
Layered-ECC: A Class of Double Error Correcting Codes
for High Density Memory Systems

Abhishek Das and Nur A. Touba
Computer Engineering Research Center,
University of Texas at Austin, TX 78712

abhishekdas@utexas.edu, touba@ece.utexas.edu

Abstract - As memory technology scales, the demand for higher
performance and reliable operation is increasing as well. For main
memory, e.g., DRAM, a conventional single error correcting double
error detecting (SEC-DED) code may not be sufficient. However,
existing double error correcting (DEC) codes either have very high
decoder latency or high data redundancy. For flash-based memories,
e.g., NAND flash, using a highly complex decoding scheme with a
large number of clock cycles for the whole procedure creates a
performance bottleneck. In this paper, a layered DEC code is proposed
with a simple decoding procedure. The codes are shown to strike a
good balance between redundancy and decoder complexity. A general
construction methodology is presented. Two different decoding
schemes can be implemented using the proposed methodology. One is
a low latency decoding scheme that is useful for main memories which
need high speed decoding for optimal performance. This scheme is
shown to achieve better redundancy compared to existing low-latency
codes as well as faster decoder latency compared to existing low-
redundancy codes. The second decoding scheme is a low complexity
decoding scheme which is useful for flash-based memories. This
scheme is shown to have considerably less area compared to existing
schemes. Also, it is shown that the proposed serial low complexity
decoding scheme can take significantly fewer cycles to complete the
whole decoding procedure; thus, enabling better performance
compared to existing serial decoding schemes.

Keywords—double error correction, low latency, low complexity,
memory

1. INTRODUCTION

Soft errors are a major reliability concern for high density
memories. Soft errors can arise due to numerous mechanisms,
e.g., particle strikes, marginal cells, etc. Error correcting codes
(ECCs) can be used to tolerate such soft errors and overcome
data corruption by adding parity or check bits to each word.
These bits are then evaluated after the read process to detect
and/or correct errors.

DRAM scaling has been a challenge in recent years. The
gap in performance between main memory and processors has
triggered research into alternative forms of main memory,
specifically emerging non-volatile main memories. Memories
with better scalability and low power have been proposed, e.g.,
phase change memories [Raoux 08] and resistive RAMs
[Kawahara 12]. But a true replacement for DRAM is yet to be
seen. Meanwhile, industry has continued the scaling of DRAM
to nanoscale technology nodes. Some of the current generation
of DRAMs are being manufactured as a 10 nm class of
memories. These pose new kinds of challenges for
manufacturing due to the smaller technology node. For

DRAMs, single error correcting double error detecting (SEC-
DED) codes have traditionally been sufficient to protect against
soft errors. But field studies of more recent DRAM systems
[Meza 15] have observed an increasing failure rate with
increasing DRAM chip density which necessitates the use of
stronger ECCs.

In terms of flash memories, NAND flash has been very
successful due to its scalability and low cost per bit. Research
has led to the development and manufacturing of multilevel cell
(MLC) NAND flash which stores multiple bits per cell [Lee
11]. Soft errors in NAND flash memories are addressed using
double error correcting (DEC) Bose-Chaudhuri-Hocquenghem
(BCH) codes. These DEC BCH codes have complex decoding
logic which takes a high number of clock cycles to decode
[Chien 64]. It is possible to parallelize the decoding logic, but
that incurs a significant area overhead. The high complexity is
mainly due to Galois Field (GF) operations specifically for
larger bits per symbol.

In this paper, a layered double error correcting scheme is
proposed. These codes are constructed using two layers of
parity bits. The first layer of parity bits is used to prune down
possible error locations through analysis of the computed
syndrome of the received word. The second layer of parity bits
is used to compute syndrome bits that are to be matched with
the pruned down error locations and get the final bits that are in
error. The proposed schemes are shown to have a good tradeoff
between data redundancy and decoder complexity or latency.
Two different decoding procedures are proposed which either
reduce the decoder complexity or the decoder latency. Thus,
these codes can be used for various class of memories. The rest
of the paper is organized as follows. Section 2 describes the
existing schemes. Section 3 describes the proposed scheme and
the two types of decoding schemes. Section 4 evaluates the two
decoding schemes against the existing schemes. Section 5
provides a conclusion of this work.

2. RELATED WORK

An SEC-DED Hamming code [Hamming 50] has been
traditionally used and is still in use for protecting memories.
These codes can correct a single error and rely on syndrome
matching based decoding i.e. the computed syndrome is
directly matched to a particular column of the parity check
matrix and the corresponding bit is flipped. These codes also
detect all double errors but cannot correct them.

2019 IEEE 37th VLSI Test Symposium (VTS)

!

978-1-7281-1170-4/19/$31.00 ©2019 IEEE

!

For double error correction, a binary BCH code is more
prevalent. These codes have low data redundancy but have high
decoding complexity. Generally, a BCH code has a serial
decoder involving a Chien search algorithm. This algorithm
iterates n times where n is the total number of bits in the
codeword to detect and correct a certain number of errors. Over
the years, numerous different approaches have been proposed
to reduce the time taken for decoding. Parallel Chien search has
been proposed to perform p GF multiplications in parallel
[Chang 02]. This reduces the decoding time to n/p cycles where
p is the degree of parallelization. A p-parallel Chien search
algorithm is shown in Fig. 1. Low power architectures for a
parallel Chien search has also been proposed in [Yoo 16] using
a two-step approach, which reduces power by reducing access
to the second step.

For DEC BCH codes, approaches which store possible
double error syndromes in a read-only memory (ROM) and
evaluate the computed syndrome against the syndromes in the
ROM were proposed in [Lu 96]. [Naseer 08] proposed a direct
decoding method through syndrome matching for smaller data
bit sizes. [Yoo 14] proposed a search-less DEC BCH decoder
which utilized look-up table (LUT) based computations to
replace the Chien search. But for more than a single error, all
these decoding schemes either take multiple cycles to decode
using a serial decoding architecture or involve a significant
decoding latency and decoder area for parallel architectures.

Another class of codes that are suitable for random-access
memories is the majority logic decodable codes. Orthogonal
Latin Square (OLS) codes are one of the best examples for these
types of codes [Hsiao 70]. These codes are modular in design
and have the basic parity check matrix structure as shown in
equation (1). The submatrices {M1, M2, … M2t} can be
constructed from mutually orthogonal Latin squares. The basic
idea of the majority logic decoding scheme is that in the
presence of t errors, each data bit can be reconstructed from 2t
independent sources excluding the data bit itself. Thus, there
are (2t + 1) independent sources for each data bit and in the
presence of t errors, (t + 1) of them will be uncorrupted. Thus,
a majority vote will always be able to correct any t errors. The
disadvantage of these codes lies in its data redundancy required
to construct the 2t independent sources. But the decoding
scheme itself is very simple and has very low decoding latency.

The DEC OLS codes have recently been used in SRAM based
FPGAs [Reviriego 16]. A second class of majority logic
decoding using difference-set codes was proposed in
[Reviriego 12]. But for double error correction these codes only
support a single block size (data block size of 11, codeword size
21) and cannot be extended to include different sizes. [Liu 18]
recently used difference set codes to correct data block sizes of
32 with some additional decoding complexity. But with only
two data block sizes, the application of such codes is limited.

ܪ = ۈۉ	
ଶ௧ܯ⋮ଷܯଶܯଵܯۇ

ተተܫଶ௧ۋی
ۊ

 (1)

Multiple cell upsets (MCUs) can also occur in DRAMs
wherein adjacent bits are affected by a single particle strike.
MCUs are generally addressed by using word interleaving such
that any MCU will at most cause a single error in any word.
[Das 18] also addresses this issue by modifying Hamming
codes to correct MCUs in SRAMs, which can be extended to
DRAMs as well. The focus of this work is on double random
errors only and not on MCUs.

A new class of DEC codes are proposed which are shown
to have better data redundancy at the expense of higher
decoding complexity and higher decoding latency compared to
OLS codes. The proposed codes are also shown to have better
decoding latency and better decoding complexity, depending
on the type of decoding logic, compared to DEC BCH codes.
But these benefits come at the cost of additional data
redundancy compared to DEC BCH codes.

3. PROPOSED SCHEME

The proposed scheme is made up of two layers of ECC. The
first layer is based on a single error correcting OLS code which
prunes down possible error location candidates. The second
layer is constructed by adding columns to the parity check
matrix such that the below mentioned conditions are satisfied.

1. All columns added are unique and are not repeated.
2. The sum of any two columns of the complete parity check

matrix should not be equal to the sum of any other two
columns of the parity check matrix.

The first condition ensures that double errors produce a
syndrome which is non-zero. The second condition basically
ensures that the pruned list of possible error locations do not
produce the same syndrome thus avoiding the chance of mis-
correction.

The first layer of the parity check matrix is created using m
groups of m data bits each, where m = √k. The rest of the parity
check matrix is created in an algorithmic manner satisfying the
two conditions mentioned above. An example of the parity
check matrix and the corresponding syndrome bits for a data bit
size of k = 16 is shown in Fig. 2. The syndrome computed from
the parity check matrix in this case is also divided into layers.
The upper syndrome layer has 2m bits (S0 to S7 in Fig. 2) which

MUX

D

αp
MUX

D

α2p
MUX

D

αtp
...

Ʌ(αip)	α(p-1) α2(p-1) αt(p-1) Ʌ(αi(p-1))	
α α2 αt Ʌ(αi)	

...
Ʌ1	 Ʌ2	 Ʌt	

Fig 1 p-parallel Chien search architecture with short critical path

!

!

help in selecting possible double error candidates. The lower
syndrome layer (S8 to S12 in Fig. 2) simply matches the possible
error candidates to the received syndrome to find out the actual
bits in error.

Consider the simple example from Fig. 2 where bits d0 and
d7 are in error. The corresponding syndrome bits for this case is
shown in equation (2). Considering the syndrome bits S0
through S3, S0 = 1 suggests that one of the bits in amongst d0,
d1, d2 and d3 is in error. Similarly, S1 = 1 suggests that one of
the bits amongst d4, d5, d6 and d7 is also in error. Now,
considering the syndrome bits S4 through S7, S4 = 1 narrows
down the possibility to either d0 or d4. Similarly, S7 = 1 narrows
down the second error’s possibility to d3 or d7. Thus, from the
upper layer of syndrome bits, we narrowed the set of suspect
location pairs to {d0, d7} and {d3, d4}. We can now simply
compute the XOR of both pairs and match it against the second
layer of syndromes. It can be easily verified that d0 ⊕ d7 = S8:12,
which means that bits d0 and d7 have flipped. ቀܵ	 ଵܵ	ܵଶ	ܵଷ	ܵସ	ܵହ	ܵ	ܵ	଼ܵ	ܵଽ	 ଵܵ ଵܵଵ ଵܵଶ1 1 0 0 1 0 0 1 1 0 0 0 1 ቁ (2)

The encoding procedure of the proposed codes is a one-step
low latency procedure. Each parity bit can be computed in
parallel by XORing all the data bits which have corresponding
1’s in the row of the parity check matrix. The codeword can be
formed by appending the parity bits to the received data bits and
the codeword can then be stored in memory. For the decoding
procedure, there are 3 major cases that need to be considered.
These include the cases of no error, a single error, and a double
error in the word. These three cases can be deciphered using a
combination of the upper layer of 2m syndrome bits as given by
the below mentioned equations (3-6). ܩைோଵ = 	 ܵ|	 ଵܵ	|	ܵଶ …	ܵିଶ	|	ܵିଵ (3) ܩைோଶ = 	 ܵ|	ܵାଵ	|	ܵାଶ …	ܵଶିଶ	|	ܵଶିଵ (4) ܩைோଵ = 	 ܵ ⊕	 ଵܵ ⊕	ܵଶ …	ܵିଶ ⊕	ܵିଵ (5) ܩைோଶ = 	 ܵ ⊕	ܵାଵ ⊕	ܵାଶ …	ܵଶିଶ ⊕	ܵଶିଵ (6)

For single errors, since the upper 2m rows in the parity
check matrix can also be used as a single error correcting OLS
code, a simple majority voting logic can be used to correct
single errors. For double errors, we propose a double error
pattern generator which gets triggered for double error cases.
The block diagram of the proposed decoding logic is shown in
Fig. 3. The different cases for the decoding logic are as follows:

1. GOR1 = GOR2 = 0: No error.

2. GXOR1 = GXOR2 = 1: This is only possible in case of a single
error in one of the data bits. For this case, a simple majority
voting logic can be used.

3. GXOR1 = 1; GXOR2 = 0: This is possible either in case of a
single parity error or a combination of data bit error and a
parity bit error. The decoding logic is the same for either
case. In this case, exactly one bit in a m-bit group (e.g., d0
to d3 is one group in Fig. 2) is in error and each column
from the group is then matched to the lower syndrome to
get the correct error location. Parity bit errors are ignored
as there is no requirement to correct them.

4. GXOR1 = 0; GXOR2 = 1: Similar to case-3, this is also possible
for either a single parity bit error or a combination of single
data bit error and a parity bit error. For this case, a specific
column number (whichever of the syndrome bits Sm
through S2m-1 is 1) of each group can create this syndrome.
The column from each group is matched to the lower layer
syndrome in this case.

5. GXOR1 = 0; GXOR2 = 0: This is a case of a double error with
both the errors in the data bits. This involves 3 more cases
which are distinguished as described below.

a. GOR1 = 1; GOR2 = 0: This indicates that two syndrome
bits among S0 through Sm-1 are 1 while Sm:2m-1 = 0. Thus,
m column pairs from each of the two groups indicated
by S0:m-1 are matched to the lower layer syndrome bits
to get the correct pair that is in error.

b. GOR1 = 0; GOR2 = 1: This indicates that two syndrome
bits among Sm through S2m-1 are 1 while S0:m-1 = 0. Thus,
column pairs indicated by Sm:2m-1 from each of the m
groups are matched to the lower layer syndrome bits to
get the correct pair that is in error.

c. GOR1 = 1; GOR2 = 1: This indicates errors in distinct
groups. Based on the syndrome bits S0:m-1, the groups
are narrowed down. Then, based on the syndrome bits
Sm:2m-1, specific column pairs are found. Thus, there are
exactly two pairs of columns that need to be compared
to the lower layer syndrome bits.

GXOR1
GXOR2

Single Error

Double Error
Pattern

Generator

Single Error
Pattern

Generator

Sy
nd

ro
m

e
S 0

:r
-1

Co
lu

m
ns

 C
0:

k-
1

e0:k-1

e0:k-1

1

0

GOR1
GOR2

No Error

e0:k-1

Double_parity_error_b

Fig. 3. Block diagram of proposed decoding logic
ۈۉ
ۈۈۈ
ۈۈۈ
ۈۈۈ
ଵଶ1ଵଵଵଽ଼ହସଷଶଵ݀ଵ݀ଶ݀ଷ݀ସ݀ହ଼݀݀݀݀ଽ݀ଵ݀ଵଵ݀ଵଶ݀ଵଷ݀ଵସ݀ଵହ݀ۇ 1 1 1 11 1 1 1 11 1 1 1 11 1 1 1 11 1 1 1 11 1 1 1 11 1 1 1 11 1 1 1 11 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 11 1 1 1 1 1 1 11 1 1 1 1 1 1 ۋی

ۋۋۋ
ۋۋۋ
ۋۋۋ
ۊ
	→ 	

ۈۉ
ۈۈۈ
ۈۈۈ
ۈۈۈ
ۋیܵଵܵଶܵଷܵସܵହ଼ܵܵܵܵଽଵܵଵܵଵଵܵଶܵۇ

ۋۋۋ
ۋۋۋ
ۋۋۋ
ۊ

Fig. 2. Parity check matrix of proposed scheme for k=16

!

!

An example of each of the above cases for k = 16 with the
parity check matrix in Fig. 2, the corresponding syndrome bits
S0:2m-1 and the possible errors or pairs of errors has been shown
in Table 1. The worst-case possibility for all the cases is
comparing a combination of m pairs of syndromes to the lower
layer syndrome bits. Based on the cases above, there are two
types of decoding procedures that can be followed. The first is
a low latency decoding scheme, which enumerates all the cases
above and is based on syndrome matching for each case. The
second is a low complexity decoding scheme which instead of
operating on individual columns operates on the index of
columns instead. This lowers the complexity of the decoding
logic as well as the number of cycles needed for decoding
compared to a serial decoding BCH scheme.

Apart from the above cases, 2 additional check bits are
required to distinguish between a single error and a double error
in parity. The two check bits basically compute the parity of
each group of parities to detect errors in the parity bits. In
theory, it is also possible to extend these codes to multiple bits
per symbol and construct a symbol based layered ECC. This
can be useful for emerging multilevel cell memories or even for
double byte error correction. The details of the extension to
include multiple bit symbols is beyond the scope of this paper.

A. Low Latency Decoding

The low latency decoding procedure involves a syndrome
matching based decoding. The upper layer syndromes S0:2m-1
are directly enumerated and depending on these syndrome
values, a certain number of combination of pairs of syndromes
are matched to the lower layer of syndromes. The critical path
in this case depends on the selection of a particular combination
of the upper layer of syndromes. The total number of relevant
syndromes in a double error correcting code [Naseer 08] is
given by equation (7), where n is the total number of bits in the
codeword and k is the number of data bits. Comparatively, the
low latency decoding procedure has fewer syndromes to be
enumerated as shown in equation (8). The comparison of the
total number of syndromes for different data bit sizes has been
shown in Fig. 4. #ݏ݁݉ݎ݀݊ݕݏ = ݏ݁݉ݎ݀݊ݕݏ# (7) ݊݇	 = 2݉(ଵ)ܥ + 2݉((ଶܥ + 2(ଶܥ)ଶ (8)

As the number of data bits increases, the number of
syndromes goes up considerably. This causes a considerable
increase in the decoding complexity. But, since the syndrome
matching is done in parallel, the rise in decoding latency is
much slower. This type of decoding method is suitable for
mostly random-access memories which need low decoding
latency and high throughput.

B. Low Complexity Decoding

An alternative decoding procedure is the low complexity
decoding procedure. Compared to the low latency decoding,
this procedure operates on the indices of data bits instead of the
columns of parity check matrix. Based on the different cases
described previously, the first index or pair of indices is

computed. Also, based on the upper layer of syndromes an
addition factor is computed. This addition factor basically
constructs all other m possible error indices by adding to the
previous index or pair of indices. For the case of a double error
in separate groups i.e. case-5c, the 2 possible pairs of indices
are directly assigned.

The m possible error indices can be computed in m clock
cycles which lowers the decoding time considerably. Once all
the indices are computed, the corresponding columns are then
matched with the lower layer of syndromes to get the final error
location or pair of locations. Fig. 5 shows the partial block
diagram of a double error pattern generator for the low
complexity serial decoding procedure. Fig. 6 shows an un-
rolled parallel version of the double error pattern generator in
the low complexity decoding procedure. The use of arithmetic
addition and ripple computation of indices causes a long critical
path for the un-rolled version as can be seen in Fig. 6. This

TABLE 1. EXAMPLE OF SYNDROME VALUES AND ERROR CANDIDATES
FOR DIFFERENT ERROR TYPES

Syndrome
Bits S0:7

Possible (pairs of) error candidates
(data bits only, parity bits ignored)

00000000 No error
00010001 Single data error (majority vote)
00000001 Possible single error in {d3, d7, d11, d15}
00100000 Possible single error in {d8, d9, d10, d11}
10000011 Possible single error in {d2, d3}
11000001 Possible single error in {d3, d7}
11000000 {(d0, d4), (d1, d5), (d2, d6), (d3, d7)}
00000110 {(d1, d2), (d5, d6), (d9, d10), (d13, d14)}
11000011 {(d2, d7), (d3, d6)}

Fig. 4. Comparison of number of syndromes for different data bit sizes

between proposed scheme and a DEC BCH code

M
U

X

In
iti

al
 In

de
x

Co
m

pu
ta

tio
n

S0:2m-1

M
U

X

D+
+ D ge

tC
ol

um
n

S2m:r-1

e i
e m

+i

factor

Index[m+i]

Index[i]

Fig. 5. Block diagram of error pattern generation using the serial low
complexity decoding procedure

0

2

4

6

8

10

12

0 100 200 300 400 500 600 700 800 900 1000 1100

#S
yn

dr
om

es
 (x

 1
0k

)
Number of data bits k

DEC BCH codes Proposed Codes

!

!

longer critical path comes at the expense of considerable
reduction in decoding complexity. Thus, this type of decoding
is more suitable for NAND flash based memory devices which
can tolerate a higher decoding latency but can benefit from the
highly reduced complexity.

4. EVALUATION

The proposed scheme was implemented using Verilog for
both the low latency and low complexity decoder versions for
different data bit sizes. The codes were synthesized using the
NCSU FreePDK45 45nm library and Synopsys Design
Compiler. OLS codes were also implemented and synthesized
for different data bit sizes. A double error correcting BCH code
with syndrome matching based decoding [Naseer 08] was
implemented and synthesized as well. The proposed decoding
schemes were compared to the existing schemes in terms of
decoder complexity, decoder latency, total dynamic power
consumption and data redundancy.

Table 2 shows the comparison of the low latency decoding
scheme with OLS codes and the syndrome matching based

DEC BCH codes [Naseer 08]. As seen in Table 2, OLS codes
have the lowest decoder latency but it comes at the expense of
very high data redundancy. DEC BCH codes on the other hand
have very low redundancy but have considerably higher
decoder latency instead. The proposed low latency decoding
scheme balances between the two existing schemes. The data
redundancy of the proposed scheme is much less than OLS with
up to 45% reduction. Similarly, the decoding latency and
dynamic power consumption of the proposed scheme is much
lower than the BCH codes with up to 68% and 83% reduction
respectively. The decoder area of the proposed scheme
compared to the existing BCH codes is also comparatively less
since it uses lesser number of syndromes as shown in Fig. 4.

A fully-parallel BCH decoder was also implemented to
compare the proposed low complexity decoder. For the DEC
BCH code, the error location computation was done via direct
error location polynomial computation i.e. the error location
polynomial coefficients were computed directly from equation
(9). The Chien search algorithm was unrolled and the lower
critical path version was implemented as described in [Chang
02]. The scheme in [Wilkerson 10] was also implemented and
synthesized to make a comparison to the proposed low
complexity serial decoder. Λଵ = 	 ଵܵ and Λଶ = 	 ௌయା	(ௌభ)యௌభ (9)

Table 3 shows the comparison of the low complexity
decoding scheme with the existing decoding scheme of BCH
codes in [Wilkerson 10]. The additional check-bit compared to
BCH codes comes from the computation of a parity bit. The
decoding scheme is a one-step decoding procedure for single
errors and takes multiple clock cycles for double errors. As seen
in Table 3, the number of cycles taken to decode, area and
power consumption for the proposed decoder is significantly
lesser with up to 71%, 95% and 76% reduction respectively.

Table 4 shows the comparison between the fully-parallel
version of the BCH codes [Chang 02] and the un-rolled version
of the proposed low complexity decoder. As can be seen in

TABLE 2. COMPARISON OF PROPOSED LOW LATENCY DECODER WITH EXISTING SCHEMES

Data
bits

OLS codes BCH codes [Naseer 08] Proposed Low Latency Decoder
Check

bits
Area
(μm2)

Latency
(ns)

Pdyn
(mW)

Check
bits

Area
(μm2)

Latency
(ns)

Pdyn
(mW)

Check
bits Area (μm2) Latency

(ns)
Pdyn

(mW)
16 16 647.63 0.5 0.53 10 3567.15 1.71 2.05 15 1576.38 0.98 0.77
32 28 1307.94 0.63 1.19 12 9249.43 2.17 6.15 20 5117.25 1.09 1.45
64 32 2599.92 0.78 2.98 14 27213.77 2.78 15.18 25 12205.08 1.32 2.48

128 64 5182.95 1.09 6.51 16 80312.72 3.60 23.35 34 51656.79 1.78 4.77
256 64 10280.02 1.2 15.45 18 252717.11 5.09 29.61 45 139603.61 1.60 10.39

TABLE 3. COMPARISON OF PROPOSED LOW COMPLEXITY SERIAL DECODER WITH EXISTING SCHEMES

Data bits
Serial BCH Codes [Wilkerson 10] Proposed Low Complexity Serial Decoder

#Checkbits Area (μm2) Latency (cycles) Pdyn (mW) #Checkbits Area (μm2) Latency (cycles) Pdyn (mW)
16 11 2341.34 27 2.59 15 1236.61 4 1.19
32 13 3800.39 45 4.50 20 2162.53 6 1.99
64 15 6141.73 79 7.14 25 3471.88 8 2.90

128 17 10800.00 145 12.48 34 6168.48 12 4.99
256 19 18927.34 275 18.42 45 5925.38 16 4.58
512 21 36757.92 533 32.79 61 10389.83 23 7.65

ge
tC

ol
um

n
ge

tC
ol

um
n

ge
tC

ol
um

n
...

Index[0]

Index[1]

Index[m-1]

Index[m]

Index[m+1]

Index[2m-1]

Col[0]

Col[m]

Col[1]

Col[m+1]

Col[m-1]

Col[2m-1]

S2m:r-1

e 0
e m

e 1
e m

+1
e m

-1
e 2

m
+1

In
iti

al
 In

de
x

Co
m

pu
ta

tio
n

S0:2m-1

In
de

x[
0]

In
de

x[
m

]
fa

ct
or

+
+

+
+

...

...

+
+

In
de

x[
1]

In
de

x[
m

+1
]

In
de

x[
m

-2
]

In
de

x[
2m

-2
]

In
de

x[
2m

-1
]

In
de

x[
m

-1
]

Fig. 6. Block diagram of un-rolled version of error pattern generation for

!

!

Table 4, the proposed decoding procedure is able to achieve a
much lower decoder area and considerably lower dynamic
power consumption compared to the fully-parallel BCH codes
with up to 87% and 95% reduction respectively. This benefit
comes at the expense of a slightly increased decoder latency.
But this latency increase means a few more clock cycles in
practice and will not cause any major impact to the performance
of the memory system. Both the serial and parallel codes in
Tables 3 and Table 4 also show that the proposed codes incur a
redundancy overhead in order to provide the benefits of lower
number of decoding cycles, lesser power consumption and
lower decoder complexity.

5. CONCLUSION

In this paper a new class of layered double error correcting
codes are presented along with two different decoding
procedures for the codes: a low latency decoding scheme based
on syndrome matching and a low complexity decoding scheme
based on error location index evaluation. The schemes are
compared with existing schemes and are shown to provide a
good trade-off between data redundancy and decoding latency
or complexity depending on the type of decoder logic. The low
latency scheme can be used for high density random-access
memories while flash memories can benefit from the low
complexity scheme. Thus, these codes are able to provide a
balanced data redundancy and decoder latency/complexity
tradeoff and can be used for high density memory systems.

ACKNOWLEDGMENTS

This research was supported in part by the National Science
Foundation under Grant No. CCF-1617665.

REFERENCES
[Chang 02] H. C. Chang, C. C. Lin and C. Y. Lee, "A low power Reed̵Solomon

decoder for STM-16 optical communications", in Proc. of IEEE Asia-
Pacific Conference on ASIC, pp. 351-354, 2002..

[Chien 64] R. Chien, “Cyclic decoding procedures for Bose- Chaudhuri-
Hocquenghem codes,” in IEEE Transactions on Information Theory, vol.
10 , no. 4, pp. 357-363, Oct. 1964.

[Das 18] A. Das and N.A. Touba, "Low Complexity Burst Error Correcting
Codes to Correct MBUs in SRAMs", in Proc. of ACM Great Lakes
Symposium on VLSI (GLSVLSI), pp. 219-224, 2018.

[Hamming 50] R. W. Hamming, “Error detecting and error correcting codes,”
in Bell System Technical Journal, vol. 26, no. 2, pp. 147-160, Apr. 1950.

[Hsiao 70] M. Y. Hsiao, D. C. Bossen, and R. T. Chien, ‘‘Orthogonal Latin
Square codes,’’ in IBM Journal of Research and Development, vol. 14,
no. 4, pp. 390–394, Jul. 1970.

[Kawahara 12] A. Kawahara, R. Azuma, Y. Ikeda, K. Kawai, Y. Katoh, K.
Tanabe, T. Nakamura, Y. Sumimoto, N. Yamada, N. Nakai, S. Sakamoto,
Y. Hayakawa, K. Tsuji, S. Yoneda, A. Himeno, K. Origasa, K.
Shimakawa, T. Takagi, T. Mikawa and K. Aono, “An 8Mb MultiLayered
Cross-Point ReRAM Macro with 443MB/s Write Throughput,” in Proc.
of IEEE International Solid-State Circuits Conference, paper 25-6, 2012.

[Lee 11] K. Lee and S. Choi, “A Highly Manufacturable Integration
Technology of 20nm Generation 64Gb Multi-Level NAND Flash
Memory,” in Proc. of IEEE Symposium on VLSI Technology, pp. 70-71,
2011.

[Liu 18] S. Liu, J. Li, P. Reviriego, M. Ottavi and L. Xiao, “A Double Error
Correction Code for 32-Bit Data Words With Efficent Decoding,” in
IEEE Transactions on Device and Materials Reliability, vol. 18, no. 1,
pp. 125-127, Mar. 2018.

[Lu 96] E. H. Lu and T. Chang, “New decoder for double-error-correcting
binary BCH codes,” in IEE Proceedings – Communications, vol. 143, no.
3, pp. 129 – 132, Jun. 1996.

[Meza 15] J. Meza, Q. Wu, S. Kumar and O. Mutlu, “Revisiting Memory
Errors in Large-Scale Production Data Centers: Analysis and Modeling
of New Trends from the Field,” in Proc. of IEEE/IFIP International
Conference on Dependable Systems and Networks, pp. 415-426, 2015.

[Naseer 08] R. Naseer and J. Draper, “DEC ECC design to improve memory
reliability in Sub-100nm technologies,” in Proc. of IEEE International
Conference on Electronics, Circuits and Systems, pp. 586-589, 2008.

[Raoux 08] S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y.-C. Chen,
R. M. Shelby, M. Salinga, D. Krebs, S. H. Chen, H. L. Lung and C. H.
Lam, “Phase-change random access memory: A scalable technology,” in
IBM Journal of Research and Development, vol. 52 , no. 4/5, pp. 465-
479, Sep. 2008.

[Reviriego 12] P. Reviriego, M. F. Flanagan, S. F. Liu and J. A. Maestro,
“Multiple Cell Upset Correction in Memories Using Difference Set
Codes,” in IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 59, no. 11, pp. 2592-2599, Nov. 2012.

[Reviriego 16] M. Demirci, P. Reviriego and J. A. Maestro, “Implementing
Double Error Correction Orthogonal Latin Squares Codes in SRAM-
based FPGAs,” in Microelectronics Reliability, vol. 56, pp. 221-227, Jan.
2016.

[Wilkerson 10] C. Wilkerson, A. R. Alameldeen, Z. Chishti, W. Wu, D.
Somasekhar, and S. Lu, “Reducing cache power with low-cost, multi-bit
error-correcting codes,” in Proc. of ACM annual international symposium
on Computer architecture, pp. 83–93, 2010.

[Yoo 14] I. Yoo and I. C. Park, “A search-less DEC BCH decoder for low-
complexity fault-tolerant systems,” in Proc. of IEEE Workshop on Signal
Processing Systems, pp. 1-6, 2014.

[Yoo 16] H. Yoo, Y. Lee and I. C. Park, “Low-Power Parallel Chien Search
Architecture Using a Two-Step Approach,” in IEEE Transactions on
Circuits and Systems II: Express Briefs, vol. 63, no. 3, pp. 269-273, Mar.
2016

TABLE 4. COMPARISON OF PROPOSED UN-ROLLED LOW COMPLEXITY DECODER WITH EXISTING SCHEMES

Data bits
Fully-Parallel BCH codes [Chang 02] Proposed Low Complexity Decoder (Unrolled Version)

#Checkbits Area (μm2) Latency (ns) Pdyn (mW) #Checkbits Area (μm2) Latency (ns) Pdyn (mW)
16 10 12790.30 4.76 24.73 15 1546.34 2.04 1.75
32 12 29944.62 5.19 69.62 20 3514.12 3.12 4.60
64 14 74161.60 5.36 181.91 25 8150.33 4.75 10.40

128 16 197717.50 6.50 490.45 34 20920.46 6.43 23.43
256 18 406500.15 6.92 906.75 45 48519.05 8.32 41.77
512 20 955485.41 7.20 2155.30 61 111293.55 9.33 90.81

!

!

