
A Method to Calculate Necessary Assignments in Algorithmic
Test Pattern Generation

Janusz Rajski and Henry Cox

Departinrnt. of Elech-icnl Engineering
McGill Tliiiversity, 3480 liniversity Sti-eet

MontIPal, Canada H 3 A 2A7

Abstract

Necessary assignments are those which must be made in
order t o find a test pattern. This paper presents new algo-
rithms based on the concept of reduction lists to determine
necessary assignments. The algorithms use a 16-valued logic
system and are based on the mathematical concepts of itnages
and inverse images of set functions.

Experimental results are presented for a variety of bench-
mark circuits.

1. Introduction

Test pattern generation can be viewed as a branch and
bound problem (81; test pattern generation algorithms usu-
ally search through the space by systematically branching and
bounding until either a test pattern is discovered or the search
space is exhausted. Along the way. certain assignments can
be distinguished as being necessary: viewed as a branch de-
cision, assigning them t o some other value guarantees that
a bound step must eventually be taken. That is. i f the nec-
essary assignments are not made, then the subspace which
has been branched into is guaranteed not to covtain a test
pattern. Thus, alternative choices for necessary assignments
need not be explored. Other assignments can be distinguished
as nonconflicting in that they lead in the direction of a test
and restrict the search space. but never need to be back-
tracked. The remaining assignments are arbitrary-they may
or may not lead in the direction of a test, and may or may not
need t o be backtracked. This paper addresses the problem of
identifying necessary assignments.

The PODEM [8] and FAN (71 algorithms identify some
necessary assignments using local implications. but rely on
heuristics for choosing "good" branch nodes (arbitrary as-
signments) for much of their power. The contribution of
SOCRATES 1141 was to find additional necessary assign-
ments which could not be found using local implication.

SOCRATES determines additional necessary assignments
by finding the effect of each possible assignment t o every

This work was supported by strategic grant MEF0045788 from the
Natural Sciences ai id Eitgiiieeriiig Research Couticil of Canada.

node in the circuit. If an assignment makes it impossible t o
achieve some required value, then that assignment must be
disallowed. The effect of a particular assignment is deter-
mined by injecting the logic value in the circuit and deter-
mining i t s implications. This technique does not take logic
dependencies between circuit nodes into account. and thus
does not identify all necessary assignments. To overcome
this problem. common logic modules (adders. multiplexors.
etc.) whose logic dependencies are predetermined. have been
added t o the library of building blocks recognized by a modu-
lar version of SOCRATES 1131. Before each new module can
be recognized, implication. unique sensitization. and multiple
backtrace procedures which take the signal dependencies of
the module into account must be manually determined and
added t o the system. Dependencies between modules and in
unrecognized structures continue t o be missed.

In this paper, we present a test pattern generation algo-
r i thm which finds all necessary assignments, including those
which arise due t o logic dependencies between circuit nodes.
The algorithm is based on the mathematical concept o f im-
ages and inverse images of set functions. We generalize and
formalize the process of necessary assignment extraction us-
ing the idea of reduction lists. and show that both classical
implication and "learning" [14] are special cases of a more
general technique. In order t o take advantage of formal con-
cepts developed for Boolean algebras. the algorithm employs
a 16-valued algebra for test pattern generation. We illustrate
the benefits of a 16-valued system through examples of faults
which are not properly handled by conventional 5 or 9-valued
systems.

In the test pattern generation algorithm, necessary and
nonconflicting assignments are extracted iteratively until the
fault is either tested, proven to be redundant. or until no
more assignments can be found, a t which point an arbitrary
assignment (branch decision) is made. Experimental results
show that many faults are tested or proven to be redundant
without branching.

This paper is divided into three sections. First, we intro-
duce the 16valued logic system which is the foundation of
our approach. Next, we introduce the concepts of necessary
assignments and reduction lists and discuss their use in test
pattern generation. Finally, we present experimental results
obtained by our test pattern generation system when run on

1990 international Test Conference
CH2910-6/0000/0025$01 .OO C 1990 IEEE

Paper 2.1
25

a variety of benchmark circuits.

2. The Alphabet

The two-element Boolean algebra Bf = {0,1) is widely
used t o analyse switching circuits. It is also sufficiently pre-
cise to describe the behaviour of a fault-free combinational
circuit. However, in order t o describe the behavior of a pos-
sibly faulty circuit, a four-element Boolean algebra, Bl =
{O(O),O(l), 1(0), l(1)). where a(b) indicates that the response
in the fault-free circuit is a. and in the faulty circuit is b. is re-
quired. Using the D-symbols. Bi = {O,D, D , I}. The func-
tion of a two-input gate is described as a mapping B2 x Bz 4

Given a test vector for a particular fault, each line in the
circuit will carry one of the four possible values from Bi.
When we set out t o find a test pattern, we do not know
the actual values taken by each line in the final test vector:
thus. we start the process by assigning to each line the set
of possible values which it could take in any test pattern. As
test pattern generation proceeds, we determine that certain
of the values in each set cannot actually be obtained, and the
sets of possible values for each line become more and more
refined. For example, if a particular line cannot be affected
by the fault(s). i ts value cannot be either D or B. and thus
i ts set of possible values is reduced t o {O,l). Any o f the
16 subsets of the set {O,l, D , B) is a possible assignment;
therefore, a complete alphabet contains 16 values.

B; .

BlG

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Xi Z D Z T ” 0

0000
0001
0010
001 1
0100
0101
0110
0111
1000
1001
I010
101 1
1100
1101
1110
1111

Table 1 Three codings of a 16-element alphabet

Since we use the subsets of Bi to represent the sets of
possible values at each point in the circuit at various stages
of test pattern generation, it is natural t o introduce the power
set P (B ;) of B;. The power set of the basic D symbols has
been used by Akers for test generation [I]; as it is a Boolean
algebra, it is isomorphic t o the 16-valued system used in [5.
12) for fault diagnosis. P (B i) has 16 elements, and can be

Paper 2.1
26

coded by natural numbers from 0 t o 15 (BI6 in Table 1).
or as bitwise encoded quadruples describing the presence or
absence o f elements of B; (B i in Table 1).

Various algebras for test pattern generation have been
proposed. Use o f an appropriate algebra can greatly aid in
test pattern generation. Comparisons between algebras typ-
ically focus on the number of elements each contains, the
space required t o store circuit values, and the time required
to manipulate them [4]. A better comparison is the ability of
the logic system to resolve circuit values during test pattern
generation, Better resolution of values may allow a test pat-
tern generation algorithm t o reduce the amount of branching
and backtracking which must be performed t o find a test or
prove a fault redundant, thus requiring less time and storage
space despite using an alphabet which contains more values.

I

Figure 1
pliabet

Test pattern generation using a 5-valued al

The 5-valued alphabet As = { O , l , D , D , X) . where X
indicates “unknown” and the other symbols are interpreted
as in 8;. has been used in many ATPG algorithms 17. 8.
141. When targeting (attempting to generate a test for) fault
C/s,,, as shown in Fig. 1. we quickly determine that most
circuit values are X. and are forced t o make several arbitrary
branch decisions before eventually finding a test vector.

t I I

Figure 2
phabet

Test pattern generation wing a 9-valued a l -

Algorithms employing a 9-valued alphabet AD = {O/O.
1/1, 110, 0/1. X / O . O / X . 1/X. X/1. XJXj. where a l b indi-
cates the value in the fault-free/faulty circuit and X indicates
unknown [3, 9. 11). encounter a similar problem (Fig. 2). al-
though the additional values may aid in the choice of good
branch decisions.

A“

Figure 3 Test pattern generation using the SPL IT cir-
cui t model

In the SPLIT model for test pattern generation [4]. values
iii the good and faulty machines are treated separately-each

value can be 0. 1. or X . independent of the value in the
other machine. In addition. the relation between the values
in the good and faulty machine is calculated. Signal values
in the split model can be identified by the triple G / F / R .
where C is the value in the good machine. F is the value in
the faulty machine. and R is the relation between the values
(Equivalence. Difference, or Unknown). Thus. circuit values
in the SPLIT model are taken from the set All = {O/O/E.
II1,JE. X/.X/E. l / O I D . 0/1/D. X J X - / D . O J X j V . X l O / V .
Z I S I U . X J I J U . X / X / U } . Compared to the 9-valued sys-
tem, the SPLIT model is able t o distinguish the values (0, l}
and (D.D}-the values in the good and faulty machines
are both X but are closely correlated. However. the SPLIT
model is unable t o distinguish the values {0,1, D}. {O,l,n},
(0, D,D} . { D , B , l}, and (0,1, D , B } . all of which are rep-
resented by X I X J U . and so fails t o determine a test in the
example shown in Fig. 3.

A IQH ~

-.I%

Figure 4
pliabet

Test patterti generation using a 16-valued a1

Using a 16-valued alphabet [I, 121. we recognize that in
order t o observe { D } at the output, assignments A = (0).
I3 = C = (1) are required (Fig. 4). Similarly. in order t o
observe {E} at the output, assignments A = D = {I}. E =
{O} are required. In both cases, a test is found immediately
with no arbitrary assignments required.

* indicates values wl i ic l i cannot be distitiguis

Ag
-
0
D

X *
D

X t
X*
X*
1
x*
X *
X *
X'
X *
X'
X *

-

-
,d

Table 2 Comparison betweell algebras

Table 2 compares the values represented by a 16-element
alphabet (1. 12) with those of the SPLIT, 141. 9-valued [l l] .
and 5-valued alphabets. For example, there are five elements
of the 16-valued alphabet which cannot be distinguished by
the SPLIT model-they are all represented by X / X / U ; the
situation is progressively worse if a 9 or 5-valued alphabet

are used. The inability to distinguish circuit values may lead
to unnecessary branching and bounding. Note that element
"0" ((}) of the 16-valued alphabet indicates inconsistency (no
test pattern exists), and has no representation in any of the
other algebras.

A major advantage of increased resolution is that it is
possible t o determine necessary assignments in the region
reached by the fault effect, which is not possible using a 5
or 9-valued alphabet. The use o f a 16-valued alphabet has a
number of other advantages in addition t o increased value res-
olution. A test pattern generation algorithm using a 16-valued
alphabet need not perform "D-drive" or "X-path check" op-
erations and need not maintain a "D-frontier". Value justifi-
cation is the only operation required by the algorithm. For-
ward propagation determines all possible values which could
be carried by each line in the circuit. including lines the re-
gion reached by the fault effect. Thus, the set of outputs to
which the fault effect may propagate is known (those outputs
whose set of possible values includes D and/or n); the test
generation process begins with the initial set of justification
points (set of node/value combinations which must be justi-
fied) that the fault must be sensitized-the point of the fault
must be driven t o a value opposite that caused by the fault-
and the fault effect must propagate t o at least one primary
output-either D or must be observed at some output.

3. Images and inverse images of sets

During forward propagation. we determine the set of pos-
sible values at the output of each gate given the sets of pos-
sible values at i ts inputs. We assume that the values at the
inputs to the gate are independent-thus the possible output
values are simply those which can be produced by each of the
possible combinations of input values.

Figure 5 Images for a 2-input AND gate

Example 1; Consider the two-input AND gate shown in Fig. 5.
The sets of possible values on the inputs are (O,D,l} and
(0, D, 1). Thus the set of possible values at the output is:

AND((O,D, D } , {O,D, 1)) = {AND(O,O),AND(O, D) ,
AND(0, I) , A N D (D , O),

AND@, D) ,AND(D, I) ,

A N D (I , 1))
= {O,B, D, I}

AND (1 , O) , AND (1, D) ,

This calculation can be formalized using the concept of
images of set functions 1121:

Paper 2.1
27

Definition 1: Let f be a function of two variables, and let A
and B be subsets of P (B i) . The image f (A , B) of A x B
under f is the set of a l l images f (z , y) such that z E A and
y E B. Using set builder notation:

f(A,B) = { f (z , ~) I z E A and Y E B 1
Using the bitwise encoding B,4 from Table 1. the function

of a gate can be described by four characteristic equations.
The equations determine the presence or absence of each pos-
sible value at the output o f a gate given the possible values
of its inputs. The characteristic equations of an A N D gate
with inputs A and B and output C are:

CO = do + bo + aD%+ apb,g

CD = al% + a n b l + a-b- D D

C D = albD + aDb1 + aDbD
c1 = albl

For example. the equation for c1 says that 1 is a possible value
at the output of an A N D gate only if 1 is a possible value of
both inputs. Similar equations can be defined for OR. XOR.
etc. gates (as well as for larger functional blocks, i f desired).
For each gate type. a table can be precomputed which gives
the image at the output for each combination of values at the
input of the gate, as was done in (51.

Another operation which is required during test pattern
generation is backward implication. where we determine the
smallest set of values at the inputs of a gate which could be
combined t o produce a restricted set of values a t the output
of the gate-the inverse of the image function just described.

Figure 6 Inverse images for a 2-input AND gate

Example 2: Consider the A N D gate in Fig. 6. If output value
(E } is desired (signified by crossing out the other possible
output values we do not want). then the value o f input A
must be {3} and of input B must be (1). If either input
carried some other value, then the set of possible values at
the output would be different.

This can be formalized using the concept of inverse im-
ages of set functions 1121:

Definition 2: Let f be a function of two variables, and A . B .
and C be nonempty subsets of P(B5). The inverse image of c
on coordinate X under f. restricted to A x B. which we denote
f f i $ B (C) . is the set of all z E A such that f (z , y) E C for

some y E R. In set builder notation:

Using the bitwise encoding Bi. the inverse image for a
gate can also be described by four characteristic equations.
as was done for images. For an AND gate with inputs '4 and
R and output C . the inverse image A' on input A of set C'
is:

ab = ac,cb

a' = a g (b l c b + bDcb + b& + hoc,,)

o b = a g (b l c b + b D c b + b p b + boco)

a: = a l (b l c i + b D c b -t b& + buco).

Note that the inverse image on input A can be written as
the intersection of the current value o f A with the generalized
inverse image on { 0 , 6 , D , l} of C' and input B. The inverse
image operation can also be performed by table look up 151.

The definition of the image and inverse image set func-
tions for a gate assume that the gate's inputs are indepen-
dent. However, the input values may be correlated due t o
reconvergent fanout. This may cause some pessimism in the
calculation o f images and inverse images, as not all the val-
ues in the sets (and, in particular, not all the combinations
of values) may actually be obtainable. A method t o eliminate
this pessimism is described in section 4.3.

D

4. Reduction Lists and Necessary
Assignments

The process of test pattern generation is one o f progres-
sively translating a set of required values at some nodes in
the circuit to a new set o f requirements at other nodes which
satisfy the original requirements. but are closer t o primary
inputs. A test pattern is generated when the required values
are completely translated to assignments on primary inputs:
the fault is redundant if it is not possible t o justify the values.

A t any point during test pattern generation, the state of
the process is represented by a set of justification points.
Given a set of justification points, others can be derived in
two ways:

If an assignment t o a particular node leads t o a conflict,
then it is mandatory that the node be assigned to i ts
alternate value(s). If the set of alternate values is empty
(0). then no test pattern exists in the space defined by
current assignments. The fault is redundant if there are
no more arbitrary assignments which can be reversed.
We arbitrarily decide that we will search the tree in a par-
ticular direction. and assign a branch node t o a particular
value. Note that the decision may not be correct and that
this decision may be reversed later on.
The set of justification points can be represented by an

AND-OR graph, where the and-nodes represent assignments
all of which must be justified in order to find a test and the
or-nodes represent assignments at least one of which must be
justified. For example, in order to generate a test for a fault,
the point of the fault must be driven to a value opposite that
caused by the fault and D or D must be observed on at least
one primary output.

Our goal is t o find all assignments which are necessary
in the sense that if we were t o assign their value differently,

Paper 2.1
28

then the required value of some justification point would no
longer be satisfiable. Viewed as a branch decision, making a
reduction assignment is equivalent t o branching into an area
of the search space which is guaranteed not to contain a test
vector.

Figure 7 Test pattern gelieratioli for F .-I

Example 3: In order t o test a s1 fault on line F of the circuit
shown in Fig. 7. the output of the A N D gate must be {O};
since F is a primary output of the circuit, propagating the
fault effect is trivial. Note that if input A were assigned to
(1). then the value of both lines D and E would be (1)-
thus, the AND gate output would be (1). and we would be
unable t o test the fault. Node A assigned to (1) is a re-
duction assignment: a necessary assignment (and a second
justification point) in this example is node A assigned to value

(0) .

4.1 Reduction l is ts and assignment propagation

In this section, we present a. systematic method of de-
termining necessary assignments through the calculation of
reduction lists. For each possible value of each line in the
circuit. the corresponding reduction list gives the set of re-
duction assignments for that line and value.

Definition 3: For each line 1 in the circuit and each possible
value U which it could take, the reduction list Rf, contains
those assignments to nodes of the circuit which would cause
value U to vanish from the set of possible values of I .

An assignment is a pair consisting of a node identifier
and a value (from P (B ;)) . For example, R[for the circuit in
Fig. 7 contains the assignment A{1} (read "node A assigned
to value {l}"), since assigning A to (1) causes 0 to vanish
from the set of possible values at F . In other words. A (I)
reduces ';(,I. If F{(,, is a requirement. then assignment A i l }
must be eliminated-node A must be assigned to whichever
values remain after (1) has been removed from its set of
possible values.

Necessary assignments are derived from the reduction
lists at the justification points. If C{.) must be justified.

then al l assignments which appear on reduction list RF must
be eliminated. That is, if P{,,, is an assignment which would
reduce C f Z . then value U must be removed from the set of
possible va/ues of point P . If the set of values at P becomes
empty. then there i s a conflict. and we must backtrack.

In order t o eliminate a value from the output of a gate.
it is necessary to eliminate all combinations of input values
which give rise t o that output value. For example. from the
characteristic equations for a two-input A N D gate given in

section 3. value 0 is included in the set of possible values at
the output of the gate if 0 is present at either input. or if D
a t one input can be combined with at the other. Thus. in
order for an assignment to eliminate 0 at the output of the
gate. it must reduce: 0 a t both inputs, either D at input A or
T I at input B . and either at input A or D at input B . In

other words, an assignment must appear on R , , R , , R D

or R n , and Rnor R D in order t o appear on R , . Finally. 0
is eliminated from the output if C is assigned t o a value other
than 0 during the test generation process. The complete set
of reduction equations for output C of a two-input AND gate
is:

-

+ A --tB -+A

,B ,A -+B -+c

-C - A +B + A -+B + A -+B
R , = (R o n R , n (R 6 U R D) ~ (R D U R D))

" {'{D,D,i} }
-C - A A B + A +B + A +B
R B = ((R , u R ~) n (R n u R l) n (R n u R g)

{c{o,D,i] 1
,c' + A ,B ,A -B ,A -+B
R D = ((R , L I R D) ~ I (R D U R ,) ~ (R D U R D)

{C{O,O,I)}
+ C ' + A +B '' 1 = I " I " (C { o , D , D }) .

Similarly, the reduction equations for output C of a two-input
XOR gate are:

Example 4: The circuit in Fig. 7. taken from [14]. illustrates
the concept of reduction lists. Here. we see that ap-

pears on R , . Thus. during test pattern generation. if F{,)
is required. then (1) must be eliminated at stem A . Note
that the circuit from Fig. 7 is nonminimal. implementing the
same function as the circuit shown in Fig. 8b'.

i F

In fact , it is a general property of the reduction equations tha t if the
redtrctioti fists of a recotivergeiice gate are riot empty wlieri all i i iptrts
are assigned t o (0. 1). then the circuit in question is no t a i i i i i i i i i ia l
represeiitatioii. and caii be redesigned t o become both snialler and
easier t o test .

Paper 2.1
29

1 Line 1 List I Contents

a) Reduction lists for the circuit from Fig. 7
B
C

A
F

b) Minimized example circuit

Figure 8 Necessary assignments iii a circuit

Example 5: The circuit in Fig. 9 illustrates the use of reduc-
tion lists when circuit values are partially determined. Here.
we see that A{1} reduces G{o} and H{"} if B = (1) and

C = (1) have already been determined by other assign-
ments during test pattern generation. However. if A = (0, 1).
B = (0, 1). and C = (0, 1). then A{1} will not reduce either

G{"} or H{o}.

4.2 Logical constraints and propagation of
implications

By formulating the test pattern generation problem in
terms of images and inverse images of set functions, rather
than in terms of logical assignments and their implications.
we are able t o extract information about the function of the
circuit under test. This is important, as we are interested in
the logical constraints imposed by assignments, rather than
in the signal values these assignments produce. Logical con-
straints, unlike signal values, propagate in both directions in
the circuit-from inputs toward outputs and from outputs to-
ward inputs. The result of full implication propagation is to
determine all implications of each assignment. both forward
and backward in the circuit.

Paper 2.1
30

r t
"*" H 0.1

a) Example circuit

b) Reduction lists

Figure 9 Necessary assignments w i th partially deter-
i i i i i ied circuit values

Test pattern generation algorithms which focus on the
logical effect of assignments in the circuit fail to determine
the effect of logic dependencies between nodes in the circuit.
Traversal of a circuit module does not guarantee that suffi-
cient information will be extracted about i ts function to enable
the algorithm to reason about the module. Some algorithms
resort t o defining common modules as logic blocks recognized
by the test pattern generation program so that the function
of the module is known without traversing the structure [13].
Our algorithm is able t o extract this information automati-
cally.

Example 6: In order t o test the fault F / s o in the subcircuit
shown in Fig. 10. we must justify the assignment Fill. We
note that E{ll) requires A{,,}, as A{l} reduces E{"}. Since

Etl,) appears on R , , it also appears on R , , and thus
+-a2 -+a1

Figure 10 Test generation for fault F / s g

- t D
propagates to stem D and appears on R I . Since E{") ap-

pears on both R , it reduces F{l}., However, Frl)
i s a justification point-thus E{,,) is a reduction assignment.
and E(1) is necessary. A similar argument applies t o D{,,).
which IS also necessary. It is important t o observe that an
assignment t o stem E appears on a reduction list at stem D
despite the fact that D is neither driven by nor drives E-the
constraint has traveled to a region of the circuit to which a
logic value cannot.

+$ -+e1
and R

a) n-Input gate b) m-Output fanout stem

Figure 11 Circuit nodes with associated reduction l is ts

The circuit under test can be viewed as a graph, with
gates represented by nodes and lines as edges. Primary inputs
and outputs are special types of gates, with no inputs and no
outputs, respectively. Each edge in the graph has a set of
reduction lists associated wi th it, one reduction list for each
possible value of the line: each reduction list is composed of

two components which are distinguished as "forward" ()
and "backward" () . Circuit nodes relate the reduction lists
of the edges connected t o them, as shown in Fig. 11. For each
edge connected to the node, i ts outward pointing reduction
l i s t (forward or backward if the line is an output from or input
to the corresponding gate, respectively) is a function of the
inward pointing reduction lists of all other edges connected t o
the node-the type of gate determines the function performed
on the lists.

In order to reduce a value from an input of a gate, it is
necessary t o eliminate all combinations of values of the out-
put and other input(s) of the gate which use the reduced
input value. For example, from the inverse-image character-
istic equations for a two-input AND gate given in section 3.
value 1 remains in the set of possible values at input A of
the gate if 0. 1. D. or -is is present at input B and remains
in the implied value of the output. Thus, in order for an as-
signment t o reduce 1 at input A. it must reduce: either 0 at
input B or 0 at output C . either 1 at input A or 1 at output
C . either D at input B or D a t output C. and either at

A

L

input B or

must appear on R,, or R , , R
+B t(' + A
R n o r R n i n order t o appear on R

a t output C . In other words, an assignment

or R , , R D or R D . and

. The complete set of

--+B -C -+B +C + A -C

,s
R , = U x> for each 2, E S

3 = 1

Dependencies between circuit nodes can cause logical con-
straints at one justification point t o appear at another. The
reduction equations are able t o capture these constraints and
determine additional necessary assignments.

Example 7: In order t o produce a "1" on both the sum and
carry outputs of the full adder from Fig. 12, we need a "1"
on both the A. B . and C (carry-in) inputs. As noted in
[13]. there are no direct implications of an assignment to A.

B . or C . However, assignment C{,] appears on R , : since
E I { l ~ must be justified, an assignment which reduces Fill
implies that E must carry value "1" (i.e. C{,!) appears on

+F

+E
R , ,) . Thus. assignment C{,,) requires that A = B = 1 (i .e.

Paper 2.1
31

+-a2 , 4 5 2

-J --'a1 d l

--tD -+c

appears on both R , and R ,). since "1" must appear on
line E i f C = 0 in order to satisfy requirement H I ,) . Thus,

C{,} appears on R , since it appears on both R , and R , .

Finally, since C { n ~ appears on R , it appears on
4 c:
R , . Since G{,} is a justification point. C{,} is a reduction

assignment and C { l) is necessary. Despite that there are no
_tG

local implications from assignment Gin), it appears on R , .
A similar argument applies t o both assignment
both of which are also necessary.

and R

and

Figure 12 Value justif ication of a full adder

4.3 S t e m Correlat ion

If the values at the inputs t o a gate are not independent-
that is. they are related t o one another through reconvergence
of some fanout stem-then the set of possible values at the
output of the gate may be pessimistic [14]. The reduction
lists allow us t o eliminate this pessimism.

Example 8: The circuit of Fig. 13 is an implementation of a
two-input multiplexor (MUX) with select B and inputs 2. C'.

Since R,, = {B{r, , l}}, any of the possible assignments to
stem B cause 0 to vanish at line F . A stem correlation exists
for assignment F{n} caused by B . Therefore, 0 is not an
attainable assignment at line F and the forward propagated
value is (1) rather than (0, l}. Stem correlation turns out to
be extremely important in test pattern generation. reducing
the number of branches and backtracks as well as the total
CPU time required to generate a test.

--tF

4.4 Implementat ion issues

The complexity of reduction list calculation is similar to
that of deductive fault simulation. During the test genera-
t ion process, reduction lists can only grow-assignments can
only be added. never deleted'. Since the total number of as-
signments which can appear on any reduction list cannot be
greater than the number of nodes in the circuit. the reduction
list calculation will complete in polynomial time.

The amount of processing which is required t o determine
the reduction lists is directly proportional to the number of
assignments which must be analysed and the area of the

* The lists niay decrease in size oil a backtrack, as we ii iove froin a
later stage of test getieratioii t o an earlier one where the l is ts were
shorter

a1 2-inout MUX

Figure 13 Correlation of assigti i i ients

circuit in which they must be propagated. The concepts
of stem regions and exit lines [lo) can be used to restrict
both while guaranteeing that no necessary assignments will
be overlooked [6] .

Since the dynamic calculation of reduction lists may be
costly, it may be desirable to obtain generic information which
can be reused for each target fault. Analogous to "static
learning" [14]. the "initial" reduction lists (when all node
assignments are (0, l) and no fault has been injected) are
preprocessed and retained. These lists contain reduction as-
signments which can be used for justification points which
are not reachable from the point of the fault.

It is not necessary t o explicitly extract dominators-nodes
through which the fault effect must propagate in order to
reach the primary outputs-if the reduction equations are up-
dated dynamically. Dominators are simply necessary assign-
ments t o { D , D } rather than t o (0) or (1). If the reduction
lists are not updated dynamically, then dominators can be
extracted by tracing backward from those justification points
whose required value includes D and/or D using a simple lin-
ear algorithm (51. In this case. another preprocessing step is
performed to find those assignments which are necessary to
propagate a fault effect from a stem to its exit lines. These
are reduction assignments which must be eliminated when-
ever the stem is a dominator [6]. Preprocessed "propagate
assignments" turn out to be extremely useful for certain dif-
ficult faults.

Experimental results show that dynamic calculation of re-

Paper 2.1
32

duction lists i s not required t o generate a test for or prove
redundant the vast majority of faults.

No.
Flts.

Circuit

5 . Experimental results

The algorithms presented in this paper have been imple-
mented in C running under UNIX. The goal of the implemen-
tation was t o investigate the behavior of an algorithm which
uses necessary assignments3 rather than "intelligent" heuris-
tics for test pattern generation and, in particular, to determine
the extent to which backtracking can be reduced.

In order to test the deductive power of the algorithm, all
faults were explicitly targeted. In order t o avoid the fortu-
itous detection of a difficult fault with a lucky random test
pattern, no fault simulation was performed. The choice of
heuristic for choosing arbitrary branches has a huge impact
on the number of backtracks performed and the number of
abandoned faults. Several different heuristics for choosing
arbitrary branches were implemented, but none were found
which worked well in all circuits. The results presented in
this section were produced by assigning to (0) the first unas-
signed primary input which could have an effect in the final
test pattern whenever no necessary or nonconflicting assign-
ments could be found.

Complete test pattern generation experiments were run
on the ISCAS.85 benchmark circuits [2]. The results were
generated as follows:
1. Deterministic test pattern generation: All faults were ex-

plicitly targeted. A two-pass algorithm was used. with a
backtrack limit of 10 for each pass:
a) Phase 1: Test generation using preprocessed reduc-

tion lists only, but using dominators and necessary
assignments for propagation from stems to their exit
line(s).

b) Phase 2: Test generation using dynamically calcu-
lated reduction lists4

2. Fault simulation: The test set obtained i n phase 1 and

Faults tested: I Abd. faults:
w / o Brnch. I w / o Bcktrk. I w / o FS I w FS

lii order t o achieve these results, algorithms wl i ic l i determine non-
conflicting assigririients liave also been used [GI
The current implementation does no t take advantage of the stem
region concept.

C432
C499
C880

C1355
C1908
C2670
C3540
C5315
C6288
C7552

phase 2 was fault simulated [lo] t o determine the cover-
age of abandoned faults. "Don't cares" in the test pat-
terns were randomly replaced with zeros and ones. Other
than replacement of "don't care" values, no random pat-
tern fault simulation was performed

540
750
942
1566
1870
2630
3291
5291
7710
7419

No. Abd. total
Flts. Flts. bktrks.

Circuit 1 1 1
C1355
C1908

0

14

* Sun 3/60

Table 3 Experii i iei ital results-redlllidallt faults

Table 3 summarizes the results for the untestable faults
in the benchmark circuits. For each circuit, the table gives
the number of redundant faults, the number of abandoned
faults (faults which were not proven t o be redundant). the
total number of backtracks performed in the experiment. and
the average. maximum and standard deviation of the times
required t o prove the faults redundant.

No redundant faults were abandoned. Furthermore. phase
2 of the test pattern generation algorithm (full reduction list
propagation) was required only for circuit C432-three faults
were abandoned (after 10 backtracks each) by phase 1. after
which two of the three were proven redundant with no back-
tracks and the third was proven redundant with one backtrack
in phase 2. Circuit C2670 contains eight faults which each re-
quired one backtrack (in phase 1) to prove redundancy: circuit
C7552 contains 6 faults which were backtracked, the "worst"
of which required 3 backtracks (phase 1).

Table 4 gives the results for the testable faults of the
benchmark circuits. For each circuit. the table gives the num-

189
64
402
0

210
553
61 1
1242

12
203

- y-
Dev.
0.48

0.21
0.04
0.09
0.94
1.10
0.38
0.13
0.50

-

-

538
719
940
1480
1840

2490
2654
5122
6197
6348

CPU Time

0
0
0
0
3

20
49
30

1127
39

0
0
0
0
0
0
0
0
0
0

CPU Time (

Avg.
0.80
1.11
0.56
3.55
2.94

1.57
3.39
1.13

1 7.87

-

@

Pre.
3.76
8.84
8.84
35.36
39.26

54.68
159.22
102 74
210.70
148.06

Table 4 Experinielital results-testable faults

Paper 2.1
33

~~

ber of testable faults, the number of faults for which a test
pattern was generated without any arbitrary branching and
without any backtracking, the number of testable faults for
which the algorithm was unable to find a test vector, the
number of faults which remained undetected after vectors gen-
erated for the other faults were fault simulated. the average
time, maximum time and standard deviation of times required
to generate a test for each target. and the time required t o
preprocess the circuit.

Of particular interest is the number of faults for which a
test is generated with no arbitrary branching. An interesting
result is that several faults exist which were abandoned by
phase 1 of the test pattern generation algorithm, but for which
a test pattern was generated without branching by phase 2.
Another interesting result is that all of the faults which were
abandoned after phases 1 and 2 of the test pattern generation
algorithm were covered when less than 1000 random vectors
were fault simulated, and thus would not have been targeted
in a conventional test pattern generation experiment.

6. Conclusions

We have presented a new test pattern generation algo-
r i thm which uses the concept of necessary assignments to
reduce or eliminate backtracking in automatic test pattern
generation. Necessary assignments are those which must be
made in order to find a test pattern; the search is guaranteed
to fail i f we do not make them.

This concept has been incorporated into an automatic test
pattern generation algorithm which has been used to generate
test patterns for all faults in a variety of benchmark circuits.
Experimental results indicate that the algorithm is particularly
efficient at redundancy identification which is often a problem
for conventional test pattern geneiation algorithms.

It is interesting to compare the problems of test pattern
generation and fault simulation. The local implication step
used by PODEM and FAN for test pattern generation can be
compared t o critical path tracing in fault simulation. They
are of similar computational complexity: critical path tracing
is exact and conventional implication will lead t o a test pat-
tern with no branching only in fanout-free circuits. Finding
the implication of each possible assignment in SOCRATES is
similar to serial fault simulation, whereas the processing of
reduction lists is similar to deductive fault simulation, In this
light. we can see the progression from heuristic to algorithmic
test pattern generation algorithms.

References

[I] S.B. Akers. "A Logic System for Fault Test Generation."
lE€E Transactions on Computers, vol. C-25. no. 2. June.
1976. pp. 620-630.

121 F. Brglez. and H. Fujiwara. "A Neutral Netlist of 10 Com-
binational Benchmark Circuits and a Target Translator in
Fortran." Proceedings International Symposium on Cir-
cuits and Systems. Special Sesson on ATPG and Fault
Simulation. Kyoto, Japan, June, 1985.

Paper 2.1
34

[3] C. Cha. W. Donath. and F. Ozguner. "9-V Algorithm for
Test Pattern Generation of Combinational Digital Cir-
cuits," IEEE Transactions on Computers, vol. C-27. no.
3. March 1978, pp. 193-200.

[4] W.T. Cheng. "Split Circuit Model for Test Generation."
Proceedings 25th Design Automation Conference. Ana-
heim, CA, June. 1988, pp. 96-101.

[5] H. Cox. and J. Rajski. "A Method of Test Generation and
Fault Diagnosis." lEEE Transactions on Computer-Aided
Design. vol. 7. no. 7, July. 1988. pp. 813-833.

161 H. Cox, Properties of Set Functions and Their Application
to Test Pattern Generation. Ph.D. Thesis, Department
of Electrical Engineering, McGill University, September
1990.

17) H. Fujiwara. and T. Shimono. "On the Acceleration of Test
Generation Algorithms." lEEE Transactions on Comput-
ers. vol. C-32. no. 12. December. 1983. pp. 1137-1144.

18) P. Goel. "An Implicit Enumeration Algorithm to Generate
Tests for Combinational Logic Circuits." I€€€ Transac-
tions on Computers, vol. C-30, no. 3. March, 1981. pp.

[9] T. Kirkland. and M.R. Mercer, "A Topological Search Al-
gorithm for ATPG," Proceedings 24th Design Automa-
tion Conference, Miami Beach, FL, June, 1987, pp. 502-
508.

[lo] F. Maamari. and J. Rajski. "A Method of Fault Simu-
lation Based on Stem Regions." I€€€ Transactions on
Computer-Aided Design. vol. 9. no. 2, February 1990.

1111 P. Muth. "A Nine-Valued Circuit Model for Test Genera-
tion," /E€€ Transactions on Computers, vol. C-25. no.
6. June 1976, pp. 630-636.

1121 J. Rajski. "GEMINI: A Logic System for Fault Diagnosis
Based on Set Functions." Digest 18th International Sym-
posium on Fault- Tolerant Computing Systems. Tokyo.
Japan. June, 1988. pp. 292-297.

1131 T.M. Sarfert. R. Markgraf. E. Trischler. and M.H. Schulz.
"Hierarchical Test Pattern Generation Based on Higli-
Level P r im i t i ves , '' Proceedings International Test Con-
ference. Washington DC. August 1989, pp. 470-479.

(141 M.H. Schulz. and E. Auth. "Improved Deterministic Test
Pattern Generation Wi th Applications to Redundancy Iden-
tification." /€&E Transactions on CAD. vol. 8. no. 7.

215-222.

pp. 212-220.

July 1989. pp. 811-816.

T--

