
488 • 2012 IEEE International Solid-State Circuits Conference

ISSCC 2012 / SESSION 28 / ADAPTIVE & LOW-POWER CIRCUITS / 28.6

28.6 Bubble Razor: An Architecture-Independent Approach
to Timing-Error Detection and Correction

Matthew Fojtik1, David Fick1, Yejoong Kim1, Nathaniel Pinckney1,
David Harris2, David Blaauw1, Dennis Sylvester1

1University of Michigan, Ann Arbor, MI
2Harvey Mudd College, Claremont, CA

Several methods that eliminate timing margins by detecting and correcting tran-
sient delay errors have been proposed [1-5]. These Razor-style systems replace
critical flip-flops with ones that detect late arriving signals, and use architectur-
al replay to correct errors. However, none of these methods have been applied
to a complete commercial processor due to their architectural invasiveness. In
addition, these Razor techniques introduce significant hold time constraints that
are difficult to meet given worsening timing variability. To address these two
issues we propose Bubble Razor (B-Razor) (Fig. 28.6.1), which uses a novel
error-detection technique based on two-phase latch timing and a local replay
mechanism that can be inserted automatically in any design. The error detec-
tion technique breaks the dependency between minimum delay and speculation
window, restoring hold-time constraints to conventional values and allowing
timing speculation of up to 100% of nominal delay. The large timing specula-
tion makes Bubble Razor especially applicable to low-voltage designs where tim-
ing variation grows exponentially.

We implemented B-Razor in an ARM Cortex-M3 microprocessor without
detailed knowledge of its internal architecture to demonstrate its automated
nature. The flip-flop-based design was converted to two-phase latch timing
using commercial retiming tools. B-Razor was then inserted using automatic
scripts. This system is the first implementation of a Razor-style scheme on a
complete, commercial processor, and it provides an energy-efficiency improve-
ment of 60% or a throughput gain of 100%.

During normal, error-free operation, data arrives at a latch input before the latch
opens and no time borrowing occurs. If data arrives after the latch opens due
to running at the edge of failure, B-Razor flags an error. The key observation is
that these errors do not immediately corrupt processor state as they borrow
time from later pipeline stages. A failure will occur when data arrives after the
latch closes, which can arise if the time borrowing effect is not corrected and
compounds through multiple stages.

Upon detection of a timing error, it is critical to recover quickly before time bor-
rowing accumulates to a point of failure. Error clock gating control signals (bub-
bles) are propagated to neighboring latches (Fig. 28.6.1). A bubble causes a
latch to skip its next transparent clock phase, giving it an additional cycle for cor-
rect data to arrive. Since it is not possible to cause all latches in the design to
inject a bubble in one cycle, bubbles are propagated with each cycle from neigh-
bor to neighbor in a wave-like pattern. A key challenge lies in how to prevent
bubbles from propagating indefinitely along loops and forwarding paths and
bring the circuit back to a consistent, bubble-free state. To address this, we pro-
pose a novel bubble propagation algorithm: (1) a latch that receives a bubble
from one or more of its neighbors, stalls and sends its other neighbors (input
and output) a bubble one half-cycle later; (2) a latch that receives a bubble from
all of its neighbors stalls but does not send out any bubbles (Fig. 28.6.2) Despite
the fact that latches stall at different times, the system provably maintains cor-
rect operation with every latch in the design stalling exactly once. The stalling
technique is agnostic to state machine architecture or structure, allowing bubble
clock gates and control logic to be automatically inserted. The only change to
the external behavior of the system is an occasional single stall cycle on the
inputs and outputs.

Flip-flops in the M3 were split into latches and the design was retimed using
automatic tools. Retiming can be performed to the same timing constraint with
21% area overhead as the two latches per original flip-flop become an average
of 3.29 latches after retiming. Logic delay in each phase was balanced such that
no time borrowing occurs during error-free operation.

To reduce bubble propagation logic overhead, latches that share neighbors were
automatically grouped together into clusters. A positive and negative graph was
extracted based on latch connectivity and clusters were assigned using a hyper-
graph partitioning tool [6]. Latches in each cluster share a gated clock and com-

bine their error signals into a common cluster error signal. A cluster takes in
error signals from its fan-in clusters and sends bubbles to its neighboring clus-
ters, causing them to stall.

Error detection circuits (Fig. 28.6.3) use a shadow latch based on [5] and wide
dynamic ORs to combine error signals and bubbles, followed by latches to hold
their results. As with other Razor systems, the speculation window can be lim-
ited by either the technique or the amount of latches with error checking. As this
design is a demonstration vehicle, timing error checking was added to all latch-
es to find the maximum speculation window: one clock phase minus the propa-
gation delay of the error detection circuits, which provides ~55% timing specu-
lation in this design. When combined with retiming overhead, this led to an arti-
ficially large cell area overhead of 87%. By only checking critical latches and lim-
iting the speculation window size, fewer latches will require transition detection.
Only 8% of latches required checking in [5]. Additionally, more efficient error
checking is possible using transition detectors based on [3]. Additional B-Razor
area overhead from the cluster control logic is 16%, which can also be reduced
by monitoring a subset of latches.

Although the design uses dynamic cells and latch-based timing, the models
given to synthesis, placement, and routing software are fully static and edge-
based. Since the dynamic ORs are always followed by more ORs or a latch, the
ORs are modeled as static and the latch is modeled as a flip-flop. Latches in the
datapath are modeled as flip-flops, since time borrowing during error-free oper-
ation is disallowed. The resulting design appears to the tool chain as a standard,
flip-flop based design with clock gating, allowing fully automated, standard inte-
gration with no designer intervention.

To interface B-Razor M3 with SRAM, wrapper logic was placed around SRAMs
to make them appear as level-sensitive latches (Fig. 28.6.4). To avoid writing
incorrect data to SRAM, the system uses a commercial two-port, high-speed
SRAM that separates read and write ports. Writes are clocked on the negative
edge of the clock when data is guaranteed to be error free. A single entry store
buffer could alternately be used to stabilize writes. Since reads cannot be
delayed without reducing system performance, they continue speculatively at
the positive edge. Upon receiving a bubble, the memory uses the available cycle
to repeat the read with the correct inputs that are captured by a bank of flip-flops
on the negative clock edge. These approaches to handling SRAM in B-Razor are
not specific to the M3 and can be automatically added to any system.

At 85°C with 10% supply drop, 2σ process variation, and 5% safety margin, the
maximum operating frequency of the M3 design is measured as 200MHz, set-
ting a frequency ceiling for a conventional design. With B-Razor the design can
be tuned to the point of first failure (PoFF) which was 290/333/363 MHz for three
shown chips, increasing throughput by 45, 67, and 82% (Fig. 28.6.5).
Alternatively, supply voltage can be lowered at iso-performance, reducing M3
energy consumption by 43, 54, and 60%, respectively.

Figure 28.6.6 shows system behavior when sweeping frequency or voltage
beyond the PoFF. As frequency increases, throughput improvement slows down
and eventually reverses due to stall cycles. Similarly, power is reduced until tim-
ing errors become too common. Overall, an additional 22% performance or 17%
energy reduction is obtained from running beyond the PoFF. This is significant-
ly better than previous Razor approaches since only a single cycle is lost per cor-
rected error.

References:
[1] D. Bull, et al., “A power-efficient 32b ARM ISA processor using timing-error
detection and correction for transient-error tolerance and adaptation to PVT vari-
ation,” ISSCC Dig. Tech. Papers, pp. 284-285, 2010.
[2] J. Tschanz, et al., “A 45nm resilient and adaptive microprocessor core for
dynamic variation tolerance,” ISSCC Dig. Tech Papers, pp. 282-283, 2010.
[3] D. Blaauw, et al., “RazorII: In Situ Error Detection and Correction for PVT and
SER Tolerance,” ISSCC Dig. Tech. Papers, pp. 400-401, 2008.
[4] K. Bowman, et al., “Energy-Efficient and Metastability-Immune Timing-Error
Detection and Instruction-Replay-Based Recovery Circuits for Dynamic-
Variation Tolerance,” ISSCC Dig. Tech Papers, pp. 402-403, 2008.
[5] D. Ernst, et al., “Razor: a low-power pipeline based on circuit-level timing
speculation,” IEEE International Symp. on Microarchitecture, pp. 7-18, 2003.
[6] G. Karypis, et al., “Multilevel hypergraph partitioning: applications in VLSI
domain,” IEEE Design Automation Conf., pp. 526-529, 1997.

978-1-4673-0377-4/12/$31.00 ©2012 IEEE

489DIGEST OF TECHNICAL PAPERS •

ISSCC 2012 / February 22, 2012 / 3:45 PM

Figure 28.6.1: Timing errors are corrected by sending bubbles downstream, which
must be further propagated through the circuit.

Figure 28.6.2: A latch stalls when sent a bubble by one or more neighbors, and
propagates the bubble to its other neighbors.

Figure 28.6.3: Bubbles are combined using dynamic OR gates. A cluster ignores
bubbles if it stalled in the previous cycle.

Figure 28.6.5: By running at or beyond the PoFF instead of with worst case
margins, performance or energy can be improved.

Figure 28.6.6: Due to only a single cycle penalty for fixing timing errors, gains can be
made by running beyond the PoFF.

Figure 28.6.4: Wrapper logic is placed around the SRAM to achieve correct operation
during timing errors and bubbles.

28

• 2012 IEEE International Solid-State Circuits Conference 978-1-4673-0377-4/12/$31.00 ©2012 IEEE

ISSCC 2012 PAPER CONTINUATIONS

Figure 28.6.7: Die Shot and System Information.

