
Scalable Effort Hardware Design: Exploiting Algorithmic
Resilience for Energy Efficiency

Vinay K. Chippa†, Debabrata Mohapatra†, Anand Raghunathan†, Kaushik Roy† and Srimat T. Chakradhar∗
† School of Electrical and Computer Engineering, Purdue University

∗ Systems Architecture Department, NEC Laboratories America
{vchipp,dmohapat,raghunathan,kaushik}@purdue.edu, chak@nec-labs.com

ABSTRACT
Algorithms from several interesting application domains ex-
hibit the property of inherent resilience to “errors” from ex-
trinsic or intrinsic sources, offering entirely new avenues for
performance and power optimization by relaxing the conven-
tional requirement of exact (numerical or Boolean) equiva-
lence between the specification and hardware implementa-
tion.

We propose scalable effort hardware design as an approach
to tap the reservoir of algorithmic resilience and translate
it into highly efficient hardware implementations The ba-
sic tenet of the scalable effort design approach is to identify
mechanisms at each level of design abstraction (circuit, ar-
chitecture and algorithm) that can be used to vary the com-
putational effort expended towards generation of the correct
(exact) result, and expose them as control knobs in the im-
plementation. These scaling mechanisms can be utilized to
achieve improved energy efficiency while maintaining an ac-
ceptable (and often, near identical) level of quality of the
overall result. A second major tenet of the scalable effort
design approach is that fully exploiting the potential of al-
gorithmic resilience requires synergistic cross-layer optimiza-
tion of scaling mechanisms identified at different levels of
design abstraction.

We have implemented an energy-efficient SVM classifica-
tion chip based on the proposed scalable effort design ap-
proach. We present results from post-layout simulations and
demonstrate that scalable effort hardware can achieve large
energy reductions (1.2X-2.2X with no impact on classifica-
tion accuracy, and 2.2X-4.1X with modest reductions in ac-
curacy) across various sets. Our results also establish that
cross-layer optimization leads to much improved energy vs.
quality tradeoffs compared to each of the individual tech-
niques.

Categories and Subject Descriptors
B.7.1 [INTEGRATED CIRCUITS]: VLSI (Very large
scale integration)

General Terms
Algorithms, Design

Keywords
Scalable Effort, Approximate Computing, Low Power De-
sign, Support Vector Machines, Recognition, Mining

1. INTRODUCTION
Several application domains that are of growing interest in

general-purpose and embedded computing, such as Recogni-
tion and Data Mining [1], exhibit the interesting property
of high inherent algorithmic resilience to “errors” from both
extrinsic and intrinsic sources. This resilience can be at-
tributed to several factors [2]. These algorithms are designed
to process large amounts of input data that has significant
redundancy and may frequently contain significant imperfec-
tions or noise. The algorithms themselves are often statistical
and aggregative, implying that errors can easily get averaged
down or averaged out. The algorithms typically use iterative,
successive refinement techniques, which imparts them with
a self-healing nature since subsequent iterations may correct
errors introduced in previous iterations. Frequently, these al-
gorithms do not have a single golden result; instead, they may
produce any one of multiple solutions that are equally accept-
able (e.g., a training algorithm that is fed the same data set
in a different order may produce a different but equivalent
model). Finally, the usage model of these algorithms is such
that the user is conditioned to accept less-than-perfect re-
sults (even the best known algorithm does not achieve 100%
accuracy).

Hardware implementations of inherently resilient algo-
rithms offer entirely new avenues for performance and power
optimization by relaxing the conventional requirement of ex-
act (numerical or Boolean) equivalence between the specifica-
tion and implementation. While several approaches to lever-
aging algorithmic resilience in both software and hardware
implementations have been recently proposed and shown sig-
nificant promise [3, 4, 5, 6, 7], we believe that fully exploiting
the “reservoir of resilience” requires a systematic design ap-
proach.

In this work we propose one such systematic approach
wherein the notion of scalable effort is embodied into the de-
sign process at different layers (or levels of abstraction). We
demonstrate this approach through the design of an energy-
efficient scalable-effort hardware implementation for Support
Vector Machines, a popular Machine Learning algorithm.
Scalable effort hardware design involves (i) identifying mech-
anisms at each level of abstraction that can be used to vary
the effort expended by the hardware in order to accurately
implement the computations in the algorithm, and (ii) ex-
posing them as control knobs that can be used (after fabrica-
tion) to achieve energy efficiency while maintaining accept-
able overall quality of the result. At the circuit-level, we uti-
lize voltage over-scaling as a mechanism to control the effort
expended in order to correctly compute the outputs of com-
putational blocks within the clock period, thereby trading
accuracy of the result for the energy consumed to compute it.
At the architecture level, we utilize dynamic precision control
as the mechanism to vary the computational effort expended.
Finally, at the algorithm level, we utilize significance-driven
algorithmic truncation in order to achieve an energy vs. ac-
curacy tradeoff. While each of these knobs has significant
and interesting effects, we demonstrate that much greater
gains can be achieved by synergistically co-optimizing across
the different levels.

We have implemented an energy-efficient SVM classifi-
cation chip based on the scalable effort design approach.
We present a wide range of experimental results from post-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DAC'10, June 13-18, 2010, Anaheim, California, USA
Copyright 2010 ACM 978-1-4503-0002-5 /10/06...$10.00

555

33.3

layout simulations, demonstrating that scalable effort design
achieves significant reductions in energy compared to conven-
tional implementations (1.2X-2X with no loss in classification
accuracy, and 2.2X-4.1X with a moderate loss in classifica-
tion accuracy). We also establish the benefits of a layered
approach to scalable effort design and and cross-layer opti-
mization of the control knobs that govern the efficiency vs.
accuracy tradeoff. We believe that the proposed approach
has potential to significantly extend the performance and
energy-efficiency of hardware implementations of algorithms
in various existing and emerging application domains.

2. MOTIVATION
The motivation for our work stems from the observation

that algorithms in application domains such as recognition
and mining possess a very high degree of resilience to“errors”
from both extrinsic and intrinsic sources. The above obser-
vation naturally leads to the question of whether the hard-
ware implementations of these algorithms need to be “per-
fect”? Specifically, do the hardware implementations of these
algorithms need to maintain exact (numerical or Boolean)
equivalence to their specification? We suggest that the an-
swer to these questions is no, and address the problem of how
to utilize the inherent algorithmic resilience so as to achieve
maximum savings in energy consumption.

In order to empirically illustrate the algorithmic resilience
described above, we consider Support Vector Machines [8],
one of the most popularly used Machine Learning algorithms.
We focus on SVM-based classification of handwritten digit
images from the MNIST database [9]. The SVM classifica-
tion almost entirely consists of dot-product computations,
which can be expressed as MAC operations. In order to em-
ulate the effect of an “imperfect” hardware implementation,
we injected random errors in the outputs of each of the MAC
operations performed in the SVM classification algorithm 1

and evaluated the impact on the classification accuracy. The
results are presented in Figure 1. The x-axis represents the
rate of error injection, and the different curves correspond to
different experiments where the errors were restricted to dif-
ferent ranges of least significant bits (within the accumulated
result of each MAC operation). It can be seen that, when
errors are injected in the 15 LSBs (even with a 100% proba-
bility), they do not have any impact on the final classification
accuracy. Similarly injecting errors with probabilities of 10−6

in upto 28 of the 32 bits has negligible impact on classifica-
tion accuracy. These results suggest that hardware design
techniques that trade off the accuracy of the computations
for energy savings are worth investigating.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10

20

30

40

50

60

70

80

90

100

Number of errors per 100 millions(108) −−−>

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy
 o

f d
ig

it
0

−
−

−
>

15 bits

19 bits

21 bits

23 bits

25 bits

28 bits

Figure 1: The accuracy of SVM classification for handwritten
digit recognition in the presence of errors in the computations

1As explained in Section 5.1, the SVM classification almost
entirely consists of dot-product computations, which can be
expressed as MAC operations.

3. RELATED WORK
A significant body of previous work shares the philosophy

of exploiting the inherent resilience of algorithms in certain
application domains to achieve various benefits. In this sec-
tion, we acknowledge and describe the closely related efforts
that have inspired our own, and place our contributions in
their context.

The use of imperfect or unreliable components in comput-
ing has a long history and can be traced back to the work
of Von Neumann [10], which proposed a model for compu-
tation using unreliable components. In his work on adap-
tive computers [11], Breuer proposed graceful degradation
as a mechanism to deal with component failures. Over two
decades later, the use of imprecise computation was explored
to achieve improved performance in the context of real-time
systems [12].

ANT (Algorithmic Noise Tolerance) [5] was one of the ear-
liest proposals to leverage the inherent error resilience of algo-
rithms in the context of hardware implementation, and aimed
to achieve both energy efficiency and tolerance to deep sub-
micron noise. Subsequent efforts proposed variants of this
basic approach, and applied it to signal, image, and video
processing algorithms [13, 14, 15].

The concept of Probabilistic CMOS or PCMOS, wherein
each transistor and logic gate displays a probabilistic rather
than deterministic behavior, was proposed as an energy-
efficient alternative to traditional always-correct computa-
tional models [16]. This has led to a significant body of re-
search on probabilistic and approximate computation, which
is summarized in [4].

The concept of utilizing the inherent resilience of multi-
media applications to tolerate defects and improve fabrica-
tion yields was proposed in [17], and led to new approaches
to manufacturing test [18].

Other recent efforts have exploited algorithmic error re-
silience for process variation tolerance and low power de-
sign through the use of design techniques such as significance
driven computation [6, 19].

ERSA (Error Resilient System Architecture) [7] is a pro-
grammable multi-core architecture for deeply scaled tech-
nologies with unreliable components, that combines one reli-
able processor core with a large number of unreliable cores.
ERSA exploits the inherent error resilience of probabilistic
applications, which overlap with the domains considered in
our work.

We have used Support Vector Machines [8], one of the
most widely used machine learning algorithms, as a vehicle
to demonstrate our concepts. Various hardware implemen-
tations of Support Vector Machines [20, 21] have been opti-
mized for either performance or area, but the error resiliency
of the algorithm has not been fully explored.

The term scalable effort was inspired by the work on best
effort computing [2], where error resiliency has been used
to achieve parallel scalability of software implementations on
multi-core computing platforms [3]. Furthermore, the ba-
sic SVM architecture used in our work was inspired by the
MAPLE parallel architecture [22], where an array of variable
precision processing elements were utilized to achieve high
performance with relatively low power consumption.

The primary contribution of this work is a systematic de-
sign approach for hardware implementation of algorithms
that exhibit high levels of inherent resilience. Unlike previous
efforts that only focus on one dimension (e.g., voltage over-
scaling), the scalable effort approach espouses synergistic
scaling along multiple dimensions that correspond to differ-
ent levels of design abstraction (circuit, micro-architecture,
and algorithm). This leads to higher energy savings through
better utilization of the reservoir of algorithmic resilience,
as borne out by the experimental results presented in this
paper.

4. BACKGROUND
Support Vector Machines (SVMs), a family of algorithms

for supervised learning, are widely used for applications

556

33.3

that require classification (where data must be classified
into a number of pre-determined categories) and regression

Figure 2: Illustration of SVM-
based classification (Source:
Wikipedia)

(where a model is built
to capture the relation-
ship between a dependent
variable and one or more
independent variables) 2.
In classification, given a
labeled training data set
(each data point is a
multi-dimensional vector
of features), the SVM
training algorithm is used
to generate a hyperplane
in the feature space that
distinguishes the classes
with maximal separation
(see Figure 2). The hy-
perplane is fully specified
by a subset of the training
data that are called the
support vectors.

Once the hyperplane is generated, any unlabeled datum
can be assigned a label based on it’s position relative to the
hyperplane. Generation of the hyperplane from the labeled
data is called training and assigning a label to a new data
point is called testing 3.

The computation performed for classifying a new unlabeled
data point is given by

Label = sign(
NX

i=1

Kernel(�x. �svi) ∗ αi ∗ yi − b) (1)

where �x is a vector representing the data to be classified, �svi

is the i-th support vector, b is the offset and αi and yi are
the Lagrangian coefficient (computed during training) and
the label of the i-th support vector, respectively. Kernel is
a non-linear function that greatly enhances the capability of
SVMs by enabling the construction of non-linear classifiers.
�svi, αi and b values are generated by the SVM training algo-
rithm, details of which can be found in [8]. SVMs are used
in a wide range of applications involving image and video
analysis (e.g., face or object detection, handwriting recogni-
tion, content-based image retrieval, speech recognition), and
have demonstrated great promise in several other application
domains [23].

5. SCALABLE EFFORT HARDWARE FOR
SVM CLASSIFICATION

In this section, we describe the scalable effort design ap-
proach and illustrate it through application to SVM classi-
fication. In a broad sense, scalable effort hardware provides
mechanisms to modulate the effort expended in performing
the computations that constitute the algorithm. The specific
definition of effort varies depending on the level of design ab-
straction at which it is modulated. We next briefly describe
the overall design of the SVM classification chip and detail
how the principles of scalable effort design were applied at
the circuit, architecture, and algorithm levels.

5.1 Overview
Figure 3 presents a dedicated hardware architecture for

SVM classification. We used a systolic array architecture
(similar to [22]) to implement the computation of dot prod-
ucts between support vectors and test vectors, which domi-
nates the workload of SVM classification. From Equation 1,

2We focus on classification, however the proposed concepts
apply to SVM based regression as well.
3Although we only demonstrate our ideas for SVM testing,
the core computation in training is essentially the same and
the proposed concepts apply to training as well.

 Systolic Array
 Architecture

Host Processor

Memory

FIFO
control Block

FIFO FIFO FIFO

. . . .

.

.

.

.

.

.

.

.

Bus Interface

FIFO

FIFO

FIFO

Support
Vectors

Test
Vector
FIFOs

MACMAC MAC

MAC MAC

MAC MAC

MAC

MAC

. . . .

. . . .

Level: Algorithm
Scaling: Number of
Support Vectors and
Number of Features
Changes: Amount
of data fed to MAC
array

Level: Architecture
Scaling: Number of
bits in datapath
Changes: MAC and
FIFOs

Level: Circuit
Scaling: Voltage
Changes: Design
MACs to be
scalable under VOS

Scaling levels

Figure 3: Block diagram of SVM architecture

we can see that with N support vectors and a feature size
of d, classifying a single data point will require N · d + 2N
multiplications, N ·d−N +1 additions and N kernel function
computations. Of these, N · d multiplications and N · d − N
additions are due to the dot product of the test vector with
the support vectors.

The architecture consists of two arrays of FIFOs from
which data is streamed to a 2-dimensional array of MAC
units. The support vectors and test vectors are pushed into
their respective FIFO’s. Support vectors are streamed from
top to bottom, and test vectors are streamed from left to
right, through the MAC array. Each MAC unit computes the
dot product between a unique (support vector, test vector)
pair by processing one dimension per cycle in the nominal
case and accumulating the result. Once the dot product op-
eration is complete, the dot product values are read out in
a raster scan order by the host processor, which takes this
data and performs the remaining computation required to
compute the label.

We would like to mention that our focus in this work is
not on the base architecture itself; rather, we focus on the
application of scalable effort at different levels of abstraction
to this architecture. The effort expended by the SVM clas-
sification hardware can be scaled at the circuit, architecture,
and algorithm levels. The proposed design has provisions to
scale the effort at all these levels, each of which is described
in detail in the following subsections.

5.2 Algorithm Level Scaling
At the algorithm level, we identify parameters that con-

trol the amount of computation performed and vary them to
tradeoff decreased computational complexity for the quality
of the result. Rather than indiscriminately eliminate com-
putations, we prioritize computations based on their likely
impact on the quality of the result to achieve a better trade-
off.

In the case of Support Vector Machines, our analysis in
Section 5.1 shows that the complexity depends upon both N
and d, i.e., the number of support vectors and the number
of features per vector. Figure 4 depicts the dot product op-
erations involved in SVM classification in matrix form and
illustrates how the scaling is performed along these two di-
mensions. In order to achieve the best accuracy vs. energy
tradeoff, support vectors are considered in the order of their
significance. One way of quantifying the significance of sup-

557

33.3

port vectors is based on the values of αi (Lagrangian coef-
ficients that are computed during training). This approach
can be further extended using the concept of RSVMs [24],
where training is adapted to generate support vector sets of
different sizes, from which we choose during testing.

Number of Features

Number
of

Support
Vectors

K
e
r
n
e
l

Figure 4: SVM classification in matrix form and illustration
of algorithmic scaling

When we scale the number of support vectors, we are basi-
cally reducing the number of dot product computations per
classification. We can also cut down the number of MAC
operations per dot product, e.g., scaling the dimensionality
of the vectors. Generally, different features (or dimensions)
have very different effects on the accuracy of classification.
If the features are arranged in the order of their importance,
the dot product can be computed in that order and the com-
putation can be stopped at any point to get an approximate
output.

5.3 Architecture Level Scaling
At the architecture level, we scale effort by scaling the

precision with which the variables of the algorithm are repre-
sented and the corresponding operations are performed. The
variables can be the inputs of the algorithm, like the test
vectors and α, or they can be the intermediate values like
outputs of the multiplier and the accumulator. The number
of bits needed to represent variables varies from data set to
data set. In context of SVM’s, the effect of precision scal-
ing has been studied in [20, 22]. In this section, we explain
different methods of realizing precision scaling. However our
focus is on translating precision scaling into energy efficiency,
and combining this with other scalable effort mechanisms to
maximize the overall energy efficiency of the SVM computa-
tion.

8bit 8bit 8bit 8bit

svi0 sv i1 tv i0 tv i1

Mult i0 Mult i1

Accum i

Accumulator

sv i0*tv i0

sv i1*tv i1

sv i0 *tv i1 +
sv i1 *tv i0

16bit
multiplier

16bit16bit

Systolic
Array

Virtual Power for Bitgroup 0

Virtual Power for Bitgroup 1

Virtual Power for Bitgroup k

…. ….

Power Line

Control 0 Control 1 Control k

0..0

Multiplier
Forces center
16 bits to zero

8bit 8bit 8bit 8bit 8bit 8bit

svi sv j 0..0tv i tv j

00..00Mult i Mult j

Accum jAccum i

Accumulator
Forces c out at

32nd bit to
zero

16bit 16bit 16bit

32bit 32bit

(a) (b) (c)

Figure 5: (a) Data packing without zero padding. (b) Data
packing with zero padding. (c) Power gating

The simplest approach to precision scaling at the archi-
tecture level is to utilize only a sub-set of the data path
and shut down the rest for energy efficiency. While this
approach saves energy, the hardware that is shut down is
unutilized. Whenever possible, it is preferable to pack multi-
ple data points into a single word and use the same hardware
to process multiple data at the same time (similar to SIMD
instructions in modern processors), simultaneously increas-
ing the overall throughput and energy efficiency of the sys-
tem. Multi-precision operation can be achieved in two ways
- with segmented units that incur some hardware overhead,
or through suitable data packing with padding (at virtually
no hardware overhead).

Figure 5(a) shows the block diagram of a segmented MAC
unit that supports multi-precision operation. In this case, the
multiplier needs to be able to operate differently for different
precision levels. For an architecture supporting 24 bit input
data, we can pack one 16 bit, three 8 bit or six 4 bit data
types into a single input. We improve the throughput in this
case at the cost of some hardware overhead.

Figure 5(b) shows the block diagram of a MAC unit im-
plementing padding, which requires only minimal amount of
control logic on top of the regular MAC. Multiple data are
packed into a single word with sufficient padding of ‘0’s, such
that the middle bits of the multiplier output are 0 and the
accumulator never sees carry propagation across the bound-
aries separating the distinct results in the output. In other
words, the guard bits ensure that the two MAC operations
do not interfere with each other. For a data path that sup-
ports 24-bit input words, we can pack one 16 bit, two 8 bit
or two 4 bit data. In this case, we are under-utilizing the
hardware (due to the padding bits) but require almost no
hardware overhead.

In both the aforementioned methods, there are cases where
we will not utilize the hardware completely and it would be
advantageous to shut down the parts of the circuit that are
not being used. Therefore, we have implemented power gat-
ing, where we connect groups of bit lines of the data path
to different voltage domains, each of which can be turned off
independently using sleep transistors. Figure 5(c) illustrates
this concept.

5.4 Circuit Level Scaling
At the circuit level, scalable effort is synonymous with volt-

age over-scaling. Voltage over-scaling differs from traditional
voltage scaling in that we do not scale the clock frequency,
thereby intentionally causing the critical paths to violate the
clock period. We do not have to take strict corrective mea-
sures to preserve the accuracy of computation as the appli-
cations that we consider are inherently error resilient. Such
implementations can be categorized under the approximate
arithmetic paradigm which is an active area of research [4,
6, 13]. In order to perform approximate computing at the
circuit level, we visualize computations in terms of “meta”
operations, which in the case of SVM is the dot product.
Scalable effort at the circuit level essentially translates into
a dot product value whose accuracy scales with the degree
of voltage over-scaling. While any given implementation can
be subject to voltage over-scaling, appropriate design tech-
niques need to be used in order to obtain a better energy vs.
accuracy tradeoff.

(a)

(b)

(c)

Figure 6: (a) Scalable MAC circuit. (b) Correction term
based implementation. (c) Segmented Implementation

Figure 6 shows the design of a voltage scalable MAC for dot
product computation. At an atomic level the MAC unit con-
sists of partial product generator followed by a merge adder
and an accumulator. In order to implement a scalable ef-
fort MAC, we apply a segmentation based technique to the
adders in the MAC hardware. The technique involves seg-
menting the adder into smaller bit width adders. The point
of segmentation can be adaptively controlled based on the de-

558

33.3

gree of voltage scaling. This serves two primary purposes: a)
reduces critical path of the adder, allowing aggressive voltage
scaling at the cost of approximation and b) prevents harmful
glitch propagation across the adder from arbitrarily corrupt-
ing the MSB bits. However, application of the standalone
segmentation technique incurs significant error in the dot
product due to its accumulative nature over multiple cycles.
We address this issue by introducing a low overhead correc-
tion circuit that keeps track of the carries across sections of
the segmented adder that have been ignored in each cycle by
means of small bit width counters. In the event of overflow
in any one of the carry counters, a correction term is added
to adjust the accumulator value based on these counter out-
puts. It is to be noted that even though this adds few extra
cycles to the dot product computation, it can be ignored for
practical purposes since the feature size of data (number of
MAC cycles for one dot product computation) is typically
large. The scalable effort MAC incorporating segmentation
with error correction scheme incurs roughly 25% area over-
head. However, this area overhead, purely due to the MAC,
is significantly amortized over the entire SVM design and can
be considered negligible. Another important design issue is
determining the group size k during segmentation. Higher
degree of segmentation (higher k) implies greater opportu-
nity for VOS due to critical path reduction, at the expense
of greater area and power overhead due to the carry correc-
tion counters. Hence, a judicious approach needs to be taken
while determining the group size during segmentation. In
our design k=n/4 was used to achieve a balanced tradeoff
between the degree of VOS and the overhead incurred.

Techniques such as segmentation augmented by correction
term addition are independent of the underlying adder and
multiplier architectures and hence can be applied to other al-
gorithms involving these basic arithmetic operations. More-
over, the proposed segmentation technique is distinct from
pure truncation in the sense that we utilize all the input bits
in computing the result as opposed to discarding some of
them, thereby achieving higher accuracy.

6. EXPERIMENTAL METHODOLOGY

FIFO1 FIFO2 FIFO3

FIFO4 FIFO5 FIFO6

MAC1 MAC2 MAC3

MAC4 MAC5 MAC6

MAC7 MAC8 MAC9

Figure 7: Scalable-effort SVM
classifier

In order to demon-
strate the proposed de-
sign approach, we realised
a scalable effort hard-
ware implementation of
SVM classification, and
evaluated it for energy
consumption and accu-
racy on various data sets.
We have implemented the
full layout in two dif-
ferent process technolo-
gies - IBM 90nm and
45nm. The 45nm technol-
ogy implementation has
been taped out but the
chips are not available as
of this time, hence we
present results based on
post-layout simulations.

The layout of the hard-
ware is presented in figure 7. The design flow used for our
implementation consists of Synopsys Design Compiler [25] for
logic synthesis and Cadence SOC Encounter [26] for physical
design. The parasitics annotated net list extracted from the
layout was used for power simulations using the Synopsys
Nanosim [27] switch-level simulator.

Since circuit level simulations for large data sets and nu-
merous combinations of circuit, micro-architecture, and al-
gorithmic scaling “levels” requires unacceptable simulation
times, we used software simulations (on large traces) to ob-
tain classification accuracy and hardware simulations (for
smaller representative traces) to obtain energy values.

We used the MILDE framework from NEC Labs, Princeton

to perform software simulations [28]. The data sets used for
validation are explained in detail in Table 1.

Table 1: Data sets used for our evaluations

Data set Source Features Classes

Adult UCI database 14 2
MNIST NEC MiLDe 784 10
NORB NEC MiLDe 5184 5
Checkerboard Artificial 2 2

Reflecting the effects of the different scaling mechanisms
in the software simulations required us to perform careful
modeling as explained below. To obtain the accuracy val-
ues for different voltage levels, we characterized the MAC for
different voltage levels to construct functional models, and
used these functional models in software. These models break
down the MAC operation into the bit-level and reflect the im-
pact of segmentation and limited carry propagation on the
computed result. To obtain accuracy values of the algorithm
for different precision levels, the LSB bits of the variables
in the software were truncated before/after the appropriate
computations. For algorithm level scaling, The SVM imple-
mentation in MiLDe was modified to consider only Support
Vectors with α values greater than a pre-specified threshold
during classification.

7. RESULTS
In this section, we present results that demonstrate the

potential of scalable effort hardware design. Scalable effort
hardware can be characterized by the energy vs. accuracy
trade off curve that it can achieve. We first report the over-
all energy savings that were obtained through scalable-effort
hardware at different levels of accuracy. Next, we compare
the cross-layer optimization of scaling mechanisms vs. the
application of individual techniques.

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n
−

−
>

No
Scaling

<0.1%

5%

10%

15%

% accuracy
lost

Adult MNIST Checkerboard NORB

Figure 8: Normalized energy consumption vs accuracy loss
for different data sets

Figure 8 shows the normalized energy consumption at dif-
ferent accuracy levels for several data sets. Energy is nor-
malized to the base case in which no scaling techniques are
applied 4. We are able to obtain 1.2X-2.2X energy savings
without any significant loss of accuracy. If a minimal loss of
5% in classification accuracy is acceptable, energy savings of
1.6X-3X are possible. For moderate accuracy loss of 15%,
the energy savings grow to 2.2X-4.1X.

Figure 9 illustrates the benefits of cross layer optimiza-
tion in scalable effort design. Significantly improved energy
vs. quality trade offs were obtained by utilizing the opti-
mal combinations of all the scaling mechanisms as compared

4Note that the base case was well-optimized - clocked at close
to the critical path, and the data path was configured to
operate at the minimum precision dictated by the input data
set.

559

33.3

20 30 40 50 60 70 80 90
0

1

2

3

4

5

6

7
x 10

−5

Accuracy of the output (%of correct classification) −−>E
ne

rg
y

S
pe

nt
 in

 o
ne

 c
la

ss
fic

at
io

n(
in

 J
ou

le
s)

 −
−

>

Optimal Combination of 3 levels

Architecture

Circuit

Algorithmic

Figure 9: Energy vs accuracy for different levels of scal-
ing(MNIST data set)

40 50 60 70 80 90 100
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x 10
−8

Accuracy of the output (%of correct classification) −−>E
ne

rg
y

S
pe

nt
 in

 o
ne

 c
la

ss
fic

at
io

n(
in

 J
ou

ls
)

−
−

>

Optimal Combination of 3 levels

Architecture

Circuit

Algorithmic

Figure 10: Energy vs accuracy for different levels of scaling
(Checkerboard data set)

to the application of individual scaling techniques. Figure
9 shows the tradeoffs for the MNIST data set. To evaluate a
qualitatively different data set, we also obtained accuracy vs.
energy trade offs for the artificially generated Checkerboard
data set and present the results in Figure 10. These results
reinforce our initial claim that cross layer optimization has
considerably greater potential to tap into the reservoir of al-
gorithmic resilience and can achieve significantly improved
energy-accuracy trade offs over uni-dimensional approaches.

8. SUMMARY AND CONCLUSIONS
We presented a new systematic approach based on the con-

cept of scalable effort hardware, for the design of efficient
hardware implementations for algorithms that demonstrate
inherent error resilience. Scalable effort design is based on the
identification of mechanisms at each level of design abstrac-
tion (circuit, architecture and algorithm) that can be used to
vary the computational effort expended towards generation
of the correct (exact) result. These mechanisms can be uti-
lized to achieve improved energy efficiency (or performance)
while maintaining an acceptable level of quality of the over-
all result. While each of these knobs has significant impact,
we demonstrated that much greater gains can be achieved
through synergistic cross-layer optimization.

Although we have focused on a representative and popular
Machine Learning algorithm, namely Support Vector Ma-
chines, we believe that the proposed concepts are general
and can be applied to realize high-performance or energy-
efficient implementations of a wide range of Recognition and
Data Mining algorithms. Our focus on these application do-
mains is fueled by our belief that the constituent algorithms
have unsurpassed levels of algorithmic error resilience. How-
ever, the property of error resilience (and therefore our de-
sign approach) also applies to traditional application domains
such as DSP and multi-media (image/audio/video) process-

ing, which have largely been the focus of related work.

Acknowledgment: The authors would like to thank Patrick
Ndai for his inputs on circuit-level scaling, and Igor Dur-
danovic for his help with the MiLDe software and data sets.

9. REFERENCES
[1] P. Dubey. A platform 2015 workload model recognition, mining

and synthesis moves computers to the era of tera. White paper,
Intel Corp., 2005.

[2] S. T. Chakradhar and A. Raghunathan. Best-effort Computing:
Re-thinking Parallel Software and Hardware. In Proc.
ACM/IEEE Design Automation Conf., June 2010.

[3] Jiayuan Meng, Srimat Chakradhar, and Anand Raghunathan.
Best-effort parallel execution framework for recognition and
mining applications. Parallel and Distributed Processing
Symposium, International, pages 1–12, 2009.

[4] Krishna V. Palem et al. Sustaining moore’s law in embedded
computing through probabilistic and approximate design:
retrospects and prospects. In Proc. Int. Conf. on Compilers,
Architecture and Synthesis for Embedded Systems, pages 1–10,
2009.

[5] Rajamohana Hegde and Naresh R. Shanbhag. Energy-efficient
signal processing via algorithmic noise-tolerance. In Proc. Int.
Symp. on Low Power Electronics and Design, pages 30–35,
1999.

[6] Debabrata Mohapatra, Georgios Karakonstantis, and Kaushik
Roy. Significance driven computation: A voltage-scalable,
variation-aware, quality-tuning motion estimator. In Proc. Int.
Symp. Low Power Electronics and Design, Aug. 2009.

[7] J. Bau, R. Hankins, Q. Jacobson, S. Mitra, B. Saha, and Adl A.
Tabatabai. Error resilient system architecture (ERSA) for
probabilistic applications. In 3rd Wkshp. on System Effects of
Logic Soft Errors (SELSE), April 2007.

[8] Vladimir N. Vapnik. The nature of statistical learning theory.
Springer-Verlag New York, Inc., New York, NY, USA, 1995.

[9] Yann Lecun and Corinna Cortes. The mnist database of
handwritten digits.

[10] J. Von Neumann. Probabilistic logics and the synthesis of
reliable organisms from unreliable components, 1956.

[11] M. A. Breuer. Adaptive computers. Information and Control,
11(4):402–422, October 1967.

[12] K. J. Lin, S. Natarajan, and J. W. S. Liu. Imprecise results:
Utilizing partial computations in real-time systems. In Proc.
IEEE Real-Time Systems Symposium, 1987.

[13] Naresh Shanbhag. Reliable and energy-efficient digital signal
processing. In Proc. Design Automation Conference, pages
830–835, 2002.

[14] R. Hegde and N.R. Shanbhag. A low-power digital filter IC via
soft DSP. In Proc. IEEE Conf. Custom Integrated Circuits,
pages 309–312, 2001.

[15] Girish Vishnu Varatkar and Naresh R. Shanbhag. Error-resilient
motion estimation architecture. IEEE Trans. VLSI Systems,
16(10):1399–1412, 2008.

[16] Krishna V. Palem. Energy aware algorithm design via
probabilistic computing: From algorithms and models to
Moore’s law and novel (semiconductor) devices. In Proc. Int.
Conf. on Compilers, Architecture and Synthesis for Embedded
Systems, pages 113–116, 2003.

[17] M.A. Breuer. Multi-media applications and imprecise
computation. In Proc. 8th Euromicro Conf. on Digital System
Design, pages 2–7, Aug.-3 Sept. 2005.

[18] Tong-Yu Hsieh, Kuen-Jong Lee, and M.A. Breuer. An error rate
based test methodology to support error-tolerance. Reliability,
IEEE Transactions on, 57(1):204–214, March 2008.

[19] Nilanjan Banerjee, Georgios Karakonstantis, and Kaushik Roy.
Process variation tolerant low power DCT architecture. In Proc.
Design, Automation, and Test Europe, April 2007.

[20] D. Anguita, A. Ghio, S. Pischiutta, and S. Ridella. A
hardware-friendly support vector machine for embedded
automotive applications. In Proc. International Joint
Conference on Neural Networks, pages 1360–1364, Aug. 2007.

[21] Soumyajit Dey, Monu Kedia, Niket Agarwal, and Anupam Basu.
Embedded support vector machine : Architectural enhancements
and evaluation. Int. Conf. VLSI Design, pages 685–690, 2007.

[22] Srihari Cadambi, Igor Durdanovic, Venkata Jakkula, Murugan
Sankaradass, Eric Cosatto, Srimat Chakradhar, and Hans Peter
Graf. A massively parallel FPGA-based coprocessor for support
vector machines. IEEE Symp. Field-Programmable Custom
Computing Machines, pages 115–122, 2009.

[23] http://www.clopinet.com/isabelle/projects/svm/applist.html.

[24] Yuh jye Lee and Olvi L. Mangasarian. RSVM: Reduced support
vector machines. In Data Mining Institute, Computer Sciences
Department, University of Wisconsin, pages 00–07, 2001.

[25] Design compiler. Synopsys Inc.

[26] SOC Encounter. Cadence Inc.

[27] Nanosim. Synopsys Inc,.

[28] Milde. www.nec-labs.com.

560

33.3

