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Abstract 
This paper introduces new capability on System on a Chip 
(SoC) ATE, called "Functional Test Abstraction (FTA)", 
which allows us to execute an automatically generated 
system level functional test program from the system level 
design verification environment. The device under 
verification and device under test can be a complex SoC 
which has multiple logic time domains and multiple 
interfaces of the same or different types.  

 

 

1. Introduction 
In recent years the number of time domains in LSI chips 
has increased rapidly and a variety of new interfaces have 
been introduced.  In the design verification environment, 
system level verification is used to verify an entire system 
using a highly abstracted verification language. 

We have developed a new logic test capability for SoC test 

systems, which can execute a system level functional test 
that is equivalent to system level verification. The 
capability shown in Figure 1, includes Packet Sequencers 
[1], which can execute a highly abstracted functional test 
program, a synchronization system to control the 
synchronization between the different time domains of the 
Packet Sequencers, and a software environment that uses a 
programming language such as Verilog and does not 
modify the original verification program. 

In addition to that, we have implemented a tester model in 
the design verification environment, which can be used as 
a transactor for interfaces. It allows us to evaluate the 
device under verification (DUV) using tester specifications 
and limitations without additional tester specific 
development in the tester environment. Figure 2 shows 
that environment. The tester model is called FTA-TBLib. 

We have named the entire capability Functional Test 
Abstraction (FTA).[2]-[4] It is based on the idea of 
Protocol Aware testing [5]-[9], which was introduced by 
Broadcom. The basic idea of Protocol Aware testing is that 

FTA-TBLib

Test bench

Design Verification Environment

DUT Model

Fig. 2 Test Bench with FTA-TBLib 
Fig. 1 FTA (Functional Test Abstraction) 

on ATE 

TesterSoC Tester

Packet
Sequencer

DUT



 

Paper 18.1                                   INTERNATIONAL TEST CONFERENCE                                      2                            
                                                    

the ATE knows the protocol of  the interfaces and the  
ATE customer can program using abstracted transaction 
level program interfaces instead of the “1’s and “0’s” of 
logical test vectors. I would like to say that FTA is an 
implementation of Protocol Aware testing capabilities. 

At the end of the paper we tell how we have demonstrated 
these capabilities using an actual test device of our own 
design as the DUV and device under test (DUT).  

 

 

2. Problems in legacy logic test capability in 
SoC ATE 

In recent years, multiple time domain capability for ATE 
digital test has become popular. However automatic test 
program generation from electronic design automation 
(EDA) using multiple time domain capability has a 
number of issues to be solved. For that reason, complex 
functional test, in many cases, is not executed on ATE.  

System level test, using a mother board, which has the 
peripheral devices of the final application, is executed for 
production test as the alternative solution. However, this 
solution makes it difficult to implement a flexible failure 
analysis capability when defects occur, so it takes a very 
long time to discover the cause of a defect.  

The issues of using legacy ATE cycle based logic vector 
generators are discussed in the sub-sections below. 

 

2.1 Differences in abstraction level 
In the high level verification language, the test scenario 
calls a transactor function, which is the verification model 
of the interface, with a transaction value as an argument, 
such as an address and/or data. The transactor converts the 
transaction value to a physical bit stream. On the other 
hand, the legacy logic vector generator on ATE can only 
handle a low level “1s” and “0s” logical signal. Software 
conversion is necessary to generate an ATE program from 
EDA. The problem is that sometimes the bit stream is not 
deterministic even if the transaction value is deterministic, 
because sometimes a random function is used or the order 
of the packets is not deterministic due to the condition of 
the DUT. In that case deterministic software translation is 
not applicable. 

 

2.2 Correlation from EDA to ATE 
There are fewer limitations in the design verification 
environment compared with ATE. ATE has limitations 
such as hardware latency, maximum data rate, timing edge 
placement, number of edges per cycle, timing accuracy 
and so on. The value change dump (VCD) and cyclization 
method is usually used to convert test vectors for legacy 

ATE. Some existing logic test ATE systems have an 
event-based architecture [10], which can eliminate the 
cyclization process required by cycle based legacy ATE, 
and the limitations due to cycle based timing inflexibility 
can be relaxed. Of course, with both of these ATE 
architectures, design verification must be done on the 
condition that output vectors can be deterministic. The 
information in the generated vectors does not contain ATE 
limitations. Usually after the vectors are generated, 
violations due to ATE limitation must be checked using 
tools such as a virtual tester. This causes a turnaround time 
issue when translating from EDA to ATE. 

 

2.3 Hand-shaking between other time-
domains 

In system level design verification with multiple interfaces 
on the DUV, each test scenario for a particular time 
domain is individually written. To complete the entire 
verification sequence, one interface may require 
notification from another interface to decide when to go on 
to the next step. Legacy ATE has mechanisms to 
synchronize between time domains, but, in general, 
automatic test program generation with this type of 
synchronization for system level verification has not been 
realized. 

 

2.4 Branch Syntax conversions 
In the system level design environment, branching syntax 
can be written to control the test flow or to determine the 
next data input to a DUV based on a previous test result or 
a condition of the DUV. To do the equivalent branching 
on legacy ATE, the test control CPU must be used. In 
many cases the branching cannot be executed within the 
required test sequence latency. 

 

2.5 Independent input / output timing 
For many packet based interfaces, the  input and output are 
independent. Even if the data rate is exactly same, the 
communication timing is asynchronous. The stimulus 
pattern and expected pattern of legacy ATE vector 
sequencers are stored at the same vector memory address. 
This means that input and output signal timing must 
always be synchronous. On the other hand, the design 
verification environment does not have such a restriction. 
When we convert from EDA to ATE, the simulation 
scenario must be limited to be synchronous between 
output and input.  This is not realistic for system level 
functional test. 
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2.6 Real-Time hand-shaking between ATE 
and DUT 

An interface which has a complicated protocol and a state 
machine requires real time handshaking, such as 
acknowledgement/negative-acknowledgement 
(ACK/NACK), to transfer knowledge of the interface state 
across the interface, or to initialize the interface while 
controlling and monitoring the condition of the state 
machine. The VCD timing chart which is translated from 
EDA is just one example of this. In the real world, 
multiple kinds of bit streams are generated by the DUT. 
Legacy vector sequencers have match loop capability to 
handle hand shaking with the DUT. It is possible to wait 
for a phase-locked-loop (PLL) to lock, for example. 
However, it is not enough to only support an ACK/NACK 
level of handshaking complexity. It is necessary to have 
“if then else” branching capabilities as well. 

 

 

3. Implementation of FTA 
The hardware and software components developed for 
FTA are described in this section.  

 

3.1 Packet Sequencer 
Figure 3 shows the block diagram of the Packet Sequencer. 
This is distinct from a legacy vector sequencer. The Packet 
Sequencer has two independent sequencers, one for the 
driver and one for the comparator, which are controlled by 

the common sequencer. The two independent sequencers 
can operate synchronously or asynchronously. The Packet 
Sequencer has a micro program control architecture that is 
similar to a general purpose digital signal processor (DSP). 
The sequencer has a 32bit internal bus and can handle 1 to 
32bit parallel data. The base operation frequency is 
250MHz. When performing 32bit parallel operations, the 
sequencer can handle an 8Gbps data stream, since 
0.25Gbps x 32=8Gbps. There are also hardware 
components for real time operation that are controlled by 
the sequencers. These can realize packet signal generation 
and detection for interface standards such as PCI Express. 

  We have implemented the Packet Sequencer hardware 
components described below. 

1. Linear feedback shift register (LFSR) (cyclic 
redundancy check (CRC) generator/detector, scrambler, 
de-scrambler, random data generator/detector) 

2. Arithmetic logic unit (ALU) 

3. 8b10b encoder/decoder 

4. Bit stuffing encoder/decoder 

5. Serializer / deserializer 

6. Dual port dcratch pad memory 

7. Header detector 

8. Non return to zero, inverted (NRZI) encoder / decoder 

These components are designed to be as programmable as 
possible to support custom or special protocols. 

 

3.2 Synchronization hardware 
We have developed a low latency synchronization system 
to work synchronously or asynchronously between 
different time domains. Both transmit and receive signals 
are connected in a star structure to minimize latency and 
increase stability. In this concept, multiple time domains 
can work in parallel with low latency and superior stability. 
Also a local processor is implemented to execute 
branching syntax, such as “while” or “if”, without 
interaction with the tester controller CPU. This is 
implemented above each Packet Sequencer. Each local 
processor can access registers from the different time-
domains to avoid the (otherwise) necessity of inter 
communication between local processors. This allows us 
to execute branching syntax with low latency and good 
stability. 

 

3.3 Test Program Language 
We have developed an FTA procedural programming meta 
language to realize a highly abstracted system level 
functional test program. The FTA meta language must 
have the same capabilities as high level design verification 

Fig. 3 Block Diagram of Packet 
Sequencer 
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languages. This allows us to support different kinds of 
verification languages using a line-by-line conversion tool. 
Some basic concepts of the FTA meta language are listed 
below. 

1. Separate the test scenario, pay load data, and protocol 
definition.  

2. Enable a coder / decoder description to support many 
protocols with minor adjustments. 

3. In the test scenario, enable the genceration of stimulus 
and response data using a procedural programing 
method. 

 

3.4 Debug tools 
We have created graphical user interface (GUI) tools to 
enable debugging at different abstraction levels. Debug 
tools for three levels of abstraction are described below. 

1. Figure 4 shows a source code trace of a highly 
abstracted test scenario language at the test scenario 
level  

2. Figure 5 shows the order of packet generation and 
received packets at the packet level. 

3. Figure 6 shows the timing chart at the bit stream level 

 

3.5 FTA verification library 
We have created an FTA model library which is called 
FTA-TBLib. FTA-TBLib contains information about the 
hardware limitation of FTA on our ATE, such as hardware 

latency, timing restrictions, and so on. When design 
verification is done using FTA-TBLib for the verification 
library, the result can include the ATE hardware 
restrictions. This means the verification result is the same 
as virtual test. We expect that the time from design to 
production can be dramatically improved. 

 

3.6 Conversion tool 
We have developed a conversion tool to convert from a 
test scenario on the test bench to the FTA meta language. 
The abstraction level of both languages is similar and 
almost line-by-line conversion is possible, making it easy 
for the customer to understand the meta language. We 
have developed a conversion tool from Verilog to FTA as 
our first step.  

 

4 Experimental Result 
 

4.1 DUV/DUT Design 
We have developed a DUT, shown in Figure 7, to assess 
the FTA capabilities. The DUT has a joint test action 
group (JTAG) port, a parallel port, and a universal serial 
bus (USB) port as external interfaces. A microprocessor 
and common memory are inside the field programmable 
gate array (FPGA). It is possible to access the internal 
common memory through each interface asynchronously. 
The DUV/DUT is designed using an FPGA and a USB 

Fig. 6 Wave Tool 
Bit Stream Level 

Fig. 5 Pattern Cycle Viewer 
Packet Level 

Fig. 4 Procedure Editor 
Test Scenario Level 
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micro controller for demonstrating the FTA capability.  
The FPGA code is written in Verilog language. A 
commercial USB verification IP model from an EDA 
vendor is used as the USB micro controller design model, 
since the USB micro controller is outside of the FPGA and 
it is a commercial device. The entire DUV/DUT 
simulation model is realized by using these two models.  

Figure 8 shows the ATE Packet Sequencer to DUT 
connections for our test. 

 

 
4.2 Design Verification and Test scenario 
Figure 9 shows the test scenario for our examination. The 
test scenario is written in the Test Bench as shown below. 

1. Reset DUT through JTAG port 

2. Initialize USB port 

3. Write data to common memory through USB port 

4. Read-modify-write common memory, access through 
JTAG port 

5. Read data from common memory through parallel port 

6. Read data through USB port 

Design verification executed the scenario above on the test 
bench. The DUV model and the transactor are connected 
using FTA-TBLib. We successfully got a pass result on 
the test bench.  
 

 4.3 Program generation 
The test program was automatically generated from the 
test scenario using our conversion tool. Also, a loadable 
object program was generated by the FTA meta language 
compiler. 

 

4.4 Program execution on ATE 
This scenario has three different time domains which 
operate asynchronously. The three Packet Sequencers also 
operate individually. The sequencers send notification 
signals to other sequencers or wait for and receive 

Fig. 9 Test Scenario 
Functional test with three time domains 
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notification signals from another sequencer through the 
synchronization system. Thus, message based sequencing 
control between time domains is accomplished. The 
common memory bus inside of the DUT is assigned to a 
particular interface port during access. At that time other 
interface ports must wait until the access is completed. 

For the read-modify-write, read data from the common 
memory is modified using an arithmetic or logical 
calculation. To do that on legacy hardware, the read data 
must be transferred to the tester controller and the 
modified data must be written to vector memory, and then 
the memory data in the DUT must be updated.  When the 
Packet Sequencer is used, data from the DUT is stored in 
dual port scratch pad memory, the modification operation 
is executed using the ALU, and then the modified data is 
stored in the DUT. This is very fast and easy to convert 
from the design verification scenario. 

During data communication using USB, a hand shaking 
communication protocol is required. When the ATE is the 
host device, the transaction below is necessary to read data 
from the DUT. 

a. Data transfer request from ATE to DUT 

b. Data transfer from DUT to ATE 

c. Acknowledge notification from ATE to DUT 

After the ATE sends the transfer request to the DUT, the 
ATE waits for the data transfer from the DUT. The data 
transfer timing from the DUT is non-deterministic because 
it depends on the status of the DUT. To correctly receive 
the data, the Packet Sequencer starts to capture the data 
after waiting for the packet header code using the header 
detector. After the data is correctly received, the ATE 
sends an acknowledge packet. The transferring side waits 
until the data receive is complete. 

Using this example, we demonstrated that asynchronous 
and non-deterministic timing operations between transmit 
and receive on the Packet Sequencer were working 
correctly. 

4.5 Executed result 
Figure 10 shows a comparison between the design 
verification result and on-line execution on the ATE using 
FTA. There is complete correspondence between the test 
bench and the ATE. Figure 11 shows that the test sequence 
is correctly controlled by the ATE. The time stamp and 
procedure name of each executed procedure in the test 
scenario are displayed in the Procedure Editor tool. Part of 
the test scenario of Figure 9 is displayed, starting from 
within the JTAG read-modify-write, then the Parallel I/O 
memory read test, and then the USB memory read write 
test. These results demonstrate the concurrence of the 
design verification result and the ATE on-line test result, 
running with an automatically generated program using 
our own designed test device. 

 

 

5. Limitations and Next Step 
The capabilities on this paper have been implemented on 
our commercial ATE, and we are gathering feedback from 
customers. The FTA capability on our platform does have 
some limitations, such as a particular handshaking latency. 
When necessary, we are asking our customers to 
implement longer latency handshaking capabilities as DFT. 
In parallel, we are planning to improve the FTA capability 
itself, according to the customer feedback. 

 

6. Conclusions 
The goal of FTA is completely automatic program 
generation for system level functional test under multiple 
time domains. We have demonstrated the entire flow from 
design to test using our own devices. We will engage with 
our customers and improve this capability as our next step.  

Fig. 11 Monitor of test sequence on ATE 
(FTA) 
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Fig. 10 Timing chart comparison 
between EDA and FTA on ATE 
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