
BIST-Based Diaignostics of FPGA Logic Bllocks

Charles Stroud, Eric Lee,

Dept. of Electric,al Engineering
University of Kentucky

Abstract: Accurate diagnosis is an essential requirement in
many testing environments, since it is the basis for any repair
or replacement strategy used for chip or system fault-toler-
ance. In this paper we present the: first approach able to
diagnose faulty programmable logic blocks (PLBs) in Field
Programmable Gate Arrays (FPGAs) with maximal cliagnos-
tic resolution. Our approach is basecl on a new Built-In Self-
Test (BIST) architecture for FPGAs and can accurately locate
any single and most multiple faulty l?LBs. An adaptive diag-
nostic strategy provides identification of faulty PLB!j with a
7% increase in testing time over the complete detect.ion test,
and can also be used for manufacturing yield einhanlcement.
We present results showing identification of faulty I’LBs in
defective ORCA chips.’

1.Introducti.on
An FPGA consists of an array of programmable logic

blocks (PLBs) interconnected by a programm,able routing
network, and programmable U0 cells. The set of all program-
ming bits establishes a cnnjiguration which determines the
function of the device. In this paper, we considler in-circuit
reprogrammable FPGAs, such as SRAM-based FPGAs,
which may be reconfigured an arbitrarily large: number of
times. FPGA manufacturing tests are complicated by the
need to cover all possible modes of operation of the PLBs and
also to detect all the faults affecting the programmable inter-
connect network. Currently, thesje tests are generated
manually by configuring several application circuits and
exercising them with test patterns developed specifically for
each application circuit. The FPGA manufacturing tiests are
not reusable for board and system-level testing, which require
separate development efforts that rely on system diagnostic
routines to test the FPGAs in their system mode of operation.
The development of these diagnostic routines can be time-
consuming and costly, and locating a faulty FPGA may be
difficult.

Previous work in FPGA t e ~ t i n g [~ ~ [~ ~ [’ * ~ [’ ’ ~ took advan-
tage of reprogrammability by treating testing just as another
application to be implemented in the FPGA. Some of these
methods also exploit the regular array structure Iof an FPGA

1. This material is based upon work supported in part by
the National Science Foundation under Grant No. MIP-
9409682.

and Miron Abramovici

Bell Labs - Lucent Technologies
Murray Hill, NJ

bly configuring it as one or more iterative logic arrays
(I L A S) [~ ~ [~ ~ [’ ~] . The techniques that rely on externally
applied are applicable only for device-level man-
ufacturing tests.

We have introduced a BIST approach for testing the
PILBs in an FPGA, exploiting the reprogrammability of an
FlPGA to configure it exclusively with BIST logic during test-
ing[’81[’91. In this way, testubiliry is achieved without any
overhead, since the BIST logic “disappears” when the circuit
is reconfigured for its normal operation. In contrast, conven-
tional BIST approaches introduce both area overhead
(t:ypically between 10 and 30 percent) and delay penalties
(typically two to three gate delays); the latter may result in
speed degradation unacceptable in high-performance sys-
tems. The only cost of our technique is the additional memory
fo’r storing the data required to reconfigure the FPGA; how-
ever, this memory is usually part of the test machine
environment (ATE, CPU, or maintenance processor) which
controls the BIST sequence, and does not involve resources
of the FPGA or the system under test. This approach is appli-
a b l e to all levels of testing (wafer, packaged device, board,
auld system). Eliminating the need. for adding BIST circuitry
(or any design-for-testability logic) to the system logic in
FPGAs reduces the design interval and increases the system
functionality that can be implemented in each FPGA. Since
our BIST is independent of the function implemented in the
FIPGA, all FPGAs (of the same type) in the system can be
tested concurrently; this reduces diagnostic code develop-
m(ent and the diagnostic run-time. The initial version of our
ap1proach[lg1 was difficult to implement, because it used a lot
of global routing. This problem was overcome in the ILA-
based BIST architecture(‘’], where most signals can be routed
locally. However, the test time in the ILA-based BIST is 33%
larger than that of the initial version. The first contribution of
th.is paper is to introduce a new BIST architecture, which
trades off a limited amount of global routing for a 33% reduc-
tion in the test time.

Diagnosis consists of mapping an incorrect response
from the circuit under test into the defect(s) that can explain
the obtained response. The required diagnostic resolution
depends on the goal of the testing process. In system-level
tesiting, the objective is to locate a replaceable defective com-
po’nent. Thus in-system identificaltion of a faulty FPGA is

IFdTEFNATIONAL TEST CONFERENCE
0-7803-4209-7197 $1 0.00 0 1997 IEEE

Paper 23.1
539

sufficient in this context. However, in an environment where
repair by replacement is not feasible or practical, one can take
advantage of the reprogrammability and the regular structure
of an FPGA to achieve fault tolerance by repairing the FPGA
in place. This process requires the identification of faulty
PLBs, which are bypassed and replaced with unused cells by
reprogramming the FPGA[11[91[121, The same resolution (to
the level of a faulty PLB) is required for the "node-covering"
fault-tolerant technique, where the repair occurs after manu-
facturing testing and is invisible to the user[41. Another yield-
enhancement technique[@ replaces an entire faulty row (or
column) by a spare one, and hence its resolution requirement
is only to identify a faulty row (or column). When the goal of
testing is the improvement of the manufacturing process, then
the most accurate resolution (locating faults inside a PLB) is
required to support subsequent failure analysis.

Although accurate and efficient diagnosis is essential
for these applications, there has been very little published
work regarding diagnosis of faulty PLBs in an FPGA. Usu-
ally fault location is not targeted by manufacturing tests,
whose goal is fault detection. After an FPGA fails its manu-
facturing test, one method applies a fault location test that
simply pro agates signals horizontally and vertically through

often a signal may propagate through a defective block. The
method used to check the (non-commercial) FPGAs used in
the Teramac custom computer['] configures each row as a
pseudo-random sequence generator and checks the final reg-
ister contents after a given number of clock cycles against an
expected signature. The same procedure is then repeated
using column instead of rows, and the faulty cells are located
at the intersection of the faulty rows with the faulty columns.
However, the test provided to the blocks that form the
pseudo-random sequence generator is unlikely to achieve full
fault coverage and hence it cannot guarantee complete diag-
nostic resolution (in general, fault detection is a necessary
condition for fault location). In addition, applying the test
requires a fault-free finite-state machine in the FPGA, and
developing the diagnostics tests is an expensive manual
process.

In contrast, our approach is the first FPGA diagnosis
method guaranteed to achieve maximal diagnostic resolution
at any required resolution accuracy - chip, row, column,
PLB, and even subcircuit inside the PLB. Our BIST does not
require any fault-free core in the FPGA. Our basic fault detec-
tion test (determining the passifail status of the entire device)
provides in-system identification of a faulty FPGA. In gen-
eral, we can locate a faulty PLB with only two BIST
configurations in addition to those used in the basic test. As a
result, not only are all PLBs in the FPGA completely tested,
but a faulty PLB can be identified with an increase in test time
of only 7%. We can also diagnose large classes of multiple
faulty PLBs. We used the Lucent Optimized Reconfigurable

the array['. P However, this procedure is not reliable, since

Cell Array (ORCAf2l for the initial design and implementa-
tion of the BIST-based diagnostic approach, but we
emphasize that our technique can be applied to any SRAM-
based FPGA, such as X i l i n ~ [' ~] or Altera Flex 8000[31 series
FPGAs.

The remainder of this paper is organized as follows.
Section 2 gives an overview of the previous FPGA BIST
approach. Section 3 presents the new BIST architecture.
Section 4 describes the diagnosis method, and Section 5 dis-
cusses results from the successful use of this approach in
locating faulty PLBs in manufactured FPGAs. Finally,
Section 6 presents our conclusions.

2. Overview of the Previous BIST Approach
The strategy of our FPGA BIST approach["] is to con-

figure groups of PLBs as test pattern generators (TF'Gs) and
output response analyzers (ORAS), and another group as
blocks under test (BUTs), as illustrated in Figure 1. The
BUTs are then repeatedly reconfigured to test them in all their
modes of operation. We refer to the test process that occurs
for one configuration as a test phase. A test session is a
sequence of test phases that completely test the BUTs in their
various modes of operation. Once the BUTs have been tested,
the roles of the PLBs are reversed so that in the next test ses-
sion the previous BUTs become TPGs or ORAS, and vice
versa. Therefore, we need at least two test sessions to test all
PLBs in the FPGA. Note that all BUTs are tested in parallel,
so that the BIST and BIST-based diagnostic run-time does
not depend on the size of the FPGA.

Figure 1. FPGA structure for a BIST session

Each test phase consists of the following steps: 1) recon-
figure the FPGA, 2) initiate the test, 3) generate test patterns,
4) analyze responses, and 5) read the test results. In step 1, the
test controller (ATE for wafedpackage testing; CPU or main-
tenance processor for boardsystem testing) interacts with the
FPGA(s) under test to reconfigure the logic by retrieving a
BIST configuration from the configuration storage (ATE
memory; disk) and loading it into the FPGA(s). The test con-
troller also initiates the BIST sequence (step 2) and reads the
subsequent results (step 5) using the FPGAs boundary-scan
Test Access Port[16] or other system specific means. (Practi-
cally all recently developed FFGAs, such as ORCA[*],
XC4000[131, and Flex 8000[3], feature boundary scan.) Steps
3 and 4 are concurrently performed by the BIST logic within

Paper 23.1
540

I
B IS T-start BUT

L

k -- - - ILA cell

CL

I -

L - - - l .
L - - - -; 1- --. - 1 1- .--. - 1

Outputs from other ILA

Figure 2.]Basic ILA BIST sltructure with helper cells

the device. After the board or system-level BIST is complete,
the test controller must reconfigure the FPGA fior its’ normal
system function; hence the normal device configuration must
be stored along with the BIST configurations. The test appli-
cation time is dominated by the FPGA reconfiguration time.
Since testing time is a major component of the te.sting cost, an
important goal is to minimize the number of configurations
used for test and diagnosis.

Our strategy also relies on pseudoexhaustive testing[’ ‘I,
in which every subcircuit of a PLB i s tested with exhaustive
patterns. This results in maximal fault coverage without
explicit fault model assumptions and without fault simula-
tion. For example, all single and multiple stuck-at faults, and
all non-feedback bridging faults are guaranteed to be
detected. Although complete coverage cannot be guaranteed,
the overwhelming majority of any other type of f.aults are also
detected. Faults affecting the lookup tables are checked with
RAM test sequences which are exhaustive for faults specific
to RAMS. Thus for any practicalpurpose the PLlP testis com-
plete. Note that in every phase, a BUT is configured in a
different mode of operation; hence its pseudoexhaustive test
may also change from phase to phase. For example, the test
sequence for combinational logic followed by flip-flops is
different from the test sequence for a RAM. Thus the TPG
block may have different structures dependiing on the
sequence that it has to generate in a given phase.

All BUTS are configured to have the same function and
receive the same input patterns form the TPG block. Since all
fault-free BUTs must produce the same output patterns, the
ORAs simply compare corresponding outputs from different
BUTs. Unlike the signature-based compression circuits
found in most BIST applications, comparator-based OiRAs do
not suffer from the aliasing problem that occurs when a faulty
circuit produces the good circuit signature. As long as the
BUTs being compared do not fail the same way at the same
time, no aliasing will be encountered with the comparison-
based approach. Faulty TPGs and/or ORAs may precllude the
detection of a fault in a BUT; but the PLBs composing the
faulty TPGs and/or ORAS will become BUTS in a different
session, hence a faulty FPGA will not escape detection.

The architecture outlined in]Figure 1 uses a lot of global
routing, which becomes more difficult to implement as the
size of the FPGA increases. This scaling problem is over-
come by the ILA-based architecture[”], where most signals
are locally routed. Figure2 shows one ILA spanning two
rows of an FPGA. The use of helper cells allows creating
ILAs within the FPGA array by providing test patterns to the
inputs of the BUT which cannot be driven by the limited
number of PLB outputs, and by combining and propagating
BUT output responses which cannot be used as test patterns
for subsequent BUTs. While most FPGAs structured for
BIST based on the original architecture[’*] can be tested
using only two sessions, the use of helper cells requires a
thdrd session to completely test all the PLBs using the ILA-
biased BIST[l9l.

3. The New FPGA BIST Architecture
The basic structure of our new BIST architecture,

shown in Figure 3a, is a hybrid between the two previous
approaches, trading off a limited increase in global routing
for saving one test session. Figure 3b outlines the floorplan
for the first test session for an 8x8 FPGA; the first four rows
correspond with those in Figure 3a. Every ORA compares
two BUTs fed by different TF’Gs. To combine results of sev-
eral ORAS, we use an iterative comparator based on one
proposed by Sridharand Hayes[lS1, shown within dotted lines
in Figure 4. Here each ORA compares corresponding outputs
from two BUTs to produce a local mismatch signal (LMM),
which is ORed with the previous mismatch signal (PMM)
from the previous ORA to generate the ORA mismatch
(MW. The flip-flop is used to record the first mismatch
encountered during the BIST sequence. The feedback from
the flip-flop output to the first ORA disables further compar-
istons after the first error has been recorded. Except for this
feedback signal, all the other ORA signals propagate like in
an ILA, using only local routing resources.

Because the patterns from TPGs feed all BUTS in paral-
lel, the new architecture has more global routing than the
1L.A-based BIST, where most patterns for a BUT are pro-
duced by the previous cell in the L A . However, this structure

Paper 23.1
54 1

- - - - _ _ _ _

- -

1 1
2 2
3 3

4 4
5 5
6 6
7 7
8 8

- - -

a) TPG, BUT, and ORA connections

BUTs
ORAS
BUTs
ORAS
BUTs
ORAS
BUTs
TPGs

b) Floorplan for first test session
Figure 3. The new BIST architecture

is easily scalable, because the usage of the global routing
resources required for distributing the TPG patterns does not
change with the FPGA size. In other words, adding rows and
columns to an array of PLBs will just extend the size of the
vertical and horizontal global lines fed by TPG outputs. Since
an ORA compares the outputs of its two neighbor BUTs, all
signals from BUTs to ORAs can use local routing resources.
Its regular structure allows the new architecture to be con-
structed and interconnected algorithmically as a function of
the size (N) of the FPGA.

for fanout drivers, additional TPGs, additional ORAS, or it
may be left unused (note that this row will be configured as
BUTs in the second session); in our implementation we used
it for ORAs. The important feature of this architecture is that
any FPGA can be completely tested in only two test sessions,
which is an improvement over the EA-based approach which
required three test sessions. The architectural features that
help the diagnosis task will be analyzed in the next section.

4. BIST-Based Diagnosis
In this section, we describe the use of the BIST

approach in diagnosing an FPGA that failed the test provided
by the two test sessions described above. We begin by assum-
ing a single faulty PLB in the FPGA and later we discuss the
case of multiple faulty PLBs. First, we show that the test
results can identify the row in which the faulty PLB reside.
Then we present the additional test phases required to locate
the faulty PLB.

A faulty PLB in a TPG or an ORA may not produce an Figure 4. Iterative comparator with error locking
error if the fault does not affect the operation of the TPG or
ORA. First we analyze the case when a fault in an ORA or a

configured as a BUT. One feature of the new architecture that

in the last row of BUTs) are always compared by two differ-
ent ORAS. As a result, a fault in one of the middle rows of

will produce at two outputs, while a fault

Figure 5 shows the floorplans for the two test sessions -

FPGA’ The name Of a session denotes the direction Of the

is obtained by flipping the floorplan for NS around the hori-
zontal axis shown as a dotted line in the middle of the array.
The row labeled “used as needed” in Figure 3b can be used

Ns and sN - that PLB in an 8x8 TpG pLB is detected only in the session when that PLB is

flow Of test patterns during that session’ The floorplan for sN helps diagnosis is that all BUTs (except those in the first and

in the first or last row of BUTs will produce an error in only
one ORA. Let Oi denote the output of the ORA located in row
i. For example, a defective BUT in row 4 will cause errors at
03 and 05 in session NS, (because its outputs are compared
by ORAs in rows 3 and 5) , while a defective BUT in row 1
will be detected only at 0 2 in session SN. Without this feature
we could not distinguish between faulty BUTs in rows 2 and
4, because both would have been observed only at 03. The
results of this analysis for an 8x8 FPGA are given in Table 1
under the heading “without ORA/TPG failures.” Errors at
ORA outputs are marked by X. We can observe that the error
pattern of every faulty row is unique.

Figure 5. Floorplans for the two BIST sessions

Paper 23.1
542

Table 1: Errors during BIST for a single faulty row of PLBs

without BRA/TPG failures

Session NS I)Session SN Session NS Session SN
I E 1 Function / / Function k---

Now we analyze the case when some faults in a PLB
may also be detected when that PLB is configured as an ORA
or a TPG. The results of this analysis are given in Table 1
under the heading “with ORA/TPG; failures.” A fault in an
ORA may cause an error only in that ORA when it reports a
mismatch although all compared pairs of output values agree.
Thus in addition to the error at 03 in session NS, a fault in a
PLB in row 2 may also cause an enor at 0 2 in session SN.
This error is marked by “(X)” to denote a potential error. A
fault in a TPG row may cause the two TPGs to produce dif-
ferent patterns, thus generating mismatches in every
comparator and resulting in errors at all ORA outputs in that
session; in rows 1 and 8, we-use “(X X X)” to denote a poten-
tial groups of three errors. Since every row now contains one
potential error or one potential group of errors, there are 2’-1
possible sets of errors. However, it is easy to observe that for
any combination of errors, the pattern of every faulty row is
still different from all others. Therefore we can conclude that
after the two BIST sessions we can accurately locate the row
in which the faulty PLB resides.

By repeating the same process after rotating Figure 5 by
90°, so that the flow of test patterns is horizontal instead of
vertical (see the diagnostic sessions WE and EW in Figure 6) ,
the new arrangement will identify a faulty column instead of
a faulty row. Then the faulty PLB is located at the intersection
of the faulty row with the faulty column.

a) Diagnostic session WE b) Diagnostic session EW
Figure 6. Floorplans for diagnostic se:ssiono

Although Table 1 shows only the failing sessions, the
errors are actually recorded in a specific phase of a session.
This allows us to significantly shorten the length of the diag-
nostic sessions. If we use an adaptive diagnosis strategy, in
which subsequent tests are applied based on the results
obtained so far, we can achieve tlhe same resolution without
two complete additional “horizontal” sessions. Namely, we
will execute only one of the failing test phases, repeating it
twice using the arrangement of Figure 6. In some cases it will
be possible to identify the faulty PLB after the first diagnostic
test phase without having to run the second diagnostic test
phase, but the worst case would require both diagnostic test
phases to be performed. Let p be the percentage of test time
taken by one phase relative to the total time involved in the
first two sessions used for detection (for ORCA, p=3.5%).
Then the percent increase in tesit time is p when only one
diagnostic test phase is required, and 2p when both diagnostic
test phases are required to identify the faulty PLB.

Now we will discuss the diagnosis of multiple faulty
PLBs. First it is easy to see that the analysis shown in Table 1
extends trivially for multiple faulty PLBs residing in the same
row (or in the same column). Another large class of multiple
faulty PLBs that can also be precisely diagnosed are PLBs in
rows (or columns) which are observed at disjoint set of
C:lRAs. For example, faults in row 7 can be detected only at
0 6 and 07, and faults in row 2 can be detected only at 0 2 and
0 3 ; hence any combination of faulty PLBs in rows 2 and 7
can be diagnosed. This class is large, because in an NXN array
of PLBs there will be (N / 2 - 1) ORA output signals, and faults
in row i can be observed only at O(i-1) and O(i+l) for i = 3,
4, ..., N-2 when i is a row of BUTs, and potentially at Oi when
i is a row of ORAS. Most combinations of faulty rows that
affect overlapping sets of ORAs can also be diagnosed. Let
((i, j , ...} denote a set of faulty rows. For example, we will
show that (2,4) and (4) , which have 03 as common ORA
output, may never have the same pattern of errors. If the faults
in rows 2 and 4 do not cause errors at 03 in exactly the same
BIST phases, then (2,4} and (4) can be distinguished at 0 3 .

Paper 23.1
543

If the faults in rows 2 and 4 affect corresponding BUTs (that
are compared by the same ORA), and they always have the
same responses, then (2,4) will not have any errors at 03
while (4) will. Although there exist some multiple faulty
PLBs that cannot be accurately diagnosed, it appears that the
corresponding fault situations are very unlikely to occur in
practice. For example, assume that faulty ORAs and TPGs do
not produce failures, and consider (4, 6) and (2, 8}; their
error patterns would be identical only if the following condi-
tions occur simultaneously: 1) the faults in rows 4 and 6 affect
corresponding BUTs which always have the same responses
(this would eliminate the errors at 05); 2) faults in rows 2 and
4 cause errors at 03 in exactly the same BIST phases; 3)
faults in rows 6 and 8 cause errors at 0 7 in exactly the same
BIST phases. Similar analyses show that in general, our BIST
architecture imposes very restrictive conditions necessary for
multiple faulty PLBs to produce identical error patterns.

Although a single TPG is sufficient for completely test-
ing all PLBs, we can obtain better diagnostic resolution by
having two different (but synchronized) TPGs feed the BUTS
being compared by the same ORA. Otherwise, a defective
single TPG may not supply the patterns needed to detect a
fault in a BUT, but this will not cause any mismatch because
all BUTs still receive the same patterns. With two separate
TPGs, a fault affecting one TPG will cause an error at every
ORA, since half of the BUTs will receive test patterns from
the faulty TPG.

5. Diagnostic Results for ORCA FPGAs
In this section we present the results of the implementa-

tion of our BIST-based diagnostic a2proach using ORCA
FPGAs, and discuss our experience with testing and diagno-
sis of known defective FPGAs. Our test consists of 14 phases,
summarized in Table 2 in terms of the modes of operation of

the look-up tables (LUTs) and flip-flop/latch circuits of the
PLB tested during every test phase. The first 9 BIST phases
are used to test all ORCA series FPGAs, while the last 5 BIST
phases are added to test the 2CA seriesL2]. The number of
PLB outputs for each BIST phase is shown in the last column.

The ORCA PLB has five outputs used in many of its
modes of operation as a BUT, while only four pairs of outputs
can be compared by a single PLB configured as an ORA. As
a result, during the BIST test sessions, the “used as needed”
row is used to compare the fifth output from up to eight rows
of BUTs in those configurations which use all five outputs.
The grouping of BUTs and ORAs with respect to the normal
four outputs and the extra fifth output is a function of the size
of the FPCA as illustrated in Figure 7. The minimum array
size for most FPGAs is N=8, in which case the “used as
needed” row is used to compare the fifth output from four
BUTs. As N increases, the groups of four outputs from adja-
cent BUTS are compared pairwise by the rows labeled ORA4,
while the fifth outputs are grouped and compared by the rows
labeled ORA5. For N=16, the basic configuration of
Figure 7a can be used twice, either with two sets of TPGs to
reduce loading on the TPG outputs, or with an ORA4 in place
of the second set of TPGs. While 16<N<32, combinations of
the arrangements shown in Figure 7 can then be used until the
arrangement in Figure 7a is replicated three times for N=32.
For the second test session, the connection arrangement is
rotated about the points indicated in Figure 7, so that every
row of PLBs are BUTS in one test session.

Next we consider the BIST phases in which all five out-
puts of the PLB are tested. As a result of the regular BIST
sequence, we determine which phase or phases fail, as well as
whether the error is at one of the four outputs or at the fifth
output. At that point we run four diagnostic test phases based
on the failing output: either a diagnostic test phase for the four

Table 2: Summary of BIST Phases for BUTs

Paper 23.1
544

C) N=12

Figure 7. ORCA floorp1,ans for BIST sessions

outputs or a diagnostic test phase for the fifth output with
ORAs comparing adjacent BUT outputs. Each of the four
diagnostic test phases uses a different PLB assignment with
respect to rows and columns as illustrated in Figure 5 and
Figure 6 (here, Figure 5a and Figure 5b represent diagnostic
test phases rather than complete BIST sessions). From these
results, we can identify the faulty PLBs in the FPGA in the
same manner as was done in the case of the four output phases
described above. As a result, at most four additional diagnos-
tic test phases are required (as opposed to two additional
diagnostic test phases in the case of the four outlput phases),
for an increase in test time of about 14%.

In addition to the 28 BIST configurations (14 for each
test session), we generated two diagnostic test pha.ses for each
of the seven BIST phases which test the PLB in operational
modes which use only four outputs, for another 14 configura-
tions. We also generated eight diagnostic test phases fix each
of the seven BIST phases which test the PLB in operational
modes that use five outputs, for another 56 configurations.
Four of the eight diagnostic test phases are used to diagnose
the four PLB outputs in each of the fiour directions shown in
Figure 5 and Figure 6 , while the other four diagnostic test
phases are used to diagnose the fifth PLB output in each of
the four directions. As a result, we generated a total of 98 con-
figurations (28 BIST phases and 70 diagnostic test phases) of
which only 30 or 32 configurations will be used to identify a
single faulty PLB as a result of the adaptive diagnostic
approach.

The device targeted for experimentation with this BIST-
based diagnostic approach was the ORCA 2C 15A which
requires the full set of 14 test phases for each test session to
completely test all 400 PLBs in the 20x20 array. Wia were
provided with five 2C 15A devices by Lucent Technologies
Microelectronics Group in Allentown, PA. From manufactur-
ing test results, three of these parts were known to be: fault-
free and two were known to be defective. Applying the com-

d) N=14
plete BIST sequence (two test sessions of 14 phases each), we
successfully identified the defective FPGAs. Then, using the
diagnostic phases, we attempted to identify the faulty PLB(s)
in the two failing devices. The BUT-ORA interconnections
foir the 2C15A consisted of two sets of connections shown in
Fi,gure 7b, but with the second set of TPGs replaced by an
ORA4 row. As a result, there were nine ORA outputs for each
test configuration of the 2C15A with the 5th and 15th rows
comparing the fifth PLB outputs during the first BIST ses-
sion, and the corresponding rowdcolumns used in the second
BlST session and the subsequent d.iagnostic phases.

Figure 8a summarizes the diagnosis results for the first
faulty device. We had no errors in session NS and errors at 0 2
and 0 4 in phases 5 through 9 of session SN. These results
indicate that row 3 is faulty, and that its faults are not detected
when row 3 is an ORA. Reapplying one of the faulty phases
twice as diagnosis sessions, we obtained no errors in session
EW, and errors at 017 and 019 in session WE. These results
indicate that row 18 is faulty, and that its faults are not
detected when row 18 is an ORAWhen the results of the
B E T phases and diagnostic test phases are combined, we
identify a single faulty PLB in row 3 and column 18 of the
20x20 array. From Table 2, we can also infer that the fault is
probably located in the flip-flop/latch logic of the defective
PLB, because all the failing phases (5 through 9) test this
subcircuit.

For the second faulty device, whose results are summa-
rized in Figure 8b, we had errors at 015 and 017 in phases 1
and 6 of session NS and no errors in session SN. During the
corresponding diagnostic test phases, we obtained errors at
064, 016, and 018 in session EW, and no errors in session
WE. This combined set of error pat.terns identifies two faulty
PL.Bs: one in row 5 and column 15 and the other in row 5 and
col.umn 17. However, the second faulty device also had a
number of additional errors which pointed to faults in the pro-
grammable routing network, which our current test does not

Paper 23.1
545

Diagnostic Session EW Diagnostic Session EW
a) ORCA 2C15A with one faulty PLB b) ORCA 2C15A with two faulty PLBs

Figure 8. Results of BIST-based diagnostic sessions for two faulty ORCA 2ClSA devices

explicitly target. This was apparent from errors which
occurred in only one of the four directions and can be
explained by different routing resources being used for the
different directions of the test (with the faulty routing seg-
ments used in the one direction only). Although this
diagnostic approach is currently targeted only at PLBs, we
could use the errors produced by routing segment faults to
narrow down the possible area where these faults may reside
to an area about one-eighth of the total area of the array.

6. Conclusions
In this paper, we have described a new BIST approach

for programmable logic blocks in SUM-based FPGAs. The
new architecture facilitates the complete testing of all PLBs
in only two test sessions, while its regular structure allows
easy scalability with the size of the FPGA and algorithmic
generation of placement and routing data for every test phase
based on the size of the array. The main contribution of this
paper is to show how our new BIST architecture can be used
to locate faulty PLBs in a defective FPGA. The main result is
the development of the first method able to achieve maximal
diagnostic resolution at any required resolution accuracy -
chip, row, column, PLB, and even subcircuit inside the PLB.
Our technique can accurately diagnose any single PLB and
most multiple faulty PLBs. The multiple faulty PLBs that
cannot be diagnosed appear to be very restrictive situations
unlikely to occur in practice.

Our approach can diagnose the faulty PLB(s) with a
fixed test of four BIST sessions. Using adaptive diagnosis, we

need only two additional diagnostic test phases after the first
two BIST sessions which detect faulty PLBs. For ORCA,
diagnosis increases the test time by only about 7%. We
applied our BET-based diagnosis to two known defective
FPGAs, and we were able to identify the faulty PLBs in both
devices. In addition, in one device we could identify the
defective subcircuit inside the faulty PLB, and in the other
one we determined a region where a routing faults is likely to
exist.

In addition to testing of PLBs, testing of an FPGA also
involves testing of its programmable interconnect net-
work[’’]. Accurate identification of the defective wire
segments is required for repair either by rerouting an already
programmed or by the “segment covering” tech-
nique used after manufacturing testing[51. Testing and
diagnosis of the programmable interconnect will be the next
phase of this project.

Acknowledgments
This work was also supported in part by grants from the

University of Kentucky Center for Robotics and Manufactur-
ing Systems and from Lucent Technologies, Inc. The authors
gratefully acknowledge the support, assistance, and encour-
agement of C.T. Chen, A1 Dunlop, Satwant Singh, and
Carolyn Spivak of Lucent Technologies, Inc.

References
[11 B. Culbertson et al., “Defect Tolerance on the Teramac

Custom Computer,” Proc. 5th Annual IEEE Symp. on

Paper 23.1
546

Field-Programmable Custom Computing Machines, pp.
140-147, April 1997

[2] Field Programmable Gate Arrays Data Book, Lucent
Technologies, Oct. 1996

[3] Flex 8000 Programmable Logic Device Family, Data
Sheet, Altera Corp., May 1993

[4] F. Hanchek and S. Dutt, “Node-Covering Elasedl Defect
and Fault Tolerance Methods for Increased Yield i n
FPGAs,” Proc. 9th International Con$ on VLSI Design,

[5] F. Hanchek and S. Dutt, “Design Methodologies for Tol-
erating Cell and Interconnect Faults in FPGAs,” Proc.
International Con$ on Computer Design, 1996

[6] F. Hatori et al., “Introducing Redundancy in Field Rro-
grammable Gate Arrays,” Proc. lEEE Custo,m Inregrated
Circuits Con$, pp. 7.1.1-7.1.4, 1993

[7] W. K. Huang and F. Lombardi, “An Approach to Testing
Programmable/Configurable Field Programmable Gate
Arrays,” Proc. IEEE VLSI Test Symp., pp. 450-455, 1996.

[8] C. Jordan and W. P. Marnane, “Incoming Inspection of
FPGAs,” Proc. European Test Con$, pp. 371-377, 1993.

[9] J. L. Kelly and P. A. Ivey, “Defect Tolerant SRAA4 Based
FPGAs,” Proc. International Con$ on Computer Design,

[I O] F. Lombardi, D. Ashen, X. Chen, and W. K. Huang,
“Diagnosing Programmable Interconnect Systems for
FPGAs,” Proc. ACM/SIGDA International Symp. on

pp. 225-229, 1996

pp. 479-482, 1994

FPGAs, pp. 100-106, 1996

[1 11 E. McCluskey, “Verification Testing - A Pseudoexhaus-
tive Test Technique,” IEEE Trans. on Computers, Vol. C-
33, No. 6, pp. 541-546, June, 1984

[121 J. Narasimhan et al., “Yield Enhancement of Program-
mable ASIC Arrays by Reconfiguration of Circuit Place-
ments,” IEEE Trans. on CAD, Vol. 13, No. 8, pp. 976-
986, August 1994

[131 The Programmable Logic Data Book, Xilinx, Inc., 1993
[141 K. Roy and S. Nag, “On Roiutability for FPGAs Under

Faulty Conditions,” IEEE Trans. on Computers, Vol. C-

[151 T.Sridhar and J. P. Hayes, “Design of Easily Testable
Bit-Sliced Systems,” IEEE Trans. on Computers, Vol. C-
30, No. 1 1, pp. 842-854, November, 198 1

[161 “Standard Test Access Port and Boundary-Scan Archi-
tecture,” IEEE Standard P1149.1-1990, May 1990

[1.71 C. Stroud, P. Chen, S. Konala, and M. Abramovici,
“Evaluation of FPGA Resources for Built-In Self-Test of
Programmable Logic Blocks,” Proc. ACM/SIGDA Inter-
national. Symp. on FPGAs, pp. 107-113, 1996

[1.81 C. Stroud, S. Konala, P. Chen, and M. Abramovici,
“Built-In Self-Test for Programmable Logic Blocks in
FPGAs (Finally, A Free Lunch: BIST Without Over-
head!)”, Proc. IEEE VLSI Test Symp., pp. 387-392, 1996

[1191 C. Stroud, E. Lee, S. Konala, and M. Abramovici,
“Using ILA Testing for BIST in FPGAs”, Proc. IEEE
International Test Con$, pp. 68-75, 1996

44, NO. 11 , pp. 1296-1305, NOV. 1995

Paper 23.1
547

