
Optimal Static WCET-aware Scratchpad Allocation
of Program Code

∗

Heiko Falk
Computer Science 12

Technische Universität Dortmund
D - 44221 Dortmund, Germany

Heiko.Falk@tu-dortmund.de

Jan C. Kleinsorge
Computer Science 12

Technische Universität Dortmund
D - 44221 Dortmund, Germany

Jan.Kleinsorge@tu-dortmund.de

ABSTRACT

Caches are notorious for their unpredictability. It is difficult
or even impossible to predict if a memory access will result in
a definite cache hit or miss. This unpredictability is highly
undesired especially when designing real-time systems where
the worst-case execution time (WCET) is one of the key
metrics. Scratchpad memories (SPMs) have proven to be a
fully predictable alternative to caches. In contrast to caches,
however, SPMs require dedicated compiler support.

This paper presents an optimal static SPM allocation al-
gorithm for program code. It minimizes WCETs by placing
the most beneficial parts of a program’s code in an SPM.
Our results underline the effectiveness of the proposed tech-
niques. For a total of 73 realistic benchmarks, we reduced
WCETs on average by 7.4% up to 40%. Additionally, the
run times of our ILP-based SPM allocator are negligible.

Categories and Subject Descriptors

D.3.4 [Programming Languages]: Compilers; Optimiza-
tion; C.3 [Real-time and embedded systems]; B.3.3
[Memory Structures]: Worst-case analysis

General Terms

Algorithms, Performance

Keywords

WCET, Scratchpad Allocation

1. INTRODUCTION
Embedded systems are often real-time systems whose cor-

rectness depends on both the logical results and on the time
at which the results are produced. A program’s worst-case
execution time (WCET) is used to guarantee that real-time

∗Funded by the European Community’s 7th Framework Pro-
gramme FP7/2007-2013 under grant agreement no 216008.

constraints are safely met. But besides safety, the market
demands high performance, energy efficiency and low cost.
Hence, designing such products implies solving a complex
optimization problem with multiple optimization criteria.
Compilers play an important role during real-time system
design since they are able to apply automated optimizations
improving the quality of the generated executable code.

For hard real-time systems, caches are problematic. Since
they are hardware controlled, it is virtually impossible to
determine the latency of a memory access for many popu-
lar cache architectures. Additionally, sporadically executed
code like e. g. scheduler or interrupt handlers may mod-
ify cache contents. Hence, statically determined WCET
estimates may be heavily overestimated in the presence of
caches. Therefore, real-time system designers tend to disable
caches. Such systems suffer a low average-case performance
since each memory access uses the slow main memory.

Scratchpad memories (SPMs) have both a good average
and worst-case performance. This paper presents a WCET-
aware SPM allocation of program code. Our algorithm de-
termines a static SPM allocation: the SPM’s contents is
pre-computed at compile time and remains fixed during run
time. Due to integer-linear programming (ILP), our ap-
proach is optimal in that it results in a minimal WCET.

A program P ’s WCET is the maximal time P ’s execu-
tion can ever take. The control flow graph (CFG) of P ,
whose nodes represent basic blocks and whose edges indi-
cate that one basic block can be reached from the other,
reflects all possible ways of executing P . Among all paths
from P ’s start node in the CFG to some end node, there is
one longest path, called worst-case execution path (WCEP),
and its length is equal to P ’s WCET. Here, path length is
the sum of the products of WCET and worst-case execution
frequency for all basic blocks of the path.

A WCET minimizing compiler thus has to reduce the
WCEP’s length. Assume e. g. that p1 is P ’s current WCEP
and some disjoint path p2 is the second longest path in the
CFG. If an optimization successfully shortens p1 by more
than |p1| − |p2| time units (where |p| stands for the length
of p), p2 becomes the new WCEP after this optimization.

However, if the optimization is unaware of the WCEP
change from p1 to p2, the compiler keeps on reducing the
length of p1. Unfortunately, this effort may be in vain since
it not necessarily leads to any further WCET reduction, be-
cause the new WCEP p2 might not be affected.

Hence, the following requirements have to be met by com-
pilers aiming at WCET minimization. They must
• have detailed knowledge about the WCEP,
• apply optimizations exclusively to those parts of P ly-

42.1

726732

42.2

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
DAC’09, July 26-31, 2009, San Francisco, California, USA
Copyright 2009 ACM 978-1-60558-497-3/09/07....10.00

ing on the WCEP, since optimizing parts of P not lying
on the WCEP don’t reduce the WCET at all, and

• be aware of changes of the WCEP in the course of ap-
plied optimizations.

These requirements are very challenging, because such in-
stable WCEPs are difficult to consider within compiler opti-
mizations. This paper is the first one to present an optimal
WCET-aware SPM allocation technique for program code.
The main contributions of the proposed approach are that it
• inherently captures a program’s current WCEP and its

possible switches,

• improves the current state of the art of SPM allocation
of program code. Our technique is the first one to
consider jump penalties and variable basic block sizes
based on jump scenarios.

• achieves average WCET reductions from 7.4% up to
40% for 73 real-life benchmarks while requiring only
negligible optimization run times.

Section 2 gives a survey of related work. Section 3 presents
our ILP model to perform optimal WCET-aware SPM allo-
cation of program code. The link between our ILP model
and a compiler infrastructure used to extract all constants
required by the ILP is described in Section 4. Section 5
describes the benchmarking results, and Section 6 gives a
summary and an outlook on our future work.

2. RELATED WORK
Compiler-guided SPM allocation has been studied intense-

ly in the past. SPMs are frequently used to reduce average-
case performance or energy dissipation. Generally, global
data, basic blocks, sequences of basic blocks or functions
are placed in an SPM to realize a certain profit in terms
of run time or energy dissipation. As pointed out in [14,
18], simply greedily selecting the SPM contents can lead to
suboptimal or even degraded results. Among all proposed
allocation strategies for energy dissipation or run time min-
imization, ILP-based approaches are most popular due to
the optimality of the results and the elegance of the models.

An ILP for static SPM allocation of functions, basic blocks
and data minimizing energy dissipation is proposed in [11].
It introduces multi basic blocks to model the fact that sizes
and energy savings of basic blocks vary depending on a cur-
rent SPM allocation due to the insertion of additional jump
instructions. This concept basically fully enumerates the
power set of all basic blocks in the ILP, thus leading to an
exponential explosion of the ILP’s size. This exponential
ILP explosion is avoided in the present paper by modeling
variable block sizes and gains using so-called jump scenarios.

In [16, 17], the impact of SPMs on WCET prediction is
studied. Even though WCET is subject of these papers, the
ILP-based SPM allocation is not WCET-aware. Instead,
an energy minimizing selection algorithm is employed, and
the effect of this energy reduction strategy on WCET is
evaluated afterwards. Hence, that work is not a true WCET-
aware optimization and does not consider WCEPs at all.

Software controlled caches allowing to load contents into
a cache and to lock it afterwards, i. e. to prevent it from be-
ing replaced, behave like SPMs. All following publications
explicitly focus on WCET minimization. In [2], a genetic
algorithm for cache contents selection of statically locked
I-caches is presented. However, this approach does not nec-
essarily yield optimal results. An explicit search for the

WCEP within the CFG is performed in [6] and I-cache con-
tents selection is done along the found WCEP. [6] relies on
repeatedly investigating the CFG and is therefore expen-
sive to perform. A similar iterative approach was presented
in [10]: multiple optimization steps along the current WCEP
are performed without recomputing the WCEP. After a cer-
tain number of optimization steps, the partially optimized
program is analyzed and the resulting WCEP is computed
for subsequent optimization steps.

The authors of [3] present a hybrid approach for WCET-
centric dynamic SPM allocation of data. It is hybrid in that
sense that it combines an ILP with an iterative heuristic.
Using a static WCET analyzer, the current WCEP is com-
puted. After that, an ILP tailored for this particular WCEP
is solved that determines optimally which data is allocated
to the SPM. In the next iteration, the WCEP is recomputed
and some more SPM contents is determined using ILP.

In [12], a fully ILP-based solution to the problem of static
allocation of data to SPMs for WCET reduction is presented.
This work serves as basis for the techniques presented in
the following. However, [12] is unable to allocate code onto
SPMs and suffers from several limitations preventing it from
being applied to real-life programs. This survey of related
work shows that no WCET minimizing unified ILP-based
SPM allocation scheme for program code currently exists,
whereas basic techniques for program data already exist.
For this reason, we focus on SPM allocation of code.

The compiler WCC [5] is the first fully functional compiler
explicitly designed for WCET minimization. WCET timing
models are integrated into WCC by coupling its backend
with the static WCET analyzer aiT [1]. This way, WCC can
apply static WCET analysis while optimizing and can use all
the WCET-related data computed by aiT for optimization.
WCC serves as technical infrastructure for the WCET-aware
SPM allocation presented in this paper.

3. ILP FOR PROGRAM CODE SCRATCH-

PAD ALLOCATION
This section presents our optimal WCET-aware SPM al-

location for program code. Section 3.1 discusses those parts
of the ILP modeling a function’s control flow. Section 3.2
deals with SPM allocation of consecutive sequences of basic
blocks. Modeling a program’s global control flow, capac-
ity constraints and objective function are subject of Sec-
tions 3.3, 3.4 and 3.5, respectively.

3.1 Modeling of a Function’s Control Flow
In the following, ILP variables are represented using low-

ercase letters whereas constants use uppercase letters. The
ILP allocating program code to the SPM uses one binary
decision variable xi per basic block bi of a program. xi

specifies whether block bi is allocated to the main memory
(memmain) or to the SPM (memspm):

xi =

j
1 if basic block bi is assigned to memspm

0 if basic block bi is assigned to memmain
(1)

Each basic block bi of a function F causes some costs ci.
These costs reflect the WCET of bi depending on whether
bi is executed from main memory or from the SPM:

ci = C
i
main ∗ (1− xi) + C

i
spm ∗ xi (2)

For reducible CFGs, an innermost loop L of F has exactly

727733

one back-edge turning it into a cyclic graph. Not considering
this back-edge turns L’s CFG into an acyclic graph. This
acyclic graph without L’s back-edge is denoted as GL =
(V, E) in the following. Without loss of generality, it can
be assumed that there is exactly one basic block bL

exit in GL

being the loop’s unique exit node and one unique entry node
bL
entry . The WCET wL

exit of bL
exit is equal to the costs of bL

exit :

w
L
exit = c

L
exit (3)

The WCET of a path leading from a node bi of GL differ-
ent from bL

exit to bL
exit must be greater than or equal to the

WCET of any successor of bi in GL, plus the costs bi causes:

∀bi ∈ V \ {bL
exit} : ∀(bi, bsucc) ∈ E : wi ≥ wsucc + ci (4)

Variable wL
entry models the WCET of all paths of loop L if

it is executed exactly once. To model several executions of
L, all CFG nodes v ∈ V of GL are merged to a new super-
node vL. The costs of vL are the product of L’s WCET if
executed once and L’s maximal loop iteration count:

cL = w
L
entry ∗ C

L
max (5)

Replacing a loop L by a super-node vL in the CFG may
turn another loop L′ of F directly surrounding L into an
innermost loop with acyclic CFG G′

L. Hence, the constraints
of Equations (3) and (4) can be formulated for L′. This way,
the innermost loops of F are successively collapsed in the
CFG so that ILP constraints modeling F ’s control flow are
created from the innermost to the outermost loops.

A program’s WCEP can change during optimization only
at such points in the CFG where a basic block bi has more
than one successor because only there, forks in the control
flow are possible. Since constraint (4) is formulated for each
successor of block bi, variable wi always reflects the WCET
of any path starting from bi – irrespective of the fact which of
the successors actually lies on the current WCEP. This way,
constraint (4) realizes the implicit consideration of WCEPs
and their changes in the ILP.

The structure of the ILP constraints of Equations (2) –
(5) was originally proposed by [12]. However, these basic
constraints of Suhendra et al. need to be refined substan-
tially in order to obtain a functional scratchpad allocation
technique for program code. Our extensions to the original
ILP formulation are described in the following sections.

3.2 Allocation of Consecutive Basic Blocks
The binary decision variables xi allow to place a basic

block bi in the SPM independent of allocation decisions con-
cerning any other basic block within a function F . However,
this independence of the allocation decisions for single basic
blocks is particularly problematic for embedded processors.

If a basic block bi is allocated to the main memory and an
immediate successor bj of bi within the CFG is allocated to
the SPM, jump instructions must ensure that bj is reached
from bi. Due to the limited displacement which can be en-
coded as branch target of typical jump instructions, and due
to the usually too large distance between the address spaces
of SPM and main memory, a single jump instruction is often
insufficient to transfer control from bi to bj . Frequently, the
address where to jump needs to be computed and stored in
an address register so that a register-indirect jump instruc-
tion can finally be issued. In such a scenario, transferring
control from bi to bj requires several machine instructions
constituting a severe jumping overhead.

bi

bk

bj

bi

a) Implicit b) Unconditional c) Conditional

bj

bi

bk

bj

Figure 1: Typical Jump Scenarios

This jumping overhead might be avoided if both bi and
bj are allocated to the same memory. Thus, the ILP should
consider this kind of jumping overhead and should try to al-
locate groups of consecutive basic blocks to the same mem-
ory if this helps in reducing jumping overhead.

On typical embedded processors, three different jump sce-
narios (JS) can be found (cf. Figure 1). If control flows from
basic block bi to bj without any jump instruction at the end
of bi, this is called implicit jump. If a jump instruction at
the end of bi always transfers control from bi to bj , this
is called unconditional jump. Finally, a conditional jump
transfers control conditionally from bi to either bj using an
unconditional jump or to bk via an implicit jump scenario.

The variables xi, xj and xk for the basic blocks bi, bj

and bk resp. now provide the information whether jumping
overhead needs to be considered within the ILP or not.

If two blocks bi and bj belong to the implicit jump scenario
and if bi and bj are placed in different memories, a penalty
should be added since this situation leads to a large jumping
overhead to transfer control from bi to bj across the different
memories. In contrast, no penalty needs to be considered at
all if both bi and bj are placed in the same memory, because
it is ensured that bi and bj are allocated adjacently so that
no jump is required. We thus define a jump penalty for
implicit jumps between basic blocks bi and bj as follows:

jpi
impl = (xi ⊗ xj) ∗ Phigh (6)

In Equation (6), the operator ⊗ represents the Boolean XOR
of two binary decision variables – the Boolean XOR can be
modeled within an ILP, but we omitted the listing of these
constraints for the sake of simplicity. Phigh is a constant real-
izing a high penalty for jumps across the different memories
due to their large jumping overhead.

An unconditional jump from bi to bj usually bypasses a
number of other basic blocks bk (cf. Figure 1b). These
other blocks bk also need to be considered, because they
determine if a jump from bi to bj is required at all. If bi

and bj are allocated to different memories, the high penalty
Phigh already used in Equation (6) needs to be used. If bi and
bj are allocated to the same memory mem, and if no other
basic block bk originally lying between bi and bj is allocated
to mem, bi and bj are adjacent within mem. Hence, no jump
from bi to bj is required at all and thus no penalty within
the ILP is necessary. If any other basic block bk is placed
between bi and bj in mem, an unconditional jump from bi to
bj bypassing bk is necessary which is penalized by a constant
Plow which is much lower than Phigh . The jump penalty for
unconditional jumps between basic blocks bi and bj is thus
defined as follows:

jpi
uncond = (xi ⊗ xj) ∗ Phigh + (7)

(xi ⊗ xj) ∗ (1−
Y

bk∈Figure 1b)

(xi ⊗ xk)) ∗ Plow

728734

In analogy to Equation (6), we omit the description of the
ILP equations to model the product of XOR terms.

Since a conditional jump can be seen as the combination
of an implicit and an unconditional jump (cf. Figure 1c),
the jump penalty for conditional jumps is the combination
of Equations (6) and (7):

jpi
cond = (xi ⊗ xk) ∗ Phigh + (xi ⊗ xj) ∗ Phigh + (8)

(xi ⊗ xj) ∗ (1−
Y

bk∈Figure 1c)

(xi ⊗ xk)) ∗ Plow

Depending on the jump scenario of a basic block bi, the
overall jump penalty jpi is defined as follows:

jpi =

8>><
>>:

jpi
impl if JS of bi is implicit

jpi
uncond if JS of bi is unconditional

jpi
cond if JS of bi is conditional

0 else

(9)

This jump penalty is used to extend the basic control flow
constraints defined in Equations (3) and (4):

w
L
exit = c

L
exit + jpL

exit (10)

∀bi ∈ V \{bL
exit} : ∀(bi, bsucc) ∈ E : wi ≥ wsucc+ci+jpi (11)

3.3 Modeling of the Global Control Flow
Up to this point, the ILP defined in Equations (1) – (11)

only models the intra-procedural control flow of a single
function F . Without loss of generality, each function F has
one dedicated entry block bF

entry . For bF
entry , the ILP vari-

able wF
entry denotes the WCET of any path starting at bF

entry

under the assumption that F is called exactly once.
However, some basic block b of a function F ′ may contain

a call of a function F . In this situation, F ’s WCET repre-
sented by variable wF

entry needs to be added to the WCET
of block b. In addition, a function call penalty needs to be
added to b’s WCET since branching overhead similar to that
one described in Section 3.2 occurs if b and bF

entry are allo-
cated to different memories. As a result, the overall function
call penalty cpi for a basic block bi is defined as follows:

cpi =

8<
:

wF
entry + (xi ⊗ xF

entry) ∗ Phigh if bi calls F

+(1− (xi ⊗ xF
entry)) ∗ Plow

0 else
(12)

In analogy to Section 3.2, cpi is used to extend the control
flow constraint defined in Equation (11):

∀bi ∈ V \ {bL
exit} : ∀(bi, bsucc) ∈ E : (13)

wi ≥ wsucc + ci + jpi + cpi

Equation (13) now reflects the constraint which is finally
generated for our ILP per basic block bi and per successor
bsucc of bi. In Equation (13), we assume non-recursive func-
tions. Due to the practical irrelevance of recursion for em-
bedded real-time software [4], this assumption is valid even
if support of recursion could be added to the ILP.

3.4 Scratchpad Capacity Constraints
To obtain a valid SPM allocation, it must be ensured that

the size of all basic blocks allocated to the SPM does not
exceed the SPM’s capacity. Previous work on ILP-based
SPM allocation either assumed constant basic block sizes or
performed an exponential enumeration of the power set of
all basic blocks to model basic block sizes.

As already discussed in Section 3.2, different kinds of jump
instructions need to be issued, depending on the contents of
the decision variables xi and xj for a basic block bi trans-
ferring control to bj . No jump instruction is needed in sit-
uations where bi and bj are adjacently placed in the same
memory. A conventional jump instruction needs to be gen-
erated if bi and bj are allocated to the same memory but
not adjacently. Finally, complex address computations and
register-indirect branches need to be generated if a jump
across memories needs to be performed.

Obviously, these different situations have an impact on
the size of a basic block bi. Hence, a block’s size depends on
the ILP decision variables in practice. In order to cope with
such variable block sizes, we fall back to the jump scenarios
introduced in Section 3.2 (cf. Figure 1). In the ILP, we only
consider bi’s size if bi is placed in the SPM since we assume
a main memory which is large enough to hold the entire
program. For a block bi placed in the SPM, a new variable
si denotes the growth in size of bi in bytes if the successors
bj of bi are kept in main memory. Depending on the jump
scenario of bi (implicit, unconditional or conditional), or if
bi contains a function call, si is computed as follows:

si =

8>>>>>><
>>>>>>:

(xi ∧ xj) ∗ Simpl if JS of bi is implicit
(xi ∧ xj) ∗ Suncond if JS of bi is uncond .

(xi ∧ xk) ∗ Simpl+ if JS of bi is cond .

(xi ∧ xj) ∗ Suncond

(xi ∧ xF
entry) ∗ Scall if bi calls F

0 else

(14)

For each jump scenario, dedicated constants Simpl , Suncond

and Scall are used. They represent the growth of bi in bytes
for the different jump scenarios. Using si, the scratchpad ca-
pacity constraint ensuring the validity of an SPM allocation
is defined as follows:X

bi

(Si ∗ xi + si) ≤ Sspm (15)

In Equation (15), the constant Si denotes the byte size
of bi in its original form without any cross-memory jumps.
Sspm represents the available SPM size in bytes.

3.5 Objective Function
The overall goal of our ILP is to minimize a program’s

WCET by assigning basic blocks to the SPM. Due to the na-
ture of Equations (12) and (13), variable wF

entry corresponds
to the WCET of function F including the WCETs of all
functions called by F , plus some abstract jump penalties.
Since function main is the unique entry point of an entire
program, variable wmain

entry denotes the WCET of a program
including all penalties. As a consequence, the value of this
decision variable needs to be minimized by the ILP:

w
main

entry � min. (16)

4. COMPILER INFRASTRUCTURE
To turn the ILP model presented in Section 3 into a fully

functional optimization, support by an underlying compiler
infrastructure is required. In particular, we employ the in-
frastructure of our WCET-aware C compiler WCC [5] for
the Infineon TriCore TC1796 processor (cf. Figure 2) to ex-
tract all the constants required by the ILP from the code
currently under optimization.

729735

0%

10%

20%
30%

40%

50%

60%

70%

80%
90%

100%

110%

10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

Relative SPM Size [%]

R
e
la

ti
v
e

W
C

E
T

E
S

T
[%

]

g721_encode

0%

10%

20%

30%

40%

50%

60%
70%

80%

90%

100%

110%

10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

Relative SPM Size [%]

R
e
la

ti
v
e

W
C

E
T

E
S

T
[%

]

cover

0%

10%

20%

30%

40%

50%

60%
70%

80%

90%

100%

110%

10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

Relative SPM Size [%]

R
e
la

ti
v
e

W
C

E
T

E
S

T
[%

]

md5

Figure 3: Relative WCET Estimates after WCET-aware SPM Allocation for Representative Benchmarks

ICD-C
Parser

LLIR Code
Selector

aiT WCET
Analysis

ANSI-C
Sources &
Flow Facts

High-Level
ICD-C

Code
Generator

Low-Level
LLIR

ILP-based
WCET-aware
SPM Code
Allocation

Loop
Analyzer

Memory
Hierarchy

Specification

WCET-
Optimized
Assembly

Linker
Script

Figure 2: WCET-aware C Compiler WCC

Equation (2) depends on the constants Ci
main and Ci

spm

representing the WCET of basic block bi if it is located ei-
ther in main memory or in the SPM, respectively. Ci

main

is obtained by placing the whole program in main memory
and performing a WCET analysis using the coupling of our
compiler backend to the static WCET analyzer aiT [1]. In
a second step, the whole program is virtually placed in the
SPM using an infrastructure to model arbitrary memory hi-
erarchies within our compiler. Another WCET analysis of
this program yields the values Ci

spm .
Equation (5) depends on a loop’s maximal iteration count

CL
max . In our compiler, this value can stem from user-speci-

fied flow fact annotations or it can be generated by our au-
tomatic loop analyzer [8]. Irrespective of the origin of CL

max ,
flow fact mechanisms take care to keep the values CL

max up
to date during all loop optimizations of our compiler such
that correct values are used by our ILP for SPM allocation.

The jump penalties Phigh and Plow introduced in Sec-
tion 3.2 do not rely on any part of our compiler infrastruc-
ture. WCET analyses of jumping code for the different jump
scenarios revealed that the values 16 and 8 are appropriate
for the considered TriCore architecture.

Equation (14) depends on constants Simpl , Suncond and
Scall representing the byte size of the additional code re-
quired to jump from a block bi to bj if bi is allocated to the
scratchpad memory but bj is not. Due to the shape of the
jumping code required for the TriCore architecture and the
different jump scenarios of Equation (14), Simpl and Suncond

equal to 10 bytes and Scall is equal to 12 bytes.
A basic block’s size Si (cf. Equation (15)) without con-

sideration of cross-memory jumps at the end of bi is simply
computed by accumulating the size of all instructions of bi.
The totally available SPM size Sspm , however, is extracted
again from WCC’s memory hierarchy infrastructure.

After solving the ILP, the values for the decision vari-
ables xi determine where to place each basic block bi. Using
WCC’s memory hierarchy API, the code of the program cur-

rently under optimization is finally transformed such that it
reflects exactly the allocation decisions taken by the ILP. In
addition to the SPM-allocated assembly code, our compiler
finally emits a linker script required to generate a binary
executable reflecting the ILP’s SPM allocation.

5. EVALUATION
This section presents real-life benchmarking results for the

proposed optimal WCET-aware SPM allocator. At opti-
mization level -O2, our compiler (cf. Figure 2) applies a
total of 34 different optimizations, including, among others,
code reordering transformations. As very last optimization,
the WCET-aware SPM allocation of program code discussed
in this paper is performed. Hence, our SPM allocation is al-
ways applied to already highly optimized code.

As target architecture, the Infineon TriCore TC1796 is
considered. Its memory address space is divided into 16 seg-
ments of maximum size of 256 MB each. The instruction
set allows to jump within a segment with only one single
machine instruction. Cross-segment jumps require more in-
structions (cf. Section 3.2). The TC1796 features a 48 kB
large program code scratchpad mapped to segment 13. From
these 48 kB, 1 kB is reserved for system code so that 47 kB
remain for free use. An access to the program SPM of the
TC1796 takes place within one cycle whereas accessing the
program Flash serving as main memory takes 6 cycles.

Our ILP-based SPM allocation was applied to a total of
73 different real-life benchmarks from the MRTC [9], Me-
diaBench [7], UTDSP [13] and DSPstone [15] benchmark
suites. The number of basic blocks of all considered bench-
marks ranges from 4 for the simplest DSPstone codes up
to 585 for the most complex MediaBench applications. The
code sizes of the benchmarks range from 52 bytes up to 18 kB
with an average code size of 2.8 kB per benchmark.

Since the benchmarks’ code sizes are considerably smaller
than the totally available SPM size, we artificially limit
the available SPM size for benchmarking. For every single
benchmark, SPM sizes of 10%, 20%, . . . , 100% of the bench-
mark’s code size were used. The following results show the
WCET estimates of all benchmarks produced by aiT result-
ing from our WCET-aware SPM allocator as a percentage
of the WCET when not using the SPM at all.

Figure 3 shows the impact of our WCET-aware SPM al-
location on the WCET estimates (WCETest) of three rep-
resentative benchmarks. For g721_encode with a total code
size of 3,204 bytes, a steady decrease in terms of WCET can
be observed the more scratchpad is available. Already for
extremely small SPMs of only 10% of the program’s code
size, the WCET after our optimization amounts to 71% of
the original WCET, i. e. a WCET reduction of 29% was
achieved. If the benchmark fits into the SPM in its entirety,

730736

0%

10%
20%

30%

40%

50%
60%

70%

80%

90%
100%

110%

10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

Relative SPM Size [%]

A
v
g

.
R

e
la

ti
v
e

W
C

E
T

E
S

T
[%

]

Figure 4: Average WCET Estimates after WCET-

aware SPM Allocation for 73 Benchmarks

the resulting WCET is only 52.2% of the original WCET
leading to savings of 47.8%.

For cover (code size: 2,670 bytes), a stepwise WCET re-
duction was observed. At 40%, 70% and 100% of SPM size,
our ILP is able to move the most important loops leading
to the highest WCET savings entirely onto the scratchpad
memory. Thus, WCETs of 89.8%, 65.1% and 55.7% were
achieved for these SPM sizes, resulting in savings of 10.2%,
34.9% and 44.3% respectively.

A quite extreme evolution of WCETs was finally observed
for md5 (6,354 bytes size). Here, an SPM size of only 10%
of the total size of md5 is enough to reduce the benchmark’s
WCET down to 59.1%. In absolute values, a tiny SPM
of 636 bytes leads to a WCET reduction of 40.9%. This
indicates that md5 consists of one single hot spot which is
executed extremely frequently and which has a very small
code size. A further increase of the SPM for md5 does not
translate into any further WCET reductions. If md5 fits
entirely into the SPM (100%), an overall WCET of 56.3%
was obtained which is only 2.8% off the WCET obtained for
the 10% SPM. This benchmark clearly demonstrates that
our ILP unerringly selects those basic blocks leading to the
highest WCET reductions when being moved onto the SPM.

On average over all 73 benchmarks, we finally obtained
steadily decreasing WCETs with increasing SPM sizes (cf.
Figure 4). Already for small SPMs, WCETs decrease to
92.6% of the WCET without any SPM, corresponding to a
WCET reduction of 7.4%. For large SPMs storing the en-
tire benchmark, average WCETs of only 60% of the original
WCET were obtained, leading to overall savings of 40%.

The complexity of our proposed ILP-based SPM allocator
is of no practical relevance. For a CFG with n nodes, the ILP
defined in Section 3 has a size of O(n2) constraints and vari-
ables. However, the ILP solver cplex only takes one or two
CPU seconds on an Intel Xeon running at 2.4 GHz for each
of the 73 benchmarks. Compared to this, the two WCET
analyses required to generate the constants Ci

spm and Ci
main

(cf. Section 4) are more expensive, but they also terminate
within a few CPU minutes for our largest benchmarks.

6. CONCLUSIONS
This paper is the first one to present a technique for opti-

mal WCET-aware SPM allocation of program code. It im-
proves the current state of the art of SPM allocation in that
it performs ILP-based SPM allocation of code for the very
first time under consideration of jump penalties and variable
basic blocks sizes based on jump scenarios. The effectiveness
of our approach is demonstrated by WCET reductions from
7.4% up to 40% for 73 different real-life benchmarks.

Our future work will concentrate on developing ILP-based

scratchpad memory allocators for program data and on dy-
namic SPM allocation of both code and data where changing
the scratchpad’s content at run time will be possible.

Acknowledgments

The authors would like to thank AbsInt Angewandte Infor-
matik GmbH for their support concerning WCET analysis
using aiT (www.absint.com/ait).

7. REFERENCES
[1] AbsInt Angewandte Informatik GmbH. aiT: Worst-Case

Execution Time Analyzers. www.absint.com/ait, 2009.
[2] A. M. Campoy, I. Puaut, A. P. Ivars, et al. Cache contents

selection for statically-locked instruction caches: An
Algorithm Comparison. In Proceedings of ECRTS, Palma
de Mallorca, July 2005.

[3] J.-F. Deverge and I. Puaut. WCET-Directed Dynamic
Scratchpad Memory Allocation of Data. In Proceedings of
ECRTS, Pisa, July 2007.

[4] J. Engblom. Static Properties of Commercial Embedded
Real-Time Programs, and Their Implication for
Worst-Case Execution Time Analysis. In Proceedings of
RTAS, Vancouver, 1999.

[5] H. Falk, P. Lokuciejewski, and H. Theiling. Design of a
WCET-Aware C Compiler. In Proceedings of ESTIMedia,
Seoul, Oct. 2006.
ls12-www.cs.tu-dortmund.de/research/activities/wcc.

[6] H. Falk, S. Plazar, and H. Theiling. Compile Time Decided
Instruction Cache Locking Using Worst-Case Execution
Paths. In Proceedings of CODES+ISSS, Salzburg, Oct.
2007.

[7] C. Lee, M. Potkonjak, and W. H. Mangione-Smith.
MediaBench: A Tool for Evaluating and Synthesizing
Multimedia and Communications Systems. In Proceedings
of MICRO 30, Washington DC, 1997.

[8] P. Lokuciejewski, D. Cordes, H. Falk, and P. Marwedel. A
Fast and Precise Static Loop Analysis based on Abstract
Interpretation, Program Slicing and Polytope Models. In
Proceedings of CGO, Mar. 2009.

[9] Mälardalen WCET Research Group. WCET Benchmarks.
www.mrtc.mdh.se/projects/wcet, Sept. 2008.

[10] I. Puaut. WCET-centric Software-controlled Instruction
Caches for Hard Real-Time Systems. In Proceedings of
ECRTS, July 2006.

[11] S. Steinke, L. Wehmeyer, B.-S. Lee, et al. Assigning
Program and Data Objects to Scratchpad for Energy
Reduction. In Proceedings of DATE, Paris, Mar. 2002.

[12] V. Suhendra, T. Mitra, A. Roychoudhury, et al. WCET
Centric Data Allocation to Scratchpad Memory. In
Proceedings of RTSS, Miami, Dec. 2005.

[13] UTDSP Benchmark Suite. www.eecg.toronto.edu/
∼corinna/DSP/infrastructure/UTDSP.html, Sept. 2008.

[14] M. Verma and P. Marwedel. Advanced Memory
Optimization Techniques for Low-Power Embedded
Processors. Springer, 2007.

[15] V. Živojnović, J. M. Velarde, C. Schläger, and H. Meyr.
DSPstone: A DSP-Oriented Benchmarking Methodology.
In Proceedings of ICSPAT ’94, Dallas, 1994.

[16] L. Wehmeyer and P. Marwedel. Influence of Onchip
Scratchpad Memories on WCET Prediction. In Proceedings
of WCET, Catania, June 2004.

[17] L. Wehmeyer and P. Marwedel. Influence of Memory
Hierarchies on Predictability for Time Constrained
Embedded Software. In Proceedings of DATE, Munich,
Mar. 2005.

[18] L. Wehmeyer and P. Marwedel. Fast, Efficient and
Predictable Memory Accesses – Optimization Algorithms
for Memory Architecture Aware Compilation. Springer,
2006.

731737

