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ABSTRACT

Anti-virus software (AVS) tools are used to detect Malware in a
system. However, software-based AVS are vulnerable to attacks. A
malicious entity can exploit these vulnerabilities to subvert the AVS.
Recently, hardware components such as Hardware Performance
Counters (HPC) have been used for Malware detection. In this pa-
per, we propose PREEMPT, a zero overhead, high-accuracy and
low-latency technique to detect Malware by re-purposing the em-
bedded trace buffer (ETB), a debug hardware component available
in most modern processors. The ETB is used for post-silicon valida-
tion and debug and allows us to control and monitor the internal
activities of a chip, beyond what is provided by the Input/Output
pins. PREEMPT combines these hardware-level observations with
machine learning-based classifiers to preempt Malware before it
can cause damage. There are many benefits of re-using the ETB for
Malware detection. It is difficult to hack into hardware compared
to software, and hence, PREEMPT is more robust against attacks
than AVS. PREEMPT does not incur performance penalties. Finally,
PREEMPT has a high True Positive value of 94% and maintains a
low False Positive value of 2%.

1 INTRODUCTION

Malware has proliferated across a variety of computing platforms
e.g., PCs, servers, and smartphones. Malware can be of diverse
types, including Trojans, Viruses, Worms and Rootkits, and they
can be classified based on their function [1]. Generally, anti-virus
software (AVS) are used to detect Malware. However, AVS have
some shortcomings [2]. For example, new Malware can subvert AVS
by abusing software vulnerabilities [3]. This starts a cat-and-mouse
between the Malware and the AVS.

Recently, researchers have started co-opting trusted hardware
components to detect Malware. A hardware-based security system
cannot be thwarted by software, whether running in an user or a
hypervisor mode. Design houses, e.g., Qualcomm, are deploying
hardware-based security systems in mobile devices [4]. Malware
detection using Hardware Performance Counters (HPC) have been
proposed in [2, 4, 5]. However, HPCs are not suited for real-time
monitoring and they incur performance penalty.
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We show that embedded trace buffers (ETBs), available in modern
processors, can be repurposed for Malware detection and classi-
fication. An ETB is an on-chip circular memory buffer, used for
post-silicon validation. Post-silicon validation detects functional
errors after the chip is manufactured. Scan-based manufacturing
test detects manufacture time structural failures, and hence are not
at-speed. ETBs operate at the functional clock speed and monitor
select internal signals in real-time. ETBs collect signal values every
cycle and dump them to an offline debugger through the JTAG
debug interface [6-8].

We propose PREEMPT, a real-time, low-latency Malware detec-
tion procedure with zero hardware overhead. PREEMPT analyses
ETB traces to detect Malware and makes three key contributions:

(1) Develops an ETB-based Malware detector that reuses the
signals used for post-silicon debug on an OpenSPARC T1
processor.

(2) Analyzes ETB traces in real-time using Machine learning
classifiers.

(3) Detects real Malware (botnets of Gafgyt and Mirai families).

The paper is organized as follows. Section 2 provides background
on Malware detection and ETB. Section 3 describes PREEMPT,
the proposed ETB-based Malware detection procedure. Section 4
reports the results. Finally, Section 5 concludes the paper.

2 BACKGROUND AND RELATED WORK
2.1 Malware Detection: Prior Work

Malware are pernicious programs, which spread malevolence rang-
ing from denial-of-service to security breaches to invasion of pri-
vacy. AVS have been developed to detect different kinds of Malware
[9, 10]. The problems with these approaches are threefold. First, AVS
have software vulnerabilities. According to a recent study, however
robust an AVS is, a stealthier Malware can always be created to cir-
cumvent it [11]. Moreover, most AVS use static signatures to detect
Malware [2]. A Malware can have multiple executable formats to
circumvent these signatures. Finally, since AVS is a software, it is
slow, which results in high latency for Malware detection.
Researchers have started using on-chip hardware components
like HPCs to detect Malware. The underlying assumption is that
although an AVS can be circumvented by variations in Malware
code, it is difficult to subvert a hardware-based detector, since the
Malware function will remain the same. Over the years, researchers
have proposed various HPC-based Malware detection schemes
[2, 4, 5]. HPC-based Malware detection was analyzed in [12]. HPC-
based Malware detection has an unacceptably high false positive
rate (FPR) of 15% [2]. HPCs measured inside a VM differ from those
that are measured on the hardware [12]. Moreover, even HPC-based
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Figure 1: (a) Post-silicon validation as part of the IC design
flow. (b) Overview of PREEMPT.

Malware detection is not real-time; the system is interrupted to
collect HPC readings, yielding about ~5% performance penalty.
There is a trade-off between detection latency and performance
penalty in HPC-based schemes.

2.2 Post-Silicon Validation

The increase in circuit complexity, a reduction in the transistor
feature size and the time-to-market window result in design bugs
that escape pre-silicon verification. Post-silicon validation is used
to detect these escaped bugs. The primary challenge in post-silicon
validation is the limited observability. Scan chains are not suitable,
since functional errors can only be debugged in real-time with the
chip running at the functional clock frequency [8].

In order to improve observability in a manufactured chip, design-
for-debug techniques such as ETBs have been developed [8]. The
overview of trace buffer-based post-silicon debug methodology
is shown in Figure 1(a). Designing an ETB involves identifying
and exposing useful internal signal states for debugging. To keep
the size of the ETB small, the signals to be traced for post-silicon
validation are selected during the design phase [6]. Most signal-
selection algorithms use restoration of untraced signal states during
debug as a measure [6-8].

Since the ETB is an example of dedicated debug hardware, re-
searchers have been attempting to re-purpose it for other function-
alities when the debug mode is not on. For example, the ETB can
be used as a victim cache [13].

The research question that this study answers is the following:
Can we re-purpose the ETB and the associated debug infrastructure
for security monitoring? Three motivations behind re-using ETBs
to detect Malware are: (1) ETBs have the benefits of hardware-
based Malware detection as described in Section 2.1. (2) ETBs
do not incur performance penalty on other applications. (3)
ETBs support low-latency Malware detection.

3 PREEMPT: ETB-BASED MALWARE
DETECTION

Figure 1(b) outlines the ETB-based Malware detection methodology,

PREEMPT. The first step selects the trace signals. The second step

analyzes the circuit to remove redundant signals, like resets and

scan enables. We use SigSET signal-selection tool that provides
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Figure 2: Experiment Platform: (a) FPGA platform that im-
plements the OpenPiton/OpenSparc design. (b) Architecture
of an OpenPiton tile.

good restoration performance! [14]. A set of signals with a high
restoration ratio indicates a high-connectivity among all signals
in the circuit. This translates into a high probability of detecting
a change in state of any signal in the circuit (traced or untraced).
Our hypothesis is these signals can distinguish between Malware
and benign programs. Next, we create a database of traces for the
benign programs and Malware. These traces are used as inputs to
an ML classifier.

3.1 Experiment Platform

We run malicious and benign applications on the OpenPiton plat-
form [15], shown in Figure 2(a), which comprises of an OpenSparc
T1 core? [16], implemented on a Xilinx Kintex-7 FPGA integrated
on a Digilent Genesys2 board. We connect the FPGA to a host ma-
chine via Universal asynchronous receiver-transmitter (UART). We
use peripherals on the host to control the OpenSparc T1 cores.

Openpiton is a tiled manycore architecture, with each chip com-
prising of multiple OpenSparc cores. Intra-chip communication
between tiles is via a high-speed Network-on-chip (NoC). The tiles
(cores+caches+FPU+etc.) are arranged in a 2-D mesh. Inter-chip
communication is possible via the chip bridge interface. The chip
bridge connects the chip to an off-chip logic known as chipset, that
comprises of I/O, traffic splitter, DRAM and network routers. The
structure of an OpenPiton tile is shown in Figure 2(b). It comprises
of a OpenSparc T1 core (modified, e.g., without the cryptographic
unit and with a reduced number of threads from 4 to 2), two levels
of cache — L1.5 and L2, three NoC routers, Floating point unit (FPU)
and the cache core crossbar (CCX). The CCX has two parts:

(1) CPX: The cache processor crossbar to transfer messages
from the cache to the core.

(2) PCX: The processor cache crossbar to transfer messages
from the core to the cache.

The caches connect directly to the 3 NoC routers. The core is
connected to the caches, the FPU as well as the routers (for I/O
operations) using the CCX interface. The original OpenSPARC T1
! Any trace-signal-selection tool, providing a high restoration, can be used.

2The OpenSparc T1 core is a industry-hardened multi-threaded design that implements
a stable instruction set architecture and comes with compiler and OS support.



design had 2 caches - L1 and L2. The L1 is a private cache for each
core, while the L2 cache is distributed across all tiles in a chip. Both
L1 data and instruction caches are 4-way set associative. However,
the data cache is of size 8KB with line size 16-bytes, while the
instruction cache is of size 16KB with line size 32-bytes. The L2
cache is also 4-way set associative with a size of 64KB per tile.

3.2 Malware Families
In this study we consider two Malware families [17]:

(1) Gafgyt or Bashlite family of Linux Malware are used to
launch Distributed denial-of-service (DDoS) attacks. In 2016,
one million IoT devices were affected by this Malware [18].
Since Gafgyt is written in C, it can be cross-compiled and
applied across processor architectures.

(2) Mirai is a Linux Malware family that transforms a remotely
controlled equipment into a “bot", and uses it to launch large
scale network attacks. Mirai is a sophisticated upgrade of
Gafgyt, that includes a built-in functionality to scan for vul-
nerable devices. While the command and control server IP is
hardcoded in Gafgyt, Mirai resolves the address using DNS.

3.3 Trace Database

We collect Malware traces by running 100 Linux/SPARC Malware
samples downloaded from VirusTotal [17]. A total of 300 more
Malware samples, also collected from VirusTotal, are used for cross-
validation (Section 4.3). Our benign programs are SPEC bench-
marks compiled to run on SPARC architectures and system bina-
ries, e.g., Is, mkdir, chmod, ping, netstat3. The traces obtained by
running these programs on the OpenPiton platform are inputs to
the classifiers, as explained in Section 3.6.

3.4 Classifiers

We use four classifiers from the Python scikit-learn library: KNeigh-
borsClassifier for K-nearest neighbor (KNN), RandomForestClas-
sifier for Random forest (RF), DecisionTreeClassifier for Decision
tree (DT), and MLPClassifier for Neural Networks (NN). We choose
these four classifiers, since they provide satisfactory performance
in existing hardware-based Malware detection schemes [2, 4]. For
each classifier, the ratio of the size of the training set to the size of
the test data set is 4:1. We report True Positive (TP), False Positive
(FP), and Precision for each classifier.

3.5 Trace Signal Selection

The trace signals selected by SigSET offer high restoration, since
they are connected to large number of untraced signals in the circuit.
These ETB signals are used for debug and hence, re-using them for
detecting Malware will not incur any overhead. However, if the
designer has the bandwidth to trace more signals exclusively for
Malware detection, it would be beneficial. In this study we only use
the signals selected for debug. We applied SigSET on the top-level
design netlist to obtain a list of 128 trace signals.

SigSET selects the lower 128 bits of the cpx_spc_data_cx3. The
CPX_SPC is a 145-bit data packet. Bits 128-144 provide various
information regarding the CPX packet, e.g., valid CPX packet, trans-
action type, error in the transaction. The lower 128 bits are reserved
for the CPX data that is transferred to the CPU.

Table 1 delineates the lower 128 bits of the CPX bus, for each
CPX bus transaction type. Load transactions (LOAD_RET) transfer
data from an L2 cache or I/O to a core. Since the data cache has a

3ping and netstat are important since our Malware are botnets.

Bits LOAD_RET IFILL_RET EVICT_REQ ST_ACK INT_REQ
byte Instrn. Interrupt
cacheline offset cacheline

0-7 15 {0, 16} [2-5] Invalidate [2-5] Store/ Yes

way ACK way Yes
8-15 14 0, 16 - - Yes
16-23 13 0, 16 - - Yes
24-31 12 0, 16 - - Yes
32-39 11 4, 20 - - Yes
40-47 10 4, 20 - - Yes
48-55 9 4, 20 - - Yes
56-63 8 4, 20 - - Yes
6471 7 3, 24 B B
72-79 6 8, 24
80-87 5 8, 24 -
88-95 4 8, 24
96-103 3 12, 28
104-111 2 12, 28 - -
112-119 1 12,28 Invalidate Store/ACK

vector vector
120-127 0 {12, 28} Invalidate Store/ACK
vector vector

Table 1: Details of the lower 128 bits of cpx_spc_data_cx3. The
table explains the bits for the Load, Instruction fill, Invali-
dation, Store acknowledgment, and Interrupt type transac-
tions. For Load, the table shows the byte at each cache-line
offset corresponding to a set of bit positions. For Instruction
fill, the table shows the 32-bit instructions at each cache-line,
corresponding to a set of bit positions. For Invalidate and
Store acknowledgements, the table shows the bit positions
that create the corresponding vectors and choose the asso-
ciativity. For atomic instructions and interrupts, the table
shows the relevant bit positions.

16-byte line size, the 128-bits represent the cache-line that is being
filled in the D-cache. The 128-bits can be divided into 16 fragments,
each 8-bit long corresponding to the cache-line offset, as shown in
Table 1. For example, bits 0-7 correspond to the byte that fills the
cache-line at offset 15, bits 8-15 correspond to the byte that fills the
cache-line at offset 14, etc. The big-endian format of the Load data
dictates this ordering.

In case of Instruction fills (IFILL_RET), four 32-bit instructions
are transferred as shown in Table 1. For an Instruction-fill, 32-bytes
of data are returned in contrast to 16-bytes of data for LOAD instruc-
tions. Since the data field of CPX packet is 128 bits, two consecutive
data packets are sent. Hence, two cache-lines are mentioned for
each bit-position in Table 1. Four entries in Table 1 are needed for
information about a single instruction.

For Invalidation and Store Acknowledgment transactions, repre-
sented by (EVICT_REQ) and (ST_ACK) in Table 1, bits 112 to 127
are used to generate a vector, while bits 2 to 5 are used to deter-
mine associativity (the caches are 4-way set associative). Atomic
instructions (ATOMIC_RES) take all the 128-bits, while interrupts
(INT_REQ) require only the lower 64 bits.

Analyzing the benign program and Malware traces, we found
that 98% of CPX transactions correspond to either a Load return
or an Instruction fill. We divided the 128-bit trace into four parts
of 32-bits each. For Instruction fill, each part corresponds to one
of the four instructions being transferred by a 128-bit packet. For
Load operations, each part corresponds to four consecutive bytes
or one 4-byte word of the cache-line that fills the D-cache, i.e., four
entries in Table 1. This aids to analyze the change in classification
accuracy with trace buffer width, performed in Section 4.2. We
create feature vectors out of these 128-bits for classification, with
each vector comprising of four features. The classifiers distinguish



Malware traces from the benign by analyzing the cache-lines and
the instructions that are filled in the D- and the I- caches.

3.6 Pre-process Traces to Create Trace Vectors

Once the trace data are collected, they need to be pre-processed
before being used as inputs to the ML classifier. Our trace pre-
processing procedure consists of two stages.

3.6.1 Cleanup of reset values in Traces. Malware and benign pro-
grams sometimes initialize all registers to their reset states, i.e., the
reset signals are set to 1 and the remaining signals are reset to 0.
The associated traces are not useful; a reset value of a register offers
no clue regarding the program and hence, these traces should be
removed before classification.

3.6.2 Cleanup of Benign Traces. Parts of the Malware include be-
nign functions [2]. Hence, these functions will have traces similar
to benign programs. These traces are labeled twice — one with label
0 in the benign applications and another with label 1 for Malware.
This creates a multi-class label for the same data and undermines
classification performance. We label them once, as benign, during
training. These traces are purged from the Malware database. Once
the ETB traces are cleaned up, we convert them into feature vectors
for training and testing. We created four feature vectors of 32-bit
each for both benign programs and Malware.

4 EXPERIMENTAL RESULTS
4.1 Classification of Benign vs Malware

An ML-based classifier is trained on data from two classes — benign
and Malware. Once trained, it predicts the probability that the new
data belongs to a particular class. The trace data (Malware+benign)
is mixed and split into training and test sets. The results are reported
in Figure 3(a). All the classifiers yield high TP and Precision, which
shows that they can detect most of the malicious traces accurately.
For KNN, RF and DT classifiers the FP is < 1.5%. This is 10X lower
than the best FP of 15% obtained by HPC-based Malware detectors
[2, 12]. For the Neural Network classifier, the FP is 6.7%, which is
2.2X less than the HPC-based schemes.

4.2 ETB Width vs Classification Accuracy

Let us study how classification accuracy changes with ETB width.
Until now, ETB monitored 128 signals. We observe the classification
accuracy when the ETB width is reduced to 64 and 32 signals.
This helps us understand how the performance of PREEMPT is
impacted when design constraints limit the ETB width. The TP
and FP variations for all 4 classifiers are shown in Figure 4(a) and
Figure 4(b), respectively. As ETB width increases (32— 64 —128),
TP increases and FP decreases. This is because as more signals are
traced every cycle, the ETB gets a better view of the internal events
in the circuit and in turn a superior ability to distinguish benign
programs from Malware. However, even when ETB monitors only
32 signals, 3-of-the-4 classifiers (KNN, RF and DT) have a TP > 80%.

4.3 Cross Validation

We cross-validate our model using traces from unknown Malware
samples. For cross-validation, we downloaded 300 additional Mal-
ware samples from VirusTotal [17], and arranged them into 3 sets
of 100 each. Figure 3(b) reports cross-validation accuracy by mea-
suring the TP value. The cross-validation accuracy of the model is
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Figure 3: (a) Classification performance for the four classi-
fiers. TP, FP and Precision are shown as blue, red and yellow
bars respectively. For the KNN, RF and DT classifiers, TP >
90% and FP < 1.5%. KNN has the highest TP (94.6%) and RF
has the best FP (1%). (b) Cross-Validation accuracy. KNN has
the best TP followed by RF and DT. The three colored bars
represent each cross-validation set.
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Figure 4: Variation of (a) TPR (b) FPR with ETB width.

high (up to 93%) confirming that it can handle unknown Malware
samples. Among the classifiers, KNN has the best classification
performance, followed by RF and DT.

4.4 Malware Family Classification using ETB

We applied our ML-based classifiers to distinguish between Mal-
ware of Gafgyt and Mirai families. This is essential to understand
whether ETB traces can distinguish one type of Malware from
another. In this case, the benign software traces are not used for
training the classifiers. Gafgyt Malware is labeled 0 and Mirai is
labeled as 1 during training. The results are shown in Figure 5(a).
We report the percentage of correctly classified Malware of each
family. All the classifiers perform well in identifying Gafgyt traces.
The average accuracy is 90%. However, the classifiers don’t perform
well when identifying Malware samples of Mirai family. This is
especially true for NN-classifier, when the accuracy is only 46%.
This is because, as explained in Section 3.2 Mirai is an upgrade over
Gafgyt [19] and hence, there are a number of identical instructions
between Malware of these two families.

4.5 Malware Cross-family Validation

In this section, we examine if a classifier is trained using Malware
from one family, can it detect Malware from other families cor-
rectly? The experiments in Section 3.2 are different from those in
this section. In Section 3.2, the classifiers were expected to predict
a malicious trace as belonging to Gafgyt or Mirai family. On the
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Figure 5: (a) Classification of Malware families. (b) Classifi-
cation accuracy when two different families of Malware are
used for training and test. The blue and red bars are Gafgyt
and Mirai family-detection accuracy, respectively.
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other hand, in this experiment the classifier has to predict the mali-
cious trace as Malware, and not benign; with the constraint that
the classifier is not trained with traces from the same family of
Malware that it is being tested.

The training database for the first experiment consists of two
sets of traces — benign programs (labeled 0) and Gafgyt Malware
(labeled 1). After training, traces from Mirai family are used to test
the classifier performance. Ideally, the classifier should correctly
identify all Mirai traces as Malware. The results are shown in Fig-
ure 5(b) as blue bars. For all classifiers, we get high classification
accuracy (> 78%). NN-based classifier provides the highest accuracy.
In the second experiment, benign traces (labeled 0) and Mirai traces
(labeled 1) are used for training the classifier and Gafgyt traces are
used for testing. The results are presented in Figure 5(b) as red bars.
The accuracy in this case is lower than Figure 5(b), the average
being 73%. The number of Mirai samples we obtained are less than
Gafgyt traces, and hence, the classifier is biased toward benign data.

4.6 How Quickly Can Malware be Spotted?

We examine how many clock cycles does it take for PREEMPT to
detect a malicious trace. The time required by HPC-based Malware
detectors depend on how frequently the HPC readings are taken.
Increasing the frequency of HPC readings improves Malware de-
tection latency. However, it incurs a performance penalty, since the
system needs to be halted to read out the HPCs.

In order to estimate the detection latency of PREEMPT, we ran-
domly choose 15 Malware samples from the Malware pool. We run
each Malware sample and use the trace obtained every cycle as
an input to the classifier. The classifier labels the trace as being
either benign or malicious. The first cycle when a classifier tags
a malicious trace as Malware is reported in Table 2. In order to
maintain timing, we do not pre-process the traces as discussed in
Section 3.6, so that even the reset and benign traces are retained.
KNN classifiers detect malicious traces with the lowest latency,
while NN classifiers have the maximum detection latency.

The malicious traces are mostly detected in < 100 cycles. or the
KNN-based classifier, the maximum number of cycles to obtain a
malicious trace is 463 cycles for sample 15. The maximum number of
cycles for DT-based classifier is 528 cycles for sample 4. The malware
detection latency depends on how fast the traces are transferred to
the ML-based classifier and the speed of the classifier.

Malware | Malicious trace (cycles)

Sample | KNN [ RF | DT | NN
1 118 118 | 118 | 118
2 50 50 50 50
3 42 42 42 42
4 211 528 | 528 | 528
5 266 266 | 266 | 266
6 138 138 | 138 | 248
7 0 0 0 0
8 98 98 98 98
9 4 4 4 4
10 56 56 56 56
11 272 272 | 272 | 439
12 97 97 97 97
13 93 94 94 93
14 29 29 29 29
15 463 463 | 463 | 463

Table 2: Number of cycles required to detect a malicious
trace. For each classifier the worst-case detection latency is
colored in red. For most cases, malicious traces are detected
within 100 cycles from their activation. For all samples, they
are detected within 600 cycles.

4.7 Mix of Malware and Benign Traces

In a real world scenario, Malware do not run in isolation. They run
in the background along with a benign software. The challenge in
this case is to determine whether PREEMPT can identify malicious
traces in presence of a benign program. This experiment was per-
formed for the HPC-based Malware detection scheme by [5] and
[4]. Both used a Virtual machine (VM)-based system to run benign
applications and Malware together and measure the HPC values.
However, as reported by [12], HPC values in a VM environment
differ significantly from HPC values on actual hardware; hence, the
conclusions of [5] and [4] are debatable. On the other hand, we
perform experiments on the Genesys-2 FPGA platform.

We ran SPEC benchmark “hmmer" in the background and 15
Malware samples from Virustotal in the foreground. We did not
pre-process the traces using the techniques from Section 3.6 so as to
retain the timing information of each trace. We performed timing
analysis (Section 4.6) using the KNN-classifier trained in Section 4.1
to detect Malware from these traces. PREEMPT was able to obtain
a malicious trace within 112 cycles. Therefore, even if a Malware
tries to hide within benign operations, PREEMPT can detect it.

4.8 Combination of Classifiers

We study the implications of combining classifiers by voting on their
predictions. This determines how the classification performance
improves if one can use more than one classifier. We notice how
many of the traces are classified as malware by combining all four
classifiers, how many by combining 3-out-of-4, how many by 2-
out-of-4 classifiers and how many by at least one classifier. When
we consider 3-out-of-4, a trace is a malware if it is classified as such
by {KNN, RF, DT} or by {KNN, RF, NN} or by {KNN, DT, NN} or by
{DT, RF, NN}. The results are reported in Figure 6.

4.9 Analysis of the Results

We visualize the high-dimensional traces by mapping the traces
into two-dimensional embedding traces using t-distributed stochas-
tic neighbor embedding (t-sne) [20]. This identifies patterns in the
data that contribute to the high classification accuracy in our ex-
periments. We use the implementation of t-SNE in Python from
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Figure 7: Scatter plots of the first and second t-sne embed-
dings of benign and Malware traces. The embeddings of
the Malware traces form a dense cluster that can be distin-
guished from the benign traces using non-linear classifiers.
(a) Malware t-sne embeddings form a dense cluster.

the scikit learn library. We use matplotlib library in Python to plot
scatter plots of the obtained t-sne embeddings*.

Figure 7 shows the scatter plots of the density embeddings after
scaler transformation. It shows that Malware t-sne embeddings
form a well-defined cluster while the t-sne embeddings that belong
to benign traces span the whole feature space. This distinct cluster
observable in the scatter plot implies that the benign and the Mal-
ware traces have different Cache Processor Crossbar (CPX) access
patterns that can be separated using non-linear classifiers. Some
data points of the t-sne embeddings of the benign traces overlap
with data points of t-sne embeddings of the Malware. We conclude
that these data points account for benign traces that are incorrectly
labeled as malicious (false positive points) in our results.

5 CONCLUSION

PREEMPT is a debug hardware trace-based Malware detection tech-
nique. PREEMPT re-uses debug trace data and hence, incurs zero
overhead. The ML-based classifiers provide high TP value (> 94%),
while maintaining a low FP value (< 2%). PREEMPT was validated
on Linux-Malware samples from VirusTotal. PREEMPT detects

4The t-sne embedding analysis has a quadratic time and space complexity in the
analyzed data points. This is not time-efficient and hence is a one-time experiment
and not part of the classifier.

Malware with extremely low latency. PREEMPT can discriminate
between two close Malware families.

In summary, PREEMPT offers the following important advan-
tages: Zero silicon area overhead. Zero performance penalty. High
Malware classification accuracy. Low Malware detection latency.
Difficult to hack as it is hardware-based. This approach can be ex-
tended to detect rootkits, backdoors, and ransomware. PREEMPT
can be adapted to Malware in Windows, Android and MacOS. An-
other study can assess the effect of alternate trace signal selection
algorithms. For some devices, real-time observability is not avail-
able. An aggregate of traces need to be dumped periodically and
analyzed. One can examine how this impacts classification accuracy.
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