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ABSTRACT 
This paper reports a case study of multiprocessor SoC (MPSoC) 
design of a complex video encoder, namely OpenDivX. OpenDivX 
is a popular version of MPEG4. It requires massive computation 
resources and deals with complex data structures to represent video 
streams. In this study, the initial specification is given in sequential 
C code that had to be parallelized to be executed on four different 
processors. High level programming model, namely Message 
Passing Interface (MPI) was used to enable inter-task 
communication among parallelized C code. A four processor 
hardware prototyping platform was used to debug the parallelized 
software before final SoC hardware is ready. The targeting of 
abstract parallel code using MPI to the multiprocessor architecture 
required the design of an additional hardware-dependent software 
layer to refine the abstract programming model. The design was 
made by a team work of three types of designer: application 
software, hardware-dependent software and hardware platform 
designers. The collaboration was necessary to master the whole 
flow from the specification to the platform.  

The study showed that HW/SW interface debug was the most time-
consuming step. This is identified as a potential killer for 
application-specific MPSoC design. To further investigate the 
ways to accelerate the HW/SW interface debug, we analyzed bugs 
found in the case study and the available debug environments. 
Finally, we address a debug strategy that exploits efficiently 
existing debug environments to reduce the time for HW/SW 
interface debug.  

Categories and Subject Descriptors 
B.1 Control structures and microprogramming, D.1.3 Concurrent 
programming, D.2.5 Testing and debugging 
General Terms 
Design, experimentation, verification 
Keywords 
Multiprocessor system-on-chip, Hardware-software interface, 
Hardware-dependant software, Debug 

1. INTRODUCTION 
For many people main difficulties when designing multiprocessor 
system on chip (MPSoC) are the parallelization of sequential code 
and mapping of functions on the multiprocessor architecture. This 

is partially true and explains recent studies such as parallel 
programming models [1], the exploration of multiprocessor SoC 
architectures including network-on-chips [2], mapping parallel 
application software on the architecture [3][4], and refinement of 
parallel programming models [5][6].  

The truth is that MPSoC design also includes an integration step 
where distributed software (SW) needs to be adapted to hardware 
(HW) [7][8]. This includes the development of hardware-
dependent software layer to adapt application SW to the HW 
architecture. During the hardware-dependent software design, the 
debug of HW/SW interface may be extremely difficult and time 
consuming. This restricts design space exploration (in terms of 
HW architecture and mapping) and may even induce missing the 
time-to-market constraint. 

There have been few practical reports on the difficulties of 
debugging the HW/SW interface and on how to accelerate the 
HW/SW interface debug. In this paper, we study and report the 
problems of HW/SW interface debug. This study is a first step to 
understand the debug problems that SoC designers are facing and 
to identify necessary design methods to overcome the problems. 

To investigate the debug problem, we performed a case study of 
complex video encoder, namely OpenDivX [9], which is a popular 
version of MPEG4, on a multiprocessor architecture with four 
processors. In this study, the initial specification is given in 
sequential C code that had to be parallelized into concurrent tasks 
to be executed on the four different processors. High level 
programming model, namely Message Passing Interface (MPI) 
[10] was used for the communication between concurrent tasks. 
The targeting of abstract parallel code using MPI to the HW 
architecture required the design of an additional hardware-
dependent software layer to refine the abstract programming 
model. A four processor prototyping platform [11] was used to 
debug the refinement of the abstract programming model, i.e. 
HW/SW interface. 

The rest of the paper presents the case study.  Section 2 explains 
the MPSoC design flow that we used in this case study. Section 3 
presents the OpenDiVX application. Section 4 gives our 
experience in designing HW/SW interfaces. Section 5 presents 
lessons learned from this case study. Section 6 concludes this 
paper.  

2. A Generic MPSoC Design Flow 
Figure 1 shows a generic MPSoC design flow. In the figure, ovals 
represent design steps and rectangles represent the input and output 
of design step.  The design flow consists of parallelization of initial 
sequential code, application mapping on the multiprocessor HW 
architecture, HW design, and hardware-dependent software (HdS) 
design to refine the parallel programming model. Before final HW 
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is ready, a HW prototype is generally built to allow for SW 
development and the debug of HW/SW interfaces. When both HW 
and SW are designed, a final HW/SW integration step allows to 
debug the entire system design. 

 

2.1 Parallelization  
To target the sequential application SW code on a multiprocessor 
architecture, the code needs to be distributed, i.e. parallelized using 
a parallel programming model on the architecture. In this case 
study, the parallelization meant task-level parallelization. It is to 
decompose the sequential code into concurrent tasks 
communicating with each other via parallel programming 
primitives.  
Parallelization step includes identifying a set of code sections that 
need to be transformed to concurrent tasks, transformation of 
identified code sections into concurrent tasks, and establishing 
inter-task communication between the identified tasks using 
parallel programming model primitives (e.g. send/recv).  
As parallel programming models suited to multiprocessor 
architectures, there are two types: shared memory model (e.g. 
OpenMP [12]) and message passing model (e.g. MPI [10]). In our 
case study, we used MPI as a parallel programming model. 
However, the above parallelization step is common to both shared 
memory and message passing models.  
The correctness of the parallelized code is proved by comparing 
both results of execution of sequential and parallelized code using 
the same testbenches. In the design flow, we used two simulation 
environments to validate the correctness of parallelized code.  One 
is the existing MPI environment called MPICH [18]. The other is a 
simulation model of MPI primitives in SystemC [13] (called 
MPI/SC) that we developed. 

2.2 Application Mapping  
The designer maps the parallelized code on the given 
multiprocessor architecture. The mapping includes mapping tasks 

on processors and mapping inter-task communication on the 
interconnection network of the multiprocessor architecture. The 
design space of mapping is huge since the size of design space is 
exponential with respect to the number of application SW tasks 
and that of processors in the multiprocessor architecture. 
The evaluation of application mapping can be done by high-level 
estimation techniques, e.g. trace-based simulation [4] or in low-
level validation using HW/SW cosimulation or prototyping. 

2.3 Refinement of Parallel Programming 
Model  
Targeting the parallelized code on the multiprocessor architecture 
requires the refinement of parallel programming model on the 
architecture. The refinement is to design hardware-dependent 
software that implements the API of parallel programming model. 
The hardware-dependent software contains also µ-kernel(s) and 
boot code to enable MPSoC initialisation, task scheduling, 
interruption and I/O.  
The hardware-dependent software is usually designed manually. 
Commercial system-level design tools such as System Studio [14], 
ConvergenSC [15], Platform Express [16], etc. help designers’ 
manual design of hardware-dependent software. There are a few 
research tools that aim to provide automatic methods of hardware-
dependent software design [5][6].  
Whether the hardware-dependent software is designed manually or 
automatically, the designer needs to fix all the implementation 
parameters such as address map, interrupt priorities, stack sizes, 
etc. as the specification of hardware-dependent software. 

2.4 HW/SW Interface Debug 
After the hardware-dependent software design, designers need to 
debug the HW/SW interface. We define the term, HW/SW 
interface debug to be ‘both debugging hardware-dependent 
software itself and debugging the interaction between hardware-
dependent software and the HW architecture’. 
Several HW prototyping platforms for MPSoC are available 
[11][17]. In this work, HW/SW interface debug is done in a cycle 
accurate way using a commercial prototyping platform, ARM AP 
Integrator [11], which has four ARM processors (two ARM7s and 
two ARM9s) connected via AMBA. For the debug, first, the 
platform is configured by setting clock frequencies of processors 
and AMBA, and debug options. Then, the SW code including the 
parallelized code and hardware-dependent software are compiled 
and downloaded on each of processors in the platform. Then, the 
entire prototype is ready to perform the application, OpenDivX. 
The prototyping platform supports breakpoints and source level 
debugging. 
The grey area in Figure 1 represents the scope of this case study in 
the design flow. The key focus of this study is the debug of 
hardware-dependent software on the HW prototype. 

3. Video Encoder Application: OpenDivX 
Figure 2 shows a block diagram of OpenDivX encoder [9]. 
Basically, the encoding is based on removing spatial and temporal 
redundancy from input video frames. This encoder produces two 
types of video frame: I and P frame. An I frame represents an intra 
frame which is the frame that contains self sufficient information 
to be decoded. A P frame stands for a predicted frame. The number 
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of P frames per one I frame, which is an important factor for 
compression ratio and result quality, is an implementation 
parameter. 

 
To produce an I frame, the encoder applies DCT and quantization 
to the input video frame. After this step, the result goes through 
zig-zag, Huffman compression, and bit stream packing to produce 
the output. To prepare the coding of P frame, dequantization and 
inverse DCT are applied to the result of DCT and quantization to 
produce the image frame that will be obtained by an OpenDivX 
decoder. The decoded image frame (X frame) is stored in the frame 
buffer. It will be used as a reference frame for coding a P frame. 
Then, the difference between the new input video frame and 
motion-compensated frame is calculated. The difference is applied 
to the chain of DCT, quantization, and zig-zag. The result of this 
operation chain and the motion vector go through Huffman coding 
and bit stream packing to produce a P frame. 
The OpenDivX encoder application was initially written in 
sequential code as most of existing code of multimedia 
applications. The entire code size is about 10K lines with 43 files. 
It needs 1 GHz P3 processor to encode 20 QCIF (176x144 pixels) 
frames per second. Designing this application in an embedded SoC 
is a challenge since it requires very high computation power that a 
single embedded processor such as ARM7 or ARM9 cannot 
support. When executing the application on a 28 MHz ARM9, 
though the code size is relatively small, 104KB, it takes 227 
seconds to process 20 input frames. Thus, to achieve the real-time 
performance with the given application SW code, we need 
optimisations of application SW code, HW acceleration, and 
possibly massively parallel processor architectures.  

4. Design Case Study 
We designed the OpenDivX encoder system through the design 
flow explained in Section 2. This section gives the details of 
design process. Figure 3 summarizes the key steps:  

- Parallelizing the sequential code and validating the 
parallelized code (Figure 3 (a)—(b)) 

- Hardware-dependent software design (Figure 3 (c)—(d)) 
- HW/SW interface debug (Figure 3 (e)) 

The design was a team work of three types of designer: application 
software, hardware-dependent software and platform designers. 
The collaboration was necessary to master the whole flow from the 
specification to the platform. 

4.1 Parallelization 
To parallelize the initial sequential code of OpenDivX on the 
multiprocessor architecture with four processors, we used a 

profiling of code execution to detect computational bottlenecks. 
This resulted in the identification of the motion estimation and 
compensation function (MEC), the shaded area in Figure 2 as a 
good candidate for parallelization since it consumes about 50% of 
total processor computation cycle. To exploit four processors in 
the architecture, we made three tasks (called slaves) of MEC 
function by applying each of three slave tasks to a third of image 
frame. Then, we made another task called master using the other 
part of OpenDivX application. Figure 3 (a) shows four tasks (one 
master denoted with ‘M’ and three slaves ‘S1’, ‘S2’, and ‘S3’).  

 
Table 1 gives the details of data exchanged between master and 
slave tasks: data structure name, data size and type. In terms of 
exchanged data size, master sends 149 KB and receives 25 KB per 
image frame to/from each slave.  

Table 1. Data exchanged between master and slave tasks  

Structure  Size  Type 
Master to Slave 

Curr_comp_y 176x144/3 SInt 
Curr_comp_u,v 176x144/4x3*2 SInt 
Curr 176x144/3 SInt 
Prev 208x176 SInt 
Prev_u, v 208x176/4*2 SInt 
Tab_int 14 SInt 
Tab_float 2 Float 

Slave to Master 
Curr_comp_y 176x144/3 SInt 
Curr_comp_u,v 176x144/4x3*2 SInt 
Mv16_W,H 11x9x4/3*2 Float 
Mv8_W,H 11x9x4/3*2 Float 
Mode_16 11x9/3 SInt 

 
The parallelized code is then validated using MPICH [18] and 
MPI/SC (as shown in Figure 3 (b)). The parallelized code is valid, 
if its execution result is identical to that of sequential code. The 
parallelization process took a designer 3 man-weeks. In terms of 
modification of code, we modified and created 1029 lines of code 
in 10 different source files. 
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4.2 Application Mapping 
We mapped each of the four tasks on one of the four processors 
(Figure 3 (c)). The master task is mapped on an ARM9 processor 
and the other three tasks are mapped on the remaining two ARM7 
processors and the other ARM9. 

4.3 Refinement of Parallel Programming 
Model 
Figure 4 illustrates the refinement flow. Figure 4 (a) exemplifies a 
part of system specification of OpenDivX in SystemC. In the 
figure, master task code calls an MPI primitive, MPI_Send() to 
send data to a slave task. Slave task code calls the corresponding 
primitive, MPI_Recv() to receive the data. The refinement of 
parallel programming model is to implement these primitives on 
the multiprocessor architecture. 
In the case study, we used only the MPI primitives for point-to-
point communication (MPI_Send/Recv). For the point-to-point 
MPI communication, two (control and data) FIFOs are managed. 
When MPI_Send is called, it puts the data to be sent into the data 
FIFO, updates a control information (e.g. data FIFO count) in the 
control FIFO and sends a message (request-to-send) to the 
receiver. The access to the control FIFO is serialized via a 
semaphore. At the receiver side, when MPI_Recv is called, first, 
the control FIFO at the sender side is checked to see if there are 
available data. If so, the data is fetched. If not, the receiver waits 
on the semaphore (later waken up via interrupt). 
To implement the MPI primitives, the designer describes the 
specification of hardware-dependent software by fixing the 
parameters of implementation details. Figure 4 (b) shows examples 
of such parameters. As shown in the figure, the parameters 
describe the implementation details of hardware-dependent 
software such as the addresses and sizes of FIFO’s and the details 
of µ-kernel such as interrupt level, address of interrupt control 
register, etc. 

In our case study, we used a free software tool called ROSES [5] to 
design hardware-dependent software. It takes as the input a 
SystemC specification (shown in Figure 4 (a)) including the 
implementation parameters. It generates hardware-dependent 
software on multiprocessor architectures. The generation is based 
on reusing a SW code library of hardware-dependent software.  
The grey area in Figure 4 (c) corresponds to the hardware-
dependent software generated by the tool. As shown in the figure, 
the hardware-dependent software represents three types of SW 
code: MPI code, µ-kernel, and multiprocessor boot.  
Table 2 shows the code size of generated hardware-dependent 
software in terms of executable code size (KB) and source code 
size (lines of code, LOC). 
To write the input specification (in SystemC) of the design tool, 
we wrote 30 files (729 lines) and 553 implementation parameters. 
The major difficulty of this step consists in the huge number of 
parameters required to be fixed. Such many parameters issue an 
erroneous interpretation of some parameters, which needs to be 
debugged in the HW/SW interface debug. 

Table 2. Code size of hardware-dependent software  

Code  Master Slave 
MPI 3.4 KB, 923 LOC 2.9 KB, 892 LOC 
µ-kernel 2.3 KB,  1069 LOC 2.2 KB, 1065 LOC 
MP boot 0.7 KB, 379 LOC 0.7 KB, 379 LOC 
Total 6.4 KB, 2371 LOC 5.8 KB, 2336 LOC 

4.4 HW/SW Interface Debug 
The generated code of hardware-dependent software is compiled 
and downloaded on the prototyping platform (ARM AP 
Integrator). We found and fixed many bugs before obtaining the 
correct code. To investigate the bug sources and to find an efficient 
strategy to perform HW/SW interface debug, we classified bugs 
found on the prototyping platform. 
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The MPSoC design bug is divided into application SW bug, 
HW/SW interface bug, and HW architecture bug. Application SW 
bug is due to the limitation of simulation model on MPICH and 
MPI/SC used during the development of application SW (including 
the parallelization). For instance, the bug of stack overflow is not 
detected in high-level simulation on MPICH and MPI/SC since the 
stack on the target processor is not modelled in the simulation. 
Since the encoding algorithm is data dependent, such a bug could 
be detected with specific video frames. This means that long time 
execution with additional testbenches was needed to detect all the 
bugs on the prototyping platform. We classify, into application SW 
bug, a C library bug due to the lack/mismatch of supported 
functions (e.g. malloc). 

Table 3. Details of bugs found in the low-level debugging  

Type  Example bug % Bug source  
Data dependent 
computation 

5 Insufficient stack 
space for appl. SW Appl. 

SW C library bug 
 

12 Lack in existing C 
library 

MP 
booting 

Booting is not 
synchronized among 
processors. 

12 Wrong platform 
configuration and 
initialization 

Lost some interrupts 13 Lack of nested 
interrupt in ISR 

Wrong interrupt 
priority levels 

5 Misuse of interrupt 
levels. 

µ-
Kernel 

Context switch does 
not work correctly. 

5 Multitasking in 
system/IRQ stack 

Parallel 
prog. 
model 

Incorrect FIFO 
counter value causes 
deadlock. 

13 Non implemented 
communication 
scenario 

HW 
interface 

Result of compressed 
video is not correct. 

30 Wrong memory 
map assignment 

Design 
environ
ment 

Abnormal execution 
of a portion of C code 

5 Different data type 
handling by ‘armcc’ 
and ‘gcc’ 

 
A HW/SW interface bug may be a hardware-dependent software 
bug or HW interface bug. Several kinds of hardware-dependent 
software bug exist. These may be related to multiprocessor booting, 
µ-kernel, and MPI code (i.e. parallel programming model) bug. A 
HW interface bug is due to the incorrect configuration and access 
of/to the HW architecture. It results mostly from designer’s 
misunderstanding of HW architecture. For instance, a wrong 
configuration of memory map for interrupt control registers belongs 
to the HW interface bug. 
A HW architecture bug is the conventional HW design bug 
including the bugs found in the design of sub-system (e.g. bus, 
interrupt controller, DMA controller) and global communication 
network (e.g. network-on-chip design). In this case study, since the 
HW architecture (i.e. the prototyping platform) is fixed, the HW 
architecture bug is not considered. 
Table 3 shows some statistics about the bugs found. For each bug 
type, the table gives an example, the percentage of occurrence of 
the bug, and an example of the bug source. As shown in the table, 
78% of bugs found on the prototyping platform are HW/SW 
interface bugs. In the table, bugs related with design environment 
represent mismatches between application SW design tools and 

MPSoC design tools. For instance, an example of such a bug is the 
difference of handling some data types between ‘gcc’ for 
application SW design and ‘armcc’ for the target processor. 
It took 7 weeks to a team of three designers (application SW, 
hardware-dependent software and prototyping platform designers) 
to find all the bugs. 

4.5 Design Cycle Analysis 
Table 4 shows design cycle needed in each design step and the 
sizes of code written by the designer or generated by the tool to 
estimate the required design efforts. The table shows that debug on 
the prototyping platform took more than 50% of total design cycle 
in this case study. HW/SW interface debug consumed most of the 
design time in this case study. 

Table 4. Design cycle in the case study  

Design step  Design cycle # of lines of code 
Parallelization and 
validation 3 weeks 1029, manual code 

Input specification for 
HdS generation 2 weeks 729, manual code 

HdS generation 5 minutes 9336, generated code 
Debug on the 
prototyping platform 7 weeks 40 bugs fixed 

 
Two points need to be mentioned. First, in this case study, the HW 
design cycle was not counted since we used a prototyping platform. 
In the case that the HW design cycle is counted, the debug cycle for 
HW/SW interface may become more significant than in this case 
study. In fact, many symptoms are common to both hardware and 
software bugs. This makes the source of the bug harder to find and 
the bug fixing cycle longer. As reported in [19], even when the HW 
design cycle is counted, the debug may still be the most time 
consuming design step. 
The second point to mention is the added value of automatically 
generating hardware-dependent software. As shown in Table 4, the 
tool generates 9336 lines of code (=master’s 2371 + 3 
slaves*2336/slave, from Table 2) for hardware-dependent software 
in 5 minutes. The generation uses existing components in the 
hardware-dependent software library. In the case of manual design 
without using the library components and the tool, the design time 
is estimated to be 31 weeks. The automatic generation of hardware-
dependent software yields a significant reduction in total design 
cycle. 

5. Lessons Learned 
The majority of HW/SW interface bugs were caused by the 
misunderstanding of HW architecture. The designer has to handle 
too many parameters and to know the every details of HW 
architecture. This problem will become more significant as HW 
architectures and application SW become more complex. To ease 
the problem, tool supports are needed to detect/prune wrong 
combinations of parameters and to identify parameters that may 
give higher performance or lower design cost than others. 
Using an automatic tool to design hardware-dependent software is 
also very helpful to reduce design cycle. Manual coding of 
hardware-dependent software would have caused more bugs in our 
case as well as longer design cycle. 
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HW/SW interface debug seems to be the most expensive step in 
total design cycle of MPSoC. Thus, shortening the debug time is a 
key to reduce the total design cycle. The prototyping platform that 
we used in this case study enables fast and accurate debugging since 
it supports cycle-accurate execution. However, for more complex 
systems, application-specific prototype platforms may be required. 
Building such platforms requires a lot of time that may be 
prohibitive to meet the time-to-market constraint. Thus, to shorten 
the design time, we need to move the debug task from prototyping 
platform to other existing debug environments applicable earlier in 
the design cycle.  
A possible strategy would be to move debug tasks from the 
prototyping platform to debug environments based on HW/SW 
cosimulation. Many bugs can be found before the prototyping 
platform is ready. The following two types of cosimulation 
environments can be used for HW/SW interface debug [20]. 

- Cycle-approximate HW/SW cosimulation (ISS w/ implicit 
memory model + transaction level model HW)  

- Cycle-accurate HW/SW cosimulation (ISS w/ explicit 
memory model + transaction level model HW) 

Both use instruction set simulators (ISSs). The ISS is needed to 
debug the hardware-dependent software that contains assembly 
code specific to the target processor.  
Cycle-approximate HW/SW cosimulation consists of ISS having the 
implicit processor memory model (i.e. memory image server model) 
and transaction level model (TLM) HW models. It gives a fast 
simulation (~100Kcycles/sec). However, it is not cycle-accurate 
since the processor memory is modelled inside of ISS. Thus, the 
contention to the processor memory (e.g. between DMA controller 
and processor accesses) is not simulated in a cycle-accurate way. 
Cycle-accurate HW/SW cosimulation (ISS w/ explicit memory 
model + TLM) is much slower (~1Kcycles/sec) than the first type 
since it simulates the processor memory as an external HW model 
in HW/SW cosimulation. However, it gives cycle-accurate 
simulation.  
To exploit the cycle-approximate HW/SW cosimulation (ISS w/ 
implicit memory model + TLM HW model), we classify HW/SW 
interface bug into purely functional and timing-related bugs. The 
purely functional bugs can be detected by a functional or timed 
simulation. Examples are C library bugs, basic functionality of 
hardware-dependent software such as interrupt service routine for 
timer, etc. The timing-related bugs can be detected only by a 
specific temporal ordering of events in the system execution. 
Examples are multiprocessor booting bugs, µ-kernel bugs such as 
nested interrupt processing bug, parallel programming model bug 
that requires inter-processor communication, etc. Those bugs can be 
detected only by cycle-accurate HW/SW cosimulation or emulation. 
Note that many timing-related bugs can also be detected as purely 
functional bugs only if the testbench is well developed to enforce 
the specific order of events necessary to detect the bugs. 
To exploit the cycle-accurate HW/SW cosimulation (ISS w/ explicit 
memory model + TLM HW models), we classify the testbench into 
two types: short and long execution time testbenches. Short 
execution time testbench includes testbench for multiprocessor 
booting, small testbench (which replaces the complex application 
SW) to debug the HW/SW interface. Long execution time testbench 
is the system testbench to detect the bugs after long operating time, 
e.g. bugs appearing after hundreds of image frames.  

Although the cycle-accurate HW/SW cosimulation (ISS w/ explicit 
memory model + TLM HW models) runs slow, it can be exploited 
to run the short execution time testbenches. They will detect most 
of bugs of hardware-dependent software, i.e. parallel programming 
model, µ-kernel, and MP booting, and HW interface bugs related 
with the operation of hardware-dependent software.  
After the usage of both simulation environments, when the 
prototyping platform is available, it may be used to run the long 
execution time testbenches. 

6. Conclusion 
We studied and reported the HW/SW interface debug of an MPSoC 
design of video encoder system, namely OpenDiVX. This study is a 
first step to understand the debug problems and to identify 
necessary design methods to shorten design cycle. This work has 
shown that the HW/SW interface debug was the most time-
consuming step that takes most of design time. This is identified as 
a potential killer for application-specific MPSoC design. To 
investigate the bug sources and to find efficient methods to shorten 
HW/SW interface debug, we presented bug classifications and a 
strategy of HW/SW interface debug in MPSoC design. 
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