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Abstract - As memory technology scales, the demand for higher 
performance and reliable operation is increasing as well. For main 
memory, e.g., DRAM, a conventional single error correcting double 
error detecting (SEC-DED) code may not be sufficient. However, 
existing double error correcting (DEC) codes either have very high 
decoder latency or high data redundancy. For flash-based memories, 
e.g., NAND flash, using a highly complex decoding scheme with a 
large number of clock cycles for the whole procedure creates a 
performance bottleneck. In this paper, a layered DEC code is proposed 
with a simple decoding procedure. The codes are shown to strike a 
good balance between redundancy and decoder complexity. A general 
construction methodology is presented.  Two different decoding 
schemes can be implemented using the proposed methodology. One is 
a low latency decoding scheme that is useful for main memories which 
need high speed decoding for optimal performance.  This scheme is 
shown to achieve better redundancy compared to existing low-latency 
codes as well as faster decoder latency compared to existing low-
redundancy codes. The second decoding scheme is a low complexity 
decoding scheme which is useful for flash-based memories.  This 
scheme is shown to have considerably less area compared to existing 
schemes. Also, it is shown that the proposed serial low complexity 
decoding scheme can take significantly fewer cycles to complete the 
whole decoding procedure; thus, enabling better performance 
compared to existing serial decoding schemes.  

Keywords—double error correction, low latency, low complexity, 
memory 

1. INTRODUCTION 

Soft errors are a major reliability concern for high density 
memories. Soft errors can arise due to numerous mechanisms, 
e.g., particle strikes, marginal cells, etc. Error correcting codes 
(ECCs) can be used to tolerate such soft errors and overcome 
data corruption by adding parity or check bits to each word. 
These bits are then evaluated after the read process to detect 
and/or correct errors. 

DRAM scaling has been a challenge in recent years. The 
gap in performance between main memory and processors has 
triggered research into alternative forms of main memory, 
specifically emerging non-volatile main memories. Memories 
with better scalability and low power have been proposed, e.g., 
phase change memories [Raoux 08] and resistive RAMs 
[Kawahara 12]. But a true replacement for DRAM is yet to be 
seen. Meanwhile, industry has continued the scaling of DRAM 
to nanoscale technology nodes. Some of the current generation 
of DRAMs are being manufactured as a 10 nm class of 
memories. These pose new kinds of challenges for 
manufacturing due to the smaller technology node. For 

DRAMs, single error correcting double error detecting (SEC-
DED) codes have traditionally been sufficient to protect against 
soft errors. But field studies of more recent DRAM systems 
[Meza 15] have observed an increasing failure rate with 
increasing DRAM chip density which necessitates the use of 
stronger ECCs.  

In terms of flash memories, NAND flash has been very 
successful due to its scalability and low cost per bit. Research 
has led to the development and manufacturing of multilevel cell 
(MLC) NAND flash which stores multiple bits per cell [Lee 
11]. Soft errors in NAND flash memories are addressed using 
double error correcting (DEC) Bose-Chaudhuri-Hocquenghem 
(BCH) codes. These DEC BCH codes have complex decoding 
logic which takes a high number of clock cycles to decode 
[Chien 64]. It is possible to parallelize the decoding logic, but 
that incurs a significant area overhead. The high complexity is 
mainly due to Galois Field (GF) operations specifically for 
larger bits per symbol. 

In this paper, a layered double error correcting scheme is 
proposed. These codes are constructed using two layers of 
parity bits. The first layer of parity bits is used to prune down 
possible error locations through analysis of the computed 
syndrome of the received word. The second layer of parity bits 
is used to compute syndrome bits that are to be matched with 
the pruned down error locations and get the final bits that are in 
error. The proposed schemes are shown to have a good tradeoff 
between data redundancy and decoder complexity or latency. 
Two different decoding procedures are proposed which either 
reduce the decoder complexity or the decoder latency. Thus, 
these codes can be used for various class of memories. The rest 
of the paper is organized as follows. Section 2 describes the 
existing schemes. Section 3 describes the proposed scheme and 
the two types of decoding schemes. Section 4 evaluates the two 
decoding schemes against the existing schemes. Section 5 
provides a conclusion of this work. 

2. RELATED WORK 

An SEC-DED Hamming code [Hamming 50] has been 
traditionally used and is still in use for protecting memories. 
These codes can correct a single error and rely on syndrome 
matching based decoding i.e. the computed syndrome is 
directly matched to a particular column of the parity check 
matrix and the corresponding bit is flipped. These codes also 
detect all double errors but cannot correct them.  
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For double error correction, a binary BCH code is more 
prevalent. These codes have low data redundancy but have high 
decoding complexity. Generally, a BCH code has a serial 
decoder involving a Chien search algorithm. This algorithm 
iterates n times where n is the total number of bits in the 
codeword to detect and correct a certain number of  errors. Over 
the years, numerous different approaches have been proposed 
to reduce the time taken for decoding. Parallel Chien search has 
been proposed to perform p GF multiplications in parallel 
[Chang 02]. This reduces the decoding time to n/p cycles where 
p is the degree of parallelization. A p-parallel Chien search 
algorithm is shown in Fig. 1. Low power architectures for a 
parallel Chien search has also been proposed in [Yoo 16] using 
a two-step approach, which reduces power by reducing access 
to the second step.  

For DEC BCH codes, approaches which store possible 
double error syndromes in a read-only memory (ROM) and 
evaluate the computed syndrome against the syndromes in the 
ROM were proposed in [Lu 96]. [Naseer 08] proposed a direct 
decoding method through syndrome matching for smaller data 
bit sizes. [Yoo 14] proposed a search-less DEC BCH decoder 
which utilized look-up table (LUT) based computations to 
replace the Chien search. But for more than a single error, all 
these decoding schemes either take multiple cycles to decode 
using a serial decoding architecture or involve a significant 
decoding latency and decoder area for parallel architectures. 

Another class of codes that are suitable for random-access 
memories is the majority logic decodable codes. Orthogonal 
Latin Square (OLS) codes are one of the best examples for these 
types of codes [Hsiao 70]. These codes are modular in design 
and have the basic parity check matrix structure as shown in 
equation (1). The submatrices {M1, M2, … M2t} can be 
constructed from mutually orthogonal Latin squares. The basic 
idea of the majority logic decoding scheme is that in the 
presence of t errors, each data bit can be reconstructed from 2t 
independent sources excluding the data bit itself. Thus, there 
are (2t + 1) independent sources for each data bit and in the 
presence of t errors, (t + 1) of them will be uncorrupted. Thus, 
a majority vote will always be able to correct any t errors. The 
disadvantage of these codes lies in its data redundancy required 
to construct the 2t independent sources. But the decoding 
scheme itself is very simple and has very low decoding latency. 

The DEC OLS codes have recently been used in SRAM based 
FPGAs [Reviriego 16]. A second class of majority logic 
decoding using difference-set codes was proposed in 
[Reviriego 12]. But for double error correction these codes only 
support a single block size (data block size of 11, codeword size 
21) and cannot be extended to include different sizes. [Liu 18] 
recently used difference set codes to correct data block sizes of 
32 with some additional decoding complexity. But with only 
two data block sizes, the application of such codes is limited. 

ܪ = ۈۉ	
ଶ௧ܯ⋮ଷܯଶܯଵܯۇ

ተተܫଶ௧ۋی
ۊ

    (1) 

Multiple cell upsets (MCUs) can also occur in DRAMs 
wherein adjacent bits are affected by a single particle strike. 
MCUs are generally addressed by using word interleaving such 
that any MCU will at most cause a single error in any word. 
[Das 18] also addresses this issue by modifying Hamming 
codes to correct MCUs in SRAMs, which can be extended to 
DRAMs as well. The focus of this work is on double random 
errors only and not on MCUs.  

A new class of DEC codes are proposed which are shown 
to have better data redundancy at the expense of higher 
decoding complexity and higher decoding latency compared to 
OLS codes. The proposed codes are also shown to have better 
decoding latency and better decoding complexity, depending 
on the type of decoding logic, compared to DEC BCH codes. 
But these benefits come at the cost of additional data 
redundancy compared to DEC BCH codes. 

3. PROPOSED SCHEME 

The proposed scheme is made up of two layers of ECC. The 
first layer is based on a single error correcting OLS code which 
prunes down possible error location candidates. The second 
layer is constructed by adding columns to the parity check 
matrix such that the below mentioned conditions are satisfied. 

1. All columns added are unique and are not repeated.  
2. The sum of any two columns of the complete parity check 

matrix should not be equal to the sum of any other two 
columns of the parity check matrix. 

The first condition ensures that double errors produce a 
syndrome which is non-zero. The second condition basically 
ensures that the pruned list of possible error locations do not 
produce the same syndrome thus avoiding the chance of mis-
correction. 

The first layer of the parity check matrix is created using m 
groups of m data bits each, where m = √k. The rest of the parity 
check matrix is created in an algorithmic manner satisfying the 
two conditions mentioned above. An example of the parity 
check matrix and the corresponding syndrome bits for a data bit 
size of k = 16 is shown in Fig. 2. The syndrome computed from 
the parity check matrix in this case is also divided into layers. 
The upper syndrome layer has 2m bits (S0 to S7 in Fig. 2) which 
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help in selecting possible double error candidates. The lower 
syndrome layer (S8 to S12 in Fig. 2) simply matches the possible 
error candidates to the received syndrome to find out the actual 
bits in error.   

Consider the simple example from Fig. 2 where bits d0 and 
d7 are in error. The corresponding syndrome bits for this case is 
shown in equation (2). Considering the syndrome bits S0 
through S3, S0 = 1 suggests that one of the bits in amongst d0, 
d1, d2 and d3 is in error. Similarly, S1 = 1 suggests that one of 
the bits amongst d4, d5, d6 and d7 is also in error. Now, 
considering the syndrome bits S4 through S7, S4 = 1 narrows 
down the possibility to either d0 or d4. Similarly, S7 = 1 narrows 
down the second error’s possibility to d3 or d7. Thus, from the 
upper layer of syndrome bits, we narrowed the set of suspect 
location pairs to {d0, d7} and {d3, d4}. We can now simply 
compute the XOR of both pairs and match it against the second 
layer of syndromes. It can be easily verified that d0 ⊕ d7 = S8:12, 
which means that bits d0 and d7 have flipped.  ቀܵ	 ଵܵ	ܵଶ	ܵଷ	ܵସ	ܵହ	ܵ	ܵ	଼ܵ	ܵଽ	 ଵܵ ଵܵଵ ଵܵଶ1 1 0 0 1 0 0 1 1 0 0 0 1 ቁ          (2) 

The encoding procedure of the proposed codes is a one-step 
low latency procedure. Each parity bit can be computed in 
parallel by XORing all the data bits which have corresponding 
1’s in the row of the parity check matrix. The codeword can be 
formed by appending the parity bits to the received data bits and 
the codeword can then be stored in memory. For the decoding 
procedure, there are 3 major cases that need to be considered. 
These include the cases of no error, a single error, and a double 
error in the word. These three cases can be deciphered using a 
combination of the upper layer of 2m syndrome bits as given by 
the below mentioned equations (3-6). ܩைோଵ = 	 ܵ|	 ଵܵ	|	ܵଶ …	ܵିଶ	|	ܵିଵ      (3)  ܩைோଶ = 	 ܵ|	ܵାଵ	|	ܵାଶ …	ܵଶିଶ	|	ܵଶିଵ        (4)  ܩைோଵ = 	 ܵ ⊕	 ଵܵ ⊕	ܵଶ …	ܵିଶ ⊕	ܵିଵ        (5)  ܩைோଶ = 	 ܵ ⊕	ܵାଵ ⊕	ܵାଶ …	ܵଶିଶ ⊕	ܵଶିଵ  (6)   

For single errors, since the upper 2m rows in the parity 
check matrix can also be used as a single error correcting OLS 
code, a simple majority voting logic can be used to correct 
single errors. For double errors, we propose a double error 
pattern generator which gets triggered for double error cases. 
The block diagram of the proposed decoding logic is shown in 
Fig. 3. The different cases for the decoding logic are as follows:  

1. GOR1 = GOR2 = 0: No error.  

2. GXOR1 = GXOR2 = 1: This is only possible in case of a single 
error in one of the data bits. For this case, a simple majority 
voting logic can be used. 

3. GXOR1 = 1; GXOR2 = 0: This is possible either in case of a 
single parity error or a combination of data bit error and a 
parity bit error. The decoding logic is the same for either 
case. In this case, exactly one bit in a m-bit group (e.g., d0 
to d3 is one group in Fig. 2) is in error and each column 
from the group is then matched to the lower syndrome to 
get the correct error location. Parity bit errors are ignored 
as there is no requirement to correct them. 

4. GXOR1 = 0; GXOR2 = 1: Similar to case-3, this is also possible 
for either a single parity bit error or a combination of single 
data bit error and a parity bit error. For this case, a specific 
column number (whichever of the syndrome bits Sm 
through S2m-1 is 1) of each group can create this syndrome. 
The column from each group is matched to the lower layer 
syndrome in this case. 

5. GXOR1 = 0; GXOR2 = 0: This is a case of a double error with 
both the errors in the data bits. This involves 3 more cases 
which are distinguished as described below. 

a. GOR1 = 1; GOR2 = 0: This indicates that two syndrome 
bits among S0 through Sm-1 are 1 while Sm:2m-1 = 0. Thus, 
m column pairs from each of the two groups indicated 
by S0:m-1 are matched to the lower layer syndrome bits 
to get the correct pair that is in error. 

b. GOR1 = 0; GOR2 = 1: This indicates that two syndrome 
bits among Sm through S2m-1 are 1 while S0:m-1 = 0. Thus, 
column pairs indicated by Sm:2m-1 from each of the m 
groups are matched to the lower layer syndrome bits to 
get the correct pair that is in error. 

c. GOR1 = 1; GOR2 = 1: This indicates errors in distinct 
groups. Based on the syndrome bits S0:m-1, the groups 
are narrowed down. Then, based on the syndrome bits 
Sm:2m-1, specific column pairs are found. Thus, there are 
exactly two pairs of columns that need to be compared 
to the lower layer syndrome bits.  
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Fig. 3. Block diagram of proposed decoding logic 
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An example of each of the above cases for k = 16 with the 
parity check matrix in Fig. 2, the corresponding syndrome bits 
S0:2m-1 and the possible errors or pairs of errors has been shown 
in Table 1. The worst-case possibility for all the cases is 
comparing a combination of m pairs of syndromes to the lower 
layer syndrome bits. Based on the cases above, there are two 
types of decoding procedures that can be followed. The first is 
a low latency decoding scheme, which enumerates all the cases 
above and is based on syndrome matching for each case. The 
second is a low complexity decoding scheme which instead of 
operating on individual columns operates on the index of 
columns instead. This lowers the complexity of the decoding 
logic as well as the number of cycles needed for decoding 
compared to a serial decoding BCH scheme. 

Apart from the above cases, 2 additional check bits are 
required to distinguish between a single error and a double error 
in parity. The two check bits basically compute the parity of 
each group of parities to detect errors in the parity bits. In 
theory, it is also possible to extend these codes to multiple bits 
per symbol and construct a symbol based layered ECC. This 
can be useful for emerging multilevel cell memories or even for 
double byte error correction. The details of the extension to 
include multiple bit symbols is beyond the scope of this paper.  

A. Low Latency Decoding 

The low latency decoding procedure involves a syndrome 
matching based decoding. The upper layer syndromes S0:2m-1 
are directly enumerated and depending on these syndrome 
values, a certain number of combination of pairs of syndromes 
are matched to the lower layer of syndromes. The critical path 
in this case depends on the selection of a particular combination 
of the upper layer of syndromes. The total number of relevant 
syndromes in a double error correcting code [Naseer 08] is 
given by equation (7), where n is the total number of bits in the 
codeword and k is the number of data bits. Comparatively, the 
low latency decoding procedure has fewer syndromes to be 
enumerated as shown in equation (8). The comparison of the 
total number of syndromes for different data bit sizes has been 
shown in Fig. 4.  #ݏ݁݉ݎ݀݊ݕݏ = ݏ݁݉ݎ݀݊ݕݏ# (7)             ݊݇	 = 2݉( ଵ)ܥ + 2݉( (ଶܥ + 2( ଶܥ )ଶ      (8) 

As the number of data bits increases, the number of 
syndromes goes up considerably. This causes a considerable 
increase in the decoding complexity. But, since the syndrome 
matching is done in parallel, the rise in decoding latency is 
much slower. This type of decoding method is suitable for 
mostly random-access memories which need low decoding 
latency and high throughput. 

B. Low Complexity Decoding 

An alternative decoding procedure is the low complexity 
decoding procedure. Compared to the low latency decoding, 
this procedure operates on the indices of data bits instead of the 
columns of parity check matrix. Based on the different cases 
described previously, the first index or pair of indices is 

computed. Also, based on the upper layer of syndromes an 
addition factor is computed. This addition factor basically 
constructs all other m possible error indices by adding to the 
previous index or pair of indices. For the case of a double error 
in separate groups i.e. case-5c, the 2 possible pairs of indices 
are directly assigned.  

The m possible error indices can be computed in m clock 
cycles which lowers the decoding time considerably. Once all 
the indices are computed, the corresponding columns are then 
matched with the lower layer of syndromes to get the final error 
location or pair of locations. Fig. 5 shows the partial block 
diagram of a double error pattern generator for the low 
complexity serial decoding procedure. Fig. 6 shows an un-
rolled parallel version of the double error pattern generator in 
the low complexity decoding procedure. The use of arithmetic 
addition and ripple computation of indices causes a long critical 
path for the un-rolled version as can be seen in Fig. 6. This 

TABLE 1. EXAMPLE OF SYNDROME VALUES AND ERROR CANDIDATES 
FOR DIFFERENT ERROR TYPES 

Syndrome 
Bits S0:7 

Possible (pairs of) error candidates 
(data bits only, parity bits ignored)  

00000000 No error  
00010001 Single data error (majority vote) 
00000001 Possible single error in {d3, d7, d11, d15} 
00100000 Possible single error in {d8, d9, d10, d11} 
10000011 Possible single error in {d2, d3} 
11000001 Possible single error in {d3, d7} 
11000000 {(d0, d4), (d1, d5), (d2, d6), (d3, d7)} 
00000110 {(d1, d2), (d5, d6), (d9, d10), (d13, d14)} 
11000011 {(d2, d7), (d3, d6)} 

 
Fig. 4. Comparison of number of syndromes for different data bit sizes 

between proposed scheme and a DEC BCH code 
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longer critical path comes at the expense of considerable 
reduction in decoding complexity. Thus, this type of decoding 
is more suitable for NAND flash based memory devices which 
can tolerate a higher decoding latency but can benefit from the 
highly reduced complexity.    

4. EVALUATION 

The proposed scheme was implemented using Verilog for 
both the low latency and low complexity decoder versions for 
different data bit sizes. The codes were synthesized using the 
NCSU FreePDK45 45nm library and Synopsys Design 
Compiler. OLS codes were also implemented and synthesized 
for different data bit sizes. A double error correcting BCH code 
with syndrome matching based decoding [Naseer 08] was 
implemented and synthesized as well. The proposed decoding 
schemes were compared to the existing schemes in terms of 
decoder complexity, decoder latency, total dynamic power 
consumption and data redundancy.    

Table 2 shows the comparison of the low latency decoding 
scheme with OLS codes and the syndrome matching based 

DEC BCH codes [Naseer 08]. As seen in Table 2, OLS codes 
have the lowest decoder latency but it comes at the expense of 
very high data redundancy. DEC BCH codes on the other hand 
have very low redundancy but have considerably higher 
decoder latency instead. The proposed low latency decoding 
scheme balances between the two existing schemes. The data 
redundancy of the proposed scheme is much less than OLS with 
up to 45% reduction. Similarly, the decoding latency and 
dynamic power consumption of the proposed scheme is much 
lower than the BCH codes with up to 68% and 83% reduction 
respectively. The decoder area of the proposed scheme 
compared to the existing BCH codes is also comparatively less 
since it uses lesser number of syndromes as shown in Fig. 4.  

A fully-parallel BCH decoder was also implemented to 
compare the proposed low complexity decoder. For the DEC 
BCH code, the error location computation was done via direct 
error location polynomial computation i.e. the error location 
polynomial coefficients were computed directly from equation 
(9). The Chien search algorithm was unrolled and the lower 
critical path version was implemented as described in [Chang 
02]. The scheme in [Wilkerson 10] was also implemented and 
synthesized to make a comparison to the proposed low 
complexity serial decoder. Λଵ = 	 ଵܵ and Λଶ = 	 ௌయା	(ௌభ)యௌభ   (9) 

Table 3 shows the comparison of the low complexity 
decoding scheme with the existing decoding scheme of BCH 
codes in [Wilkerson 10]. The additional check-bit compared to 
BCH codes comes from the computation of a parity bit. The 
decoding scheme is a one-step decoding procedure for single 
errors and takes multiple clock cycles for double errors. As seen 
in Table 3, the number of cycles taken to decode, area and 
power consumption for the proposed decoder is significantly 
lesser with up to 71%, 95% and 76% reduction respectively.  

Table 4 shows the comparison between the fully-parallel 
version of the BCH codes [Chang 02] and the un-rolled version 
of the proposed low complexity decoder. As can be seen in 

TABLE 2.  COMPARISON OF PROPOSED LOW LATENCY DECODER WITH EXISTING SCHEMES  

Data 
bits 

OLS codes BCH codes [Naseer 08] Proposed Low Latency Decoder 
Check 

bits 
Area 
(μm2) 

Latency 
(ns) 

Pdyn 
(mW) 

Check 
bits 

Area 
(μm2) 

Latency 
(ns) 

Pdyn 
(mW) 

Check 
bits Area (μm2) Latency 

(ns) 
Pdyn 

(mW) 
16 16 647.63 0.5 0.53 10 3567.15 1.71 2.05 15 1576.38 0.98 0.77 
32 28 1307.94 0.63 1.19 12 9249.43 2.17 6.15 20 5117.25 1.09 1.45 
64 32 2599.92 0.78 2.98 14 27213.77 2.78 15.18 25 12205.08 1.32 2.48 

128 64 5182.95 1.09 6.51 16 80312.72 3.60 23.35 34 51656.79 1.78 4.77 
256 64 10280.02 1.2 15.45 18 252717.11 5.09 29.61 45 139603.61 1.60 10.39 

TABLE 3.  COMPARISON  OF PROPOSED LOW COMPLEXITY SERIAL DECODER WITH EXISTING SCHEMES 

Data bits 
Serial BCH Codes [Wilkerson 10] Proposed Low Complexity Serial Decoder 

#Checkbits Area (μm2) Latency (cycles) Pdyn (mW) #Checkbits Area (μm2) Latency (cycles) Pdyn (mW) 
16 11 2341.34 27 2.59 15 1236.61 4 1.19 
32 13 3800.39 45 4.50 20 2162.53 6 1.99 
64 15 6141.73 79 7.14 25 3471.88 8 2.90 

128 17 10800.00 145 12.48 34 6168.48 12 4.99 
256 19 18927.34 275 18.42 45 5925.38 16 4.58 
512 21 36757.92 533 32.79 61 10389.83 23 7.65 
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Table 4, the proposed decoding procedure is able to achieve a 
much lower decoder area and considerably lower dynamic 
power consumption compared to the fully-parallel BCH codes 
with up to 87% and 95% reduction respectively. This benefit 
comes at the expense of a slightly increased decoder latency. 
But this latency increase means a few more clock cycles in 
practice and will not cause any major impact to the performance 
of the memory system. Both the serial and parallel codes in 
Tables 3 and Table 4 also show that the proposed codes incur a 
redundancy overhead in order to provide the benefits of lower 
number of decoding cycles, lesser power consumption and 
lower decoder complexity. 

5. CONCLUSION 

In this paper a new class of layered double error correcting 
codes are presented along with two different decoding 
procedures for the codes: a low latency decoding scheme based 
on syndrome matching and a low complexity decoding scheme 
based on error location index evaluation. The schemes are 
compared with existing schemes and are shown to provide a 
good trade-off between data redundancy and decoding latency 
or complexity depending on the type of decoder logic. The low 
latency scheme can be used for high density random-access 
memories while flash memories can benefit from the low 
complexity scheme. Thus, these codes are able to provide a 
balanced data redundancy and decoder latency/complexity 
tradeoff and can be used for high density memory systems.  
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TABLE 4.  COMPARISON OF PROPOSED UN-ROLLED LOW COMPLEXITY DECODER WITH EXISTING SCHEMES 

Data bits 
Fully-Parallel BCH codes [Chang 02] Proposed Low Complexity Decoder (Unrolled Version) 

#Checkbits Area (μm2) Latency (ns) Pdyn (mW) #Checkbits Area (μm2) Latency (ns) Pdyn (mW) 
16 10 12790.30 4.76 24.73 15 1546.34 2.04 1.75 
32 12 29944.62 5.19 69.62 20 3514.12 3.12 4.60 
64 14 74161.60 5.36 181.91 25 8150.33 4.75 10.40 

128 16 197717.50 6.50 490.45 34 20920.46 6.43 23.43 
256 18 406500.15 6.92 906.75 45 48519.05 8.32 41.77 
512 20 955485.41 7.20 2155.30 61 111293.55 9.33 90.81 
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