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Abstract—Rewiring is a well developed and widely used technique in
the synthesis and optimization of traditional Boolean logic designs. The
threshold logic is a new alternative logic representation to Boolean logic
which poses a compactness characteristic of representation. Nowadays,
with the advances in nanomaterials, research on multi-level synthesis,
verification, and testing for threshold networks is flourishing. This paper
presents an algorithm for rewiring in a threshold network. It works by
removing a target wire, and then corrects circuit’s functionality by adding
a corresponding rectification network. It also proposes a simplification
procedure for representing a threshold logic gate canonically. The exper-
imental results show that our approach has 7.1 times speedup compared
to the-state-of-the-art multi-level synthesis algorithm, in synthesizing a
threshold network with a new fanin number constraint.

I. INTRODUCTION
In past decades, design automation research targeting the func-

tionality of VLSI circuits−such as logic synthesis, logic optimiza-
tion, functional verification, and testing−have used Boolean logic
representation almost exclusively. In comparison to threshold logic,
however, Boolean logic representation requires a greater depth and
more extensive nodes. For instance, a Boolean function a(b+c)+bc
can be realized by a single threshold logic gate. Additionally, the
functionality of a threshold logic gate can be easily analyzed thanks
to its special mechanism of output evaluation−the output value of a
logic gate is evaluated by the relationship between its input-weighted
summation and threshold value. For example, if an input vector 1100
produces an output 1 in a positive-weight threshold logic gate, other
vectors 11 − − also produce output 1, where − means don’t care.
This property facilitates logic synthesis and verification of threshold
networks.

The development of threshold logic can be cast back to the 1960s.
In 1962, an approximation method was proposed to determine the
input weights and the threshold value of a threshold logic gate [30].
Later, linear programming and tabulation methods were proposed to
determine whether or not a function could be realized in threshold
logic [24]. The characteristics of threshold logic were explored and
summarized in [15][24][30]. Although related research on threshold
logic was conducted in the early days, threshold logic had a little
impact on integrated circuit designs due to a lack of efficient im-
plementation. Moreover, no efficient multi-level synthesis algorithm
was proposed for threshold logic at that time, either. These reasons
restricted the developments and applications of threshold logic.

CMOS implementations of threshold gates, however, have been
developed recently [3∼4][6][29]. CMOS implementations of thresh-
old gates have been a motivation to the investigation of the threshold
logic. Furthermore, with the advances in nanotechnology, such as
Resonant Tunneling Diodes (RTD) [1∼2][4][16][27], Quantum Cel-
lular Automata (QCA) [4][16][28], and Single-Electron Transistor
(SET) [4][10][16][22] that efficiently implement threshold logic,
threshold logic now attracts more attention than before. Specifically, a
MOnostable-BIstable transition Logic Element (MOBILE) can realize
a threshold gate by using RTDs and Heterostructure Field-Effect
Transistors (HFETs) [4][9][26]. This device achieves a realization
with a shallower depth, fewer nodes, shorter wiring, and lower power
consumption compared to the CMOS implementations [4].

This work was supported in part by the National Science Council of Taiwan
under Grants NSC 99-2628-E-007-096, NSC 99-2220-E-007-003, NSC 100-
2628-E-007-031-MY3, and NSC 100-2628-E-007-008.

In parallel with device technology advances, design automation
research on threshold logic has also flourished. Synthesis method-
ologies for multi-level threshold networks have been proposed
[17][18][31]. In the realm of verification, algorithms demonstrating
equivalence checking for threshold networks have also been proposed
[19][32]. Testing, an important issue in traditional Boolean logic, has
also been addressed in its threshold logic counterpart. For example,
a comprehensive study regarding the fault model and the Automatic
Test Pattern Generation (ATPG) algorithm was proposed [20].

In traditional Boolean logic, rewiring is a logic restructuring
technique that has been well developed and widely applied in the
synthesis and optimization of VLSI circuits. Existing approaches
to logic restructuring can be classified into two categories: Redun-
dancy Restructuring and Error-Injection-based Restructuring. The
Redundancy Restructuring approach keeps a circuit’s functionality
intact at every operation. Node merging [12∼14], Rewriting [25], and
Redundancy Addition and Removal (RAR) [7∼8][11] belong to this
category. On the other hand, the Error-Injection-based Restructuring
approach transforms a circuit by first injecting an error/errors and then
correcting it/them. IRredundancy Removal and Addition (IRRA) [23]
belongs to this category.

In this work, we propose an error-injection-based rewiring algo-
rithm for threshold logic networks. The problem formulation is as
follows: Given an irredundant target wire to be removed from an
objective gate in a threshold network consisting of threshold gates,
our objective is to rectify the changed functionality of the original
threshold network due to the target wire removal by adding some
threshold logic gates at other locations. These added threshold logic
gates are named the rectification network. Note that the proposed
rewiring procedures are directly operated on a threshold network
itself, and it does not need any information from its corresponding
Boolean logic representation.

Two threshold gates with different appearances, such as different
weights or threshold values, may have the same functionality. Mini-
mizing these weights or threshold values reduces the implementation
cost of the threshold gate [1][26]. In this work, we also propose a
procedure to simplify the representation of a threshold gate such that
the simplified representation is canonical meaning that any two func-
tionally equivalent threshold gates will have the same representation.
In other words, if two threshold gates cannot be represented with the
same appearance after applying this procedure, they are functionally
nonequivalent. Note that this simplification procedure of canonicity is
designed for a single threshold gate rather than a threshold network.

In general, the applications of rewiring are for the synthesis and
optimization of the threshold network, which is similar to traditional
Boolean network rewiring1. In addition to traditional optimization
objectives, the number of maximal fanins allowed for the gates in
the threshold network also has to be determined before synthesis.
If a network is going to be restructured with a smaller fanin

1It should be noted that this paper does not propose any algorithms focusing
on any specific optimization objectives, e.g., area, timing, or power. Rather,
it presents a theoretic foundation of the formal error-injection-based rewiring
technique for threshold networks.
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Figure 1: (a) The original threshold network. (b) The resultant network after input grouping and gate decomposition. (c) The resultant network
after rewiring target wire h. (d) The resultant network after rewiring target wire d.

number2, designers can either resynthesize the network by using
the same synthesis methodology, or remove some wires from the
gates violating this fanin number constraint and add the rectification
network for correcting the functionality.

This work makes two main contributions:
1) It is the first rewiring algorithm employing on a threshold

networks that changes its connectivity while preserving its
functionality.

2) The proposed simplification procedure produces a canonical
representation of a threshold gate.

The rest of the paper is organized as follows. Section II gives
an example of our rewiring algorithm. Section III introduces the
background. Section IV presents the proposed rewiring algorithm.
Section V presents the simplification procedure. Section VI shows
the experimental results of our rewiring algorithm. Finally, Section
VII concludes this work.

II. AN EXAMPLE FOR REWIRING
In this section, we use a brief example to demonstrate the capability

of our rewiring algorithm. We take a threshold network consisting of
five threshold gates, as shown in Fig. 1(a). Here we assume the fanin
number constraint of the network is four. If we want to produce
another network with the same functionality but with a smaller fanin
number constraint, e.g., three, we can rewire the network by using
our algorithm instead of resynthesizing the whole network.

In the threshold network of Fig. 1(a), gates n2, n3, n4, and n5

violate this fanin number constraint. First, for gates n3 and n5, we
can extract two new gates, n6 and n7, respectively, using the proposed
gate decomposition method, as shown in Fig. 1(b). For gate n2 in
Fig. 1(b), we can remove target wire h. The rectification network n8

is inserted at n2’s transitive fanout cone, as shown in Fig. 1(c). For
gate n4 in Fig. 1(c), we can remove target wire d. The rectification
network n10 is inserted at n4’s fanout cone, as shown in Fig. 1(d).

Using our rewiring method, a threshold network with a new
fanin number constraint is obtained. Previous threshold network
synthesis tools resynthesized the network in order to satisfy different
fanin number constraints [17][31]. Our rewiring algorithm, however,
can achieve the same goal by focusing on single gates without
resynthesizing the whole network.

III. PRELIMINARIES
The section introduces definitions and some characteristics about

threshold logic.

A. Threshold logic
A linear threshold gate (LTG) is an n binary inputs and one

binary output function. The parameters of an LTG are weights

2This operation is trivial for traditional Boolean networks, but it is not the
case for threshold networks.
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Figure 2: (a) An LTG implementing the function f = x1(x2 + x′
3).

(b) The same threshold function f = x1(x2 +x′
3) after applying the

positive-negative weight transformation.

wi; i = 1 ∼ n, which correspond to inputs xi; i = 1 ∼ n,
and a threshold value T . A Boolean logic function is called a
threshold logic function if and only if it can be realized as a single
LTG. Furthermore, a threshold logic function may have many dif-
ferent threshold logic representations that are represented as weight-
threshold vectors 〈w1, w2, . . . , wn;T 〉. A network that is composed
of LTGs is called a threshold network.

The output f of an LTG is evaluated by EQ(1). If the summation
of corresponding weights wi of inputs xi that are assumed to be 1
in an input vector, is greater than or equal to the threshold value T ,
the output f is 1. Otherwise, the output f is 0.

f(x1, x2, . . . , xn) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if
n∑

i=1

xiwi ≥ T

0 if
n∑

i=1

xiwi < T

(1)

For example, in Fig. 2(a), the LTG with a weight-threshold vector
〈2, 1,−1; 2〉 generates 1 if 2x1 + x2 − x3 ≥ 2, and generates 0
otherwise.

The weights wi; i = 1 ∼ n associated with corresponding inputs
can be any real, positive, or negative numbers. However, these
weights are usually integers due to technological considerations [9].
In this work, we assume the weights are integers for simplicity. In
the last example, since {x1 = 1, x2 = 1} or {x1 = 1, x3 = 0}
can make the LTG become 1, the Boolean function it represents is
f = x1x2 + x1x

′
3 = x1(x2 + x′

3). From this example, we can see
that the threshold logic provides a more compact representation than
traditional Boolean logic, with fewer nodes and a shallower depth.

Unateness is an important property of a threshold logic function,
because all threshold logic functions are unate [21]. However, not
all unate functions can be realized as threshold logic functions. If
the weights of an LTG are all positive (negative), the function it
represents is positive (negative) unate.

The rewired threshold network in this work is generated by an
ILP-based approach [31] where each LTG is canonically represented.
Given a unate function, an ILP formulation which describes its
functionality as linear relationships searches the polytope vertices
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Figure 3: Our overall rewiring flow.

to find a point where the summation of the input weights and the
threshold value in this LTG is minimal. Thus, this ILP-based approach
will return a threshold network consisting of LTGs with minimal
weights and threshold value. Furthermore, all input weights in a
LTG range from 1 to T after applying the positive-negative weight
transformation mentioned in the next subsection [15][30].

B. Positive-Negative weight transformation
Although the weights may be positive or negative integers in a

general LTG, we make an LTG positive unate for easy analysis in this
work. An LTG with some negative weights can always be transformed
to a positive unate form by replacing these negative-weight input
variables.

The transformation method for the negative weight in an LTG is
described as follows [24]. First, one negative weight is negated into
a positive one, and a new variable is set to the complement of the
corresponding variable of this negative weight. Then, the threshold
value is increased by the magnitude of the negative weight. These
steps are repeated until all the weights are positive.

For example, let us transform an LTG 〈2, 1,−1; 2〉 in Fig. 2(a) into
a positive unate form. First, we negate the weight of x3 from −1 to
1 and set a new variable y3 = x′

3. Then, we add the magnitude
of this negative weight 1 to the threshold value. As a result, the
new representation of this threshold function becomes 〈2, 1, 1; 3〉, as
shown in Fig. 2(b).

IV. REWIRING FOR THE THRESHOLD NETWORK

The section presents the proposed rewiring algorithm for threshold
logic circuits. It consists of the input grouping and gate decom-
position, the target wire removal, and the rectification network
construction.

A. Overview
Fig. 3 gives an overview of our rewiring algorithm. The inputs

are a threshold network and a target wire, the output is a func-
tionally equivalent rewired threshold network. The grouping and
decomposition are preprocessing stages operated on the threshold
network. The proposed rewiring algorithm has different rectification
methods with respect to the characteristics of target wires and
rectification locations. At the end of our rewiring algorithm, the
simplification procedure is performed to ensure that each threshold
gate is canonically represented.
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Figure 4: (a) Input grouping in an LTG. (b) The decomposition gate
obtained from the input group a ∼ d.

B. Input grouping and gate decomposition
Given an LTG, the grouping is a process that separates the inputs

and its corresponding weights into different groups. The inputs of
an LTG can be divided into one or more groups. With the aid of
the grouping process, we can facilitate our rewiring process. Our
grouping rule is as follows. First, we iteratively separate an input
whose weight is equal to the threshold value of the objective gate
as a single group. Second, the remaining inputs are separated as
another group. We then treat the inputs of an LTG group-wise after
this grouping process. That is, the inputs belonging to different groups
are independently processed in our algorithm.

Next, we explain the reasoning behind this grouping rule. We
know that the relationship between the weighted summation and
the threshold value determines the output value of an LTG. If the
weight of one input is equal to the threshold value, this input can
independently change the output from 0 to 1. On the other hand,
if the weight of an input is smaller than the threshold value, this
input needs the weights from the other inputs to change the output
from 0 to 1. Thus, we separate these inputs having smaller-than-the-
threshold-value weights as a group. As a result, the inputs in different
groups can be regarded as ORing together in this LTG.

By applying this grouping rule, we can easily decompose an
LTG into more gates without changing this LTG’s functionality.
Specifically, each group can be extracted as a new LTG from the
original LTG. The newly extracted LTG is named a decomposition
gate. The extraction method is as follows. The threshold value of
a decomposition gate is the same as that of the original LTG. The
weight associated with a new decomposition gate in the original gate
is also the threshold value because the new decomposition gate can
determine the output value of the original gate without adding any
weight from other inputs.

For example, given an LTG like the one, as shown in Fig. 4(a),
inputs e and f are separated into two single groups after grouping
because their weights are the same as the threshold value. The
remaining inputs a ∼ d are separated into another group. Then, all
these three groups can be individually extracted as new decomposition
gates. In Fig. 4(b), we only extract the group consisting of inputs
a ∼ d. The threshold value of the decomposition gate and the weight
associated with this new decomposition gate in the original gate,
highlighted in dotted circles, are both 5.

C. Target wire removal
After the grouping and decomposition, a target wire is going to be

removed. Here, we first introduce some terminology and properties
related to the removal operation in this work. Then we discuss the
potential results of the wire removal.
Definition 1: A single group LTG is useless if and only if it is an
empty gate or it outputs zero for all input combinations.
Theorem 1: Given a nonempty LTG, it is useless if and only if it
satisfies EQ(2), where n is the number of inputs in this gate.

n∑
i=1

wi < T (2)

Due to the page limit, we omit all the proofs in this paper.
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For example, in Fig. 4, assume that we would like to remove target
wire a from the given LTG. After the grouping and decomposition, as
shown in Fig. 4(b), we remove target wire a. Then the objective gate
consisting of the inputs b, c, and d is useless according to Theorem
1. This is because the summation of 2, 1, 1 in the decomposition gate
〈2, 1, 1; 5〉 after removing a is less than 5.
Definition 2: An input in a single group LTG is critical if and only
if this LTG will become useless after removing this input.
Theorem 2: Given a single group LTG, an input xj with its
corresponding weight wj is critical if and only if it satisfies EQ(3),
where n is the number of inputs in this gate.

n∑
i=1,i �=j

wi < T (3)

For example, in Figs. 4(a) and 4(b), input a is critical because
the summation of weights b ∼ d is less than the threshold value.
Similarly, inputs e and f are also critical because removing them
results in empty decomposition gates, and an empty gate is useless
by Definition 1.

Note that a critical input is important to the uselessness of a
threshold gate. Furthermore, the functionality of a gate strongly
depends on the relationship between the critical input and other
inputs.
Definition 3: An input is useless if and only if the output of this
LTG is intact when this input toggles under all input combinations.
Theorem 3: Given an input xj with its corresponding weight wj , xj

is useless if and only if it satisfies either EQ(4) or EQ(5) for each
input combination, where n is the number of inputs in this gate.

n∑
i=1,i �=j

xiwi < T and (

n∑
i=1,i �=j

xiwi) + wj < T (4)

(

n∑
i=1,i �=j

xiwi) + wj ≥ T and
n∑

i=1,i �=j

xiwi ≥ T (5)

For example, in Fig. 4(b), input d will become useless after
removing input c because it satisfies either EQ(4) or EQ(5) for all
input combinations of a and b.

An objective gate will have two potential outcomes after we
remove a target wire from it: a useless LTG or a normal LTG. If
the objective gate becomes useless after removing the target wire, a
dramatic functional loss occurs in the overall threshold network. To
prevent the difficulty from this situation in our rectification scheme,
we modify the threshold value of the objective gate if the objective
gate becomes useless after this removal operation. The details about
this modification will be addressed in the next section. Furthermore,
since the removal operation may incidentally create useless inputs,
which are not allowed in a normal LTG, we also remove them. On
the other hand, if the objective gate is still a normal LTG after the
removal operation, we do not change its threshold value.

D. Rectification network construction
In this section, we introduce the method of adding rectification

networks at other locations to rectify the changed functionality of the
original threshold network due to the target wire removal. Since the
construction of the rectification network varies with the characteristics
of the target wire, we analyze the relationship among the target wire
and the other inputs, and divide the correction method into three cases
with respect to the characteristics of a target wire, as seen in the flow
of Fig. 3.
Definition 4: A single group LTG has a critical-effect if and only if
there exists an assignment such that the output changes from 1 to 0
when each one of its inputs in this assignment changes from 1 to 0.

a
b
c

2
1
1

f3

a b c f
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Figure 5: An LTG and its critical-effect vectors.

Theorem 4: Given a single group LTG, the LTG has a critical-effect
if it satisfies EQ(6), where n is the number of inputs in this gate.

n∑
i=1

xiwi = T (6)

An input assignment that satisfies the requirement of the critical-
effect for an LTG is called a critical-effect vector. For example, in
Fig. 5, input assignments 100 and 110 are the critical-effect vectors
of LTG 〈2, 1, 1; 3〉. This is because changing any 1 to 0 in these
assignments will also change the output from 1 to 0. Note that EQ(6)
is only a sufficient condition of Theorem 4. However, EQ(6) is also a
necessary consition if the given LTG is obtained from an ILP-based
synthesis algorithm [31]. That means all critical-effect vectors of the
LTG satisfy EQ(6).
Case 1: The target wire is not critical: When the target wire
is not critical, the remaining objective gate after the removal will
not become useless. Thus, we preserve the functional relationship
among the inputs in the remaining objective gate by keeping the
threshold value intact. Since adding the rectification network at the
transitive fanin cone of the objective gate will significantly affect
the remaining functionality among other inputs, we only add the
rectification network at the transitive fanout cone of the objective
gate in this case.

The critical-effect vector mentioned above can be used to further
analyze the functionality among all inputs of an LTG. Hence, we
will use it in this case to construct the rectification network in our
algorithm.

Let us first clarify the physical meaning of a critical-effect vector.
In Fig. 5, the LTG has two critical-effect vectors 101 and 110. When
considering 101, we find that another input assignment 111 also
produces 1 after checking its truth table. This means that changing
the second input b does not change the output value. Thus, if input b
in this LTG is the target wire and has been removed, the remaining
objective gate preserves the subfunction with respect to these two
assignments 101 and 111. On the other hand, when considering
another critical-effect vector 110, we find that vector 100 produces a
different output, 0. Thus, if input b in this LTG is the target wire and
has been removed, the remaining objective gate loses a subfuncion
with respect to these two assignments 110 and 100.

In summary, we observe that the loss of a subfunction only occurs
when removing a target input, which is assumed to be 1 in a
critical-effect vector. Thus, to construct the rectification network, it is
important and necessary to have information about the critical-effect
vectors whose target input is assumed to be 1.

To search the critical-effect vectors of an LTG, we can exhaustively
build its truth table and then find the input assignments satisfying
EQ(6). However, this method is not scalable. Fortunately, thanks to
the output evaluation mechanism in a positive-weight LTG, we can
make this search process practical and efficient by deduction.

The method of rewiring for this case with the aid of the critical-
effect vectors is described as follows. Given a single group LTG and
a target wire xt, we first remove any useless inputs after target wire
removal. Second, we get all the critical-effect vectors of the LTG,
where xt is assumed to be 1. Third, we collect all the inputs that are
assumed to be 1 in these critical-effect vectors. Then, the rectification
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Figure 6: (a) The construction of rectification network for the removal
of the target wire a. (b) The resultant threshold network after rewiring
the target wire a.

network is constructed by using a new LTG consisting of the collected
inputs in the third step with their corresponding weights and the
threshold value of the original objective gate. Finally, we connect
the remaining objective gate to this rectification network with an OR
gate at its transitive fanout cone.

For example, in Fig. 6, given an LTG and the target wire a, inputs
b and c become useless after the target wire a removal. Hence, we
also remove them. Then, we get the critical-effect vectors which have
a assumed to be 1, i.e., 11001 and 10101. Note that although 00011
is also a critical-effect vector, we do not count it in because a = 0.
Then, we collect the inputs that are assumed to be 1 in these critical-
effect vectors, 11001 and 10101; we get a, b, e from the first vector,
and a, c, e from the second vector. Thus, the rectification network is
constructed by using a new LTG consisting of these collected inputs,
a, b, c, and e, with the weights and threshold value of the original
objective gate, as shown in Fig. 6(a). Finally, the remaining objective
gate is ORed with the rectification network, as shown in Fig. 6(b).

Next, let us explain why this method is correct for rectifying
the functionality after a removal. As we mentioned, after the target
wire removal, functional loss only occurs at the critical-effect vectors
whose target input is assumed to be 1. Therefore, we first collect these
vectors. These vectors then should be added back to the remaining
objective gate to rectify the functionality. Thus, the rectification
network is constructed in a way that has the same output as the
original objective gate under these critical-effect vectors with an
assumed target input of 1. As a result, these inputs assumed to be 1 in
the critical-effect vector are collected because they caused the original
objective gate to be evaluated as 1. If there are multiple critical-
effect vectors, all inputs in these vectors assumed to be 1 are all
collected. An LTG consisting of these inputs with the same weights
and threshold value of the original objective gate is the rectification
network. Then, this rectification network is added back by ORing it
together with the remaining objective gate.
Case 2: The target wire is critical, and we rectify it at the
transitive fanout cone: As mentioned in Definition 2, a critical input
is an input whose removal results in a useless gate. Thus, if the target
wire is critical, its value is always assumed to be 1 in all the critical-
effect vectors. Hence, the whole function gets lost after the removal
of a critical target wire, i.e., the remaining objective gate becomes
useless. A useless gate is not allowed in our approach as mentioned
in the previous section. Hence, to prevent the remaining objective
gate from being useless, we will modify the threshold value during
the rectification process, as detailed in the succeeding paragraphs.

The method of rewiring for this case is as follows. Given a single
group LTG and a critical target wire xt with the corresponding weight
wt, we decrease the threshold value in the remaining objective gate by
wt after removing xt. Second, we construct the rectification network
which is xt only. Finally, we connect this rectification network to the
remaining objective gate with an AND gate at its transitive fanout
cone.
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Figure 7: (a) The original objective gate and the target wire a. (b)
The threshold value decrement after the target wire removal. (c) The
resultant threshold network when the rectification network is added
at the transitive fanout cone. (d) The truth table. (e) The resultant
threshold network when the rectification network is added at the
transitive fanin cone.

For example, given an LTG and the target wire a in Fig. 7(a),
the threshold value is reduced to 4 from 10 after removal of a by
decreasing the weight of a, as shown in Fig. 7(b). The rectification
network is a only. Then, we connect this rectification network to the
remaining objective gate using an AND gate, as shown in Fig. 7(c).

Next, let us explain why this rewiring procedure preserves the
functionality of the original circuit. Since the original threshold
network in this work is generated by the ILP-based synthesis method
[31], a critical-effect vector always satisfies EQ(6) in Theorem 4.
We have known that the target input is assumed to be 1 in all the
critical-effect vectors. By the definition of critical-effect vector, an
input assignment that has an xt assumed to be 0 will produce 0,
i.e., the input subspace with xt = 0 always produce 0. However,
after reducing the threshold value by wt, the remaining objective
gate could produce 1 when xt = 0. Hence, we AND the xt to
the remaining objective gate such that when xt = 0, the output is 0,
which is consistent with the original functionality. In this rectification
scheme, on the other hand, if the remaining objective gate produces
1, it implies that the weighted summation in this gate contributes
the same amount of weight as it did in the original objective gate.
Therefore, adding wt when xt = 1 will meet the requirement for
producing 1 in the original objective gate.

For example, given an LTG 〈6, 4, 3, 1, 1; 10〉 and the target wire a
in Fig. 7(a), the LTG produces 0 under the input subspace of a = 0
by checking its truth table in Fig. 7(d). We find that all the critical-
effect vectors 10101, 10110, and 11000 have a assumed to be 1. After
reducing the threshold value from 10 to 4, the remaining objective
gate produces 1 under its critical-effect vectors, 0101, 0110, and
1000. The rectification scheme is as shown in Fig. 7(c). In Fig. 7(c),
if a is 0, the output is 0, which matches the subspace of a = 0 in
the truth table of Fig. 7(d). For the assignments that produce 1 in
n1, they can add the weight of a to produce 1 in the output f when
a = 1, which also match the truth table of Fig. 7(d).
Case 3: The target wire is critical, and we rectify it at the
transitive fanin cone: In contrast to Case 2, we consider the
rectification location at the transitive fanin cones of the target wire in
this case. Since the target wire is still critical, we modify the threshold
value to avoid a useless gate as we did in Case 2. The details have
been addressed in Case 2.

The method of rewiring for this case is as follows. Given a single
group LTG and a critical target wire xt with the corresponding weight
wt, we decrease the threshold value of the remaining objective gate by
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wt after the removal. Second, we construct the rectification network
that is xt only. Finally, we connect this rectification network to each
input, respectively, in the remaining objective gate with an AND gate
at the transitive fanin cones.

For example, given an LTG and the target wire a in Fig. 7(a), the
threshold value is reduced to 4 from 10 by decreasing the weight of
a after the removal, as shown in Fig. 7(b). The rectification network
is a only. Then, we connect this rectification network to each input in
Fig. 7(b) using an AND gate, at the transitive fanin cones, as shown
in Fig. 7(e).

The validity of this rectification can be explained in a similar
manner as in Case 2. When xt is a critical input, the output of the
objective gate under an input assignment that has the xt assumed
to be 0 produces 0. Thus, after we AND xt to each input in the
remaining objective gate, the resultant network produces 0 under the
vectors in the subspace of xt = 0. When xt = 1, the resultant
network will act as the original gate with the setting xt = 1.

For the same example in Figs. 7(a) and 7(e), when a = 0, the
functionality in Fig. 7(a) is the same as that in Fig. 7(e). When a = 1,
Figs. 7(a) and 7(e) also get the same result.

V. SIMPLIFICATION
After target wire removal and rectification network construction,

the appearances of some LTGs in the threshold network may be
changed such that they cannot be canonically represented. Thus, in
this section, we introduce a simplification procedure that transforms
a single group LTG to its canonical representation.

For example, given two LTGs 〈2, 1; 3〉 and 〈1, 1; 2〉, we recognize
that both LTGs represent the same function f(a, b) = ab, because
they both output 1 only at {a = 1, b = 1}. Since minimal weights
and threshold value reduce the implementation cost of an LTG, it
is desirable to minimize their values in an LTG [26]. An LTG is
canonical if and only if it represents a function using minimal weights
and threshold value. An LTG generated from the ILP-based synthesis
method [31] is also canonical.

Next, we describe the simplification procedure as follows. First, a
larger-than-1 common divisor divides the weights and the threshold
value to get a more minimized representation if it exists. For example
in Fig. 8(a), given an LTG 〈4, 4, 6, 8; 18〉, a common divisor 2 divides
the weights and the threshold value, as shown in Fig. 8(b).

Then, the weights and the threshold value of an LTG are gradu-
ally decreased while keeping the functionality intact. A decrement
changes the functionality of an LTG is not allowed. To check if the
functionality changes or not after a decrement in the weight and the
threshold value, we only examine significant vectors that can exactly
express the complete functionality of this LTG, rather than examine
the whole truth table of this LTG. We will further discuss this idea
later in the paper.

Next, we explain the method of decreasing weights and threshold
value. If we decrease a unique weight by 1 in an LTG, the threshold
value is decreased by 1 as well. However, we must simultaneously
decrease the weights of inputs that have the same weight by 1
owing to their symmetrical property. That is, if the weights of these
symmetric inputs become different after the decrement, the new
representation is nonequivalent to the original one. Additionally, the
corresponding threshold value is decreased by the number of 1 in
these same-weight inputs of any critical-effect vector.

For example, in Fig. 8(b), the critical-effect vectors of the LTG
〈2, 2, 3, 4; 9〉 are 0111 and 1011. Inputs a and b have the same weight
2, and the number of 1 in inputs a and b of the critical-effect vectors
is 1. Thus, the weights of a and b are both decreased from 2 to 1,
and these threshold value is decreased from 9 to 8, as shown in Fig.
8(c). The weight-decreasing operation is sequentially conducted and
checked until each weight reaches 1.
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Figure 8: The simplification procedure for an LTG.

After each weight-decreasing operation, to verify if the function-
ality between the original LTG and the new LTG is intact or not is
necessary. First, some terminology used in our functionality checking
is introduced. A subvector of a vector is a vector whose input assumed
to be 1 is the proper subset of this vector. A supervector of a vector
is a vector whose input assumed to be 1 is the proper superset of this
vector. A brothervector of a vector is a vector which has the same
number of inputs assumed to be 1 as this vector.

For example, given a vector 011, its subvectors are 000, 001, and
010. Its supervector is 111. Its brothervectors are 101 and 110. To
determine if the functionality of an LTG after a weight-decreasing
operation is equivalent to the original LTG or not, we propose the
method introduced in Theorem 5.
Theorem 5: Given two single group LTGs, they are functionally
equivalent if and only if they produce the same outputs under all
critical-effect vectors and the brothervectors of all critical-effect
vectors.

Due to the special output evaluation mechanism of a positive-
weight LTG, an LTG under the subvector of a critical-effect vector
will output zero. Similarly, an LTG under the supervector of a
critical-effect vector will output 1. Thus, if the critical-effect vectors
for two LTGs are the same, their subvectors and supervectors will
have the same outputs. However, the output of an LTG under
the brothervectors of a critical-effect vector cannot be deduced by
the output of the critical-effect vector. Thus, we also simulate the
brothervectors of the critical-effect vectors. As a result, the outputs
of the whole input space of an LTG can be derived by using the
critical-effect vectors and their brothervectors.

In summary, after a weight-decreasing operation, if the outputs of
new LTG under the critical-effect vectors and their brothervectors are
the same as that of the original LTG, the functionality of the new
LTG is intact by Theorem 5.

Now we use the same example to demonstrate this simplification
procedure. For the LTG 〈2, 2, 3, 4; 9〉, we first get its critical-effect
vectors, 0111 and 1011, as highlighted, and their brothervectors. The
output values under these assignments are shown in Fig. 8(b).

For each iteration of weight-decreasing operation, we decrease
each input weight and the threshold value sequentially. Inputs a and
b have the same weight; therefore, they are simultaneously decreased.
The threshold value decrement for this situation has been addressed in
the previous paragraph. Next, we check the validity of this decrement
by comparing the outputs under these assignments, as shown in Fig.
8(c). Since these outputs are the same, this decrement is valid and
a new representation 〈1, 1, 3, 4; 8〉 is obtained. Next, the weight-
decreasing operation for input c is shown in Fig. 8(d). After checking

401



Get the critical-effect vectors 
and their brothervectors

Update the LTG and divide the 
LTG by a common divisor

Divide the LTG by 
a common divisor

Decrease the input weight and 
the threshold value sequentially

START

There exists an input 
weight to decrease?

END

No

Yes

No

Input
A given LTG

Output
The canonical LTG

Yes

Check the validity 
of this decrement

Figure 9: Our simplification procedure flow.

the validity, a new representation 〈1, 1, 2, 4; 7〉 is obtained. Similarly,
the decrement of input d is also valid and the LTG is updated as
〈1, 1, 2, 3; 6〉, as shown in Fig. 8(e).

For the second iteration of weight-decreasing operation, since
inputs a and b are the minimum positive integers, their weights cannot
be decreased any more. Hence, the next weight-decreasing operation
is for input c, as shown in Fig. 8(f). This decrement is invalid due to
an output inconsistency under the assignment 1101, as highlighted.
Finally, the weight-decreasing operation for input d is shown in Fig.
8(g). The updated representation 〈1, 1, 2, 2; 5〉 is obtained.

In the last iteration, inputs c and d are simultaneously decreased
by 1 and the threshold value is decreased by 2, since two 1s are
assigned in inputs c and d of the critical-effect vectors, as shown in
Fig. 8(h). Unfortunately, this decrement is invalid, either. Hence, we
terminate the simplification procedure, and the canonical form of the
original LTG 〈4, 4, 6, 8; 18〉 is 〈1, 1, 2, 2; 5〉.

The flow of the proposed simplification procedure is shown in
Fig. 9. During our simplification procedure, checking the equivalence
between the original LTG and updated LTG after a weight decrement
is necessary. In traditional simulation-based equivalence checking,
given an n-input LTG, we must use 2n vectors to confirm whether
or not the functionality is intact. However, thanks to the output
evaluation mechanism of a positive-weight LTG, fewer vectors are
sufficient. In the last example, only four vectors, or 25%, are needed
for equivalence checking as compared to 16 vectors in traditional
simulation-based verification3.

VI. EXPERIMENTAL RESULTS
We implemented our algorithm in C++ language. The experiments

were conducted on a 3.0 GHz Linux platform (CentOS 4.6). The
benchmarks are from IWLS 2005 [33] in the blif format, and each
benchmark is initially synthesized as a threshold network with a fanin
number constraint, six, by using the method in [31]. The experiments
consist of two parts: The first one shows the logic restructuring
capability our rewiring algorithm offers. The second one shows the
efficiency of our approach in resynthesizing a threshold network with
a new fanin number constraint as compared to the-state-of-the-art
multi-level synthesis algorithm [31].

In the first experiment, we rewired a threshold network using
our rewiring algorithm. A target wire was randomly selected from
an LTG in a threshold network whose input number is larger than
two. After the removal, a rectification network was added with
respect to the characteristics of the target wire. If the target wire
is critical, we randomly select the rectification location at either the
transitive fanin or fanout cones. Any added wire in a rectification

3The comparison ignores the efforts on searching the critical-effect vectors.

network was not selected as a target wire candidate in the experiment.
The simplification procedure was employed on changed LTGs such
that the threshold network is canonically represented. To verify the
correctness of our rewiring operation, the rewired threshold network
was transformed to Boolean domain [19] and was compared against
the original benchmark by using verify command in SIS [5].

The experimental results in the first experiment are summarized
in Table I. Column 1 shows the names of the benchmarks. The
next two columns show the total number of gates and wires in each
benchmark. Column 4 shows the total times of rewiring operations on
this benchmark. Column 5 shows the total CPU time on the rewiring.
Column 6 shows the total CPU time on the simplification procedure
measured in seconds. For example, in the b20 benchmark, the total
number of gates is 4431, and the total number of wires is 14020.
It costs 8.57 seconds and 86.40 seconds to rewire and simplify this
network 2562 times. According to Table I, the proposed rewiring
and simplification procedure are very efficient. The simplification
procedure costs more time because it needs to iteratively reduce the
weights and threshold value for reaching a canonical form.

Table I
THE EXPERIMENTAL RESULTS OF REWIRING.

benchmark |gate| |wire| |rewiring| r_time(s) s_time(s)
i2c 176 769 88 1.64 1.76
usb_phy 280 937 134 0.85 4.67
simple_spi 288 840 139 1.34 4.23
pci_spoci_ctrl 385 905 109 1.73 3.54
alu4 410 1407 210 2.66 6.57
s9234 554 1830 352 2.03 12.74
C3540 731 1688 387 2.08 13.56
dalu 810 2579 477 3.10 16.17
s13207 848 2235 450 2.76 15.32
C5315 879 2804 594 3.13 18.85
C6288 970 3485 394 2.40 13.10
rot 980 2878 610 3.35 19.43
C7552 1066 3886 701 4.48 25.62
tv80 1189 3485 614 3.80 20.35
spi 1646 4703 832 5.84 22.60
i10 1814 5893 1145 6.58 35.22
systemcdes 1907 4766 876 7.13 24.36
des 1920 5180 1008 6.37 31.49
aes_core 3417 13622 1552 8.60 47.02
mem_ctrl 3455 14655 2093 6.88 66.70
s38417 4280 20139 2915 12.07 93.43
b20 4431 14020 2562 8.57 86.40
ac97_ctrl 5732 17906 2560 9.48 82.55
b21 5844 13481 3495 10.20 110.40
usb_funct 6612 21613 2474 12.41 70.75
systemcaes 6885 22674 3656 15.43 102.80
s38584 6897 27750 2546 14.80 83.76
b22 7656 32771 3895 19.75 106.80
pci_bridge32 8344 29640 4983 21.14 134.30
b17 13460 39007 9140 47.82 215.45
wb_conmax 15719 47731 10872 70.05 232.70

In the second experiment, we demonstrate the efficiency of our
rewiring algorithm for resynthesizing a threshold network with dif-
ferent fanin number constraints. The fanin number constraint for
the original threshold network is six, and we want to reduce it to
five. Instead of resynthesizing the whole network [31], our rewiring
algorithm randomly removes an input in an LTG violating this new
constraint, and then adds the corresponding rectification network.
The simplification procedure is also applied after the rewiring. The
equivalence between the two threshold networks after the rewiring is
verified as well by using the same method in the first experiment.

Table II summarizes the results of the second experiment as
compared to the-state-of-the-art [31]. Column 1 shows the names
of the benchmarks. The next two columns show the total number of
gates and wires, respectively, in this benchmark. Column 4 shows
the total times of rewiring operations on this benchmark. Column
5 shows the total CPU time of resynthesizing this benchmark for
satisfying a new fanin number constraint in [31]. Column 6 shows the
total CPU time of our approach, and Column 7 shows the percentage
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of CPU time reduction. For example, the b20 benchmark has 4431
gates and 14020 wires. [31] requires 364.52 seconds to resynthesize
the whole threshold network for meeting this new fanin number
constraint, while our approach only costs 58.22 seconds to reach
the same objective. The CPU time reduction is 84.0%.

According to Table II, our approach spent less CPU time, with
a ratio of 63.3% reduction, compared to [31], in a benchmark on
average. Furthermore, our approach is 7.1 times faster than [31].
This CPU time reduction increases with the growth of circuit size
due to local, instead of global, resynthesis in our approach.

Table II
THE COMPARISON WITH THE-STATE-OF-THE-ART [31] FOR RESYNTHESIS.

benchmark |gate| |wire| |rewiring| [31] ours impr.
time(s) time(s) %

i2c 176 769 28 8.60 3.24 62.3
usb_phy 280 937 55 2.54 1.67 34.3
simple_spi 288 840 37 2.48 1.84 25.8
pci_spoci_ctrl 385 905 43 2.17 2.08 4.1
alu4 410 1407 50 1.73 1.68 28.9
s9234 554 1830 74 5.62 2.85 49.3
C3540 731 1688 101 3.16 2.68 15.2
dalu 810 2579 52 5.06 1.73 65.8
s13207 848 2235 46 2.92 2.32 20.5
C5315 879 2804 192 21.50 9.46 56.0
C6288 970 3485 155 10.65 7.33 31.2
rot 980 2878 121 11.60 4.80 58.6
C7552 1066 3866 110 23.00 3.76 83.7
tv80 1189 3485 349 24.12 14.69 39.1
spi 1646 4703 663 67.85 25.22 62.8
i10 1814 5893 130 54.50 6.37 88.3
systemcdes 1907 4766 474 127.80 22.31 82.5
des 1920 5180 420 83.70 16.75 79.9
aes_core 3417 13622 792 402.60 38.73 90.4
mem_ctrl 3455 14655 1031 210.56 36.32 83.9
s38417 4280 20139 941 142.20 31.22 78.0
b20 4431 14020 1463 364.52 58.22 84.0
ac97_ctrl 5732 17906 1330 288.87 46.33 83.9
b21 5844 13481 1575 177.85 51.86 70.8
usb_funct 6612 21613 1405 293.26 42.13 85.6
systemcaes 6885 22674 1163 286.40 38.73 86.5
s38584 6897 27750 1981 525.72 83.74 84.1
b22 7656 32711 1595 320.04 52.04 83.7
pci_bridge32 8344 29640 1480 355.52 46.12 87.0
b17 13460 39007 2216 941.67 102.12 89.2
wb_conmax 15719 47731 2544 1386.34 108.24 92.2
total 6154.55 866.58
average 198.53 27.95 63.3
ratio 7.1 1

VII. CONCLUSION AND FUTURE WORK
This paper proposes a new rewiring technique for threshold net-

works. It works through the process of first removing a target wire
and then correcting the functionality of the threshold network by
adding its corresponding rectification network with respect to the
characteristics of a target wire. It efficiently provides the capability
of logic restructuring. A simplification procedure for canonicity that is
directly applied to a single LTG is also proposed. When the threshold
logic becomes a mainstream in the research of VLSI circuits, the
contributions of this work will facilitate the applications of logic
synthesis, verification, and various optimization goals.
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