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ABSTRACT
Conventional attacks against existing logic obfuscation techniques
rely on the presence of an activated hardware for analysis. In reality,
obtaining such activated chipsmay not always be practical, especially
if the on-chip test structures are disabled. In this paper, we develop
an iterative SAT formulation based attack strategy for deobfuscating
many-core GPU hardware without any requirement of an activated
chip. Our experiments on a real testbed using NVIDIA’s SASSIFI
framework reveal that more than 95% of the application runs on
such an approximately unlocked GPU result in correct outcomes
with 95% confidence-level and 5% confidence-interval. To counter
the proposed attack, we develop a Cache Locking countermeasure
which significantly degrades the performance of GPGPU applications
for a wrong cache-key.

1 INTRODUCTION
The increasing trend of outsourcing hardware designs to offshore
foundries for fabrication cost reduction has raised several security
concerns related to Intellectual Property (IP) piracy, reverse engi-
neering, counterfeiting, etc. [9]. The exposure of chip designs to a
potentiallymalicious offshore foundry is of major concern for organi-
zations and hence, there has been an extensive research on security
and privacy of IC supply chain in recent past [19]. Several logic lock-
ing techniques have been proposed to thwart supply chain attacks
against designs in untrusted foundries [13–15, 20]. In any standard
combinational logic obfuscation approach, the design is locked by
inserting additional key-gates in combinational blocks of the circuit.
The locked circuit exhibits correct functionality only when the cor-
rect key is loaded into the on-chip tamper-proof memory to activate
the chip after fabrication. The security of logic locking schemes are
based on the assumption that the correct key cannot be learned by the
untrusted foundry within a practical time limit [4, 6, 12–15, 20, 21].
However, in recent literature, various key-learning attacks have been
proposed [12, 13, 16, 18] which expose the weaknesses of the existing
logic locking schemes.

Till date, the security analyses of logic locking schemes have been
confined to only a set of small-scale benchmark netlists. These analy-
ses do not necessarily imply that the security standards of the overall
hardware implementation is compromised, even if the attacker suc-
cessfully unlocks certain components of the design. To the best of
our knowledge, there has been no study which analyzes the attack
vulnerability of any large-scale processor netlist locked using standard
logic obfuscation techniques. In this paper, we outline the utilization
of a SAT formulation based attack methodology [16, 18] against an
obfuscated many-core Graphics Processing Unit (GPU) netlist to
find an approx-key to approximately deobfuscate the processor cores.
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Unlike conventional attacks on logic locking schemes, an adversary
can launch our proposed attack without any activated hardware
and hence, such an attack poses a major threat in the supply chain
of GPU designs. Subsequently, we evaluate the impact of errors (due
to use of the learned approx-key) on the outcomes of benchmark
applications running on a real GPU.

Modern GPU architectures have been developed to efficiently
exploit the data-level parallelism in applications ranging from real-
time 3D visualization to high-performance scientific computing. In
this work, though we focus on widely used NVIDIA GPUs [2] to
outline our attack and defense strategies, the analyses are equally
applicable to other GPU architectures as well. In NVIDIA GPUs,
hundreds to thousands of Streaming Processors (SPs) or CUDA cores
process data in parallel and are the primary components respon-
sible for the superior performance of GPUs in terms of speed and
power. In this work, we used the state-of-the-art Anti-SAT based
logic locking scheme [20] integrated with Strong Logic Encryption
[14] to obfuscate the functionality of the GPU cores. Conventional
SAT attack approach [18] requires full scan-chain access to internal
registers of an activated chip for analysis, which in practice is an
unrealistic assumption. We outline a technique to mount a modified
SAT formulation based attack against a GPU core’s locked pipelined
netlist to approximately deobfuscate its functionality without any
activated chip requirements. Subsequently, we utilized NVIDIA’s
architecture-level fault injection tool called SASSI-based Fault In-
jector (SASSIFI) [8] to analyze the impact of error propagation to
application-level due to use of the retrieved approx-key to unlock the
underlying core netlists. The outcomes of our experiments reveal
that the benchmark General-purpose GPU (GPGPU) applications are
highly resilient to such error propagation effect [7] as the approx-key
correctly unlocks the functionalities of the CUDA cores for almost
all the inputs used in computations. On an average, for all the appli-
cations studied, the use of an approx-key results in correct outcomes
for more than 95% of the application runs with 95% confidence-level
and 5% confidence-interval. Therefore, our proposed attack strategy
can be utilized by an untrusted foundry to deobfuscate the cores,
even without an activated GPU.

In this paper, we also outline an architecture-level countermeasure
which obfuscates the cache behavior to degrade the performance of
applications running on an approximately unlocked GPU netlist. The
crux of SAT formulation based attack against any logic encryption
scheme is based on exploiting a design’s faulty input-output response
pairs (accessible to an adversary) to iteratively remove subsets of
wrong keys. To safeguard against such an attack, we propose a Cache
Locking countermeasure which locks the cache block replacement
policy in a GPU for wrong cache-key. This results in significant per-
formance degradation of applications as evident from experimental
results, making the GPU inefficient for fast application execution.
2 BACKGROUND
2.1 Existing attacks on logic locking
The security objective of logic locking techniques is to increase the
output corruptibility given an incorrect key, hence countering key-
learning attacks. Given a set of correct I/O patterns observed from
the activated chip, key-searching based attacks intend to find a key
that can satisfy the correct I/O patterns [10, 12, 13]. Based on circuit



Figure 1: Block diagram of an NVIDIA GPU architecture
SAT formulation, Subramanyan et al. [18] proposed a satisfiability-
checking (SAT) based attack that iteratively finds specific correct
I/O patterns which can be used to eliminate a subset of wrong keys
until none exists. The SAT attack effectively breaks most logic lock-
ing techniques proposed [4, 13–15] within a few hours even for a
reasonably large key-size. Countermeasures to the SAT attack have
been proposed which inserts a SAT-attack resilient logic block such
as Anti-SAT [20] and SARLock [21] in the netlist. The number of
SAT attack iterations to retrieve the secret key of a netlist consisting
of an Anti-SAT block is an exponential function in terms of the key
size, thereby making SAT attack infeasible in practice. Meanwhile, a
new attack called AppSAT [16] has been proposed which determines
an approx-key to approximately unlock a netlist.
2.2 Overview of GPU architecture
In a NVIDIA GPU, blocks of threads are executed in Streaming Mul-
tiprocessors (SMs), which primarily consists of groups of streaming
processors (SPs) or CUDA cores. The unit of execution flow in the
SM is a collection of 32 threads, called warp. The threads in a warp
follow the Single Instruction Multiple Thread (SIMT) mode, i.e., they
execute the same instruction sequence but with different data. SPs
are the primary computing elements of GPUs and corresponds to
cores that perform scalar calculations. An SM, in addition to SPs, con-
sists of other different types of functional modules such as load/store
(LD/ST) units, Special Functional Unit (SFU), on-chip memory (in-
struction cache, configurable shared memory/ L1 cache, register files)
and instruction control units (dispatcher, scheduler). In figure 1, we
present a structural overview of an NVIDIA GPU architecture. In this
work, we propose an attack against a locked GPU netlist to retrieve
an approx-key and study the application-level impact of error prop-
agation (due to the use of approx-key) utilizing NVIDIA’s SASSIFI
framework [8] on a real GPU.
2.3 Instrumentation of GPGPU applications
In this paper, we focus on GPGPU applications based on the widely
adopted NVIDIA’s Compute Unified Device Architecture (CUDA)
framework [1]. The CUDA programming framework adopts the
SIMT model in hierarchies consisting of kernels, blocks, and threads.
The CPU spawns the multithreaded kernels onto the GPU, which
subsequently allocates the blocks of threads to available SMs using
internal schedulers. The parallel programs written in high-level lan-
guage such as CUDA is compiled by a front-end compiler (NVIDIA’s
NVVM) to generate intermediate code in a virtual ISA called parallel
thread execution (PTX). PTX abstracts the GPU as a data-parallel
computing platform, but the PTX code does not run directly on the
GPU. Another backend compiler optimizes and translates the PTX
instruction in native machine code by either using ahead-of-time
compilation of compute kernels via PTX assembler (ptxas) or using

just-in-time compiler in the display driver to compile PTX represen-
tation of kernel available in binary format. In this work, we used
NVIDIA’s SASSIFI framework [8] to study the application-level error
impact in a real GPU due the use of learned approx-key to unlock
its core functionalities. The SASSI-based Fault Injector (SASSIFI)
framework utilizes ahead-of-time backend compilation as the SASSI
instrumentation is embedded in ptxas. SASSI is implemented as the
final compiler pass in ptxas and uses nvlink to link instrumented
applications with instrumentation handlers. The SASSI based appli-
cation instrumentation requires two things to be specified: (i) where
to insert instrumentation and (ii) what information to extract from
each instrumentation site.

3 PROPOSED ATTACK ON OBFUSCATED GPU
3.1 Obfuscation of GPU cores
In the inset of figure 1, we outline the structure of an NVIDIA GPU
architecture’s SP module which primarily consists of inorder integer
and floating point pipelines. The SPs or CUDA cores are the most
abundant computational elements in a GPU and are primarily respon-
sible for its high throughput performance. Hence, as a natural choice,
we assume that the designer inserts key-gates in the gate-level netlist
between various SP pipeline stages to lock the overall functionality
of the GPU, following the steps of any standard combinational logic
locking approach [13, 15, 20, 21]. We also consider that all the SP
modules in the GPU are locked using a single key so that the lay-
outs of the cores are identical, thus having optimal fabrication cost.
Moreover, the use of separate keys for different cores will lead to an
impractical key size as the number of cores in modern GPUs can be
very large (for example NVIDIA’s GeForce GTX Titan Z consists of
5760 CUDA cores).

In a logic obfuscated SP pipelined netlist, wrong inputs to key-
gates will result in errors in outcomes of threads which utilize such
faulty key-gates for their computations. Depending on locations of
faulty key-gates and data, such errors will have varying impacts on
multithreaded kernel executions in SIMT mode as follows:
(i) Datapath error: A wrong key bit input to a key-gate located in
the datapath of pipeline will have an error propagation effect only in
the fan-out cone of the faulty key gate. In other words, such a fault
will have thread localized effects in computations, i.e., impacting only
the threads which execute on that erroneous datapath.
(ii) Controlpath error: In SIMT mode, the decoder module of a
SM decodes the opcode for all the active threads in a warp and
individual threads execute the same decoded operations on different
SPs or cores but with different data operands. Hence, a wrong key
bit input to a key-gate located in the decoder module or controlpath
will have an error propagation effect in the datapaths of all the active
threads in a warp. Hence, controlpath errors will have warp wide
effects in computations.

We consider a simple multithreaded sum application to study the
effect of datapath and controlpath errors on an actual application-
level output using NVIDIA’s SASSIFI framework (more details in
section 5.2). Based on the key inputs chosen, we will have different

Figure 2: Application outcome vs. probability of single inst.
being faulty for (i) datapath & (ii) controlpath errors in core



probabilities of errors occurring in instructions. In figure 2, we il-
lustrate the percentage of the application outcomes (out of several
runs) being faulty (red) or correct/masked (green) due to a single
randomly selected instruction being executed faulty (with different
probabilities) for datapath and controlpath errors. From the plots it
is evident that even error in a single thread due to a wrong key input
may lead to faulty application outcomes. However, we observed that
the difference in the number of faulty outcomes for datapath and con-
trolpath errors is significant when the probability of an instruction
being faulty is high, where as the difference becomes quite negligible
with a decrease in the probability. We observe this effect on the exper-
imental results for benchmark applications also as detailed in section
5.2. Hence, a smartly selected approx-key which injects very small
error in instructions can indeed result in very accurate application
outcomes despite not unlocking the hardware in its entirety.

As NVIDIA GPU’s SP pipeline architecture/netlist details are pro-
prietary, we instead consider a locked netlist of standardMIPS 5-stage
inorder pipeline as substitute of the GPU netlist to perform our ex-
perimental analyses. We obfuscated the the control and data paths
of MIPS pipeline using state-of-the-art Anti-SAT based logic locking
scheme [20] integrated with Strong Logic Encryption [14].
3.2 Attack on locked GPU cores

3.2.1 Attack Model. In conventional SAT attack [18], in addition
to the netlist, full scan-chain access to an activated hardware is also
required to deobfuscate a locked hardware. This is because the for-
mulation of an iterative SAT attack utilizes the input-output truth
tables of each of the locked modules. However, this is a very strong
assumption as such privilege is not available in practice. First, when
the untrusted foundry is trying to unlock a chip, the actual activated
chip may not have been marketed yet. Second, even if they are in
possession of the unlocked chip, the attacker needs to have full scan
chain access into the internal combination modules. The designer
who wishes to secure his design may just disable on-chip test struc-
tures before marketing the unlocked chip. In our attack model,
we allow the adversary to only possess a locked netlist, and
do not grant her privileges to have full scan chain access to
internal pipeline latches of SP modules in an activated chip.

3.2.2 SAT formulation based attack. The primary challenge to
deobfuscate the functionality of a locked SP netlist using conven-
tional SAT attack approach [18] is the lack of knowledge of internal
pipeline latch contents as per our attack model. In this section, we
demonstrate how an adversary can still successfully devise an iterative
SAT formulation based attack to effectively learn the key without
an activated GPU hardware. The crux of the ensuing attack strat-
egy is the observation that the internal pipeline latches are only
responsible for performance speed-up by dividing the long latency
single-cycle datapath into low latency multi-cycle pipelined datap-
ath. These pipeline registers play no role in determining the overall
functionality of the pipelined netlist. Hence, for the sake of analyzing
the functionality of the locked SP module, the adversary can model
an equivalent netlist by transforming the multi-cycle pipelined data-
path to a single-cycle datapath design. This equivalent netlist can
be constructed easily by logically removing the pipeline latches and
then simply connecting the input wires to corresponding output
wires of the removed latches as shown in figure 3. The outcome of
this transformation is the conversion of a locked sequential SP netlist
to a functionally equivalent locked combinational SP netlist, which
we analyze next using an iterative SAT formulation. Before we out-
line the details of our attack methodology, we define the following
terminologies for convenience:
(i) flock : Functionally equivalent locked combinational SP netlist
(ii) PI : Primary input to the locked SP netlist, consisting of opcode

Figure 3: Multi-cycle to Single cycle datapath transformation
of the locked pipelined netlist

contents, source and destination register addresses, etc. as obtained
from instruction binary (details later)
(iii) PO : Primary output of the locked SP netlist, consisting of desti-
nation register contents (for R-type or I-type MIPS instructions) or
jump/branch address (for J-type MIPS instructions). From the locked
netlist, the functional relationship among PI , key-gate inputs (K)
and PO , i.e., PO = flock (PI ,K) is known to the attacker.

The primary difference between conventional IC obfuscation and
the obfuscation of a GPU core netlist is that the correct PI −PO pairs
are not known in the former case without an activated chip, whereas
in the later case, the attacker can deduce the correct PI − PO pairs
for a SP netlist as explained below:

• The PI corresponding to each instruction is obtained by re-
lating the human readable assembly instructions to binary
information of the assembled application. For example, in case
of NVIDIA GPUs, it is possible to successfully extract the PTX
or SASS from a cubin or executable using the cuobjdump tool
in CUDA Toolkit [1]. In addition, the attacker can utilize the
NVIDIA’s Nsight Visual Studio Edition to correlate between
lines of CUDA C, PTX, and SASS [3]. Therefore, using the pub-
licly available instruction set architecture (ISA), the adversary
can determine PI for every instruction.

• Again, PO for each instruction is obtained from the corre-
sponding PI and the ISA information because the PO depends
on the result of operation (known from ISA) carried out on
the source register contents (known from PI ).

Therefore, the adversary has prior knowledge of correct PI − PO
pairs for every instruction of a compiled application being executed
on a GPU core. For example, let us consider a simple assembly-level
program fragment executed by a thread on a SP:

. . .
I1: ADD R1,R2, R3 //R1=R2 + R3
I2: ADD R4,R1, R3 //R4=R1 + R3
I3: MUL R5,R2, R4 //R5=R2 ∗ R4
I4: SUB R3,R5, R4 //R3=R5 − R4. . .

Let us suppose that the initial contents (prior to instruction I1
execution) of registers R1,R2,R3,R4, and R5 are 1, 2, 3, 4 and 5 re-
spectively. In instruction I1, the contents of registers R2 and R3 are
added and written to register R1. Hence, using the PI information
the adversary can easily calculate the expected value at the desti-
nation register, i.e., PO :[R1]=[R2]+[R3]=2+3=5. Now that the correct
PI −PO pair is known for each instruction, it is equivalent to having
in possession an unlocked chip. Hence, SAT formulation based at-
tack strategies [16, 18] can be utilized which use this information to
iteratively identify distinguishing input-output (DI ) pairs. As noted
in [18], each DI pair eliminates a subset of unique wrong keys for
that SAT iteration, till we converge to the correct key. We can write
an iterative SAT formulation for locked SP netlist as follows:



Fi :=C(PI, K1, PO1) ∧ C(PI, K2, PO2) ∧ (PO1 , PO2)

(

j=i−1∧
j=1

C(PIdj , K1, POd
j )) ∧ (

j=i−1∧
j=1

C(PIdj , K2, POd
j ))

(1)

where, Fi denotes the ith SAT iteration formulation, C(PI, K, PO)
is the SAT formula for a locked circuit and (PId

{1. . .i−1}, PO
d
{1. . .i−1})

are the distinguishing input-output pairs that are found in previous
i − 1 iterations. Following such an attack strategy, if the adversary
finds the correct key used to lock the original synthesized SP netlist,
then all such PO responses for different instructions will be con-
sistent with corresponding correct PO responses. In context of the
aforementioned program fragment, the correct key will result in the
contents of registers R1,R2,R3,R4,R5 being updated with values
5, 2, 8, 8, 16 respectively just after the execution of instruction I4. To
make the process of finding new distinguishing input-output pair
more efficient, the adversary may develop customized microbench-
mark applications consisting of a targeted set of operations carried
out by the instructions.

To counter the feasibility of such a SAT attack, point-function
based obfuscation approaches like Anti-SAT [20] and SARLock [21]
have been proposed. Though the point-function based obfuscation
scheme makes the SAT solving time exponential to obtain the correct
key, a recent technique called the AppSAT attack [16] can retrieve
an approx key to unlock the functionality of such a locked netlist for
almost all the primary inputs. In section 5.1, we present the results
of the AppSAT attack against an Anti-SAT block based obfuscated
netlist of MIPS pipelined design, which we considered as a functional
substitute of the GPU core’s netlist.

4 CACHE LOCKING COUNTERMEASURE
The crux of the our proposed attack against the locked SP netlist is
the iterative elimination of wrong keys based on evaluation of new
DI pairs which satisfy the SAT formulation. The primary motivation
behind our proposed Cache Locking countermeasure is that a wrong
cache-key will result in slowdown of the GPU hardware even though
it exhibits correct functionality, and thus being resistant to SAT
formulation based attacks (including AppSAT [16]). The cache block
replacement protocols of modern many-core GPUs are proprietary
and hence, not known to an untrusted foundry. For example, several
research related to performance analysis of NVIDIA GPUs has led to
the conclusion that the cache block replacement protocols is neither
of the standard ones commonly studied [11]. Therefore, we analyzed
the effect of obfuscating cache block replacement policy to lock the
overall performance of the GPU for wrong cache-key guesses. It is
to be noted that locking the cache block replacement policy does
not alter the expected (PI , PO) pairs corresponding to the SP units
as the overall GPU still performs the correct functionality with an
approx-key for the cores (retrieved using our proposed attack), but
the overall application performance will suffer significantly due to
drops in cache hit rates with a wrong cache-key. This is due to the
fact that a wrong cache-key will lead to higher number of data fetch
requests from slow off-chip memory which require a significantly
large number of additional clock cycles [11].

In this work, to demonstrate our countermeasure, we assume that
the cache replacement policy in place is least recently used (LRU).
However, the proposed Cache Locking scheme can be applied to any
other replacement policies as well and will continue to be immune
to SAT type attacks. In order to lock the cache block replacement
policy, we considered a hardware implementation of standard clock
algorithm [17] which approximates LRU policy by augmenting an
extra clock bit to a cache block to keep track of whether or not a block

was accessed recently. If the ith cache block was recently accessed
the corresponding clock bit (clock_bit(i)) is set to 1, whereas, on
the other hand clock_bit(i) is reset to 0 if the block wasn’t accessed
recently. The cache blocks are assumed to be arranged as a circular
queue with a current pointer or "clock hand" which cycles through
this queue on every memory access. If the clock hand is currently
pointing to clock_bit(i) = 1, then as it moves to the next cache block
the clock_bit(i) is reset to 0. The status of clock bit of ith cache block
is updated in a periodic manner as follows:

• On a cache hit, the clock_bit(i) is set to 1.
• On a cache miss, the clock hand moves to next available ith
block with clock_bit(i) set to 0 and replaces it by a data block
fetched from lower memory hierarchy, followed by setting of
clock_bit(i) to 1 to designate the recently written cache block.

To implement the Cache Locking scheme, we modified the afore-
mentioned standard clock algorithm to a cache-key dependent
block replacement policy. As per the modification, the ith cache
block will have an associated clock bit (clock_bit(i,Ki ), Ki ∈ {0, 1}),
which is set to Ki if it was recently accessed, whereas it is reset
to Ki if the block wasn’t accessed recently. Now if the input key
matches the correct key then this approach is basically equivalent to
the aforementioned LRU policy. However, if the input key bit for ith
cache block mismatches it’s corresponding actual key bit, we invert
this policy of setting and resetting clock_bit(i,Ki ). This would end
up scrambling the designation of the least recently accessed status
for those cache blocks with wrong key-bit inputs. For every wrong
key-bit (Ki ) guess there will be either of the two faulty scenarios for
the ith cache block: (i) instead of the ith cache block, some other jth
cache block will be replaced from the cache whose associated clock
bit clock_bit(j,Kj ) is set to Kj (ii) instead of replacing some other
cache block with clock_bit(j,Kj ) is set to Kj , the ith cache block is
replaced. Therefore, this will result in drops of cache hit rates as
such faulty cache block replacements will not be suitable for appli-
cations utilizing the cache locality principles. To have a practically
reasonably key-size, the designer can also associate a single key-bit
to multiple cache blocks.

This entire Cache Locking scheme is simple enough to be im-
plemented in a lookup table (LUT) which can be configured after
fabrication at test time by the designer. Hence, the attacker cannot
simply remove the proposed countermeasure implementation since
she is not aware of the locking mechanism as well as the original
cache block replacement policy. In section 5.3, we present the ex-
perimental results highlighting the slowdown of applications due to
Cache Locking countermeasure.

5 EXPERIMENTAL RESULTS
5.1 AppSAT attack on single-cycle netlist
The datapath and controlpath of the MIPS pipelined netlist were ob-
fuscated using Anti-SAT scheme [20] integrated with Strong Logic
Encryption (SLE) [13]. We used 5% XOR/XNOR key-gate overhead
for locking the original synthesized netlist using SLE, and used ad-
ditional key-gate inputs for obfuscation with Anti-SAT block, total
key-size being 364 bits. Subsequently, we launched the AppSAT at-
tack on the functionally equivalent locked single-cycle netlist (as
outlined in section 3.2.2) with following parameters: a total of 5, 000
iterations of the SAT attack was performed, and at each iteration
10, 000 randomly generated patterns were queried to estimate the
error rate E, storing the distinguishing input/output pairs as con-
straints for successive iterations. In figure 4, we show the decreasing
trend of E with the progress of SAT attack iterations. The approx
key returned by the AppSAT attack consists of inputs to functional
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Figure 4: Error rate (E) vs SAT attack iterations
key-gates (inserted using SLE scheme) and key inputs for Anti-SAT
block. We observed that there was an exact match between the por-
tions of the original key and the approx key that correspond to the
functional key inputs, while there were mismatches in the portions
of keys that correspond to the Anti-SAT block key-gates. However,
as the output corruptibility of Anti-SAT block is very low, it has very
limited effect on overall functionality retrieved by the approx key.
5.2 Application-level impact of approx-key

5.2.1 Experimental framework. We utilized the NVIDIA’s SASSIFI
framework [8] to capture errors on the application-level manifested
due to the use of the retrieved approx key used to approximately
unlock the inorder pipelined core netlist. As the SASSIFI tool injects
errors in the architectural state, the outcomes of the injections are
not dependent on specific GPU used, provided the binary file is not
modified. We used NVIDIA’s Maxwell architecture based GeForce
GTX950M, CUDA 6.5 toolkit, and display driver version 352.63 for
our experiments. We used 5 applications from Rodinia benchmark
suite (version 2.3) [5] which include diverse workloads.

5.2.2 Error probability of faulty instructions. We applied the App-
SAT attack as outlined in subsection 5.1 to deduce an approx-key for
unlocking the pipelined cores of a GPU after converting the pipelined
design to a functionally equivalent single-cycle one. For every appli-
cation, we first noted the number of GPU assembly-level instructions
that write to a General Purpose Register (GPR), N = #instGPR . In
order to estimate the number of GPR type instructions which are
faulty for a benchmark application, we simulated the approximately
unlocked SP core netlist with rN number of inputs. These inputs
had the same opcode set as the benchmark instructions thereby cap-
turing the spirit of the application instruction mix. Note that each
benchmark has a different number and combination of instructions.
Hence the error rate of each benchmark when executed on an ap-
proximately unlocked core could be different. For our experiments,
we set r = 20 which resulted in simulating around hundreds of mil-
lions of inputs to the approximately unlocked core. Even for such a
large test case, we found no error in PO values when compared with
the correct responses for each instruction that we simulated. This
illustrates the effectiveness of approximate unlocking the GPU chip
using our proposed technique which does not require an unlocked
chip. While our AppSAT based approximately unlocked GPU caused
no measurable errors, we still wish to analyze the worst case scenario
where 1 out of rN instructions are faulty to capture the application-
level impact of the retrieved approx-key, though in practice the error
probability will be even lower. We assumed that the number of faulty
GPR instructions executed due to the use of approx-key follows Bi-
nomial distribution with error probability EAK = 1/rN (because
we assume that 1 out of rN instructions is faulty). Therefore, the
probability that k number of GPR instructions are executed faulty
can be expressed as follows:

P(X = k) =

(
N

k

)
EkAK (1 − EAK )

N−k (2)

Table 1: Application-level impact of datapath errors due to
approx-key applied to key-inputs

Application Outcomes of injections (percentage)
Masked DUEs Pot. DUEs SDCs

BFS 95.57 1.82 0.00 2.60
gaussian 99.47 0.52 0.00 0.00
hotspot 97.92 0.00 0.78 1.30
nw 96.09 1.30 0.00 2.60

pathfinder 95.57 2.34 0.00 1.82
Table 2: Application-level impact of controlpath errors due
to approx-key applied to key-inputs

Application Outcomes of injections (percentage)
Masked DUEs Pot. DUEs SDCs

BFS 96.09 1.82 0.00 2.08
gaussian 98.41 0.52 0.00 1.04
hotspot 97.92 0.00 0.78 1.30
nw 95.31 1.82 0.00 2.86

pathfinder 95.83 1.30 0.26 2.60

As EAK << 1 and N >> 1, we get P(X = 1) ≃ NEAK = 1/r = 0.05.
It is to be noted that the probability that multiple GPR instructions
will be executed faulty , i.e., P(X >= 2), due to the use of approx-key
is practically negligible. It is to be noted that in an actual scenario,
the error propagation effect due to an approx-key will be restricted
to only a few number of low probability netlist paths, and hence, the
expected application-level error impact is even lesser. In our exper-
iments, we randomly selected a GPR type instruction, to estimate
effect of error propagation for different error injection sites.

5.2.3 Error impact on benchmark applications. Based on the anal-
ysis in previous subsection, we only considered the scenario where
a single GPR type instruction is faulty with a probability of p = 0.05
for our experiments. For studying the application-level impact of
errors due to the use of approx-key in data path and control path
key-gates of the core netlist, we considered these cases separately.
We used the SASSIFI framework to run error injections on 5 Rodinia
benchmark applications [5] in Instruction Output Value (IOV) mode.
In IOV mode, SASSIFI uses instrumentation handlers to inject errors
into the destination register values of an instruction after they are
executed. We performed 384 error injection runs for each of our
application workloads so that the injection results have maximum
error bars of 5% at 95% confidence level. In each error injection run,
we randomly selected a dynamic instruction among all the GPR type
instructions and either (i) randomly updated the destination register
value of a thread for studying the impact of a datapath error or (ii)
randomly updated all the destination register values of all the threads
in a warp for studying the impact of a controlpath error. The results
of the injections were categorized [8] as follows:
(i) Masked: No error symptom detected and the application output
with fault injection run is same as the original error free output.
(ii) DUEs: The application terminated with a non-zero exit status or
application runtime crossed the timeout threshold.
(iii) Potential DUEs: Symptoms of unsuccessful kernel execution
(detected by comparison of kernel exit status with cudaSuccess), ex-
plicit application error messages can be found in stderr/stdout.
(iv) SDCs: Application execution terminates without any crashes,
hangs, or failure symptoms but output file/stdout is different com-
pared to fault-free run.

In tables 1 and 2, we report the results of such injection runs on
the benchmark applications for datapath and controlpath errors. As
evident from the statistics of the resulting outcomes, almost all of the
injected errors are masked (95% or more depending on applications),
implying that the approx-key is good enough to deobfuscate the func-
tionalities of the locked SP or core pipelines such that there is very



Table 3: Benchmark apps slowdown due to Cache Locking
(CL) with δhit rate=0.5, αmem = 0.5, and #penalty=500

Application #inst (∗106) #mem(%) Runtime (secs)
slowdown

tor iдinal tCL
BFS 424.2 12 9.37 19.43 2.07

gaussian 246.3 5 0.80 3.30 4.13
hotspot 440.1 7 13.44 19.58 1.46
nw 123.2 32 0.79 8.55 10.82

pathfinder 436.9 18 4.23 19.54 4.62

Table 4: BFS slowdown due to Cache Locking (CL) vs. δhit rate
with penalty cycles (#penalty)=500 and αmem = 0.5

δhit rate
Runtime (secs)

slowdown
tor iдinal tCL

0.3 9.37 15.33 1.64
0.4 9.37 17.41 1.86
0.5 9.37 19.49 2.08
0.6 9.37 21.35 2.28
0.7 9.37 23.35 2.49
0.8 9.37 25.37 2.71

Table 5: BFS slowdown due to Cache Locking (CL) vs. penalty
cycles (#penalty) with δhit rate = 0.5 and αmem = 0.5

#penalty Runtime (secs)
slowdown

tor iдinal tCL
400 9.37 17.34 1.85
450 9.37 18.35 1.96
500 9.37 19.43 2.07
550 9.37 20.50 2.19
600 9.37 21.40 2.28

low effect of gate-level error propagation impact at the application-
level. As highlighted in figure 2 earlier, the difference in erroneous
application outcomes is negligible for datapath and controlpath er-
rors due to a very low probability of an instruction being faulty.
5.3 Cache Locking countermeasure results
We denote the drop in cache hit rate (δhit rate ) due to wrong cache-
key guess as: δhit rate = hror iдinal − hrf aulty , where, hror iдinal
and hrf aulty denote the cache hit rates corresponding to the de-
signer’s intended block replacement policy and attacker’s faulty
block replacement policy respectively. As an outcome of such a faulty
policy, the application will incur additional clock cycles (#add cycles)
which is estimated as follows:

#add cycles = δhit rate ∗ αmem ∗ (#mem) ∗ (#penalty) (3)
where, #mem denotes the number of memory access instructions
(load or store) in the GPU assembly-level, #penalty is the number
of penalty cycles to access slower off-chip memories, and αmem
corresponds to fraction of memory access instructions executed
in parallel across multiple GPU cores. The value of the parameter
αmem will depend not only on the application workloads but also
on the number of GPU cores as well as on the thread scheduling
policies. To evaluate the effect of cache misses on an actual NVIDIA
GPU, we modified the CUDA codes of the applications to introduce
#add cycles number of sleep cycles in the device. In table 3, we
report the relative slowdowns of various benchmark applications for
a wrong cache-key setting parameters δhit rate = 0.5, αmem = 0.5,
and #penalty = 500. It can be observed that the proposed Cache
Locking countermeasure results in slowdowns ranging from factors
of 1.46 to as high as 10.82 depending on applications. In table 4, we
report the variations in slowdowns of BFS application due to wrong
cache-key with δhit rate . The results from this table show that even if
the attacker guesses a significant fraction of the cache-key correctly,
resulting in small δhit rate (say 0.3), then also there is a notable
slowdown (by a factor of 1.64) of the BFS application. In table 5, we
report the variations in slowdowns of BFS application due to wrong

cache-key with #penalty (ranging over 400−600 clock cycles) in order
to capture the impact of Cache Locking scheme across different GPU
architectures (with different off-chip memory configurations [1, 11]).
As evident from the trends in the experimental results (see table 3),
the impact of the proposed countermeasure will become even more
prominent for practical applications having large number of memory
references (#mem), thus defeating the efficient utilization of the GPU
for high performance computing purposes for wrong cache-key.

6 CONCLUSION
In this paper, we outline an iterative SAT formulation based attack
to approximately unlock the functionalities of pipelined GPU cores
which are obfuscated using state-of-the-art logic locking scheme.
The experimental results (obtained using NVIDIA’s SASSIFI frame-
work) reveal that the benchmark GPGPU applications exhibit high
resiliency to error propagation effect due to use of a retrieved approx-
key for unlocking the core netlists. Our proposed attack technique
can be effectively utilized by an untrusted foundry to successfully
deobfuscate GPU core netlist, evenwithout any requirement of an acti-
vated hardware. Subsequently, we propose the Cache Locking scheme
as a low-overhead countermeasure which significantly degrades the
performance of GPGPU applications for a wrong cache-key.
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