
Paper 18.1 INTERNATIONAL TEST CONFERENCE 1
978-1-4673-1595-1/12/$31.00 ©2012 IEEE

Automated System Level Functional Test Program Generation on ATE from EDA

using Functional Test Abstraction

Motoo Ueda, Shinichi Ishikawa, Masaru Goishi, Satoru Kitagawa, Hiroshi Araki, Shuichi Inage

ADVANTEST Corporation
336-1, Ohwa, Meiwa-machi, Ora-gun, Gunma 370-0718 Japan

motoo.ueda@jp.advantest.com

Abstract
This paper introduces new capability on System on a Chip
(SoC) ATE, called "Functional Test Abstraction (FTA)",
which allows us to execute an automatically generated
system level functional test program from the system level
design verification environment. The device under
verification and device under test can be a complex SoC
which has multiple logic time domains and multiple
interfaces of the same or different types.

1. Introduction
In recent years the number of time domains in LSI chips
has increased rapidly and a variety of new interfaces have
been introduced. In the design verification environment,
system level verification is used to verify an entire system
using a highly abstracted verification language.

We have developed a new logic test capability for SoC test

systems, which can execute a system level functional test
that is equivalent to system level verification. The
capability shown in Figure 1, includes Packet Sequencers
[1], which can execute a highly abstracted functional test
program, a synchronization system to control the
synchronization between the different time domains of the
Packet Sequencers, and a software environment that uses a
programming language such as Verilog and does not
modify the original verification program.

In addition to that, we have implemented a tester model in
the design verification environment, which can be used as
a transactor for interfaces. It allows us to evaluate the
device under verification (DUV) using tester specifications
and limitations without additional tester specific
development in the tester environment. Figure 2 shows
that environment. The tester model is called FTA-TBLib.

We have named the entire capability Functional Test
Abstraction (FTA).[2]-[4] It is based on the idea of
Protocol Aware testing [5]-[9], which was introduced by
Broadcom. The basic idea of Protocol Aware testing is that

FTA-TBLib

Test bench

Design Verification Environment

DUT Model

Fig. 2 Test Bench with FTA-TBLib
Fig. 1 FTA (Functional Test Abstraction)

on ATE

TesterSoC Tester

Packet
Sequencer

DUT

Paper 18.1 INTERNATIONAL TEST CONFERENCE 2

the ATE knows the protocol of the interfaces and the
ATE customer can program using abstracted transaction
level program interfaces instead of the “1’s and “0’s” of
logical test vectors. I would like to say that FTA is an
implementation of Protocol Aware testing capabilities.

At the end of the paper we tell how we have demonstrated
these capabilities using an actual test device of our own
design as the DUV and device under test (DUT).

2. Problems in legacy logic test capability in
SoC ATE

In recent years, multiple time domain capability for ATE
digital test has become popular. However automatic test
program generation from electronic design automation
(EDA) using multiple time domain capability has a
number of issues to be solved. For that reason, complex
functional test, in many cases, is not executed on ATE.

System level test, using a mother board, which has the
peripheral devices of the final application, is executed for
production test as the alternative solution. However, this
solution makes it difficult to implement a flexible failure
analysis capability when defects occur, so it takes a very
long time to discover the cause of a defect.

The issues of using legacy ATE cycle based logic vector
generators are discussed in the sub-sections below.

2.1 Differences in abstraction level
In the high level verification language, the test scenario
calls a transactor function, which is the verification model
of the interface, with a transaction value as an argument,
such as an address and/or data. The transactor converts the
transaction value to a physical bit stream. On the other
hand, the legacy logic vector generator on ATE can only
handle a low level “1s” and “0s” logical signal. Software
conversion is necessary to generate an ATE program from
EDA. The problem is that sometimes the bit stream is not
deterministic even if the transaction value is deterministic,
because sometimes a random function is used or the order
of the packets is not deterministic due to the condition of
the DUT. In that case deterministic software translation is
not applicable.

2.2 Correlation from EDA to ATE
There are fewer limitations in the design verification
environment compared with ATE. ATE has limitations
such as hardware latency, maximum data rate, timing edge
placement, number of edges per cycle, timing accuracy
and so on. The value change dump (VCD) and cyclization
method is usually used to convert test vectors for legacy

ATE. Some existing logic test ATE systems have an
event-based architecture [10], which can eliminate the
cyclization process required by cycle based legacy ATE,
and the limitations due to cycle based timing inflexibility
can be relaxed. Of course, with both of these ATE
architectures, design verification must be done on the
condition that output vectors can be deterministic. The
information in the generated vectors does not contain ATE
limitations. Usually after the vectors are generated,
violations due to ATE limitation must be checked using
tools such as a virtual tester. This causes a turnaround time
issue when translating from EDA to ATE.

2.3 Hand-shaking between other time-
domains

In system level design verification with multiple interfaces
on the DUV, each test scenario for a particular time
domain is individually written. To complete the entire
verification sequence, one interface may require
notification from another interface to decide when to go on
to the next step. Legacy ATE has mechanisms to
synchronize between time domains, but, in general,
automatic test program generation with this type of
synchronization for system level verification has not been
realized.

2.4 Branch Syntax conversions
In the system level design environment, branching syntax
can be written to control the test flow or to determine the
next data input to a DUV based on a previous test result or
a condition of the DUV. To do the equivalent branching
on legacy ATE, the test control CPU must be used. In
many cases the branching cannot be executed within the
required test sequence latency.

2.5 Independent input / output timing
For many packet based interfaces, the input and output are
independent. Even if the data rate is exactly same, the
communication timing is asynchronous. The stimulus
pattern and expected pattern of legacy ATE vector
sequencers are stored at the same vector memory address.
This means that input and output signal timing must
always be synchronous. On the other hand, the design
verification environment does not have such a restriction.
When we convert from EDA to ATE, the simulation
scenario must be limited to be synchronous between
output and input. This is not realistic for system level
functional test.

Paper 18.1 INTERNATIONAL TEST CONFERENCE 3

2.6 Real-Time hand-shaking between ATE
and DUT

An interface which has a complicated protocol and a state
machine requires real time handshaking, such as
acknowledgement/negative-acknowledgement
(ACK/NACK), to transfer knowledge of the interface state
across the interface, or to initialize the interface while
controlling and monitoring the condition of the state
machine. The VCD timing chart which is translated from
EDA is just one example of this. In the real world,
multiple kinds of bit streams are generated by the DUT.
Legacy vector sequencers have match loop capability to
handle hand shaking with the DUT. It is possible to wait
for a phase-locked-loop (PLL) to lock, for example.
However, it is not enough to only support an ACK/NACK
level of handshaking complexity. It is necessary to have
“if then else” branching capabilities as well.

3. Implementation of FTA
The hardware and software components developed for
FTA are described in this section.

3.1 Packet Sequencer
Figure 3 shows the block diagram of the Packet Sequencer.
This is distinct from a legacy vector sequencer. The Packet
Sequencer has two independent sequencers, one for the
driver and one for the comparator, which are controlled by

the common sequencer. The two independent sequencers
can operate synchronously or asynchronously. The Packet
Sequencer has a micro program control architecture that is
similar to a general purpose digital signal processor (DSP).
The sequencer has a 32bit internal bus and can handle 1 to
32bit parallel data. The base operation frequency is
250MHz. When performing 32bit parallel operations, the
sequencer can handle an 8Gbps data stream, since
0.25Gbps x 32=8Gbps. There are also hardware
components for real time operation that are controlled by
the sequencers. These can realize packet signal generation
and detection for interface standards such as PCI Express.

 We have implemented the Packet Sequencer hardware
components described below.

1. Linear feedback shift register (LFSR) (cyclic
redundancy check (CRC) generator/detector, scrambler,
de-scrambler, random data generator/detector)

2. Arithmetic logic unit (ALU)

3. 8b10b encoder/decoder

4. Bit stuffing encoder/decoder

5. Serializer / deserializer

6. Dual port dcratch pad memory

7. Header detector

8. Non return to zero, inverted (NRZI) encoder / decoder

These components are designed to be as programmable as
possible to support custom or special protocols.

3.2 Synchronization hardware
We have developed a low latency synchronization system
to work synchronously or asynchronously between
different time domains. Both transmit and receive signals
are connected in a star structure to minimize latency and
increase stability. In this concept, multiple time domains
can work in parallel with low latency and superior stability.
Also a local processor is implemented to execute
branching syntax, such as “while” or “if”, without
interaction with the tester controller CPU. This is
implemented above each Packet Sequencer. Each local
processor can access registers from the different time-
domains to avoid the (otherwise) necessity of inter
communication between local processors. This allows us
to execute branching syntax with low latency and good
stability.

3.3 Test Program Language
We have developed an FTA procedural programming meta
language to realize a highly abstracted system level
functional test program. The FTA meta language must
have the same capabilities as high level design verification

Fig. 3 Block Diagram of Packet
Sequencer

Paper 18.1 INTERNATIONAL TEST CONFERENCE 4

languages. This allows us to support different kinds of
verification languages using a line-by-line conversion tool.
Some basic concepts of the FTA meta language are listed
below.

1. Separate the test scenario, pay load data, and protocol
definition.

2. Enable a coder / decoder description to support many
protocols with minor adjustments.

3. In the test scenario, enable the genceration of stimulus
and response data using a procedural programing
method.

3.4 Debug tools
We have created graphical user interface (GUI) tools to
enable debugging at different abstraction levels. Debug
tools for three levels of abstraction are described below.

1. Figure 4 shows a source code trace of a highly
abstracted test scenario language at the test scenario
level

2. Figure 5 shows the order of packet generation and
received packets at the packet level.

3. Figure 6 shows the timing chart at the bit stream level

3.5 FTA verification library
We have created an FTA model library which is called
FTA-TBLib. FTA-TBLib contains information about the
hardware limitation of FTA on our ATE, such as hardware

latency, timing restrictions, and so on. When design
verification is done using FTA-TBLib for the verification
library, the result can include the ATE hardware
restrictions. This means the verification result is the same
as virtual test. We expect that the time from design to
production can be dramatically improved.

3.6 Conversion tool
We have developed a conversion tool to convert from a
test scenario on the test bench to the FTA meta language.
The abstraction level of both languages is similar and
almost line-by-line conversion is possible, making it easy
for the customer to understand the meta language. We
have developed a conversion tool from Verilog to FTA as
our first step.

4 Experimental Result

4.1 DUV/DUT Design
We have developed a DUT, shown in Figure 7, to assess
the FTA capabilities. The DUT has a joint test action
group (JTAG) port, a parallel port, and a universal serial
bus (USB) port as external interfaces. A microprocessor
and common memory are inside the field programmable
gate array (FPGA). It is possible to access the internal
common memory through each interface asynchronously.
The DUV/DUT is designed using an FPGA and a USB

Fig. 6 Wave Tool
Bit Stream Level

Fig. 5 Pattern Cycle Viewer
Packet Level

Fig. 4 Procedure Editor
Test Scenario Level

Paper 18.1 INTERNATIONAL TEST CONFERENCE 5

micro controller for demonstrating the FTA capability.
The FPGA code is written in Verilog language. A
commercial USB verification IP model from an EDA
vendor is used as the USB micro controller design model,
since the USB micro controller is outside of the FPGA and
it is a commercial device. The entire DUV/DUT
simulation model is realized by using these two models.

Figure 8 shows the ATE Packet Sequencer to DUT
connections for our test.

4.2 Design Verification and Test scenario
Figure 9 shows the test scenario for our examination. The
test scenario is written in the Test Bench as shown below.

1. Reset DUT through JTAG port

2. Initialize USB port

3. Write data to common memory through USB port

4. Read-modify-write common memory, access through
JTAG port

5. Read data from common memory through parallel port

6. Read data through USB port

Design verification executed the scenario above on the test
bench. The DUV model and the transactor are connected
using FTA-TBLib. We successfully got a pass result on
the test bench.

 4.3 Program generation
The test program was automatically generated from the
test scenario using our conversion tool. Also, a loadable
object program was generated by the FTA meta language
compiler.

4.4 Program execution on ATE
This scenario has three different time domains which
operate asynchronously. The three Packet Sequencers also
operate individually. The sequencers send notification
signals to other sequencers or wait for and receive

Fig. 9 Test Scenario
Functional test with three time domains

Test Start
JTAG Parallel I/O

Clear Memory

Reset Device

Start Clock

Go Next

Reset Bus

USB

Memory Read Test

I/F Initialize

Wait ()

Notify ()

ReadModifyWrite

Register Check

Memory Write

Memory Read Test

Wait ()

Wait ()

Join () Join () Join ()

Notify ()

Notify ()

Notify ()

PLL Lock Polling

Test StartTest Start
JTAG Parallel I/O

Clear Memory

Reset Device

Start Clock

Go Next

Reset Bus

USB

Memory Read Test

I/F Initialize

Wait ()

Notify ()

ReadModifyWrite

Register Check

Memory Write

Memory Read Test

Wait ()

Wait ()

Join () Join () Join ()

Notify ()

Notify ()

Notify ()

PLL Lock Polling

FPGA
(JTAG / Parallel port)

USB2.0
Controller

Fig. 7 DUT

Fig. 8 Block diagram of DUT and ATE
connection

Common
Memory
and

Register

JTAGParallel
I/O

DUT

USB2.0

PLLCPU

Packet
Sequencer

Packet
Sequencer

Packet
Sequencer

Synchronization

ATE

Paper 18.1 INTERNATIONAL TEST CONFERENCE 6

notification signals from another sequencer through the
synchronization system. Thus, message based sequencing
control between time domains is accomplished. The
common memory bus inside of the DUT is assigned to a
particular interface port during access. At that time other
interface ports must wait until the access is completed.

For the read-modify-write, read data from the common
memory is modified using an arithmetic or logical
calculation. To do that on legacy hardware, the read data
must be transferred to the tester controller and the
modified data must be written to vector memory, and then
the memory data in the DUT must be updated. When the
Packet Sequencer is used, data from the DUT is stored in
dual port scratch pad memory, the modification operation
is executed using the ALU, and then the modified data is
stored in the DUT. This is very fast and easy to convert
from the design verification scenario.

During data communication using USB, a hand shaking
communication protocol is required. When the ATE is the
host device, the transaction below is necessary to read data
from the DUT.

a. Data transfer request from ATE to DUT

b. Data transfer from DUT to ATE

c. Acknowledge notification from ATE to DUT

After the ATE sends the transfer request to the DUT, the
ATE waits for the data transfer from the DUT. The data
transfer timing from the DUT is non-deterministic because
it depends on the status of the DUT. To correctly receive
the data, the Packet Sequencer starts to capture the data
after waiting for the packet header code using the header
detector. After the data is correctly received, the ATE
sends an acknowledge packet. The transferring side waits
until the data receive is complete.

Using this example, we demonstrated that asynchronous
and non-deterministic timing operations between transmit
and receive on the Packet Sequencer were working
correctly.

4.5 Executed result
Figure 10 shows a comparison between the design
verification result and on-line execution on the ATE using
FTA. There is complete correspondence between the test
bench and the ATE. Figure 11 shows that the test sequence
is correctly controlled by the ATE. The time stamp and
procedure name of each executed procedure in the test
scenario are displayed in the Procedure Editor tool. Part of
the test scenario of Figure 9 is displayed, starting from
within the JTAG read-modify-write, then the Parallel I/O
memory read test, and then the USB memory read write
test. These results demonstrate the concurrence of the
design verification result and the ATE on-line test result,
running with an automatically generated program using
our own designed test device.

5. Limitations and Next Step
The capabilities on this paper have been implemented on
our commercial ATE, and we are gathering feedback from
customers. The FTA capability on our platform does have
some limitations, such as a particular handshaking latency.
When necessary, we are asking our customers to
implement longer latency handshaking capabilities as DFT.
In parallel, we are planning to improve the FTA capability
itself, according to the customer feedback.

6. Conclusions
The goal of FTA is completely automatic program
generation for system level functional test under multiple
time domains. We have demonstrated the entire flow from
design to test using our own devices. We will engage with
our customers and improve this capability as our next step.

Fig. 11 Monitor of test sequence on ATE
(FTA)

JTAG Parallel USBTime
Stamp

Fig. 10 Timing chart comparison
between EDA and FTA on ATE

Test Bench

ATE

ATE

Test Bench

Paper 18.1 INTERNATIONAL TEST CONFERENCE 7

7. Acknowledgements
We would like to thank the huge number of R&D
members outside of the authors who were involved in FTA
development and the top management of ADVANTEST,
who provided the big investment.

8. References
[1] Masaru Goishi, Hiroyasu Nakayama, Masaru Tsuto,

“Test apparatus and test method”, US Patent 8059547
[2] A.T Sivaram, “Functional Test Abstraction”, ITC 2010

Poster 12
[3] Satoru Kitagawa, “SoC Test System Architecture

Corresponding to New Test Methodologies”, SEMI
Technology Symposium 2010

[4] Shinichi Ishikawa, “Test apparatus and test method”,
US Patent 8060333

[5] Andrew C. Evans, “The New ATE: Protocol Aware”,
ITC2007, paper 20.1

[6] Eric Larson, VLSI Test Symposium 2007, “Inovative
Practices”

[7] Eric Larson, “Protocol Aware ATE”, 2008 Beijing
Advanced Semiconductor Technology Symposium

[8] V. Aggarwal, “Protocol Aware ATE with FPGA-based
Hardware”, AUTOTESTCON, 2008 IEEE

[9] Richard Rovbbers, “Trends in Test part 5 – Protocol
Aware Test”, EMT Worldwide June 09, 2009

[10] Jerry Katz, Rochit Rajsuman, “A New Paradigm In
Test For The Next Millenium”, ITC2000, paper 18.1

