
Synchronization for Hybrid MPSoC Full-System Simulation

Luis Gabriel Murillo, Juan Eusse, Jovana Jovic,
Sergey Yakoushkin, Rainer Leupers and Gerd Ascheid
Institute for Communication Technologies and Embedded Systems

RWTH Aachen University, Germany
{murillo,eusse,jovic,yakoushkin,leupers,ascheid}@ice.rwth-aachen.de

ABSTRACT

Full-system simulators are essential to enable early software
development and increase the MPSoC programming produc-
tivity, however, their speed is limited by the speed of pro-
cessor models. Although hybrid processor simulators pro-
vide native execution speed and target architecture visibil-
ity, their use for modern multi-core OSs and parallel software
is restricted due to dynamic temporal and state decoupling
side effects. This work analyzes the decoupling effects caused
by hybridization and presents a novel synchronization tech-
nique which enables full-system hybrid simulation for mod-
ern MPSoC software. Experimental results show speed-ups
from 2x to 45x over instruction-accurate simulation while
still attaining functional correctness.

Categories and Subject Descriptors

I.6.7 [Simulation and Modeling]: Simulation Support
Systems—Environments

General Terms

Design

Keywords

MPSoC, Virtual Platforms, Hybrid Simulation, HySim, Syn-
chronization, Temporal Decoupling

1. INTRODUCTION
The increasing complexity of modern electronic systems

and the spread of multi-processor systems-on-chip (MPSoCs)
have demanded a drastic design paradigm shift. Platform
architectures and software are designed, developed and eval-
uated from a system perspective, focusing on components
interaction, synchronization and communication. This sys-
tem perspective is of utmost importance to achieve not only
better performance-power ratio, but also to support cutting-
edge features required by new products.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2012, June 3-7, 2012, San Francisco, California, USA.
Copyright 2012 ACM ACM 978-1-4503-1199-1/12/06 ...$10.00.

System simulation plays an important role to support elec-
tronic design, as it provides the means to estimate perfor-
mance, test functionality and guide the development pro-
cess. Naturally, the complexity of modern systems is re-
flected in the complexity of their simulators. Current MP-
SoC simulators comprise several models of different pro-
cessing elements (PEs), hardware peripherals, accelerators,
and communication infrastructures. Specialized simula-
tion frameworks, such as SystemC-TLM2 [4], OVPSim [1],
QEMU [2], Synopsys Virtualizer [3] and Simics [6], are
widely used to create models at different levels of abstraction
and assemble virtual systems. These full software models of
hardware systems, also known as Virtual Platforms (VPs),
have gained tremendous popularity among designers because
of their early availability.

Accuracy and simulation speed can be traded-off in or-
der to create VPs for different use scenarios (e.g. architec-
tural design, software verification). This is typically done
by choosing an appropriate level of abstraction when mod-
eling devices and the communication among them. Models
of PEs can be found in the form of Instruction Set Simu-
lators (ISSs), either cycle-accurate (ISS-CA) or instruction-

accurate (ISS-IA), and as host-compiled simulators. How-
ever, VPs are often many orders of magnitude slower than
the real systems they represent and further increasing their
speed is a difficult challenge.

Although VPs are composed of several models, PEs re-
main as a major simulator bottleneck due to their com-
plexity. Several techniques, such as dynamic binary trans-
lation [17] and just-in-time compiled simulation [13], have
been used to increase ISS speed. However, ISSs remain slow
if compared to more abstract processor models. Conversely,
host-compiled or native simulators [9, 14, 15, 16], corre-
sponding to one level of abstraction above ISS-IA, provide
faster simulation at the cost of accuracy and a limited view
of the underlying hardware. The latter limits the applica-
bility of host-compiled simulators for software development,
validation and debugging in a practical context.

1.1 Hybrid Full-System Simulation
Hybrid simulation approaches try to bridge the gap be-

tween two different abstraction levels and have been used
before with different objectives [11, 12]. HySim [10] is a hy-
brid processor simulator that allows bidirectional dynamic
switching between a target ISS-IA and a host-compiled simu-
lator, while keeping the processor-centric state synchronized
between both simulation modes. The target ISS executes
processor specific functions, whereas the host-compiled sim-
ulator executes target-independent parts of the application.

121



The host-compiled part of a hybrid ISS runs outside the
context of the simulation kernel, hence leading the PE into
a future state with regard to the rest of the system. This
decoupling, namely hybridization-introduced decoupling, is
highly dynamic and might decouple PEs long enough to
disturb behavior of systems with interrupt-driven function-
ality, multi-threading, multi-core synchronization, preemp-
tive scheduling, dynamic task migration and other common
features of modern OSs and concurrent run-time environ-
ments. In consequence, the use of HySim and other hybrid
ISS frameworks is limited to MPSoCs where reactive be-
havior and inter-processor activity do not define the system
correctness and usability.

This paper introduces and describes the aforementioned
concept of hybridization-introduced decoupling, and pro-
poses a new synchronization mechanism to attain system
coherency when using hybrid ISSs, thus allowing proper in-
teraction among PEs and preserving the functional correct-
ness of the system. The mechanism was used to define an
improved hybrid processor simulation architecture and ex-
tend the HySim framework in order to enable hybridiza-
tion, software-centric synchronization, traditional temporal
decoupling and reactive behavior to coexist in the simulator.

Paper Outline. The remainder of this paper is organized
as follows. In Section 2, the necessary background to bet-
ter understand the concepts herewith discussed is presented.
Section 3 introduces the concept of hybridization-introduced
decoupling, and proposes a technique to temporally synchro-
nize hybrid ISSs with the simulation kernel and the rest
of the system. This is complemented in Section 4 with an
approach to keep a behaviorally correct system-wide state
in hybrid systems which run parallel applications and uti-
lize software synchronization functions. Section 5 presents
results of our synchronization techniques for hybrid ISSs
when applied to MPSoC VPs created in two major commer-
cial frameworks, namely Synopsys Virtualizer and Simics.
Results cover complex cases of parallel applications with
distributed scheduling mechanisms and complete software
stacks. Finally, Section 6 presents conclusions of this work.

2. BACKGROUND

2.1 ISS vs. Host-compiled
ISS and host-compiled simulators cover different use cases

of VPs. An ISS emulates execution of a cross-compiled bi-
nary, including a one-to-one match of instruction sets and
dynamic effects at the instruction level. ISSs of VLIWs,
DSPs and ASIPs model also non traditional resources com-
mon to these devices, such as irregular register architectures
or extended memory interfaces.

On the other hand, host-compiled approaches model com-
putation at the source code level and execute it directly on
the host machine. To take into account dynamic effects,
parts of the hardware-specific software layers (e.g. HAL,
context switching) are usually abstracted away thus losing
the visibility of the target architecture, such as in [14, 15].

In a practical context, modifications for host-compiled
simulation (e.g. intrusive instrumentation of software
and/or simulation models [9]) might be prohibited due to
the presence of third-party IPs, legacy code, or even limita-
tions to alter previously verified systems. For this reason,
software development often falls back to slow, traditional ISS
simulation. Another reason is the necessity to port or de-

Application

Target Tool-Chain HySim Framework

Target Compiler

Target Binary Native Binary

TS Memory

(Shared)
AS Memory

(Local)

Closed Source

Libraries

& Assembly

TS AS

Control

(a) Workflow

TS AS

Control Layer

Synchronization Layer

Interface

Rest of the 

Simulated System

System Components

Quantum Keepers

Simulation Kernel

Hybrid Processor Model

(b) New core structure

Figure 1: The HySim Framework.

velop OSs, evaluate target-optimized software and run low-
level code and middleware. These are critical tasks in almost
all signal processing and multi-media software used to power
today’s telecommunication and consumer electronic devices.

2.2 HySim - A Hybrid Simulation Frame-
work

HySim combines the advantages of a fast native simulator
and a target-specific ISS. It was designed mainly to sup-
port embedded software development and debugging. The
key idea behind it is partitioned execution at function level,
which allows bidirectional run-time switching between a tar-
get ISS (TS) and a host-compiled abstract simulator (AS).

The major components of the HySim workflow, shown
in Figure 1a, are a compiler-like function virtualizer and
a control module which switches simulation modes. Func-
tion virtualization analyzes application C source code and
selects functions with only target-independent features (i.e.
virtualizable), which can be executed in AS. The selected
functions are extended and instrumented using special syn-
chronization APIs which guarantee processor-centric consis-
tency (i.e. registers and memory view) between TS and AS
modes [8, 10]. The remaining functions in an application
(i.e. non-virtualizable) are executed in TS. This set com-
prises functions with inline (or written in) assembly, state-

altering functions (e.g. fopen), functions with direct stack
manipulation (e.g. setjmp and longjmp), function point-
ers, and functions without definition (e.g. closed source li-
braries). The user, using partitioning algorithms for ultra-
fast forward breakpoints or manually mapping functions to
AS, has the final choice on how to run the simulation. The
AS mode relies on dynamic software performance estima-
tion solutions to give a notion of simulated time, which were
also introduced in [7]. Although HySim requires the appli-
cation sources as input, it can be successfully applied to a
wide range of practical scenarios because it does not modify
the target binary and allows closed source libraries, target-
dependent code, and drivers in the application.

2.3 Temporally Decoupled Simulation
Based on the observation that components in a system do

not interact with the surrounding environment frequently,
some parts might be allowed to run ahead of the rest of
the system without consequences. This concept, known
as temporal decoupling, has been used in simulation to
avoid unnecessary kernel synchronization points and context
switches, which cause a significant overhead.

122



In practice, every PE is assigned a quantum, either stati-
cally or dynamically, that defines how many simulation steps
(i.e. instructions or cycles) it can advance without synchro-
nizing. A small quantum allows to handle external events
more accurately but at slow simulation speed, while a big
quantum achieves fast speed at the cost of corrupting the
timing behavior of the system.

3. HYBRIDIZATION-INTRODUCED

DECOUPLING
This section analyzes the decoupling effects in hybrid

simulators by (i) introducing the concept of hybridization-
introduced decoupling and (ii) proposing a mechanism to
ensure proper time-driven behavior in MPSoC system sim-
ulators.

In HySim, every function mapped to AS is executed in
synchronous mode with the simulated application. Host-
compiled execution is incapable of affecting directly the sim-
ulated time, neither globally nor locally. Thus, the execution
of a virtualized function is performed in zero time from the
simulator’s perspective. Software performance estimation
techniques help to obtain timing values for the functions ex-
ecuted natively, which are annotated to the cycle counters of
the PEs. However, this causes a hybrid ISS to be temporally
decoupled from the rest of the system.

Since switching from TS to AS is performed upon the ex-
ecution of a function in the application, the introduced tem-
poral decoupling could at best be synchronized at function
borders. This is a consequence of having a highly abstracted
model for PEs which represents functions as instructions
from the ISS perspective. Therefore, interrupts, software-
centric synchronization and other events will be delayed to
interact with the system state left by the AS execution.
Moreover, the loss of accuracy during native mode might
disturb timing and change the behavior of OS schedulers.
Without any further action, a hybrid ISS might lead to a
system crash (e.g. due to unhandled interrupts) or to non-
deterministic simulator behavior, thus restricting its use for
software development and debugging. This effect, what we
call hybridization-introduced decoupling, has some similari-
ties to traditional temporal decoupling scenarios, but poses
new constraints that must be handled differently.

3.1 Modified Hybrid Processor Structure
HySim’s original hybrid processor model did not con-

sider the necessity to define a synchronization interface for
hybridization-introduced decoupling. Therefore, it was nec-
essary to replace HySim’s core architecture with a new struc-
ture which links the hybrid PE to the simulator kernel’s
time, as shown by Figure 1b. Our structure features a Syn-
chronization Layer, on top of HySim’s Control Layer, that
analyzes simulation mode switches and events sent by other
system devices. In this way, it is possible to tell the kernel
when the hybrid PE should be scheduled again and what
simulation mode to be used. Depending on the simulation
technology, the link between kernel and PE can be created
either directly or through dedicated time manipulation inter-
faces, like SystemC-TLM2 Quantum Keepers. When used
with extensible, API rich simulation frameworks, such as
Simics or Synopsys Virtualizer, it is possible to set up the
Synchronization Layer in a transparent way and no changes
are required in the kernel or other system components.

PE 3
Decoupled 

Time  0  50us  150us  200us  250us  300us  100us  

PE 2 
Hybrid 

  

PE 1 
Synchronous

   

α

β

λ

st

t
PE 4

Decoupled 

Hybrid

Current System

Time

PE Time

Figure 2: Temporally decoupled simulation.

3.2 Suspension Quantum
The estimated time for a given virtualized function rep-

resents at run-time the amount of time a hybrid PE will be
ahead of the system. In a PE running synchronously with
the system (e.g. triggered by the simulator kernel on every
new instruction), a new instruction cannot be executed right
after executing a virtualized function without synchronizing
with the system. This is because other PEs will stay in the
“past”with regard to the PE state that was modified during
the virtualized function.

To allow other PEs and system components to reach the
new temporal state, it is necessary to introduce a mech-
anism to suspend a PE for a given amount of time. We
define a suspension quantum (denoted τ ) to be the time a
PE will be suspended as system time advances. The suspen-
sion quantum is created dynamically upon the execution of
a virtualized function, and its length is equal to the esti-
mated time associated to the function. In Figure 2, PE1

runs always in synchronous mode, whereas PE2 is synchro-
nized only until it starts executing a virtualized function.
This creates a decoupling time equal to τ . To avoid unnec-
essary kernel synchronizations, a new synchronization point
for the suspended PE is set after τ .

In HySim, the larger the code parts executed in native
mode, the faster the simulation runs. Functions mapped to
AS mode are usually application hotspots that take signif-
icant execution time. Therefore, the suspension quantum
could possibly take a very large value, causing the PE to
lose responsiveness to external events. To avoid this, the
suspension quantum must (i) be visible outside the context
of a suspended PE and (ii) be breakable by system events.

3.3 Breaking the Suspension Quantum
In an MPSoC, any system component might trigger exter-

nal events that need interaction with the suspended PE. This
is the case for interrupts produced by peripherals, such as
timers, accelerators and multi-core mailbox-based commu-
nication modules. Losing these interrupts causes systems
to change their timing behavior and, in some cases, they
even behave incorrectly (e.g. an OS that waits for a timer
interrupt to boot). As this situation also happens with dy-
namic quanta in normal temporal decoupling, some special-
ized mechanisms allow to break a decoupling quantum and
recompute new synchronization intervals. Similarly, the sus-
pension quantum is broken when a PE receives an interrupt
or a hardware signal that must be handled “in time”.

But, in contrast to normal quanta, the mechanism to
break τ needs to take a PE out of its suspension state while

123



SchedulerTask1 ISR1 Task2 ISR2

1

6

2

3

4
5

ISS exec.

1

2

Figure 3: Breaking the suspension quantum.

guaranteeing that the processor jumps into special handling
functions (i.e. interrupt service routines (ISR)). The remain-
ing suspension quantum needs to be stored to be consumed
later. If the suspension quantum is just canceled and the
time is not consumed at all, it will lead to serious inaccu-
racy errors in the simulation. Moreover, if the remaining
suspension quantum is not consumed in the original func-
tion execution context, the timing behavior of the applica-
tion might change considerably.

We introduced a mechanism to ensure that the rest of
the suspension quantum is consumed in its proper context,
performing the following steps: (i) The hybrid ISS detects an
incoming interrupt. (ii) The processor is waken up and the
value of the program counter (PC) is taken in the instruction
which is aborted by the core interrupt handling mechanisms.
(iii) The PC value is associated to a remaining suspension

quantum. (iv) A breakpoint-like mechanism is activated on
the saved PC in order to restore the suspension the next
time the processor executes the aborted instruction.

The previous mechanism is specially important in systems
with OS and preemptive context switching. Figure 3 shows
how a suspension quantum should be broken in an interrupt-
triggered scheduling mechanism. In the figure, a task (Task
1) executes one of its functions in native mode (À) and in-
troduces a suspension quantum denoted by τ1. After some
time of suspension, an interrupt (Á) arrives, breaking the
suspension quantum and triggering the OS scheduler. The
scheduler preempts Task 1 and triggers Task 2 (Â). The re-
maining part of τ1 is only consumed after the context of
Task 1 is restored by the scheduler (Å), because it is tied to
the address of the instruction that was interrupted by the in-
coming signal. In the same way, other nested interrupts that
break the quantum in a different context can be supported
(as with τ2 in Ã and Ä). This approach is limited to applica-
tions that do not share functions in their concurrent tasks.
However, it can be easily extended by adding OS awareness
and detecting a context switch. To avoid errors caused by
handling interrupts in a PE with a “future” state (i.e. virtu-
alized function was already executed in zero time and cannot
be reverted), this mechanism relies on modifications to the
virtualization chain, as discussed later in Section 4.

3.4 Suspension Quantum and Traditional
Temporal Decoupling

To achieve maximum simulation speed, it is possible
to mix hybridization-introduced decoupling and traditional
temporal decoupling, in the same PE. To do so, suspension
quanta are used to recompute traditional quanta, and define
new synchronization points. Figure 2 shows a processing el-
ement (PE3 ) which uses traditional temporal decoupling to

run ahead of other system components. In a given point,
the PE is assigned a quantum that defines the amount it
is allowed to run decoupled. In the meantime, the global
system time remains unchanged, and will be modified only
after the next synchronization point (i.e. when the quantum
is over). In this situation we use the following definitions:

• PE Global Quantum (βi). Time unit on which PEi

synchronizes.

• Current System Time (st). Time elapsed uniformly
in all components.

• Local Time (ti). Time elapsed in PEi. Can be
greater than st.

• Local Quantum (αi). Time remaining from ti to the
end of the next βi.

• Local Time Offset (λi). Time PEi is ahead of the
system. Difference between ti and st.

When a hybrid ISS is present, the decoupling parameters
need to be dynamically modified depending on the suspen-
sion quantum. Therefore, after the execution of a virtu-
alized function the value of ti is updated, the processor is
suspended, and a new βi is recomputed, according to the
following conditions:

1. If the updated local time exceeds the end of the next
βi (i.e. τ > α − λ), synchronization is done imme-
diately. The quantum has been overshot, thus a new
value for βi is defined to be used the next time the PE
is scheduled. The following operations are performed
on the PE timing values:

β
′

i = βi − (τ − (α − λ)) t
′

i = ti + τ

2. If the updated local time does not exceed the end of
the current βi (i.e. τ ≤ α − λ), synchronization is
performed normally at the next quantum end. In this
case, the only operation performed is:

t
′

i = ti + τ

These operations need to be performed only when virtual-
ized functions are executed in a given quantum. Otherwise,
temporal decoupling is used normally.

4. SYSTEM STATE SYNCHRONIZATION
Allowing PEs to run ahead of others creates momentary

inconsistencies in the system. Besides, in shared-memory
architectures, the “future” state left by a HySim processor
might be wrongly propagated to other processing elements,
thus causing a concurrency bug (e.g. atomicity violation,
deadlock). This situation is very likely to happen if soft-
ware synchronization functions (e.g. locks, semaphores, mu-
texes) or functions unrestrictedly accessing shared memory
are virtualized and executed in native mode. Additionally,
a memory access in AS mode is not able to trigger behav-
ior in the adjacent peripherals. This is due to the fact that
memory accesses do not use the traditional ports or sockets
in ISSs, in order to achieve maximum speed. Instead, mem-
ory is read by using debug APIs or direct memory interfaces
(DMI), thus failing to trigger behavior in other components.
Functions that rely on global or static variables which are
modified during ISRs cannot be virtualized either.

Because of this, restrictions need to be added to the
HySim virtualization chain. In a full system simulation, vir-
tualizable functions are not allowed to:

124



Libraries

&

Assembly

TS

non

virtua-

lizable

Drivers

& Sync.

APIs

virtua-

lizable

Function

VirtualizationApplica-

tion

AS

C Code

Mem. Map

&

Devices

Access to Peripherals

Undefined Functions

State-altering Functions

Direct Stack Manipulation

Function Pointers

Multi-core APIs

Figure 4: Virtualization chain for state synchronization.

• Perform software synchronization or unrestrictedly ac-
cess shared memory.

• Interact with peripherals and accelerators.

• Depend on global states modified by ISRs or exception
handlers.

All these functions are explicitly excluded from the set
of virtualizable functions. Functions without definition
are treated in the same way as closed libraries, and are
marked as non-virtualizable. In well-formed applications,
drivers and the communication and synchronization APIs
are clearly separated, and sources can be excluded easily. If
the separation is unclear, then the programmer still has the
choice to map any virtualizable function to AS or not. De-
tection of unsafe mappings is done dynamically by address
monitoring inside the AS, which uses a memory map de-
scription with the location of shared memories and memory-
mapped peripherals. Figure 4 shows the modified virtual-
ization flow. Under these constraints, a system with HySim
will behave like a temporally decoupled simulator, yet with
higher speed and application-defined synchronization.

5. TEST CASES AND RESULTS
To test our synchronization mechanism, we used the

HySim framework to simulate different scenarios which are
prone to behave wrongly in the presence of decoupling. Plat-
forms for multi-media and signal processing were modeled
in Simics and Synopsys Virtualizer, whereas Tensilica[5] Di-
amond and Xtensa ISSs, wrapped with our hybrid archi-
tecture, were selected as PEs. The synchronization layer
was implemented using extensibility APIs provided by both
simulation frameworks (e.g. Haps, execution, cycle and step
interfaces in Simics; instrumentation points, quantum ob-
servers and simulation context handlers in Synopsys).

For the synchronization, function execution times were
estimated by sampling the execution of virtualized functions
in the ISS, using the statistical sampling theory from [18].
Although software performance estimation is not the focus
of this paper, it is worth to note that it introduces certain
error in the number of simulated cycles with and without
HySim, which will be presented in the results.

All experiments were executed on a host with a 64-bit
AMD Phenom Quad-Core Processor running at 2.4GHz,
8GB of memory and Fedora Core 5.

Scenario 1: 3DES on Single-core System. A Simics
platform with one Diamond DC B 570T core was used to
execute a simple 3DES encryption/decryption application.
Since it does not depend on reactive behavior, the traditional
HySim can be used normally. Thus, this scenario allows to
obtain the overhead caused by the new hybrid architecture.

Program

Mem

Data

Mem

H
W

 

A
c
c
e
le

ra
to

rs

C
o
lo

r 
L
C
D

C
o
n
tr

o
ll
e
r

Keyboard 

Controller

I/O Expander

PE1
(Master

XRC-D2MR)

PE
(DC-B-

570T)

(a) Single-core platform

PE1
(Master

XRC-D2MR)

R
F

F
ro
n
te
n
d

TxRx Program

Mem

Data

Mem

IP
C
M
 

P
e
ri
p
h
e
ra
l

H
W
 

A
c
c
e
le
ra
to
rs

PE2
(Slave

XRC-D2MR)

PE3
(Slave

XRC-D2MR)

(b) Multi-core platform

Figure 5: Test systems.

Table 1 compares the elapsed wall-clock time, the amount
of ISS executed cycles, and the speed-up values using the
normal ISS, HySim and the synchronization-capable HySim
(HySim-Sync). Comparing HySim and HySim-Sync, the re-
sults show an overhead, traduced to 5x less speed-up, due to
the synchronization layer. The speed-up with HySim-Sync
is still a significant ∼27.2x with respect to the normal ISS.

Scenario 2: MJPEG on Single-core System. An en-
hanced version of the platform from Scenario 1, shown in
Figure 5a, was used to execute a Motion-JPEG (MJPEG)
player. This platform includes a set of hardware blocks for
multi-media acceleration, a detailed model of a color LCD
controller and a peripheral for user interaction. In this sys-
tem, external interrupts are necessary to enable proper be-
havior of the device drivers. If the drivers lose interrupts,
the system could crash with an unhandled interrupt excep-
tion. This is the case when simulating it with a big quantum
for traditional temporal decoupling or when using HySim
without synchronizations. The last situation is particularly
difficult to handle since the hybridization-introduced decou-
pling might induce a crash only when some specific func-
tions are mapped to HySim’s AS mode. Comparative results
when running the system are illustrated in Table 1. When
HySim-Sync is used, all critical functions are marked as non-
virtualizable by the framework and the suspension quantum
mechanism enables handling the interrupts as expected by
the drivers. If compared to the normal HySim, HySim-Sync
guarantees the correct operation at the cost of less speed-up
(76.9x vs. 45.2x), however, it ensures the usability of the
simulator at a considerable high speed.

Scenario 3: Circular-FFT on Multi-core System. A
Synopsys platform consisting of three Xtensa XRC D2MR
cores and an AMBA AXI bus was used to execute a Circular-
FFT. This application is a token-passing system in which a
core owning the token has to perform an FFT over some data
and then pass the token to the next core. The tokens are
passed using a simple communication protocol over shared
memory upon the reception of a timer interrupt. Cores not
holding the token wait while polling the shared memory.
This system features a special time-triggered, software-based
synchronization and its behavior with HySim depends on the
FFT processing time and the timer period:

• If the FFT time is much greater than the timer and the
polling (i.e. huge input data set), then HySim yields
enormous speed-ups. The results table shows a value
of 313x when the FFT size is 1024.

• If the FFT time is less than the timer and the polling,
then the time saved by native execution is offset by the
ISS execution speed during the polling loops. Thus,
HySim might achieve marginal or no speed-up.

• If both times are similar, then the system loses deter-
minism and might lock due to unhandled interrupts.

125



Normal HySim HySim-Sync

Application
Simulated

ISS
Cycles(M)

Wall-
clock
Time(s)

Simulated
ISS

Cycles(M)

Wall-
clock
Time(s)

App.
in
AS(%)

Speedup
(times)

Simulated
ISS

Cycles(M)

Wall-
clock
Time(s)

App.
in
AS(%)

Synchro-
nizations

Speedup
(times)

Estima-
tion

Error(%)

3DES 2214.3 1625 26.5 50 98.8 32.5 26.5 59.7 98.8 600000 27.2 -6.3
MJPEG 1705.4 1231 8.8 16 99.4 76.9 10.5 27.2 99.3 7444 45.2 -7.4

Circular-FFT 2360 17238 0.75 55 99.9 313.4 642.6 7494 72.8 200 2.3 -33.3
OFDM-Trans 797.6 5816 71.7 574 91.1 10.1 162.3 3061 79.66 1000 1.9 -12.4

Table 1: HySim speed-up in VPs with and without synchronization.

Radio

Tx-Rx

 

Task

Launcher

Data

De-

interleaver

FFT1

FFT2

FFT3

FFT4

De-

mapper

De-

interleaver
Viterbi

decoder

Coder Interleaver Mapper

iFFT1

iFFT2

iFFT3

iFFT4

Data

Interleaver

Master Slave

 

Out

In-house OS + XMP libraries
Xtensa 

XTOS

Xtensa 

XTHAL
Xtensa XTHAL + Platform HAL

Figure 6: OFDM transceiver application.

HySim-Sync’s suspension quantum and interrupt support
are necessary to avoid the last situation, however, at the
cost of a significant speed-up reduction of 2 orders of mag-
nitude, as shown by the table (313x vs. 2.3x). In this case,
the user has to decide whether such trade-off is acceptable
based on his knowledge of the application.

Scenario 4: OFDM Transceiver System. The base
platform from Scenario 3 was used to set up a full digi-
tal wireless transceiver (OFDM-Trans). The hardware was
extended with a mailbox-based Interprocessor Communica-
tion Peripheral (IPCM) for multi-core support and periph-
erals to handle input and output data flows, as shown in
Figure 5b. The program features a complete software stack
consisting of HAL, a priority-based preemption mechanism,
a distributed scheduler, and a task management system. On
top, the user application implements an OFDM transceiver
algorithm which is divided into sub-tasks corresponding to
algorithmic kernels, as illustrated in Figure 6. All sub-tasks
are mapped to two cores that act as“Slaves”, whereas the job
management, launching and scheduling are done in the re-
maining core (“Master”). The Master launches dynamically
a reception or transmission job every time a new packet is re-
ported by the radio frontend. Scheduling a sub-task is done
by sending a message through the IPCM which interrupts
the destination core. The destination core’s scheduler re-
ceives the order and manages it locally according to task pri-
orities. Since this application performs priority scheduling
and preemption based on incoming interrupts, it is manda-
tory to synchronize frequently the hybrid ISSs and the sys-
tem. With the normal HySim, the simulation might still be
functionally correct if the application code itself is written to
be perfectly synchronized. If not, deadlocks and data races
will arise in the system due to unsupported interrupt rate
in the drivers or due to the randomization of task interleav-
ings in the scheduler. For this system, HySim-Sync achieves
1.9x speed-up and guarantees correct operation and repro-
ducibility. The level of details of other models (e.g. the bus)
prevent to obtain more speed-up.

It is worth to mention that speed-up and execution times
are not comparable between different simulation tools be-
cause the systems contain models at different levels of ab-
straction (e.g. systems in Synopsys have a detailed AXI bus
model, while Simics uses a point-to-point bus).

6. CONCLUSIONS
Hybrid processor simulators are essential to provide both

high speed and target-specific functionality. This paper pre-
sented an approach to synchronize hybrid processor simu-
lators within full-system simulators in order to attain cor-
rectness. The temporal and the state decoupling problems
were addressed by (i) defining a specialized temporal decou-
pling mechanism and (ii) identifying functions that must be
avoided in native execution in order to ensure correctness of
parallel applications. The proposed mechanisms were used
to refine the internal architecture of a representative hybrid
simulator (HySim) and analyze it in four application scenar-
ios. Future work should address the application of hybridiza-
tion to many-core systems as well as its combination with
other advanced simulation techniques (e.g. parallelization).

Acknowledgment

This work has been supported by the FP7 Euretile project,
the UMIC Research Center and Huawei Technologies. The
authors would like to thank Yao Zhiliang and Guo Can from
Huawei for their valuable contributions.

7. REFERENCES
[1] Open Virtual Platforms. http://www.ovpworld.org.
[2] Qemu. http://www.qemu.org.
[3] Synopsys Virtualizer. http://www.synopsys.com.
[4] SystemC. http://www.systemc.org.
[5] Tensilica processors. http://www.tensilica.com.
[6] Windriver Simics. http://www.windriver.com.
[7] L. Gao, K. Karuri, S. Kraemer, R. Leupers, G. Ascheid, and

H. Meyr. Multiprocessor performance estimation using hybrid
simulation. In Design Automation Conference (DAC), 2008.

[8] L. Gao, S. Kraemer, R. Leupers, G. Ascheid, and H. Meyr. A
fast and generic hybrid simulation approach using C virtual
machine. In CASES, 2007.

[9] P. Gerin, M. M. Hamayun, and F. Pétrot. Native MPSoC
co-simulation environment for software performance estimation.
In CODES+ISSS, 2009.

[10] S. Kraemer, L. Gao, J. Weinstock, R. Leupers, G. Ascheid, and
H. Meyr. HySim: a fast simulation framework for embedded
software development. In CODES+ISSS, 2007.

[11] W. Lee, K. Patel, and M. Pedram. B2sim: a fast
micro-architecture simulator based on basic block
characterization. In CODES+ISSS, 2006.

[12] A. Muttreja, A. Raghunathan, S. Ravi, and N. Jha. Hybrid
simulation for energy estimation of embedded software. IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 26, 2007.

[13] A. Nohl, G. Braun, O. Schliebusch, R. Leupers, H. Meyr, and
A. Hoffmann. A universal technique for fast and flexible
instruction-set architecture simulation. In DAC, 2002.

[14] P. Razaghi and A. Gerstlauer. Host-compiled multicore RTOS
simulator for embedded real-time software development. In
Design, Automation and Test in Europe Conference (DATE),
2011.

[15] G. Schirner, A. Gerstlauer, and R. Dömer. Fast and accurate
processor models for efficient MPSoC design. ACM Trans. on
Design Automation of Electronics Systems, 15, 2010.

[16] J. Schnerr, O. Bringmann, A. Viehl, and W. Rosenstiel.
High-performance timing simulation of embedded software. In
Design Automation Conference (DAC), 2008.

[17] N. Topham, B. Franke, D. Jones, and D. Powell. Adaptive
high-speed processor simulation. In Processor and
System-on-Chip Simulation. Springer-Verlag, 2010.

[18] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe.
Statistical sampling of microarchitecture simulation. ACM
Trans. Model. Comput. Simul., 2006.

126




