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Abstract-During post-silicon validation a large number of 
constrained random stimuli are applied to expose the subtle 
design errors that have escaped to the silicon prototypes. In this 
paper we present a new method to design constrained random 
stimuli generators, which are programmable and can be placed 
on-chip to generate extensive random, yet functionally-compliant, 
sequences for real-time/in-system validation. T he basic idea is to 
translate the constraints for constrained-random variables into 
binary cubes, whose specified values are used as masks to correct 
random sequences. To reduce the volume of data needed to be 
placed on-chip, the cubes are efficiently encoded and expanded in 
real-time. Experimental results confirm the effectiveness of this 
new method when compared against the prior work on the topic. 

I. INTRODUCTION 

Ensuring the quality of integrated circuits is critical 
throughout the implementation cycle. Pre-silicon verification 
is commonly employed to ensure the consistency between 
the design and its specification. Before tape-out what can be 
measured is limited by the simulation time and accuracy, and 
designs are released for manufacturing when the confidence 
level is deemed sufficient. Manufacturing test is focused on 
screening for physical defects in each fabricated device; con­
sidering that its reference is the design implementation, manu­
facturing test is not concerned with finding and identifying 
subtle design errors (or bugs) that have escaped to silicon 
prototypes. Thus the verification tasks employed during the 
pre-silicon phase continue on these early silicon prototypes, a 
term commonly referred to as post-silicon validation (PSV). 

A. Background and Related Work 

Both simulation-based verification and formal verification 
are used to detect and fix implementation errors before com­
mitting to fabrication of a silicon prototype. The simulation­
based methods find design errors based on a large set of test (or 
use) cases. Nonetheless, simulation is known to be slow; for 
example, the study on a commercial microprocessor [7] argues 
that it may take weeks of simulation of test cases that will take 
merely seconds to minutes of real-time execution. Therefore, 
simulation metrics (e.g., code/assertion coverage) are used as 
stop signs to balance the verification quality against the time to 
tape-out. Formal verification's inherent limitation in modelling 
the whole design confines its applicability within focused units 
on small scales. Furthermore, when accounting for unique 
electrical states, such as the ones caused by process varia­
tions or effects exercised only under certain process-voltage­
temperature corners, it becomes more difficult to develop 
both accurate and scalable pre-silicon verification methods 
[19]. Consequently, to compensate for this insufficiency of 

pre-silicon verification methods, PSV, which is performed on 
silicon prototypes, is a critical step for finding design errors 
before committing to high-volume manufacturing. 

Key challenges in PSV are error detection and repro­
duction, as well as root causing [12]. It is necessary to 
generate both proper stimuli and to record sufficient failing 
data for error analysis. Considering the unique constraints on 
controllability and observability during PSV, many approaches 
have been explored to bridge the gap between pre-silicon 
to post-silicon validation [20]. Also, reusing design-for-test 
(DFT) structures, including wrapper registers [1] around the 
design under validation (DUV) or scan chains [28] across 
the DUV, has been explored. Nonetheless, scan chains are 
insufficient because the scan dumps do not provide a history 
of events of interest that lead to the corrupted state [21]. 
Thus, some PSV-specific structures, such as on-chip trigger 
units [16] or hardware assertion-checkers [8], are employed to 
reduce the latency from error excitation to its detection. They 
are commonly used together with trace memories [4], [15] or 
footprint recorders [22], which can track a subset of relevant 
signals over a window that lead to the failure detection. 

A large volume of random, yet functionally-compliant, 
sequences are needed for exposing the design errors, which 
have escaped to the silicon prototypes [2], [19]-[21], [24]. 
During pre-silicon verification, the constrained random num­
ber generator embedded in the simulator generates stimuli 
that satisfy user-defined constraints [25]. Considering that 
transmitting the constrained-random stimuli from simulation 
environments to the silicon prototype is obviously impractical 
due to bandwidth limitations, one has to consider how to 
generate a large volume of randomized functional sequences 
in real-time. Using instruction-level templates [2], [24], the 
in-system constrained-random stimuli generation can produce 
instruction sequences similar to the ones during simulation. 
Although such types of methods are useful for microprocessor­
centric designs, they are limited for high-speed peripherals and 
hardware accelerators (e.g., video or graphics). Therefore, for 
logic blocks and data channels not easily accessible and not 
controlled by programmable embedded microprocessors, on­
chip constrained-random stimuli generator (CRSG) structures 
can be employed to generate at-speed functionally-compliant 
stimuli for the silicon prototypes. This type of stimuli is 
subjected to constraints, consistent with the specification and 
format of data packets fed to the DUV in an application 
environment. While there have been custom implementations 
of such CRSG structures (e.g., [32]), a systematic way of 
designing them is an active area of research [21]. 
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Fig. 1. The scope of this work during the implementation 
cycle. 

B. Motivation and Contribution 

The scope of this work is highlighted in Fig. 1. Pre­
silicon verification is concerned with identifying and fixing 
design errors and therefore the register transfer-level (RTL) 
description is iteratively refined. Once the confidence level is 
sufficiently high, the implemented design is sent for fabrication 
and, after screening for manufacturing defects, the design is 
validated on a system platform. It is common that in this 
phase subtle design errors (which affect every single fabricated 
device) are uncovered. In order to exercise as many use-cases 
as possible, randomized, yet functionally-compliant, sequences 
are applied to the DUV. The main advantage of post-silicon 
application of such randomized/functional tests is the huge 
volume of clock cycles; considering that in a few seconds 
to minutes of real-time execution more stimuli are applied 
to the DlN than during the entire pre-silicon phase, a few 
hours (or possibly days) of validation can uncover (or help 
increase the confidence of the lack of) design errors. In order 
to facilitate controllable experiments of such magnitude, in 
this work we propose a methodology for the design-time 
development and insertion of CRSG blocks and a flow for 
iterative run-time configuration of these blocks (in Fig. 1 the 
corresponding boxes are in shades of gray and the steps will 
be elaborated in the following sections). A key advantage 
over relying solely on stimuli from the native environment, 
is the ability to control experiments and bias the constrained­
random sequences as the validation progresses in a user­
programmable manner, as during the pre-silicon phase. It 
should also be noted that it is unlikely that one would have 
golden responses and therefore the response checking is done 
in a similar manner as in pre-silicon, i.e., verifying whether 
properties/assertions are violated. The contributions from this 
communication are not concerned with response checking and 

therefore the interested reader is referred to known methods 
for implementing assertions into hardware (e.g., [8]). 

Some well-understood logic blocks can be employed at the 
core of CRSGs. The k-bit maximum-length Linear Feedback 
Shift Register (LFSR) generates 2k - 1 patterns if the charac­
teristic polynomial is primitive and irredundant [5]. The use 
LFSRs for compressed deterministic test has been introduced 
in [17] and this concept of reseeding LFSRs has been refined 
and widely adopted in practice during the subsequent decade 
[6], [23], [31]. Also, many variants of LFSRs, e.g., de Bruijn 
counter, weighted pattern generator, phase shifter and cellular 
automaton [29], have been proposed to control the pseudo­
random stimuli distribution. Furthermore, there are known 
methods to alter pseudo-random sequences for manufacturing 
test (e.g., [9], [26]). Nevertheless, none the above-mentioned 
methods have been tuned to force all the pseudo-random 
stimuli to the unique functional constraints defined in pre­
silicon verification environments . 

The unique requirements of PSV environments motivate 
our work. Based on a deterministic set of faults, the goal of 
manufacturing test is to obtain high fault coverage with a few 
test patterns in short time. It is sufficient if any LFSR output 
is altered to target a random-pattern resistant fault, which has 
not been detected up that point. However, PSV is aimed at 
generating a large volume of valid (functionally-compliant) 
random stimuli to reveal unforeseen design errors that have 
escaped to the silicon prototype. Therefore, the duration of 
PSV experiments on silicon prototypes may last minutes to 
hours (or even days), unlike testing for fabrication defects 
in each circuit instance, which is on the order of seconds to 
tens of seconds. Due to these fundamental differences, all the 
stimuli applied to the design under validation must satisfy the 
functional constraints. Besides, the PSV experiments might 
need to change as the validation process progresses, which 
mandates in-system programmability of new constraints that 
have to be satisfied by the randomized stimuli. 

A method presented in [l3], [14] has tackled the challenge 
to generate functionally-constrained pseudo-random sequences 
by removing the noncompliant stimuli by reseeding LFSRs. 
Consider the case of generating stimuli containing two 4-bit 
signals a and b, the valid stimuli are constrained as follows: 
a ?: b. As shown in Fig. 2(a), the unconstrained LFSR 
generates a sequence of random stimuli, among which only 
some stimuli are valid. Hence the reseeding logic is added to 
control the state of LFSR as shown in Fig. 2(b). Before the 
LFSR generates an invalid stimulus, the pre-computed seed 
would be loaded into the LFSR, hence skipping the invalid 
subsequence. The preparation for the seeds requires solving 
system sate equations. The solvability and the frequency of 
reseeding depend on the LFSR configuration and constraints. 

Motivated by the need to reduce the amount of data that 
is stored on-chip for programmable CRSGs, our contribution 
from this paper is a new CRSG (and its design method) 
comprising a hardware random generator and correction logic. 
It eliminates the need for solving system equations and con­
tinuously reseeding LFSR with a set of seeds, as done in 
prior works [13], [14]. Rather, the CRSG performs real-time 
on-chip correction for each invalid stimulus at the output 
of the random generator. The user-defined constraints are 
translated into a set of equivalent cubes. Fig. 2(c) shows a 
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Fig. 2. Constrained-random stimuli generation by employing 
configuration/transformation logic circuitry around an LFSR. 
In order to force the output from the LFSR in (a) to satisfy the 
constraint a ;::: b, the logic in (b) changes the state of LFSR 
with the new seed whenever an unsatisfied output would be 
generated. Alternatively, the logic in (d) corrects the LFSR 
patterns to match the specified bits from at least one cube 
listed in (c). For example, the original output "0101 1010" 
in (a) is corrected to "0101 0010" in (d) based on the cube 
"XIXX OOXX". 

typical set of equivalent cubes for the constraint a ;::: b. For 
example, the cube "lXXX OXXX" means the output is valid 
as long as the most significant bits of a and b are 1 and 0 
respectively. The CRSG uses these cubes to mask the invalid 
stimuli at the output of the LFSR, as conceptually illustrated 
in Fig. 2(d). The CRSG is in-system programmable and the 
user can apply different randomized sequences with distinct 
user-defined constraints by updating the configuration needed 
for the correction cubes. The basic idea is to let the LFSR 
run autonomously and the outputs from LFSR are masked by 
the correction logic. One cube can imply a large number of 
valid stimuli that satisfy the user-defined functional constraints. 
Since the original cube masks may still require a large volume 
of data, they need to be efficiently encoded before being stored 
on chip in a compact manner; subsequently these compact 
masks need to be decoded in real-time before being used by 
the correction circuitry at the output of the LFSR. The method 
proposed in this paper achieves this goal without the need for 
a significant investment in on-chip logic or memory resources. 
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Fig. 3. The flow in the pre-processing phase. 

The overview of our method for designing a new type 
of on-chip CRSG is presented in Section II and Section 
III provides the specific details of the pre-processing phase. 
The hardware implementation is given in Section IV. The 
performance and area cost are evaluated in Section V, followed 
by the conclusion in Section VI. 

II. METHOD OVERVIEW 

During the pre-silicon verification phase, a series of test 
cases can be created automatically using constrained-random 
tests. The constraints are designed and formalized to Sys­
tem Veri log expressions [11], based on the application-specific 
functionality and verification requirements. The constraint 
expressions are parsed and handled by the pseudo-random 
number generator, which then generates valid stimuli. The 
proposed method reuses the constraints expressions written in 
System Veri log, so as to preserve the validity and effectiveness 
of pre-silicon verification stimuli. 

Our method operates both at design-time and at run-time 
(or validation-time). At design-time, the configuration of the 
CRSG hardware should be selected, including, for example, the 
capacity of the on-chip memory or the size of the LFSR. This 
step is illustrated by the "Insert CRSG" box in Fig. 1. At run­
time, the user is given the freedom to change the configuration 
of the CRSG, in order to apply functionally-compliant se­
quences with different (user-programmable) constraints. These 
constraints for the stimuli are captured in System Verilog (i.e., 
the same language used during the pre-silicon verification) and 
can be updated iteratively based on the specific debugging 
needs as the validation process evolves. The constraints are 
parsed into compact binary cubes (CBCs) as illustrated by the 
"Prepare cubes for validation" box in Fig. 1 and elaborated 
in Section III. Then the cubes are loaded into the on-chip 
memory and activated for stimuli correction thus facilitating 
continuous functionally-compliant random stimuli generation, 
which is illustrated in box "StartlUpdate stimuli generation" 
box in Fig. 1 and elaborated in Section IV . 

The data flow in the pre-processing phase is shown in 
Fig. 3. The SystemVerilog constraints are parsed into an 
equivalent set of cubes during the pre-processing phase, which 
is similar to the cubes shown in Fig. 2( c). The set of cubes 
covers exactly all the possible valid stimuli which satisfy 
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Fig. 4. The top-level architecture for the on-chip CRSG. 

the user-specified constraints. Then the cubes are mapped 
into binary cubes according to the mapping dictionary and 
then encoded into a certain format of CBCs by the encoding 
algorithm, for the ease of being stored in the on-chip memory 
efficiently. The specific details of the mapping and encoding 
algorithms will be provided in the following section. 

The top level architecture for the on-chip hardware is 
shown in Fig. 4. The control unit controls four main functional 
parts: an on-chip cube memory, CBCs decoding logic, the 
pseudo-random generator based on a maximum-length LFSR, 
and a correction structure comprising multiplexers and register 
chains. The CBCs are stored into the cube memory preceding 
on-chip stimuli generation, whose address is issued from the 
control unit. The pseudo-random generator can generate one 
primitive stimulus per clock cycle. Meanwhile, one CBC is ac­
tivated each time, which is first fetched from the cube memory 
and then decoded into a binary cube. Based on the activated 
cube, the correction logic simultaneously checks and modifies 
the primitive stimulus from the pseudo-random generator into 
a valid stimulus. Hence, the CRSG can continuously generate 
valid stimuli to the DUV cycle by cycle. 

III. CONTENT PREPARATION FOR THE ON-CHIP CRSG 

A. Customized SystemVerilog Parser 

We use SystemVerilog for the specification of constraints 
because it has standardized support for constraint definitions 
and it is widely used in practice. System Veri log offers flexible 
syntax and libraries to create constrained-random stimuli by 
user-defined constraints. The syntax support for constraint 
classes can be broadly classified into constraints on variable 
values (e.g., arithmetic and logical expressions, or if-else and 
implication relations), constraints on distributions of patterns, 
and constraints on the solving order during simulation. Only 
constraints on variable values are supported by our current 
methodology for designing and configuring hardware circuity 
for in-system generation of constrained-random stimuli. In 
addition, our support for constraint randomization does not 
include sequential behaviour. Our future work will investigate 
how to support other features from pre-silicon testbenches, 
such as controlling the distribution of randomized variables 
or capturing the sequential relationships between randomized 
variables, as an extension of the methodology presented in this 
communication. 

Fig. 5(a) shows an example of constraints including logical 
and conditional expressions, which are encapsulated in a class 
block. A customized System Verilog parser is designed to parse 
the constraint sources into a set of cubes, which will constrain 
the patterns in the same way as the source constraints. As 
shown in Fig. 5(b), each cube in the set covers a subspace of 
valid stimuli. A logic minimization tool, Espresso [18], is used 
to reduce the cardinality of the set of cubes, by removing and 
merging the cubes which are not essential (i.e., the ones that 
cover uniquely at least one valid pattern). The cardinality of 
the minimized set of cubes is specific to each constraint and it 
depends primarily on the distance between valid stimuli within 
the Boolean space. 

Presently our method supports System Verilog expressions 
for constraints only on random variable values. If the constraint 
expressions can be evaluated to be true or false based on their 
numerical values, then they can be accepted by the parser to 
generate content for CRSGs. The method supports arithmetic 
operators (+, -, *, j), shift operators (arithmetic/logic 
shift, left/right shift), logic operators (&, I, A, !, - ), re­
lational operators ( >, >=, <, <=, ==) , and set member­
ship operator (,inside' and its negated form). The implication 
constraints using if-else statements or the implication operator 
( -> ) based on randomized variables are supported in constraint 
expressions. The 'foreach' iterative constraints can be sup­
ported, so long as each constraint in the unrolled iteration 
is also supported. The array reduction iterative constraints 
for randomized variables are processed as a single constraint 
over all the elements in the array. However, randomizing the 
dimension of the array is not supported by our method because 
the number of array elements must be known at design time 
for the current hardware implementation. 

In pre-silicon verification environments, the constraint ex­
pressions can be written as class blocks or as in-line constraints 
and they can be enabled/disabled seamlessly in a testbench; in 
hardware they can also be enabled/disabled via in-system/on­
line reprogramming of the CRSG, however it does involve hu­
man intervention because the new content for the CRSG needs 
to be regenerated and uploaded into the on-chip memory. Both 
the content and the size of equivalent set are independent of 
the hardware architecture. For a cube including q 'X's, which 

typedef enum {ADD. SUB. SHIFT _L.SHIFT_AR.SHIFT_LR} op_type; 

class StimuliForALU; 

rand op_type opcode; rand bit[7:0] opr!, opr2; 

constraint oprJange { 

(opcode==SHIFLL II opcode==SHIFLAR II opcode==SHIFLLR) 

-> opr2 inside {[O:7]}; 

endclass 

(a) User-defined constrall1ts wntten 111 SystemVenlog 

opcode[2:0] 
OOX 
01X 
100 

oprl[7:0] 
XXXXXXXX 
XXXXXXXX 
XXXXXXXX 

opr2[7:0] 
XXXXXXXX 
OOOOOXXX 
OOOOOXXX 

(b) The equivalent set of cubes contains three cube strings after minimization 

Fig. 5. The System Verilog constraints are parsed into the 
equivalent set of cubes. 
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TABLE I. THE DICTIONARY FOR MAPPING CUBE 

STRINGS INTO BINARY CUBES. 

Character in a cube string 2·bit mapped binary code 
' a · 00 
'I' 01 
'X' 10 

denotes q free bits, the number of valid stimuli implied by the 
cube is 2Q• For example, the 19-bit cube 01X XXXXXXXX 
OOOOOXXX from Fig. 5(b) covers a total of 4096 valid stimuli. 
The complete set of cubes implies all the possible valid stimuli 
that satisfy the user-defined constraints. 

B. Mapping and encoding algorithms 

The cubes parsed from the System Veri log constraints are 
mapped into binary cubes based on a mapping dictionary 
and further encoded into a more elaborated CBC format, 
which does not only take advantage of the available embedded 
memory space with higher efficiency, but it also simplifies the 
correction logic. 

A dictionary encoding algorithm is used to encode the cube 
strings into binary cubes. As shown in TABLE I, the only three 
valid characters in cubes, i.e. '0', '1' and 'X' occupy three 2-
bit binary code points, leaving the code point 11 reserved for 
compaction purposes. The code point for 'X' prefixed with 1, 
which is different from the other two characters, can simplify 
the logic of the correction structure, which will be elaborated in 
the following section. For instance, the 19-character long cube 
string "OIX XXXXXXXX OOOOOXXX" is mapped into a 19-
code long binary cube in 38 bits "000110 1010101010101010 
0000000000101010" . 

Some cubes might include consecutive- 'X', consecutive­
'0' and consecutive- ' l' sequences. The cause of this can be 
explained by practical requirements of verification, e.g., if 
a variable is not constrained, all the q bits in the variable 
are filled with consecutive 'X's in the cube. Likewise, the 
consecutive- '0' can be used for resetting a variable under 
some user-defined conditions. Based on this observation, our 

Run·length 

segment 

Mixed segment 

Cube string 

2·bit prefix r·bit runJength 

� 
I 00/01/10 I I 

11 I \ 
Binary cubes 

(a) 

CBC(r=6) 

2·bit suffix 

J 11 I 

OOX XXXXXXXX XXXXXXXX 11000011,10010001 
01X XXXXXXXX OOOOOXXX 11000111,10001001, 

00000101,10000011 
100 XXXXXXXX OOOOOXXX 11 0 1 0000 11,1 000 1 000, 

00000101,10000011 
(b) 

Fig. 6. The format and examples for the run-length segment 
and the mixed segment. 

algorithm combines prefix encoding with run-length encoding 
in order to compact the binary cubes into CBCs. It first 
partitions a cube into pieces of segments. There are two 
types of segments: the run-length segment and the mixed 
segment, as illustrated in Fig. 6(a). If the count in a consecutive 
sequence goes beyond a threshold, it is partitioned as a run­
length segment, with a 2-bit binary code prefix denoting the 
consecutive character. Otherwise the sequence between two 
run-length segments is partitioned as a mixed segment, which 
is filled with the original binary codes and edged by a 2-bit 
prefix and a 2-bit suffix equal to the 11 binary code. The 
threshold depends on the length of run_length field, so as 
to make a consecutive sequence compacted shorter by being 
partitioned as a run-length segment rather than as a mixed 
segment. The converted CBCs from Fig. 5(b) are shown in 
Fig. 6(b), in which case the threshold is set to 2. 

The compaction rate varies with the regularity of con­
straints and the format setting. Provided the length of 
run_length field is r bits, a binary cube can be compacted 
into a CBC down to the size of 1/2,..+1 of the original binary 
cube. On the other hand, for the worst case when the binary 
cube is a single mixed segment, the overhead is a constant 
nibble, i.e. a 2-bit prefix and a 2-bit suffix. 

IV. ON-CHIP CRSG ARCHITECTURE AND 

FUNCTIONALLY-COMPLIANT STIMULI APPLICATION 

The proposed CRSG consists of the control unit, the on­
chip cube memory, the decoding logic, the pseudo-random 
generator and the correction structure. It supports the workflow 
from storing and decoding CBCs, primitive random stimuli 
generation and correction, to the final stimuli output. Both the 
throughput and memory logic can be flexibly adapted to the 
validation environment. 

A. Cube memory 

The on-chip cube memory stores the CBCs. When the 
control unit activates a CBC, its initial address is sent to the 
cube memory. The fetched CBC is loaded into a buffer for 
decoding. Considering the issue of word alignment for the 
memory, each CBC starts with a new address, so that no in­
word offset information is needed for activating a new CBC. 

If the stimuli for the DlN were transmitted directly from a 
host or an on-board memory, i.e., without compaction and on­
chip buffering, then each stimulus would be used once and then 
discarded. Such mechanism requires new stimuli frequently 
and its main limitation is the need for very high-bandwidth 
interfaces. By contrast, by employing an on-chip embedded 
memory for buffering CBCs, the proposed CRSG architecture 
receives compact cubes, which are then expanded on-the-fly 
to correct LFSR patterns during the stimuli application. Each 
CBC can remain activated for an arbitrary number of cycles 
to constrain the pseudo-random generator to generate a user­
controlled amount of valid stimuli. Because both the number 
and the size of CBCs are much smaller than the expanded 
stimuli, it alleviates the need for high-bandwidth interfaces. 
The cube memory can be implemented either as a FIFO 
addressed by implicit increment, or a dual-port RAM. In the 
case the volume of CBCs is very large, the capacity of the 
embedded memory can be lowered by buffering only a subset 
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of CBCs, which will be used during a limited time window 
for stimuli application; the subsequent subset of CBCs can 
be uploaded concurrently with the application of the stimuli 
expanded from the current subset of CBCs. Finally, it should 
be noted that the capacity of the cube memory is not influenced 
by the circuit size, since it is determined only by the number 
and dimension of cubes, which are influenced by the type of 
constraints and the size of randomized packets. 

Fig. 7 shows the data flow for activating and updating 
CBCs based on the cube memory built with dual-port RAM. 
One port is used for fetching the activated CBC via r _addr 
and r _data . The other port including w_data and w_addr is 
reserved for updating a new CBC when it is ready from the 
control unit. The bitstream transmission via a low-bandwidth 
interface takes less pin resources, while the control unit recon­
structs the CBC and sends word by word to the cube memory. 
The recently sent CBC is updated and after being activated 
and used, the CBC can be set to be outdated and can be 
overwritten by a new CBC. The addressing control unit issues 
the CBC address for update and activation independently. The 
control unit keeps track of the activated address and the update 
address where the used CBC can be overwritten by a new CBC 
transmitted from the host. 

B. Decoding logic 

The decoding logic consists of multiple byte-wise decoders 
to support parallel decoding and a 2n-bit buffer to store the 
decoded n-code binary cube, as shown in Fig. 7. It supports 
to decode p binary codes (each binary code has 2 bits) per 
clock cycle, where p denotes the degree of parallelism. Each 
combinational byte-wise decoder determines the segment type 
by the 2-bit prefix (if the type is not inherited from the previous 
byte). The byte is interpreted into 2 to 4 codes as a mixed 
segment or 2 to 27" codes as a run-length segment. In each 
clock cycle, the first p codes from parallel decoders are shifted 
into the binary codes buffer, leaving the remainders for the 
following cycles. Thus decoding a CBC of n codes requires 
I nip l cycles. For example, a 168-code binary cube (as used in 
our experiments detailed in the next section) is decoded from 
the CBC format in 21 cycles if p is 8, or 11 cycles if p is 16. 
The parallelism facilitates rapid continuous cube switching. 

C. Pseudo-random generator and correction structure 

The pseudo-random generator consists of a k-bit 
maximum-length LFSR and a k-to-m phase shifter (k � m � 
n), as shown in Fig. 7. The period of the LFSR is 2k - 1. The 
phase shifter is combinational XOR gate logic, which expands 
each k-bit output from the LFSR to m-bit primitive stimulus. 

The correction structure consists of a 2n-bit shadow reg­
ister and m bitwise multiplexors, as shown in Fig. 7. Each 
two bits in the shadow register are paired with a bitwise 
multiplexor. The shadow register pipelines n decoded binary 
codes from the decoding logic, which avoids stalling stimulus 
correction during cube switching. A virtual 2m-bit window 
is created and rolled in the 2n-bit shadow register, which 
indicates the m activated binary codes for the current cycle. 
Each multiplexor decodes a 2-bit binary code in the virtual 
window and arbitrates whether to output the corresponding bit 
from the pseudo-random generator or to correct it to a constant 

Control unit' 

Activated 
address 

Fi nal stimulus 

Dual port RAM 

eBe (update to use) 
Update eBe 
eBe (used) 

Activated eBe 
eBe (to be used) 

Fig. 7. The dataflow from the pnmltIve stimulus in the 
pseudo-random generator to the final stimulus corrected by 
the correction structure which gets the activated binary cube 
from the cube memory and the decoding logic. 

o or 1. Based on the encoding dictionary, the left bit in the 
binary code can directly serve as the selection signal and the 
right bit is the constant output when it is corrected. 

The distribution of the stimuli generated by the CRSG 
relies on the unifonn distribution associated with LFSRs 
based on primitive characteristic polynomials, however it also 
dependent on the position of Os, Is and Xs in each cube; in 
addition, the distribution is also biased by the state of the LFSR 
when a particular CBC is activated. Taking a 4-bit LFSR as 
an example, if the LFSR has two adjacent states ' 1100' and 
'1001', i.e., the LFSR shifts left by one position and it feeds 
'1' at the rightmost position, an unconstrained CRSG (i.e., the 
activated cube is 'XXXX') will output the two binary values 
as two consecutive stimuli; hence the distribution of samples at 
the output of the LFSR will contain each of the samples ' 1100' 
and ' 1001' exactly once. If the activated cube is 'XXlO', the 
two generated stimuli are '1110' and '1010', thus each of 
them will again count once in the distribution. However, if 
the activated cube is 'XIXO', both stimuli from the output of 
the LFSR will be corrected to '1100' and hence this particular 
sample will be accounted for twice in the distribution. The 
impact of the correction logic on the sample distribution is 
experimentally assessed in section V .  
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Fig. 8. Timeline for CBCs decoding and switching during 
stimuli generation. 

D. The control unit 

The control unit keeps tracks of addresses for the cube 
memory, as shown in Fig. 7. It uses the cube memory as 
a circular queue. Both the activated address and the update 
address move down to the following CBC position until the 
end of the memory, or reset to the initial address. In order to 
compute the address for the next activated CBC, the control 
unit receives the length of currently activated CBC for the 
decoding logic, which is added to the current activated address. 
The activated CBC is fetched from the cube memory and 
decoded into a binary cube by the byte decoders. Then it is 
copied to the shadow register in one cycle, based on which 
the multiplexors arbitrate each output bit between the pseudo­
random bit and the lower bit in the mask code. 

The control unit also synchronizes the functional parts, so 
that the architecture supports to generate an n-bit final stimulus 
(or packet) in a user-specified number of clock cycles (denoted 
as T). Therefore the stimulus is split into m-bit slices (m is 
equal to I njTl ), except the last slice if the remainder is not 
zero. As shown in Fig. 8, three packets are generated within 
3T cycles based on Cubeo. Meanwhile CBC1 is decoded into 
Cubel and will be activated after the third packet is completely 
generated. Generally, while an n-bit packet is generated in T 
cycles, the next CBC is being decoded and will be ready within 
In j p l cycles. Then it switches to be active immediately after 
the previous complete packet is generated. Fig. 8 illustrates 
the minimum cycle requirement for switching to a new cube, 
within which In j pTl packets must be generated based on the 
same cube. 

V. EXPERIMENTAL RESULTS 

In this section we examine the cost of the proposed 
CRSG and we assess its effectiveness. The proposed CRSG 
is compared against the known work on the same topic [14], 
which tackles exactly the same challenge of designing and 
applying user-programmable constrained-random sequences in 
real-time. We should note that the research presented in this 
paper is focused only on the controllability aspects of post­
silicon validation (see Fig. 1). For dealing with the observabil­
ity aspects, the interested reader is referred to on-line response 
checking using hardware assertions [8] or event detection using 
programmable trigger units [16], and real-time trace collection 
[4], [15]. 

We analyze the proposed CRSG by varying the length 
of the LFSR (denoted as k-bit) and the length of the final 
stimulus (denote as n-bit). Note, the length of the final stimuli 
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Fig. 9. Hardware cost of proposed CRSG and the design in 
[14] according to the length of LFSR k (given T = 1, n = 16 
and p = 8). 
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Fig. 10. Hardware cost of proposed CRSG and the design in 
[14] according to the length of the stimulus n (given T = 1 
and p = 8). 

should support the maximum size of random packets for the 
different blocks that are validated using the respective CRSG. 
For this experiment we assume that all the stimuli bits for 
the entire packet are applied in a single clock cycle (T = 1). 
The synthesis results based on the k-bit LFSR are shown in 
Fig. 9. Compared with the reference design [14], whose area 
is directly influenced by the size of the LFSR, the area cost of 
the proposed CRSG grows insignificantly with the length of 
the LFSR. Considering that the period of the LFSR-generated 
sequence has an exponential dependence on the dimension of 
the LFSR (assuming the characteristic polynomial of the LFSR 
is primitive and irredundant), the proposed CRSG architecture 
can employ large LFSRs to avoid the repetition of pseudo­
random stimuli, which are corrected within the CRSG to be 
functionally-compliant, when very long validation times are 
needed; for example, even a 50-bit LFSR that works at 1 GHz 
can operate autonomously for over ten days. Nonetheless, due 
to the 2n-bit binary code buffer and the 2n-bit shadow register 
(see Fig. 7) and, unlike [14], the proposed CRSG is dependent 
on the size of the validation stimuli (packets) that are applied 
to the DlN. The synthesis results of the architecture according 
to different lengths of stimuli are illustrated in Fig. 10. 

As discussed in Section IV, an important parameter, which 
influences how fast the masks used for correction of pseudo­
random sequences can be switched, is the degree of parallelism 
p. The synthesis results by varying p are illustrated in Fig. 11 
and Fig. 12. As for the previous experiments, it is assumed 
that the stimuli are applied in a single clock cycle (T = 1). As 
expected, both the area and the critical path delay are affected 
by p, because each byte decoder must decide the segment 
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Fig. 11. Hardware cost according to the degree of parallelism 
in the decoding logic (given T = 1, k = 168 and n = 168). 
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8 

Fig. 12. Critical path delay according to the degree of 
parallelism in the decoding logic, estimated by static timing 
analysis with a CMOS 90nm standard cell library (given 
T = 1, k = 168 and n = 168). 

type based on the previously decoded byte or the current 
byte prefix (as described in subsection IV-B). This parameter 
p is independent of the complexity of specified constraints, 
which might influence only the number of mask cubes that 
are compacted and stored in the on-chip memory. Nonetheless, 
the higher the degree of parallelism, the faster one can switch 
between these mask cubes. 

Concerning the side-effects of the proposed CRSG archi­
tecture on timing, when one considers the whole view of on­
chip functional units and interconnection logic, the delay paths 
in the CRSG are unlikely to dominate the circuit's operating 
frequency. What the CRSG architecture impacts is the timing 
delay from original function signal to the port of the DUV, 
which is now multiplexed between the original signal and the 
stimulus from CRSG. In the event that CRSG will impact the 
operating frequency, an optional n-bit pipeline register chain 
can be inserted between the output of the correction structure 
and the DUV. 

Concerning the quality of the randomized stimuli generated 
by the CRSG, we first examine their distribution. Fig. 13(a) 
illustrates the relation between the number of stimuli generated 
and the number of unique stimuli based on a simple constraint 
a ?: b, in which a and b are unsigned 8-bit variables. If 
the random values are drawn from the uniform distribution 
then, until we exhaust the entire valid space (as defined by 
the constraint), the value on the Y axis should match the 
value on the X axis; thereafter, the value on the Y axis 
saturates to the maximum number of unique stimuli. The 
maximum number of valid 8-bit a and b pairs that satisfy 
a ?: b is 32,896 and the software-based random generator 
in a System-Verilog compliant simulator [27] reaches this 
saturation point after 543,085 patterns; it should be noted 
that these results have been obtained using the "rand" type 
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Fig. 13. The relation between the number of generated stimuli 
and the number of unique stimuli based on the constraint a ?: 
b. The unsigned variables a and b are set to 8 bits in (a) and 
16 bits in (b) respectively. 

for the randomized variables, for which the random values 
are not drawn from the uniform distribution (the "randc" type 
needs to be used in order for the software random generator 
to sample from the uniform distribution). As the number of 
generated patterns increases, the number of unique patterns 
generated by the hardware method is approximately half of the 
ones generated in a software simulator (for the same number 
of total patterns). Fig. 13(b) shows this trend more clearly, 
where a and b are set to be 16 bits each. It should be noted 
that during post-silicon validation it is reasonable to have 
experiments with a significantly larger number of clock cycles 
than during pre-silicon verification; therefore, though the valid 
randomized stimuli are repeated more often in the hardware 
implementation, as confirmed by this experiment, the extensive 
number of clock cycles exercised on silicon prototypes (at 
least four orders of magnitude more than during pre-silicon 
simulation [10]) are expected to compensate for this repetition 
of constrained-random stimuli. 

Concerning the impact of constraint complexity on the cube 
memory, we have performed the following experiment using 
integer linear programming (ILP) constraints because they 
can intuitively illustrate the numerical relationships between 
variables (and many arithmetic, relational and even some logic 
constraints can be converted to ILP forms). TABLE I1(a) shows 
the trend of the size of the cube set when we incrementally 
impose four linear constraints on two 12-bit variables. If only 
the first constraint is used, the total number of valid pairs is 
11,943,292 and the number of cubes is 5,724. If the second 
constraint is used (in addition to the first one), the number of 
cubes becomes 4,482 and so on for the third and the forth 
constraint where we have 3,398 and 2,120 cubes respectively. 
It demonstrates for this type of problems that the cube count 
tends to go down when more constraints are added, mainly 
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TABLE II. THE CH ANGES TO THE SIZE OF THE CUBE 

SET WHEN ADDING CONSTR AINTS INCREMENTALLY. 

(a) Constraints of ILP inequalities on 1 2-bit variables 

Constraints Valid pairs Cubes 
( I )  1000 < x + 2y < 8000 1 1 943292 5724 

(2) y > 5x - 6000, and ( I )  5243774 4482 

(3) x > 600, and (1 ),(2) 3 1 43474 3398 

(4) y > 2000, and ( 1 ),(2),(3) 1 582674 2 1 20 

(b) Constraints of integer non-linear programming inequalities on 8-bit variables 

Constraints Valid pairs Cubes 
( I )  a < CO + d < b 3623738 1 4755 

(2) a" + be > bed + dO , and ( I )  262442 26 1 5  

(3) d s i n  a > b cos e ,  and ( 1 ),(2) 69555 938 

because the valid pairs count is reduced. We have also observed 
a similar trend when non-linear constraints are used, as shown 
in TABLE II(b). 

In order to evaluate the effectiveness in reducing the 
storage requirements for large validation sequences, we have 
configured our CRSG to generate stimuli for resembling 168-
bit packet heads for H.264 real-time transport protocol (RTP) 
[30], as well as 160-bit packet heads in the PCI-express (PCIe) 
3.0 transaction layer packet (TLP) format [3]. Each field in 
the packet head must satisfy the requirements specified in 
the protocol standards, including the format, defined/reserved 
values and the coordination among fields. The fields that can 
be randomized are extracted for the design of constraints, 
thus leaving the non-random CRC field to be attached by 
CRC computation logic. A series of System Veri log constraints 
are designed to guide cube generation. The constrained bits 
involved in SystemVerilog constraints for the packet head vary 
according to the protocol specification. The results of parsing 
the constraints to cubes (the average number of constrained 
bits and the total number of cubes) are listed in TABLE III. 

Only the cubes in the CBC format are required to be 
loaded to the cube memory; this requires a quarter to a half 
of the storage needed for the binary cubes. Compared to 
[14], which stores basis vectors from which LFSR seeds are 
expanded on-the-fty, the volume of data that is required by the 
proposed method is at least an order of magnitude less. This 
is because the number of basis vectors from [14] needed to 
satisfy a particular cube can be large and, more importantly, 
the dimension of each of these vectors is as large as the LFSR 
size. Hence, the savings of the proposed CRSG are explained 
by the fact that the storage requirements are not dependent on 
the LFSR size or the number of LFSR seeds that can expand 
into sequences that match the constraint provided by each 
cube. Considering that the total number of constrained random 
patterns that can be applied to the DUV using only one cube is 
defined by 2Q, where q is the number of unspecified bits (which 
can be computed by subtracting specified bits from cube length 
provided in TABLE III), it is evident that the number of stimuli 
that can be used for validation can easily meet the objectives 
of real-time execution that lasts for hours. 

We should note also that in the event that the capacity of 
the on-chip memory is a tight implementation constraint (e.g., 
approximately 80 Kbytes for PCIe TLP might be excessive for 
some designs), one can update CBCs on-chip dynamically, as 
described in Section IV . The main reason why this dynamic 

TABLE III. 

Packet 
format 

H.264 RTP 

PCIe TLP 

PACKET HE AD GENER ATION RESULTS FOR 

PCIE AND H.264. 

Cube Constrained Cube Binary cubes CBCs 
length (bit) bits count size (KBytes) size 

(KBytes) 
168 1 0  335 14.91 3 .9 

1 60 33 5 1 1 9  204.76 8 1 . 8  

update is  feasible is  because any CBC will decode into a 
valid mask that will ensure that the pseudo-random patterns 
at the output of the LFSR will be mapped onto functionally­
compliant stimuli. This is a direct consequence of translating 
the System Verilog constraints into cubes, as described in 
Section III. For example, considering that 5,119 CBCs for PCIe 
TLP in TABLE III require 81.8 Kbytes, one can store approx 
250 CBCs into a 4 Kbyte memory block; in such a memory­
constrained environment, the CRSG can iterate through the 
masks expanded by these 250 CBCs, while a new subset of 
CBC is loaded through a low-bandwidth serial interface from 
on-board storage or directly from the host. 

V I. CONCL USION 

In this paper, we have presented a new method for 
designing constrained-random stimuli generators for post­
silicon validation. Unlike previous works [13], [14], which 
force autonomous random generators to skip the functionally 
non-compliant stimuli, our method corrects the output of a 
random generator to meet the user-specified constraints. The 
hardware cost is comparable to the previous works, while the 
volume of data that needs to be placed on-chip is reduced. 
This type of functionally-compliant random generators placed 
on-chip can be used for user-controlled random validation 
experiments on the silicon prototypes that might require 
extensive periods of time (hours to days) without costly 
storage requirements. The proposed method is applicable to 
any digital blocks and can leverage the constraints developed 
during pre-silicon verification. 
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