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 Abstract 
A new mobility degradation specific to short channel 
MOSFETs is studied and elucidated. Pocket implants/dopants 
pile-up, interface states/oxide charges, remote Coulomb 
scattering or ballisticity are insufficient to explain this 
degradation. The role of non-Coulombian (neutral) defects, 
which can be healed by increasing the annealing temperature, 
is evidenced.   

 Introduction 
To extend the CMOS scaling to the future technological nodes, 
emphasis has been particularly put in the last years in transport 
improvement. Indeed, enhancing the carrier mobility allows a 
gain in Ion, with no loss neither in leakage current nor in load 
capacitance, thus improving greatly the C.V/I ratio. 
Mechanical stress approach has already demonstrated Ion [1] 
and mobility gains both for high gate length and short gate 
length transistors [2]. But mobility can also be improved by 
effective field reduction; indeed, channel doping increase – 
especially for short gate transistors with pocket implants – 
which is necessary for short channel effects control, increases 
the effective field and decreases the mobility. So, thin film 
fully depleted single gate (SG) or double gate (DG) transistors, 
which allow low channel doping thanks to their intrinsic short 
channel effects (SCE) control, should also benefit from a 
mobility gain [3]. However, if SOI fully depleted (FD) and 
moreover DG type transistors have demonstrated high static 
performances, no actual gain was achieved thanks to channel 
doping suppression for short gates, both in literature (Fig. 1) 
and from our experiments (Fig. 2), and recent papers propose 
to re-introduce dopants to relax the dimensional constraints 
(TSi) [4]. 
As a mobility lowering was previously observed on SG [2,5], 
SOI-FD [6] and DG [7,8] transistors, we aim at studying in 
depth this unexpected limitation and understand it origins. 

 Experimental protocol 
State-of-the-art devices competitive with the best-published 
results were used for this study: bulk transistors from pre-
industrial technology (12Å and 17 Å oxide thickness, with gate 
length down to 45nm) and planar GAAs from SON type 
technology (doped channel [9]: 20Å oxide and undoped 
channel [10]: 22Å oxide, Tsi=15nm). 

We focus in low field mobility, although short channel 
transport is also ruled by drift velocity. It has been shown that 
these 2 parameters are well correlated [11], and thus mobility 
can be considered as a good indicator of the transport quality. 
Y-function technique [12] (Fig. 3), which allows to suppress 
the effect of series resistances and to perform statistical 
extraction on wafers, was used; the key point in short channel 
mobility computation being the extraction of the effective 
(electrical) length, performed by gate-to-channel split C(V) 
measurements (Figs 4 & 5) [13]. The low field mobility, i.e. µ0 
parameter is computed from the extracted gain (β) parameter 
(β=µ0.Cox.W/LEff). 
The consistency of the method was checked with short channel 
split C(V) (Fig. 6) and magnetoresistance measurements 
[14,15], independent of the LEff knowledge. 

 Ambient temperature results 
Comparing the mobility for low LEff for heavily doped 
(6.1018cm-3) and undoped (channel made by epitaxy) GAA 
transistors with equivalent Tsi (Fig. 7), it can be noticed that 
undoped channel shows a high mobility – as expected – for 
long (1µm) transistors, but for short gate lengths doped and 
undoped channels are equivalent. This well explains the lack of 
performance increase for undoped DG devices. As this 
phenomenon was observed on other SG or DG type 
architectures in literature, the root cause of this issue was 
investigated. 
The mobility in bulk transistors is degrading for short gate 
lengths, for NMOS and PMOS (Fig. 8), mainly under 100nm 
electrical length. It was first attributed to pocket implants [5] or 
channel dopants pile-up [7], but comparing transistors with or 
without pockets (Fig. 9) shows that this effect is not 
predominant. 
A cause for this mobility degradation could be interface or 
oxide charges located near the extensions (Fig. 10). The 
experimental degradation can be reproduced quantitatively 
(Fig. 11) provided high density of interface charges 
(5x1011cm-2) are added near source and drain, but a reverse 
short channel effect is also induced, which is not observed 
experimentally, neither on SG nor on DG without pockets. 
The effect of the remote Coulomb scattering from extensions 
(analogous to polygate-to-channel one) was also simulated (not 
shown), but it only explains a worst case µ0 degradation of 



10% at LEff=30nm, on undoped DG transistor. 
More fundamentally, a µ decrease with L is also predicted 
because of nearly ballistic transport [16] – but in our case the 
measured mobilities are far from the ballistic limit (Fig. 12). 

 Low temperature experiments & interpretation 
In order to separate scattering mechanisms, low temperature 
mobility extractions were performed and fitted to a simple 
empirical model [17] (Figs. 13 & 14). Those measurements 
reveal the predominance of a non-Coulombian (and thus 
independent of temperature) mechanism on the mobility 
variation with the gate length. This scattering mechanism, of 
negligible impact on large gate lengths (LG>150nm, Fig. 15), 
has a very significant impact on the mobility for very short 
devices (Figs. 16 & 17) even at ambient temperature, whereas 
the dominant mechanism stays phonon scattering at this 
temperature. This can be linked to the presence of neutral 
defects in silicon or at the interface near source and drain 
(≈50nm), explaining the gate length dependence (Fig. 18). The 
damaged zones merge for LG<100nm, and thus the effect 
becomes more dramatic . 
These defects can be crystalline defects, possibly induced by 
extensions implants; though, this degrading mechanism is not 
actually dependent of extensions implant energy (Fig. 19). 
Investigating the possibilities to repair defects, the effect of the 
activation anneal temperature was experimented. 1080°C spike 
anneal instead of 1050°C improves mobility on NMOS (+25% 
for short L) without any effect on the VTh (Fig. 20), evidencing 
neutral defects healing. Mobility is even more improved on 
PMOS (+60%) but with a VTh shift, implying also Coulombian 
defects (interface states) healing (Fig. 21). 

 Conclusion 
The mobility degradation with the length reduction, which 
particularly impacts the transistors with gate length under 
100nm, was observed and deeply investigated on both bulk and 
double gate transistors. This degradation is not attributable 
only to ballisticity, remote Coulomb scattering, 
pockets/dopants pile-up or interface states/oxide charges, but 
mainly to non-Coulombian scattering associated to process-
induced defects located near the source and drain junctions. 
Mobility can be improved by annealing temperature increase; 
this introduces a new trade-off between junction 
shallowness/abruptness and transport quality.  
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Figure 1 : MASTAR literature review for best 

published multi-gate NMOS and best trend cloud 
at Vdd=1.2V (doped channel). Vdd is indicated for 

each point. Currents normalized from interface 
conduction width. Circles : heavily doped channel; 

Diamonds : undoped channel transistors. 
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Figure 2 : Ioff(Ion) plots for GAA transistors with 
variable Lg down to 40nm, undoped and doped 

channel, TSi=15nm. Normalized with mask width. 
Undoped channel doesn’t show improved trade-off 

in spite of the reduced effective field. 
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Figure 3 : Parameters extraction by Y function 

method. The Y function eliminates θ1 and thus the 
effect of series resistances. 
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Figure 4 : Gate-to-channel capacitance 

measurements for 12Å oxide nmos bulk 
transistors, 5 mask lengths from 1µm to 100nm. 
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Figure 5 : Gate-to-channel maximum values 
function of mask length (minus parasitic 

capacitance). Linear regression interception with 
x-axis gives LMask-LEff. 
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Figure 6 : Comparison of effective mobility 
extracted by split C(V) and from parameters 

extracted by Y function method. 
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Figure 7 : Low field mobility compared for highly 

doped and undoped DG NMOSFETs 

0

100

200

300

10 100 1000
Leff (nm)

µ0
 (c

m
²/V

.s
) Bulk NMOS

Bulk PMOS

0

100

200

300

10 100 1000
Leff (nm)

µ0
 (c

m
²/V

.s
) Bulk NMOS

Bulk PMOS

Figure 8 : Low field mobility for bulk MOSFETs 
(12A oxide) 
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Figure 9 : Low field mobility for NMOSFETs (12A 
oxide) with or without pocket implants. Insert : VTh 

 
Figure 10 : Simulated undoped DG NMOSFET 

with interface states variable in the channel 
position (near source and drain junction) : 

( ) ( )611611 10.2exp.10.510.2exp.10.5 LxxNit −+−=  
a): simulated device, b) interface states distrib. 
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Figure 11 : FEM simulation results : low field 

mobility extracted from the ID(VG) curves. Insert: 
VTh. 
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Figure 12 : Comparison of the maximum possible 
mobility with the ballistic limit from [17] and the 

experimental data from n-channel UDG. 
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Figure 13 : Experimental data and model fit for 
low field mobility variation with T, doped DG. 

nCph µTµµ
T

µ
1

.
1

.300
1

0

++=

L (nm) 160 130 110 90 70 55 40
Phonon scat. (µph) 170 170 170 170 170 170 170
Coulomb Scat. (µC) 11 10 12 12 12 12 12
Neutral defects (µn) 20000 10000 5000 1800 700 380 380

0

5000

10000

15000

20000

40 90 140
Leff (nm)

µn
 (c

m
²/V

.s
) Critical length

LC = 100nm

nCph µTµµ
T

µ
1

.
1

.300
1

0

++=

L (nm) 160 130 110 90 70 55 40
Phonon scat. (µph) 170 170 170 170 170 170 170
Coulomb Scat. (µC) 11 10 12 12 12 12 12
Neutral defects (µn) 20000 10000 5000 1800 700 380 380

0

5000

10000

15000

20000

40 90 140
Leff (nm)

µn
 (c

m
²/V

.s
) Critical length

LC = 100nm

0

5000

10000

15000

20000

40 90 140
Leff (nm)

µn
 (c

m
²/V

.s
) Critical length

LC = 100nm

 
Figure 14 : The mobility model allows to separate 
phonon (µph), Coulombian scattering (µC) and non-

Coulombian scattering (µn) thanks to their 
temperature dependence. Critical length Lc of 

100nm is found for the non-Coulombian scattering 
parameter, suggesting extension of the defects of 

50nm from junctions. 
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Figure 15 : Mobility limiting factors for doped DG 

transistor, LEff=160nm. Main limiting factor at 
ambient temperature is phonon scattering, while 

coulomb scattering plays a role only at low 
temperature. 
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Figure 16 : Mobility limiting factors for doped DG 

transistor, LEff=40nm. Main limiting factor at 
ambient temperature stays phonon scattering, but 

neutral scattering plays a significant role. 
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Figure 17 : Mobility limiting factors variation with 

the gate length. Phonon and coulomb scattering 
stay constant, but neutral scattering impact 

increases for short devices. 
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Figure 18 : Principle scheme of the localisation of 
the neutral defects. Pockets can be superimposed 

with the same localisation on the channel, but 
neutral defects are predominant electrically. 
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Figure 19 : Low field mobility for bulk 

NMOSFETs (17A oxide) with 2 different S/D 
extension implant energies: no significant 

difference is found. 
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Figure 20 : Comparison of mobility variation with 

the effective length for 2 different spike anneal 
temperatures, bulk NMOS (insert : VTh). Mobility 
recover without Vth variation (due to reverse short 
channel effect) indicates neutral defects healing. 
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Figure 21 : Comparison of mobility variation with 

the effective length for 2 different spike anneal 
temperatures, bulk PMOS (insert : VTh). Mobility 
recover with reverse short channel effect indicates 

interface states and neutral defects healing. 
 


