
Development of Test Programs in a Virtual Test Environment

M. Miegler, W.Wolz
University of Erlangen-Nuernberg

Institute of Computer-Aided Circuit Resign
Prof. Dr.-lng. W. H. Glauert

Cauerstr. 6, 0-91058 Erlangen, Germany

Abstract

An environment fo r thr efficient development of
quality-assured mixed-signal test programs is introduced.
The new approach provides links between design and
test engineers based on a standard test description
language VTML (Virtual Test Modelling Language).
The language provides standardized description models
for test system resources which can be mapped as well
to equivalent simulation models IS to real world ipest
system hardware. Methods are provided to check the data
consistency of test programs und to validate test
program behavior using simulatiori models.

Introduction

The development of CAD took for integrated cnrcuit
design has undergone dramatic progress during the last
years. Although most CAE: tool vendors offer a full
suite of Design-for-Testability modules (automatic scan
path insertion, simulation-to-test waveform converters
etc.), there is still a gap in computer-assistance between
test pattern generation and test prolyam implementation.
After test patterns and test signals have been defined on
a higher level of abstraction, real waveforms must be
generated by the testsystem hardware and brought to the
I/O pin of the device under test. For that purpose a lot
of tedious handwork must be done: Various test
instrument parameters must be :jet. Clocks must be
assigned and triggers must be defined to synchronize
instruments. In order to miinimizr: such efforts and to
avoid erroneous test setups withoui: the use of expensive
testsystem access, a virtual test development
environment is mandatory.

By today, several CAE tool cendors have already
addressed the problem of test program generation and
verification i n a virtual development environmient
[Cad95]. On the other side ATE m mucfacturers became
aware of the problem and offer specific solutions to
transport simulation data to their systems and to verify
test program behaviour l[Ter9.3, LTX93, Ter951.
Meanwhile standardisation efforts are in progress which
lead to several IEEE proposals IIEE92, IEE951. 13ut
still, there are subtle problems i n establishing an
acceptable level of usabili1.y for this kind of virtual
tools, because of the lack. of generalized, system-
independant test resource description models.

0-8186-7304-4/96 $05.00 0 1996 IEEE

In this paper, a test development environment for the
generation of mixed-signal test programs will be
introduced based on a high-level description language:
the Virtual Test Modeling Language VTML. VTML-
descriptions are processed by C++-modules from a
Virtual Testbench Library VTB-LIB. Furthermore, the
new language is designed in such a manner that all
VTML descriptions can be translated easily and
automatically into VHDL-A simulator code o f a virtual
testsystem. 1

Test program development

There are three major drawbacks of on-line test
program debug using a real-world testsystem: first, this
method is very cost-intensive, (2) there is only limited
access to an engineering or even production floor
testsystem, anld (3) both a real device and a loadboard
must be available at the time of program debug. These
conditions put much pressure onto the test engineers and
- in many cas,es - still Iead to a delay in test program
acceptance.

Therefore, tools should be available that allow for
the generation, verification and debug of test signals and
full test programs without access to real-word devices
like IC prototypes and testsystem hardware. Using a
VIRTUAL (simulation-based) test development
environment, all the bottlenecks mentioned above can
be circumvented.

In a virtual environment, of course, models must be
available for all modules, i.e. a DUT model must be at
hand as well ais models for all hardware modules of the
target testsystem. If these models are available, all
aspects of waveform integrity at the DUT pins like
timing and waveform levels and waveform shapes may
be observed and checked out against the specified or
expected values.

It is a major concern of using virtual instruments
that restrictions of the real-world hardware are taken into
account within the description (VTML) and the
simulation models, which are generated out of VTML.

1
AC-6 'Test Development and Design-for-Testability
Support'. For testsignal description part of VTML the
language TSDL. (Test Signal Description Language) has
been developed in cooperation with Siemens EZM, Villach
(Austria) and the FZI Forschungszentrum Informatik
Karlsruhe (Germany). This project is founded by
Bundesministerium fur Bildung und Forschung and Siemens.

The development contributes to the JESS1 project

99
14Ih VLSI Test Symposium - 1996

Therefore, the process of test resource modelling is one
of the most challenging tasks if analyses shall be
meaningful and predictions shall correlate with the real-
world behavior later-on. A virtual test bench VTB
(fig. 1) has been developed that provides a standardized
test development environment.

Fig. 1 : Virtual Test Bench VTB

The Virtual Test Bench VTB

VTB, a standardized test development environment,
provides a common interface to both the design and test
engineer: Design and test verification are based on a
virtual tester 'programmed' in VTML. Because a virtual
tester always reflects the architecture of real-world test
equipment, a simulation-based virtual testsystem can be
mapped onto a real-world testsystem in a very efficient
way. VTB provides a means for checking out test
descriptions for consistency using rule-based tools, i.e.
even before test programs are evaluated in a simulation-
based environment. These early checks allow for the fast
and efficient modification of test descriptions such that
simulation-based analyses start from a consistent data
set.

The Virtual Test Bench VTB is based on a library
VTB-LIB, a basic library for VTB tools.

VTB-LIB - the library

VTB-LIB is a library of C++-classes managing all
data objects needed for the description of mixed-signal
tests. All tools that use the VTB-LIB functions have
access to the following features:

*
programming of Virtual Test Instruments
handling of analog and digital signals

handling of variables

generation of test setups
test-flow description
common language interface

creation of pin lists and modeling of pin properties
synchronization of signals and instruments

data analysis (consistency check, error check)

Tools using VTB-LIB can exchange data amongst
each other. There are three different paths for data
transfer:

File transfer: All VTB descriptions are user
readable and in ASCII format (read & write
operations).
Serial data stream: For fast data transfer between
VTB tools, a standardized serial data stream format
is provided. No interpretation of data is neccessary.
Direct access: Data access through C-functions is
available for retrieval, modification and deletion of
data objects (provided by VTB-LIB).

Many data access and service functions are available
for tools based on VTB-LIB and therefore, test code
generators or VHDL-A model generators can easily be
implemented. For programmers, VTB-LIB provides a
standard interface for data manipulation. Data can be
brought into the system by means of editors, text shells
or graphical user interfaces. Because VTB data models
already take care of the architecture of real-world test
equipment, all high-level descriptions can be translated
into simulator and testsystem languages very easily.

The Structure of VTB-LIB

The structure of VTB-LIB and its data objects is
sketched in fig. 2.

Test Rule

llnstrumentsl I Data I I Evaluators1

Fig. 2: VTL-LIB data objects
VTB-LIB is based on object-oriented data models for

a system-independent description of mixed-signal tests.
VTB-LIB data are structured hierarchically. Related data
classes are bundled (superior classes). VTML-
descriptions are grouped into three major data classes:
(1) test flow, (2) test structure and (3) virtual test
resources (VTRs).

The "test flow" describes a sequence of test
commands that can be applied to Virtual Test

100

Resources. Test flow sequences can depend on e:ach
other.

The "test structure" describes how individual test
resources communicate to other test resources and to the
device under test. Data sources can be assigned to
"Virtual Instruments", and event cltlannels can be defined
for trigger control and synchronisation of instruments.

All tests are constructed from Virtual Test Resou:rces
that are the elementary comlponents of the Virtual Tester
(e.g. signal generators, pin I ists, patterns etc.).
Although all VTRs are testsystem-independant, they are
designed according to the reiquirenients of real-world test
equipment.

During test program design, data objects are defined
individually and linked together in order to achieve clear
descriptions of complex tests. Libraries of reusable data
objects may be created (e.g. pin "lists). Details of some
VTB test resources are described in the following.

Data Resources
Data resources are objects providing data for "Virtual

Instruments". Data resources can be waveforms,
patterns, pin properties, pins lists etc. Data resources are
assigned to instruments within the test structure
description.

Virtual Instruments
-

,et resource/instrument/signal_soIrce/AWG:demo_AW(;

% set up for arbitrary waveform generator
clock % define clock ratios
(

clockdiv := 7680;
clochult := 1;

1
signalqaram
r

conf ig
(

amp := vOdbm0; % ser variable vOdhm0
offset := Ov; % Signs1 offset
filt := ~ K H Z ; % recoistruction filter
mode = 'cont'; % continuous wave form

1
constant
(

bits := 12; % b i t resolution
snr := 60dB; % SNR

1
I - -
Fig. 3 : Instance of an instrument in VTML

Virtual instruments (VTRs) represent models for
signal generation and capturing. Sophisticated 'high
level'hstruments are planned, which support standard
test methods (DC tests, I C tests, linearity test for
ADCs etc.). VTRs are characterized by a set of
commands (how they behave), tlneir control functiiorns
(how they can be controlled), interfaces (to other
instruments), the instrumenl 's clol:k, and the parameters
for an instrument's action.

Commands: Each instrument is designed. to
perform certain actions. These actions are defined
within the instrument's command vocabulary. (i.e.
'Force Current', 'Measure Voltage' etc.).
Control Functions: Ciommands are activated and
deactivated by control functions which are sent to
the instruments by a "control sequence" (e.g.
start(), stop(), continue(), wait() etc.).

Interfaces: Each instrument is equipped with
standard interfaces for their communication to
other V'lRs.
Instrument clock processing: Each instrument can
be synchronized to external master clocks.
Paramelers: Each instance of an instrument
(object) is characterized by a set of parameters
which define one single instrument setup.
Parameters can be numeric values or VTB
variables (defined elsewhere). Fig. 3 shows an
Arbitrary Waveform Generator (AWG) using
VTML syntax.2

Evaluators
Analysis and post-processing of analog signals (e.g.

FFTing the data) is described using "evaluators". Each
evaluator object is equipped with a list of DSP
functions and signal descriptors which refer to signal
data objects.

Test Ana1:ysis Tools of VTB

Test analysis tools are used to support the engineer
during the development of test programs. Because of the
growing complexity of test programs, manual
optimization is a tedious task. Applying computer-
assisted test analysis tools shows test program
deficiencies and probably weak points immediately and
therefore, optimizations can be performed early in the
development]process (in most cases, this should save of
a much debug time). Test analysis strategies are based
on the following assumptions:

Use as few testsystem resources as possible.
Because each test system provides only a certain
amount of resources, it is good style to keep the
number of used resources low (using many
instruments makes setup and data transfer more
complicated than necessary; but see below:
applying many instruments concurrently can lead
to decreased testing time).
Operate instruments concurrently.
Applying instruments concurrently can shorten
test timle. Whenever measurements and/or post-
processing of the captured data can be interleaved,
overall tjest time can be reduced.
Optimize test flow with respect to data transfer.
Measurements should be organized in such a
manner that the number of data transfer operations
can be minimized.
Minimize number of instrument setup phases.
Each initialization of an instrument is time-
consum.ing. Therefore, as many measurements as
possible. should be carried out with an minimum
of instrument setups.
Avoid redundant commands.

A comprehensive collection of Virtual
Instruments is under construction at the time of writing.

10 1

Test programs consist of many modules. If
modules are exchanged, removed or added, some
commands may be called twice (e.g. pin setups).

Delays are often inserted to be sure that all actions
are finished. This idle time should be used for
useful actions such as setting-up an instrument.

Avoid programming of delays.

mdl;
cmd2;

Fig. 4: Test flow as a set of logical dependencies

Test analysis and optimization tools refer to a test
flow description. The final sequence of commands is not
yet established but short threads of commands are tied
into a network of logical dependencies. The dependencies
of these threads are formulated as nested "if-then-else''
blocks thus enabling tools to analyze several flow
variants and allowing them to find an optimal sequence
of commands.

Test analysis requires additional data about specific
habits and the behavior of real-world tester resources in
order to find optimal solutions for a given test system.
This information must be supplied by the test engineer
in the form of data files. The following information is
required: (1) availability and (2) timing behavior of
testsystem resources.

Availability: Which kind and how many instruments
are available ? Can they be used concurrently ?

Timing behavior: How long last setup and data
transfer phases and which durations depend on other test
operations or test program parameters? (e.g. loading of a
waveform memory depends on the number of samples).

Test analysis tools show the following information:
duration estimations for several test flow paths,
occupancy of test resources during testing,

optimization of instrument occupancy, whereas
availability and timing behavior are taken into
consideration.

0

*

revelation of dead locks,

Simulation-based Virtual Testsystems

Although helpful during test planning, estimations
based on a formal test flow description cannot show all
details of the real-world behavior of the test. Therefore,
the test program must be evaluated either on real-world
equipment or using a simulation-based "Virtual Tester".

simulator models (currently, VHDL-A models are under
development for faster simulation).

The modeling of real-world test equipment is a time
consuming task: For each instrument a simulation
model must be created. To reduce the implementation
effort for simulation models, we define three classes of
models: (1) system control models, (2) standard
component models and (3) testsystem-specific models.
This ordering is based on the assumption that
inaccuracies of real-world tester component (e.g. noise,
non-linearity, jitter etc.) are independent of tester control
logic. The control logic may only introduce timing
'faults'.

Therefore, we introduced a standard test system
control model which is represented by a purely digital
VHDL model. This model is supposed to be able to
emulate the manufacturer's specific control logic (event
scheduler, synchronizer, trigger etc.). To adapt this
model to the behavior of real-world test equipment, the
timing of the controller model can be varied.

On the other hand, hardware-specific behavior of
digital pin electronics, analog signal generators (e.g.
direct digital synthesis, arbitrary waveform generator),
analog capture ports etc. will be simulated by either
analog behavioral VHDL-A models (which can be
customized by a set a of parameters) or circuit-level
models of specific hardware components.

The common system control and behavioral models
will be stored in a standard tester model library: VTB-
SIM. All other models must be tailored according to
hardware data sheets and circuit diagrams.

The Virtual Tester will be generated from VTML
descriptions by a simulator conversion tool which will
build-up the virtual instruments using VTE-SIM and the
specific models. Fig. 5 shows the structure of a virtual
test instrument model. Analog components are marked-
up with a bold outline. The rest of the model consists
of purely digital system control. The analog part of the
instrument model is quite small such that shorter
simulation time can be predicted.

Fig. 5 : Common Structure of a Virtual Tes

elenroni @
t Instrument

Simulation-based evaluation benefits from the fact that
the verification can be performed before first silicon is
available. Simulation shows whether (1) the response of
the device under test is correct, (2) the test equipment
generates proper signals and (3) the instruments perform
correct measurements at the right time. For that purpose
V W L descriptions - which are the 'program' for the
Virtual Tester have to be mapped Onto appropriate

-

COnClUSiOnS

A virtual test development environment VTB has
been introduced that allows for the system-independent
definition of analog, digital, and mixed-signal tests
using standardized instrument and data models. The

102

objective is to achieve short development duration:; for
quality-assured test programs. The: following VTB-based
tools are already available at the time o f this Document, September 1995
publication: signal generation modules, rule-based
consistency check modules, import functions for foreign
data formats. The developmenl of a graphical user
interface has been started. Instr Jment models for the
Virtual Tester have been developed and are implemented
in HDL-A. A preliminary version of a VTB
implementation (TSDL, see foolnote #I) for Siemens
AG is current being released and will be evaluated using
real world test program examples.

[FE951 "Sl.andard Tester Interface Language - STIL",
Proposed IEEE Standard P1450 - Review

[ROA94] 'Tlhe National Technology Roadmap for
Semiconductors', San Jose, USA, 1994

Acknowledgement

The authors would like to thank Mr. G. Krampl at
Siemens EZM Villach (Austria) for his strong support
of the development and his contributions to the concept,
and Prof. K. Muller-Glaser, FZI Karlsruhe (Germany),
who initiated and still supports, the development of
CAD-integrated CAT tools. Furthermore thanks to Prof.
W. Glauert for his constructive criticism and ideas.

References

R. Arnold, M Chowanetz, W. Wolz,
K. D.Miiller-Glaser:"Test/AGENT: C4D-
Integrated Automatic Generation of 'Test
Programs",
IEEE International Test Conference 1092,
pp 854-859

"Cadence Virtual Test Backgrounder",
product information, Citdence Design System,
1995

G. Krampl: "Integration von Design und 'Test
mit t e 1 s Must e r s prac h e n "I,
mikroeletronik 4r'1991, pp. 166 - 168

Pascal Caunegre, Claude Abraham,
"Achieving Simulatiorl-Based Test Program
Verification and Faul t Simulat ion
Capabilities for Mix ed-Signal Systems"
SIEMENS AUTOMO?IVE,IEEE95, p.469ff.

" Creating a XvI i xe d - S i g n a1 Si m u il a t i o n
Capability for Concurrent IC-Design and Test
Program Development", Teradyne Inc.,
ITC 1993

ho h e re r

"Tools and Techniques for Converting
Simulation Models into Test Patterns",
LTX Inc., ITC 1993

"IMAGE ExChange: An Enabl ing
Technology for Virtual Test", Teradyne Inc.

"TRSL Requirements and Specification",
IEEE PAR 1029.3, Fetiruary 1992

103

