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Abstract—Electromigration (EM) in VLSI interconnects has
become one of the major reliability issues for current and
future VLSI technologies. However, existing EM modeling and
analysis techniques are mainly developed for a single wire. For
practical VLSI chips, the interconnects such as clock and power
grid networks typically consist of multi-branch metal segments
representing a continuously connected, highly conductive metal
(Cu) lines within one layer of metallization, terminating at
diffusion barriers. The EM effects in those branches are not
independent and they have to be considered simultaneously. In
this paper, we demonstrate, for the first time, a first principle
based analytic solution of this problem. We investigate the
analytic expressions describing the hydrostatic stress evolution
in several typical interconnect trees: the straight-line 3-terminal
wires, the T-shaped 4-terminal wires and the cross-shaped 5-
terminal wires. The new approach solves the stress evolution in a
multi-branch tree by de-coupling the individual segments through
the proper boundary conditions accounting the interactions
between different branches. By using Laplace transformation
technique, analytical solutions are obtained for each type of the
interconnect trees. The analytical solutions in terms of a set of
auxiliary basis functions using the complementary error function
agree well with the numerical analysis results. Our analysis
further demonstrates that using the first two dominant basis
functions can lead to 0.5% error, which is sufficient for practical
EM analysis.

I. INTRODUCTION

Electromigration-induced reliability becomes a major de-
sign constraint in the current and future nanometer VLSI
technologies. To ensure the EM signoff, conservative design
rules based on the worst cases (highest possible temperature
and power consumption) and simple EM model such as
Black’s equation can lead to significant overdesign and 2X-3X
enlarged guard bands [1]. Such conservative and overdesign
rules, however, will be no longer an option in current and
future technologies because 3X guard band increase will
significantly increase the buffer size and many other aspects
of chips, which will lead to increasing currents, thus costs and
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powers of the chips. As a result, more accurate EM model-
ing and analysis techniques are required to ensure sufficient
accuracy without hurting the efficiencies.

Existing EM model and analysis techniques mainly focus
on the simple straight line interconnect with two-line end
terminals. However, a practical integrated circuit layout often
has interconnects such as clock and power grid networks with
more complex structures. The EM effects in those branches
are not independent and they have to be considered simulta-
neously [2] [3]. Currently employed Blech limit [4] (for the
out filtration of immortal segments) and Black’s equation [5]
(for calculating MTTFs for segments characterized by known
current densities and temperatures) are subjects of the hard
criticism [6] [7] [8]. Across-die variation of residual stress
makes the Blech’s “critical product” to be layout-dependent
variables rather than experimentally determined constants.
Interdependency of the Black’s activation energy and current
density exponent on the current density and temperature
makes rather controversial the widely accepted methodology
of calculating the MTTF at use condition, represented by
chip operation current density and temperature, while using
the activation energy and current density exponent determined
at the stressed (accelerated) condition, characterized by high
current densities and elevated temperatures.

Recently some physics-based EM analysis methods for the
TSV and power grid networks have been proposed based on
solving the basic mass transport equations [9]. Those models
treat the resistance changes of a wire over time as the atomic
concentration changes due to atomic flux. Since these proposed
methods solve the basic mass transport equations using the
finite element method, they can only solve for very small
structures such as one TSV structure. Complicated look-up
table or models have to be built for different TSVs and wire
segments for full-chip power grid analysis at reduced accuracy.
To mitigate this problem, a more compact physics-based EM
model was proposed recently in [10] [11]. It is based on
the hydrostatic stress diffusion equation [12]. Although the
new EM model has been extended to deal with multiple
branch tree wire based on projected steady-state stress. It
still can’t provide the time-dependent hydrostatic evolution of
hydrostatic stress, which ultimately determines the failures for
multi-branch interconnect wires.

To further illustrate this, Fig. 1 shows distributions of the
current density and hydrostatic stress developed in the three
terminals interconnect tree [10]. Two vias are used as the
electron flow inlets and one positively biased as outlet. The
hydrostatic stress obtained from the solution of the system of



partial differential equations with the FEA tool COMSOL [13]
demonstrates the two-slope distribution resulted by the intra
branch atom diffusion. It is clear that this stress distribution
can be explained by redistribution of the atoms among both the
branches of the tree. Tree decomposition on two independent
segments will never explain this type of stress distribution
[14]. Closed-form analytical description of the distribution
of hydrostatic stress caused by EM-induced redistribution
of atoms inside an interconnect tree, which is needed for
determination of the potential locations for void nucleation,
is the major motivation for the proposed work.

(a) (b)
Fig. 1. Hydrostatic stress (a) and current density (b) distributions along the
top metal line.

A. Related works

Many existing works have been proposed to study the
multi-branch interconnects in the past and most of them
focus on experimental characterizations, instead of compact
modeling. Vairagar et al. studied the dependence of EM-
induced failure in a 3-terminal single wire in a Cu intercon-
nect tree on the electric current configuration in adjoining
interconnect segments and provided direct evidence of the
peculiar EM behavior based on the proposed EM failure mech-
anism [15]. Experimental characterization of the reliability of
dual-damascene Cu interconnect tree structures consisting of
straight contact-to-contact lines has been analyzed in [16]–
[18]. However, it did not give a unified analytic form to
model the 3-terminal interconnect trees which strongly depend
on the stress evolution of neighboring segments. In [19], the
effects of EM in a 3-terminal L-shaped interconnect tree were
simulated by using a numerical simulator based on the solution
of one-dimensional Korhonen equation. An analytic model
for the evolution in the star-like tree represented by semi-
infinite segments with known current densities connected at
the central node has been developed [14] [20]. In order to
implement critical threshold design rules of EM reliability,
a nodal analysis technique for computing the steady-state
EM-induced stress was proposed in [21]. The nodal analysis
technique is an approximate method for calculating the node
voltages at the end of the interconnect segments extracted from
the larger interconnect network.

In this work, we propose, for the first time, an accurate and
first principle based analytic model for calculating the hydro-
static stress evolution in the finite multi-branch interconnect
trees during the void nucleation phase. We have derived the
analytic expressions describing the hydrostatic stress evolu-
tion in several typical interconnect trees: the straight-line 3-
terminal wires, the T-shaped 3-terminal wires and the cross-
shaped 4-terminal wires. This new approach solves the stress
evolution in a multi-branch tree by de-coupling the individual
segments through the proper boundary conditions accounting

the interactions between different branches. By using Laplace
transformation technique, analytical solutions are obtained for
each tree. The analytical solutions then are obtained in terms
of set of auxiliary basis functions using the complementary
error function. Those analytical EM models agree well with
COMSOL simulation results. Furthermore, we demonstrates
that employing the first dominant basis function can lead to
less than 4 % errors and by using the first two basis functions,
one can have less than 0.5% errors, which is sufficient for
practical EM analysis.

II. THE DYNAMIC STRESS EVALUATION FOR A SINGLE

SEGMENT WIRE

Before we present our analytic solutions for multi-branch
interconnect trees. Let us review the basic equation describing
the hydrostatic stress in a single segment wire with blocking
boundary conditions (BC).

For a one dimensional metal wire, the stress evolution σ(t)
caused by EM effects is well described by the following
diffusion-like equation [12]:

∂σ(x, t)

∂t
=

∂

∂x
[κ(

∂σ(x, t)

∂x
+ G)], (1)

where κ = DaBΩ
kT

is the “stress” diffusivity and G = Eq∗

Ω
is the EM driving force, Da is the effective atomic diffusion
coefficient,

Da = D0 exp(−
Ea

kT
). (2)

Here, D0 is the pre-exponential factor, Ea is the activation en-
ergy, B is the effective bulk modulus, Ω is the atomic volume,
k is Boltzmann’s constant, T is the absolute temperature, E
is the electric field, and q∗ is the effective charge. The electric
field E can be replaced by the product of the resistivity ρ
times the current density j, i.e., E = ρj. The effective charge
q∗ = |Z∗|e is a known quantity, where e is the elementary
charge and Z∗ is the effective charge number. As a result,

driving force G can be re-written as G = ρj|Z∗|e
Ω . To facilitate

the comprehension of this paper, we summarize the major
notations in Table I.

Fig. 2 shows the stress development over time in a metal line
computed by COMSOL [13]. Over time, tensile (the positive)
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Fig. 2. The EM-induced stress development and distribution in a single metal
wire

stress will be developed at the cathode node (left node) and
compressive (negative) stress will be developed at the anode
(right) node. The stress changes sign in the middle of the wire.



TABLE I
NOTATIONS AND TYPICAL VALUE IN OUR TRANSIENT SIMULATION

Term Typical value Description

ρ 1.67e-8Ω· m Electrical resistivity
e 1.60e-19C Electric charge

Z∗ 10 Effective valence charge

Ω 8.78e-30 m3 Atomic volume
k 1.38e-23J/K Boltzmann constant
B 1e11Pa Back flow stress modular

D0 7.56e-5m2/ s Self-diffusion coefficient
Ea 0.8eV Activation energy
σT 400MPa Thermal stress
j From simulation Current density
T From simulation Absolute temperature
σ From simulation Electromigration stress

The built-up stress (its gradient) will serve as the counter-
force for atomic flux. If the largest stress at the cathode node
exceeds critical stress (not shown in the figure), then voids
will be created. If the stress development enter a steady state
(atomic diffusion stops) before it reaches the critical stress,
the wire will become immortal.

Eq. (1) can have a closed-form solution with some boundary
conditions. We first assume that the diffusivity κ is not the
function of time. For the blocking BC, the flux of stress is
blocked at both ends x = 0 and x = L, i.e., J(0, t) =

J(L, t) = 0 where J(x, t) = Da

kT
(dσ(x,t)

dx
+ G).

The stress evolution in the line can be given as follows [12]

σ(x, t,κ,G) = σT + GL{
1

2
−

x

L

− 4

∞∑

n=0

cos((2n + 1)π x
L

)

(2n + 1)2π2 exp((2n + 1)2π2 κt
L2 )

},
(3)

where σT is the pre-existing residual stress due to a thermal
process. In the existing EM modeling methods, where interest
focuses on finding the void nucleation time when the stress
developed in the line has reached the critical stress [21]. To
derive the closed-form expression, one can keep the slowest
decaying term of the infinite series in (3) to obtain the
approximate estimation for stress at the line cathode end
(x = 0) as

σ(t, T, j) ≈ σT + GL(
1

2
−

1

2 exp{DaBΩt
L2kT

}
). (4)

As a result, when σ(t, T, j) ≥ σcrit, the nucleation time tnuc

can be computed in an analytic form as below [10], [11]

tnuc =
L2kT

DaBΩ
ln{

ρj|Z∗|eL

2Ω

σT + ρj|Z∗|eL

2Ω − σcrit

}. (5)

III. NEW ANALYTIC MODELS FOR MULTI-BRANCH

INTERCONNECT TREE

In this section, we present our analytic solutions to the
multi-branch interconnect trees. We discuss three cases in the
following: the straight-line 3-terminal wires, the T-shaped 4-
terminal wires and the cross-shaped 5-terminal wires as they
are commonly seen in many practical VLSI wiring for a
single metal layer. In this work, a tree is defined as a unit of
continuously connected high conductivity metal lying within
one layer of metallization, and terminating at diffusion barriers

such as vias or contacts with refractory metal liners. In the
general case, trees have more than one terminating branch.

For multi-branch interconnect tree, their EM behavior for
nucleation phase and growth phase still governed by Korho-
nen’s equation [12]. But it is very difficult to solve the whole
Korhonen’s equation for all the branches at the same time. One
viable approach is to break the multi-branch of an interconnect
tree into a number of simple single-segment wire such that we
can apply the Korhonen’s equation for each segment. At the
boundaries of the two connected wire segments, their stress
values must be continues (the same) and the atomic flux is
also continuous as well. Note that the current densities at the
boundaries may not be continuous. But the currents for every
terminal must meet the KCL law.

Fig. 3 shows interconnect structures we are interested:
(a) the straight-line 3-terminal (contacts) interconnect tree;
(b) the T-shaped 4-terminal metal interconnect tree; (c) the
cross-shaped 5-terminal interconnect tree. In this work, we
mainly focus on the three cases and derive the exact analytical
expressions and approximate expressions for the hydrostatic
stress evaluation for the EM void nucleation phase. We will
look at the void growth phase in the future.

(a)

(b) (c)

Fig. 3. Interconnect trees for electromigration analysis: (a) the straight-line
3-terminal interconnect tree; (b) the T-shaped 4-terminal interconnect tree; (c)
the cross-shaped 5-terminal interconnect tree.

A. Straight-line 3-terminal interconnect tree

We first analyze the 3-terminal interconnect tree with two
segments with the current flow directions as showed in
Fig. 3(a). The current densities in the two segments may not be
the same, which will be determined by the rest of the circuity.
For the two segments, we have the following two diffusion
equations based on the Korhonen model [12]:

∂σ1(x, t)

∂t
=

∂

∂x
[κ1(

∂σ1(x, t)

∂x
+ G1)],

in − L < x < 0, t > 0,

∂σ2(x, t)

∂t
=

∂

∂x
[κ2(

∂σ2(x, t)

∂x
+ G2)],

in 0 < x < L, t > 0.

(6)

For the void nucleation phase, the hydrostatic stresses in the
two segments will interplay with each other, which is reflected



in the boundary conditions of the following equations:

κ1(
∂σ1(x, t)

∂x
+ G1) = 0, at x = −L, t > 0,

σ1(x, t) = σ2(x, t), at x = 0, t > 0,

κ1(
∂σ1(x, t)

∂x
+ G1) = κ2(

∂σ2(x, t)

∂x
+ G2),

at x = 0, t > 0,

κ2(
∂σ2(x, t)

∂x
+ G2) = 0, at x = L, t > 0.

(7)

The second equation in (7) means that stresses at the boundary
need to be continuous. The third one indicates that the atom
flux is also continues at the boundary. The initial conditions
of the equations are as follows:

σ1(x, t) = 0, for t = 0,in − L < x < 0,

σ2(x, t) = 0, for t = 0,in 0 < x < L,
(8)

which basically says that there is no stress any where in the
whole tree at t = 0. With the given boundary and initial
conditions, it turns out that we can obtain the exact analytical
solution for the stresses of the two segments, which is infinite
series of some basis functions. For lack of space we omit the
details.

On the other hand, our study shows that the if we keep the
first dominant term (n = 0), the error is just about 4%. The
approximate solutions with only one dominant term for the
segments 1 and 2 are:

σ1,I(x, t) =
1

2
{2G1g(ξ1(x, 0), t) + (G2 − G1)g(ξ2(x, 0), t)

− 2G2g(ξ3(x, 0), t) + (G2 − G1)g(ξ4(x, 0), t)}

+
1

2
{(G2 − G1)g(ξ5(x, 0), t) − 2G2g(ξ6(x, 0), t)

+ (G2 − G1)g(ξ7(x, 0), t) + 2G1g(ξ8(x, 0), t)},

σ2,I(x, t) =
1

2
{(G2 − G1)g(η1(x, 0), t) + 2G1g(η2(x, 0), t)

+ (G2 − G1)g(η3(x, 0), t) − 2G2g(η4(x, 0), t)}

+
1

2
{−2G2g(η5(x, 0), t) + (G2 − G1)g(η6(x, 0), t)

+ 2G1g(η7(x, 0), t) + (G2 − G1)g(η8(x, 0), t)}.

For reasons of space, we omit the definitions of the function
ξ() and η(). We will develop the concrete derivations into a
journal paper.

Fig. 4 shows the stress evolution of the 3-terminal intercon-
nect tree using the above-mentioned one-term approximation.
The proposed method matches with the numerical analysis
perfectly at every time instance. In this case, the segment 1
(left) in this case is called reservoir as it has tensile stress and
the segment 2 (right) is called sink [22]. Typically when the
current in the sink is zero or small, voids are only nucleated
in the reservoir. This is easily to explain in Fig. 4 as tensile
stresses are only seen in the reservoir. But when the sink
becomes active (with no zero, same directional current), voids
can happen in the sink as well. In this case, the stress in some
portions of the sink may exceed a given critical stress shown
in Fig. 5, which can well explain the experimental observation
in [22].
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Fig. 4. The EM stress development along the lines 1 and 2 in the 3-terminal
single wire interconnect: j1 = 1 × 1010A/m2, j2 = 0A/m2.
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Fig. 5. The EM stress development along the lines 1 and 2 in the 3-terminal
single wire interconnect: j1 = 1 × 1010A/m2, j2 = 5 × 1010A/m2.

Similar to the single wire case, if we know the critical stress
σcrit, which define the stress that void starts to nucleate, then
one can compute the void nucleation time tnuc using the new
EM model:

σ1,I(x, tnuc,1) = σcrit,

σ2,I(x, tnuc,2) = σcrit.
(9)

Since σ1,I(x, tnuc,1) and σ2,I(x, tnuc,2) are nonlinear func-
tions, an iterative method will be used to find the tnuc.

B. T-shaped 4-terminal interconnect tree

The structure of the T-shaped 4-terminal interconnect tree
has been shown in Fig. 3(b). In this case, we have three
segments which connects through the middle contact “o”. The
stress evolution equation for this interconnect tree consisting
of three lines and their exact analytical solutions corresponding
to the boundary and initial conditions of the void nucleation
phase can also be obtained. Again, we keep the first dominant
term as the approximate solution. Due to limited space, we
only show the result for the segment 1, σ1,T (x1, t):

σ1,T (x1, t) = −
1

3
{−3G1g(ξ1(x1, 0), t) + (G1 − G2

+ G3)g(ξ2(x1, 0), t) + (G1 + 2G2 − 2G3)g(ξ3(x1, 0), t)

+ (G1 − G2 + G3)g(ξ4(x1, 0), t)} −
1

3
{(G1 − G2

+ G3)g(ξ5(x1, 0), t) + (G1 + 2G2 − 2G3)g(ξ6(x1, 0), t)

+ (G1 − G2 + G3)g(ξ7(x1, 0), t) − 3G1g(ξ8(x1, 0), t)}.



Again, we can obtain the void nucleation time tnuc,1

by solving the equation σ1,T (x1, tnuc,1) = σcrit. Fig. 6(a)
demonstrates the stress distributions in the T-shaped tree
shown in Fig. 3(b) that were obtained by COMSOL. Fig. 6(b)
shows an evolution of the stress distributions across the wire
segments 1 and 2 of the T-shaped tree that was obtained by
COMSOL and the one-term approximation, which shows that
the one-term approximation is very accurate.

(a)
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Fig. 6. (a) The EM stress distribution in the T-shaped 4-terminal wires at the
time t = 1 × 108s; (b) the EM stress development along the lines 1 and 2:
j1 = 5 × 1010A/m2, j2 = 0A/m2, j3 = 2.5 × 1010A/m2.

C. Cross-shaped 5-terminal interconnect tree

In the cross-shaped 5-terminal interconnect tree shown in
Fig. 3(c), there are four segments which connect to each other
through the middle contact “o”. Again, the exact analytical
solution of the stress evolution equation with the boundary
and initial conditions corresponding to the void nucleation
phase of this cross-shaped tree can be obtained. We only list
the approximate solution using the first dominant term for the
segment 1 of the cross-shaped tree:

σ1,+(x1, t) = −
1

4
{−4G1g(ξ1(x1, 0), t) + (G1 − G2 + G3

− G4)g(ξ2(x1, 0), t) + 2(G1 + G2 − G3 + G4)g(ξ3(x1, 0), t)

+ (G1 − G2 + G3 − G4)g(ξ4(x1, 0), t)} −
1

4
{(G1 − G2

+ G3 − G4)g(ξ5(x1, 0), t) + 2(G1 + G2 − G3 + G4)

× g(ξ6(x1, 0), t) + (G1 − G2 + G3 − G4)g(ξ7(x1, 0), t)

− 4G1g(ξ8(x1, 0), t)}.

Similarly, with σcrit and the σ1,+(x1, t), we can obtain
the void nucleation time tnuc,1 by solving the equation
σ1,+(x1, tnuc,1) = σcrit.

As an illustration, we set the current densities in the four
segments to j1 = 5 × 1010A/m2, j2 = 0A/m2, j3 =
5 × 1010A/m2, and j4 = 1010A/m2. We use COMSOL
to simulate the stress distributions in the cross-shaped tree
shown in Fig. 7(a). Again, the stress evolution from our model
uses the one-term approximation and the results are shown in
Fig. 7(b). It can be seen from Fig. 7 that the proposed one-
term approximation solution matches the simulation results by
COMSOL very well.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

The proposed dynamic EM model and analysis methods
considering multi-branch interconnect trees have been imple-
mented in Matlab and compared with COMSOL [23], which is
considered golden in our work. The material parameters used
in our numerical simulations are shown in Table I. The metal
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Fig. 7. (a) The EM stress distribution in the cross-shaped 4-terminal intercon-
nect tree at the time t = 1× 108s; (b) the EM stress development along the
lines 1 and 2: j1 = 5 × 1010A/m2, j2 = 0A/m2, j3 = 5 × 1010A/m2,
j4 = 1010A/m2.

wire structures used in our experiment are shown in Fig. 3
and the length of each segment is set to 20µm.

A. EM model prediction with different current densities

We first study the EM model prediction against the results of
COMSOL, using the one term (n = 0) approximation for the
T-shaped 4-terminal interconnect tree. The EM stress distribu-
tions of the T-shaped wire structure (the segments 1 and 2 are
shown here only) under different current density configurations
are shown in Fig. 8(a)-(d). The stress profiles for different
times are obtained from the one term approximation of the
exact series solution. In the case (a), the stress distribution is
similar to the 3-terminal single-wire case where the segment
1 (left) is the reservoir and the segment 2 (right) is the active
sink with no zero current. Since j1 ≫ j2, the hydrostatic stress
in the segment 2 are all compressive (negative). For the case
(b), the currents in the two segments have different directions.
As a result, both of the segments (especially their cathode
nodes) can see tensile stresses, which matches the results from
COMSOL very well.
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(a) j1 = 5 × 1010A/m2, j2 =

1010A/m2, j3 = 2.5×1010A/m2
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(b) j1 = 5 × 1010A/m2, j2 =
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(c) j1 = 5 × 1010A/m2, j2 = 4 ×
1010A/m2, j3 = 3 × 1010A/m2
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Fig. 8. The EM stress development along the lines 1 and 2 in the T-shaped
4-terminal interconnect tree.



B. Accuracy study for the compact EM models

Next, we study the accuracy of the EM models using
different number of terms in the exact solution against the
COMSOL results. Due to limited space, we only show the
results for the straight-line 3-terminal interconnect case. We
plot the relative errors against COMSOL using one item
(n = 0), two items (n = 1), five items (n = 4) and ten items
(n = 9), which are shown in Fig. 9(a)-(d), respectively. As we
can see, by using just one item (n = 0), we can obtain relative
errors less than 4%. By using two items (n = 1), the error is
reduced to 0.5%. By using more terms (n = 4 and n = 9),
the errors will stay around 0.5%, which means two items can
achieve sufficient accuracy and adding a few more items will
not increase the accuracy significantly. Such observations are
also the case for all the tree interconnect types.
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(a) Relative errors using one item
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(b) Relative errors using two items
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(c) Relative errors using five items
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(d) Relative errors using ten items

Fig. 9. Relative errors between the proposed analytic model and the COMSOL
model for the straight-line 3-terminal interconnect tree: j1 = 5×1010A/m2,
j2 = 3 × 1010A/m2.

V. CONCLUSION

In this paper, we have proposed a new modeling and
analysis technique for electromigration reliability analysis in
multi-branch interconnect trees with continuous metallization,
which reflects more practical VLSI interconnect structures and
wiring techniques. We developed the exact analytic solutions
to the stress evolution equations for the straight-line 3-terminal
wires, the T-shaped 4-terminal wires, and the cross-shaped 5-
terminal wires. The new physics-based EM models for multi-
branch interconnect trees show an excellent agreement with the
detailed numerical analysis. Experimental results showed that
using the first dominant basis function can lead to less than 4
% errors. Furthermore, by using the first two basis functions,
one can have less than 0.5% errors, which is sufficient for
practical EM analysis.
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