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Abstract: Accurate diagnosis is an essential requirement in 
many testing environments, since it is the basis for any repair 
or replacement strategy used for chip or system fault-toler- 
ance. In this paper we present the: first approach able to 
diagnose faulty programmable logic blocks (PLBs) in Field 
Programmable Gate Arrays (FPGAs) with maximal cliagnos- 
tic resolution. Our approach is basecl on a new Built-In Self- 
Test (BIST) architecture for FPGAs and can accurately locate 
any single and most multiple faulty l?LBs. An adaptive diag- 
nostic strategy provides identification of faulty PLB!j with a 
7% increase in testing time over the complete detect.ion test, 
and can also be used for manufacturing yield einhanlcement. 
We present results showing identification of faulty I’LBs in 
defective ORCA chips.’ 

1.Introducti.on 
An FPGA consists of an array of programmable logic 

blocks (PLBs) interconnected by a programm,able routing 
network, and programmable U0 cells. The set of all program- 
ming bits establishes a cnnjiguration which determines the 
function of the device. In this paper, we considler in-circuit 
reprogrammable FPGAs, such as SRAM-based FPGAs, 
which may be reconfigured an arbitrarily large: number of 
times. FPGA manufacturing tests are complicated by the 
need to cover all possible modes of operation of the PLBs and 
also to detect all the faults affecting the programmable inter- 
connect network. Currently, thesje tests are generated 
manually by configuring several application circuits and 
exercising them with test patterns developed specifically for 
each application circuit. The FPGA manufacturing tiests are 
not reusable for board and system-level testing, which require 
separate development efforts that rely on system diagnostic 
routines to test the FPGAs in their system mode of operation. 
The development of these diagnostic routines can be time- 
consuming and costly, and locating a faulty FPGA may be 
difficult. 

Previous work in FPGA t e ~ t i n g [ ~ ~ [ ~ ~ [ ’ * ~ [ ’ ’ ~  took advan- 
tage of reprogrammability by treating testing just as another 
application to be implemented in the FPGA. Some of these 
methods also exploit the regular array structure Iof an FPGA 
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bly configuring it as one or more iterative logic arrays 
( I L A S ) [ ~ ~ [ ~ ~ [ ’ ~ ] .  The techniques that rely on externally 
applied are applicable only for device-level man- 
ufacturing tests. 

We have introduced a BIST approach for testing the 
PILBs in an FPGA, exploiting the reprogrammability of an 
FlPGA to configure it exclusively with BIST logic during test- 
ing[’81[’91. In this way, testubiliry is achieved without any 
overhead, since the BIST logic “disappears” when the circuit 
is reconfigured for its normal operation. In contrast, conven- 
tional BIST approaches introduce both area overhead 
(t:ypically between 10 and 30 percent) and delay penalties 
(typically two to three gate delays); the latter may result in 
speed degradation unacceptable in high-performance sys- 
tems. The only cost of our technique is the additional memory 
fo’r storing the data required to reconfigure the FPGA; how- 
ever, this memory is usually part of the test machine 
environment (ATE, CPU, or maintenance processor) which 
controls the BIST sequence, and does not involve resources 
of the FPGA or the system under test. This approach is appli- 
a b l e  to all levels of testing (wafer, packaged device, board, 
auld system). Eliminating the need. for adding BIST circuitry 
(or any design-for-testability logic) to the system logic in 
FPGAs reduces the design interval and increases the system 
functionality that can be implemented in each FPGA. Since 
our BIST is independent of the function implemented in the 
FIPGA, all FPGAs (of the same type) in the system can be 
tested concurrently; this reduces diagnostic code develop- 
m(ent and the diagnostic run-time. The initial version of our 
ap1proach[lg1 was difficult to implement, because it used a lot 
of global routing. This problem was overcome in the ILA- 
based BIST architecture(‘’], where most signals can be routed 
locally. However, the test time in the ILA-based BIST is 33% 
larger than that of the initial version. The first contribution of 
th.is paper is to introduce a new BIST architecture, which 
trades off a limited amount of global routing for a 33% reduc- 
tion in the test time. 

Diagnosis consists of mapping an incorrect response 
from the circuit under test into the defect(s) that can explain 
the obtained response. The required diagnostic resolution 
depends on the goal of the testing process. In system-level 
tesiting, the objective is to locate a replaceable defective com- 
po’nent. Thus in-system identificaltion of a faulty FPGA is 
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sufficient in this context. However, in an environment where 
repair by replacement is not feasible or practical, one can take 
advantage of the reprogrammability and the regular structure 
of an FPGA to achieve fault tolerance by repairing the FPGA 
in place. This process requires the identification of faulty 
PLBs, which are bypassed and replaced with unused cells by 
reprogramming the FPGA[11[91[121, The same resolution (to 
the level of a faulty PLB) is required for the "node-covering" 
fault-tolerant technique, where the repair occurs after manu- 
facturing testing and is invisible to the user[41. Another yield- 
enhancement technique[@ replaces an entire faulty row (or 
column) by a spare one, and hence its resolution requirement 
is only to identify a faulty row (or column). When the goal of 
testing is the improvement of the manufacturing process, then 
the most accurate resolution (locating faults inside a PLB) is 
required to support subsequent failure analysis. 

Although accurate and efficient diagnosis is essential 
for these applications, there has been very little published 
work regarding diagnosis of faulty PLBs in an FPGA. Usu- 
ally fault location is not targeted by manufacturing tests, 
whose goal is fault detection. After an FPGA fails its manu- 
facturing test, one method applies a fault location test that 
simply pro agates signals horizontally and vertically through 

often a signal may propagate through a defective block. The 
method used to check the (non-commercial) FPGAs used in 
the Teramac custom computer['] configures each row as a 
pseudo-random sequence generator and checks the final reg- 
ister contents after a given number of clock cycles against an 
expected signature. The same procedure is then repeated 
using column instead of rows, and the faulty cells are located 
at the intersection of the faulty rows with the faulty columns. 
However, the test provided to the blocks that form the 
pseudo-random sequence generator is unlikely to achieve full 
fault coverage and hence it cannot guarantee complete diag- 
nostic resolution (in general, fault detection is a necessary 
condition for fault location). In addition, applying the test 
requires a fault-free finite-state machine in the FPGA, and 
developing the diagnostics tests is an expensive manual 
process. 

In contrast, our approach is the first FPGA diagnosis 
method guaranteed to achieve maximal diagnostic resolution 
at any required resolution accuracy - chip, row, column, 
PLB, and even subcircuit inside the PLB. Our BIST does not 
require any fault-free core in the FPGA. Our basic fault detec- 
tion test (determining the passifail status of the entire device) 
provides in-system identification of a faulty FPGA. In gen- 
eral, we can locate a faulty PLB with only two BIST 
configurations in addition to those used in the basic test. As a 
result, not only are all PLBs in the FPGA completely tested, 
but a faulty PLB can be identified with an increase in test time 
of only 7%. We can also diagnose large classes of multiple 
faulty PLBs. We used the Lucent Optimized Reconfigurable 

the array['. P However, this procedure is not reliable, since 

Cell Array (ORCAf2l for the initial design and implementa- 
tion of the BIST-based diagnostic approach, but we 
emphasize that our technique can be applied to any SRAM- 
based FPGA, such as X i l i n ~ [ ' ~ ]  or Altera Flex 8000[31 series 
FPGAs. 

The remainder of this paper is organized as follows. 
Section 2 gives an overview of the previous FPGA BIST 
approach. Section 3 presents the new BIST architecture. 
Section 4 describes the diagnosis method, and Section 5 dis- 
cusses results from the successful use of this approach in 
locating faulty PLBs in manufactured FPGAs. Finally, 
Section 6 presents our conclusions. 

2. Overview of the Previous BIST Approach 
The strategy of our FPGA BIST approach["] is to con- 

figure groups of PLBs as test pattern generators (TF'Gs) and 
output response analyzers (ORAS), and another group as 
blocks under test (BUTs), as illustrated in Figure 1. The 
BUTs are then repeatedly reconfigured to test them in all their 
modes of operation. We refer to the test process that occurs 
for one configuration as a test phase. A test session is a 
sequence of test phases that completely test the BUTs in their 
various modes of operation. Once the BUTs have been tested, 
the roles of the PLBs are reversed so that in the next test ses- 
sion the previous BUTs become TPGs or ORAS, and vice 
versa. Therefore, we need at least two test sessions to test all 
PLBs in the FPGA. Note that all BUTs are tested in parallel, 
so that the BIST and BIST-based diagnostic run-time does 
not depend on the size of the FPGA. 

Figure 1. FPGA structure for a BIST session 

Each test phase consists of the following steps: 1) recon- 
figure the FPGA, 2 )  initiate the test, 3) generate test patterns, 
4) analyze responses, and 5) read the test results. In step 1, the 
test controller (ATE for wafedpackage testing; CPU or main- 
tenance processor for boardsystem testing) interacts with the 
FPGA(s) under test to reconfigure the logic by retrieving a 
BIST configuration from the configuration storage (ATE 
memory; disk) and loading it into the FPGA(s). The test con- 
troller also initiates the BIST sequence (step 2 )  and reads the 
subsequent results (step 5 )  using the FPGAs boundary-scan 
Test Access Port[16] or other system specific means. (Practi- 
cally all recently developed FFGAs, such as ORCA[*], 
XC4000[131, and Flex 8000[3], feature boundary scan.) Steps 
3 and 4 are concurrently performed by the BIST logic within 
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Figure 2. ]Basic ILA BIST sltructure with helper cells 

the device. After the board or system-level BIST is complete, 
the test controller must reconfigure the FPGA fior its’ normal 
system function; hence the normal device configuration must 
be stored along with the BIST configurations. The test appli- 
cation time is dominated by the FPGA reconfiguration time. 
Since testing time is a major component of the te.sting cost, an 
important goal is to minimize the number of configurations 
used for test and diagnosis. 

Our strategy also relies on pseudoexhaustive testing[’ ‘I, 
in which every subcircuit of a PLB i s  tested with exhaustive 
patterns. This results in maximal fault coverage without 
explicit fault model assumptions and without fault simula- 
tion. For example, all single and multiple stuck-at faults, and 
all non-feedback bridging faults are guaranteed to be 
detected. Although complete coverage cannot be guaranteed, 
the overwhelming majority of any other type of f.aults are also 
detected. Faults affecting the lookup tables are checked with 
RAM test sequences which are exhaustive for faults specific 
to RAMS. Thus for any practicalpurpose the PLlP testis  com- 
plete.  Note that in every phase, a BUT is configured in a 
different mode of operation; hence its pseudoexhaustive test 
may also change from phase to phase. For example, the test 
sequence for combinational logic followed by flip-flops is 
different from the test sequence for a RAM. Thus the TPG 
block may have different structures dependiing on the 
sequence that it has to generate in a given phase. 

All BUTS are configured to have the same function and 
receive the same input patterns form the TPG block. Since all 
fault-free BUTs must produce the same output patterns, the 
ORAs simply compare corresponding outputs from different 
BUTs. Unlike the signature-based compression circuits 
found in most BIST applications, comparator-based OiRAs do 
not suffer from the aliasing problem that occurs when a faulty 
circuit produces the good circuit signature. As long as the 
BUTs being compared do not fail the same way at the same 
time, no aliasing will be encountered with the comparison- 
based approach. Faulty TPGs and/or ORAs may precllude the 
detection of a fault in a BUT; but the PLBs composing the 
faulty TPGs and/or ORAS will become BUTS in a different 
session, hence a faulty FPGA will not escape detection. 

The architecture outlined in ]Figure 1 uses a lot of global 
routing, which becomes more difficult to implement as the 
size of the FPGA increases. This scaling problem is over- 
come by the ILA-based architecture[”], where most signals 
are locally routed. Figure2 shows one ILA spanning two 
rows of an FPGA. The use of helper cells allows creating 
ILAs within the FPGA array by providing test patterns to the 
inputs of the BUT which cannot be driven by the limited 
number of PLB outputs, and by combining and propagating 
BUT output responses which cannot be used as test patterns 
for subsequent BUTs. While most FPGAs structured for 
BIST based on the original architecture[’*] can be tested 
using only two sessions, the use of helper cells requires a 
thdrd session to completely test all the PLBs using the ILA- 
biased BIST[l9l. 

3. The New FPGA BIST Architecture 
The basic structure of our new BIST architecture, 

shown in Figure 3a, is a hybrid between the two previous 
approaches, trading off a limited increase in global routing 
for saving one test session. Figure 3b outlines the floorplan 
for the first test session for an 8x8 FPGA; the first four rows 
correspond with those in Figure 3a. Every ORA compares 
two BUTs fed by different TF’Gs. To combine results of sev- 
eral ORAS, we use an iterative comparator based on one 
proposed by Sridharand Hayes[lS1, shown within dotted lines 
in Figure 4. Here each ORA compares corresponding outputs 
from two BUTs to produce a local mismatch signal (LMM), 
which is ORed with the previous mismatch signal (PMM) 
from the previous ORA to generate the ORA mismatch 
(MW. The flip-flop is used to record the first mismatch 
encountered during the BIST sequence. The feedback from 
the flip-flop output to the first ORA disables further compar- 
istons after the first error has been recorded. Except for this 
feedback signal, all the other ORA signals propagate like in 
an ILA, using only local routing resources. 

Because the patterns from TPGs feed all BUTS in paral- 
lel, the new architecture has more global routing than the 
1L.A-based BIST, where most patterns for a BUT are pro- 
duced by the previous cell in the L A .  However, this structure 
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b) Floorplan for first test session 
Figure 3. The new BIST architecture 

is easily scalable, because the usage of the global routing 
resources required for distributing the TPG patterns does not 
change with the FPGA size. In other words, adding rows and 
columns to an array of PLBs will just extend the size of the 
vertical and horizontal global lines fed by TPG outputs. Since 
an ORA compares the outputs of its two neighbor BUTs, all 
signals from BUTs to ORAs can use local routing resources. 
Its regular structure allows the new architecture to be con- 
structed and interconnected algorithmically as a function of 
the size (N) of the FPGA. 

for fanout drivers, additional TPGs, additional ORAS, or it 
may be left unused (note that this row will be configured as 
BUTs in the second session); in our implementation we used 
it for ORAs. The important feature of this architecture is that 
any FPGA can be completely tested in only two test sessions, 
which is an improvement over the EA-based approach which 
required three test sessions. The architectural features that 
help the diagnosis task will be analyzed in the next section. 

4. BIST-Based Diagnosis 
In this section, we describe the use of the BIST 

approach in diagnosing an FPGA that failed the test provided 
by the two test sessions described above. We begin by assum- 
ing a single faulty PLB in the FPGA and later we discuss the 
case of multiple faulty PLBs. First, we show that the test 
results can identify the row in which the faulty PLB reside. 
Then we present the additional test phases required to locate 
the faulty PLB. 

A faulty PLB in a TPG or an ORA may not produce an Figure 4. Iterative comparator with error locking 
error if the fault does not affect the operation of the TPG or 
ORA. First we analyze the case when a fault in an ORA or a 

configured as a BUT. One feature of the new architecture that 

in the last row of BUTs) are always compared by two differ- 
ent ORAS. As a result, a fault in one of the middle rows of 

will produce at two outputs, while a fault 

Figure 5 shows the floorplans for the two test sessions - 

FPGA’ The name Of a session denotes the direction Of the 

is obtained by flipping the floorplan for NS around the hori- 
zontal axis shown as a dotted line in the middle of the array. 
The row labeled “used as needed” in Figure 3b can be used 

Ns and sN - that PLB in an 8x8 TpG pLB is detected only in the session when that PLB is 

flow Of test patterns during that session’ The floorplan for sN helps diagnosis is that all BUTs (except those in the first and 

in the first or last row of BUTs will produce an error in only 
one ORA. Let Oi denote the output of the ORA located in row 
i. For example, a defective BUT in row 4 will cause errors at 
03 and 05 in session NS,  (because its outputs are compared 
by ORAs in rows 3 and 5) ,  while a defective BUT in row 1 
will be detected only at 0 2  in session SN. Without this feature 
we could not distinguish between faulty BUTs in rows 2 and 
4, because both would have been observed only at 03. The 
results of this analysis for an 8x8 FPGA are given in Table 1 
under the heading “without ORA/TPG failures.” Errors at 
ORA outputs are marked by X. We can observe that the error 
pattern of every faulty row is unique. 

Figure 5. Floorplans for the two BIST sessions 
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Table 1: Errors during BIST for a single faulty row of PLBs 

without BRA/TPG failures 

Session NS I)Session SN Session NS Session SN 
I E 1 Function / /  Function k--- 

Now we analyze the case when some faults in a PLB 
may also be detected when that PLB is configured as an ORA 
or a TPG. The results of this analysis are given in Table 1 
under the heading “with ORA/TPG; failures.” A fault in an 
ORA may cause an error only in that ORA when it reports a 
mismatch although all compared pairs of output values agree. 
Thus in addition to the error at 03 in session NS,  a fault in a 
PLB in row 2 may also cause an enor at 0 2  in session SN. 
This error is marked by “(X)” to denote a potential error. A 
fault in a TPG row may cause the two TPGs to produce dif- 
ferent patterns, thus generating mismatches in every 
comparator and resulting in errors at all ORA outputs in that 
session; in rows 1 and 8, we-use “(X X X)” to denote a poten- 
tial groups of three errors. Since every row now contains one 
potential error or one potential group of errors, there are 2’-1 
possible sets of errors. However, it is easy to observe that for 
any combination of errors, the pattern of every faulty row is 
still different from all others. Therefore we can conclude that 
after the two BIST sessions we can accurately locate the row 
in which the faulty PLB resides. 

By repeating the same process after rotating Figure 5 by 
90°, so that the flow of test patterns is horizontal instead of 
vertical (see the diagnostic sessions WE and EW in Figure 6) ,  
the new arrangement will identify a faulty column instead of 
a faulty row. Then the faulty PLB is located at the intersection 
of the faulty row with the faulty column. 

a) Diagnostic session WE b) Diagnostic session EW 
Figure 6. Floorplans for diagnostic se:ssiono 

Although Table 1 shows only the failing sessions, the 
errors are actually recorded in a specific phase of a session. 
This allows us to significantly shorten the length of the diag- 
nostic sessions. If we use an adaptive diagnosis strategy, in 
which subsequent tests are applied based on the results 
obtained so far, we can achieve tlhe same resolution without 
two complete additional “horizontal” sessions. Namely, we 
will execute only one of the failing test phases, repeating it 
twice using the arrangement of Figure 6. In some cases it will 
be possible to identify the faulty PLB after the first diagnostic 
test phase without having to run the second diagnostic test 
phase, but the worst case would require both diagnostic test 
phases to be performed. Let p be the percentage of test time 
taken by one phase relative to the total time involved in the 
first two sessions used for detection (for ORCA, p=3.5%). 
Then the percent increase in tesit time is p when only one 
diagnostic test phase is required, and 2p when both diagnostic 
test phases are required to identify the faulty PLB. 

Now we will discuss the diagnosis of multiple faulty 
PLBs. First it is easy to see that the analysis shown in Table 1 
extends trivially for multiple faulty PLBs residing in the same 
row (or in the same column). Another large class of multiple 
faulty PLBs that can also be precisely diagnosed are PLBs in 
rows (or columns) which are observed at disjoint set of 
C:lRAs. For example, faults in row 7 can be detected only at 
0 6  and 07, and faults in row 2 can be detected only at 0 2  and 
0 3 ;  hence any combination of faulty PLBs in rows 2 and 7 
can be diagnosed. This class is large, because in an NXN array 
of PLBs there will be ( N / 2  - 1) ORA output signals, and faults 
in row i can be observed only at O(i-1) and O(i+l) for i = 3, 
4, ..., N-2 when i is a row of BUTs, and potentially at Oi when 
i is a row of ORAS. Most combinations of faulty rows that 
affect overlapping sets of ORAs can also be diagnosed. Let 
((i, j ,  ...} denote a set of faulty rows. For example, we will 
show that (2,4) and ( 4 ) ,  which have 03 as common ORA 
output, may never have the same pattern of errors. If the faults 
in rows 2 and 4 do not cause errors at 03 in exactly the same 
BIST phases, then (2,4} and (4 )  can be distinguished at 0 3 .  
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If the faults in rows 2 and 4 affect corresponding BUTs (that 
are compared by the same ORA), and they always have the 
same responses, then (2,4) will not have any errors at 03 
while ( 4 )  will. Although there exist some multiple faulty 
PLBs that cannot be accurately diagnosed, it appears that the 
corresponding fault situations are very unlikely to occur in 
practice. For example, assume that faulty ORAs and TPGs do 
not produce failures, and consider (4, 6 )  and (2, 8}; their 
error patterns would be identical only if the following condi- 
tions occur simultaneously: 1) the faults in rows 4 and 6 affect 
corresponding BUTs which always have the same responses 
(this would eliminate the errors at 05); 2) faults in rows 2 and 
4 cause errors at 03  in exactly the same BIST phases; 3 )  
faults in rows 6 and 8 cause errors at 0 7  in exactly the same 
BIST phases. Similar analyses show that in general, our BIST 
architecture imposes very restrictive conditions necessary for 
multiple faulty PLBs to produce identical error patterns. 

Although a single TPG is sufficient for completely test- 
ing all PLBs, we can obtain better diagnostic resolution by 
having two different (but synchronized) TPGs feed the BUTS 
being compared by the same ORA. Otherwise, a defective 
single TPG may not supply the patterns needed to detect a 
fault in a BUT, but this will not cause any mismatch because 
all BUTs still receive the same patterns. With two separate 
TPGs, a fault affecting one TPG will cause an error at every 
ORA, since half of the BUTs will receive test patterns from 
the faulty TPG. 

5. Diagnostic Results for ORCA FPGAs 
In this section we present the results of the implementa- 

tion of our BIST-based diagnostic a2proach using ORCA 
FPGAs, and discuss our experience with testing and diagno- 
sis of known defective FPGAs. Our test consists of 14 phases, 
summarized in Table 2 in terms of the modes of operation of 

the look-up tables (LUTs) and flip-flop/latch circuits of the 
PLB tested during every test phase. The first 9 BIST phases 
are used to test all ORCA series FPGAs, while the last 5 BIST 
phases are added to test the 2CA seriesL2]. The number of 
PLB outputs for each BIST phase is shown in the last column. 

The ORCA PLB has five outputs used in many of its 
modes of operation as a BUT, while only four pairs of outputs 
can be compared by a single PLB configured as an ORA. As 
a result, during the BIST test sessions, the “used as needed” 
row is used to compare the fifth output from up to eight rows 
of BUTs in those configurations which use all five outputs. 
The grouping of BUTs and ORAs with respect to the normal 
four outputs and the extra fifth output is a function of the size 
of the FPCA as illustrated in Figure 7. The minimum array 
size for most FPGAs is N=8, in which case the “used as 
needed” row is used to compare the fifth output from four 
BUTs. As N increases, the groups of four outputs from adja- 
cent BUTS are compared pairwise by the rows labeled ORA4, 
while the fifth outputs are grouped and compared by the rows 
labeled ORA5. For N=16, the basic configuration of 
Figure 7a can be used twice, either with two sets of TPGs to 
reduce loading on the TPG outputs, or with an ORA4 in place 
of the second set of TPGs. While 16<N<32, combinations of 
the arrangements shown in Figure 7 can then be used until the 
arrangement in Figure 7a is replicated three times for N=32. 
For the second test session, the connection arrangement is 
rotated about the points indicated in Figure 7, so that every 
row of PLBs are BUTS in one test session. 

Next we consider the BIST phases in which all five out- 
puts of the PLB are tested. As a result of the regular BIST 
sequence, we determine which phase or phases fail, as well as 
whether the error is at one of the four outputs or at the fifth 
output. At that point we run four diagnostic test phases based 
on the failing output: either a diagnostic test phase for the four 

Table 2: Summary of BIST Phases for BUTs 
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C) N=12 

Figure 7. ORCA floorp1,ans for BIST sessions 

outputs or a diagnostic test phase for the fifth output with 
ORAs comparing adjacent BUT outputs. Each of the four 
diagnostic test phases uses a different PLB assignment with 
respect to rows and columns as illustrated in Figure 5 and 
Figure 6 (here, Figure 5a and Figure 5b represent diagnostic 
test phases rather than complete BIST sessions). From these 
results, we can identify the faulty PLBs in the FPGA in the 
same manner as was done in the case of the four output phases 
described above. As a result, at most four additional diagnos- 
tic test phases are required (as opposed to two additional 
diagnostic test phases in the case of the four outlput phases), 
for an increase in test time of about 14%. 

In addition to the 28 BIST configurations ( 14 for each 
test session), we generated two diagnostic test pha.ses for each 
of the seven BIST phases which test the PLB in operational 
modes which use only four outputs, for another 14 configura- 
tions. We also generated eight diagnostic test phases fix each 
of the seven BIST phases which test the PLB in operational 
modes that use five outputs, for another 56 configurations. 
Four of the eight diagnostic test phases are used to diagnose 
the four PLB outputs in each of the fiour directions shown in 
Figure 5 and Figure 6 ,  while the other four diagnostic test 
phases are used to diagnose the fifth PLB output in each of 
the four directions. As a result, we generated a total of 98 con- 
figurations (28 BIST phases and 70 diagnostic test phases) of 
which only 30 or 32 configurations will be used to identify a 
single faulty PLB as a result of the adaptive diagnostic 
approach. 

The device targeted for experimentation with this BIST- 
based diagnostic approach was the ORCA 2C 15A which 
requires the full set of 14 test phases for each test session to 
completely test all 400 PLBs in the 20x20 array. Wia were 
provided with five 2C 15A devices by Lucent Technologies 
Microelectronics Group in Allentown, PA. From manufactur- 
ing test results, three of these parts were known to be: fault- 
free and two were known to be defective. Applying the com- 

d) N=14 
plete BIST sequence (two test sessions of 14 phases each), we 
successfully identified the defective FPGAs. Then, using the 
diagnostic phases, we attempted to identify the faulty PLB(s) 
in the two failing devices. The BUT-ORA interconnections 
foir the 2C15A consisted of two sets of connections shown in 
Fi,gure 7b, but with the second set of TPGs replaced by an 
ORA4 row. As a result, there were nine ORA outputs for each 
test configuration of the 2C15A with the 5th and 15th rows 
comparing the fifth PLB outputs during the first BIST ses- 
sion, and the corresponding rowdcolumns used in the second 
BlST session and the subsequent d.iagnostic phases. 

Figure 8a summarizes the diagnosis results for the first 
faulty device. We had no errors in session NS and errors at 0 2  
and 0 4  in phases 5 through 9 of session SN. These results 
indicate that row 3 is faulty, and that its faults are not detected 
when row 3 is an ORA. Reapplying one of the faulty phases 
twice as diagnosis sessions, we obtained no errors in session 
EW, and errors at 017 and 019 in session WE. These results 
indicate that row 18 is faulty, and that its faults are not 
detected when row 18 is an ORAWhen the results of the 
B E T  phases and diagnostic test phases are combined, we 
identify a single faulty PLB in row 3 and column 18 of the 
20x20 array. From Table 2, we can also infer that the fault is 
probably located in the flip-flop/latch logic of the defective 
PLB, because all the failing phases (5  through 9) test this 
subcircuit. 

For the second faulty device, whose results are summa- 
rized in Figure 8b, we had errors at 015 and 017 in phases 1 
and 6 of session NS and no errors in session SN. During the 
corresponding diagnostic test phases, we obtained errors at 
064, 016, and 018 in session EW, and no errors in session 
WE. This combined set of error pat.terns identifies two faulty 
PL.Bs: one in row 5 and column 15 and the other in row 5 and 
col.umn 17. However, the second faulty device also had a 
number of additional errors which pointed to faults in the pro- 
grammable routing network, which our current test does not 
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Diagnostic Session EW Diagnostic Session EW 
a) ORCA 2C15A with one faulty PLB b) ORCA 2C15A with two faulty PLBs 

Figure 8. Results of BIST-based diagnostic sessions for two faulty ORCA 2ClSA devices 

explicitly target. This was apparent from errors which 
occurred in only one of the four directions and can be 
explained by different routing resources being used for the 
different directions of the test (with the faulty routing seg- 
ments used in the one direction only). Although this 
diagnostic approach is currently targeted only at PLBs, we 
could use the errors produced by routing segment faults to 
narrow down the possible area where these faults may reside 
to an area about one-eighth of the total area of the array. 

6. Conclusions 
In this paper, we have described a new BIST approach 

for programmable logic blocks in SUM-based  FPGAs. The 
new architecture facilitates the complete testing of all PLBs 
in only two test sessions, while its regular structure allows 
easy scalability with the size of the FPGA and algorithmic 
generation of placement and routing data for every test phase 
based on the size of the array. The main contribution of this 
paper is to show how our new BIST architecture can be used 
to locate faulty PLBs in a defective FPGA. The main result is 
the development of the first method able to achieve maximal 
diagnostic resolution at any required resolution accuracy - 
chip, row, column, PLB, and even subcircuit inside the PLB. 
Our technique can accurately diagnose any single PLB and 
most multiple faulty PLBs. The multiple faulty PLBs that 
cannot be diagnosed appear to be very restrictive situations 
unlikely to occur in practice. 

Our approach can diagnose the faulty PLB(s) with a 
fixed test of four BIST sessions. Using adaptive diagnosis, we 

need only two additional diagnostic test phases after the first 
two BIST sessions which detect faulty PLBs. For ORCA, 
diagnosis increases the test time by only about 7%. We 
applied our BET-based diagnosis to two known defective 
FPGAs, and we were able to identify the faulty PLBs in both 
devices. In addition, in one device we could identify the 
defective subcircuit inside the faulty PLB, and in the other 
one we determined a region where a routing faults is likely to 
exist. 

In addition to testing of PLBs, testing of an FPGA also 
involves testing of its programmable interconnect net- 
work[’’]. Accurate identification of the defective wire 
segments is required for repair either by rerouting an already 
programmed or by the “segment covering” tech- 
nique used after manufacturing testing[51. Testing and 
diagnosis of the programmable interconnect will be the next 
phase of this project. 
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