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Abstract— This paper discusses a new type of sensors to enable
a built-in test in RF circuits. The proposed sensors provide DC
or low-frequency measurements, thus they can reduce drastically
the testing cost. Their key characteristic is that they are non-
intrusive, e.g. they are not connected electrically to the RF
circuit. Thus, the performances of the RF circuit are unaffected
by the monitoring operation. The sensors function as process
monitors and share the same environment with the RF circuit.
The underlying principle is that the sensors and the RF circuit
are subject to the same process variations, thus shifts in the
performances of the RF circuit can be inferred implicitly by shifts
in the outputs of the sensors. We present experimental results on
fabricated samples that include an LNA with embedded sensors.
The samples are collected from different sites of a wafer such
that they exhibit process variations. We demonstrate that the
performances of the RF circuit can be predicted with sufficient
accuracy through the sensors by employing the alternate test
paradigm.

I. INTRODUCTION

Testing the RF functions of a System-on-Chip is responsible
for the largest fraction of the overall test cost. RF test is
very challenging since high-frequency signals are needed to
be extracted off-chip with minimum impairment. In addition,
there is a large variety of specifications that need to be veri-
fied, requiring sequential tests on different test configurations,
which results in lengthy switching and settling times, other
than the pure electrical test times. In turn, these tests need
to be carried out in an environment that is shielded from
electromagnetic interference and noise and, furthermore, with
regards to the Automatic Test Equipment (ATE), there are
stringent requirements for wide frequency range and high
linearity.

To alleviate the dependency on sophisticated ATE, it has
been proposed to perform an RF-DC conversion on the test
board [1]. However, the design and debugging of such test
boards can turn out to be a complex task and the overall benefit
reduces if the load board is not reusable. A more aggressive
approach for test cost reduction is built-in test which con-
sists of performing on-chip some of the test operations, e.g.
stimulus generation, measurement extraction and analysis, etc.
Built-in test can reduce dramatically the complexity of ATE
since it provides digital, DC, or low frequency test signatures,
it resolves issues related to electromagnetic interference, it
facilitates parallel testing to achieve a high throughput, etc.
The main challenges are to maintain a low overhead, to avoid
degradation of the performances of the circuit under test
(CUT), and to preserve the test accuracy of the standard test

approach. Examples of built-in test strategies include loopback
test where the transmitter “tests” the receiver [2], [3], [4], [5],
oscillation test where the CUT is forced to oscillate and the os-
cillation frequency is used as an information-rich test signature
[6], [7], DC probes to monitor internal nodes of the CUT [8],
and sensors to extract low-cost alternative measurements from
the CUT that carry RF information. Different sensors have
been studied in this context, including envelope detectors [9],
[10], [11], power detectors [12], and current sensors [13], [14].
The outputs of the sensors can be used to make a direct Go/No-
Go test decision or they can be mapped to the performances
based on the alternate test paradigm [15], [16].

The common characteristic of these built-in test strategies
is that they degrade the performance of the CUT unless they
are carefully co-designed with it. In particular, loopback test
requires the addition of RF switches and an attenuator in the
signal path, in order to connect the transmitter’s output to
the receiver’s input, oscillation test requires reconfiguring the
CUT into an oscillator by adding positive feedback, while DC
probes and sensors tap into the signal path of the CUT. In all
cases, the impedance matching and the overall performance is
degraded requiring co-design. For this reason, designers are
rather reluctant to incorporate such built-in test capabilities
since the design specifications are stringent and exploit the
full capabilities of the technology.

In this work, we envision the scenario shown in Fig.
1, where the sensors are non-intrusive, e.g. they are not
connected electrically to the CUT and, thereby, they do not
require co-design. The sensors can be either activated on-
chip or by applying an external stimulus. The stimuli and
the output measurements are digital, DC, or low-frequency,
thus a multiplexer and a demultiplexer can be used to occupy
only two pins for test purposes. For the sensors that we are
studying in this work, it is not required to power on the CUT.
The sensors can be of two types, namely dummy circuits and
process control monitors (PCMs). Dummy circuits consist of
basic analog stages, i.e. current mirrors, gain stages, level
shifters, etc., while PCMs consist of basic layout components,
i.e. capacitors, transistors, etc. Typically, process variation
sensors are accommodated in standard macros that are placed
in the scribe lines and are thrown away after dicing. They are
used to identify off-target process parameters throughout wafer
processing and to study variability [17], [18], [19]. Herein,
the sensors are placed instead in close proximity to the CUT.
Their operation capitalizes on the undesired phenomenon of
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Fig. 1. Circuit with embedded non-intrusive sensors that enable a built-in
test.

inter-die process variations. In particular, by virtue of being
in close proximity to the CUT, they will be subjected to the
same process variations, thus we expect that any shifts in the
performances of the CUT will be reflected in the outputs of
the sensors. A similar approach was used to monitor sources
of error in multi-step ADCs [20]. In a previous paper [21],
we demonstrated through post-layout simulations that this
approach can be used for predicting the performances of an
RF LNA. Herein, we prove for the first time the feasibility of
the approach using real measurements on fabricated samples.

Specifically, we designed an LNA with embedded non-
intrusive sensors using the 0.25 µm Qubic4+ BiCMOS process
by NXP Semiconductors. We fabricated in total 142 samples
that were distributed evenly across a wafer. The samples
exhibited inter-die variations which allowed us to build the
mapping between the outputs of the sensors and the perfor-
mances of the LNA based on the alternate test paradigm. For
this purpose, we used different regression tools, namely feed-
forward neural networks (FFNN) and multivariate adaptive
regression splines (MARS). We report the mean and worst case
error that we commit by predicting the performances of the
LNA from sensor measurements. To report a faithful error, we
use techniques such as k-fold cross-validation and averaging
of the error over different random splits of the samples into
training and test sets.

The rest of the paper is structured as follows. Next, we
provide a quick overview of the alternate test and we show
how the proposed sensors can be used in this context. Section
III describes the principle of operation of the sensors. Section
IV presents the different sensors that are used for monitoring
the LNA. Section V presents details about the fabricated chip
and the measurement environment. Section VI discusses the
regression techniques and the estimation of prediction errors.
Section VII presents the results of the experiment. Section VIII
concludes the paper and gives directions for future work.

II. TEST APPROACH BASED ON NON-INTRUSIVE SENSORS

Let P1, · · · , Pk denote the k performances of the CUT
that need to be measured during the standard test approach.

Fig. 2. Alternate test flow.

Let also X = [x1, · · · , xd] denote a pattern of d alternative
measurements, e.g. the measurements provided by the sensors
in our case. The alternate test paradigm is used to predict the
outcome of the standard test approach based solely on X [15],
[16], as shown in Fig. 2. Alternate test requires an off-line,
preparatory training phase to build the mappings between X
and each performance. Let fj denote the mapping between X
and performance Pj , e.g.

fj : X → Pj , j = 1, · · · , k. (1)

In the training phase, we collect N circuit instances from
different lots, wafers, and sites on the same wafer, such that
they are representative of the process variations that may occur.
Let Xi and P i

j denote respectively the alternate measurements
and the j-th performance of the i-th instance, i = 1, · · · , N .
The pairs {Xi, P i

j} are split into training and test sets. The
training set is used to learn the regression function fj while
the test set is used as an independent set to assess the error
in predicting the performance Pj from X using fj . If the set
of measurements X yields a low prediction error, the learnt
regression functions can be used to provide a fast, low-cost
test for new instances coming out of the production line.

The regression functions should be applied only to instances
that exhibit process variations and, in particular, to instances
whose measurement pattern is within the range defined by
the measurement patterns of the instances in the training set.
Otherwise, the prediction will be somewhat random. Thus, a
defect filter is used to distinguish instances that exhibit process
variations from instances that contain defects. In [22], a defect
filter based on non-parametric density estimation is proposed.
It has the attractive property that it operates as an one-class
classifier, that is, it is trained using the alternate measurement
patterns of the instances in the training set and no information
about defects is required. The instances with process variations
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constitute the majority of instances that we will be seen in
production, hence the large benefit of alternate test.

The sensors proposed in this work provide a low-cost
alternate measurement pattern from which the performances
can be predicted with high accuracy. However, they cannot
indicate the presence of a defect within the CUT since they
are not electrically connected to it. In fact, the test is performed
without powering on the CUT. In other words, the proposed
sensors provide a measurement pattern that cannot serve as an
input to the defect filter. Therefore, more measurements are
needed to ensure that the CUT does not contain a defect before
applying the regression functions to predict the performances.
In [23], a non-intrusive temperature sensor is presented and
it is demonstrated that it can detect all defects injected in an
LNA. In short, when the CUT is operating, it is self-heated
due to its power consumption and, thereby, the temperature in
its vicinity changes. If there is a defect in the CUT, then the
dissipated power will shift from the expected range of nominal
values and this shift will be captured by the temperature sensor
through a temperature change. For more details, the interested
reader is referred to [23]. The focus of this paper is on non-
intrusive sensors to implement the mappings in (1).

III. UNDERLYING PRINCIPLE

During the several manufacturing steps of an integrated
circuit, different process parameters may drift from their
nominal values, such as the effective channel length, the oxide
thickness, the dopant concentration, the transistor width, the
inter-layer dielectric thickness, etc. Variations in the process
parameters stem from different sources, including lens imper-
fections, proximity effects, temperature gradients, misalign-
ment of masks, etc. According to their physical range on a
die or wafer, variations can be classified into two categories
[24]:

• Die-to-die (D2D) variations (or inter-die variations): cor-
respond to smooth and slow-varying variations that affect
all devices on a die in the same way, i.e. they cause the
gate lengths of identical transistors to be all larger or all
smaller. D2D variations present a large degree of spatial
correlation, that is, neighboring devices on the same die
are similarly affected. They include across-wafer, wafer-
to-wafer, and lot-to-lot variations. Across-wafer varia-
tions reflect spatial characteristics of the process while
wafer-to-wafer and lot-to-lot variations reflect both spatial
and temporal characteristics of the process.

• Within-die (WID) variations (or intra-die variations):
correspond to variations rapidly varying over distances
smaller than the die dimension. Thus, WID variations
can affect differently identical devices that are placed
at different locations on the same die, i.e. they cause
identical transistors to have smaller or larger gate lengths.
It is important to stress that WID variations for some
process parameters, such as the effective channel length,
show a degree of local spatial correlation.

Consider now sensors such as dummy circuits and PCMs
that mimic part of the topology of the CUT and they are placed

Fig. 3. Example of layout technique to match two current mirrors that are
not electrically connected.

in close proximity to the CUT. Based on the above discussion,
the variation in a performance Pj of the CUT, denoted by
∆Pj , and the variation in the measurement pattern from such
sensors, denoted by ∆X , can be expressed as

∆Pj = f1(∆p) + r1 (2)
∆X = f2(∆p) + r2. (3)

where p is the vector of process parameters, ∆p is the vector
of D2D and WID spatially correlated variations in process
parameters, f1 and f2 are non-linear functions, and r1 and
r2 correspond to WID uncorrelated variations. The premise
of this work is that variations ∆Pj and ∆X are correlated
since they are both subject to ∆p and that this correlation is
not appreciably affected by r1 and r2. Under this scenario, we
expect that we can track shifts in Pj by monitoring shifts in
X , that is, it is possible to draw a regression function fj , such
that fj(X) ' Pj .

The WID uncorrelated variations should be seen principally
as a challenge in analog design where it is often required to
match two components, i.e. the transistors in a current mirror,
the transistors in the input stage of a differential LNA or
mixer, the sampling and integrating capacitors in a pipeline
ADC, etc. If matching techniques can be applied to achieve
satisfactory performance, then the negative effect of r1 and r2
in the correlation can be reduced given that the sensors are
basic analog stages and layout components that mimic part of
the topology of the CUT and, thus, they can be matched to
the corresponding stages and components of the CUT. For
example, Fig. 3 shows the layout of two matched current
mirrors formed respectively by M1, M2 and M3, M4 that
are not electrically connected. Di, Si, Gi refer to the drain,
source, and gate, respectively, of transistor Mi. Such matched
current mirrors are used, for example, in the design of fully
differential amplifiers. It should be noted also that the effect
of r1 and r2 in the correlation is expected to grow large as
we move below 100 nm. However, recent studies have shown
that D2D variations are still responsible for the largest part of
performance variations for 65 nm and 90 nm technologies
[25], [26]. Finally, the use of alternate test moderates the
residual prediction error that results from random variations
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Fig. 4. CMOS inductive degenerated cascode LNA.

since the regression function is calculated in terms of an
average over a random quantity.

IV. NON-INTRUSIVE SENSORS

Each deployed sensor mimics part of the architecture of
the CUT. Consider the LNA of Fig. 4 which plays the role
of the CUT in our study (see Section V). The sensors can
include (a) a bias stage identical to the bias stage of the LNA
formed by transistor M3 and resistor R1, (b) a current mirror
whose schematic is produced by short-circuiting capacitors
and inductors in Fig. 4, (c) a MOS gain stage that mimics the
gain stage of the LNA formed by M1 and cascode transistor
M2, (d) stand-alone capacitors extracted from LNA, and (e)
stand-alone transistors extracted from the LNA. The geometry
of the components in the sensors, i.e. the length and width of
transistors, the area of capacitors, etc., matches the geometry
of the corresponding components in the LNA. The sensors
are placed in close proximity to the structures in the LNA that
they are mimicking, in order to be subjected to similar process
variations. It is expected that there will be similar variations
in the values of parameters of two identical transistors (i.e.
gm, Vth, etc.) and in the values of two identical capacitors
that are placed closely to each other. In essence, the sensors
capitalize on D2D or WID spatial correlations, in order to
track non-intrusively shifts in the performances of the LNA.

Fig. 5 shows a photo of the fabricated chip showing the
LNA with the embedded dummy circuits (e.g. bias stage,
current mirror, and gain stage) and PCMs (e.g. capacitors and
transistors). The sensors do not incur any area overhead since
they are placed in areas on the die that otherwise would have
been left void, in order to respect design-for-manufacturability
(DFM) rules. The inductances are not replicated since this
would result in a large area penalty. Fig. 6 zooms in a dummy

Fig. 5. Photo of the fabricated chip showing the LNA with the embedded
dummy circuits and PCMs.

Fig. 6. Photo of a dummy bias stage placed close to the bias stage of the
LNA.

bias stage that is placed close to the bias stage of the LNA
formed by resistor R1 and transistor M3. Notice that there are
metal density layers on top of the dummy bias stage, in order
to respect DFM rules. These metal density layers are added
across the die except the RF areas. Fig. 7 zooms in a MOS
PCM that is placed close to the transistor M1 of the gain stage
of the LNA.

A test bus based on a multiplexer and demultiplexer, as
shown in Fig. 1, is used to activate sequentially the sensors
and extract off-chip the measurements. The current mirrors
and the bias stages are self-biased by default while the MOS
gain stages are self-biased using a voltage divider. These
dummy circuits provide DC measurements that correspond to
voltage gain, current gain, level-shifting, etc. The capacitors
and transistors require AC excitation. The capacitor values are
measured by a Wheatstone bridge that is placed on the test
board while the transconductance gm of the MOS transistors
is obtained by simple I-V characterization. Notice that all
activations and output measurements are low-frequency or DC
and that the CUT is not powered on during the test phase.
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Fig. 7. Photo of a MOS PCM placed close to the transistor of the gain stage
of the LNA.

Fig. 8. Photo of the PCB used for measuring the fabricated dies.

V. CHIP FABRICATION AND EXPERIMENTAL SET-UP

Our case study is a 2.4 GHz inductive degenerated cascode
LNA, shown in Fig. 4, which is commonly used in narrow
band applications such as Wi-Fi and Bluetooth. The LNA
and the embedded sensors are designed using the 0.25 µm
Qubic4+ BiCMOS technology by NXP Semiconductors. The
design was taped out in a Multi-Project-Wafer (MPW) run. It
was placed in different locations in a reticle and the reticle was
reproduced over the wafer. In total, we obtained 142 packaged
samples that came from different sites on a wafer.

A printed circuit board (PCB), shown in Fig. 8, was
fabricated for measuring the fabricated samples. The top and
bottom layers of the PCB are reserved to place and route
the surface mounted devices and two intermediate layers are
dedicated to the DC and RF grounds that are well isolated.
The input and output RF lines are appropriately sized to have
an impedance of 50 Ohms. The addition of LC matching
structures was envisaged, in order to correct the mismatching
of the die input and output impedances due to PCB parasitics.
The PCB also contains a Wheatstone bridge for measuring
capacitor values.

TABLE I
MINIMUM AND MAXIMUM VALUES OF PERFORMANCES OBSERVED

ACROSS THE FABRICATED SAMPLES AND MEASUREMENT REPEATABILITY

ERROR.

measurement
performance min max repeatability

error εr
Gain (in dB) 8.81 9.97 0.2
NF (in dB) 4.33 4.64 0.1

1-dB CP (in dBm) -9.5 -7.5 0.44
IIP3 (in dBm) 8.05 10.5 0.4

The 142 samples were fully characterized using benchtop
equipment. For each sample, we measured the performances
of the LNA that are typically considered in production test-
ing, e.g. gain, noise figure (NF), 1 dB-compression point
(1-dB CP), and input third-order intercept point (IIP3), as
well as the sensor outputs. The gain was measured using
a vector network analyzer from Rohde and Schwarz (ZVR
1127.8551.61). The NF was measured using a noise figure
meter from Agilent Technologies (N8972-90114) and a noise
source from Hewlett Packard (346A). The 1-dB CP and the
IIP3 were measured using RF signal generators from Agilent
Technologies (8648A) and a spectrum analyzer from Hewlett
Packard (8590). The outputs of the sensors were measured
using DC multimeters from Agilent Technologies (34401A).
The measurement procedure was automated through Labview
software using a general purpose interface bus (GPIB). Mea-
suring the performances of the LNA requires three different
test configurations while the sensor outputs are extracted using
a single test configuration.

Table I shows the observed minimum and maximum values
of the LNA performances across the 142 samples, as well as
the measurement repeatability error εr due to the precision of
the instruments and the laboratory environment. The measure-
ment repeatability error on a sample is deduced by repeating
several times the characterization. We observed that this error
practically does not change across the samples, thus the values
in Table I can be considered to apply to all samples. This
error will be taken into account when analyzing the prediction
errors of the regression models. As can be seen from Table
I, there exist variations in the available samples and these
variations are much larger than the measurement repeatability
error. This allows us to analyze correlations that exist between
the performances of the LNA and the alternate measurements
provided by the sensors.

VI. REGRESSION TOOLS, ERROR DEFINITION, AND
ERROR ESTIMATION

There are different regression tools that can be used to
derive the regression functions fj(X) in alternate test. In this
work, we use two well-known tools, namely a FFNN and
MARS [27], [28], [29]. The available samples are split into a
training set and a test set and the training set is split further
into a learning set and a validation set. The learning set is
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used for training the regression function, the validation set is
used for controlling its complexity to avoid over-fitting, and
the test set is used once training is over to obtain an unbiased
estimate of the prediction error.

We consider a FFNN that has two hidden layers of neurons
that implement a sigmoidal activation function and a third
layer with a single output neuron that implements a linear
function. In theory, such a FFNN with three layers of adaptive
weights is capable of approximating any arbitrarily non-linear
mapping fj(X). The training of the FFNN is carried out using
the backpropagation algorithm. The early stopping technique
is used to control the complexity of the regression function.
In particular, the backpropagation algorithm uses the learning
set and, in the end of each iteration, the prediction error is
computed on the validation set. If the error does not reduce
for a number of consecutive iterations, then it implies that
over-fitting has occurred and the training stops. The model
that gave the lowest error on the validation set is used.
The disadvantage of a FFNN is that the optimal numbers
of neurons in the hidden layers are not known in advance
and need to be found through a trial and error approach.
The MARS algorithm offers a more automated framework for
deriving the regression functions. It uses a forward step that
results in a model that typically over-fits the learning set and
then a backward step that deletes terms from the model such
that the final reduced model has the optimal complexity that
maximizes the performance on the validation set.

The efficiency of the regression functions in alternate test
is assessed according to (a) the mean error εm observed on
the test set and (b) the maximum error εmax observed on the
test set [16]. The first criterion shows the degree of correlation
while the second criterion defines the guard-band that should
be placed on a predicted performance. Specifically, if P

′

j =
fj(X) denotes the predicted value of performance Pj and
assuming that Pj has lower and upper specifications [slj , s

u
j ],

then we can tell with certainty that the CUT is functional
if P

′

j ∈ [slj + εmax, suj − εmax]. The efficiency of alternate
test is deemed to be good if (a) εm is low and (b) εmax is
comparable with the measurement repeatability error εr in the
standard test approach.

The simplest approach to estimate the errors is to split the
available samples randomly into two portions, i.e. 70% in the
training set and 30% in the test set. This naive strategy is
based on the assumption that both the training and test sets are
representative of the fabrication process. While this is usually
true for a large number of samples, when the number of
samples is small (which is the case in our study), the particular
partitioning of the samples into training and test sets, as well
as the portion of the samples that is allocated in each set,
start to have an impact on the estimated prediction error. In
other words, the error will present a large variance across all
possible partitions. To report an error that faithfully indicates
the actual degree of correlation between performances and
alternate measurements, we use the following re-sampling
techniques.

Fig. 9. IIP3 versus the measurement on a dummy bias stage placed in
proximity to the bias stage of the LNA.

Fig. 10. LNA gain versus DC gain of a current mirror placed in proximity
to the LNA.

1) Random sampling: We create several different random
splits of the samples into training and test sets and we report
the average error on the test set over all splits.

2) k-fold cross validation: We split the samples into k
randomly selected disjoint blocks of roughly equal size. The
model is trained k times where each time k-1 blocks are
assigned to the training set and the remaining block is left
out as a test set. Each time a different block plays the role
of the test set, thus, in the end, all samples are used in both
training and test sets. We finally report the average error over
the k models. Typical choices for k are 5, 10, and N , where
N is the number of available samples. In the latter case, the
technique is called leave-one-out cross validation (LOOCV).

The above re-sampling techniques can be combined, i.e. we
can apply k-fold cross validation several times using different
random splits of the samples into k blocks and average the
errors over all splits.

VII. RESULTS

We first investigated one-to-one correlations between sensor
measurements and performances of the LNA. Fig. 9 shows
the fabricated samples projected onto the space defined by
IIP3 and the measurement on a dummy bias stage placed in
proximity to the bias stage of the LNA. This correlation is
expected since IIP3 depends on the gate to source voltage of
transistor M1 which is fixed by the bias stage M3 and R1.
Fig. 10 shows the correlation between the LNA gain and the
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Fig. 11. Mean εm and maximum εmax prediction errors in absolute values
using a FFNN showing also the measurement repeatability error εr.
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Fig. 12. Mean εm and maximum εmax prediction errors in absolute values
using MARS showing also the measurement repeatability error εr.

DC gain of a current mirror that is placed in proximity to the
LNA. The schematic of the current mirror is produced by the
schematic of the LNA by short-circuiting all capacitors and
inductances. This correlation is expected since both gains are
principally defined by the gain of transistor M1.

Next, we used all sensor measurements to build the re-
gression functions in alternate test. Fig. 11 and 12 show the
mean εm and maximum εmax prediction errors in absolute
values obtained using the FFNN and MARS together with
the measurement repeatability error εr when measuring the
performances using the standard test approach (see Section V).
In Fig. 13 and 14, the errors are normalized by the median
values extracted from Table I and expressed in percentage. The
following observations can be made:

• The prediction errors are practically the same from a sta-
tistical point of view when using a FFNN or MARS. This
shows that the accuracy of alternate test is independent of
the regression tool that is being used as long as, of course,
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Fig. 13. Mean εm and maximum εmax prediction errors in % using a FFNN
showing also the measurement repeatability error εr.
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Fig. 14. Mean εm and maximum εmax prediction errors in % using MARS
showing also the measurement repeatability error εr.

the training is done carefully to moderate the complexity
of the regression model.

• The mean prediction error does not exceed 2.2% for
all four performances with the NF showing the smallest
mean error and the 1-dB compression point showing
the largest. This shows that correlations between the
performances of the LNA and the sensor measurements
are very strong.

• For the gain, the measurement repeatability error is about
half the maximum prediction error, whereas for the NF,
1-db CP, and IIP3, this ratio is about two thirds. However,
the measurement repeatability error is much larger in
an ATE than when using benchtop equipment. Typical
measurement repeatability error values in an ATE are
larger than 1 dB for the NF and larger than 0.5 dB
for gain, 1-db CP, and IIP3. On the other hand, the
maximum prediction error in an ATE is not expected to
change since the predictions are based on DC or low-
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frequency measurements. Thus, in an ATE we expect that
the maximum prediction error will be comparable or even
smaller than the measurement repeatability error.

• In practice, the maximum and mean prediction errors will
be much lower since we will be using a larger set of
samples collected across different lots, wafers, and sites
on the same wafer that is more representative of the
fabrication process.

Based on the above observations we consider that our find-
ings are very promising and demonstrate that RF performances
can be predicted by non-intrusive on-chip sensors.

VIII. CONCLUSIONS

In this paper, we proposed sensors for extracting low-cost
test signatures from RF circuits. The key characteristic of
these sensors is that they are transparent to the RF circuit
and, thereby, they do not affect its performances. This is
a very important attribute because the sensors can be used
as plug-ins in the design without needing to resize the RF
circuit to meet the performance goals. The sensors consist
of basic analog stages that mimic part of the topology of
the RF circuit and stand-alone layout components, such as
transistors and capacitors, that are copied directly from the
layout of the RF circuit. By placing the sensors in close
proximity to their counterparts on the layout, we guarantee
that the sensors and the RF circuit will witness similar process
variations. We demonstrated in the experimental results that
the sensor measurements correlate with the performances of
the RF circuit, thus shifts in performances can be implicitly
inferred by shifts in the sensor measurements. Future work
will focus on enhancing the library of non-intrusive sensors.
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