   ௜ܲሺ݆ ܽܿ݁ݐܽݐݏ|݀݁ݐܽݒ݅ݐ ݇ሻ ൌ ଵଶ. 
In other words, we assume each state for the relevant 
neighborhood for a defect of type j at a site i is equally likely to 
activate the defect at 50%. However, this probability can be made 

more precise for back-end defects by using defect density 
distribution and critical area information in the real application. 
Similar approaches can be used for front-end defects as well. The 
production test set is simulated to derive ܴܰ ௜ܵ௝ ݅׊, ݆, that is, the 
set of relevant neighborhood states for each defect-type, site pair 
(i, j). Next, ௜ܲሺ݆ ݀݁݀݁ݐܿ݁ݐሻ is computed for every site i and every 
defect type j using the equation for ௜ܲሺ݆ ݀݁݀݁ݐܿ݁ݐሻ in Section 
IIIA.  The probability of each type of defect affecting a site is 
derived using the method described in Section IIIA by plugging in 
the assumed yield value and the defect type distribution numbers 
from Figure 2, Section IID. Then, ௦ܲ௛௜௣  is computed using ௜ܲሺ݆ ݀݁݀݁ݐܿ݁ݐሻ and ௜ܲሺ݆ሻ, and DL is derived using the equation 
given in Section IIIA. DL, which is reported as DPPM, is listed in 
Table 2 for various values of yield. 

 
 
 
 

 
 
 

Table 2. DPPM for various yield values. 

IV. CUSTOM TEST FOR QUALITY 
In this section, we explore customizing the content (but not 

increasing the number of tests) of the applied test set to match the 
fallout characteristics for reducing DPPM. We describe the use of 
a test selection method [13, 14] for reducing DPPM in Section 
IVA, and predict the improvement in DL in Section IVB. 

A. Test Selection for Reducing DPPM 
According to the defect level model described in Section IIIA, 

DL can be reduced if for every site i, the defect possibly affecting 
i is activated using additional relevant neighborhood states for test 
patterns that sensitized i. In other words, we can reduce DL by 
applying a new test that sensitizes the site i and activates some 
defect affecting i using an uncovered relevant neighborhood state, 
i.e., a relevant neighborhood state which has not been applied by 
any test where i has been sensitized. Since the probability of a 
defect of a particular type affecting a given site is different, which 
is demonstrated in section IIB, a test that activates s uncovered 
relevant neighborhood states for one type of defect can be more 
preferable in reducing DPPM than a test that activates s 
uncovered relevant neighborhood states for another defect type. 
This observation is analyzed next. 

For a given yield, since ܮܦ ൌ ௉ೞ೓೔೛ି௒௜௘௟ௗ௉ೞ೓೔೛ , defect level 

decreases as ௦ܲ௛௜௣  decreases. From Section IIIA, recall the 
expression for ௦ܲ௛௜௣. ௦ܲ௛௜௣ ൌ  ∏ ሺ1 െ ∑ ௜ܲሺ݆ሻ ൈ ௜ܲሺ݆ ݀݁݀݁ݐܿ݁ݐሻሻ௝ ఢ ሼ௔௟௟ ௗ௘௙௘௖௧ ௧௬௣௘௦ሽ௜ א ሼ௔௟௟ ௦௜௧௘௦ሽ   
Taking the log of both sides of the equation yields the expression: log൫ ௦ܲ௛௜௣൯ ൌ ∑ log൫1 െ ∑ ௜ܲሺ݆ሻ ൈ௝ ఢ ሼ௔௟௟ ௗ௘௙௘௖௧ ௧௬௣௘௦ሽ௜ א ሼ௔௟௟ ௦௜௧௘௦ሽ௜ܲሺ݆ ݀݁݀݁ݐܿ݁ݐሻሻ   
Therefore, activating a defect of type j at a sensitized site i in ݐ௞ 
using an uncovered relevant neighborhood state ௜ܵ௝௞ can decrease log ሺ ௦ܲ௛௜௣ሻ  by ܾܽݏሺlog ൬1െ∑ ܲ݅ሺ݆ሻൈܲ݅ሺ݆ ݀݁݀݁ݐܿ݁ݐሻԢ݆ ߳ ሼ݈݈ܽ ݂݀݁݁ܿݏ݁݌ݕݐ ݐሽ1െ∑ ܲ݅ሺ݆ሻൈܲ݅ሺ݆ ݀݁݀݁ݐܿ݁ݐሻ݆ ߳ ሼ݈݈ܽ ݂݀݁݁ܿݏ݁݌ݕݐ ݐሽ ൰ሻ , where 

௜ܲሺ݆ ݀݁݀݁ݐܿ݁ݐሻ ൌ  1 െ ∏ ሺ1 െ ௜ܲሺ݆ ܽܿ݁ݐܽݐݏ|݀݁ݐܽݒ݅ݐ ݇ሻሻ௞אோேௌ೔ೕ  and ௜ܲሺ݆ ݀݁݀݁ݐܿ݁ݐሻԢ ൌ  1 െ ∏ ሺ1 െ ௜ܲሺ݆ ܽܿ݁ݐܽݐݏ|݀݁ݐܽݒ݅ݐ ݇ሻሻ௞אோேௌ೔ೕାሼௌ೔ೕೖሽ . 

Yield ࢖࢏ࢎ࢙ࡼ DPPM 
0.95 0.9514 1500 
0.90 0.9028 3100 
0.85 0.8541 4800 
0.80 0.8053 6600 
0.70 0.7074 10500 

141141141141141137137137



 

Again, ܴܰ ௜ܵ௝  is the set of all of relevant neighborhood states for a 
defect type j in the already selected test patterns when i is 
sensitized. 

The total decrease in log ሺ ௦ܲ௛௜௣ሻ due to applying a new test tk is 
the summation of the decrease in log ሺ ௦ܲ௛௜௣ሻ due to the activation 
of every uncovered relevant neighborhood state of each defect at 
every sensitized site i in tk. The test that leads to the largest 
decrease in log ሺ ௦ܲ௛௜௣ሻ  is most preferable. Thus, our test 
generation approach selects tests, one at a time, from a large test 
set in a way that greedily decreases log ሺ ௦ܲ௛௜௣ሻ. The pseudo-code 
for test selection is given in Procedure 1. 

 
B. Improved Test Quality 

In this experiment, we use the methodology described in 
section IVA to select a test set of the same size as the original test 
set. A test set consisting of the union of a 20-detect test set 
generated by Encounter Test [15] and the original test set is used 
as the test pool Tpool for selection. The decrease in log ሺ ௦ܲ௛௜௣ሻ due 
to activating a defect of type j at a sensitized site i using an 
uncovered relevant neighborhood state ௜ܵ௝௞ is derived using the 
equation given in section IVA by plugging in the following 
information. First, the probability of a defect of type j affecting a 
site i is computed using the method described in section IIIB. 
Second, the likelihood of a relevant neighborhood state ௜ܵ௝௞  to 
activate a defect of type j at site i is assumed to be 0.5 as was done 
in section IIIB.  Finally, the relevant neighborhood states for the 
defect of type j in the already selected test patterns when i is 
sensitized is obtained from fault simulation.  

The resulting DPPMs achieved by both the original and the 
selected test set for various assumed values of yield are given in 
Table 3. From Table 3, one can observe that DPPM can be 
reduced about 6% for the various levels of yield. Moreover, it is 
achieved without increasing the number of tests. Conversely, test 
selection can be continued until a desired DPPM is achieved. 

In order to compare the quality of the new selected test set with 
traditional N-detect test sets, we generate several N-detect test 
sets using Encounter Test [15]. The selected test set achieves a 
lower DPPM than traditional N-detect test sets for any N ≤ 40. A 
50-detect test set consisting of 908 patterns is able to achieve the 
same DPPM for various assumed yield values as the selected test 
set, which consists of 234 test patterns. Figure 3 shows the DPPM 
comparison between the selected test set and the traditional 
N-detect test set for a yield value of 85%. It shows that our 
selected test set improves test quality (i.e. reduces DPPM) with a 
smaller test set size than an N-detect test that is not neighborhood 

aware [22], nor focused on the characteristics of the failure 
population. 
 
 
 

 
 
 
 
 

Table 3. DPPM comparison between the original test set and a 
new test set selected by our methodology for various assumed 
values of yield. 

 
Figure 3. DPPM comparison between the original, selected, and 

N-detect test sets for an assumed yield = 85%. 

C. Simulation Validation 
In order to show that the number of test escapes can be reduce 

by adjusting the test content according to information deduced 
from diagnosing the current failure population, we perform a 
simulation experiment using the full-scan version of the ISCAS89 
benchmark s713 [16]. We generated a pool of defective circuits 
by randomly injecting front-end, gross interconnect open, missing 
via, and two-line bridge defects, one at a time, into the layout of 
s713. Specifically, there are 419 front-end cell defects, 1,829 
gross interconnect opens, 806 missing vias, and 512 two-line 
bridges. (Note that these defect-type counts do not adhere to our 
assumptions and is thus a good case to examine.) For each layout 
with an injected defect, we extracted the corresponding SPICE 
[17] netlist and perform circuit-level simulation using a test set 
that achieves 100% SSL fault efficiency (i.e., a 1-detect test set). 
We use a clock cycle that is much slower than the rated clock in 
order to mimic scan test. During simulation, we determine which 
defects are detected and those that escape detection. 

To mimic application in a production environment, we do the 
following. For each defect type, we randomly select 25% of the 
defective circuits affected by that type. The selected defective 
circuits, referred to as ܦ௖௨௥௥௘௡௧, constitute the fallout population 
that we analyze using our methodology. The remaining 75%, 
which are referred to as ܦ௙௨௧௨௥௘, are assumed to be defective chips 
that are fabricated in the future. The test set applied to ܦ௖௨௥௥௘௡௧ is 
a 1-detect test set. The test pool (Tpool) used for test selection is the 
union of a 50–detect test set generated by Encounter Test [15] and 

Yield DPPM 
Original test set Selected test set 

0.95 1500 1400 
0.90 3100 2900 
0.85 4800 4500 
0.80 6600 6200 
0.70 10500 9900 

142142142142142138138138



 

the original 1-detect test set. Defect classification is performed on 
circuits in ܦ௖௨௥௥௘௡௧  that fail the 1-detect test set to generate the 
defect type distribution using the method described in section II. 
Then, assuming yield is 85%, we select a test set Tsel of the same 
size as the original 1-detect test set using the test-selection method 
described in section IV-A and the derived defect-type 
distribution. Finally, for the defective circuits in ܦ௙௨௧௨௥௘ , we 
again use SPICE simulation to identify the test escapes, that is, the 
defective circuits in ܦ௙௨௧௨௥௘  that are not detected by our new 
selected test set. The test-set sizes and the number of defective 
circuits in ܦ௙௨௧௨௥௘ that escape each test set are listed in Table 4. 

The simulation results reveal that the test set selected by our 
method is able to reduce the number of test escapes in ܦ௙௨௧௨௥௘ by 
30% without increasing the number of tests. Moreover, the DPPM 
of our selected test set is only 1.7% higher than Tpool,, even though 
the size of Tpool, is more than three times the size of our selected 
test set.  
 

 
 
 
 
 
 

Table 4. Comparison of test escapes corresponding to the original 
1-detect test set, the new test set Tsel selected by our methodology, 
and Tpool, for various defect types. 

V. SUMMARY 
We proposed an on-line, quality-monitoring methodology that 
ensures a desired level of quality on a per-design basis by 
changing test content to match diagnosed-derived fallout 
characteristics. The methodology starts from partitioning the 
failure population of a manufactured design into several 
categories using diagnosis results. Then, DPPM is estimated 
using a new defect-level model based on diagnosis results, and 
finally the content (but not the size) of the applied test set is 
altered using a test-selection methodology to reduce DPPM. The 
methodology was demonstrated using real silicon failures, 
resulting in a 6% reduction in DPPM without incurring any 
increase in test set size. The time taken to select the new test set 
using this methodology is around two hours using python [23]. 
The run time is expected to decrease significantly by exploring 
parallelism in the various steps in the methodology and using C 
instead of python for implementation. We also demonstrated the 
efficacy of the approach using detailed SPICE simulations. 
Specifically, defects of various types were injected into the layout 
of a benchmark circuit, extracted into a circuit-level netlist, and 
then simulated to produce virtual test responses. Applying our 
methodology to 25% of the virtual fail population showed that 
escapes from the remaining 75% could be reduced by 30%. This 
methodology currently accommodates failing chips affected by 
one or more static defects, but it can be extended to cope with 
sequential/delay dependent defects. Any detected defect, even if 
its behavior is not modeled by existing fault models, contributes 
to the reduction of DPPM. Although not demonstrated here, the 
methodology can also be easily used to trade-off DPPM and test 
execution cost in order to meet and maintain desired DPPM 
objectives.  

VI. FUTURE WORK 
Our future work is focused on expanding this methodology to 

address the various issues that stems from application within a 
production test environment. For example, we envision this 
methodology being applied in an on-going basis, to every design 
in production. This is necessary since each design has a unique 
susceptibility to various defect types. This means that the fallout 
of an in-production design is constantly being diagnosed to 
monitor the defect types occurring. During this monitoring, we 
envision that DPPM will fluctuate but the challenge will be to 
determine when intervention should occur in order to customize 
test to match the fallout in order to meet and maintain DPPM 
objectives. 
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Test 
set 

Test set 
size 

No. of test escapes 

Front-end Missing 
via 

Interconnect 
open Bridge 

1-det 48 27 39 66 37 
Tsel 48 25 20 37 37 
Tpool 155 24 20 37 36 
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