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Abstract— We propose a hardware architecture to accelerate
boolean constraint propagation (BCP). Although satisfiability
(SAT) solvers in software use varying search and learning
strategies, BCP is a fundamental component and by far con-
sumes the most CPU time. Our field-programmable gate array
(FPGA) design uses on-chip SRAM to facilitate the acceleration
of BCP. We discuss many insights to our innovative hardware
memory layout, which is very compact and enables extremely
fast BCP. It also supports multithreading to minimize the idle
time in hardware and to fully utilize the multicore processor
host. Additionally, many industrial SAT instances encode logic
gates as constraints. We compact these to simultaneously
reduce the hardware memory usage as well as speed up the
computation (enhanced BCP). We implemented our enhanced
BCP core and integrated it with a simple software SAT solver
which communicates over PCI Express. Hardware performance
counters show that a single processing engine is up to 4x faster
than a state-of-the-art software SAT solver.

I. INTRODUCTION

The boolean satisfiability problem (SAT) was one of

the first NP-complete problems. Prior to the 1990s, SAT

was arguably considered mostly a theoretical interest and

mainly used to prove the intractability of new problems

(by polynomial reduction). Although complete algorithms for

solving SAT date back to the 1960s (e.g. DPLL [1]), much

of the smartness in modern SAT solvers was developed in

the late 1990s and early 2000s. This was when computation

became more of a commodity rather than a privilege.

Among SAT algorithms based on DPLL, some noteworthy

advancements include: GRASP [2] which introduced non-

chronological backtracking, [3] which showed how to learn

clauses from conflict analysis, and Chaff [4] which presented

watched literal lists as well as an activity-based heuristic for

choosing the next variable to assign.

Modern SAT solvers have greatly changed the picture for

NP-complete problems. Today it is common to reduce a hard

combinatorial problem to SAT so that it can be efficiently

solved by any generic SAT solver. Using this approach, SAT

has found itself at the heart of many applications including:

electronic design automation (which often involves combina-

torial optimization), bounded model checking, hardware and

software verification, and cryptography. Further elaboration

on such applications as well as their mapping to SAT are

described in [5]. Verification is detailed in [6], [7].

Since the breakthrough of Chaff, many of the newer

SAT solvers are variants which provide improvements by

data structure optimization, or offer minor improvements

by modifying the heuristics for which variable to assign

next, learnt clause database management, restart policies, etc.

Some widely used improvements include: luby restarts [8]

which optimizes when to restart, and phase-saving [9] which

caches whether a variable was last assigned true or false.

The algorithmic advancement of SAT is slowing as further

innovations beyond so much cumulative smartness become

increasingly difficult.

A significant effort has also been placed on efficient

boolean constraint propagation (BCP). In most modern SAT

solvers, BCP typically consumes 80-90% of the CPU time

(this seems to be the consensus within the SAT community,

and we have also observed this behaviour).

BCP is the fundamental pruning mechanism of any DPLL-

based SAT solver. Concisely speaking, as the SAT solver

traverses the tree of all possible variable assignments, BCP

enables it to prune off of unsatisfiable branches.

With such a large portion of the CPU time, many have

proposed to accelerate BCP in hardware (see section II).

Typically just BCP is accelerated, so a software host is

needed. Advancements to implementing BCP are orthogonal
to SAT algorithm development, as one can integrate the same

BCP hardware with any DPLL-based software SAT solver.

In this paper, we propose a new field-programmable gate

array (FPGA) architecture for accelerating BCP. We discuss

many observations and insights which lead to our innovative

hardware. We make no claim on advancing on SAT algo-

rithms – our scope is strictly on the hardware architecture.

We mostly focus on the design of a very compact SAT

representation for hardware which also enables fast BCP.

The remainder of this paper is organized as follows. Prior

work is discussed in section II. Section III examines the

use of multithreading. Section IV illustrates the key insights

which affect how BCP can be accelerated. This leads to

our innovative and very compact memory layout as well

as the BCP hardware architecture in section V. Section VI

presents enhanced BCP, which operates on logic gate clauses.

Finally, results are presented in section VII and we conclude

in section VIII.

II. PRIOR WORK

A. Older Hardware SAT Accelerators

A comprehensive survey of works from the late 1990s

and early 2000s is provided in [10]. Many of these works

used instance-specific hardware, so new hardware must be

generated for each problem. In our opinion, this basically

pushes the complexity of SAT into the CAD tool used for

implementing the hardware. Most did not report run times

of said CAD tools, and we suspect they were significantly

longer than the hardware run times. We are not aware of any

designs from the last decade that still use this approach.
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Many older non instance-specific designs made practi-

cal sense at that time when FPGAs were over an order

of magnitude smaller in logic capacity, however they are

unlikely to scale to today’s large FPGAs. For example,

[11] represents the SAT problem by storing a matrix of

size num variables × num clauses. This is practical for

problems of tens of variables and hundreds of clauses, which

would have been a reasonable problem size at that time.

However, as the problem size grows, this matrix becomes

increasingly sparse and the method itself less efficient.

B. Modern Hardware SAT Accelerators

From the mid 2000s onwards, the focus on accelerating

BCP has shifted towards how to best store and process

variable assignments and clauses in the hardware’s memory.
Many modern BCP accelerators are limited by either using

slow memory or not making the most of fast memory in

terms of the capacity.

A DRAM-based BCP engine was built in [12] to address

the limited capacity of faster memory. They do solve the

capacity issue, however DRAM (or any external memory)

provides a limited amount of bandwidth to solve a funda-

mentally memory bound problem, as discussed in section

IV-B. Interestingly, BCP results were not reported in [12].

A complete SAT solver is implemented in hardware in

[13]. Moving decision making and conflict analysis into

hardware eliminates the communication latency between a

software host and the hardware accelerator (we address

this in section III). Since they must also implement non-

BCP computation in hardware, their hardware can only

fit smaller problems (they only use on-chip memory, so

capacity is an issue). Additionally, modern decision making

and learnt clause database management involve things like

memory allocation which is very cumbersome to implement

efficiently in hardware. Consequently, these key components

of a modern SAT solver are simplified in their hardware.

Furthermore, any new advancements of these would be

slower to integrate into hardware.

A radical approach is taken in [14], which developed a

custom integrated-circuit cell just for BCP. As if SRAM is

too slow, they store the SAT problem in registers. With BCP

logic around the registers, their hardware is extremely fast.

However, implementing an ASIC requires extremely large

amounts of time and money, yet FPGAs typically have 1 to

2 orders of magnitude less registers than SRAM bits which

would severely limit the supportable problem sizes.

C. Most Relevant Prior Work

The FPGA-based BCP accelerator in [15] and its follow up

work [16] use on-chip memory to enable fast BCP. Among

the prior work, this one is most similar to our proposed

system. To briefly summarize their design, each newly as-

signed variable is broadcast to several parallel inference

engines. They try to visit every clause that this variable

occurs in at once, so each inference engine must determine

which of these clauses(s), if any, it contains. This happens

in parallel, so these engines use on-chip memory to avoid

serialized access to external memory. After this, the variable

assignments of those clause(s) are fetched to do BCP. Any

newly implied variable is reported to a centralized location

for broadcasting later.

We differ from [15], [16] in that we do not require a clause

lookup. In our design, the incoming variable being assigned

is a hardware address that points directly to what we need

to access within the clause that contains this variable. This

lack of translation is beneficial because:

1) Access is direct and therefore faster.

2) We do not store any clause translation table in hard-

ware, so our memory layout is more compact, thus

enabling larger SAT problem sizes.

We do not use a broadcast architecture. We start BCP

locally, which is much faster than having to first report it

to a centralized place. Although [15], [16] visits all clauses

that contain a given variable at once, they need significantly

more time to process one clause. To enable local BCP starts,

and since we are faster per clause, we decided to visit these

clauses sequentially. Our hardware is not purely serial, our

work spreading mechanism is explained in section V-B.

In order to increase our hardware utilization, we propose

to use two key techniques that [15], [16] did not consider:

1) Multithreading (section III)

2) Enhanced BCP (section VI)

We think these could be integrated into [15], [16], however

an FPGA broadcast architecture will benefit minimally from

multithreading due to the very limited broadcast bandwidth.

III. MULTITHREADED SAT

A. Advantages of Multithreading

The idea of parallelizing SAT to fully utilize multicore

CPUs has been around for years. SAT competitions have

included a parallel track since 2008. Even so, to the best

of our knowledge, we are first to propose support for

multithreading in hardware (as discussed in section III-C).

In addition to fully utilizing the software host, multithread-

ing in a BCP hardware accelerator has many advantages:

1) It keeps the hardware busy (better utilization).

2) It hides the latency of host/FPGA communication.

As an example, consider what would happen if software

BCP required 90% of the CPU time and hardware could

accelerate it by 9×. The software solver would spend 10%

of the original time doing non-BCP work and 10% of the

original time waiting for hardware. Likewise the hardware

would only be used 50% of the time. In this example, running

2 threads will keep both software and hardware busy.

Running more threads can facilitate load balancing be-

tween CPU cores and mask the communication overhead

between software and hardware. As an example to illustrate

this, with 3 threads, at any given point in time, one thread

is being processed by software (e.g. conflict analysis), one

thread is in hardware (BCP), and one thread is moving data

around. Which thread is doing what task will rotate in time.
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B. Parallel Software SAT Solvers

Parallel software SAT solvers typically employ one of the

following strategies:

1) Assign n variables in all possible ways and distribute

the 2n subproblems to different threads.

2) Race several different serial SAT solvers against each

other at the same time.

The first case uses divide and conquer – if any subprob-

lem finds a satisfiable assignment, the original problem is

satisfiable. In the second case above, by using orthogonal

parameters for how to choose the next variable, when to

restart, learnt clause database management, etc., on average

we find a solution faster than with any one setting. Intuitively,

different settings are better for different problems. This is

the strategy used in ManySAT [17]. Further elaboration on

parallel software SAT solvers is provided in [18].

From a BCP perspective, it does not matter which ap-

proach above is used so long as all of the serial SAT

solvers (which collectively form a parallel solver) are solving

the same problem. If we replicate the variable assignments

and watched literal lists in hardware, we can integrate one

multithreaded BCP accelerator with a parallel software SAT

solver. To save hardware memory, clauses can be shared.

C. Hardware Multithreading

We believe the previous lack of sufficiently large amounts
of fast memory is the dominant reason why prior works did

not attempt multithreaded BCP in hardware. For SRAM-

based BCP accelerators, the amount of memory was the

limiting factor. Replicating the variable assignments (and

possibly also the watched literal lists) was too large of an

overhead. DRAM-based BCP accelerators can easily exhaust

the external memory bandwidth, so a multithreaded system

would ultimately time-share the access to this slow memory.

Given the overhead of parallelization, such a system would

not make practical sense. Conclusively, in order to effectively
implement multithreading, we must use on-chip memory and
have a very compact memory layout.

IV. KEY OBSERVATIONS FOR ACCELERATING BCP

A. A Sober Look at Present Technology and Trends

Many proposals for accelerating SAT in hardware emerged

in the late 1990s and early 2000s, yet we do not see

widespread adoption today. This does not imply that SAT

is unsuitable for hardware – in fact it is now the opposite

due to dramatic changes in computing technology since then.

BCP is a fundamentally serial process (as illustrated in

section IV-B), so as CPU frequencies no longer increase due

to power dissipation, we must look for new techniques to

accelerate BCP. Some gain is achievable by multithreading,

however it is limited due to shared memory bandwidth.

In recent years FPGAs have been closing the performance

gap to ASICs. This gives hardware SAT a more compet-

itive edge against pure software. In addition to CPUs not

being clocked faster, FPGAs now contain a mix of soft

programmable logic and hardened high performance logic

(e.g. embedded memories, multipliers, high speed external

interfaces, etc.). Every 18-24 months, Moore’s Law has

enabled FPGAs to double in logic capacity.

We expect the memory capacity (which is directly related

to transistor count per die) to grow faster than the size

of SAT problems, as SAT is NP-complete and pruning is

only so smart. This offers the opportunity to move what was
previously stored in slower memory into now faster memory
because there is enough faster memory available. Software

based BCP has and will likely continue to benefit from a

larger CPU cache. More than half of the transistors in many

modern CPUs are used for cache.

For FPGAs, this enables a design to improve performance

simply by migrating from DDR2 to DDR3 DRAM, for

example. Since SAT is a memory bound problem (see section

IV-B), the biggest game-changer is bringing data on-chip,

since the bandwidth is typically 2 orders of magnitude higher.

We believe we are nearing the threshold where it makes
practical sense to do this for SAT.

Others have also considered BCP acceleration using on-

chip memory, such as [15], [16]. The largest FPGAs today

have tens of megabits of embedded memory and it is very

likely that this will continue to grow in accordance with

Moore’s Law in the foreseeable future.

As a final point, the largest FPGAs available now have

millions of logic elements and thousands of embedded mem-

ories. It is likely that this much logic would be under utilized

if the innermost loop of BCP required serialized access to

slower external memory. In fairness, the prior works that used

this approach only had significantly smaller FPGAs available

and such designs made practical sense at the time.

B. The Computation Pattern of BCP

We assume the reader is familiar with the typical conjunc-

tive normal form of SAT as well as the typical notation like

(A ∨ ¬B) ∧ (B ∨ C) ∧ (¬C ∨D ∨ ¬E).
In the simplest terms, BCP prunes unsatisfiable branches

as the SAT solver traverses the tree of all possible variable

assignments. As an example, if we decide to assign A =
false, then the above clause (A ∨ ¬B) requires that B =
false. This then implies C = true due to (B ∨ C). At this

point we cannot infer anything about D or E.

The computation pattern of BCP is as follows:

1) For each variable that is assigned, fetch a list of all

clauses that contain this variable. This was improved

to a smaller “watched literals” list in [4].

2) For each of these clauses, fetch the variable assign-

ments. If all variables except for one are assigned such

that the clause is not satisfied, we know we must assign

the last unassigned variable to satisfy the clause.

3) As BCP implies new variables, repeat step 1 for each.

Notice that what is fetched in step 1 indicates what to fetch

in step 2. Once we have the variable assignments, we apply

the BCP rules and may imply a new variable. Eventually that

new variable will later tell us what to fetch in its step 1. This

access pattern is analogous to traversing a link list, as what

we fetch now tells us where to look next.
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This leads to some critical observations about BCP:

1) BCP is inherently a serial process.

2) BCP is memory bound.

3) The memory access pattern is random access, so read

latency is extremely important.

The first point above comes from dependency analysis. In

the above example, A = false implied B = false which

in turn implied C = true, but until B was assigned it is

impossible to know that C would be affected.

For the second point above, most of the work is in fetching
data. The only math involved is in computing offsets (e.g.

pointer arithmetic) and loop iterators.

Memory is randomly accessed because for arbitrary

clauses in a SAT problem, there is no way to implicitly know:

1) Which clauses to inspect for a newly assigned variable.

2) Which variable assignments must be fetched for each

clause inspected.

It is actually this lack of implicit knowledge that causes so

much fetching. This can be evaded by using instance-specific

hardware, however pushing the complexity of SAT into the

CAD tool for implementing the hardware has proven futile.

Random access is inherently sensitive to read latency.

In software, all one can do is optimize data structures. In

hardware, in addition to this, which parts of the problem

we decide to place in registers, on-chip memory, off-chip

SRAM, and off-chip DRAM has a significant effect on the

system performance.

In summary, we need an underlying technology that facili-
tates low latency random access to maximize the acceleration
of BCP, hence our choice of on-chip SRAM.

C. Key Insights to Accelerate BCP in Hardware

We now present several key insights to address the limited

amount of on-chip SRAM. This eventually leads to a very
compact representation for SAT without sacrificing the ability
to process data extremely fast.

Key Insight #1: When we assign a variable, we actually

want the variable assignments of the clauses that this variable

occurs in, not the clauses themselves.

Another way of looking at this is we want to reorder the

memory access by dereferencing what matters the most first.

We only need to access a clause itself if there is a BCP. Lazy

execution saves bandwidth and processing.

Key Insight #2: Variable assignments only require 2 bits per

variable, so multiple assignments can be placed in the same

memory word enabling them to be read out all at once.

As a follow up to the first insight, packing all the variable

assignments of one clause in the same word reduces the

number of references needed for a newly assigned variable.

One property of SAT is that the clause size can be

regulated. We can split large clauses by introducing dummy

variables, for example (A ∨ B ∨ C ∨ D) is satisfied if and

only if (A∨B ∨E)∧ (¬E ∨C ∨D) also is, where E is the

dummy variable. Applied recursively, any SAT problem can

be transformed into 3-SAT (all clauses size 3).

We need not bring clauses all the way down to size 3,

as this can create an excessive number of dummy variables.

Many FPGA embedded memories have 16 or 18 bits per

location, giving a maximum clause size of 8 or 9 variables.

Key Insight #3: Given all the variable assignments of one

clause at once, constraint propagation is just combinational

logic and therefore extremely fast.

This is yet another good reason to pack the variable

assignments together. In hardware it is easy to evaluate

in parallel if any variable needs to be implied. There is

no one single equivalent software instruction, so software

would need several operations. Typically software uses if-

else constructs to do BCP. Eventually some branches will be

mispredicted, thus giving hardware BCP more advantage.

Key Insight #4: Favor implicit linking over explicit linking

whenever possible. For example, it is better to walk down an

array (which is implicitly linked by proximity in memory)

rather than to traverse a link list (which explicitly stores

where to look next every time).

This is beneficial because:

1) We save space by not storing pointers/addresses.

2) Accessing the next item in the list is typically faster

since implicit linking depends on bandwidth whereas

explicit linking depends on read latency. Notice that

array access can be pipelined.

This guideline leads us to two potential memory layouts:

1) Use an array for each variable occurrence list (im-

plicitly linked by proximity), which means we must

explicitly link the clauses. This is shown in Figure 1.

2) Use an array for each clause, which means we must

explicitly link the variables (Figure 2).

Figures 1 and 2 both represent the same SAT problem of

(A ∨ B) ∧ (A ∨ C) ∧ (A ∨ B ∨ C). Adding some flags to

allow inverted variables is trivial and thus not shown.

The array-based variables memory layout has some major

challenges. In Figure 1, array B should start immediately

after array A so as to not waste any memory locations,

however we would then need some other mechanism for

adding a learnt clause containing variable A. Also, constraint

propagation would have to gather the variables assignments

Array for 
Variable C
Clause 2 
Clause 3 

Array for 
Variable A
Clause 1
Clause 2
Clause 3

Array for 
Variable B
Clause 1
Clause 3

Fig. 1. Array-based variable occurrence lists require clauses to be linked.

Clause 3 

Var A
Var B
Var C

Clause 1 

Var A
Var B

Clause 2 

Var A
Var C

Fig. 2. Array-based clauses require explicitly linked variables.
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over several clock cycles, which does not enable insight #3.

For these reasons, we chose to use array-based clauses.

Key Insight #5: When explicit linking is required, favor

localism so that addresses can be represented on fewer bits.

This can be regarded as a form of lossless compression.

As an example, if the next item to access is within the same

block of 4096 addresses as the current item, we only need

12 bits to reference it (plus a 1 bit flag to indicate it is a

“local” link). Otherwise we would need to use, e.g. 32 bits

to globally reference the next item.

V. OUR HARDWARE BCP ENGINE

A. Our Compact Hardware Memory Layout for Fast BCP

The memory layout for one clause is presented in Figure

3. As discussed above in key insight #4, we use array-based

clauses – each clause consumes a contiguous section of

memory with no space wasted between the end of one clause

and the start of the next. Clauses cannot cross a boundary

of X addresses to facilitate using localized links on fewer

bits (key insight #5). Our implementation uses X = 4096,

however there is no restriction on X in general.

To facilitate fast BCP, for each clause, all of its variable

assignments are stored in one memory location (key insight

#3). A variable occuring in n clauses has n copies of its

variable assignment distributed to each of the n clauses.

This actually consumes less memory than using one single

variable assignment, as we would then need a link on tens

of bits at each clause to locate this one variable assignment.

Simply storing the 2-bit variable assignment itself is smaller.

The multiple copies of each variable assignment must be

kept synchronized. Upon updating a variable assignment, we

must visit every clause the variable occurs in. We avoided

using watched literals lists from [4], as they prevent enhanced

BCP (section VI) and would also need to be replicated per

thread (since these are links each on tens of bits, they are

much more expensive to replicate than variable assignments).

Finally, multithreading is supported by replicating the vari-

able assignments (one copy per thread).

Local Link, Offset 0 

Local Link, Offset K-1 

…

Var. Assigns, Thread 1 

Var. Assigns, Thread N 

…

Global Link 0 

Global Link M-1 

…+over 

One 
clause 

base

–thread 

+offset 

Fig. 3. Our proposed hardware memory layout for BCP.

In Figure 3, offset refers to the position of a variable

within the clause. For example, variable A is at offset 2 in

the clause (C ∨ ¬B ∨A). Note the first offset is 0.
A “job” (the visiting one clause) is characterized by:

1) base: the address of offset 0 (where is the clause).

2) thread: which thread (note the first thread is 1).

3) offset: which variable in the clause.

4) assignment: are we deassigning, assigning true, or

assigning false (2-bit value).

Subtracting base−thread gives the location of all variable

assignments for this clause and this thread (the blue region

in Figure 3). offset indicates which 2 bit variable assign-

ment we need to overwrite with the value of assignment.
After doing this update, all variable assignments are written

back to memory and are also sent to a constraint propagation

unit to do BCP (as shown in Figure 6).
Adding base+ offset gives the location of the local link

(the orange region in Figure 3). The memory contents here

indicate where the next clause is that contains this variable.

For example, if the current clause is (C∨¬B∨A) and offset
is 2 (so we are updating variable A), then the contents in the

memory location base + 2 indicate where we can find the

next clause that contains variable A.
Getting to the next clause of the same variable requires:

1) The next base – where is next the clause.

2) The next offset – which variable within the clause.

3) Is the next variable occurrence negated – if so we need

to exchange assigning true/false.

The thread stays the same. The next offset and the 1

bit flag that indicates negation are always stored in the local

link (orange region of Figure 3).
The next base can be encoded in two ways. If it is within

the same block of X (e.g. 4096) addresses, the local link

simply contains a 12 bit local address. Otherwise we need a

global address, which in our implementation is stored in 2

memory locations. In this case, the local link (orange region)

stores some of the bits of this global address. The local

link also stores over, which identifies which “overflow bin”

(green region labeled as global link) contains the remaining

bits of this global address.
We require N memory locations to store variable assign-

ments for N threads. The number of local links (parameter

K in the orange section of Figure 3) is always equal to the

number of variables in the clause, so smaller clauses consume

less memory. We may have fewer global links (parameter M
in the green section) if many variables in this clause have

their next clause within the same block of X addresses. Thus

K ≥M ≥ 0. Note that M = 0 can happen but K ≥ 1.
Clauses with up to 8 variables are supported. The clause

size is not stored anywhere in hardware. It is illegal to specify

an offset larger than the clause size. Doing BCP on (A∨B)
is identical to doing BCP on (A ∨ B ∨ Y ∨ ... ∨ Z) where

Y...Z were permanently and deliberately assigned false.
For each variable, the linked list of clauses is cyclic. We

have visited all clauses when the assignment in memory

(which we wrote earlier) matches the incoming one. A

similar technique is used to detect conflicts.
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Job start 

C
la

us
e 

1 
C

la
us

e 
2 

C
la

us
e 

3 
C

la
us

e 
4 

Fig. 4. An example traversal for a variable that occurs in 4 clauses.

Figure 4 illustrates the access pattern if we assign a

variable that occurs in 4 clauses. At each clause, we access

both the variable assignments (the blue section) and the link

to the next clause (if local then only the orange section,

otherwise a globally addressable link requires a second

access to into the green section). In clause 3, all variables

have their next occurrence within the same block, hence there

are no global links here. The clause sizes can vary (note the

different heights of each orange section) and the offset can

vary (position within each clause). The thread always stays

the same. In this example, we always access the variable

assignments of thread 1 (bottom of the blue section). Upon

visiting clause 1 again (after clause 4), the existing variable

assignment matches the incoming one, hence we are done.

B. Full System Architecture

Our proposed full system architecture is illustrated in

Figure 5. Many distributed PEs (processing engines) each

contain a memory block of, e.g. 4096 addresses. The PEs

communicate to each other via a NOC (network-on-chip).

The software SAT solver does everything except for BCP

and communicates with hardware over PCI Express.

To minimize latency and thus maximize BCP acceleration,

we must process clauses and variable assignments as close to
the memory interface as possible. Since embedded memories

are distributed throughout an FPGA, we likewise distribute

the processing. This enables massive parallelism, as different

PEs can simultaneously process different clauses.

Multithreading helps to keep many PEs busy. Work spread-

ing of BCP also helps this. For example, suppose A = true
implies B = true and C = true. If B and C are in different

PEs, we can inspect some clauses that contain B at the same

time as we inspect some clauses that contain C.

Figure 6 shows the structure of each PE. The NOC pro-

vides a layer of abstraction which separates communication
from processing. At this boundary, there is an input queue

for jobs to be processed here as well as an output queue for

data ready to leave (a job or reporting BCP to software).

Jobs are started by software and a job can be passed from

one PE to another, which happens if we need a global link.

As explained in section IV-C, given all variable assign-

ments in a clause at once, constraint propagation detects in

parallel if we can imply any new variable. If so, constraint

Software Host 

PCIe 

FPGA
-Choose 
 var. to 
 assign 
-Conflict 
 analysis T

ra
ns

la
ti

on
 

PC
Ie

 H
ar

d 
IP

 

PE 

PE PE PE 

PE PE 

PE NOC 

Fig. 5. Our proposed system architecture for accelerating BCP in hardware.

Input 
Queue

Output 
Queue Constraint Propagation 

Clause 
Traversal 

On-chip SRAM 
NOC�

Communication   Processing 
Fig. 6. The structure of each PE (processing engine) is shown on the right.
The NOC (network-on-chip) provides communication between PEs.

propagation reports which offset in this clause is the newly

implied variable. Since all of the clauses that contain this

newly implied variable are accessed by a cyclic link list, we

can visit all of them by starting anywhere in the list. Hence,

we simply start a new job at the same clause that caused this

BCP but with whatever offset was reported by constraint

propagation (this job is pushed into the input queue). We

also report it to software via the output queue.

Our hardware BCP does not require a clause lookup
because it is completely implicit. If A implies B, we can

very quickly start inspecting clauses that contain B. This is

achieved by representing BCP as a hardware address and an
offset (recall how jobs were characterized in section V-A).

A translation is required for software to know which

variable this BCP hardware address and offset represent.

Likewise, if software wants to assign a variable, it must trans-

late it into a hardware address and offset. This translation is

currently implemented in software.

We are currently investigating different network topologies

and arbitration policies for the NOC, which is beyond the

scope of this work and will be discussed in future work. We

currently connect the PCIe interface directly to one PE.

C. BCP State Machine

Up to four memory accesses are needed per clause visit:

1) Read the local link (the orange region in Figure 3).

2) Read the variable assignments (blue region).

3) Read the global link (green region) if necessary.

4) Write back the updated variable assignments.

Accesses 3 and 4 above must come after 1 and 2. FPGAs

typically have dual-port embedded memories, so we could

visit one new clause every 2 clock cycles, however this

resulted in long combinational paths. By adding pipelining,

we were able to nearly double the clock frequency. Although

we visit the next clause every 4 clocks, the absolute time is

nearly the same but now the throughput is twice as much.

Our implemented hardware clause traversal state machine

is shown in Figure 7. Pipelining adds read latency, so to

fully utilize the bandwidth, we use 2 independent “execution

strands” which time-share the memory.
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Fig. 7. Our pipelined hardware clause traversal state machine has two execution strands to fully utilize the dual port embedded memory bandwidth.

VI. ENHANCED BCP

It is commonly known that many “industrial” SAT in-

stances encode logic gates as boolean clauses, typically

using the Tseitin encoding [19]. This naturally arises in

SAT applications such as formal verification, since all digital

system are based on logical constructs regardless of whether

it is software or hardware.

In SAT problems derived from logical constructs, our

hardware can operate directly on “logic gate clauses”. Re-

call key insight #3 from section IV-C: given all variable

assignments in a clause at once, constraint propagation is

simply combinational logic. We can extend this idea by also

supplying a clause type to indicate which specific type of

custom constraint propagation to apply.

For a collection of boolean clauses that specify a logic

gate, in hardware we only need to store one representative

clause which contains all of the variables as well as the clause

type. When our hardware constraint propagation unit sees the

clause type, it derives all of the underlying boolean clauses
and applies BCP to each of these in parallel.

For example, if the constraint propagation unit is given:

(A ∨B ∨ C), type = “AND”

it derives all of the underlying boolean clauses:

(¬A ∨B) ∧ (¬A ∨ C) ∧ (A ∨ ¬B ∨ ¬C)

which is the Tseitin encoding for the AND gate A = B&C.

If we assigned A = true, constraint propagation implies

both B = true and C = true.

Our hardware BCP is fundamentally boolean and fully

supports pure boolean SAT. However, if there happens to
exist a more compact representation in a SAT problem, we

exploit it because:

1) Hardware processing is faster since we inspect the

equivalent of several boolean clauses at once (3 clauses

in this example).

2) It enables support for larger problem sizes in the same

amount of hardware memory.

3) It may enable new propagations which are not imme-

diately visible in the boolean domain.

As an example to illustrate the third point, suppose we

allow a 1-bit half adder clause type consisting of 4 variables:

(A ∨B ∨ C ∨D), type = “half adder”

Let the carry be C = A&B and let the sum be D = A⊕B.

The set of underlying boolean clauses are:

(¬A ∨ ¬B ∨ ¬D) ∧ (A ∨B ∨ ¬D) ∧ (A ∨ ¬B ∨D)∧
(¬A ∨B ∨D) ∧ (¬C ∨B) ∧ (¬C ∨A) ∧ (C ∨ ¬B ∨ ¬A)

Assigning D = true does not imply anything, as D does

not occur in a size 2 clause. However, we know that if the

sum of a half adder is 1, the carry must be 0. Hardware

constraint propagation accounts for this by adding the clause

(¬D ∨ ¬C) to the set of underlying boolean clauses.

A method for extracting gates from boolean clauses is

presented in [20]. As the complexity of the combinational

logic for constraint propagation has increased, we now use

a 2-stage pipeline to maintain a fast clock. Our current

implementation supports AND and XOR clauses with up to 8

variables. Our memory has 18 bits per location, thus leaving

2 bits for the clause type. Inverting a variable comes for free

in SAT, so AND also represents NAND, NOR, and OR. As

future work, we plan to support additional clause types, such

as single bit 2:1 muxes, half adders, and full adders.

VII. RESULTS

Our real life hardware implementation (not simulation)

features one fully functional PE (processing engine) that

is directly connected to the PCI Express interface. The PE

contains a pipelined clause traversal engine (see section V-

C for the state machine) as well as a constraint propagation

unit that understands boolean, AND, and XOR clauses (from

section VI). As stated in section V-B, the NOC is under

development and its design is beyond the scope of this paper,

hence our limitation of implementing only one PE.

We integrated our BCP core with a simple C++ software

SAT solver along with a Linux PCIe driver, both of which

we wrote. We have tested the correctness of multithreading

in our hardware (in simulation and in system), however we

leave it as future work to fully integrate our hardware with a

state-of-the-art parallel SAT solver. The acceleration of BCP

is orthogonal to SAT algorithmic development, hence the

software host just needs to exercise our BCP hardware to

demonstrate our contribution.

Our design runs at 250 MHz on the Terasic DE4-230

board (Altera Stratix IV EP4SGX230 FPGA). Our PE uses

an embedded memory with 4096 addresses and 18 bits per

location. Resource estimates indicate we can replicate this

150 times to exhaust the on-chip memory and still use less
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TABLE I

SUMMARY OF OUR RESULTS FOR ACCELERATING BCP IN HARDWARE.

Boolean clauses only Mixed clauses
Variables 225 200 200 500 525 450
Clauses 500 500 500 300 500 500
Max Clause Size 6 4 3 6 4 4
% SAT 87.1 47.5 12.8 92.9 44.2 4.1
% UNSAT 12.3 52.5 87.2 2.3 48.7 95.4

Total BCPs (×106) 1349 716 9 8023 18303 1300
Average clocks/BCP 46.7 28.0 21.3 22.1 13.5 12.9

BCPs/second (×106) 5.4 8.9 11.7 11.3 18.5 19.4
Speedup vs software 1.1× 1.8× 2.3× 2.3× 3.7× 3.9×

than half the LUTs and registers (leaving plenty of space for

the NOC). This would support problems of approximately

50,000 variables and 50,000 clauses. The largest FPGAs

today have more than 5× our memory and would support

problems with 250,000 variables and clauses.

We can support even larger SAT problems if they contain

logical constructs. Using enhanced BCP (section VI), we

only store one representative clause for all of the underlying

boolean clauses (e.g. a set of boolean clauses that describe

an AND gate). We typically obtain a 3× to 4× compression

ratio by converting the same boolean SAT problem into

enhanced BCP for problems rich in logical constructs.

To fit 50,000 clauses in 4K ∗ 18 ∗ 150 = 11M bits of

memory, we average about 28 bytes (or seven 32-bit integers)

per clause. This includes the variable assignments, clauses,

and the variable occurrence lists which are needed to traverse

the clauses. We restructured and compacted how the SAT

problem is represented in hardware mostly by exploiting

localism and implicit linking.

Table I summarizes our results. Timing was obtained from

hardware performance counters, which exclude the PCIe

communication overhead, as this can be hidden as explained

in section III-A. We randomly generated 1000 SAT problems

in each of the 6 categories with uniformly distributed clause

sizes between 2 and Max Clause Size inclusive. Mixed

clauses contain one third each of boolean, XOR and AND

clauses. As expected, the gains are larger with enhanced BCP.

We adjusted the problem characteristics to show bench-

marks that are mostly SAT, balanced, and mostly UNSAT.

More constrained problems offer more BCP, hence the im-

provement in results for more UNSAT problems. A 5 minute

timeout was used in the software host (as we just need to

exercise BCP), so %SAT+%UNSAT may be less than 100.

The speedup over software was approximated by using the

typical 5 million BCPs/second performance of Minisat [21],

a state-of-the-art SAT solver. Obviously this number varies

with different CPUs (we used an Intel Core i7 980, 3.33 GHz,

12 MB cache). Although more recent solvers have improved

SAT strategies, many like Glucose [22] are built on-top of

Minisat and thus share the same BCP implementation.

The only reason we are limited to small problem sizes is

because the NOC is currently under development. The design

of an effective NOC is orthogonal to and beyond the scope

of this paper. As detailed in section IV-C, our key insights

prove to be effective even without the NOC, as our limited

implementation still outperforms software BCP.

VIII. CONCLUSION

We have proposed a new FPGA-based accelerator for BCP.

We presented several key insights which lead to our very

compact representation of SAT in hardware. Our memory

layout does not sacrifice any ability to process data extremely

quickly. Our system is poised to further accelerate BCP with

the future integration of a NOC and a multithreaded software

SAT solver host.
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