
Debugging HW/SW Interface for MPSoC:
Video Encoder System Design Case Study

Mohamed-Wassim Youssef, Sungjoo Yoo, Arif Sasongko, Yanick Paviot, Ahmed A. Jerraya
System Level Synthesis Group, TIMA Laboratory, Grenoble, France

{wassim.youssef, sungjoo.yoo, arif.sasongko, yanick.paviot, ahmed.jerraya}@imag.fr

ABSTRACT
This paper reports a case study of multiprocessor SoC (MPSoC)
design of a complex video encoder, namely OpenDivX. OpenDivX
is a popular version of MPEG4. It requires massive computation
resources and deals with complex data structures to represent video
streams. In this study, the initial specification is given in sequential
C code that had to be parallelized to be executed on four different
processors. High level programming model, namely Message
Passing Interface (MPI) was used to enable inter-task
communication among parallelized C code. A four processor
hardware prototyping platform was used to debug the parallelized
software before final SoC hardware is ready. The targeting of
abstract parallel code using MPI to the multiprocessor architecture
required the design of an additional hardware-dependent software
layer to refine the abstract programming model. The design was
made by a team work of three types of designer: application
software, hardware-dependent software and hardware platform
designers. The collaboration was necessary to master the whole
flow from the specification to the platform.

The study showed that HW/SW interface debug was the most time-
consuming step. This is identified as a potential killer for
application-specific MPSoC design. To further investigate the
ways to accelerate the HW/SW interface debug, we analyzed bugs
found in the case study and the available debug environments.
Finally, we address a debug strategy that exploits efficiently
existing debug environments to reduce the time for HW/SW
interface debug.

Categories and Subject Descriptors
B.1 Control structures and microprogramming, D.1.3 Concurrent
programming, D.2.5 Testing and debugging
General Terms
Design, experimentation, verification
Keywords
Multiprocessor system-on-chip, Hardware-software interface,
Hardware-dependant software, Debug

1. INTRODUCTION
For many people main difficulties when designing multiprocessor
system on chip (MPSoC) are the parallelization of sequential code
and mapping of functions on the multiprocessor architecture. This

is partially true and explains recent studies such as parallel
programming models [1], the exploration of multiprocessor SoC
architectures including network-on-chips [2], mapping parallel
application software on the architecture [3][4], and refinement of
parallel programming models [5][6].

The truth is that MPSoC design also includes an integration step
where distributed software (SW) needs to be adapted to hardware
(HW) [7][8]. This includes the development of hardware-
dependent software layer to adapt application SW to the HW
architecture. During the hardware-dependent software design, the
debug of HW/SW interface may be extremely difficult and time
consuming. This restricts design space exploration (in terms of
HW architecture and mapping) and may even induce missing the
time-to-market constraint.

There have been few practical reports on the difficulties of
debugging the HW/SW interface and on how to accelerate the
HW/SW interface debug. In this paper, we study and report the
problems of HW/SW interface debug. This study is a first step to
understand the debug problems that SoC designers are facing and
to identify necessary design methods to overcome the problems.

To investigate the debug problem, we performed a case study of
complex video encoder, namely OpenDivX [9], which is a popular
version of MPEG4, on a multiprocessor architecture with four
processors. In this study, the initial specification is given in
sequential C code that had to be parallelized into concurrent tasks
to be executed on the four different processors. High level
programming model, namely Message Passing Interface (MPI)
[10] was used for the communication between concurrent tasks.
The targeting of abstract parallel code using MPI to the HW
architecture required the design of an additional hardware-
dependent software layer to refine the abstract programming
model. A four processor prototyping platform [11] was used to
debug the refinement of the abstract programming model, i.e.
HW/SW interface.

The rest of the paper presents the case study. Section 2 explains
the MPSoC design flow that we used in this case study. Section 3
presents the OpenDiVX application. Section 4 gives our
experience in designing HW/SW interfaces. Section 5 presents
lessons learned from this case study. Section 6 concludes this
paper.

2. A Generic MPSoC Design Flow
Figure 1 shows a generic MPSoC design flow. In the figure, ovals
represent design steps and rectangles represent the input and output
of design step. The design flow consists of parallelization of initial
sequential code, application mapping on the multiprocessor HW
architecture, HW design, and hardware-dependent software (HdS)
design to refine the parallel programming model. Before final HW

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DAC 2004, June 7–11, 2004, San Diego, California, USA
Copyright 2004 ACM 1-58113-828-8/04/0006…$5.00.

53.1

908

is ready, a HW prototype is generally built to allow for SW
development and the debug of HW/SW interfaces. When both HW
and SW are designed, a final HW/SW integration step allows to
debug the entire system design.

2.1 Parallelization
To target the sequential application SW code on a multiprocessor
architecture, the code needs to be distributed, i.e. parallelized using
a parallel programming model on the architecture. In this case
study, the parallelization meant task-level parallelization. It is to
decompose the sequential code into concurrent tasks
communicating with each other via parallel programming
primitives.
Parallelization step includes identifying a set of code sections that
need to be transformed to concurrent tasks, transformation of
identified code sections into concurrent tasks, and establishing
inter-task communication between the identified tasks using
parallel programming model primitives (e.g. send/recv).
As parallel programming models suited to multiprocessor
architectures, there are two types: shared memory model (e.g.
OpenMP [12]) and message passing model (e.g. MPI [10]). In our
case study, we used MPI as a parallel programming model.
However, the above parallelization step is common to both shared
memory and message passing models.
The correctness of the parallelized code is proved by comparing
both results of execution of sequential and parallelized code using
the same testbenches. In the design flow, we used two simulation
environments to validate the correctness of parallelized code. One
is the existing MPI environment called MPICH [18]. The other is a
simulation model of MPI primitives in SystemC [13] (called
MPI/SC) that we developed.

2.2 Application Mapping
The designer maps the parallelized code on the given
multiprocessor architecture. The mapping includes mapping tasks

on processors and mapping inter-task communication on the
interconnection network of the multiprocessor architecture. The
design space of mapping is huge since the size of design space is
exponential with respect to the number of application SW tasks
and that of processors in the multiprocessor architecture.
The evaluation of application mapping can be done by high-level
estimation techniques, e.g. trace-based simulation [4] or in low-
level validation using HW/SW cosimulation or prototyping.

2.3 Refinement of Parallel Programming
Model
Targeting the parallelized code on the multiprocessor architecture
requires the refinement of parallel programming model on the
architecture. The refinement is to design hardware-dependent
software that implements the API of parallel programming model.
The hardware-dependent software contains also µ-kernel(s) and
boot code to enable MPSoC initialisation, task scheduling,
interruption and I/O.
The hardware-dependent software is usually designed manually.
Commercial system-level design tools such as System Studio [14],
ConvergenSC [15], Platform Express [16], etc. help designers’
manual design of hardware-dependent software. There are a few
research tools that aim to provide automatic methods of hardware-
dependent software design [5][6].
Whether the hardware-dependent software is designed manually or
automatically, the designer needs to fix all the implementation
parameters such as address map, interrupt priorities, stack sizes,
etc. as the specification of hardware-dependent software.

2.4 HW/SW Interface Debug
After the hardware-dependent software design, designers need to
debug the HW/SW interface. We define the term, HW/SW
interface debug to be ‘both debugging hardware-dependent
software itself and debugging the interaction between hardware-
dependent software and the HW architecture’.
Several HW prototyping platforms for MPSoC are available
[11][17]. In this work, HW/SW interface debug is done in a cycle
accurate way using a commercial prototyping platform, ARM AP
Integrator [11], which has four ARM processors (two ARM7s and
two ARM9s) connected via AMBA. For the debug, first, the
platform is configured by setting clock frequencies of processors
and AMBA, and debug options. Then, the SW code including the
parallelized code and hardware-dependent software are compiled
and downloaded on each of processors in the platform. Then, the
entire prototype is ready to perform the application, OpenDivX.
The prototyping platform supports breakpoints and source level
debugging.
The grey area in Figure 1 represents the scope of this case study in
the design flow. The key focus of this study is the debug of
hardware-dependent software on the HW prototype.

3. Video Encoder Application: OpenDivX
Figure 2 shows a block diagram of OpenDivX encoder [9].
Basically, the encoding is based on removing spatial and temporal
redundancy from input video frames. This encoder produces two
types of video frame: I and P frame. An I frame represents an intra
frame which is the frame that contains self sufficient information
to be decoded. A P frame stands for a predicted frame. The number

 Parallelization +
Application mapping

HW/SW
Interface Debug

Sequential
Application Code

SW (HdS)
Specification

Final SW
(App. SW +HdS)

Multiprocessor
Architecture

HW
Prototype

HW
Specification

HW Design

Final HW

Final HW/SW
Integration

HdS
Design

HW Prototype
Design

Figure 1. A generic MPSoC design flow.

909

of P frames per one I frame, which is an important factor for
compression ratio and result quality, is an implementation
parameter.

To produce an I frame, the encoder applies DCT and quantization
to the input video frame. After this step, the result goes through
zig-zag, Huffman compression, and bit stream packing to produce
the output. To prepare the coding of P frame, dequantization and
inverse DCT are applied to the result of DCT and quantization to
produce the image frame that will be obtained by an OpenDivX
decoder. The decoded image frame (X frame) is stored in the frame
buffer. It will be used as a reference frame for coding a P frame.
Then, the difference between the new input video frame and
motion-compensated frame is calculated. The difference is applied
to the chain of DCT, quantization, and zig-zag. The result of this
operation chain and the motion vector go through Huffman coding
and bit stream packing to produce a P frame.
The OpenDivX encoder application was initially written in
sequential code as most of existing code of multimedia
applications. The entire code size is about 10K lines with 43 files.
It needs 1 GHz P3 processor to encode 20 QCIF (176x144 pixels)
frames per second. Designing this application in an embedded SoC
is a challenge since it requires very high computation power that a
single embedded processor such as ARM7 or ARM9 cannot
support. When executing the application on a 28 MHz ARM9,
though the code size is relatively small, 104KB, it takes 227
seconds to process 20 input frames. Thus, to achieve the real-time
performance with the given application SW code, we need
optimisations of application SW code, HW acceleration, and
possibly massively parallel processor architectures.

4. Design Case Study
We designed the OpenDivX encoder system through the design
flow explained in Section 2. This section gives the details of
design process. Figure 3 summarizes the key steps:

- Parallelizing the sequential code and validating the
parallelized code (Figure 3 (a)—(b))

- Hardware-dependent software design (Figure 3 (c)—(d))
- HW/SW interface debug (Figure 3 (e))

The design was a team work of three types of designer: application
software, hardware-dependent software and platform designers.
The collaboration was necessary to master the whole flow from the
specification to the platform.

4.1 Parallelization
To parallelize the initial sequential code of OpenDivX on the
multiprocessor architecture with four processors, we used a

profiling of code execution to detect computational bottlenecks.
This resulted in the identification of the motion estimation and
compensation function (MEC), the shaded area in Figure 2 as a
good candidate for parallelization since it consumes about 50% of
total processor computation cycle. To exploit four processors in
the architecture, we made three tasks (called slaves) of MEC
function by applying each of three slave tasks to a third of image
frame. Then, we made another task called master using the other
part of OpenDivX application. Figure 3 (a) shows four tasks (one
master denoted with ‘M’ and three slaves ‘S1’, ‘S2’, and ‘S3’).

Table 1 gives the details of data exchanged between master and
slave tasks: data structure name, data size and type. In terms of
exchanged data size, master sends 149 KB and receives 25 KB per
image frame to/from each slave.

Table 1. Data exchanged between master and slave tasks

Structure Size Type
Master to Slave

Curr_comp_y 176x144/3 SInt
Curr_comp_u,v 176x144/4x3*2 SInt
Curr 176x144/3 SInt
Prev 208x176 SInt
Prev_u, v 208x176/4*2 SInt
Tab_int 14 SInt
Tab_float 2 Float

Slave to Master
Curr_comp_y 176x144/3 SInt
Curr_comp_u,v 176x144/4x3*2 SInt
Mv16_W,H 11x9x4/3*2 Float
Mv8_W,H 11x9x4/3*2 Float
Mode_16 11x9/3 SInt

The parallelized code is then validated using MPICH [18] and
MPI/SC (as shown in Figure 3 (b)). The parallelized code is valid,
if its execution result is identical to that of sequential code. The
parallelization process took a designer 3 man-weeks. In terms of
modification of code, we modified and created 1029 lines of code
in 10 different source files.

DCT

Bitstream
Packing

Zig-Zag Huffman

DeQuant

Motion
Vector

Bitstream
OutputMotion

Compensation IDCT

Frame
Buffer(X)

Bit stream Input

Motion
Estimation

I
Frame

P
Frame

-
Quant.

Figure 2. Block Diagram of OpenDivX Application (a) Parallelized code

S1M S2 S3

S1M S2 S3
ARM9 ARM7 ARM7 ARM9

(c) After application

ARM9 ARM7 ARM7 ARM9

AMBA Bus

HdS HdS HdS HdS
S1M S2 S3

(d) RTL architecture
after HdS design

AMBA Bus

AR
M9

Hd
S

S3

AR
M7

Hd
S

S2

AR
M7

Hd
S

S1

AR
M9

Hd
S

M

AMBA Bus

AR
M9

Hd
S

S3

AR
M9

Hd
S

S3

AR
M7

Hd
S

S2

AR
M7

Hd
S

S2

AR
M7

Hd
S

S1

AR
M7

Hd
S

S1

AR
M9

Hd
S

M

AR
M9

Hd
S

M

PC

(e) Debug using the
prototyping platform

Prototyping platform

(b) Debug using MPICH
and MPI/SC

MPICH and MPI/SC

S1 M S2 S3

Figure 3. OpenDivX Design and Debug Flow

910

4.2 Application Mapping
We mapped each of the four tasks on one of the four processors
(Figure 3 (c)). The master task is mapped on an ARM9 processor
and the other three tasks are mapped on the remaining two ARM7
processors and the other ARM9.

4.3 Refinement of Parallel Programming
Model
Figure 4 illustrates the refinement flow. Figure 4 (a) exemplifies a
part of system specification of OpenDivX in SystemC. In the
figure, master task code calls an MPI primitive, MPI_Send() to
send data to a slave task. Slave task code calls the corresponding
primitive, MPI_Recv() to receive the data. The refinement of
parallel programming model is to implement these primitives on
the multiprocessor architecture.
In the case study, we used only the MPI primitives for point-to-
point communication (MPI_Send/Recv). For the point-to-point
MPI communication, two (control and data) FIFOs are managed.
When MPI_Send is called, it puts the data to be sent into the data
FIFO, updates a control information (e.g. data FIFO count) in the
control FIFO and sends a message (request-to-send) to the
receiver. The access to the control FIFO is serialized via a
semaphore. At the receiver side, when MPI_Recv is called, first,
the control FIFO at the sender side is checked to see if there are
available data. If so, the data is fetched. If not, the receiver waits
on the semaphore (later waken up via interrupt).
To implement the MPI primitives, the designer describes the
specification of hardware-dependent software by fixing the
parameters of implementation details. Figure 4 (b) shows examples
of such parameters. As shown in the figure, the parameters
describe the implementation details of hardware-dependent
software such as the addresses and sizes of FIFO’s and the details
of µ-kernel such as interrupt level, address of interrupt control
register, etc.

In our case study, we used a free software tool called ROSES [5] to
design hardware-dependent software. It takes as the input a
SystemC specification (shown in Figure 4 (a)) including the
implementation parameters. It generates hardware-dependent
software on multiprocessor architectures. The generation is based
on reusing a SW code library of hardware-dependent software.
The grey area in Figure 4 (c) corresponds to the hardware-
dependent software generated by the tool. As shown in the figure,
the hardware-dependent software represents three types of SW
code: MPI code, µ-kernel, and multiprocessor boot.
Table 2 shows the code size of generated hardware-dependent
software in terms of executable code size (KB) and source code
size (lines of code, LOC).
To write the input specification (in SystemC) of the design tool,
we wrote 30 files (729 lines) and 553 implementation parameters.
The major difficulty of this step consists in the huge number of
parameters required to be fixed. Such many parameters issue an
erroneous interpretation of some parameters, which needs to be
debugged in the HW/SW interface debug.

Table 2. Code size of hardware-dependent software

Code Master Slave
MPI 3.4 KB, 923 LOC 2.9 KB, 892 LOC
µ-kernel 2.3 KB, 1069 LOC 2.2 KB, 1065 LOC
MP boot 0.7 KB, 379 LOC 0.7 KB, 379 LOC
Total 6.4 KB, 2371 LOC 5.8 KB, 2336 LOC

4.4 HW/SW Interface Debug
The generated code of hardware-dependent software is compiled
and downloaded on the prototyping platform (ARM AP
Integrator). We found and fixed many bugs before obtaining the
correct code. To investigate the bug sources and to find an efficient
strategy to perform HW/SW interface debug, we classified bugs
found on the prototyping platform.

(b) Implementation

Parameters

Bus Bridge

Local Memory

Data FIFO

Control FIFO

It Mangement

Master code

MPI
code

µ-kernel

Local Bus

Bus Bridge

Local Memory
Data FIFO

Control FIFO

It Mangement

Slave1 code

Local Bus
ARM 7

Processor

(c) RTL Implementation

Hardware-dependent
software generation

MPI API

 // Master code

…

MPI_Send(…);

 // Slave1 code

…

MPI_Recv(…)

MPI API
SystemC

(a) SystemC spec for
HdS generation

AMBA BUS

ARM 9
Processor

Figure 4. Refinement of parallel programming model

911

The MPSoC design bug is divided into application SW bug,
HW/SW interface bug, and HW architecture bug. Application SW
bug is due to the limitation of simulation model on MPICH and
MPI/SC used during the development of application SW (including
the parallelization). For instance, the bug of stack overflow is not
detected in high-level simulation on MPICH and MPI/SC since the
stack on the target processor is not modelled in the simulation.
Since the encoding algorithm is data dependent, such a bug could
be detected with specific video frames. This means that long time
execution with additional testbenches was needed to detect all the
bugs on the prototyping platform. We classify, into application SW
bug, a C library bug due to the lack/mismatch of supported
functions (e.g. malloc).

Table 3. Details of bugs found in the low-level debugging

Type Example bug % Bug source
Data dependent
computation

5 Insufficient stack
space for appl. SW Appl.

SW C library bug

12 Lack in existing C
library

MP
booting

Booting is not
synchronized among
processors.

12 Wrong platform
configuration and
initialization

Lost some interrupts 13 Lack of nested
interrupt in ISR

Wrong interrupt
priority levels

5 Misuse of interrupt
levels.

µ-
Kernel

Context switch does
not work correctly.

5 Multitasking in
system/IRQ stack

Parallel
prog.
model

Incorrect FIFO
counter value causes
deadlock.

13 Non implemented
communication
scenario

HW
interface

Result of compressed
video is not correct.

30 Wrong memory
map assignment

Design
environ
ment

Abnormal execution
of a portion of C code

5 Different data type
handling by ‘armcc’
and ‘gcc’

A HW/SW interface bug may be a hardware-dependent software
bug or HW interface bug. Several kinds of hardware-dependent
software bug exist. These may be related to multiprocessor booting,
µ-kernel, and MPI code (i.e. parallel programming model) bug. A
HW interface bug is due to the incorrect configuration and access
of/to the HW architecture. It results mostly from designer’s
misunderstanding of HW architecture. For instance, a wrong
configuration of memory map for interrupt control registers belongs
to the HW interface bug.
A HW architecture bug is the conventional HW design bug
including the bugs found in the design of sub-system (e.g. bus,
interrupt controller, DMA controller) and global communication
network (e.g. network-on-chip design). In this case study, since the
HW architecture (i.e. the prototyping platform) is fixed, the HW
architecture bug is not considered.
Table 3 shows some statistics about the bugs found. For each bug
type, the table gives an example, the percentage of occurrence of
the bug, and an example of the bug source. As shown in the table,
78% of bugs found on the prototyping platform are HW/SW
interface bugs. In the table, bugs related with design environment
represent mismatches between application SW design tools and

MPSoC design tools. For instance, an example of such a bug is the
difference of handling some data types between ‘gcc’ for
application SW design and ‘armcc’ for the target processor.
It took 7 weeks to a team of three designers (application SW,
hardware-dependent software and prototyping platform designers)
to find all the bugs.

4.5 Design Cycle Analysis
Table 4 shows design cycle needed in each design step and the
sizes of code written by the designer or generated by the tool to
estimate the required design efforts. The table shows that debug on
the prototyping platform took more than 50% of total design cycle
in this case study. HW/SW interface debug consumed most of the
design time in this case study.

Table 4. Design cycle in the case study

Design step Design cycle # of lines of code
Parallelization and
validation 3 weeks 1029, manual code

Input specification for
HdS generation 2 weeks 729, manual code

HdS generation 5 minutes 9336, generated code
Debug on the
prototyping platform 7 weeks 40 bugs fixed

Two points need to be mentioned. First, in this case study, the HW
design cycle was not counted since we used a prototyping platform.
In the case that the HW design cycle is counted, the debug cycle for
HW/SW interface may become more significant than in this case
study. In fact, many symptoms are common to both hardware and
software bugs. This makes the source of the bug harder to find and
the bug fixing cycle longer. As reported in [19], even when the HW
design cycle is counted, the debug may still be the most time
consuming design step.
The second point to mention is the added value of automatically
generating hardware-dependent software. As shown in Table 4, the
tool generates 9336 lines of code (=master’s 2371 + 3
slaves*2336/slave, from Table 2) for hardware-dependent software
in 5 minutes. The generation uses existing components in the
hardware-dependent software library. In the case of manual design
without using the library components and the tool, the design time
is estimated to be 31 weeks. The automatic generation of hardware-
dependent software yields a significant reduction in total design
cycle.

5. Lessons Learned
The majority of HW/SW interface bugs were caused by the
misunderstanding of HW architecture. The designer has to handle
too many parameters and to know the every details of HW
architecture. This problem will become more significant as HW
architectures and application SW become more complex. To ease
the problem, tool supports are needed to detect/prune wrong
combinations of parameters and to identify parameters that may
give higher performance or lower design cost than others.
Using an automatic tool to design hardware-dependent software is
also very helpful to reduce design cycle. Manual coding of
hardware-dependent software would have caused more bugs in our
case as well as longer design cycle.

912

HW/SW interface debug seems to be the most expensive step in
total design cycle of MPSoC. Thus, shortening the debug time is a
key to reduce the total design cycle. The prototyping platform that
we used in this case study enables fast and accurate debugging since
it supports cycle-accurate execution. However, for more complex
systems, application-specific prototype platforms may be required.
Building such platforms requires a lot of time that may be
prohibitive to meet the time-to-market constraint. Thus, to shorten
the design time, we need to move the debug task from prototyping
platform to other existing debug environments applicable earlier in
the design cycle.
A possible strategy would be to move debug tasks from the
prototyping platform to debug environments based on HW/SW
cosimulation. Many bugs can be found before the prototyping
platform is ready. The following two types of cosimulation
environments can be used for HW/SW interface debug [20].

- Cycle-approximate HW/SW cosimulation (ISS w/ implicit
memory model + transaction level model HW)

- Cycle-accurate HW/SW cosimulation (ISS w/ explicit
memory model + transaction level model HW)

Both use instruction set simulators (ISSs). The ISS is needed to
debug the hardware-dependent software that contains assembly
code specific to the target processor.
Cycle-approximate HW/SW cosimulation consists of ISS having the
implicit processor memory model (i.e. memory image server model)
and transaction level model (TLM) HW models. It gives a fast
simulation (~100Kcycles/sec). However, it is not cycle-accurate
since the processor memory is modelled inside of ISS. Thus, the
contention to the processor memory (e.g. between DMA controller
and processor accesses) is not simulated in a cycle-accurate way.
Cycle-accurate HW/SW cosimulation (ISS w/ explicit memory
model + TLM) is much slower (~1Kcycles/sec) than the first type
since it simulates the processor memory as an external HW model
in HW/SW cosimulation. However, it gives cycle-accurate
simulation.
To exploit the cycle-approximate HW/SW cosimulation (ISS w/
implicit memory model + TLM HW model), we classify HW/SW
interface bug into purely functional and timing-related bugs. The
purely functional bugs can be detected by a functional or timed
simulation. Examples are C library bugs, basic functionality of
hardware-dependent software such as interrupt service routine for
timer, etc. The timing-related bugs can be detected only by a
specific temporal ordering of events in the system execution.
Examples are multiprocessor booting bugs, µ-kernel bugs such as
nested interrupt processing bug, parallel programming model bug
that requires inter-processor communication, etc. Those bugs can be
detected only by cycle-accurate HW/SW cosimulation or emulation.
Note that many timing-related bugs can also be detected as purely
functional bugs only if the testbench is well developed to enforce
the specific order of events necessary to detect the bugs.
To exploit the cycle-accurate HW/SW cosimulation (ISS w/ explicit
memory model + TLM HW models), we classify the testbench into
two types: short and long execution time testbenches. Short
execution time testbench includes testbench for multiprocessor
booting, small testbench (which replaces the complex application
SW) to debug the HW/SW interface. Long execution time testbench
is the system testbench to detect the bugs after long operating time,
e.g. bugs appearing after hundreds of image frames.

Although the cycle-accurate HW/SW cosimulation (ISS w/ explicit
memory model + TLM HW models) runs slow, it can be exploited
to run the short execution time testbenches. They will detect most
of bugs of hardware-dependent software, i.e. parallel programming
model, µ-kernel, and MP booting, and HW interface bugs related
with the operation of hardware-dependent software.
After the usage of both simulation environments, when the
prototyping platform is available, it may be used to run the long
execution time testbenches.

6. Conclusion
We studied and reported the HW/SW interface debug of an MPSoC
design of video encoder system, namely OpenDiVX. This study is a
first step to understand the debug problems and to identify
necessary design methods to shorten design cycle. This work has
shown that the HW/SW interface debug was the most time-
consuming step that takes most of design time. This is identified as
a potential killer for application-specific MPSoC design. To
investigate the bug sources and to find efficient methods to shorten
HW/SW interface debug, we presented bug classifications and a
strategy of HW/SW interface debug in MPSoC design.

7. ACKNOWLEDGMENTS
This work was supported by ToolIP, Medea+ project and
ArchiFlex, French government funded project.

8. REFERENCES
[1] The Ptolemy project, http://ptolemy.eecs.berkeley.edu/
[2] E. Rijpkema, et al., “Trade offs in the design of a router with

both guaranteed and best-effort services for networks on chip”,
Proc. DATE, 2003.

[3] J. Liu and P. Chou, “Energy Optimization of Distributed
Embedded Processors by Combined Data Compression and
Functional Partitioning”, Proc. ICCAD, 2003.

[4] P. Lieverse, et al., “A Methodology for Architecture
Exploration of Heterogeneous Signal Processing Systems”,
Journal of VLSI Signal Processing, vol. 29, pp. 197–206,
Kluwer Academic Publishers, 2001.

[5] W. Cesario, et al., "Component-Based Design Approach for
Multicore SoCs", Proc. DAC, 2002.

[6] J.-Y. Brunel, et al., "COSY communication IP's", Proc. DAC,
2000.

[7] H. Chang, et al., “Surviving the SOC Revolution - A Guide to
Platform-Based Design”, Kluwer Academic Publishers.

[8] C. Berthet, “Going mobile: the next horizon for multi-million
gate designs in the semi-conductor industry”, Proc. DAC,
2002.

[9] OpenDivX, Project Mayo, http://www.projectmayo.com
[10] The Message Passing Interface (MPI) standard, http://www-

unix.mcs.anl.gov/mpi/
[11] ARM AP Integrator, http://www.arm.com
[12] OpenMP, http://www.openmp.org/
[13] SystemC, http://www.systemc.org
[14] CoCentric System Studio, http://www.synopsys.com/
[15] ConvergenSC, http://www.coware.com
[16] Platform Express, http://www.mentor.com
[17] Virtex-II Pro FPGAS, http://www.xilinx.com

913

