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Abstract 

Necessary assignments are those which must be made in 
order t o  find a test pattern. This paper presents new algo- 
rithms based on the concept of reduction lists to  determine 
necessary assignments. The algorithms use a 16-valued logic 
system and are based on the mathematical concepts of itnages 
and inverse images of set functions. 

Experimental results are presented for a variety of bench- 
mark circuits. 

1. Introduction 

Test pattern generation can be viewed as a branch and 
bound problem (81; test pattern generation algorithms usu- 
ally search through the space by systematically branching and 
bounding until either a test pattern is discovered or the search 
space is exhausted. Along the way. certain assignments can 
be distinguished as being necessary: viewed as a branch de- 
cision, assigning them t o  some other value guarantees that 
a bound step must eventually be taken. That is. i f  the nec- 
essary assignments are not made, then the subspace which 
has been branched into is guaranteed not  to  covtain a test 
pattern. Thus, alternative choices for necessary assignments 
need not be explored. Other assignments can be distinguished 
as nonconflicting in that they lead in  the direction of a test 
and restrict the search space. but never need to  be back- 
tracked. The remaining assignments are arbitrary-they may 
or may not lead in  the direction of a test, and may or may not 
need t o  be backtracked. This paper addresses the problem of 
identifying necessary assignments. 

The PODEM [8] and FAN (71 algorithms identify some 
necessary assignments using local implications. but rely on 
heuristics for choosing "good" branch nodes (arbitrary as- 
signments) for much of their power. The contribution of 
SOCRATES 1141 was to  find additional necessary assign- 
ments which could not be found using local implication. 

SOCRATES determines additional necessary assignments 
by finding the effect of each possible assignment t o  every 

This work was supported by strategic grant MEF0045788 from the 
Natural Sciences ai id Eitgiiieeriiig Research Couticil of Canada. 

node in the circuit. If an assignment makes it impossible t o  
achieve some required value, then that assignment must be 
disallowed. The effect of a particular assignment is deter- 
mined by injecting the logic value in the circuit and deter- 
mining i t s  implications. This technique does not take logic 
dependencies between circuit nodes into account. and thus 
does not identify all necessary assignments. To overcome 
this problem. common logic modules (adders. multiplexors. 
etc.) whose logic dependencies are predetermined. have been 
added t o  the library of building blocks recognized by a modu- 
lar version of SOCRATES 1131. Before each new module can 
be recognized, implication. unique sensitization. and multiple 
backtrace procedures which take the signal dependencies of 
the module into account must be manually determined and 
added t o  the system. Dependencies between modules and in 
unrecognized structures continue t o  be missed. 

In this paper, we present a test pattern generation algo- 
r i thm which finds all necessary assignments, including those 
which arise due t o  logic dependencies between circuit nodes. 
The algorithm is based on the mathematical concept o f  im- 
ages and inverse images of set functions. We generalize and 
formalize the process of necessary assignment extraction us- 
ing the idea of reduction lists. and show that both classical 
implication and "learning" [14] are special cases of a more 
general technique. In order t o  take advantage of formal con- 
cepts developed for Boolean algebras. the algorithm employs 
a 16-valued algebra for test pattern generation. We illustrate 
the benefits of a 16-valued system through examples of faults 
which are not properly handled by conventional 5 or 9-valued 
systems. 

In the test pattern generation algorithm, necessary and 
nonconflicting assignments are extracted iteratively until the 
fault is either tested, proven to  be redundant. or until no 
more assignments can be found, a t  which point an arbitrary 
assignment (branch decision) is made. Experimental results 
show that many faults are tested or proven to be redundant 
without branching. 

This paper is divided into three sections. First, we intro- 
duce the 16valued logic system which is the foundation of 
our approach. Next, we introduce the concepts of necessary 
assignments and reduction lists and discuss their use in test 
pattern generation. Finally, we present experimental results 
obtained by our test pattern generation system when run on 
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a variety of benchmark circuits. 

2. The Alphabet 

The two-element Boolean algebra Bf = {0,1) is widely 
used t o  analyse switching circuits. It is also sufficiently pre- 
cise to  describe the behaviour of a fault-free combinational 
circuit. However, in order t o  describe the behavior of a pos- 
sibly faulty circuit, a four-element Boolean algebra, Bl = 
{O(O),O(l), 1(0), l(1)). where a(b)  indicates that the response 
in the fault-free circuit is a. and in  the faulty circuit is b. is re- 
quired. Using the D-symbols. Bi = {O,D, D ,  I}. The func- 
tion of a two-input gate is described as a mapping B2 x Bz 4 

Given a test vector for a particular fault, each line in the 
circuit will carry one of the four possible values from Bi. 
When we set out t o  find a test pattern, we do not know 
the actual values taken by each line in the final test vector: 
thus. we start the process by assigning to  each line the set 
of possible values which it could take in any test pattern. As 
test pattern generation proceeds, we determine that certain 
of the values in  each set cannot actually be obtained, and the 
sets of possible values for each line become more and more 
refined. For example, if a particular line cannot be affected 
by the fault(s). i ts value cannot be either D or B. and thus 
i ts set of possible values is reduced t o  {O,l). Any o f  the 
16 subsets of the set {O,l, D , B )  is a possible assignment; 
therefore, a complete alphabet contains 16 values. 

B; . 

BlG 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

Xi Z D Z T ” 0  

0000 
0001 
0010 
001 1 
0100 
0101 
0110 
0111 
1000 
1001 
I010 
101 1 
1100 
1101 
1110 
1111 

Table 1 Three codings of a 16-element alphabet 

Since we use the subsets of Bi to  represent the sets of 
possible values at each point in the circuit at various stages 
of test pattern generation, it is natural t o  introduce the power 
set P ( B ; )  of B;. The power set of the basic D symbols has 
been used by Akers for test generation [I]; as it is a Boolean 
algebra, it is isomorphic t o  the 16-valued system used in  [5. 
12) for fault diagnosis. P ( B i )  has 16 elements, and can be 
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coded by natural numbers from 0 t o  15 (BI6  in Table 1). 
or as bitwise encoded quadruples describing the presence or 
absence o f  elements of B; (B i  in Table 1). 

Various algebras for test pattern generation have been 
proposed. Use o f  an appropriate algebra can greatly aid in 
test pattern generation. Comparisons between algebras typ- 
ically focus on the number of elements each contains, the 
space required t o  store circuit values, and the time required 
to  manipulate them [4]. A better comparison is the ability of 
the logic system to resolve circuit values during test pattern 
generation, Better resolution of values may allow a test pat- 
tern generation algorithm t o  reduce the amount of branching 
and backtracking which must be performed t o  find a test or 
prove a fault redundant, thus requiring less time and storage 
space despite using an alphabet which contains more values. 

I 

Figure 1 
pliabet 

Test pattern generation using a 5-valued al 

The 5-valued alphabet As = { O , l ,  D , D , X ) .  where X 
indicates “unknown” and the other symbols are interpreted 
as in 8;. has been used in  many ATPG algorithms 17. 8. 
141. When targeting (attempting to  generate a test for) fault 
C/s,,, as shown in  Fig. 1. we quickly determine that most 
circuit values are X. and are forced t o  make several arbitrary 
branch decisions before eventually finding a test vector. 

t I I  

Figure 2 
phabet 

Test pattern generation wing a 9-valued a l -  

Algorithms employing a 9-valued alphabet AD = {O/O. 
1/1, 110, 0/1. X / O .  O / X .  1/X. X/1. XJXj. where a l b  indi- 
cates the value in the fault-free/faulty circuit and X indicates 
unknown [3, 9. 11). encounter a similar problem (Fig. 2).  al- 
though the additional values may aid in the choice of good 
branch decisions. 

A“ 

Figure 3 Test pattern generation using the SPL IT  cir- 
cui t  model 

In the SPLIT model for test pattern generation [4]. values 
iii the good and faulty machines are treated separately-each 



value can be 0. 1. or X .  independent of the value in the 
other machine. In addition. the relation between the values 
in the good and faulty machine is calculated. Signal values 
in  the split model can be identified by the triple G / F / R .  
where C is the value in the good machine. F is the value in 
the faulty machine. and R is the relation between the values 
(Equivalence. Difference, or Unknown). Thus. circuit values 
in the SPLIT model are taken from the set All  = {O/O/E. 
II1,JE. X/.X/E. l / O I D .  0/1/D. X J X - / D .  O J X j V .  X l O / V .  
Z I S I U .  X J I J U .  X / X / U } .  Compared to  the 9-valued sys- 
tem, the SPLIT model is able t o  distinguish the values (0, l} 
and (D.D}-the values in  the good and faulty machines 
are both X but are closely correlated. However. the SPLIT 
model is unable t o  distinguish the values {0,1, D}.  {O,l,n}, 
(0, D,D} .  { D , B ,  l}, and (0,1, D , B } .  all of which are rep- 
resented by X I X J U .  and so fails t o  determine a test in  the 
example shown in Fig. 3. 

A IQH ~ 

-.I% 

Figure 4 
pliabet 

Test patterti generation using a 16-valued a1 

Using a 16-valued alphabet [I, 121. we recognize that in 
order t o  observe { D }  at the output, assignments A = (0). 
I3 = C = (1) are required (Fig. 4). Similarly. in  order t o  
observe {E} at the output, assignments A = D = {I}. E = 
{O} are required. In both cases, a test is found immediately 
with no arbitrary assignments required. 

* indicates values wl i ic l i  cannot be distitiguis 

Ag 
- 
0 
D 

X *  
D 

X t  
X* 
X* 
1 
x* 
X *  
X *  
X' 
X *  
X' 
X *  

- 

- 
,d 

Table 2 Comparison betweell algebras 

Table 2 compares the values represented by a 16-element 
alphabet (1. 12) with those of the SPLIT, 141. 9-valued [ l l ] .  
and 5-valued alphabets. For example, there are five elements 
of the 16-valued alphabet which cannot be distinguished by 
the SPLIT model-they are all represented by X / X / U ;  the 
situation is progressively worse if a 9 or 5-valued alphabet 

are used. The inability to  distinguish circuit values may lead 
to  unnecessary branching and bounding. Note that element 
"0" ((}) of the 16-valued alphabet indicates inconsistency (no 
test pattern exists), and has no representation in any of the 
other algebras. 

A major advantage of increased resolution is that it is 
possible t o  determine necessary assignments in the region 
reached by the fault effect, which is not possible using a 5 
or 9-valued alphabet. The use o f  a 16-valued alphabet has a 
number of other advantages in addition t o  increased value res- 
olution. A test pattern generation algorithm using a 16-valued 
alphabet need not perform "D-drive" or "X-path check" op- 
erations and need not maintain a "D-frontier". Value justifi- 
cation is the only operation required by the algorithm. For- 
ward propagation determines all possible values which could 
be carried by each line in the circuit. including lines the re- 
gion reached by the fault effect. Thus, the set of outputs to  
which the fault effect may propagate is known (those outputs 
whose set of possible values includes D and/or n); the test 
generation process begins with the initial set of justification 
points (set of node/value combinations which must be justi- 
fied) that the fault must be sensitized-the point of the fault 
must be driven t o  a value opposite that caused by the fault- 
and the fault effect must propagate t o  at least one primary 
output-either D or must be observed at some output. 

3. Images and inverse images of sets 

During forward propagation. we determine the set of pos- 
sible values at the output of each gate given the sets of pos- 
sible values at i ts inputs. We assume that the values at the 
inputs to  the gate are independent-thus the possible output 
values are simply those which can be produced by each of the 
possible combinations of input values. 

Figure 5 Images for a 2-input AND gate 

Example 1; Consider the two-input AND gate shown in Fig. 5. 
The sets of possible values on the inputs are (O,D,l} and 
(0, D, 1). Thus the set of possible values at the output is: 

AND((O,D,  D } ,  {O,D, 1)) = {AND(O,O),AND(O, D ) ,  
AND(0, I ) , A N D ( D ,  O), 

AND@, D) ,AND(D, I ) ,  

A N D ( I ,  1)) 
= {O,B, D, I} 

AND ( 1 , O )  , AND (1, D )  , 

This calculation can be formalized using the concept of 
images of set functions 1121: 
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Definition 1: Let f be a function of two variables, and let A 
and B be subsets of P ( B i ) .  The image f ( A , B )  of A x B 
under f is the set of a l l  images f ( z , y )  such that z E A and 
y E B. Using set builder notation: 

f(A,B) = { f ( z , ~ )  I z E A and Y E B 1 
Using the bitwise encoding B,4 from Table 1. the function 

of a gate can be described by four characteristic equations. 
The equations determine the presence or absence of each pos- 
sible value at the output o f  a gate given the possible values 
of its inputs. The characteristic equations of an A N D  gate 
with inputs A and B and output C are: 

CO = do + bo + aD%+ apb,g 

CD = al% + a n b l +  a-b- D D  

C D  = albD + aDb1 + aDbD 
c1 = albl 

For example. the equation for c1 says that 1 is a possible value 
at the output of an A N D  gate only if 1 is a possible value of 
both inputs. Similar equations can be defined for OR. XOR. 
etc. gates (as well as for larger functional blocks, i f  desired). 
For each gate type. a table can be precomputed which gives 
the image at the output for each combination of values at the 
input of the gate, as was done in (51. 

Another operation which is required during test pattern 
generation is backward implication. where we determine the 
smallest set of values at the inputs of a gate which could be 
combined t o  produce a restricted set of values a t  the output 
of the gate-the inverse of the image function just described. 

Figure 6 Inverse images for a 2-input AND gate 

Example 2: Consider the A N D  gate in Fig. 6. If output value 
( E }  is desired (signified by crossing out the other possible 
output values we do not want). then the value o f  input A 
must be {3} and of input B must be (1). If either input 
carried some other value, then the set of possible values at 
the output would be different. 

This can be formalized using the concept of inverse im- 
ages of set functions 1121: 

Definition 2: Let f be a function of two variables, and A .  B .  
and C be nonempty subsets of P(B5).  The inverse image of c 
on coordinate X under f. restricted to  A x B. which we denote 
f f i $ B ( C ) .  is the set of all z E A such that f ( z , y )  E C for 

some y E R.  In set builder notation: 

Using the bitwise encoding Bi.  the inverse image for a 
gate can also be described by four characteristic equations. 
as was done for images. For an AND gate with inputs '4 and 
R and output C .  the inverse image A' on input A of set C' 
is: 

ab = ac,cb 

a' = a g ( b l c b  + bDcb + b& + hoc,,) 

o b  = a g ( b l c b  + b D c b  + b p b  + boco) 

a: = a l (b l c i  + b D c b  -t b& + buco). 

Note that the inverse image on input A can be written as 
the intersection of the current value o f  A with the generalized 
inverse image on { 0 , 6 ,  D ,  l} of C' and input B. The inverse 
image operation can also be performed by table look up 151. 

The definition of the image and inverse image set func- 
tions for a gate assume that the gate's inputs are indepen- 
dent. However, the input values may be correlated due t o  
reconvergent fanout. This may cause some pessimism in  the 
calculation o f  images and inverse images, as not all the val- 
ues in  the sets (and, in particular, not all the combinations 
of values) may actually be obtainable. A method t o  eliminate 
this pessimism is described in section 4.3. 

D 

4. Reduction Lists and Necessary 
Assignments 

The process of test pattern generation is one o f  progres- 
sively translating a set of required values at some nodes in  
the circuit to  a new set o f  requirements at other nodes which 
satisfy the original requirements. but are closer t o  primary 
inputs. A test pattern is generated when the required values 
are completely translated to  assignments on primary inputs: 
the fault is redundant if it is not possible t o  justify the values. 

A t  any point during test pattern generation, the state of 
the process is represented by a set of justification points. 
Given a set of justification points, others can be derived in  
two ways: 

If an assignment t o  a particular node leads t o  a conflict, 
then it is mandatory that the node be assigned to  i ts 
alternate value(s). If the set of alternate values is empty 
(0). then no test pattern exists in  the space defined by 
current assignments. The fault is redundant if there are 
no more arbitrary assignments which can be reversed. 
We arbitrarily decide that we will search the tree in a par- 
ticular direction. and assign a branch node t o  a particular 
value. Note that the decision may not be correct and that 
this decision may be reversed later on. 
The set of justification points can be represented by an 

AND-OR graph, where the and-nodes represent assignments 
all of which must be justified in order to  find a test and the 
or-nodes represent assignments at least one of which must be 
justified. For example, in order to  generate a test for a fault, 
the point of the fault must be driven to  a value opposite that 
caused by the fault and D or D must be observed on at least 
one primary output. 

Our goal is t o  find all assignments which are necessary 
in the sense that if we were t o  assign their value differently, 
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then the required value of some justification point would no 
longer be satisfiable. Viewed as a branch decision, making a 
reduction assignment is equivalent t o  branching into an area 
of the search space which is guaranteed not to  contain a test 
vector. 

Figure 7 Test pattern gelieratioli for  F .-I 

Example 3: In order t o  test a s1 fault on line F of  the circuit 
shown in Fig. 7. the output of the A N D  gate must be {O}; 
since F is a primary output of the circuit, propagating the 
fault effect is trivial. Note that if input A were assigned to  
(1). then the value of both lines D and E would be (1)- 
thus, the AND gate output would be (1). and we would be 
unable t o  test the fault. Node A assigned to  (1) is a re- 
duction assignment: a necessary assignment (and a second 
justification point) in  this example is node A assigned to  value 

( 0 ) .  

4.1 Reduction l is ts  and assignment propagation 

In this section, we present a. systematic method of de- 
termining necessary assignments through the calculation of 
reduction lists. For each possible value of each line in the 
circuit. the corresponding reduction list gives the set of re- 
duction assignments for that line and value. 

Definition 3: For each line 1 in the circuit and each possible 
value U which it could take, the reduction list Rf, contains 
those assignments to  nodes of the circuit which would cause 
value U to  vanish from the set of possible values of I .  

An assignment is a pair consisting of a node identifier 
and a value (from P ( B ; ) ) .  For example, R[ for the circuit in 
Fig. 7 contains the assignment A{1} (read "node A assigned 
to  value {l}"), since assigning A to  (1) causes 0 to  vanish 
from the set of possible values at F .  In other words. A ( I )  
reduces ';(,I. If F{(,, is a requirement. then assignment A i l }  
must be eliminated-node A must be assigned to  whichever 
values remain after (1) has been removed from its set of 
possible values. 

Necessary assignments are derived from the reduction 
lists at the justification points. If C{.) must be justified. 

then al l  assignments which appear on reduction list RF must 
be eliminated. That is, if P{,,, is an assignment which would 
reduce C f Z  . then value U must be removed from the set of 
possible va/ues of point P .  If the set of values at P becomes 
empty. then there i s  a conflict. and we must backtrack. 

In order t o  eliminate a value from the output of a gate. 
it is necessary to  eliminate all combinations of input values 
which give rise t o  that output value. For example. from the 
characteristic equations for a two-input A N D  gate given in 

section 3. value 0 is included in the set of possible values at 
the output of the gate if 0 is present at either input. or if D 
a t  one input can be combined with at the other. Thus. in  
order for an assignment to  eliminate 0 at the output of the 
gate. it must reduce: 0 a t  both inputs, either D at input A or 
T I  at input B .  and either at input A or D at input B .  In 

other words, an assignment must appear on R ,  , R , , R D 

or R n ,  and Rnor  R D in order t o  appear on R ,  . Finally. 0 
is  eliminated from the output if C is assigned t o  a value other 
than 0 during the test generation process. The complete set 
of reduction equations for output C of a two-input AND gate 
is: 

- 

+ A  --tB -+A 

,B ,A -+B -+c 

-C - A  +B + A  -+B + A  -+B 
R ,  = ( R o  n R ,  n ( R 6 U  R D ) ~ ( R D U  R D ) )  

" {'{D,D,i} } 
-C - A  A B  + A  +B + A  +B 
R B = ( ( R ,  u R ~ ) n ( R n u  R l ) n ( R n u  R g )  

{c{o,D,i] 1 
,c' + A  ,B ,A -B ,A -+B 
R D = ( ( R ,  L I R D ) ~ I ( R D U  R , ) ~ ( R D U  R D )  

{C{O,O,I)} 
+ C '  + A  +B '' 1 = I " I " ( C { o , D , D } ) .  

Similarly, the reduction equations for output C of a two-input 
XOR gate are: 

Example 4: The circuit in Fig. 7. taken from [14]. illustrates 
the concept of reduction lists. Here. we see that ap- 

pears on R ,  . Thus. during test pattern generation. if F{,) 
is required. then (1) must be eliminated at stem A .  Note 
that the circuit from Fig. 7 is nonminimal. implementing the 
same function as the circuit shown in Fig. 8b'. 

i F  

In fact ,  it is a general property of the reduction equations tha t  if the 
redtrctioti fists of a recotivergeiice gate are riot empty wlieri all i i iptrts 
are assigned t o  (0. 1). then the circuit in question is no t  a i i i i i i i i i ia l  
represeiitatioii. and caii be redesigned t o  become both  snialler and 
easier t o  test .  
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1 Line 1 List I Contents 

a) Reduction lists for the circuit from Fig. 7 
B 
C 

A 
F 

b) Minimized example circuit 

Figure 8 Necessary assignments iii a circuit 

Example 5: The circuit in Fig. 9 illustrates the use of reduc- 
tion lists when circuit values are partially determined. Here. 
we see that A{1} reduces G{o} and H{"} if B = (1) and 

C = (1) have already been determined by other assign- 
ments during test pattern generation. However. if A = (0, 1). 
B = (0, 1). and C = (0, 1). then A{1} will not reduce either 

G{"} or H{o}.  

4.2 Logical constraints and propagation of 
implications 

By formulating the test pattern generation problem in 
terms of images and inverse images of set functions, rather 
than in terms of logical assignments and their implications. 
we are able t o  extract information about the function of the 
circuit under test. This is important, as we are interested in 
the logical constraints imposed by assignments, rather than 
in  the signal values these assignments produce. Logical con- 
straints, unlike signal values, propagate in both directions in  
the circuit-from inputs toward outputs and from outputs to- 
ward inputs. The result of full implication propagation is to  
determine all implications of each assignment. both forward 
and backward in  the circuit. 
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a) Example circuit 

b) Reduction lists 

Figure 9 Necessary assignments w i th  partially deter- 
i i i i i ied circuit values 

Test pattern generation algorithms which focus on the 
logical effect of assignments in the circuit fail to  determine 
the effect of logic dependencies between nodes in the circuit. 
Traversal of a circuit module does not guarantee that suffi- 
cient information will be extracted about i ts function to  enable 
the algorithm to reason about the module. Some algorithms 
resort t o  defining common modules as logic blocks recognized 
by the test pattern generation program so that the function 
of the module is known without traversing the structure [13]. 
Our algorithm is able t o  extract this information automati- 
cally. 

Example 6: In order t o  test the fault F / s o  in the subcircuit 
shown in  Fig. 10. we must justify the assignment Fill. We 
note that E{ll) requires A{,,}, as A{l} reduces E{"}.  Since 

Etl,) appears on R ,  , it also appears on R ,  , and thus 
+-a2 -+a1 



Figure 10 Test generation for fault F / s g  

- t D  
propagates to  stem D and appears on R I  . Since E{") ap- 

pears on both R , it reduces F{l}., However, Frl) 
i s  a justification point-thus E{,,) is a reduction assignment. 
and E(1) is necessary. A similar argument applies t o  D{,,). 
which IS also necessary. It is important t o  observe that an 
assignment t o  stem E appears on a reduction list at stem D 
despite the fact that D is neither driven by nor drives E-the 
constraint has traveled to  a region of the circuit to  which a 
logic value cannot. 

+$ -+e1 
and R 

a) n-Input gate b) m-Output fanout stem 

Figure 11 Circuit  nodes with associated reduction l is ts  

The circuit under test can be viewed as a graph, with 
gates represented by nodes and lines as edges. Primary inputs 
and outputs are special types of gates, with no inputs and no 
outputs, respectively. Each edge in the graph has a set of 
reduction lists associated wi th  it, one reduction list for each 
possible value of the line: each reduction list is composed of 

two components which are distinguished as "forward" ( ) 
and "backward" ( ) .  Circuit nodes relate the reduction lists 
of the edges connected t o  them, as shown in Fig. 11. For each 
edge connected to  the node, i ts outward pointing reduction 
l i s t  (forward or backward if the line is an output from or input 
to  the corresponding gate, respectively) is a function of the 
inward pointing reduction lists of all other edges connected t o  
the node-the type of gate determines the function performed 
on the lists. 

In order to  reduce a value from an input of a gate, it is 
necessary t o  eliminate all combinations of values of the out- 
put and other input(s) of the gate which use the reduced 
input value. For example, from the inverse-image character- 
istic equations for a two-input AND gate given in  section 3. 
value 1 remains in  the set of possible values at input A of 
the gate if 0. 1. D. or -is is present at input B and remains 
in the implied value of the output. Thus, in order for an as- 
signment t o  reduce 1 at input A. it must reduce: either 0 at 
input B or 0 at output C .  either 1 at input A or 1 at output 
C .  either D at input B or D a t  output C.  and either at 

A 

L 

input B or 

must appear on R,, or R ,  , R 
+B t(' + A  
R n o r  R n i n  order t o  appear on R 

a t  output C .  In other words, an assignment 

or R ,  , R D  or R D .  and 

. The complete set of 

--+B -C -+B +C + A  -C 

,s 
R ,  = U x> for each 2, E S 

3 = 1  

Dependencies between circuit nodes can cause logical con- 
straints at one justification point t o  appear at another. The 
reduction equations are able t o  capture these constraints and 
determine additional necessary assignments. 

Example 7: In order t o  produce a "1" on both the sum and 
carry outputs of the full adder from Fig. 12, we need a "1" 
on both the A. B .  and C (carry-in) inputs. As noted in  
[13]. there are no direct implications of an assignment to  A. 

B .  or C .  However, assignment C{,] appears on R ,  : since 
E I { l ~  must be justified, an assignment which reduces Fill 
implies that E must carry value "1" (i.e. C{,!) appears on 

+F 

+E 
R , ,  ) .  Thus. assignment C{,,) requires that A = B = 1 ( i .e.  
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+-a2 , 4 5 2  

-J --'a1 d l  

--tD -+c 

appears on both R ,  and R ,  ).  since "1" must appear on 
line E i f  C = 0 in order to  satisfy requirement H I , ) .  Thus, 

C{,} appears on R , since it appears on both R ,  and R ,  . 

Finally, since C { n ~  appears on R , it appears on 
4 c: 
R ,  . Since G{,} is a justification point. C{,} is a reduction 

assignment and C { l )  is necessary. Despite that there are no 
_tG 

local implications from assignment Gin), it appears on R , . 
A similar argument applies t o  both assignment 
both of which are also necessary. 

and R 

and 

Figure 12 Value justif ication of a full adder 

4.3 S t e m  Correlat ion 

If the values at the inputs t o  a gate are not independent- 
that is. they are related t o  one another through reconvergence 
of some fanout stem-then the set of possible values at the 
output of the gate may be pessimistic [14]. The reduction 
lists allow us t o  eliminate this pessimism. 

Example 8: The circuit of Fig. 13 is an implementation of a 
two-input multiplexor (MUX) with select B and inputs 2. C'. 

Since R,, = {B{r, , l}},  any of the possible assignments to  
stem B cause 0 to  vanish at line F .  A stem correlation exists 
for assignment F{n} caused by B .  Therefore, 0 is not an 
attainable assignment at line F and the forward propagated 
value is (1) rather than (0, l}. Stem correlation turns out to  
be extremely important in  test pattern generation. reducing 
the number of branches and backtracks as well as the total 
CPU time required to  generate a test. 

--tF 

4.4 Implementat ion issues 

The complexity of reduction list calculation is similar to  
that of deductive fault simulation. During the test genera- 
t ion process, reduction lists can only grow-assignments can 
only be added. never deleted'. Since the total number of as- 
signments which can appear on any reduction list cannot be 
greater than the number of nodes in  the circuit. the reduction 
list calculation will complete in polynomial time. 

The amount of processing which is required t o  determine 
the reduction lists is directly proportional to  the number of 
assignments which must be analysed and the area of the 

* The lists niay decrease in  size oil a backtrack, as we ii iove froin a 
later stage of test getieratioii t o  an earlier one where the l is ts  were 
shorter 

a1 2-inout MUX 

Figure 13 Correlation of assigti i i ients 

circuit in  which they must be propagated. The concepts 
of stem regions and exit lines [ lo )  can be used to  restrict 
both while guaranteeing that no necessary assignments will 
be overlooked [6] .  

Since the dynamic calculation of reduction lists may be 
costly, it may be desirable to  obtain generic information which 
can be reused for each target fault. Analogous to  "static 
learning" [14]. the "initial" reduction lists (when all node 
assignments are (0, l )  and no fault has been injected) are 
preprocessed and retained. These lists contain reduction as- 
signments which can be used for justification points which 
are not reachable from the point of the fault. 

It is not necessary t o  explicitly extract dominators-nodes 
through which the fault effect must propagate in order to  
reach the primary outputs-if the reduction equations are up- 
dated dynamically. Dominators are simply necessary assign- 
ments t o  { D , D }  rather than t o  (0) or (1). If the reduction 
lists are not updated dynamically, then dominators can be 
extracted by tracing backward from those justification points 
whose required value includes D and/or D using a simple lin- 
ear algorithm (51. In this case. another preprocessing step is 
performed to  find those assignments which are necessary to  
propagate a fault effect from a stem to its exit lines. These 
are reduction assignments which must be eliminated when- 
ever the stem is a dominator [6].  Preprocessed "propagate 
assignments" turn out to  be extremely useful for certain dif- 
ficult faults. 

Experimental results show that dynamic calculation of re- 
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duction lists i s  not required t o  generate a test for or prove 
redundant the vast majority of faults. 

No. 
Flts. 

Circuit 

5 .  Experimental results 

The algorithms presented in  this paper have been imple- 
mented in  C running under UNIX. The goal of the implemen- 
tation was t o  investigate the behavior of an algorithm which 
uses necessary assignments3 rather than "intelligent" heuris- 
tics for test pattern generation and, in particular, to  determine 
the extent to  which backtracking can be reduced. 

In order to test the deductive power of the algorithm, all 
faults were explicitly targeted. In order t o  avoid the fortu- 
itous detection of a difficult fault with a lucky random test 
pattern, no fault simulation was performed. The choice of 
heuristic for choosing arbitrary branches has a huge impact 
on the number of backtracks performed and the number of 
abandoned faults. Several different heuristics for choosing 
arbitrary branches were implemented, but none were found 
which worked well in all circuits. The results presented in  
this section were produced by assigning to  ( 0 )  the first unas- 
signed primary input which could have an effect in the final 
test pattern whenever no necessary or nonconflicting assign- 
ments could be found. 

Complete test pattern generation experiments were run 
on the ISCAS.85 benchmark circuits [2]. The results were 
generated as follows: 
1. Deterministic test pattern generation: All faults were ex- 

plicitly targeted. A two-pass algorithm was used. with a 
backtrack limit of 10 for each pass: 
a) Phase 1: Test generation using preprocessed reduc- 

tion lists only, but using dominators and necessary 
assignments for propagation from stems to  their exit 
line(s). 

b) Phase 2: Test generation using dynamically calcu- 
lated reduction lists4 

2. Fault simulation: The test set obtained i n  phase 1 and 

Faults tested: I Abd. faults: 
w / o  Brnch. I w / o  Bcktrk. I w / o  FS I w FS 

lii order t o  achieve these results, algorithms wl i ic l i  determine non- 
conflicting assigririients liave also been used [GI 
The current implementation does no t  take advantage of  the stem 
region concept. 

C432 
C499 
C880 

C1355 
C1908 
C2670 
C3540 
C5315 
C6288 
C7552 

phase 2 was fault simulated [lo] t o  determine the cover- 
age of abandoned faults. "Don't cares" in the test pat- 
terns were randomly replaced with zeros and ones. Other 
than replacement of "don't care" values, no random pat- 
tern fault simulation was performed 

540 
750 
942 
1566 
1870 
2630 
3291 
5291 
7710 
7419 

No. Abd. total 
Flts. Flts. bktrks. 

Circuit 1 1 1 
C1355 
C1908 

0 

14 

* Sun 3/60 

Table 3 Experii i iei ital results-redlllidallt faults 

Table 3 summarizes the results for the untestable faults 
in the benchmark circuits. For each circuit, the table gives 
the number of redundant faults, the number of abandoned 
faults (faults which were not proven t o  be redundant). the 
total number of backtracks performed in the experiment. and 
the average. maximum and standard deviation of the times 
required t o  prove the faults redundant. 

No redundant faults were abandoned. Furthermore. phase 
2 of the test pattern generation algorithm (full reduction list 
propagation) was required only for circuit C432-three faults 
were abandoned (after 10 backtracks each) by phase 1. after 
which two of the three were proven redundant with no back- 
tracks and the third was proven redundant with one backtrack 
in phase 2. Circuit C2670 contains eight faults which each re- 
quired one backtrack (in phase 1) to prove redundancy: circuit 
C7552 contains 6 faults which were backtracked, the "worst" 
of which required 3 backtracks (phase 1). 

Table 4 gives the results for the testable faults of the 
benchmark circuits. For each circuit. the table gives the num- 

189 
64 
402 
0 

210 
553 
61 1 
1242 

12 
203 

- y- 
Dev. 
0.48 

0.21 
0.04 
0.09 
0.94 
1.10 
0.38 
0.13 
0.50 

- 

- 

538 
719 
940 
1480 
1840 

2490 
2654 
5122 
6197 
6348 

CPU Time 

0 
0 
0 
0 
3 

20 
49 
30 

1127 
39 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

CPU Time ( 

Avg. 
0.80 
1.11 
0.56 
3.55 
2.94 

1.57 
3.39 
1.13 

1 7.87 

- 

@ 

Pre. 
3.76 
8.84 
8.84 
35.36 
39.26 

54.68 
159.22 
102 74 
210.70 
148.06 

Table 4 Experinielital results-testable faults 
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ber of testable faults, the number of faults for which a test 
pattern was generated without any arbitrary branching and 
without any backtracking, the number of testable faults for 
which the algorithm was unable to  find a test vector, the 
number of faults which remained undetected after vectors gen- 
erated for the other faults were fault simulated. the average 
time, maximum time and standard deviation of times required 
to  generate a test for each target. and the time required t o  
preprocess the circuit. 

Of particular interest is the number of faults for which a 
test is generated with no arbitrary branching. An interesting 
result is that several faults exist which were abandoned by 
phase 1 of the test pattern generation algorithm, but  for which 
a test pattern was generated without branching by phase 2. 
Another interesting result is that all of the faults which were 
abandoned after phases 1 and 2 of the test pattern generation 
algorithm were covered when less than 1000 random vectors 
were fault simulated, and thus would not have been targeted 
in a conventional test pattern generation experiment. 

6. Conclusions 

We have presented a new test pattern generation algo- 
r i thm which uses the concept of necessary assignments to  
reduce or eliminate backtracking in  automatic test pattern 
generation. Necessary assignments are those which must be 
made in  order to  find a test pattern; the search is guaranteed 
to  fail i f  we do not  make them. 

This concept has been incorporated into an automatic test 
pattern generation algorithm which has been used to  generate 
test patterns for all faults in a variety of benchmark circuits. 
Experimental results indicate that the algorithm is particularly 
efficient at redundancy identification which is often a problem 
for conventional test pattern geneiation algorithms. 

It is interesting to  compare the problems of test pattern 
generation and fault simulation. The local implication step 
used by PODEM and FAN for test pattern generation can be 
compared t o  critical path tracing in fault simulation. They 
are of similar computational complexity: critical path tracing 
is exact and conventional implication will lead t o  a test pat- 
tern with no branching only in fanout-free circuits. Finding 
the implication of each possible assignment in SOCRATES is 
similar to  serial fault simulation, whereas the processing of 
reduction lists is similar to  deductive fault simulation, In this 
light. we can see the progression from heuristic to  algorithmic 
test pattern generation algorithms. 
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