
On-Chip Constrained Random Stimuli Generation
for Post-Silicon Validation Using Compact Masks

Xiaohing Shi and Nicola Nicolici
Department of Electrical and Computer Engineering

McMaster University, Hamilton, ON, Canada

Email: shix6@mcmaster.ca.nicola@ece.mcmaster.ca

Abstract-During post-silicon validation a large number of
constrained random stimuli are applied to expose the subtle
design errors that have escaped to the silicon prototypes. In this
paper we present a new method to design constrained random
stimuli generators, which are programmable and can be placed
on-chip to generate extensive random, yet functionally-compliant,
sequences for real-time/in-system validation. T he basic idea is to
translate the constraints for constrained-random variables into
binary cubes, whose specified values are used as masks to correct
random sequences. To reduce the volume of data needed to be
placed on-chip, the cubes are efficiently encoded and expanded in
real-time. Experimental results confirm the effectiveness of this
new method when compared against the prior work on the topic.

I. INTRODUCTION

Ensuring the quality of integrated circuits is critical
throughout the implementation cycle. Pre-silicon verification
is commonly employed to ensure the consistency between
the design and its specification. Before tape-out what can be
measured is limited by the simulation time and accuracy, and
designs are released for manufacturing when the confidence
level is deemed sufficient. Manufacturing test is focused on
screening for physical defects in each fabricated device; con­
sidering that its reference is the design implementation, manu­
facturing test is not concerned with finding and identifying
subtle design errors (or bugs) that have escaped to silicon
prototypes. Thus the verification tasks employed during the
pre-silicon phase continue on these early silicon prototypes, a
term commonly referred to as post-silicon validation (PSV).

A. Background and Related Work

Both simulation-based verification and formal verification
are used to detect and fix implementation errors before com­
mitting to fabrication of a silicon prototype. The simulation­
based methods find design errors based on a large set of test (or
use) cases. Nonetheless, simulation is known to be slow; for
example, the study on a commercial microprocessor [7] argues
that it may take weeks of simulation of test cases that will take
merely seconds to minutes of real-time execution. Therefore,
simulation metrics (e.g., code/assertion coverage) are used as
stop signs to balance the verification quality against the time to
tape-out. Formal verification's inherent limitation in modelling
the whole design confines its applicability within focused units
on small scales. Furthermore, when accounting for unique
electrical states, such as the ones caused by process varia­
tions or effects exercised only under certain process-voltage­
temperature corners, it becomes more difficult to develop
both accurate and scalable pre-silicon verification methods
[19]. Consequently, to compensate for this insufficiency of

pre-silicon verification methods, PSV, which is performed on
silicon prototypes, is a critical step for finding design errors
before committing to high-volume manufacturing.

Key challenges in PSV are error detection and repro­
duction, as well as root causing [12]. It is necessary to
generate both proper stimuli and to record sufficient failing
data for error analysis. Considering the unique constraints on
controllability and observability during PSV, many approaches
have been explored to bridge the gap between pre-silicon
to post-silicon validation [20]. Also, reusing design-for-test
(DFT) structures, including wrapper registers [1] around the
design under validation (DUV) or scan chains [28] across
the DUV, has been explored. Nonetheless, scan chains are
insufficient because the scan dumps do not provide a history
of events of interest that lead to the corrupted state [21].
Thus, some PSV-specific structures, such as on-chip trigger
units [16] or hardware assertion-checkers [8], are employed to
reduce the latency from error excitation to its detection. They
are commonly used together with trace memories [4], [15] or
footprint recorders [22], which can track a subset of relevant
signals over a window that lead to the failure detection.

A large volume of random, yet functionally-compliant,
sequences are needed for exposing the design errors, which
have escaped to the silicon prototypes [2], [19]-[21], [24].
During pre-silicon verification, the constrained random num­
ber generator embedded in the simulator generates stimuli
that satisfy user-defined constraints [25]. Considering that
transmitting the constrained-random stimuli from simulation
environments to the silicon prototype is obviously impractical
due to bandwidth limitations, one has to consider how to
generate a large volume of randomized functional sequences
in real-time. Using instruction-level templates [2], [24], the
in-system constrained-random stimuli generation can produce
instruction sequences similar to the ones during simulation.
Although such types of methods are useful for microprocessor­
centric designs, they are limited for high-speed peripherals and
hardware accelerators (e.g., video or graphics). Therefore, for
logic blocks and data channels not easily accessible and not
controlled by programmable embedded microprocessors, on­
chip constrained-random stimuli generator (CRSG) structures
can be employed to generate at-speed functionally-compliant
stimuli for the silicon prototypes. This type of stimuli is
subjected to constraints, consistent with the specification and
format of data packets fed to the DUV in an application
environment. While there have been custom implementations
of such CRSG structures (e.g., [32]), a systematic way of
designing them is an active area of research [21].

Paper 22.1 INTERNATIONAL TEST CONFERENCE
978-1-4799-4722-5/14/$31.00 ©2014 IEEE

c
o .� := '" I
� �

c
o

:9 '" I '"
o �

Yes

......... - . - . - . .; '------:T,...----'
SCOPE OF

THISWO�K
,.
'�J

No

StartlUpdate

! stimuli generation

.... . _ . _ . _ . _ . _ . _ . : - - - _ . _ . _ . _ . _ . _ . _ . _ . _ . _ . ' Yes

Fig. 1. The scope of this work during the implementation
cycle.

B. Motivation and Contribution

The scope of this work is highlighted in Fig. 1. Pre­
silicon verification is concerned with identifying and fixing
design errors and therefore the register transfer-level (RTL)
description is iteratively refined. Once the confidence level is
sufficiently high, the implemented design is sent for fabrication
and, after screening for manufacturing defects, the design is
validated on a system platform. It is common that in this
phase subtle design errors (which affect every single fabricated
device) are uncovered. In order to exercise as many use-cases
as possible, randomized, yet functionally-compliant, sequences
are applied to the DUV. The main advantage of post-silicon
application of such randomized/functional tests is the huge
volume of clock cycles; considering that in a few seconds
to minutes of real-time execution more stimuli are applied
to the DlN than during the entire pre-silicon phase, a few
hours (or possibly days) of validation can uncover (or help
increase the confidence of the lack of) design errors. In order
to facilitate controllable experiments of such magnitude, in
this work we propose a methodology for the design-time
development and insertion of CRSG blocks and a flow for
iterative run-time configuration of these blocks (in Fig. 1 the
corresponding boxes are in shades of gray and the steps will
be elaborated in the following sections). A key advantage
over relying solely on stimuli from the native environment,
is the ability to control experiments and bias the constrained­
random sequences as the validation progresses in a user­
programmable manner, as during the pre-silicon phase. It
should also be noted that it is unlikely that one would have
golden responses and therefore the response checking is done
in a similar manner as in pre-silicon, i.e., verifying whether
properties/assertions are violated. The contributions from this
communication are not concerned with response checking and

therefore the interested reader is referred to known methods
for implementing assertions into hardware (e.g., [8]).

Some well-understood logic blocks can be employed at the
core of CRSGs. The k-bit maximum-length Linear Feedback
Shift Register (LFSR) generates 2k - 1 patterns if the charac­
teristic polynomial is primitive and irredundant [5]. The use
LFSRs for compressed deterministic test has been introduced
in [17] and this concept of reseeding LFSRs has been refined
and widely adopted in practice during the subsequent decade
[6], [23], [31]. Also, many variants of LFSRs, e.g., de Bruijn
counter, weighted pattern generator, phase shifter and cellular
automaton [29], have been proposed to control the pseudo­
random stimuli distribution. Furthermore, there are known
methods to alter pseudo-random sequences for manufacturing
test (e.g., [9], [26]). Nevertheless, none the above-mentioned
methods have been tuned to force all the pseudo-random
stimuli to the unique functional constraints defined in pre­
silicon verification environments .

The unique requirements of PSV environments motivate
our work. Based on a deterministic set of faults, the goal of
manufacturing test is to obtain high fault coverage with a few
test patterns in short time. It is sufficient if any LFSR output
is altered to target a random-pattern resistant fault, which has
not been detected up that point. However, PSV is aimed at
generating a large volume of valid (functionally-compliant)
random stimuli to reveal unforeseen design errors that have
escaped to the silicon prototype. Therefore, the duration of
PSV experiments on silicon prototypes may last minutes to
hours (or even days), unlike testing for fabrication defects
in each circuit instance, which is on the order of seconds to
tens of seconds. Due to these fundamental differences, all the
stimuli applied to the design under validation must satisfy the
functional constraints. Besides, the PSV experiments might
need to change as the validation process progresses, which
mandates in-system programmability of new constraints that
have to be satisfied by the randomized stimuli.

A method presented in [l3], [14] has tackled the challenge
to generate functionally-constrained pseudo-random sequences
by removing the noncompliant stimuli by reseeding LFSRs.
Consider the case of generating stimuli containing two 4-bit
signals a and b, the valid stimuli are constrained as follows:
a ?: b. As shown in Fig. 2(a), the unconstrained LFSR
generates a sequence of random stimuli, among which only
some stimuli are valid. Hence the reseeding logic is added to
control the state of LFSR as shown in Fig. 2(b). Before the
LFSR generates an invalid stimulus, the pre-computed seed
would be loaded into the LFSR, hence skipping the invalid
subsequence. The preparation for the seeds requires solving
system sate equations. The solvability and the frequency of
reseeding depend on the LFSR configuration and constraints.

Motivated by the need to reduce the amount of data that
is stored on-chip for programmable CRSGs, our contribution
from this paper is a new CRSG (and its design method)
comprising a hardware random generator and correction logic.
It eliminates the need for solving system equations and con­
tinuously reseeding LFSR with a set of seeds, as done in
prior works [13], [14]. Rather, the CRSG performs real-time
on-chip correction for each invalid stimulus at the output
of the random generator. The user-defined constraints are
translated into a set of equivalent cubes. Fig. 2(c) shows a

Paper 22.1 INTERNATIONAL TEST CONFERENCE 2

LFSR

a(3) a(2) a[l) a[O) b(3) b(2) b[l) b[O) a(3) a(2) a[l) a[O) b(3) b(2) b[l) b[O)
1 1 0 0 1 0 1 0 v seed)
o 1 0 1 1 0 1 0 x � . 1 1 0 0

-O� �l �l �O-- �O�O�O�l- -�V 0 1 1 0
1 1 1 1

1 0 0 0
1 0 0 1
o 0 1 1
o 1 0 0

(a)

a[3:0]
1XXX
llXX

1 1 0 1

o 1 1 0 V
o 0 1 1 V
o 1 0 0 x
1 1 0 1 x

b[3:0]
OXXX
XOXX

1 1 1 1
1 0 0 0
1 0 0 1

1 0 1 0
0 0 0 1
1 1 0 1
0 1 1 0
0 0 1 1

(b)

XIXX OOXX a(3) a(2) a[l) a[O) b(3) b(2) b[l) b[O)
11XX XXOO 1 1 o 0 1 0 1 0 11

XXIX OOXO
0 1 0 1 o 0 1 o x�1I
0 1 1 0 0 0 0 1 11

lX1X XOXO 1 1 1 0 1 11
XlIX OXXO 0 0 0 0 0 x�1I
lllX XXXO 1 0 0 0 0 1 1 0 11

XXXI OOOX
o 0 1 o 0 1 1 11
0 1 1 0 0 0 x�1I

1XX1 XOOX 1 1 0 0 1 0 0 x�1I

(c) (d)

"
"
"
"
"

Fig. 2. Constrained-random stimuli generation by employing
configuration/transformation logic circuitry around an LFSR.
In order to force the output from the LFSR in (a) to satisfy the
constraint a ;::: b, the logic in (b) changes the state of LFSR
with the new seed whenever an unsatisfied output would be
generated. Alternatively, the logic in (d) corrects the LFSR
patterns to match the specified bits from at least one cube
listed in (c). For example, the original output "0101 1010"
in (a) is corrected to "0101 0010" in (d) based on the cube
"XIXX OOXX".

typical set of equivalent cubes for the constraint a ;::: b. For
example, the cube "lXXX OXXX" means the output is valid
as long as the most significant bits of a and b are 1 and 0
respectively. The CRSG uses these cubes to mask the invalid
stimuli at the output of the LFSR, as conceptually illustrated
in Fig. 2(d). The CRSG is in-system programmable and the
user can apply different randomized sequences with distinct
user-defined constraints by updating the configuration needed
for the correction cubes. The basic idea is to let the LFSR
run autonomously and the outputs from LFSR are masked by
the correction logic. One cube can imply a large number of
valid stimuli that satisfy the user-defined functional constraints.
Since the original cube masks may still require a large volume
of data, they need to be efficiently encoded before being stored
on chip in a compact manner; subsequently these compact
masks need to be decoded in real-time before being used by
the correction circuitry at the output of the LFSR. The method
proposed in this paper achieves this goal without the need for
a significant investment in on-chip logic or memory resources.

1 class GreaterEqual;
r-----------------�
I 5 V 'I . I ra nd bit [3:0] a, b ; ystem en og constramts co nstra i nt good {a >= b;}

parSing� 1<-- _e _nd_c _la_s _s ____________ -'

I Equivalent set of cubes I XXXX 0000
1XXX XOOO

Mapping .
I I 10101010 00000000

Binary cubes 01101010 10000000 �------�----�� compactin� I
\ Compact binary cubes

(CBCs)

\ (Run-length segment) ...
(Mix segment) .. .
(Mix segment) .. .

Fig. 3. The flow in the pre-processing phase.

The overview of our method for designing a new type
of on-chip CRSG is presented in Section II and Section
III provides the specific details of the pre-processing phase.
The hardware implementation is given in Section IV. The
performance and area cost are evaluated in Section V, followed
by the conclusion in Section VI.

II. METHOD OVERVIEW

During the pre-silicon verification phase, a series of test
cases can be created automatically using constrained-random
tests. The constraints are designed and formalized to Sys­
tem Veri log expressions [11], based on the application-specific
functionality and verification requirements. The constraint
expressions are parsed and handled by the pseudo-random
number generator, which then generates valid stimuli. The
proposed method reuses the constraints expressions written in
System Veri log, so as to preserve the validity and effectiveness
of pre-silicon verification stimuli.

Our method operates both at design-time and at run-time
(or validation-time). At design-time, the configuration of the
CRSG hardware should be selected, including, for example, the
capacity of the on-chip memory or the size of the LFSR. This
step is illustrated by the "Insert CRSG" box in Fig. 1. At run­
time, the user is given the freedom to change the configuration
of the CRSG, in order to apply functionally-compliant se­
quences with different (user-programmable) constraints. These
constraints for the stimuli are captured in System Verilog (i.e.,
the same language used during the pre-silicon verification) and
can be updated iteratively based on the specific debugging
needs as the validation process evolves. The constraints are
parsed into compact binary cubes (CBCs) as illustrated by the
"Prepare cubes for validation" box in Fig. 1 and elaborated
in Section III. Then the cubes are loaded into the on-chip
memory and activated for stimuli correction thus facilitating
continuous functionally-compliant random stimuli generation,
which is illustrated in box "StartlUpdate stimuli generation"
box in Fig. 1 and elaborated in Section IV .

The data flow in the pre-processing phase is shown in
Fig. 3. The SystemVerilog constraints are parsed into an
equivalent set of cubes during the pre-processing phase, which
is similar to the cubes shown in Fig. 2(c). The set of cubes
covers exactly all the possible valid stimuli which satisfy

Paper 22.1 INTERNATIONAL TEST CONFERENCE 3

[------------------------------------'
On-chip CRSG

Addressing
Cube memory Pseodu-random

Fig. 4. The top-level architecture for the on-chip CRSG.

the user-specified constraints. Then the cubes are mapped
into binary cubes according to the mapping dictionary and
then encoded into a certain format of CBCs by the encoding
algorithm, for the ease of being stored in the on-chip memory
efficiently. The specific details of the mapping and encoding
algorithms will be provided in the following section.

The top level architecture for the on-chip hardware is
shown in Fig. 4. The control unit controls four main functional
parts: an on-chip cube memory, CBCs decoding logic, the
pseudo-random generator based on a maximum-length LFSR,
and a correction structure comprising multiplexers and register
chains. The CBCs are stored into the cube memory preceding
on-chip stimuli generation, whose address is issued from the
control unit. The pseudo-random generator can generate one
primitive stimulus per clock cycle. Meanwhile, one CBC is ac­
tivated each time, which is first fetched from the cube memory
and then decoded into a binary cube. Based on the activated
cube, the correction logic simultaneously checks and modifies
the primitive stimulus from the pseudo-random generator into
a valid stimulus. Hence, the CRSG can continuously generate
valid stimuli to the DUV cycle by cycle.

III. CONTENT PREPARATION FOR THE ON-CHIP CRSG

A. Customized SystemVerilog Parser

We use SystemVerilog for the specification of constraints
because it has standardized support for constraint definitions
and it is widely used in practice. System Veri log offers flexible
syntax and libraries to create constrained-random stimuli by
user-defined constraints. The syntax support for constraint
classes can be broadly classified into constraints on variable
values (e.g., arithmetic and logical expressions, or if-else and
implication relations), constraints on distributions of patterns,
and constraints on the solving order during simulation. Only
constraints on variable values are supported by our current
methodology for designing and configuring hardware circuity
for in-system generation of constrained-random stimuli. In
addition, our support for constraint randomization does not
include sequential behaviour. Our future work will investigate
how to support other features from pre-silicon testbenches,
such as controlling the distribution of randomized variables
or capturing the sequential relationships between randomized
variables, as an extension of the methodology presented in this
communication.

Fig. 5(a) shows an example of constraints including logical
and conditional expressions, which are encapsulated in a class
block. A customized System Verilog parser is designed to parse
the constraint sources into a set of cubes, which will constrain
the patterns in the same way as the source constraints. As
shown in Fig. 5(b), each cube in the set covers a subspace of
valid stimuli. A logic minimization tool, Espresso [18], is used
to reduce the cardinality of the set of cubes, by removing and
merging the cubes which are not essential (i.e., the ones that
cover uniquely at least one valid pattern). The cardinality of
the minimized set of cubes is specific to each constraint and it
depends primarily on the distance between valid stimuli within
the Boolean space.

Presently our method supports System Verilog expressions
for constraints only on random variable values. If the constraint
expressions can be evaluated to be true or false based on their
numerical values, then they can be accepted by the parser to
generate content for CRSGs. The method supports arithmetic
operators (+, -, *, j), shift operators (arithmetic/logic
shift, left/right shift), logic operators (&, I, A, !, -), re­
lational operators (>, >=, <, <=, ==) , and set member­
ship operator (,inside' and its negated form). The implication
constraints using if-else statements or the implication operator
(->) based on randomized variables are supported in constraint
expressions. The 'foreach' iterative constraints can be sup­
ported, so long as each constraint in the unrolled iteration
is also supported. The array reduction iterative constraints
for randomized variables are processed as a single constraint
over all the elements in the array. However, randomizing the
dimension of the array is not supported by our method because
the number of array elements must be known at design time
for the current hardware implementation.

In pre-silicon verification environments, the constraint ex­
pressions can be written as class blocks or as in-line constraints
and they can be enabled/disabled seamlessly in a testbench; in
hardware they can also be enabled/disabled via in-system/on­
line reprogramming of the CRSG, however it does involve hu­
man intervention because the new content for the CRSG needs
to be regenerated and uploaded into the on-chip memory. Both
the content and the size of equivalent set are independent of
the hardware architecture. For a cube including q 'X's, which

typedef enum {ADD. SUB. SHIFT _L.SHIFT_AR.SHIFT_LR} op_type;

class StimuliForALU;

rand op_type opcode; rand bit[7:0] opr!, opr2;

constraint oprJange {

(opcode==SHIFLL II opcode==SHIFLAR II opcode==SHIFLLR)

-> opr2 inside {[O:7]};

endclass

(a) User-defined constrall1ts wntten 111 SystemVenlog

opcode[2:0]
OOX
01X
100

oprl[7:0]
XXXXXXXX
XXXXXXXX
XXXXXXXX

opr2[7:0]
XXXXXXXX
OOOOOXXX
OOOOOXXX

(b) The equivalent set of cubes contains three cube strings after minimization

Fig. 5. The System Verilog constraints are parsed into the
equivalent set of cubes.

Paper 22.1 INTERNATIONAL TEST CONFERENCE 4

TABLE I. THE DICTIONARY FOR MAPPING CUBE

STRINGS INTO BINARY CUBES.

Character in a cube string 2·bit mapped binary code
' a · 00
'I' 01
'X' 10

denotes q free bits, the number of valid stimuli implied by the
cube is 2Q• For example, the 19-bit cube 01X XXXXXXXX
OOOOOXXX from Fig. 5(b) covers a total of 4096 valid stimuli.
The complete set of cubes implies all the possible valid stimuli
that satisfy the user-defined constraints.

B. Mapping and encoding algorithms

The cubes parsed from the System Veri log constraints are
mapped into binary cubes based on a mapping dictionary
and further encoded into a more elaborated CBC format,
which does not only take advantage of the available embedded
memory space with higher efficiency, but it also simplifies the
correction logic.

A dictionary encoding algorithm is used to encode the cube
strings into binary cubes. As shown in TABLE I, the only three
valid characters in cubes, i.e. '0', '1' and 'X' occupy three 2-
bit binary code points, leaving the code point 11 reserved for
compaction purposes. The code point for 'X' prefixed with 1,
which is different from the other two characters, can simplify
the logic of the correction structure, which will be elaborated in
the following section. For instance, the 19-character long cube
string "OIX XXXXXXXX OOOOOXXX" is mapped into a 19-
code long binary cube in 38 bits "000110 1010101010101010
0000000000101010" .

Some cubes might include consecutive- 'X', consecutive­
'0' and consecutive- ' l' sequences. The cause of this can be
explained by practical requirements of verification, e.g., if
a variable is not constrained, all the q bits in the variable
are filled with consecutive 'X's in the cube. Likewise, the
consecutive- '0' can be used for resetting a variable under
some user-defined conditions. Based on this observation, our

Run·length

segment

Mixed segment

Cube string

2·bit prefix r·bit runJength

�
I 00/01/10 I I

11 I \
Binary cubes

(a)

CBC(r=6)

2·bit suffix

J 11 I

OOX XXXXXXXX XXXXXXXX 11000011,10010001
01X XXXXXXXX OOOOOXXX 11000111,10001001,

00000101,10000011
100 XXXXXXXX OOOOOXXX 11 0 1 0000 11,1 000 1 000,

00000101,10000011
(b)

Fig. 6. The format and examples for the run-length segment
and the mixed segment.

algorithm combines prefix encoding with run-length encoding
in order to compact the binary cubes into CBCs. It first
partitions a cube into pieces of segments. There are two
types of segments: the run-length segment and the mixed
segment, as illustrated in Fig. 6(a). If the count in a consecutive
sequence goes beyond a threshold, it is partitioned as a run­
length segment, with a 2-bit binary code prefix denoting the
consecutive character. Otherwise the sequence between two
run-length segments is partitioned as a mixed segment, which
is filled with the original binary codes and edged by a 2-bit
prefix and a 2-bit suffix equal to the 11 binary code. The
threshold depends on the length of run_length field, so as
to make a consecutive sequence compacted shorter by being
partitioned as a run-length segment rather than as a mixed
segment. The converted CBCs from Fig. 5(b) are shown in
Fig. 6(b), in which case the threshold is set to 2.

The compaction rate varies with the regularity of con­
straints and the format setting. Provided the length of
run_length field is r bits, a binary cube can be compacted
into a CBC down to the size of 1/2,..+1 of the original binary
cube. On the other hand, for the worst case when the binary
cube is a single mixed segment, the overhead is a constant
nibble, i.e. a 2-bit prefix and a 2-bit suffix.

IV. ON-CHIP CRSG ARCHITECTURE AND

FUNCTIONALLY-COMPLIANT STIMULI APPLICATION

The proposed CRSG consists of the control unit, the on­
chip cube memory, the decoding logic, the pseudo-random
generator and the correction structure. It supports the workflow
from storing and decoding CBCs, primitive random stimuli
generation and correction, to the final stimuli output. Both the
throughput and memory logic can be flexibly adapted to the
validation environment.

A. Cube memory

The on-chip cube memory stores the CBCs. When the
control unit activates a CBC, its initial address is sent to the
cube memory. The fetched CBC is loaded into a buffer for
decoding. Considering the issue of word alignment for the
memory, each CBC starts with a new address, so that no in­
word offset information is needed for activating a new CBC.

If the stimuli for the DlN were transmitted directly from a
host or an on-board memory, i.e., without compaction and on­
chip buffering, then each stimulus would be used once and then
discarded. Such mechanism requires new stimuli frequently
and its main limitation is the need for very high-bandwidth
interfaces. By contrast, by employing an on-chip embedded
memory for buffering CBCs, the proposed CRSG architecture
receives compact cubes, which are then expanded on-the-fly
to correct LFSR patterns during the stimuli application. Each
CBC can remain activated for an arbitrary number of cycles
to constrain the pseudo-random generator to generate a user­
controlled amount of valid stimuli. Because both the number
and the size of CBCs are much smaller than the expanded
stimuli, it alleviates the need for high-bandwidth interfaces.
The cube memory can be implemented either as a FIFO
addressed by implicit increment, or a dual-port RAM. In the
case the volume of CBCs is very large, the capacity of the
embedded memory can be lowered by buffering only a subset

Paper 22.1 INTERNATIONAL TEST CONFERENCE 5

of CBCs, which will be used during a limited time window
for stimuli application; the subsequent subset of CBCs can
be uploaded concurrently with the application of the stimuli
expanded from the current subset of CBCs. Finally, it should
be noted that the capacity of the cube memory is not influenced
by the circuit size, since it is determined only by the number
and dimension of cubes, which are influenced by the type of
constraints and the size of randomized packets.

Fig. 7 shows the data flow for activating and updating
CBCs based on the cube memory built with dual-port RAM.
One port is used for fetching the activated CBC via r _addr
and r _data . The other port including w_data and w_addr is
reserved for updating a new CBC when it is ready from the
control unit. The bitstream transmission via a low-bandwidth
interface takes less pin resources, while the control unit recon­
structs the CBC and sends word by word to the cube memory.
The recently sent CBC is updated and after being activated
and used, the CBC can be set to be outdated and can be
overwritten by a new CBC. The addressing control unit issues
the CBC address for update and activation independently. The
control unit keeps track of the activated address and the update
address where the used CBC can be overwritten by a new CBC
transmitted from the host.

B. Decoding logic

The decoding logic consists of multiple byte-wise decoders
to support parallel decoding and a 2n-bit buffer to store the
decoded n-code binary cube, as shown in Fig. 7. It supports
to decode p binary codes (each binary code has 2 bits) per
clock cycle, where p denotes the degree of parallelism. Each
combinational byte-wise decoder determines the segment type
by the 2-bit prefix (if the type is not inherited from the previous
byte). The byte is interpreted into 2 to 4 codes as a mixed
segment or 2 to 27" codes as a run-length segment. In each
clock cycle, the first p codes from parallel decoders are shifted
into the binary codes buffer, leaving the remainders for the
following cycles. Thus decoding a CBC of n codes requires
I nip l cycles. For example, a 168-code binary cube (as used in
our experiments detailed in the next section) is decoded from
the CBC format in 21 cycles if p is 8, or 11 cycles if p is 16.
The parallelism facilitates rapid continuous cube switching.

C. Pseudo-random generator and correction structure

The pseudo-random generator consists of a k-bit
maximum-length LFSR and a k-to-m phase shifter (k � m �
n), as shown in Fig. 7. The period of the LFSR is 2k - 1. The
phase shifter is combinational XOR gate logic, which expands
each k-bit output from the LFSR to m-bit primitive stimulus.

The correction structure consists of a 2n-bit shadow reg­
ister and m bitwise multiplexors, as shown in Fig. 7. Each
two bits in the shadow register are paired with a bitwise
multiplexor. The shadow register pipelines n decoded binary
codes from the decoding logic, which avoids stalling stimulus
correction during cube switching. A virtual 2m-bit window
is created and rolled in the 2n-bit shadow register, which
indicates the m activated binary codes for the current cycle.
Each multiplexor decodes a 2-bit binary code in the virtual
window and arbitrates whether to output the corresponding bit
from the pseudo-random generator or to correct it to a constant

Control unit'

Activated
address

Fi nal stimulus

Dual port RAM

eBe (update to use)
Update eBe
eBe (used)

Activated eBe
eBe (to be used)

Fig. 7. The dataflow from the pnmltIve stimulus in the
pseudo-random generator to the final stimulus corrected by
the correction structure which gets the activated binary cube
from the cube memory and the decoding logic.

o or 1. Based on the encoding dictionary, the left bit in the
binary code can directly serve as the selection signal and the
right bit is the constant output when it is corrected.

The distribution of the stimuli generated by the CRSG
relies on the unifonn distribution associated with LFSRs
based on primitive characteristic polynomials, however it also
dependent on the position of Os, Is and Xs in each cube; in
addition, the distribution is also biased by the state of the LFSR
when a particular CBC is activated. Taking a 4-bit LFSR as
an example, if the LFSR has two adjacent states ' 1100' and
'1001', i.e., the LFSR shifts left by one position and it feeds
'1' at the rightmost position, an unconstrained CRSG (i.e., the
activated cube is 'XXXX') will output the two binary values
as two consecutive stimuli; hence the distribution of samples at
the output of the LFSR will contain each of the samples ' 1100'
and ' 1001' exactly once. If the activated cube is 'XXlO', the
two generated stimuli are '1110' and '1010', thus each of
them will again count once in the distribution. However, if
the activated cube is 'XIXO', both stimuli from the output of
the LFSR will be corrected to '1100' and hence this particular
sample will be accounted for twice in the distribution. The
impact of the correction logic on the sample distribution is
experimentally assessed in section V .

Paper 22.1 INTERNATIONAL TEST CONFERENCE 6

I I I I
Cube, ready Cube, ready

Decoding CBC, h-DeCOding CBC,

T
:�:�:

CBC r � r � :
decoding I I I

�� �� : I I I I I
Stimuli I I I generation

T T T T T T
====:::v:::===="=====::v:;:c====----'. t (cycles)

Cubeo activated Cube, activated

Fig. 8. Timeline for CBCs decoding and switching during
stimuli generation.

D. The control unit

The control unit keeps tracks of addresses for the cube
memory, as shown in Fig. 7. It uses the cube memory as
a circular queue. Both the activated address and the update
address move down to the following CBC position until the
end of the memory, or reset to the initial address. In order to
compute the address for the next activated CBC, the control
unit receives the length of currently activated CBC for the
decoding logic, which is added to the current activated address.
The activated CBC is fetched from the cube memory and
decoded into a binary cube by the byte decoders. Then it is
copied to the shadow register in one cycle, based on which
the multiplexors arbitrate each output bit between the pseudo­
random bit and the lower bit in the mask code.

The control unit also synchronizes the functional parts, so
that the architecture supports to generate an n-bit final stimulus
(or packet) in a user-specified number of clock cycles (denoted
as T). Therefore the stimulus is split into m-bit slices (m is
equal to I njTl), except the last slice if the remainder is not
zero. As shown in Fig. 8, three packets are generated within
3T cycles based on Cubeo. Meanwhile CBC1 is decoded into
Cubel and will be activated after the third packet is completely
generated. Generally, while an n-bit packet is generated in T
cycles, the next CBC is being decoded and will be ready within
In j p l cycles. Then it switches to be active immediately after
the previous complete packet is generated. Fig. 8 illustrates
the minimum cycle requirement for switching to a new cube,
within which In j pTl packets must be generated based on the
same cube.

V. EXPERIMENTAL RESULTS

In this section we examine the cost of the proposed
CRSG and we assess its effectiveness. The proposed CRSG
is compared against the known work on the same topic [14],
which tackles exactly the same challenge of designing and
applying user-programmable constrained-random sequences in
real-time. We should note that the research presented in this
paper is focused only on the controllability aspects of post­
silicon validation (see Fig. 1). For dealing with the observabil­
ity aspects, the interested reader is referred to on-line response
checking using hardware assertions [8] or event detection using
programmable trigger units [16], and real-time trace collection
[4], [15].

We analyze the proposed CRSG by varying the length
of the LFSR (denoted as k-bit) and the length of the final
stimulus (denote as n-bit). Note, the length of the final stimuli

15000r=�========�--�------�------�----�-,
-+- Proposed CRSG I
"." Reference I C ID

�10000
·3 a-ID
N
§1 5000
«
z

..... " " ,'., .,. " ... � .. "

."

.........
.........

.........

" ,x"

I .!." A." ...

0L--4�----�8 ------�1 6�----�3 2-------6�4 --�--1�28
�

The length of the LFSR k (bits)

Fig. 9. Hardware cost of proposed CRSG and the design in
[14] according to the length of LFSR k (given T = 1, n = 16
and p = 8).

7000 ,---�--�--�--------�--�--�--------�

� 6000 • �� ______ �
� -e- Proposed (k=32)

.. , •........ . ,

·3 . + . Reference (k=32)
g 5000l��-+-�p�rO�PO�Sed�(k�6� 4�) �t:::::::::::::::==*::;:::::==::F==--
8 .. • . Reference (k 64)
Z -
� 4000 1 :::::--

+ , ,., ,., ,., , +' ". + ... "" . . . ""+". "" "."", ,, ... +""" +

300 9�5---2�0----2�
5---3� 0----3 �

5---4 �0----4 �
5---5

�0----
5
�
5--- 6 �0

�

The length of the stimulus n (bits)

Fig. 10. Hardware cost of proposed CRSG and the design in
[14] according to the length of the stimulus n (given T = 1
and p = 8).

should support the maximum size of random packets for the
different blocks that are validated using the respective CRSG.
For this experiment we assume that all the stimuli bits for
the entire packet are applied in a single clock cycle (T = 1).
The synthesis results based on the k-bit LFSR are shown in
Fig. 9. Compared with the reference design [14], whose area
is directly influenced by the size of the LFSR, the area cost of
the proposed CRSG grows insignificantly with the length of
the LFSR. Considering that the period of the LFSR-generated
sequence has an exponential dependence on the dimension of
the LFSR (assuming the characteristic polynomial of the LFSR
is primitive and irredundant), the proposed CRSG architecture
can employ large LFSRs to avoid the repetition of pseudo­
random stimuli, which are corrected within the CRSG to be
functionally-compliant, when very long validation times are
needed; for example, even a 50-bit LFSR that works at 1 GHz
can operate autonomously for over ten days. Nonetheless, due
to the 2n-bit binary code buffer and the 2n-bit shadow register
(see Fig. 7) and, unlike [14], the proposed CRSG is dependent
on the size of the validation stimuli (packets) that are applied
to the DlN. The synthesis results of the architecture according
to different lengths of stimuli are illustrated in Fig. 10.

As discussed in Section IV, an important parameter, which
influences how fast the masks used for correction of pseudo­
random sequences can be switched, is the degree of parallelism
p. The synthesis results by varying p are illustrated in Fig. 11
and Fig. 12. As for the previous experiments, it is assumed
that the stimuli are applied in a single clock cycle (T = 1). As
expected, both the area and the critical path delay are affected
by p, because each byte decoder must decide the segment

Paper 22.1 INTERNATIONAL TEST CONFERENCE 7

9500�----------�----------�----------�--�
� 9000
� ·58500
g 2: 8000

z � 7500
4 6 8

Parallelism in decompressing p (codes per cycle)

Fig. 11. Hardware cost according to the degree of parallelism
in the decoding logic (given T = 1, k = 168 and n = 168).

4 6
Parallelism in decompressing p (codes per cycle)

8

Fig. 12. Critical path delay according to the degree of
parallelism in the decoding logic, estimated by static timing
analysis with a CMOS 90nm standard cell library (given
T = 1, k = 168 and n = 168).

type based on the previously decoded byte or the current
byte prefix (as described in subsection IV-B). This parameter
p is independent of the complexity of specified constraints,
which might influence only the number of mask cubes that
are compacted and stored in the on-chip memory. Nonetheless,
the higher the degree of parallelism, the faster one can switch
between these mask cubes.

Concerning the side-effects of the proposed CRSG archi­
tecture on timing, when one considers the whole view of on­
chip functional units and interconnection logic, the delay paths
in the CRSG are unlikely to dominate the circuit's operating
frequency. What the CRSG architecture impacts is the timing
delay from original function signal to the port of the DUV,
which is now multiplexed between the original signal and the
stimulus from CRSG. In the event that CRSG will impact the
operating frequency, an optional n-bit pipeline register chain
can be inserted between the output of the correction structure
and the DUV.

Concerning the quality of the randomized stimuli generated
by the CRSG, we first examine their distribution. Fig. 13(a)
illustrates the relation between the number of stimuli generated
and the number of unique stimuli based on a simple constraint
a ?: b, in which a and b are unsigned 8-bit variables. If
the random values are drawn from the uniform distribution
then, until we exhaust the entire valid space (as defined by
the constraint), the value on the Y axis should match the
value on the X axis; thereafter, the value on the Y axis
saturates to the maximum number of unique stimuli. The
maximum number of valid 8-bit a and b pairs that satisfy
a ?: b is 32,896 and the software-based random generator
in a System-Verilog compliant simulator [27] reaches this
saturation point after 543,085 patterns; it should be noted
that these results have been obtained using the "rand" type

= 4x 10'
:::>
.s u; r - - - - - - - - - - - - -::.-::- -� -=-::.--=-=- -�- �-�- -=-=-=- =- -=-�---�

·r :�---'02

2
E 1 :::> c

1- Proposed CRSG 1 - - - Random generator in software
(]) .s:::; ��L---0�.2---0�4---0�.6 ---0�.8---L1---1�.2---1�4---1�.6---1�.8--�2

(a) The number of generated stimuli X 10'
, � 10�X=10�==�==�==�==�-- ,---,---,---,-�'l E _ Proposed CRSG � 8 - - - Random generator in software :::> 0-·c 6 :::>

2 4
E :::> 2
c
(])

� ���--�2--�3---4L-�5L-�6-- �7--�8 --- 9L---1�0�
(b) The number of generated stimuli x 10'

Fig. 13. The relation between the number of generated stimuli
and the number of unique stimuli based on the constraint a ?:
b. The unsigned variables a and b are set to 8 bits in (a) and
16 bits in (b) respectively.

for the randomized variables, for which the random values
are not drawn from the uniform distribution (the "randc" type
needs to be used in order for the software random generator
to sample from the uniform distribution). As the number of
generated patterns increases, the number of unique patterns
generated by the hardware method is approximately half of the
ones generated in a software simulator (for the same number
of total patterns). Fig. 13(b) shows this trend more clearly,
where a and b are set to be 16 bits each. It should be noted
that during post-silicon validation it is reasonable to have
experiments with a significantly larger number of clock cycles
than during pre-silicon verification; therefore, though the valid
randomized stimuli are repeated more often in the hardware
implementation, as confirmed by this experiment, the extensive
number of clock cycles exercised on silicon prototypes (at
least four orders of magnitude more than during pre-silicon
simulation [10]) are expected to compensate for this repetition
of constrained-random stimuli.

Concerning the impact of constraint complexity on the cube
memory, we have performed the following experiment using
integer linear programming (ILP) constraints because they
can intuitively illustrate the numerical relationships between
variables (and many arithmetic, relational and even some logic
constraints can be converted to ILP forms). TABLE I1(a) shows
the trend of the size of the cube set when we incrementally
impose four linear constraints on two 12-bit variables. If only
the first constraint is used, the total number of valid pairs is
11,943,292 and the number of cubes is 5,724. If the second
constraint is used (in addition to the first one), the number of
cubes becomes 4,482 and so on for the third and the forth
constraint where we have 3,398 and 2,120 cubes respectively.
It demonstrates for this type of problems that the cube count
tends to go down when more constraints are added, mainly

Paper 22.1 INTERNATIONAL TEST CONFERENCE 8

TABLE II. THE CH ANGES TO THE SIZE OF THE CUBE

SET WHEN ADDING CONSTR AINTS INCREMENTALLY.

(a) Constraints of ILP inequalities on 1 2-bit variables

Constraints Valid pairs Cubes
(I) 1000 < x + 2y < 8000 1 1 943292 5724

(2) y > 5x - 6000, and (I) 5243774 4482

(3) x > 600, and (1),(2) 3 1 43474 3398

(4) y > 2000, and (1),(2),(3) 1 582674 2 1 20

(b) Constraints of integer non-linear programming inequalities on 8-bit variables

Constraints Valid pairs Cubes
(I) a < CO + d < b 3623738 1 4755

(2) a" + be > bed + dO , and (I) 262442 26 1 5

(3) d s i n a > b cos e , and (1),(2) 69555 938

because the valid pairs count is reduced. We have also observed
a similar trend when non-linear constraints are used, as shown
in TABLE II(b).

In order to evaluate the effectiveness in reducing the
storage requirements for large validation sequences, we have
configured our CRSG to generate stimuli for resembling 168-
bit packet heads for H.264 real-time transport protocol (RTP)
[30], as well as 160-bit packet heads in the PCI-express (PCIe)
3.0 transaction layer packet (TLP) format [3]. Each field in
the packet head must satisfy the requirements specified in
the protocol standards, including the format, defined/reserved
values and the coordination among fields. The fields that can
be randomized are extracted for the design of constraints,
thus leaving the non-random CRC field to be attached by
CRC computation logic. A series of System Veri log constraints
are designed to guide cube generation. The constrained bits
involved in SystemVerilog constraints for the packet head vary
according to the protocol specification. The results of parsing
the constraints to cubes (the average number of constrained
bits and the total number of cubes) are listed in TABLE III.

Only the cubes in the CBC format are required to be
loaded to the cube memory; this requires a quarter to a half
of the storage needed for the binary cubes. Compared to
[14], which stores basis vectors from which LFSR seeds are
expanded on-the-fty, the volume of data that is required by the
proposed method is at least an order of magnitude less. This
is because the number of basis vectors from [14] needed to
satisfy a particular cube can be large and, more importantly,
the dimension of each of these vectors is as large as the LFSR
size. Hence, the savings of the proposed CRSG are explained
by the fact that the storage requirements are not dependent on
the LFSR size or the number of LFSR seeds that can expand
into sequences that match the constraint provided by each
cube. Considering that the total number of constrained random
patterns that can be applied to the DUV using only one cube is
defined by 2Q, where q is the number of unspecified bits (which
can be computed by subtracting specified bits from cube length
provided in TABLE III), it is evident that the number of stimuli
that can be used for validation can easily meet the objectives
of real-time execution that lasts for hours.

We should note also that in the event that the capacity of
the on-chip memory is a tight implementation constraint (e.g.,
approximately 80 Kbytes for PCIe TLP might be excessive for
some designs), one can update CBCs on-chip dynamically, as
described in Section IV . The main reason why this dynamic

TABLE III.

Packet
format

H.264 RTP

PCIe TLP

PACKET HE AD GENER ATION RESULTS FOR

PCIE AND H.264.

Cube Constrained Cube Binary cubes CBCs
length (bit) bits count size (KBytes) size

(KBytes)
168 1 0 335 14.91 3 .9

1 60 33 5 1 1 9 204.76 8 1 . 8

update is feasible is because any CBC will decode into a
valid mask that will ensure that the pseudo-random patterns
at the output of the LFSR will be mapped onto functionally­
compliant stimuli. This is a direct consequence of translating
the System Verilog constraints into cubes, as described in
Section III. For example, considering that 5,119 CBCs for PCIe
TLP in TABLE III require 81.8 Kbytes, one can store approx
250 CBCs into a 4 Kbyte memory block; in such a memory­
constrained environment, the CRSG can iterate through the
masks expanded by these 250 CBCs, while a new subset of
CBC is loaded through a low-bandwidth serial interface from
on-board storage or directly from the host.

V I. CONCL USION

In this paper, we have presented a new method for
designing constrained-random stimuli generators for post­
silicon validation. Unlike previous works [13], [14], which
force autonomous random generators to skip the functionally
non-compliant stimuli, our method corrects the output of a
random generator to meet the user-specified constraints. The
hardware cost is comparable to the previous works, while the
volume of data that needs to be placed on-chip is reduced.
This type of functionally-compliant random generators placed
on-chip can be used for user-controlled random validation
experiments on the silicon prototypes that might require
extensive periods of time (hours to days) without costly
storage requirements. The proposed method is applicable to
any digital blocks and can leverage the constraints developed
during pre-silicon verification.

Acknowledgement: The authors acknowledge the financial
support of the University Research Office (URO) from
Intel Corporation. They are also grateful for the feedback
received from the technical program committee of the IEEE
International Test Conference.

REFERENCES

[1] M. Abramovici. In-System Silicon Validation and De­
bug. IEEE Design & Test of Computers, pp. 216-223,
2008.

[2] A. Adir, S. Copty, S. Landa, A. Nahir, G Shurek, A. Ziv,
C. Meissner, H. Schumann. A Unified Methodology for
Pre-Silicon Verification and Post-Silicon Validation. in
Proc. IEEEIACM Design, Automation & Test in Europe
(DATE), pp. 1-6, 2011.

[3] 1. Ajanovic. PCI Express 3.0 Overview. In Hot Chips:
A Symposium on High Performance Chips, 2009.

[4] E. Anis and N. Nicolici. On Using Lossless Compres­
sion of Debug Data in Embedded Logic Analysis. In
Proc. IEEE International Test Conference (ITC), 2007.

Paper 22.1 INTERNATIONAL TEST CONFERENCE 9

[5] P. H. Bardell, W. H. McAnney, J. Savir. Built-In Test for
VLSI: Pseudorandom Techniques. John Wiley & Sons,
1 987.

[6] c . Barnhart, V. Brunkhorst, F. Distler, O. Farnsworth,
B. Keller, and B. Koenemann. OPMISR: The Foun­
dation for Compressed ATPG Vectors. In Proc. IEEE
International Test Conference (ITC), pages 748-757,
200 1 .

[7] B. Bentley. Validating the Intel Pentium 4 Microproces­
sor. In Proc. IEEEIACM Design Automation Conference
(DAC), pp. 244-248, 200 1 .

[8] M. Boule, J.-S. Chenard, X. Zilic. Debug Enhancements
in Assertion-Checker Generation. lET Computers and
Digital Techniques, yoU, no.6, pp. 669-677 , Nov. 2007.

[9] V. Gherman, H.-J. Wunderlich, H. V ranken, F. Hapke,
M. Wittke, and M. Garbers. Efficient Pattern Mapping
for Deterministic Logic BIST. In Proc. IEEE Interna­
tional Test Conference (ITC), pages 48- 56, 2004.

[10] J. Goodenough and R. Aitken. Post-Silicon is Too Late:
Avoiding the $50 Million Paperweight Starts with Vali­
dated Designs. In Proc. IEEEIACM Design Automation
Conference (DAC), pp. 8- 1 1 , 20 10.

[1 1] IEEE Standard 1 800. IEEE Standard for System Veri log­
Unified Hardware Design, Specification, and Verifica­
tion Language. International Electrotechnical Commis­
sion, 2009.

[12] J. Keshava, N. Hakim, C. Prudvi. Post-silicon Valida­
tion Challenges : How EDA and Academia Can Help.
In Proc. IEEEIACM Design Automation Conference
(DAC), pp. 3-7, 20 1 0.

[1 3] A. B. Kinsman, H. F. Ko, N. Nicolici. In-System
Constrained-Random Stimuli Generation for Post­
Silicon Validation. In Proc. IEEE International Test
Conference (ITC), paper 3 .3 , 20 1 2.

[14] A. B. Kinsman, H. F. Ko, N. Nicolici. Hard ware­
Efficient On-Chip Generation of Time-Extensive
Constrained-Random Sequences for In-System
Validation. In Proc. IEEEIACM Design Automation
Conference (DAC), paper 39.6, 20 13 .

[1 5] H. F. Ko, A . B. Kinsman, N. Nicolici. Distributed
Embedded Logic Analysis for Post-Silicon Validation
of SOCs. In Proc. IEEE International Test Conference
(ITC), paper 1 6.3 , 2008

[1 6] H. F. Ko, N. Nicolici. Resource-Efficient Programmable
Trigger Units for Post-Silicon Validation. In Proc. IEEE
European Test Symposium (ETS), pp. 17-22, 2009.

[17] B. Koenemann. LFSR -coded Test Patterns for Scan De­
signs. In Proc. IEEE European Test Conference (ETC),
pages 237-242, 1 99 1 .

[1 8] P. C. McGeer, J. V. Sanghavi, R. K. Brayton, L. L.
Sangiovanni-Vincentelli. ESPRESSO-SIGNATURE: A
New Exact Minimizer for Logic Functions. IEEE Trans.
VLSI Systems, vol. 1 , no. 4, pp. 432-440, Dec. 1 993.

[1 9] S. Mitra, S. A. Seshia, N. Nicolici. Post-Silicon Vali­
dation Opportunities, Challenges and Recent Advances.
In Proc. IEEEIACM Design Automation Conference
(DAC), pp. 12- 17 , 20 1 0.

[20] A. Nahir, A. Ziv, R. Galivanche, A. Hu, M. Abramovici,

B. Bentley, etc. Bridging Pre-Silicon Verification and
Post-Silicon Validation. In Proc. IEEEIACM Design
Automation Conference (DAC), pp. 94-95, 20 1 0.

[2 1] N. Nicolici. On-Chip Stimuli Generation for Post­
Silicon Validation. In IEEE High Level Design Valida­
tion and Test Workshop (HLDVT), pp. 108- 1 09, 20 12.

[22] S.-B. Park, T. Hong, S. Mitra. Post-Silicon Bug Lo­
calization in Processing Using Instruction Footprint
Recording and Analysis (IFRA). IEEE Trans. CAD of
Integrated Circuits and Systems, vol. 28, No. 1 0, pp.
1 545- 1 558 , Oct. 2009.

[23] 1. Rajski, M. Kassab, N. Mukherjee, N. Tamarapalli,
1. Tyszer, and 1. Qian. Embedded Deterministic Test
for Low-Cost Manufacturing. IEEE Design & Test of
Computers, 20(5) :58-66, Sept 2003.

[24] S. K. Sadasivam, S. Alapati, V. Mallikarjunan. Test Gen­
eration Approach for Post-Silicon Validation of High
End Microprocessor. In Euromicro Con! on Digital
System Design, pp. 830-836, 20 12.

[25] c. Spear. SystemVerilog for Verification, 2nd ed.
Springer, 2008

[26] N. Touba and E. McCluskey. Bit-Fixing in Pseudoran­
dom Sequences for Scan BIST. IEEE Transactions on
CAD, 20(4) :545-555, Apr 200 1 .

[27] Synopsys, Inc., V CS - Functional Verification Solution.
www.synopsys.comNCS, 20 1 4.

[28] B. Vermeulen, T. Waayers, S. Goel. Core-Based Scan
Architecture for Silicon Debug. In Proc. IEEE Interna­
tional Test Conference (ITC), pp. 638-647 , 2002.

[29] L.-T. Wang, c.-W. Wu, X. Wen. VLSI Test Principles
and Architectures. Morgan Kaufman, 2006.

[30] Y-K. Wang, R. Even, T. Kristensen, Tandberg, R. Jesup.
RTP Payload Format for H.264 Video. RFC 6 1 84, 20 1 1 .

[3 1] P. Wohl, J. A . Waicukauski, S. Patel, and M. B. Amin.
X-Tolerant Compression and Application of Scan-ATPG
Patterns in a BIST Architecture. In Proc. IEEE Interna­
tional Test Conference (ITC), pages 727-736, 2003 .

[32] Y Wu, S. Thomson, D. Mutcher, and E. Hall. Built­
In Functional Tests for Silicon Validation and System
Integration of Telecom SoC Designs. IEEE Trans. VLSI
Systems, 1 9(4) :629-637, April 20 1 1 .

Paper 22. 1 INTERNATIONAL TEST CONFERENCE 1 0

