
Beyond ECDSA and RSA: Lattice-based Digital Signatures
on Constrained Devices

Tobias Oder
Horst Görtz Institute for

IT-Security
Ruhr University Bochum

Thomas Pöppelmann
Horst Görtz Institute for

IT-Security
Ruhr University Bochum

Tim Güneysu
Horst Görtz Institute for

IT-Security
Ruhr University Bochum

tobias.oder@rub.de thomas.poeppelmann@rub.de tim.gueneysu@rub.de

ABSTRACT
All currently deployed asymmetric cryptography is broken
with the advent of powerful quantum computers. We thus
have to consider alternative solutions for systems with long-
term security requirements (e.g., for long-lasting vehicular
and avionic communication infrastructures). In this work
we present an efficient implementation of BLISS, a recently
proposed, post-quantum secure, and formally analyzed novel
lattice-based signature scheme. We show that we can achieve
a significant performance of 35.3 and 6 ms for signing and
verification, respectively, at a 128-bit security level on an
ARM Cortex-M4F microcontroller. This shows that lattice-
based cryptography can be efficiently deployed on today’s
hardware and provides security solutions for many use cases
that can even withstand future threats.

Categories and Subject Descriptors
SEC2.3 [Hardware and Embedded Systems Security]:
Embedded and Cross-Layer Security—Embedded Security case
studies (Medical, Automotive, smartgrid, industrial control
etc.)

1. INTRODUCTION
Security has become a crucial aspect of many recent hard-

ware and software systems, in particular for those being po-
tentially exposed to attacks for the next 10-20 years. A ma-
jor challenge is the design of corresponding cryptographic
and security functions that guarantee protection over the
entire lifespan, such as in the case of long-lasting vehicular
or avionic systems. In vehicular communication infrastruc-
tures (V2G/V2V), for example, Elliptic Curve Cryptogra-
phy (ECC) using 224-bit and 256-bit NIST curves was stan-
dardized for message authentication in IEEE 1609.2. The
relatively large security parameters for ECC were considered
a conservative choice to achieve long-term security against
attackers using conventional computers. However, with the

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
DAC ’14, June 01 - 05 2014, San Francisco, CA, USA
Copyright 2014 ACM 978-1-4503-2730-5/14/06 ...$15.00.

availability of powerful quantum computers that IBM an-
nounced to become available within the next 15 years [3], all
currently used asymmetric cryptosystems – including ECC
– are known to be broken due to Shor’s algorithm [13]. Re-
ferring not only to the specific situation for V2G/V2V but
also to other use-cases in the Internet of Things, we see an
urgent demand for alternative cryptosystems in general to
achieve long-term security that can also withstand such fu-
ture attacks. More precisely, we need novel cryptosystems
that rely on completely different security assumptions but
still enable efficient implementations on contemporary and
constrained hardware.

A solution to this problem could be provided by recently
proposed lattice-based digital signatures that combine effi-
ciency with small key and signature sizes. Their underlying
security assumptions not only allow reductions to hard lat-
tice problems but also involve polynomial multiplication as
core function what can be computed and scaled efficiently
using FFT-like arithmetic. A very promising candidate for
message authentication and digital signatures is the fam-
ily of Bimodal Lattice Signature Schemes (BLISS) that was
introduced at CRYPTO’13 [5] and perfectly combines all
aforementioned properties.

Contribution. In this work we present the first implemen-
tation of the BLISS signature scheme tailored to a 32-bit
ARM Cortex-M4F RISC (1024 KB flash/192 KB SRAM)
microcontroller that provides an equivalent level of security
compared to 256-bit ECC or 128-bit of symmetric security.
This common series of ARM microcontrollers is not only
deployed in vehicular environments but also in many other
embedded devices, such as smart meter gateways, medical
instrumentation or industrial control systems so that our re-
sults are also likewise applicable to many other applications.
For this platform we investigate the optimal implementation
of polynomial multiplication using the Number-Theoretic
Transform (NTT) as well as an analysis of the efficiency of
several Gaussian samplers which is another crucial operation
of BLISS. Finally, our implementation on this low-cost plat-
form achieves a significant performance, namely 28 signing
and 167 verification operations per second, outperforming
classical cryptosystems such as RSA and ECC.

Outline. This work is structured as follows: We provide
background implementation on BLISS in Section 2 and de-
tails about our implementation in Section 3. Performance
results and a comparison with other asymmetric cryptosys-
tems are part of Section 4, before we conclude with some
remarks on future work in Section 5.

2. BIMODAL LATTICE-BASED SIGNATURE
SCHEMES

In this section we provide background and a description of
the BLISS variant that we target for implementation. Fur-
ther details such as the reasoning of the construction and
associated security proofs are given in the original work and
its full version [6, 5].

Lattices have various applications in asymmetric cryptog-
raphy and are currently an emerging research topic with
much potential. New schemes allow the construction of ef-
ficient and formally verifiable signature schemes which are
presumably not protected by patents. Those schemes are
supposed to offer much better security guarantees than ad-
hoc designs like the broken NTRUSign [7] signatures. The
principle of the BLISS signature scheme is based on ideas
given in [11, 9]. The general approach is to create the sig-
nature using the Fiat-Shamir transformation in a way that
it does not leak information about the secret key. This is
achieved by rejection sampling which ensures that the sig-
nature is distributed according to a discrete Gaussian dis-
tribution Dσ and independent of the secret key. The dis-
tribution Dσ is defined such that a value x ∈ Z is sampled
from Dσ with the probability ρσ(x)/ρσ(Z) where ρσ(x) =

exp (−x
2

2σ2) and ρσ(Z) =
∑∞
k=−∞ ρσ(k). All arithmetic for

the presented concrete instantiation of BLISS is performed
in the ring R = Zq[x]/〈xn + 1〉 represented as polynomials
with n coefficients where each coefficient is reduced modulo
q.

Algorithm 1: BLISS Key Generation

Result: Key pair (A,S) such that AS = q mod 2q
1 begin
2 Choose f, g as uniform polynomials with d1 = dδ1ne

entries in {±1} and d2 = dδ2ne entries in {±2}
3 S = (s1, s2)t ← (f, 2g + 1)t

4 if Nκ(S) ≥ C2 · 5 · (dδ1ne+ 4dδ2ne) · κ then restart
5 aq = (2g + 1)/f mod q (restart if f is not

invertible)
6 return (A,S), where A← (2aq, q − 2) mod 2q

Key Generation. The key generation algorithm given in
Algorithm 1 is similar to the key generation algorithm of
NTRU. First polynomials f and g with densities δ1 and δ2
are sampled such that they have d1 = dδ1ne coefficients in
{±1} and d2 = dδ2ne coefficients in {±2}. The secret key
is computed as S = (s1, s2)t = (f, 2g + 1)t and the public

key is A = (2aq, q − 2) = (2·(2g+1)
f

, q − 2). For successful
key generation, it is necessary to find a polynomial f that is
invertible. If this is not the case, key generation is restarted.
The size of the signature depends on the maximum possi-
ble norm of the vector Sc, which is defined as Nκ(S) and
computed as

Nκ(S) = max
I⊂{1,...,n}

#I=κ

∑
i∈I

 max
J⊂{1,...,n}

#J=κ

∑
j∈J

Ti,j

where T = St · S ∈ Rn×n. A private key S whose Nκ value
is too big is rejected, to keep the signature size small.

Signature Generation. The generation of the signature
is described in Algorithm 2. First two masking polynomi-

Algorithm 2: BLISS Signature Algorithm

Data: Message µ, public key A = (a1, q − 2) ∈ R1×2
2q ,

secret key S = (s1, s2)t ∈ R2×1
2q

Result: Signature (z1, z
†
2, c) of the message µ

1 begin
2 y1,y2 ← DZn,σ

3 u = ζ · a1 · y1 + y2 mod 2q
4 c = H(bued mod p, µ)
5 Choose a random bit b

6 z1 ← y1 + (−1)bs1c, z2 ← y2 + (−1)bs2c
7 Continue with a probability

1
/(

M exp
(
− ||Sc||2

2σ2

)
cosh

(
〈z,Sc〉
σ2

))
otherwise

restart
8 z†2 = (bued − bu− z2ed) mod p

9 return (z1, z
†
2, c)

als y1,y2 are sampled where each coefficient is randomly
chosen according to the Gaussian distribution Dσ. Then
the polynomial u is computed as u = ζ · a1 · y1 + y2 mod
2q where multiplication by ζ = 1

q−2
mod 2q and reduction

modulo 2q are necessary in order to achieve a low rejection
rate. Note, that it is still possible to compute a1 · y1 using
FFT-techniques which require a prime modulus for maxi-
mum efficiency. Then only the higher-order bits1 bued of
the polynomial u are hashed together with the message µ.
This is done using a standard cryptographic hash function
which is a practical instantiation of a random oracle – a
theoretical construction used in the formal security analy-
sis. The entropy provided by the output of the (pseudo-
random) hash function is then used to construct the sparse
polynomial c with κ coefficients equal to one and the re-
maining coefficients set to zero. In Line 6 the secret key is
multiplied with c (which depends on the message and the
random y1,y2) and masked using the Gaussian distributed
masking polynomials y1,y2. The rejection step is performed
in Line 7 to make the signature independent of the secret key.
Due to this rejection step the signature generation restarts
with a certain probability. Finally the size of the signature
(z1, z

†
2, c) is reduced by compressing z2.

Signature Verification. In order to verify a signature it
is checked if (z1, z

†
2, c) is a valid signature of the message

µ. First the l2 and l∞ norms of z are computed and the
signature is rejected if z is too large (depending on the pa-
rameters B2 and B∞). The actual verification is done by

computing H(bζ ·a1 ·z1 +ζ ·q ·ced+z†2 mod p, µ) and testing
whether the result is equal to c. The verification process is
explained in detail in Algorithm 3.

Parameters Selection. The designers of BLISS provide
four parameter sets suitable for practical applications [5].
The parameter set BLISS-I provides 128 bits of equivalent
symmetric security which is comparable to ECC with 256
bits and sufficient to provide security beyond 15-20 years. In
Table 1, we provide detailed information for BLISS-I and
show that it can be used even on constrained devices due
to its moderate resource consumption. Note that all BLISS
parameter sets have in common the choice of n = 512 and
q = 12289 for the polynomial ring. Therefore, it is pos-

1For any integer x, the d high-order bits of x are denoted by
bxed so that x can be written as x = bxed · 2d + [x mod 2d].

Algorithm 3: BLISS Verification Algorithm

Data: Message µ, public key A = (a1, q − 2) ∈ R1×2
2q ,

Signature (z1, z
†
2, c)

Result: Accept (valid) or Reject (invalid)
1 begin

2 if ||(z1|2d · z†2)||∞ > B∞ then Reject

3 if ||(z1|2d · z†2)||2 > B2 then Reject

4 Accept iff c = H(bζ ·a1 · z1 + ζ · q · ced + z†2 mod p, µ)

sible to use the same core functions for polynomial arith-
metic when switching to even higher security levels (BLISS-
III/IV) or slightly smaller signatures (BLISS-II).

Table 1: BLISS-I parameter set providing 128 bit
of equivalent symmetric security. Signature and key
sizes are the theoretical optimal values and given in
kilobits (kb).

n q δ1, δ2 σ α κ
512 12289 0.3, 0 215 1 23

Nκ B2, B∞ Repetition rate |sk| |pk| |sig|
1.62 12872, 2100 1.6 2 kb 7 kb 5.6 kb

3. IMPLEMENTATION
In this section we provide implementation details for our

ARM-based target device. More precisely, we describe how
to implement different methods to sample from a discrete
Gaussian distribution, the polynomial arithmetic, and fur-
ther procedures required for key generation on a constrained
device.

3.1 Target Device
The ARM Cortex-M series consists of five 32-bit RISC

microcontrollers where the Cortex-M4F is the most power-
ful one in the series. It has 21 core registers, made up of
13 general purpose registers and 5 special registers. A fur-
ther core feature is the floating point unit (FPU) that makes
the difference between Cortex-M4 and Cortex-M4F and al-
lows floating point addition and multiplication in one cycle.
The Cortex-M4 features a digital signal processor that is
capable of performing instructions like multiplication with
subsequent addition in a single cycle. For generation of ran-
domness we rely on the on-board TRNG which is equipped
with a fault detector and employs ring oscillators and an
LFSR. The RNG runs with 48 MHz and can output 32 ran-
dom bits every 40 periods.

3.2 Gaussian Sampling
In this section, we investigate potential approaches to

sample from a discrete Gaussian distribution (cf. Line 2
of Algorithm 2) that matches the security requirements of
BLISS. For each signing attempt it is necessary to gener-
ate 2n = 1024 Gaussian distributed coefficients for a stan-
dard deviation σ = 215 with high precision matching the
assumptions of the security proof. As best candidates for
this purpose, we evaluate the Knuth-Yao [14, 8] and Zig-
gurat [2] sampling algorithms as well as an approach using

Bernoulli distributed variables [5]. The conceptually sim-
plest algorithm to sample from a Gaussian distribution is
to choose a uniformly random u ∈ {−τσ, ..., τσ} (in this
case τ is denoted as tail-cut) and to accept it with a proba-
bility proportional to exp(−x2/2σ2). However, this requires
costly computation of the exp() function with high precision,
a large number of random bits, and leads to ≈ 10 trials per
sample.

3.2.1 Bernoulli Sampler
The authors of [5] proposed a promising sampling algo-

rithm that makes use of Bernoulli distributed variables. A
Bernoulli distributed variable Bc outputs one with a prob-
ability of c ∈ [0, 1] and zero otherwise. Sampling from this
distribution is easy by lazily evaluating if y < c for a uni-
formly random y ∈ [0, 1) and precomputed c. The general
idea (for more details we refer to [6]) of the proposed sampler
is to optimize rejection sampling by reducing the probability
of rejections. This is done by sampling first from an interme-
diate distribution, called binary Gaussian distribution, and
then from the target distribution. The rejection rate is thus
reduced to ≈ 1.47 (compared to 10 for classical rejection
sampling) and no computations of the exponentiation func-
tion exp() or large precomputed tables are necessary any
more.

The implementation of the Bernoulli sampler is straight-
forward. The algorithm requires to store 336 bytes of pre-
computed data and we use loop unrolling to speed up certain
parts of the algorithm. This reduces the average required
cycles from 2049 to 1835 cycles per Gaussian distributed
coefficient.

3.2.2 Knuth-Yao Algorithm
The Knuth-Yao algorithm allows to sample from a Gaus-

sian distribution [8, 14] by constructing a binary tree from
the probability matrix and performing a random walk to
sample an element. The probability matrix consists of the
binary expansion of the probabilities of all x ∈ [0, τσ] ig-
noring leading zero digits. The matrix determines a rooted
binary tree with internal nodes that always have two succes-
sors, as well as terminal leaves. The leaves are labeled with
the value that is returned if this leaf is reached during the
random walk through the tree. The number of leaves at level
n is equal to the number of 1’s in column n of the probability
matrix (starting with column 0). The row in which a one
appears is used as label for one of the leaves. All remaining
nodes become internal nodes with two successors that get
labeled the same way.

Our implementation of the Knuth-Yao algorithm is in-
spired by [14] which has been adapted to software. Neces-
sary tables were computed using a computer algebra system
(SAGE) from which we remove a large number of leading
zeros that occur in the first columns. The overall memory
consumption is 19064 bytes which is still large but favorable
compared to a näıve cumulative distribution table approach,
which would require 41280 bytes. However, the detection of
leading zeros leads to some overhead so that we need on
average 2404 cycles per sample.

3.2.3 Ziggurat Algorithm
The discrete Ziggurat algorithm [2] is similar to the Ber-

noulli sampler and an approach to optimize rejection sam-
pling. For this purpose m rectangles with the left corners on

the y-axis and the right corners on the graph of the probabil-
ity distribution function are computed such that all rectan-
gles have the same size. The entire area under the graph is
then covered by rectangles and a rectangle Ri can efficiently
be stored by just storing the coordinates (xi, yi) of the lower
right corner.

To sample a value, first a rectangle Ri is uniformly random
sampled. The next step is to uniformly choose an x value
within the sampled rectangle. If this x value is smaller or
equal to the x coordinate of the previous rectangle, x gets
accepted, because all points (xj , yj) ∈ Ri with xj ≤ xi−1

definitively lie within the area covered by the graph. Oth-
erwise, one has to sample a value y and compute the exp()
function to determine whether a value gets rejected or ac-
cepted.

The main challenge of an implementation of the Ziggurat
algorithm is its computational complexity and the infrequent
high precision rejection sampling. Thus we had to imple-
ment expensive multi-precision arithmetic and compute the
exponential function using limit representation (see [8] for a
short survey on methods to compute exp()).

3.3 Polynomial Arithmetic
Polynomial arithmetic is one of the most time-consuming

components of BLISS. In this section we concentrate on the
costly multiplication and inversion in Zp/〈x+ 1〉.

3.4 Number Theoretic Transform
For polynomial multiplication we use the Number Theo-

retic Transform (NTT) which is a discrete Fourier transform
over a finite field. It allows us to achieve asymptotic com-
plexity of O(n logn) and also efficient implementations (e.g.,
see [12]). To speed up the computation of the NTT, we pre-
compute all necessary twiddle factors which are powers and
inverse powers of the primitive n-th root ω. Moreover, we
have unrolled the first two stages of the implemented radix-2
decimation-in-time algorithm. The core of the algorithm is
implemented in assembler and listed in Table 2.

Another useful feature of our target microcontroller is a
bit reversal instruction (RBIT). This is necessary as the input
to the transform has to be reordered such that coefficients
are exchanged with their bit-reversed counterpart. With
the help of the RBIT instruction, we can implement this step
efficiently using inline assembly.

3.5 Polynomial Inversion
During the key generation, we have to compute the mul-

tiplicative inverse of f (Algorithm 1, Line 5). For this task
we use Fermat’s little theorem to compute the multiplica-
tive inverse as f−1 = fq−2 in R. To speed this exponentia-
tion up, we use an addition chain [10] that requires 18 poly-
nomial multiplications2. Processing the exponent 12289 −
2 = 12287 = 101111111111112 bit-wise via the the square-
and-multiply algorithm algorithm would need 25 polynomial
multiplications what makes the addition chain approach prefer-
able. Also an implementation using Montgomery reduction
turned out to be slower than using addition chains. All op-
erations during the inversion are performed in the frequency
domain and it suffices to compute the NTT transformation
at the beginning and the end of the exponentiation. This

2See Achain-All http://www-cs-faculty.stanford.edu/
~uno/programs.html

Table 2: Implementation of the NTT butterfly oper-
ation in C (on the left) and assembly (on the right).
The ARM Cortex-M4F supports conditional execu-
tion and powerful DSP instructions, like Multiply-
Subtract (MLS), which speed up our implementa-
tion.

C Code Assembler

// omega[m] in LR ldr.W LR, [R6]
// out[b] in R9 ldr.W R9, [R0,R12,LSL #2]
r =(omega[m]*out[b])%q; mul LR, R9, LR
// q in R11 and R8 mov R11, R8
// out[a] in R9 ldr.W R9, [R0,R7,LSL #2]
// out[b] in R10 ldr.W R10, [R0,R12,LSL #2]

sdiv R11, LR, R11
// result mod q in R11 mls R11, R8, LR
out[b]=out[a]+(q-r)%q; subS.W R10, R9, R11

IT MI
addMI R10, R10, R8

out[a]=out[a]+r % q; add R9, R9, R11
cmp R9, R8
IT GE
subGE.W R9, R9, R8

// write back out[b] str.W R10, [R0,R12,LSL #2]
// write back out[a] str.W R9, [R0,R7,LSL #2]

provides the possibility to apply an early test for invertibil-
ity of the input, because we can simply test whether there
are coefficients that are equal to 0 after transforming the
input into the frequency domain. Another advantage of the
frequency domain is that polynomial multiplication is just
coefficient-wise multiplication. We can exploit this to min-
imize the memory consumption by computing the addition
chain iteratively for all coefficients. Thus we do not have to
store whole polynomials as intermediate results but just one
coefficient.

3.6 Sparse Multiplication
In Line 6 of Algorithm 2, computation of s1,2c is required.

Since c is only a sparse polynomial where κ coefficients are
set to one, applying the NTT is not the optimal solution.
Moreover, we do not need to reduce modulo 2q as the poly-
nomials s1,2 have only small coefficients. For efficiency rea-
sons we therefore only store the index of the coefficients of c
that are one and computing those with runtime O(nκ). We
further decreased the running time of the sparse schoolbook
multiplication by 36,6% (from 354,419 to 224,626 cycles) by
unrolling the inner loop at the cost of a slightly increased
code size by 602 bytes.

4. RESULTS AND EVALUATION
In this section, we present performance results for our im-

plementation of BLISS-I on the Cortex-M4F. The Cortex-
M4F microcontroller operates at 168 MHz and our code is
compiled using IAR Embedded Workbench for ARM in ver-
sion 6.60.1.5104. For precise benchmarks, we determined
average cycle counts of a subroutine with random inputs
from 1000 runs and used a data watchpoint trigger to ex-
actly evaluate the clock cycle counter.

Table 3: Measurement results of the major build-
ing blocks of our BLISS-I implementation. The
NTT transformation is applied on polynomials with
n = 512 coefficients. Gaussian distributed values are
sampled from DZn,σ for n = 512 and σ = 215. We de-
note by g/s/v if a routine is used in key (g)eneration,
(s)igning, or (v)erification.

Routine Cycle Application

NTT Trans. 122,619 g/s/v
NTT Multiplication 508,624 g/s/v
Polynomial Inversion 470,606 g
Computation of Nκ(S) 1,043,447 g
Generate c 220,022 s/v
Drop bits 8,225 s/v
Sparse Multiplication 224,626 s
Huffman Encoding 78,927 s
Huffman Decoding 115,943 v
Sampling Bernoulli 935,925 s
Sampling Knuth-Yao 1,231,326 s
Sampling Zigguratspeed 1,057,814 s
Sampling Ziggurataverage 1,729,098 s
Sampling Zigguratsize 3,378,909 s

4.1 Performance Results
Cycle counts for major building blocks of BLISS are given

in Table 3. The results show that computations required
during key generation are expensive in terms of running
time and RAM consumption. However, the polynomial in-
version is even 8.5% faster than a single NTT multiplication
since we preserve the NTT-transformed representation be-
tween different functions and use addition chains to speed
up the inversion. By using the sparse multiplication, we
save about 54.9% of the runtime compared to a NTT mul-
tiplication on the same values. We evaluated three instan-
tiations of the Ziggurat algorithm, one for a rather small
precomputed table with a size of 2560 bytes, one as a time-
memory-tradeoff with a precomputed table of 5120 bytes,
and one for a rather large precomputed table with a size
of 10240 bytes for time-critical applications. The trade-
off sampler is 61,2% faster than the size-optimized sampler
whereas the speed-optimized sampler only has a 51,2% bet-
ter performance than the trade-off sampler. But even the
speed-optimized variant of the Ziggurat sampler is not able
to outperform the Bernoulli sampler. The generation of the
signature component c, that also includes the SHA-3 hash
function, performs well compared to other subroutines. The
removal of lower bits of z2 is negligible with about 8000 cy-
cles. Merging all components together, the number of clock
cycles and memory consumption for key generation, signing
and verification are given in Table 4.

Key generation is a rather slow process since it needs to
be restarted frequently and requires time-consuming com-
putations (see Table 3). However, it is usually done once
per device. The performance of the signing operation is di-
rectly determined by the chosen sampler. We observe that
the RAM consumption of the signing operation is indepen-
dent from the sampling algorithm since all samplers need a
comparatively small amount of memory.

The table used for the Bernoulli sampler is also used for

Table 4: Results for an implementation of the sign-
ing algorithm with different samplers, verification
and key generation. Note that the flash consump-
tion for the signing algorithms already includes the
code and tables for verification and key generation.

Operation Cycle RAM Flash

SigningBer 5,927,441 18,580 24,648
SigningKY 6,865,089 18,580 44,036
SigningZig-Speed 5,984,686 18,580 36,028
SigningZig-Average 8,335,711 18,580 30,908
SigningZig-Size 16,396,414 18,580 28,420
Verification 1,002,299 11,520 -
Key Generation 367, 859, 092 21,272 -

the computation of the hyperbolic cosine function. The total
amount of flash memory includes 900 bytes for the Bernoulli
sampler. Additional flash memory is also consumed by code
that initializes peripherals of the STM32F4 and is responsi-
ble for debug and profiling output.

All in all our results show that the Bernoulli sampler is
clearly the best choice compared to other evaluated sam-
plers. It provides lowest runtime and needs the smallest pre-
computed table compared to the other two evaluated sam-
plers. It would be possible to speed-up the Ziggurat with
even larger tables but for most constrained devices this is not
an option. A major issue with the Ziggurat sampler is the
requirement for multi-precision arithmetic. The Knuth-Yao
sampler is the least favorable choice with respect to perfor-
mance and memory consumption compared to the Bernoulli
and the speed-optimized Ziggurat sampler. Furthermore, a
major drawback of this algorithm is the large table and the
high amount of memory accesses that slow down the imple-
mentation. Therefore, we do not recommend the Knuth-Yao
sampler for the evaluated target platform. These results are
also counter-intuitive, since we expected the algorithm with
the largest table to outperform the others. But instead, the
Bernoulli sampler as the one with the smallest table is the
preferable solution according to our results.

4.2 Performance Comparison
In Table 5 we provide results obtained from the documen-

tation of the STM32 Cryptographic Library [15] which is
evaluated on a STM32F4xx family (Cortex-M4) microcon-
troller. There are also other results for ARM-based micro-
controllers in the literature, but many implementations run
on outdated hardware (e.g., [1] on ARM7TDMI) and do not
allow a fair comparison. A recent work evaluates ECC on
a much less powerful Cortex-M0, with a special focus on
energy consumption [4]. A comparison with the CPU im-
plementation of BLISS given in [5] is certainly not fair as
well. Besides architectural differences the biggest advantage
of desktop CPUs is that much more memory is available so
that Gaussian sampling can be implemented using the Cu-
mulative Distribution Table (CDT) which is faster than the
storage efficient algorithms used in this work.

In terms of security, the implemented signature scheme
was designed to provide a level of 128 bits of equivalent sym-
metric security. It can be compared to RSA-2048 (or maybe
even RSA-4096) and ECC-256. In terms of speed our veri-
fication routine outperforms RSA and ECC for all common

security parameters. Moreover, our implementation is twice
as fast compared to ECC-256 regarding signature genera-
tion. It becomes also obvious that RSA gets impractical
for parameter sets larger than RSA-2048 on constrained de-
vices, especially due to the very slow signing. For minimal
signature size, our implementation applies Huffman encod-
ing to obtain the signature size of 5600 bits. The public key
requires 1024 bytes and the private key requires 384 bytes.
For n-RSA signatures the size of the signature is n

8
bytes

and for n-ECC signatures (ECDSA) the signature size is 2n
8

bytes.

Table 5: Comparison of the most efficient instan-
tiation of our implementation with the RSA and
ECC implementation of the STM32 Cryptographic
Library (target device: STM32F4xx family) [15].

Operation Cycles Cycles Cycles
(key gen) (sign) (verify)

BLISSBer 367,859,092 5,927,441 1,002,299

RSA-1024 - 30,627,432 1,573,079
RSA-2048 - 228,068,226 6,195,481
ECC-192 7,400,421 7,720,020 14,716,374
ECC-224 9,849,334 10,414,487 19,558,528
ECC-256 12,713,277 13,102,239 24,702,099

5. CONCLUSION AND FUTURE WORK
In this work we have shown that it is possible to implement

a post-quantum, lattice-based signature scheme on a Cortex-
M4F microcontroller with a reasonable flash and memory
consumption. The most optimal variant takes 6 · 106 cycles
for signing, 1 · 106 cycles for verification and 368 · 106 cycles
for key generation. Running the target device at 168 MHz,
this corresponds to 28 signing, 167 verification and 0.46 key
generation operations per second. As a consequence, our
implementation is faster than the reference implementation
of RSA and ECC for comparable security levels (see Ta-
ble 5) and suitable for many embedded applications, e.g.,
V2V/V2G infrastructures.

For future work we plan to evaluate the resistance against
side-channel attacks and the implementation of countermea-
sures. Additionally, we plan to optimize the scheme for
arithmetic using vector extensions (e.g., ARM NEON). We
especially expect verification to profit, as the algorithm basi-
cally consists of an NTT multiplication which is very amend-
able to vectorization. Another direction for future work are
new techniques for Gaussian sampling and general crypt-
analysis to increase confidence in the chosen parameter set.

6. REFERENCES
[1] M. Aydos, T. Yanik, and Çetin Kaya Koç. A

high-speed ECC-based wireless authentication on an
ARM microprocessor. In ACSAC, pages 401–410.
IEEE Computer Society, 2000.

[2] J. Buchmann, D. Cabarcas, F. Göpfert, A. Hülsing,
and P. Weiden. Discrete Ziggurat: A time-memory
trade-off for sampling from a Gaussian distribution
over the integers. IACR Cryptology ePrint Archive,
2013:510, 2013.

[3] K. Chang. I.B.M. researchers inch toward quantum
computer. New York Times Article, February 28, 2012.
http://www.nytimes.com/2012/02/28/technology/

ibm-inch-closer-on-quantum-computer.html?_r=

1&hpw.

[4] R. de Clercq, L. Uhsadel, A. V. Herrewege, and
I. Verbauwhede. Ultra low-power implementation of
ECC on the ARM Cortex-M0+. IACR Cryptology
ePrint Archive, 2013:609, 2013.

[5] L. Ducas, A. Durmus, T. Lepoint, and
V. Lyubashevsky. Lattice signatures and bimodal
Gaussians. In R. Canetti and J. A. Garay, editors,
CRYPTO (1), volume 8042 of Lecture Notes in
Computer Science, pages 40–56. Springer, 2013.
Proceedings version of [6].

[6] L. Ducas, A. Durmus, T. Lepoint, and
V. Lyubashevsky. Lattice signatures and bimodal
Gaussians. IACR Cryptology ePrint Archive, 2013:383,
2013. Full version of [5].

[7] L. Ducas and P. Q. Nguyen. Learning a zonotope and
more: Cryptanalysis of NTRUSign countermeasures.
In X. Wang and K. Sako, editors, ASIACRYPT,
volume 7658 of Lecture Notes in Computer Science,
pages 433–450. Springer, 2012.

[8] N. C. Dwarakanath and S. D. Galbraith. Sampling
from discrete Gaussians for lattice-based cryptography
on a constrained device. Applicable Algebra in
Engineering, Communication and Computing, pages
1–22, 2014.

[9] T. Güneysu, V. Lyubashevsky, and T. Pöppelmann.
Practical lattice-based cryptography: A signature
scheme for embedded systems. In E. Prouff and
P. Schaumont, editors, CHES, volume 7428 of Lecture
Notes in Computer Science, pages 530–547. Springer,
2012.

[10] D. E. Knuth. The Art of Computer Programming,
Volume 2 (3rd Ed.): Seminumerical Algorithms.
Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1997.

[11] V. Lyubashevsky. Lattice signatures without
trapdoors. In D. Pointcheval and T. Johansson,
editors, EUROCRYPT, volume 7237 of Lecture Notes
in Computer Science, pages 738–755. Springer, 2012.

[12] T. Pöppelmann and T. Güneysu. Towards efficient
arithmetic for lattice-based cryptography on
reconfigurable hardware. In A. Hevia and G. Neven,
editors, LATINCRYPT, volume 7533 of Lecture Notes
in Computer Science, pages 139–158. Springer, 2012.

[13] P. W. Shor. Algorithms for quantum computation:
Discrete logarithms and factoring. In FOCS, pages
124–134, 1994.

[14] S. Sinha Roy, F. Vercauteren, and I. Verbauwhede.
High precision discrete Gaussian sampling on FPGAs.
Selected Areas in Cryptography, SAC 2013, Burnaby,
British Columbia, Canada, August 14-16, to appear,
2013. http://www.cosic.esat.kuleuven.be/
publications/article-2372.pdf.

[15] STMicroelectronics. UM0586 STM32 Cryptographic
Library. http://www.st.com/st-web-ui/static/
active/en/resource/technical/document/user_

manual/CD00208802.pdf.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move left by 7.20 points
 Normalise (advanced option): 'original'

 32

 D:20140421094700
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 320
 Fixed
 Left
 7.2000
 0.0000

 Both
 1
 AllDoc
 1

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 28.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 28.8000
 0.0000

 Both
 1
 AllDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryList_V1
 qi2base

