Unequal-error-protection codes in SRAMs
for mobile multimedia applications

Xuebei Yang' and Kartik Mohanram?
‘Department of Electrical and Computer Engineering, Rice University, Houston
‘Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh
xbyang@rice.edu kartik.mohanram@gmail .com

Abstract

In this paper, we introduce unequal-error-protection error correct-
ing codes (UEPECCs) to improve SRAM reliability at low sup-
ply voltages for mobile multimedia applications. The fundamental
premise for our work is that in multimedia applications, different
bits in the same SRAM word are usually not equally significant,
and hence deserve different protection levels. The key innovation
in our work includes (i) a novel metric, word mean squared error, to
measure the reliability of a SRAM word when different bits are not
equally significant and (ii) an optimization algorithm based on dy-
namic programming to construct the UEPECC that assigns differ-
ent protection levels to bits according to their significance. The ad-
vantage of the UEPECC over the traditional equal-error-protection
ECC is demonstrated using two representative multimedia applica-
tions. For the same area, power, and encoding/decoding latency,
SRAMs with UEPECC increase the peak signal-to-noise ratio by
8 dB in image processing and incur 60% less errors on average in
optical flow (motion vector) computation.

1. Introduction

With the rapid growth in the popularity of powerful mobile de-
vices such as smart-phones and handheld game consoles, the de-
mand for mobile multimedia applications is increasing exponen-
tially. As these mobile devices are usually battery-powered, mo-
bile multimedia applications typically have tight power budgets.
The static random access memory (SRAM), which is widely used
in multimedia systems as cache memories and register files, has
been observed to contribute significantly to the total system power
consumption [1]. Since the reduction in supply voltage reduces
both dynamic and static power consumption of SRAMs [2, 3], it
is desirable that SRAMs operate at low supply voltages. Unfortu-
nately, as the supply voltage reduces, the effect of process varia-
tions increases in severity, resulting in an exponential increase in
the SRAM cell failure probability [3]. This imposes limits on sup-
ply voltage scaling and the reduction in overall power consumption.

To improve SRAM reliability at low supply voltages, novel cells
and transistors optimized for low-voltage operation have been pro-
posed, including the 8T SRAM cell [4], the 10T SRAM cell [5],
and the tunneling transistor [6]. Recently, error correcting codes
(ECCs) have received strong interest for SRAM reliability improve-
ment [7-10]. Since ECCs introduce storage and area overhead,
while simply scaling up the cell size also reduces the failure proba-
bility, the application of stronger ECC in SRAMs was not popular
as a means to improve SRAM reliability. However, it was shown
in [9] that using stronger ECC can be more effective than scaling
up the cell sizes at low supply voltages, because although smaller
SRAM cells have higher failure probability, stronger ECCs can cor-
rect more cell errors and improve the overall reliability. As a result,
the application of stronger ECCs such as double-error or triple-
error correcting ECCs for low-power SRAMs is now being actively

This research was supported by NSF CAREER Award CCF-0746850 and a
gift from Fujitsu Laboratories of America.

978-1-4577-1400-9/11/$26.00 ©2011 IEEE

21

investigated [8-10]. Furthermore, a reconfigurable ECC architec-
ture was recently proposed in [10], which allows for application-
dependent in-field adjustment of the supply voltage, ECC strength,
and storage overhead to reduce over-design and/or waste.

In this work, however, we note that all the previously studied
ECCs in SRAMs belong to the class of equal-error-protection ECCs
(EEPECCs). EEPECCs assume that all the protected cells have
equal significance and hence protect them equally. However, in
multimedia applications, this assumption is usually not valid. For
example, the human eye is far more sensitive to higher order bits of
a pixel in image applications [11]. Furthermore, in multimedia ap-
plications, zero failure probability is usually not necessary [11-13].
Therefore, in SRAMs reserved for multimedia data storage [11,14],
instead of using EEPECC to protect all bits equally, it is intuitive
to assign higher/lower protection levels to the more/less significant
bits, respectively, because even if the less significant bits fail, they
have limited impact on the quality of the multimedia applications.
Motivated by this observation, we propose to apply the unequal-
error-protection ECC (UEPECC) to SRAMs that allows different
protection levels for different bits in multimedia applications. To-
ward this goal, we make the following two contributions.

First, we propose an alternate metric for SRAM word reliability.
Traditionally, the reliability of a SRAM word has been estimated
by word error probability [15]. However, in multimedia applica-
tions where different bits in a SRAM word are not equally signifi-
cant, word error probability may be conservative. For such applica-
tions, we propose the word mean squared error (WMSE) metric to
measure SRAM word reliability. WMSE is motivated by the peak
signal-to-noise ratio (PSNR) [16], which is a widely used metric in
multimedia applications. However, unlike PSNR that is a general
metric and does not take the SRAM implementation into account,
WMSE can be analytically expressed as a function of SRAM cell
failure probability, thus enabling quantitative measurement of the
SRAM word reliability in multimedia applications.

Second, using WMSE as a design metric, we propose an op-
timization algorithm based on dynamic programming to construct
the UEPECC for the SRAM word. Whereas various good UEPECCs
have been previously proposed in the coding community [17], the
encoding/decoding is usually complicated and is prohibitive for
SRAMs. Our proposed UEPECC, however, is constructed using
the direct sum method [18] and is based on the simple repetition
code and the orthogonal Latin square code (OLSC) [19], both of
which have simple encoding/decoding process with minimum im-
pact on SRAM performance. For the same area, power, and en-
coding/decoding latency, SRAMs with UEPECC achieve 8 dB in-
crease of PSNR in image processing and incur 60% less errors on
average in optical flow (motion vector) computation.

This paper is organized as follows. Section 2 presents the back-
ground on SRAM reliability and ECCs. Section 3 introduces the
WMSE metric for SRAM word reliability. Section 4 presents the
optimization algorithm for UEPECC construction. Section 5 pre-
sents results and Section 6 is a conclusion.

=
=
=
S
>

Cell failure probability

10|

10 04 05

06 07 08 09 1
Supply voltage (V)

Figure 1: (a) The structure of a 6T SRAM cell. (b) The cell
failure probability at different supply voltages.

2. Background

In this section, we first present the background for SRAM re-
liability. Although we focus on the traditional 6T SRAM cell in
this work, our analysis is not restricted to the 6T structure and can
be applied to other SRAM cell structures as well. We then intro-
duce ECC as a widely used technique to improve SRAM reliability.
We finally motivate the application of the unequal-error-protection
ECC (UEPECC) in multimedia applications.

2.1 SRAM

In Figure 1(a), we present the traditional 6T SRAM cell, which
is composed of a pair of cross-coupled inverters (M1, M2, M4, and
MS5) and two access transistors (M3 and M6). Due to process vari-
ations during fabrication and environmental impact during opera-
tion, an SRAM cell may fail to function correctly. As extensively
studied in previous publications [8, 12, 20], the read upset — de-
fined as the read operation that causes the value stored at q and
gb to flip — is the dominant SRAM cell failure mechanism at low
supply voltages. Since this work focuses on SRAMs operating at
low supply voltages, we approximate the cell failure probability,
denoted as pct, by the probability of read upset in this paper. Note
that since one SRAM cell stores one bit of data, we will not distin-
guish between cell and bit in many cases, for example, bit failure
and cell failure will be used interchangeably. In Figure 1(b) we
present the simulated pcr using the 45nm PTM model [21] and the
technique proposed in [22]. It is observed that as the supply volt-
age decreases, per increases exponentially. As the supply voltage
reaches 0.4 V, p; is on the order of 107!

In order to smooth the discussion in this work, we further pro-
pose to model the SRAM cell as a binary symmetric channel shown
in Figure 2. We denote x and y as the original bit and the corre-
sponding stored bit, respectively. If the cell has a failure proba-
bility of pcr, y = a with probability 1-p.t, while y = 0 or 1 with
equal probability regardless of = with probability pcs. If we define
the raw cell transition probability p,; = 0.5pcr, the combined ef-
fectis that P(y = Ojz = 1) = P(y = 1|z = 0) = py, and
P(y=1lz=1)=P(y = 0]z = 0) = 1 — py. Hence, it is clear
that pr¢ (instead of pcr) gives the probability that the original bit and
the stored bit in an SRAM cell differ. If a cell has a failure prob-
ability per of 1, the corresponding pre = 0.5 and this SRAM cell
will store 0 or 1 with 50% probability regardless of the original bit.
This is the worst case for an SRAM cell. Note that in this model,
we have assumed a symmetric failure probability. This assumption
is valid if the SRAM cell is symmetric, such as the traditional 6T
structure considered in this work.

We next consider the organization of an SRAM word. A SRAM
word consists of multiple SRAM cells that share the same word
line, and the word reliability is traditionally measured using the
word error probability py. [15]. For an SRAM word without any
error correction, all the cells in the word store data, so py: is the
probability that the stored bit is different from the original bit in at

22

x y
1-
0 Pret 0

1
X y :> Pret Pret

0 o0 1 1

1 Pet 1 “Pret
| oe——F—e1]

1 prcl=0'5pcf

Figure 2: Binary symmetric failure model for the SRAM cell
with cell failure probability pc¢

Original Encoded Stored Decoded
data X data D data D data Y
Xo ;0
X, ~ by
0 * X yo
X, X Store in N 1
Encode 2 SRAM 2 Decode

e D = =L

Cy Cy

€1 c

Figure 3: Block diagram for SRAM word with ECC encod-
ing/decoding

Check bits

least one of the cells. If all the SRAM cells in the SRAM word
are designed equally and have the same pyc, pwr of an SRAM word
consisting of m SRAM cells can be expressed as

Pwr = 1-— (1 _prct)m~ (1)

2.2 Error correcting codes

Error correcting codes (ECCs) [15] have been widely used in
SRAMs for years to improve the SRAM word reliability. In Fig-
ure 3, we present the block diagram for an SRAM word equipped
with ECC. The original data X is of length m. The encoded code-
word D is of length m’ with m bits of original data and m’ — m
check bits. The codeword D is then stored in the SRAM word.
In the presence of cell failures, let D represent the codeword that
is actually stored in the SRAM word instead of D. On a read, D
is finally decoded as Y, which is considered the representation of
X. When ECC is used, the transition of a cell will be influenced
by other cells in the same word. As a result, the probability that
cell 7 has a cell transition, i.e., P(z; # y;) is usually different
from pyet, Which does not take into account the effect of other cells.
In this work, the probability for cell transition is denoted as pc;.
Furthermore, in this work we will frequently use the term “protec-
tion level”. Clearly, for the same pr, pe Of a bit is lower if the bit
receives a higher protection level.

Traditionally, all the proposed ECCs for SRAMs fall into the
category of equal-error-protection ECCs (EEPECCs), i.e., all the
m bits of data are considered equally significant and receive the
same protection level. Formally, an (m’, m, t) EEPECC maps the
data of length m to the codeword of length m’, and it can correct
up to ¢ bit errors in the m’-bit codeword. For the same number of
data bits m, larger codeword length m’ (and hence larger area) is
required for larger ¢. The pw: of an SRAM word equipped with an
(m/, m, t) EEPECC is approximately evaluated as [18]

t ’) .
1-— Z <WZL)pfa(l - prcl)m .)

=0

pr=PX #Y)~

Figure 4: (a) The stored image where p, of the four high-order
bits is 0.2 while py of the four low-order bits is 0. (b) The stored
image where p; of the four high-order bits is 0 while p; of the
four low-order bits is 0.2.

Traditionally, EEPECC with t = 1 was applied to SRAM words
to mitigate the effect of soft errors. Since stronger ECCs with
larger t require more storage overhead, while simply scaling up
the cell size also reduces the cell failure probability, the application
of stronger ECCs was not popular as a means to improve SRAM
reliability. However, it has been recently reported [9] that as the
Pree increases with technology and voltage scaling, using stronger
ECC can be more effective than scaling up the cell size at low sup-
ply voltages. This observation is based on the fact that whereas
smaller SRAM cells have higher failure probability, stronger ECCs
can correct more cell errors and improve the overall reliability. As
a result, SRAM words equipped with stronger ECCs are now being
intensively studied [8-10].

In this work, however, instead of investigating ECCs with larger ¢,
we argue that the traditional EEPECC does not provide the best
SRAM word reliability in multimedia applications. The funda-
mental premise of our argument is that different bits in the same
SRAM word can have different significance in multimedia appli-
cations, and they deserve different protection levels. We present
an illustrative example in Figure 4. Two SRAMs are configured to
store a test image consisting of 512x512 pixels, where each pixel
is represented by a 8-bit binary number, ranging from 0 to 255. In
Figure 4(a), each pixel is stored in a 8-bit SRAM word where the
Pree Of the four higher-order bits is 0.2, while the py of the remain-
ing bits is 0. In Figure 4(b), each pixel is stored in a 8-bit SRAM
word where the pr of the four higher-order bits is 0, while the pre
of the remaining bits is 0.2. Obviously, Figure 4(b) is of higher
quality than Figure 4(a). This demonstrates that higher-order bits
of a pixel are more significant to image quality in comparison to
the lower-order bits. Furthermore, in multimedia applications, zero
failure probability is usually not necessary [13]. Therefore, it is in-
tuitive to assign higher/lower protection levels to the higher/lower-
order bits, respectively, because even if the lower-order bits fail,
they have limited impact on the quality of the multimedia applica-
tions.

Motivated by the previous observations, we propose to apply the
unequal-error-protection ECC (UEPECC) to SRAMs in multime-
dia applications in this work. UEPECC allows the protected data to
be partitioned into blocks of different significance and assigns dif-
ferent protection levels accordingly, making it an ideal substitute
for the EEPECC in SRAMs for multimedia applications. However,
while it is clear that higher-order bits should be assigned higher
protection levels, the two key questions to be answered are: What
is the optimal protection level for each bit and how is the optimal
UEPECC constructed?

Since Masnick and Wolf proposed UEPECC in 1967 [23], vari-
ous studies have tried to answer these questions and to build “good”
UEPECC:s for different applications [17]. However, these studies
were mainly concerned with minimizing the codeword length m/’
at the expense of encoding/decoding complexity. In SRAM appli-
cations, complex encoding and especially complex decoding pro-

23

cesses will impose significant performance penalty on the whole
system. Therefore, these “good” UEPECCs are of limited use for
SRAM applications. In this work, instead of using these existing
“good” UEPECCs, we propose to construct an UEPECC in the fol-
lowing manner. The data is first partitioned into b blocks, where
each block has m; bits of data, ¢ = 0,1...b — 1. For each block
i, a corresponding ¢; and codeword length m; are assigned, and
a (m}, m;,t;) EEPECC is constructed separately for each block.
Note that ¢t; = ¢; does not guarantee the same protection level
for bits in the ¢th and jth block, as both m; and m; and the spe-
cific EEPECC scheme for these two blocks can be different. This
UEPECC construction approach is referred to as the direct sum
method [18]. Although more check bits may be required in com-
parison with the “good” UEPECC, this approach always enables
simple encoding and decoding.

3. SRAM word reliability measurement

In the previous section, we have motivated the application of the
UEPECC in SRAM words for multimedia applications. However,
in order to construct a good UEPECC, the first question is how
to evaluate the effectiveness of a UEPECC? Specifically, how do
we estimate the reliability of the SRAM word equipped with a
UEPECC when different bits are not equally significant? Tradi-
tionally, the SRAM word reliability is measured by the word error
probability py,, where all bits contribute equally to the SRAM word
as shown in Equations 1 and 2. Obviously, p, is not suitable to
measure the reliability of an SRAM word where different cells are
not equally significant. For example, although the SRAM configu-
ration in Figures 4(a) and 4(b) have the same py., the image quality
differs greatly. In this section, we propose an alternative metric to
estimate SRAM word reliability when different bits in the SRAM
word have different significance. Our proposed metric, termed the
word mean squared error (WMSE), can be analytically evaluated
using the cell transition probability p,. WMSE is motivated by
the peak signal-to-noise ratio (PSNR) [16], which is a widely used
metric for measuring audio, image, and video quality. However,
PSNR is a general metric and does not take the SRAM implemen-
tation into account. This weakness motivates the proposed WMSE,
which can quantitatively estimate the reliability of an SRAM word
through an analytical expression.

We first motivate the proposed WMSE by introducing PSNR.
Without loss of generality, consider the application of image pro-
cessing. Assume A is the original image consisting of M x N
pixels and B is another image of equal size that is the approxima-
tion of A. PSNR is defined as

1 M—1 «N—1 o e
MSE = -~ Zi:o ZFO (A(,7) — B(i,5)) 3
PSNR = 20 - log,,(MAX/vVMSE) (€))]
where A(i, j) and B(%, j) are the values of different pixels of A and
B, MSE is the mean squared error between A and B, and MAX is
the maximum pixel value. For an 8-bit grayscale image, MAX is
255. Consider the case where n pixels are always grouped together.

Without loss of generality, if the grouped n pixels are always in the
same row, the MSE can be further expressed as

Gli,j)=1/n> " (AG,j+k) = Bl j+k)* ©)

MSE = n/MN Zﬁl S GG,) ©6)

=0

Assume that the G(¢, j) are independent and identically distributed
(i.i.d.). Since M x N is usually large in real applications, for small

n, the law of large numbers gives

MSE ~ E[G], where E[G] is the expected value of G
PSNR ~ 20 - log,,(MAX/+/E[G]))

Note that E[G] can give an approximation value of PSNR by the
above expression.

Motivated by the previous analysis, we now formally define the
word mean squared error (WMSE) metric for SRAM reliability.
We consider an SRAM word consisting of m/’ cells, where m cells
are data bit cells. The SRAM word stores n data sets, where each
data set has the data length of [= m/n bits. The stored data set is
denoted as Yi,...,Y,, while the original data setis X1,..., X,.
Note that we do not make the assumption that only one data set is
stored in one SRAM word, as this condition is not satisfied in var-
ious cases [15]. For example, consider an SRAM word consisting
of 22 cells where 16 cells store two 8-bit grayscale pixels and 6
cells store the check bits. In this case, m’ = 22, m = 16, n = 2,
and [= 8. WMSE is defined as

n—1 n—1
_ L vy =L _y)?
WMSE = - E ;(XZ Y;) _n;E[(XZ Yi)?]

Note that the equation above is highly similar to Equation 5. In-
deed, consider the case when A is the original image and B is the
image stored in the SRAM. Specifically, each pixel of A has [bits
and n pixels are stored in one SRAM word. Due to the probability
of SRAM cell failure, B is an approximation of A. If each pixel
of A isi.i.d. and all the SRAM words are identically constructed,
WMSE must be i.i.d. As a result, PSNR between A and B can
be approximated through WMSE as in Equation 7, substituting G
with WMSE. Note that although we illustrate the physical meaning
of WMSE using an image application as example, WMSE can be
applied to estimate SRAM word reliability in other SRAM multi-
media applications as well.

We next derive the analytical expression for WMSE. Without
loss of generality, we assume that X; is an integer between [0,2! —
1] and follows a uniform distribution. ¥ and y* (k = 0,...,1—1)
are the [bits of data X; and Y}, respectively. Therefore, X; and Y;
can be expressed as X; = ZL;IO kb and V; = 22;10 2k yk We
also denote ¢ = 2¥ — y* and pfm as the cell transition proba-
bility of the kth bit of the ith data set. As discussed in the previ-
ous section, pe; may be different from p.. when the SRAM word
is equipped with ECC. However, the model of binary symmetric
channel in Figure 2 is still applicable, except that the transition
probability is p. instead of pr.. Under these conditions,

n—1 -1 2
WMSE:E.ZE <22’°(a:§yf)>
n =0 k=0
= -1 2
L. k ok
== ZE (ZQ 61)
=0 k=0

1 ! -1 1—1 k#j
= . E k(ky2 k+j k_j
- Z > 4k (e +ZZ2 el (8)
i=0 k=0 =0 k=0

Note that e¥ = zF — yf can be 0, -1, or 1. Since X; follows a
uniform distribution between [0,2' — 1], z¥ has equal probability
to be 0 and 1. Therefore, from the model for the binary symmetric
channel in Figure 2, we have

Pl =0)=1—-ps,; and P(ef =1) =P(ef = —1) = 0.5p ;

0.5p () 1 1
1-py (D), , Pol i

(i) SN EOE .
L-pp(i)y

0~5pbt(l)k 0

Figure 5: The distribution of ¢/ and (¢¥)?

Clearly, (€¥)? takes the value between 0 and 1, with
P((e)* =0) =1 —pa; and P((e])? = 1) = p&;

The distribution of ¥ and (ef)2 is presented in Figure 5. From the
above observations, we conclude that

E[(fff] = Pft,r

For E[ei ek], since the application of ECC makes ¥ and ez (k # j)
correlated, we cannot assume P (¢ |¢¥) = P (e). However, from
the symmetric ~ modeling of the channel where

P(¢ = 1) = P(¢J = —1), it is reasonable to assume that
Pl = 1f = 1) = P = —1l¢¢ = 1) and
P(e] = 1| = —1) = P(eJ = —1|¢f = —1). Therefore,
we have

E[ezef] =—1- (P(ez =1,ef =-1) +P(€Z =—1,eF =1)

1 (Pl = -1 = 14 Pl =1 =)

= (P(e] = —1]ef = =1) = P(e] = 1]ef = —1)) P(e} = -1)

+(P(e =11k =1) — P(e] = —1Jek = 1)) P(ef =1)
=0

Given E[(})?] and E[¢! ¢¥], the WMSE is finally derived as

WMSE = (1/n) Z:: Zi:o (4’“p§,i) ©

If we have pfm- =p§,]- for any k and any i # 7, i.e., the corre-
sponding bits for different data set in the same word have the same
transition probability, the above expression can be simplified to

-1
WMSE = Zk:o (4’“p§,i) (10)

The above expression implies that minimizing WMSE can be ach-
ieved by minimizing the cell transition probability. Moreover, higher-
order cells contribute more to the WMSE. Interestingly, although
derived from two different perspectives, the proposed WMSE is
similar to the upper bound on the mutual information between the
original data and the stored data from an information theoretic per-
spective, as proposed in [13].

4. UEPECC

In Section 2 we have briefly introduced the construction flow for
our proposed UEPECC: the data bits are first partitioned into sev-
eral blocks, and EEPECC is then applied to each block separately.
In this section we will present the construction flow in more de-
tail. We first introduce the EEPECC that is applied to different data
blocks in this work, and then present an optimization algorithm
based on dynamic programming for the construction of UEPECC,
using the proposed WMSE as the design objective.

------ Monte Carlo simulation results
— Analytical results

| -EF-(32,16,2)
-X--(24,16,1)
-6--(21,9,2)

10 -4--(15.9.1)

-o--(8,4,1)

5

1901

0.05 001 0.005
Prot

Figure 6: Comparison between analytical expression for p. of

the OLSC derived in Equation 12 and p, of the OLSC obtained

from Monte Carlo simulations

4.1 Adopted EEPECC

In our proposed UEPECC, each block can be equipped with
one of two types of EEPECC, the repetition code or the orthog-
onal Latin square code (OLSC) [19]. The repetition and the OLSC
codes are chosen because they are both one-step majority decod-
able. As one-step majority decoding is the fastest parallel decod-
ing method [19], these codes incur less performance penalty than
the traditional Hamming code and BCH code, although they re-
quire more check bits to achieve the same error correction abil-
ity t. Clearly, this is a tradeoff between area and performance. As
will be presented in the optimization framework, if the area is of
primary concern, our UEPECC construction can also be based on
other EEPECC:s like the BCH code. Between the repetition code
and the OLSC, the former has low area efficiency but no design
limitations, whereas the latter has comparatively higher area effi-
ciency with the limitation in the maximum error correction ability
t for fixed number of data bits. Therefore, they are complementary
approaches that can enrich UEPECC construction.

Repetition code: The repetition code is a coding scheme that re-
peats the data bits to achieve high reliability, whose encoding and
decoding latency is the delay of 0 and 1 level of XOR gate, respec-
tively [8,24]. Specifically, for a (m’, m, t) repetition code, each bit
of m is repeated 2t times and hence m’ = (2¢ 4+ 1)m. Under this
condition, each data bit ; now has 2¢ + 1 copies of its value, and
the decoder will declare the corresponding value of y; as the ma-
jority value among the 2¢ + 1 bits. Clearly, a decoding error for z;,
i.e., y; # x; will occur if there are more than ¢ transitions among
the 2¢ 4 1 copies. Therefore,

k=0

2t+1—k

7prct) (11)

Orthogonal Latin square code (OLSC): OLSC was proposed by
Hsiao et al. in 1970 [19]. Similar to the repetition code, the OLSC
is also based on the principle of majority voting. However, instead
of simply generating 2t copies of the original bit as the check bits,
OLSC encodes the orthogonal group of data bits to form the check
bits. For brevity, we refer the reader to [19] for the details of OLSC
construction. In order to construct a ¢-error correcting OLSC for
m = a” data bits, the number of required check bits is 2ta. How-
ever, whereas ¢ can be arbitrarily large as long as there are more
check bits (m’ = (2t + 1)m) for the repetition code, the maximum
t for the OLSC code is generally less than or equal to (a+1)/2 [19].
The encoding and decoding latency of the OLSC, as discussed
in [8], are the delay of [log, v/m| and [log, /m| + 2 levels of

25

2-input XOR gates, respectively, where [] is the ceiling function.
The accurate cell transition probability p. for the OLSC is diffi-
cult to derive and there is currently no analytical expression for pe
of the OLSC. However, motivated by the approximation of p for
the traditional Hamming code [25], p for a (m’, m, t) OLSC is
approximated by the following expression in this work:

<(m L ”)pﬂit(l —pm)'”'—k> (12)

As shown in Figure 6, the p. derived from the analytical approx-
imation in Equation 12 matches well with the p. obtained from
Monte Carlo simulations.

4.2 UEPECC construction

We consider an SRAM word consisting of at most m’ cells,
where m cells are data cells. The SRAM word stores n data sets,
where each data set has a data length of [= m/n bits. In our
UEPECC construction, the corresponding bits for different data
sets always receive the same protection, i.e., they are always grouped
in the same block. We also require that the order of the bits has to
be continuous in a block. For example, we can group the bits of
the highest, the second highest, and the third highest order in the
same block, but we cannot only group the bits of the highest and the
third highest order in the same block because the order of the bits
is not continuous. Under such conditions, the construction of the
UEPECC can be described by the following optimization problem

min

-1
WMSE = (4kpk))
(b,mo,m,mb_l,mé,...,mgil) (Zk:(} ot

s e Pl
Pet is evaluated using Equations 11 and 12.

Here bpmax is the maximum allowed number of blocks. Clearly, if
bmax = 1, our proposed UEPECC is EEPECC. b is the number of
blocks that the data is partitioned into; m; and m; (i = 0,1...b—1)
are the number of data bits and the codeword length of each block,
respectively. The p. of all the bits in the same block is evaluated
according to Equations 11 and 12 depending on which EEPECC
we use for the particular block.

In this work, the optimization formulation for UEPECC con-
struction is solved using the dynamic programming algorithm in 1.
We first construct a table T'[C, L, B] to store the best WMSE that
can be achieved for a data piece having maximum allowed check bit
length C, nL bits of data, and maximum allowed block number B.
The evaluation of T'[C, L, B] is accomplished by considering three
ECC schemes: (i) we do not partition the data set and apply the rep-
etition code to it, (ii) we do not partition the data set and apply the
OLSC to it, and (iii) we partition the data set into two blocks and
look at the best ECC scheme for each block separately. The ECC
scheme that presents the best WMSE is chosen and the best WMSE
is written to T'[C, L, B]. Note that for the third ECC scheme, all
possible partitions will be considered, including different check bit
length C, different bits of data L, and different maximum allowed
block B for each partitioned block.

4.3 UEPECC construction study

In this subsection we study the construction of the proposed
UEPECC under various design conditions. We consider an SRAM
word having m = 16, n = 2, and [= 8. By default, p,c = 0.01,
bmax = 8, and m’ = 32, which means we can have a maximum of
16 check bits with up to 100% area overhead.

We first study the effect of bmax on the construction of the UEPECC
using Figure 7. Intuitively, a UEPECC with a larger maximum al-

t—1

Pet = Pret (1 - Z

k=0

(13)

Algorithm 1: UEPECC construction(m,n,l,m’, bux)

input :m data bits, n data sets, data set length [, maximum allowed
codeword length m, and maximum allowed block number by,
output : WMSE

Initialize table T of size (m’ — m + 1) X I X byay ;

/*T[C, L, B] stores the best WMSE that can be achieved for a data piece
having maximum allowed check bit length C, n L bits of data, and maximum
allowed block number B.*/

Call function f(m’ — m, 1, by);
/* f(C, L, B) returns the value of T'[C, L, B] #/

f(C,L, B):
if T[C, L, B] then
| returnT[C, L, B];
else
Evaluate ¢y, for repetition code for C, L.
Apply tmax-error correcting repetition code to the whole n L data bits.
Evaluate p; and the corresponding WMSE.
T|[C, L, Bl = WMSE.
Evaluate tyax for OLSC for C, L.
Apply tmax-error correcting OLSC to the whole n L. data bits.

Evaluate p and the corresponding WMSE.
T[C, L, B] = min(T[C, L, B], WMSE).

foreach: =0,...,C,j=1,...,L—1,k=1,...,B—1do
WMSEI = f (4, §, k)
WMSE2= f(C —i,L — j, B — k)
WMSE = 4% =7 x WMSE1+WMSE2
T[C, L, B] =min(T[C, L, B], WMSE)
| return T'[C, L, B];
20
®(8-16
(8-16) 3
&
(=%
m =2
=]
Lo o
E (4-16,4-0) 5
(3-12, 2-4, 3-0) g
S =) s 5
&
% 3 4 5 6 1 %

bmax
Figure 7: WMSE, number of used blocks, and UEPECC con-
figuration for different by,.x. The numbers in parentheses rep-
resent the partitioning strategy for the SRAM word, referring
to (":LO “COy eues mi; L.cy_1), where c; is the number of check bits

for block i.

lowed block number byax will always yield a WMSE no worse than
the UEPECC with a smaller by.x. However, the used number of
blocks b does not necessarily increase with bmax, but saturates to a
fixed number. As shown in the figure, when bnax = 1, only one
block is allowed and the WMSE is the highest. When bmax = 2, the
4 higher-order bits of the two data sets consume all the 16 check
bits, while the 4 lower-order bits of the two data sets do not re-
ceive any check bit. Under such conditions, the WMSE is modest.
When bmax = 3, the 3 higher-order bits receive 12 check bits, the
2 medium-order bits receive 4 check bits, while the 3 lower-order
bits do not receive any check bits. The WMSE is the lowest under
such conditions. As bmax becomes larger than 3, the SRAM word is
still partitioned into three blocks. This indicates that a larger bmax
cannot always result in better WMSE, and that there is an optimal
number of blocks for the UEPECC.

We next study the effect of p.q on UEPECC construction for
different py in Figure 8. Intuitively, WMSE decreases with the re-
duction of py, and this is confirmed in the results. Furthermore, we
notice that the number of check bits assigned to higher-order bits

26

(1-12, 1-4, 6-0)
100] (1-8, 1-4, 2-4, 4-0)
(3-12, 2-4, 3-0)
0 (4-12, 2-4,2-0)
10 <
b= 2|
107 //
107
(8-16)1
6 ‘ ‘ ‘
100.1 0.05 0.01 0.005 // 0.00001
Pret

Figure 8: WMSE and UEPECC configuration for different py.;.
The numbers in parentheses represent the partitioning strat-
egy for the SRAM word, referring to (2 -co, ..., >=1-c,_1),
where c; is the number of check bits for block .

decreases with the reduction of py while the number of check bits
assigned to lower-order bits increases. This indicates a decrease
in protection level for higher-order bits and an increase in protec-
tion level for lower-order bits. As py further decreases, all the
bits receive the same protection level and the UEPECC becomes
EEPECC. As shown in the figure, when pr« = 0.1, the 2 higher-
order bits consume all 16 check bits while the 6 lower-order bits
do not receive any check bits. However, when p,c = 0.00001, the
highest-order bits and the lowest-order bits are in the same block
and receive the same protection level. This is due to the fact that the
lower-order bits start to dominate the WMSE as p. of the higher-
order bits decreases. Since p. is to the first order approximately
proportional to (pm)t, P decreases faster with ¢ under low pr.
Therefore, fewer check bits are assigned to the higher-order bits
before the lower-order bits start to dominate WMSE.

5. Applications

In this section, we study two representative multimedia applica-
tions to demonstrate the advantage of our proposed UEPECC over
the traditional EEPECC. The SRAM raw cell failure probability
Pret 18 varied from 0.1 to 0.005, corresponding to a supply voltage
ranging from approximately 0.4 V to 0.6 V. The SRAM word is
configured as m = 64, n = 8,1 = 8, and m' = 96, with the
maximum allowed number of blocks bpax set to 8.

5.1 Image processing

Twenty 512x512 grayscale images from the USC test image
database [26] are stored into two different SRAMs configured with
(1) the traditional EEPECC and (ii) the proposed UEPECC schemes.
For the EEPECC, a 2-error correcting OLSC is applied to the SRAM
word. In contrast, the proposed UEPECC will adjust the protection
scheme according to different p.. In Figure 9 we compare the
average PSNR of the stored image for both ECC schemes. It is
observed that UEPECC achieves 8 dB higher PSNR than EEPECC
across all py on average.

5.2 Optical flow

Optical flow is the pattern of apparent motion caused by the rel-
ative motion between an observer and the scene, and it is widely
applied in computer vision, image interpolation, and video coding.
In a typical implementation of the optical flow, a sequence of im-
age frames at different time steps are first stored in SRAMs, and
an optical flow core retrieves different frames to compute the mo-
tion vectors [14]. Obviously, bit failures in the SRAMs will distort
the image frame and further distort the computed motion vectors.

50 . ‘
—e— SRAMs with EEPECC
-9~ SRAMSs with UEPECC

PSNR (dB)
8 5

[*)

18

0.05
Pret

0.01 0.005

Figure 9: Comparison of average PSNR between traditional
EEPECC and the proposed UEPECC across 20 test images
from the USC test image database [26]

3

—6—- SRAMs with EEPECC
- SRAMs with UEPECC

Errors on motion vectors (°)

S
oL

0.05 0.01 0.005

Pret

Figure 10: Comparison of introduced errors in the mption vec-
tors between traditional EEPECC and the proposed UEPECC
on the Yosemite fly-through grayscale image sequence [27]

In our evaluation, we use the open-source optical flow algorithm
in [27] and 6 frames of the widely used benchmark Yosemite fly-
through grayscale image sequence. The ideal motion vectors are
obtained assuming that all the SRAM cells are completely error-
free, i.e., pre« = 0. In Figure 10 we compare the computational er-
rors in the motion vector due to SRAM failures with EEPECC and
the proposed UEPECC scheme. It is observed that the proposed
UEPECC results in 60% less errors compared to the EEPECC on
average. Hence, the advantage of UEPECC is also confirmed in the
optical flow application.

In both applications, since the total number of SRAM cells in
one word is equal for both ECC schemes, the power consumption
for both ECC schemes can also be considered equal for the same
supply voltage. Furthermore, the encoding/decoding latency of the
UEPECC, which is measured by the longest encoding/decoding la-
tency among all the blocks, is also smaller than or equal to that
of the EEPECC. As indicated in Section 4, the encoding (decod-
ing) latency is 0 (1) and [log, (v/m)] ([log,(v/m)] + 2) levels of
2-input XOR gates for the repetition code and the OLSC, respec-
tively. Since the SRAM word with EEPECC has larger m than any
block of the SRAM word with UEPECC, UEPECC will not incur
a larger encoding/decoding latency than EEPECC.

6. Conclusions

This paper introduces UEPECC to improve the SRAM relia-
bility at low supply voltages for mobile multimedia applications.
We (i) proposed WMSE as the metric to measure the reliability of
SRAM when different bits in the same word are not equally sig-
nificant, and (ii) designed an optimization algorithm based on dy-
namic programming to construct the UEPECC. Although this pa-
per focused on the integer data format for brevity, the proposed
UEPECC can be potentially applied to other data formats includ-
ing the floating-point format, through appropriate changes to the

27

WMSE metric. The advantage of the proposed UEPECC over the
traditional EEPECC is demonstrated using two representative mul-
timedia applications. Compared to the traditional EEPECC, the
proposed UEPECC can achieve an average 8§ dB improvement in
PSNR in image processing and incur 60% less errors in optical
flows for the same area, power, and encoding/decoding latency.
Thus, UEPECC enables further supply voltage scaling and reduc-
tion in power consumption, which is very attractive and promising
in low-power multimedia applications.

References

[11 K.Zhang, Embedded memories for nano-scale VLSIs. Springer, 2009.

[2] H. Qin er al., “SRAM leakage suppression by minimizing standby supply volt-
age,” in Intl. Symposium on Quality Electronic Design, pp. 55-60, 2004.

J. Kulkarni et al., “A 160 mV robust Schmitt trigger based subthreshold SRAM,”
IEEE Journal of Solid-State Circuits, vol. 42, pp. 2303-2313, 2007.

L. Chang et al., “Stable SRAM cell design for the 32 nm node and beyond,” in
Symposium on VLSI technology, pp. 128-129, 2005.

B. Calhoun and A. Chandrakasan, “A 256 kb sub-threshold SRAM in 65nm
CMOS.” in IEEE Intl. Solid-State Circuits Conference, pp. 480-481, 2006.

W. Y. Choi et al., “Tunneling field-effect transistors (TFETs) with subthresh-
old swing (SS) less than 60 mV/dec,” IEEE Electron Device Letters, vol. 28,
pp. 743-745, 2007.

J. Kim et al., “Multi-bit error tolerant caches using two-dimensional error cod-
ing,” in Intl. Symposium on Microarchitecture, pp. 197-209, 2007.

Z. Chishti et al., “Improving cache lifetime reliability at ultra-low voltages,” in
Intl. Symposium on Microarchitecture, pp. 89-99, 2009.

S. Zhou et al., “Minimizing total area of low-voltage SRAM arrays through joint
optimization of cell size, redundancy, and ECC,” in IEEE Intl. Conference on
Computer Design, pp. 112-117, 2010.

R. Datta and N. Touba, “Post-manufacturing ECC customization based on or-
thogonal Latin square codes and its application to ultra-low power caches,” in
IEEE Intl. Test Conference, pp. 1-7, 2010.

I. Chang et al., “A voltage-scalable & process variation resilient hybrid SRAM
architecture for MPEG-4 video processors,” in Design Automation Conference,
pp. 670-675, 2009.

M. Cho et al., “Accuracy-aware SRAM: A reconfigurable low power SRAM ar-
chitecture for mobile multimedia applications,” in Asia and South Pacific Design
Automation Conference, pp. 823-828, 2009.

X. Li, “Maximum-information storage system: Concept, implementation and
application,” in Intl. Conference on Computer-Aided Design, pp. 39-46, 2010.
C. Claus et al., “High performance FPGA based optical flow calculation using
the census transformation,” in /EEE Intelligent Vehicles Symposium, pp. 1185—
1190, 2009.

M. Horigochi and K. Itoh, Nanoscale memory repair. Springer, 2011.

Z. Wang et al., “Image quality assessment: From error visibility to structural
similarity,” IEEE Trans. Image Processing, vol. 13, pp. 600-612, 2004.

S. Borade et al., “Unequal error protection: An information-theoretic perspec-
tive,” IEEE Trans. Information Theory, vol. 55, pp. 5511-5539, 2009.

F. MacWilliams and N. Sloane, The theory of error correcting codes. North—
Holland, 1981.

H. Hsiao et al., “Orthogonal Latin square codes,” IBM Journal of Research and
Development, vol. 14, pp. 390-394, 1970.

J. Wang et al., “SRAM parametric failure analysis,” in Design Automation Con-
ference, pp. 496-501, 2009.

Y. Cao et al., “New paradigm of predictive MOSFET and interconnect modeling
for early circuit design,” in Custom Integrated Circuits Conference, pp. 201-204,
2000.

K. Agarwal and S. Nassif, “Statistical analysis of SRAM cell stability,” in Design
Automation Conference, pp. 57-62, 2006.

B. Masnick and J. Wolf, “On linear unequal error protection codes,” IEEE Trans.
Information Theory, vol. 13, pp. 600-607, 1967.

J. Thm et al., “An 80nm 4Gb/s/pin 32b 512Mb GDDR4 graphics DRAM with
low-power and low-noise data-bus inversion,” in IEEE Intl. Solid-State Circuits
Conference, p. 492, 2007.

B. Sklar, Digital communications: fundamentals and applications. Prentice Hall,
2001.

The USC-SIPI Image Database. http://sipi.usc.edu/database/.

T. Gautama et al., “A phase-based approach to the estimation of the optical flow
field using spatial filtering,” IEEE Trans. Neural Networks, vol. 13, pp. 1127—
1136, 2002.

[3]
[4]
[5]
[6]

(7]

8

[9]

[10]

(1]

[12]

[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]

[21]

[22]
(23]

[24]

[25]

[26]
[27]

