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ABSTRACT

Approximate Computing (AC) has emerged as a means for im-

proving the performance, area and power-/energy-efficiency of a

digital design at the cost of output quality degradation. Applications

like machine learning (e.g., using DNNs-deep neural networks) are

highly computationally intensive and, therefore, can significantly

benefit fromAC and specialized accelerators. However, the accuracy

loss introduced because of approximations in the DNN accelerator

hardware can result in undesirable results. This paper presents a

novel method to design high-performance DNN accelerators where

approximation error(s) from one stage/part of the design is "com-

pletely" compensated in the subsequent stage/part while offering

significant efficiency gains. Towards this, the paper also presents a

case-study for improving the performance of systolic array-based

hardware architectures, which are commonly used for accelerating

state-of-the-art deep learning algorithms.
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1 INTRODUCTION

Since technology scaling has started offering diminishing returns,

Approximate Computing (AC) has emerged as an alternative para-

digm for further improving the performance, power/energy, and

area efficiency of the inherently error-resilient applications. This

is achieved by relaxing the bounds of output accuracy and intro-

ducing tolerable quality loss for gaining significant advantage in

terms of desired efficiency [15]. Multiple approximation techniques

have been proposed at different abstraction layers of the computing

stack [17]. At software layer, techniques like code perforation and

code approximation are commonly employed while, at architec-

ture/hardware layer, techniques like approximation of the func-

tional units and voltage underscaling are commonly used [15].

In this paper, we focus on the hardware level techniques for

improving the performance and energy/power efficiency of the

designs. Multiple techniques have been proposed to design approx-

imate circuits, for example, systematic logic synthesis of approxi-

mate circuits (SALSA) [20] and automated behavioral synthesis of
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approximate computing circuits (ABACUS) [16]. Other approxima-

tion techniques have also been proposed which build approximate

accelerators using elementary approximate modules, such as ap-

proximate adders and approximate multipliers [3]. A method for

building adaptive approximate datapaths have also been recently

proposed in [14] which reduces the extent of approximation error

by adaptively selecting the type of module in the subsequent stage/s.

Techniques, such as [5], have also been introduced that tune the

software models, in this case neural networks, in light of the un-

derlying hardware approximations. Such methods put additional

constraints on the training process and thereby limits the learning

capability of the models, specifically in case of complex problems.

Although all these techniques result in significant improvement in

the performance, area and power/energy efficiency of a system, they

achieve this at the cost of some output quality loss which can be toler-

ated in many error-resilient applications, but cannot be tolerated in

safety-critical applications where even a slight inaccuracy in output

can result in catastrophic effects. One such example is autonomous

driving where machine learning algorithms are used for interpret-

ing the surrounding environment of an autonomous vehicle and

also used for decision making [12]. This significantly limits the

scope of approximate computing being employed for highly-critical

applications.

Motivational analysis: To illustrate the effects of hardware

approximations on machine learning algorithms, we consider an

image classification application using deep neural networks (DNNs)

where the network is executed using hardware composed of approx-

imate multipliers. For this analysis, we assumed the LeNet network

(provided by MatConvNet [19]) trained on the cifar-10 dataset [9].

The network is quantized to 8-bit fixed point format, i.e., both the

weights and activations are represented using 8-bit fixed point

numbers, to reduce the complexity of the underlying hardware

components. The multiplier designs used are based on the design

presented in [4] where larger multipliers are constructed using

smaller 2x2 accurate and approximate multipliers, while assuming

accurate partial product accumulation. For building approximate

multipliers the least significant 2x2 multipliers are implemented

using the approximate 2x2 multiplier design proposed in [10]. Here

we consider three approximate, i.e., type 1, 2, and 3, multipliers

and one accurate multiplier. In approximate type 1, 2 and 3 mul-

tipliers, the least significant one, three, and four 2x2 multipliers

were realized using the approximate 2x2 multiplier design, respec-

tively. The error and hardware characteristics of the considered 8x8

multipliers are shown in Table 1. The approximation error of each

multiplier is represented in terms of Mean Error Distance (MED)

and is computed assuming uniform input distribution.

Fig. 1 shows the impact of approximation on the classification ac-

curacy of the network. Note that, for this analysis, all the multipliers

deployed at one time in the hardware are assumed to be of the same
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Figure 1: An analysis illustrating the effects of approxima-

tion in the multipliers on the overall accuracy of the image

classification application using the LeNeT network on the

cifar-10 dataset.

type. It can be seen from the figure that the classification accuracy of

the network decreases with the increase in the approximation level.

It can also be observed that the classification accuracy decreases

even for the least approximate variant of the hardware. Therefore,

there is a need for designing approximate hardware such that the

effects of approximations can be compensated internally, thereby

allowing to achieve significant performance and/or energy/power effi-

ciency while providing accurate/near-accurate results which have no

impact on the output accuracy of the safety-critical applications.

1.1 Novel Contribution

In the light of the above discussion, following are the main novel

contributions of the paper.

(1) We present a novel method for designing accurate and near-

accurate systems using approximate modules by designing mod-

ules with error curing characteristics.

(2) We present a case-study on systolic array-based specialized

architectures which are highly effective for machine learning

applications and can significantly benefit from the proposed

method for improving the performance of machine learning

based systems.

(3) We present novel designs of Multiply-and-Accumulate (MAC)

unit for all types of modules required for building a systolic

array-based hardware using the proposed methodology.

We also present results and analysis highlighting the effectiveness

of the proposed technique.

Table 1: Error and hardware characteristics of different mul-

tipliers used for implementing the LeNet network for clas-

sifying the cifar-10 images. The hardware results are gener-

ated for 65 nm technology node using Cadence Genus tool

with TSMC 65 nm library.

Latency

[ps]
Area

[cell area]

Power

[μW ]
MED

Accurate 1966.3 746 46.81 0

Approx_Mul_1 1915.9 710 45.64 0.125

Approx_Mul_2 1738.1 689 45.4 1.125

Approx_Mul_3 1728.5 682 44.87 3.125
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Figure 2: Methods for building systems with cascaded mod-

ules. Here, f (ϵi ) represents a reversible function of the error

from the ith stage, i.e., ϵi , which represents the error in a

compressed form.

1.2 Paper Organization

Section 2 presents our proposed methodology for designing

accurate/near-accurate systems using approximate modules. In

Section 3, we present a case study on building a DNN accelerator

using the proposed methodology and also present the improve-

ments compared to the conventional design. At the end, Section 4

concludes the paper.

2 METHODOLOGY FOR DESIGNING
HARDWAREWITH CURABLE
APPROXIMATIONS

In this section, we present our novel methodology for building

approximate hardware. The methodology utilizes modules with

curable error characteristics which accept error signal/s in com-

pressed form from their previous stage along with the inputs, com-

pensate for the error, and generate an approximate output with

a compressed error signal containing the information about the

error in the current stage, which should be compensated in the

subsequent stage.

Fig. 2a shows a reference system composed of N cascaded

stages/modules. An approximate version of the system is illus-

trated in Fig. 2b, where all the modules are approximated to achieve
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Figure 3: Functionality of different modules used in Fig. 2.

Oi represents the accurate expected output and ϵi represents

the approximation error generated by the ith stage. The

functions fDAx (.) and fC&DAx (.) are approximate variants of

the corresponding accurate module and fCu (.) can also be

a variant of the corresponding accurate module or just an

additional correction module. f (ϵi ) represents a reversible

function of the error from the ith stage.

significant efficiency gains. As illustrated in the figure, each module

generates output with some level of inaccuracy and thereby adds

some amount of uncertainty in the overall output. The resultant

output of the system is not accurate and can deviate significantly

from the desired output based on the number of stages and the

amount of approximation in each stage. Therefore, such design

methods are unusable for many safety-critical applications and

other high precision computing scenarios.

Fig. 2c illustrates our proposed variant of the reference system.

The system is composed of three types of modules: 1) Determinis-

tic Approximate (DAx) module (fig. 3a); 2) Cure & Deterministic

Approximate (C&DAx) module (fig. 3b); and 3) Cure (Cu) module

(fig. 3c). The DAx module generates approximate output along with

a compressed yet deterministic error signal which can be used by

the subsequent stage to decipher and compensate for the exact

amount of error occurred in the previous stage. The C&DAx mod-

ule compensates for the error in the previous stage based on the

compressed signal and generates an output and a compressed error

signal for the subsequent stage. To generate an accurate output, the

last stage is required to be a cure, i.e., Cu, stage which compensates

for the error produced in the second to the last stage. Note that

in some cases the Cu stage can be the N th stage while in others,

where it is not possible to design a cure stage while meeting the

required functionality, an additional stage, i.e., N + 1th , is intro-

duced to generate the accurate output. However, an alternative to

this can be to not use the cure stage. This introduces a small error

equivalent to the approximation error of the last stage, as shown

in Fig. 2d. Using the proposed methodology, unlike the system in Fig.

2b, the system in Fig. 2c (Fig. 2d) produces accurate (near-accurate)

output while benefiting from the approximations in the modules.

3 CASE STUDY

In this section, we discuss the implementation of an accurate high-

performance and energy-efficient systolic array-based DNN ac-

celerator using approximate modules by exploiting the proposed

methodology. In the upcoming subsections, we first present a brief
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Figure 4: Illustration of a fully connected neural network.

overview of the neural networks (Section 3.1) which is followed

by the designs of different types of MAC units required in the im-

plementation based on the proposed methodology (Section 3.2).

Using the elementary modules, a high-performance systolic array

architecture is proposed in section 3.3 which is followed by the

results in Section 3.4.

3.1 Overview of Neural Networks

A Neural network is an interconnected network of nodes called

neurons where the operation of a neuron can be represented by

Eq. 1.

Output = F (
M∑

i=0

Wi ∗Ai + b) (1)

Here,Wi s represents the weights, b represents the bias, and Ai s
represents the input activations of a neuron. The F (.) represents the
activation function for introducing non-linearity in the network

model. An example illustration of a fully connected neural network

is shown in Fig. 4.

There are many types of neural networks specialized for different

applications. However, without any loss of generality, in this pa-

per, for explanations we consider Convolutional Neural Networks

(CNNs), as used in Section 1.

CNNs are composed of multiple types of layers, i.e., convolu-

tional, fully-connected, pooling, and activation layers, which are

connected in cascade to form a network. Out of all the layers the

convolutional and fully-connected layers are the most computa-

tionally intensive. The basic operation used in these layers is a

multiply-and-accumulate (MAC) operation, as represented by Eq.

1. Therefore, the state-of-the-art accelerators [13][8][2][11] mainly

focus on accelerating the convolutional and fully-connected layers

using arrays of processing elements that can perform large num-

ber of MAC operations in parallel. A more detailed overview of

the neural networks and DNN hardware accelerators can be found

in [18].

3.2 Designs of Required MAC units

To apply the proposed methodology on DNN accelerators, we first

design required MAC units and later integrate them for building

a complete computational array similar to one of the state-of-the-

art DNN accelerators, i.e., Tensor Processing Unit (TPU) [8]. For

this case study, we consider 8-bit fixed-point multiplication and
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Figure 5: An 8x8 signed multiplication based on Baugh-

Wooley algorithm.

the maximum possible partial sum size (within the array) to be 19-

bit, which is sufficient for an array of size 8x8. Note that, in neural

networks, 8-bit weights and activations are considered sufficient for

achieving significant accuracy [7][6]. An exemplar computational

array is shown in Fig. 7b andwill be discussed in the next subsection.

Fig. 5 shows themultiplication of two 8-bit signed operands using

Baugh-Wooley multiplication algorithm [1]. The sign extension can

be performed by either extending the P15 bit directly or by adding

1s at the most significant location of the last partial product. We

make use of the latter along with the Wallace tree architecture to

design different required types of high-performance signed MAC

units.

Fig. 6 shows the designs of accurate, DAx, and C&DAx MAC

units by illustrating the accumulation steps for accumulating the

partial-products and the partial sum. The partial-products are gen-

erated from the multiplication of a weight and an activation based

on the Baugh-Wooley algorithm (as shown in Fig. 5) and the partial

sum (19-bit number) is the output from another MAC unit. Note that

here we consider a merged MAC design where the partial-products

(from the multiplication) and the partial sum are added simultane-

ously rather than performing the complete multiplication first and

then adding the partial sum. Each MAC design has five accumu-

lation steps where the first four steps are the compression steps

followed by the final addition step. The compression steps use full

and half adders as compressors for partial product reduction and

the final step uses a multi-bit Ripple Carry Adder (RCA) for adding

the final two arrays of bits. Fig. 6a shows the accumulation steps of

the Accurate Merдed MAC. For building DAx (Fig. 6b), the final ad-

dition (in the 5th step) of the accurate merged MAC is divided into

two parts to improve the performance of the MAC unit, as the final

addition is the most delay intensive step. The compressed error sig-

nal f (ϵ), which is the carry out from the least-significant addition,

is generated along with the approximate output for the subsequent

module. For building C&DAx MAC (Fig. 6c) from accurate merged

MAC, the error bit (f (ϵ)) is added in the 1st compression step at the

corresponding significance location by replacing a half adder with

a full adder. Through this the error generated in the previous stage

is compensated. However, to improve the performance, the final

addition (in the 5th step) is truncated, similar to DAx MAC shown

in Fig. 6b. For this scenario, the cure (Cu) module is composed of

an RCA equivalent to the length of the most significant RCA in the

5th step of the DAx and the C&DAx MAC units, i.e., almost half

the length of the RCA used in the accurate merged MAC.

3.3 Systolic Array Design

Fig. 7b shows the systolic array design similar to the one used in the

TPU architecture [8]. The systolic array is composed of multiple

processing elements (PEs). The architecture of a single PE is shown

in fig. 7a. In the array, each PE is connected to its neighboring PE

in a manner that it receives activations from its left neighboring

PE (or input) and partial sums from the above neighboring PE.

The weights are communicated to the respective PEs using vertical

channels, i.e., from top to bottom, and are stored inside the PEs

during the computation.

Fig. 7d shows the modified design of the systolic array based on

the proposed methodology. The architecture of the PEs used in it

is shown in Fig. 7c. As the partial sums are communicated from

top to bottom in the array, the first row of the PEs is replaced with

approximate PEs composed of DAx MAC shown in Fig. 6b. Rest of

all the PEs are replaced with approximate PEs with compensation

capability composed of C&DAxMAC shown in fig. 6c. An additional

row is added at the bottom of the processing array to compensate for

the error generated in the last row of approximate PEs containing

C&DAx MAC units. The additional row is composed of Cu modules

which are adders of size equivalent to the size of themost-significant

adder in step 5 of fig. 6b and c.

Note that the adopted approximations are orthogonal to most

of the architecture-level approximations and, therefore, can also

be used in conjunction with them for significantly improving per-

formance and power/energy efficiency in case of error-resilient

applications.

3.4 Results

In this subsection, we provide the performance, area and power

results of the proposed systolic-array design (from henceforth re-

ferred to as Proposed systolic array), which is based on the proposed

methodology. To compare the methodology with the state-of-the-

art, we consider the conventional systolic array design (from hence-

forth referred to as Conventional systolic array) based on [8], also

shown in Fig. 7b. We also consider a systolic array composed of PEs

containing accurate merged MAC units (from henceforth referred

to as Merдed Accurate systolic array) and an array composed of

approximate PEs (from henceforth referred to as Approximate sys-
tolic array). The approximate systolic array uses type 3 approximate

multipliers (Approx_Mul_3) from section 1 in the PEs. The overall

architecture of the array is shown in Fig. 8.

3.4.1 Accuracy Comparison. As mentioned in the earlier sections,

the proposed methodology results in a system which can offer ac-

curacy equivalent to the reference system. To validate the results,

we implemented an equivalent model of the systolic arrays in MAT-

LAB and simulated the LeNet network for image classification task

on the cifar-10 dataset. The classification accuracy came out to be

74.43% for the conventional, merged accurate and the proposed

systolic arrays, i.e., the same as the accuracy of the accurate simu-

lations presented in Fig. 1. However, the accuracy achieved using

the approximate systolic array is 73.35%.

3.4.2 Performance, Area, and Power Evaluation of MACs. Table 2

shows the hardware results of proposed MAC designs shown in

Fig. 6, the conventional MAC shown in Fig. 7a and the approximate

MAC shown in Fig. 8. It can be seen from the table that power
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consumption of all the designs is almost the same with the approx-

imate and the conventional accurate MACs having slightly less

power consumption. The area consumption of the proposed MAC

designs is also the same, however, the conventional MAC and the

approximate MAC require approximately 19% and 10% more area

as compared to the proposed MACs, respectively. The delay of the

proposed DAx and C&DAx MAC units is the same and is slightly

less than 50% of the delay offered by the conventional MAC and

around 65% of the delay offered by the accurate merged MAC. The

approximate MAC offers delay which is higher than that of the

accurate merged MAC due to the fact that its design is based on the

conventional MAC. Note that all the hardware results are generated
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Figure 9: Comparison of the hardware characteristics of four different designs of the systolic arrays for 4x4 and 8x8 sizes.

Table 2: Hardware characteristics of different types of MAC

units.
Latency

[ps]
Area

[Cell Area]

Power

[μW ]

Accurate MAC (Merged) 1871.1 746 66.56

DAx MAC 1214.2 744 66.3

C&DAx MAC 1214.2 746 68.13

Accurate MAC (Conventional) 2470.9 889 62.73

Approx MAC with Approx_Mul_3 2274.2 822 61.14

for 65 nm technology node using Cadence Genus (Encounter) tool

with TSMC 65 nm library.

3.4.3 Performance, Area, and Power Evaluation of Systolic Ar-

rays. Fig. 9 shows the overall hardware characteristics of four

different systolic array designs (i.e., Conventional , Approximate ,
Merдed Accurate and Proposed) for two different systolic array

sizes (i.e., 4x4 and 8x8). As can be seen in fig. 9a, the Proposed
design offers less critical path delay compred to all other designs

which allows it to operate at-least at 1.91x the frequency of the

Conventional , 1.72x the frequency of the Approximate , and 1.47x

the frequency of the Merдed Accurate design. The Area (in Cell

Area unit) and Power are shown in Fig. 9c and b, respectively. It

can be observed that the overall power and the area of all the

designs are approximately similar with Approximate offering a

bit better power and Accurate Merдed offering a bit better area

characteristics. However, if we analyze the PDP (Power Delay Prod-

uct) of the designs, shown in fig. 9d, it can be observed that the

Proposed design offers approximately 46% reduction in PDP as com-

pared to the Conventional , 38% reduction in PDP as compared to

the Approximate , and 30% reduction in PDP as compared to the

Merдed Accurate design.

4 CONCLUSION

In this paper, we proposed a novel methodology for designing

high-performance accurate systems using approximate components

with curative properties. Based on the methodology, we presented

a case study on building a high-performance systolic array for

deep neural network acceleration. The results showed that the

systolic array design based on the proposed methodology provides

better performance and PDP characteristics when compared to

the conventional state-of-the-art systolic array and the array built

using conventional approximate modules.
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