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Abstract

The following study shows a direct comparison ofmem-
ory write policies in Shared Memory Multicore Systems. Al-
though there are much work and many studies about this
issue, our work takes into account the difficulties related
to on chip communication using network-like interconnects.
Our study is based on Cycle Approximate Bit Accurate sim-
ulations (CABA) of platforms with up to 64 processors,
modelling accurately all the aspects of multi-threaded pro-
gram execution and memory accesses. Our main results
show that write-through caches perform well compared to
write-back ones, with a slightly simpler implementation and
comparable traffic.

1. Introduction

In the past few years, the search for processors with
higher-frequencies and evermore complex pipelines seems
to have stopped. Instead, as integration capabilities still in-
crease according to Moore's law, architects are putting to-
gether more and more processors, memories and devices on
a single die. Such chips with dozen of processors achieve
high computational throughput by exploiting parallelism at
task level in applications. Since buses do not scale well
with more than few processors - say ten - Network on Chip
(NoC) interconnect [6] seems to be one of the best solutions
for the next decades. In NoCs, the available bandwidth is
not limited by the number of nodes because each one comes
with its own set of wires. Moreover, all communications are
on chip, hence NoC's achieve higher throughput bandwidth
and much lower latency than off-chip large-scale Symmet-
ric MultiProcessors (SMP).
A high number of programmable components signifi-

cantly increases software design and implementation com-
plexity. Having a hardware that provides a simple program-
ming model will be a major architectural argument in the
future. Some architectures do not include any more caches
since they are targeting low-power devices with streaming

application models. But as shown in [10] hardware coherent
caches offer similar performances in streaming applications
and better overall performances when they do not perform
write-allocate protocols. Hence, caches with hardware co-
herency are a good choice to provide a simple programming
model and reduce accesses latencies in a large scale NoC.

For the sake of simplicity, we will use sequential consis-
tency in our platform simulation. Nevertheless our compar-
ison remains valid with a weaker model as the one used in
commercial designs.

Cache Area is an important trade off, since in actual
high-end processors it represents 50% of the area, and it
will still increase in future implementations. Nevertheless,
integrating several processors in the same die implies less
area allowed to caches and memories. Consequently, the
cache implementation should be as simple as possible with
uniform access and in-order request issues.

Due to the presence of a NoC, we use a directory-based
coherency scheme inspired from one proposed by Censier
and Feautrier [5]. Its area overhead does not scale well with
a high number of processors. Our work can be adapted to
more efficient solutions as one reviewed in [16, 2].

Therefore, our work focuses on on-chip shared memory
multicore systems with NoC and caches. The memory hier-
archy implements sequential consistency and hardware co-
herence with a directory scheme.

Hardware protocols can be divided into two categories to
maintain coherency, write-update and write-invalidate [15].
We implement the later solution since it is the most com-
monly used and surely the best one in our context. As a
result, we focus our study on memory write policies. In ac-
tual designs, the write-back is the most widely used policy.
In contrast, write-through memory updates are well known
in the literature to give poor performances and are almost
unused in actual designs.

The high bandwidth available in NoC architectures, and
the high latencies to access foreign on chip nodes, makes it
necessary to re-evaluate the write-through memory update
policy which is currently considered inefficient.

The main contribution of our work is a head to head com-
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parison between directory-based generic write-back MESI
like and write-through invalidate protocols implemented on
top of a NoC. The comparison is done simulating at CABA
level a full application software with an OS. Therefore, all
the instructions and memory accesses are fully modelled.

To give a self contained study, we present hereafter the
necessary background definitions. Secondly, we show the
related work on the subject, followed in the third section
by a description of the compared protocols and their im-
plementations. In the fourth section we describe the exper-
iments, and finally we present our results and concluding
comments.

2. Background and Definitions

Our study focuses on directory-based solutions and
write-invalidate protocols. A memory location may have
several readers but only one writer. Hence, when a proces-
sor executes a store instruction, all the copies of the tar-
geted block must be invalidated before the new value is
written. This ensure the coherency and sequential consis-
tency of the memory. Two memory update policies named
write-through and write-back are available with the write-
invalidate protocol.

Write-through policy: A write request is sent to the main
memory for each store issued by a processor. Thus, main
memory is always up-to-date but severe contention may ap-
pear on a bus based architecture.

Write-back policy: This is the most widely used policy.
When a processor executes a store instruction, it modifies
the local copy but no request is sent to the main memory.
The modified block is said to be "dirty", it will be written-
back when it is evicted. This policy is commonly imple-
mented as write-allocates: on a write miss the block is re-
trieved from memory and modified locally. The main ad-
vantage of this solution is that only the necessary memory
accesses are done (on a block basis however).

3. Related works

Cache coherency has been a problem for architects
from the earlier shared memory multiprocessors systems.
The first proposed solutions to maintain coherency are the
Write-once, Illinois and Berkeley protocols, followed few
years later by the Dragon and Firefly protocols. A review of
these protocols was done by Archibal and Baer[4]. Other
well-known reviews and studies about existing protocols
[16, 2, 18] show that write-through invalidate is the less ef-
ficient protocol in a bus-like interconnect.

Although previous cited work may seem a bit old, there
is an up-to-date work comparing existing snooping proto-
cols with cycle accurate simulations [11]. This work shows

that Write-through Invalidate protocol is less efficient than
write-back MESI. As we have stated before, write-back im-
plementations take advantage of bus snooping facilities and
leverage the bus locally updating a block and writing back
on eviction.

With the use of non-bus interconnects, like crossbars or
later NoC's solutions, directories schemes have been (and
still are) a good solution. Different solutions are reviewed
in [16, 2].

With the growing number of caches and components in
the same chips, interconnect latencies to access directory
and foreign data is a major problem. There are several so-
lutions like [12, 7] relying on specific network communica-
tion and coherency message schemes, but both of them still
implement MESI like protocols. Protocol optimizations like
[8, 9], try to hide or reduce access latencies to foreign dirty
blocks. Nevertheless, all proposed solutions (to our knowl-
edge) allow a block to be dirty in a cache and thus falls in
the write-back category.

4. Coherency protocols and implementation

4.1 Compared protocols:

Write-through Invalidate (WTI): This protocol is the
simplest to implement as attested by its finite state machine
diagram on figure 1. A write-through policy is combined
with a write-invalidate protocol. When a write request is
issued, the main memory, through its directory, will invali-
date all the cached copies to ensure the coherency. Traffic
overhead is the major drawback of this protocol. The main
advantage is that the main memory always contains clean
copies.

Write-back MESI (WB-MESI): For comparison pur-
poses we implemented a generic MESI like protocol (Illi-
nois [13]). When a processor executes a store instruction,
the cache must get the exclusivity of the targeted block.
This request will invalidate all other copies, retrieve dirty
blocks from foreign caches and allocate the clean block if
needed. These actions can take a long time on a high la-
tency NoC, and this is the major drawback of this protocol.
Its finite state transition diagram can be seen in figure 1.

4.2 Protocols implementation

Implementing a WTI or WB-MESI protocol (at CABA
or RTL level) can lead to completely different solutions.
Hereafter we present the main distinctive behaviours of both
protocols. We call a hop the delay needed to cross the NoC
from one node to another, and use this unit to characterize
the protocols actions. In our context a node is either a cache,
its associated processor and its controller or the main mem-
ory, its controller and its directory. Transferring messages
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be granted and all copies will be invalidated. This action is
blocking for the data cache and the processor and costs 2 or
4 hops. In the second case, the block is allocated and can
lead to an up to 6 hops action as shown in figure 2, which is
blocking (stalls the processor) until step 4.

Main memory * request to write-allocate a block

@1 = l0dill 8 request to retrieve a clean copy
Q3 response with a clean copy of the block

@11 dO 0 response with clean copy to processor 0

Figure 1. Finite State Diagram of the WTI and
WB-MESI protocols

from node to node contributes for almost all the data laten-
cies. Hence, counting hops is a good comparison basis for
the protocol's implementation efficiency.

Read requests: In both implementations, a read miss
leads to at least a two hops request (read a clean copy from
the memory). Nevertheless, in WB-MESI the block may be
in Modified state in a foreign cache. In our implementa-
tion, the corresponding action is decomposed as follows: 1.
a read request is sent by the cache to the main memory node.
2. the main memory node sends a request to the owner of
the clean copy. 3. The foreign cache response contains a

clean copy and puts his in Shared state. 4. The main mem-
ory node responds to the requesting cache with a clean copy
of the block.

Write requests: In WTI, misses and hits are handled
identically. A write command containing the modified word
is sent to the main memory through its write buffer. The
main memory node can respond immediately if there is no
shared copies (2 hops action), or send invalidate commands
to all the caches which contains a copy and waits for the ac-

knowledgements before sending a response to the request-
ing node (4 hops). These actions are non-blocking for the
cache controller until the buffer is full.

In WB-MESI, a write misses when the block is either in
Shared or Invalid state. In the first case, an exclusivity will

[ processor action 11 WTI ] WB-MESI
read hit 0 0
read miss 2 b. hops 2 or 4 hops b., (+2 n.b.)
write miss 2,4 hops n.b. 2, 4 blocking, (+2 n.b.)
write hit S 2,4 hops n.b. 2, 4 hops blocking
write hitE - | °0
write hitM _ _ |0

Table 1. Cost in hops of each request in both
protocols, b. and n.b. stands for blocking
and non-blocking requests for the processor.

In the table 1, we summarize the cost of each action
for both protocols. Our implementations can be optimized
by allowing cache to cache transfers or any other archi-
tectural enhancement. For example, invalidation acknowl-
edges can be sent directly to the requesting node (cache)
leveraging the memory node and saving one hop transfer.
Nevertheless, our implementations were done with identical
behaviours in actions steps, leading to a as fair as possible
comparison. Moreover, typical protocol optimizations can
often be applied on both protocols.

5. Experiments

5.1 Simulation environment and Hardware archi-
tecture

The simulation environment: Our simulation platforms
are built using the Cycle Approximate, Bit Accurate com-
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ponents of the SoCLib [1] library which uses the VCI [3]
protocol to communicate. This library allows to design and
simulate in an easy way platforms with dozen of processors
running cross-compiled software.

Although most components (processors, caches, mem-

ories and many devices) are simulated with cycle-accurate
precision, some are instead cycle-approximate. The main
cycle-approximate component is the Generic Micro Net-
work (GMN). This component does not truly represent a

set of routers, but a configurable crossbar like interconnect
with internal delay fifos. Nevertheless, setting the minimum
transfer delay and fifo's depth allows us to model a NoC
with 2D mesh latencies and contention characteristics. This
cycle-approximate component has no major impact in our

results since it is used for all the configurations and gives us

fair comparisons between the different studied protocols.

Modeled architecture description: In figure 3 we

present our modelled architectures. The Sparc processors

are connected to an instruction and data cache. The data
cache and the memory implement one of the protocols
(WTI, WB-MESI). The instruction and data cache use the
same interconnect port in order to minimize the NoC area.

As a result, high data workload can interfere with instruc-
tion misses requests, increasing the average instruction ac-

cess latency. We implemented two architectures to evaluate
the impact of the contention at memory banks in the pro-

tocols. As we can see, one has few memory banks which
will receive requests from up to 64 processors. The other
one spreads the memory accesses among several memory

banks (one per processor and three shared one). The table 2
summarizes the main hardware characteristics.

Table 2. Simulated platforms characteristics

5.2 Software architecture

Application: On top of the CABA simulation platform,
we executed the Ocean and Water SPLASH-2 benchmark
tests. In [17] can be found a detailed description of each

RAM o RAM I

shared maximum contention|
-, + | 1 on memory bank I

U| ~~Generic Micro Network

ISPARC V8| |SPARC V8| ISPARC V8|
SEMRAM

Processor O Processor 31 Processo n-l

IIziz

RAM 0 RAM 1 RAM 2 RAM 3 RAM 4 RAM n+2

~~~tackstackstc

accesses sprayed over

~~~~~~mmemory banks

Figure 3. Modeled architectures to compare

coherency protocols with different levels of
memory contention

test bench with their main characteristics. This test bench
suite was designed to evaluate Shared Memory Multipro-
cessors architectures. It is widely used and accepted by the
research community. In our simulations, we execute a com-

parable workload per processor in each platform configura-
tion (4, 16, 32 and 64 processors). That way, the number of
load/store instructions executed by each processor will not
decrease while increasing the processors number. The con-

figuration characteristics are presented briefly in figure 4.
These test benches need some services, typically granted by
a POSIX operating system. Hereafter we shortly describe
the used one and its possible configurations.

Operating System configurations: We used a lightweight
operating system [14], which implements POSIX pthreads
allowing to execute parallel tasks on multicore systems. It
can be configured in two ways:

1. Symmetric Scheduling (SMP). In this configuration
the OS distributes the workload on the available pro-

cessors on a first come, first served basis. Hence, a

task can migrate from processor to processor in an un-

predictable way. This configuration is not suitable for
large scale platforms since the centralized scheduler
access becomes a bottle-neck.

2. Decentralized Scheduling (DS). This configuration
greatly limits contention as each processor has its own
scheduler. Tasks can be pin pointed on a desired pro-
cessor in order to avoid migration.

number of processors n {4, 16, 32, 64}
number of memory banks m {2, n + 3}
processor model SPARC-V8 with FPU
data cache size 4Kb
instruction cache size 4Kb
data/instruction block size 32 bytes
cache associativity Direct-mapped
write-buffer size 8 words (32 bytes)
NoC topology Mesh
NoC Latency 3. 2 V/n +Tm+m 3



Memory layout: On the architecture 1, we use the SMP
kernel. All the shared and local data and thread stacks are
in the same memory bank. This configuration leads to a
maximum memory workload and contention increasing ac-
cesses latencies.

On the architecture 2, we use the DS version. Each
thread is pin pointed to a dedicated processor. Its stack and
local data are stored in a dedicated memory bank. Shared
dynamic and static data are contained in different memory
banks. The purpose of this layout is to spread as fairly as
possible the accesses to all memory banks. Consequently
there are only few contention points and coherency proto-
col workload is slightly lower than in architecture 1.

6. Results and comments

We present hereafter the obtained results on two
SPLASH-2 benchmarks: execution time, NoC traffic and
data latencies.

protocol. This behavior was expected due to the central-
ized memory. In fact, sever contention appears on a specific
memory bank as one that can be shown on a bus like inter-
connect with too many processors.
DS: The executions took slightly less time. This is due to
less contention on scheduler structures by the processors,
and to a better repartition of the communication workload
since accesses are sprayed among all the memory banks.
Moreover, pinpointing tasks on processors avoids migration
overhead.

Consequently, the Ocean execution is up to 30% faster
and the difference is increasing with the number of proces-
sors. In Water execution, both protocols give the same per-
formances without a clear advantage for one of them.

These results show that, in our context, WTI protocols
performs well compared to WB-MESI ones. Moreover, fu-
ture MPSoCs will embed many memory banks distributed
across the die. As a result, WTI protocols are a viable solu-
tion in terms of performances.

6.2 Traffic load over the NoC
6.1 Execution time

We run the applications until completion and report the
execution time for both architectures on figure 4:

As we can see in figure 5, the traffic is of the same mag-
nitude order in both protocols. Differences in kernels, appli-
cations and architectures gives different behaviors. There-
fore, there is not a clear advantage for none of the studied
protocols.
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SMP: We see that WTI and WB-MESI have almost the
same execution times. Nevertheless, increasing the pro-
cessors number above 32 gives an advantage to WB-MESI
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6.3 Data cache stall cycles

Instead of comparing directly data latencies, we com-
pared the average stall time due to data cache accesses. The
reason is that data latencies rely on loads instructions only.
Therefore, it does not show stall cycles due to full write
buffers and write-allocate actions. In the figure 6 we see
that both protocols have almost identical results on both ar-
chitectures. As expected, on architecture 1 there is more
contention than on architecture 2. With more than 32 pro-
cessors, the time being stalled by the data caches reaches
almost 70% of the execution time.

data cache stall cycles
100% ------------ WB-MESI architecture 1

-------- WTI architecture 1

8- WB-MESI architecture 2
80%

ViWTI architecture 2

60% * ,''.K<

OCEAN _O C40%

40%

0 10 20 30 40 50 60 70
processors number

Figure 6. Percentage of data cache stall cy-
cles

7. Conclusion

In this paper we compared the memory update policies in
NoC based shared memory multicore systems implement-
ing hardware coherence. Although there has been many
works and studies around cache coherency, none of them (to
our knowledge) has shown the usability of the very simple
write-through-invalidate protocol. Moreover, all the new
proposed protocols and optimizations make use of write-
back policies. The obtained results have shown that in our
context write-through-invalidate protocols are a possible
and simple solution to maintain coherency. This protocol
performs very well compared to a classic write-back-MESI
protocol in both execution time and generated traffic. The
main limitation of this work is the lack of best-case / worst-
case results wich will be done in future work.
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