
DREDGE: Dynamic Repartitioning during
Dynamic Graph Execution

Andrew McCrabb
University of Michigan
mccrabb@umich.edu

Eric Winsor
University of Michigan
rcwnsr@umich.edu

Valeria Bertacco
University of Michigan

vale@umich.edu

ABSTRACT

Graph-based algorithms have gained significant interest in sev-

eral application domains. Solutions addressing the computational

efficiency of such algorithms have mostly relied on many-core ar-

chitectures. Cleverly laying out input graphs in storage, by placing

adjacent vertices in a same storage unit (memory bank or cache

unit), enables fast access during graph traversal. Dynamic graphs,

however, must be continuously repartitioned to leverage this bene-

fit. Yet software repartitioning solutions rely on costly, cross-vault

communication to query and optimize the graph layout between

algorithm iterations.

In this work, we propose DREDGE, a novel hardware solution to

provide heuristic repartitioning optimizations in the background

without extra communication. Our evaluation indicates that we

achieve a 1.9x speedup, on average, over several graph algorithms

and datasets, executing on a 24x24-core architecture, when com-

pared against a baseline solution that does not repartition the dy-

namic graph. We estimated that DREDGE incurs only 1.5% area

and 2.1% power overheads over an ARM A5 processor core.

CCS CONCEPTS

• Hardware→ Hardware accelerators; Application specific pro-

cessors; •Mathematics of computing→ Graph theory;

1 INTRODUCTION

Computing on vertex-edge graphs has become increasingly popular

as graphs can capture many types of object relations: from social

networks, to web connectivity, to road maps, graphs are a common

underlying structure for organizing large sets of data. An important,

emerging class of applications operates on dynamic graphs: graphs

where vertices and edges are added, removed, and modified over

time. Dynamic graphs are deployed by e-commerce websites when

tracking which products have recently been viewed together – such

as sunscreen and jerseys before a local sports event or water and

toaster pastries before a major hurricane – and by social media com-

panies, proposing targeted advertisements for users based on their

friends’ status or events they are planning to attend. Similarly, road

navigation algorithms rely on dynamic graphs to deliver optimal

vehicle routes in the face of accidents and construction work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

DAC ’19, June 2–6, 2019, Las Vegas, NV, USA

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6725-7/19/06. . . $15.00
https://doi.org/10.1145/3316781.3317804

Figure 1: Dynamic graph repartitioning: graph A-F is parti-

tioned over two vaults. As its connectivity changes (edges

B-C and E-F are removed, and edges C-E and B-F are added),

verticesC and F can be swapped tominimize inter-vaultmes-

sage exchanges.

A common trait of the algorithms that compute on graph data

structures, whether static or dynamic, is that their performance

bottleneck lies in the latency and bandwidth limitations of memory

accesses, rather than the computation demands of the algorithms

[3]. Indeed, the computation carried out for each vertex of the graph

is often light-weight, but triggers updates to other, often several,

adjacent vertices. To make matters worse, these adjacent vertices

are often not stored nearby in memory. This poor spatial locality

leads to low cache hit rates and high latency penalties that cannot

be masked by other computation.

Moreover, the graphs entailed by applications like those men-

tioned above are often very large, and thus stored in multiple dis-

crete storage blocks as, for instance, in distributed systems. Recently,

many-core, processing-near-memory systems have been proposed

[3] to provide high memory bandwidth and computing power that

scales linearly with the size of the system. These systems partition

the graph into multiple subgraphs and assign each partition to a

distinct storage block in a 3D-stacked memory, also called a "vault".

Each vault includes a compute unit and memory controller. It has

local access to its own local subset of vertices, and can pay a la-

tency penalty to access non-local vertices (vertices stored in other

vaults) via a message-passing system. However, the graph could be

partitioned to keep adjacent vertices in the same vault, or at least

one close-by, to avoid these penalties.

While graph partitioning has been well-studied for static graphs

[10] [9], these algorithms do not provide a good solution for graphs

whose connectivity changes over time: even when the initial graph

is perfectly partitioned, subsequent edge additions and deletions

cause spatial locality to degrade over time, with deteriorating per-

formance. As an example, Figure 1 illustrates a repartition on a

simple dynamic graph. As edges are added and removed to vertices

C and F , costly inter-vault messages must be issued during exe-

cution. Vertices C and F can move to the partition holding their

neighbors after the dynamic changes, avoiding inter-vault messages

and boosting performance.

Figure 2: Baseline multi-node architecture, augmented by

DREDGEmodules. DREDGE can be deployed in a chipmulti-

processor or a high-bandwidth HMC, among other systems,

by adding our novel hardware unit to each node. DREDGE

only requires access to messages in transit within the node

and operates in a completely distributed fashion, thus it is

seamlessly scalable to many-node systems.

To address this challenge, this work proposes DREDGE, that is,

Dynamic REpartitioning during Dynamic Graph Execution, consist-

ing of a small hardware module deployed next to each computation

node. It operates in the background to repartition a graph during an

application’s execution to maintain a balanced, min-cut partitioning

of the graph without explicit access to main memory. In contrast

with prior solutions in this domain [7], DREDGE does not suspend

the application to repartition the graph, nor entails costly queries

of the graph edges to determine the best repartitioning moves. In

addition, it leverages a small hardware module to accomplish its

goal and entails no performance overhead on the graph application.

Contributions. DREDGE makes the following contributions:

•We present a novel heuristic for repartitioning dynamic graphs

without querying the graph structure. It relies on monitoring past

vertex-update messages to estimate future traffic patterns.

• We present a hardware solution to make repartitioning decisions

based on this heuristic. The hardware module lies next to each

computing core. Its silicon footprint at 45nm technology is only

0.017mm2, equivalent to 1.5% of the area of an ARM A5 core. When

deployed in a HMC architecture as in [3], DREDGE incurs no area

overhead because of the low silicon logic utilization. We believe this

is the first hardware solution for repartitioning dynamic graphs.

• We evaluate DREDGE on several datasets and algorithms and

demonstrate a performance improvement of 1.86x over a state-of-

the-art dynamic graph repartitioning solution [7]. Moreover, we

show that DREDGE’s performance benefit increases as we increase

the size of the underlying architecture or the amount of computa-

tion entailed by the application.

2 DREDGE ARCHITECTURE

Dynamic graphs experience variations in the graph topology over

time: edges and vertices may be added or removed at a variable

pace, depending on the nature of the dataset they represent. For

instance, graphs representing products or movies recommendation

systems change slowly (order of hours or days between changes),

while graphs modeling messages exchanged between users of a

social network may change more often, particularly for large social

networks (order of thousands of changes per millisecond). Fast

changing graphs present more challenges in preserving a balanced

partition and to the algorithms executing on them. Such algorithms

are bound to produce approximate results, as the graph is subject

to many changes throughout the application’s execution.

Figure 3: Example of vertex pressure computation based on

accesses to v from five adjacent vertices.

The goal of this work is to accelerate graph repartitioning deci-

sions in graphs by monitoring the messages exchanged between

processor core, memory block and router within a processing node.

To this end, DREDGE tracks vertex accesses, and then decides when

to move a vertex to another vault and where. As illustrated in Figure

2, our solution is completely distributed, with one hardware unit

per node and no external connection nor communication outside

the vault, thus it can scale to a system with any number of vaults

(or computing nodes). Note that messages between router and core

indicate communication from a remote vertex in another vault,

while those between core and local memory reveal access from a

locally-stored vertex.

In contrast, other repartitioning schemes rely on examining the

mapping of a vertex’s neighbors to make repartition decisions. For

example, one state-of-the-art solution in repartitioning of dynamic

graphs [7] reaches out to the neighbors of vertices affected by re-

cent graph changes to query their location and determines whether

to recommend a vertex move. These query messages introduce

significant performance overhead, which increases linearly with

the rate of change of the graph. On the other hand, all of DREDGE’s

move decisions are based exclusively on locally-saved “vertex pres-

sure" measurements, a synthetic measure of the net pull of a vertex

to other partitions. DREDGE tracks the vertex pressure measure

locally for a portion of the vertices in each partition; if and when

a vertex’s pressure rises above a threshold, the vertex is moved

to a neighboring partition in the direction that would lower the

pressure metric.

Vertex pressure is a measure we devised to keep track of data

access for a given vertex from local and remote nodes. If a vertex is

accessed by a neighbor node, that vertex experiences pressure to

move towards that node and its corresponding partition. Inversely,

if a vertex has neighboring vertices within its own partition, it

experiences pressure to stay in place, an aspect we incorporate by

reducing the all pressures to move elsewhere. Note that, in general,

a vertex will experience pressure from multiple directions simulta-

neously: in our metrics we measure all these pressure vectors by

tracking the vertex ID and direction for each vertex-update mes-

sage incoming to the local vault. Specifically, the vertex pressure

for a vertex v toward a given direction, noted as pres(v), is up-
dated whenever v is accessed by another vertex through a message

coming from that direction. Vertex pressure is computed with the

following function:

pres(v1)

{
+= d(v1,v2) + 1 part(v1) � part(v2)
−= 2 part(v1) = part(v2)

For update messages coming from remote nodes, we increase the

pressure by 1 above the distance d from the node, to take into

account the baseline cost of transferring data out of the local node.

In addition, the pressure is decreased by 2 for local updates, so to

Figure 4: Graph repartitioning example. Vertices A2 and A3

are tagged for moving because their pressure towards vault

I is above threshold. To keep partitions balanced, vertices B1

and B2 must move in the opposite direction.

avoid instability situations where a vertex keeps moving back and

forth between adjacent vaults. Computing these simple functions

is trivial and is entirely masked by other computation in the vault.

Figure 3 provides an example for our metric. Five vertices access

vertex v: two from the east, two west and one local. The two east

neighbors are one vault away, causing a pressure of 4 to the east (2

each). The local neighbor reduces overall pressure by 2, resulting

in a net pressure of moving east by 2. From the west, vertices are

one and two vaults away, causing a total pressure of 5 (2 and 3,

respectively). The local neighbor reduces the pressure from the

west by 2 as well, resulting in a final pressure to move west of 3.

Graph repartitioning. Vertex pressure metrics are maintained

in the background, in storage within the DREDGE hardware unit,

while graph-based applications compute in the foreground. Because

DREDGE storage is finite, vertex pressure is tracked only for a

portion of the vertices, the firstn vertices referenced in themessages

DREDGE observes when it begins to monitor activity. At the end

of each computation interval, some vertices are moved to other

vaults, making space for others to be tracked by DREDGE. Those

new vertices to be monitored are also identified by grabbing the

destination of the next messages observed. If a vertex pressure falls

to ≤ 0, then the vertex is deemed to best stay in the current vault,

and thus removed from further analysis by DREDGE. That same

vertex could be considered again later if external vertex-update

messages reference it. When the pressure value for a vertex is

above a preset threshold at the end of a time interval, the vertex is

migrated to the adjacent partition in the direction of that pressure.

Whenever a vertex moves to another vault, the other vault must

move a vertex in the opposite direction to keep partitions balanced.

This vertex is selected as the one in the neighbor vault with the

highest pressure to move in the relevant direction.

In our experiments we set the threshold value heuristically: we

noted that low threshold values cause vertices to move back and

forth between adjacent transitions, while high values dampen the

repartitioning of the graph. An example of the repartitioning pro-

cess is illustrated in Figure 4, which assumes an interconnect adopt-

ing X-Y routing on amesh topology. The example considers a system

with 4 vaults executing an algorithm on a graph with 16 vertices.

The example illustrates the analysis carried out for all the Ax ver-

tices: in the middle of the diagram we show all the vertex update

message sources observed during the first interval of execution.

For instance, A1 receives update messages from A2, A3 and A4. The
pressures forA1 are computed as follows: p →= 2− 2 = 0 (A2 pulls
east, while A4 compensates back). and p ↓= 2 − 2 = 0. Pressures

for the other Ax are reported in the example. At the end of the

Figure 5: Execution flow for DREDGE, a state-of-the-art

software-based solution for dynamic graphs, and the base-

line, a static graph framework with no repartitioning.

Figure 6: Microarchitecture of the DREDGE hardware unit,

which includes relocation registers to track the pressure of

some vertices within the vault, a migration buffer to set

up vertex transfers to other vaults, and eviction registers

to track candidate vertices to send when a new vertex ar-

rives from another vault. Two comparators support updates

to this storage.

interval, because the pressure for A2 to move west and for A3 to
move north are above the threshold (set to 4 in our example), those

two vertices are marked for moving to vault I. In order to keep the

partition balanced, two vertices must leave vault I to vault II (east)

and III (south): among the vertices available, B1 and B2 are selected
because they have the highest pressure towards those directions.

The right side of the Figure shows the partitions after these moves.

Application execution and graphupdates. Asmentioned above,

DREDGE computes pressure measures and makes repartition deci-

sions concurrently with the graph application, since it leverages its

own dedicated hardware unit. The execution model we consider is

a classic approach to dynamic graphs computations: the application

runs for a fixed interval, then all graph modifications are processed,

and finally the application resumes, now operating on the modified

graph. As illustrated in the top part of Figure 5: a baseline graph

computation framework does not consider any repartitioning and

simply alternates between execution and graph updates. The gen-

eral model is preserved in our solution, with the addition of brief

vertex-move activities interleaved with the application execution,

illustrated at the bottom of Figure 5. A state-of-the-art software

solution for repartitioning [7] dedicates a significant portion of

time to calculating repartitions after each graph update and leaves

less time for computation, as illustrated in the middle of Figure 5,

3 HARDWARE IMPLEMENTATION

DREDGE uses a dedicated hardware unit to track vertex pressures

and make relocation decisions concurrently with the application’s

execution. Figure 6 provides a schematic of the unit’s design. Below

we discuss each major component. When a vertex-update message

is snooped from the router or memory bus, the relocation registers

Table 1: Graph datasets for our evaluation

Name Description Type Avg Vertices
Chanдes

1M clk cycles

amazon product co-purchasing bipartite 98,000 6,500

lj livejournal network power law 20,500 1,200

friendster gaming social network power law 127,000 5,000

roadnet CA road network uniform 89,000 6,900

are consulted to retrieve the destination vertex’s pressure. If the

vertex is present, its pressure in the relevant direction is updated

and then compared against a preset threshold, and also against

the corresponding pressure of the migration buffer’s entries, then

migration and eviction registers are updated as needed.

Relocation registers (RRs) are used to store vertex pressures in

each direction. As our experimental evaluation assumes a mesh ar-

chitecture, we require 4 sets of registers to be tracked, one for each

router’s I/O port. Note however, that it would be straightforward to

adapt this design to other topologies, where routers have a different

number of I/O ports. The RRs are stored in CAMs addressed by ver-

texID, unique to each direction. The first time a vertex is observed

in a core-router message, an RR for the appropriate direction is

allocated if available. Whenever a subsequent vertex-update mes-

sage from core or router is observed to that same vertex, the RRs

are updated according to our vertex pressure function. Whenever

a vertex is removed from consideration because it has moved to a

different node or its pressure has returned to zero, its corresponding

RR entry can be reallocated to another vertex. Note that, while only

a portion of the vertices are being tracked at any given time, any

single vertex is unlikely to use an RR entry for long, as they soon

graduate to a determination for their location.

A migration buffer is used to store vertexID and direction for

vertices whose relocation direction has been determined. They wait

for the next windowwhen all pending vertexmovements are carried

out. At that time, the core will read all the vertex movements and

complete them sequentially.

Finally, the eviction buffer stores a short list of the best known

candidate vertices for transfer in each router’s direction. Each time

a vertex is transferred to a neighbor vault, another vertex must be

exchanged in the opposite direction to preserve a balanced partition-

ing. This buffer’s purpose is to maintain a list of transfer candidates:

we store the vertex with the highest pressure, including its ID and

pressure values. During each exchange, a vertex is removed from

here and transferred to the vault of the incoming vertex. If the

eviction buffer is empty for a direction, a signal is sent to the core

to evict a random vertex. This rare situation only occurs when

neighboring vaults are significantly more active in repartitioning.

4 EXPERIMENTAL EVALUATION

To evaluate our solution, we augmented the BookSim network sim-

ulator [8] to include structures for modeling the vaults, simulating

accesses to local memory, and creating inter-vault messages based

on updates to non-local vertices. We assume that an in-stride access

requires 20 clock cycles and a random access requires 200 cycles.

We did not model the cores because graph applications are far from

being compute-bound. We implemented both DREDGE and the

software-based repartitioning solution [7] outlined in Section 1

in this simulator. We then generated four dynamic datasets from

four real-world graphs summarized in Table 1. A random subset

of edges are activated in the static graph every million cycles. An

edge lives in the graph for a preset lifetime (25 million cycles for

LiveJournal and Friendster and 50 million cycles for Amazon and

Roadnet) before it is removed. An existing edge resets its lifetime if

reactivated before removal. A vertex is added once there is a living

edge connecting it to another vertex and it is removed when its last

incoming edge dies off.

LiveJournal [4] and Friendster [20] are social networks, where

a dynamic graph can represent interactions between users. CA

RoadNet [12] is the California road network, where a dynamic

graph can represent traffic between intersections. Amazon [11] is a

co-purchasing network of a subset of products on Amazon, where

an edge represents two products that are often bought together.

We compare DREDGE against two other solutions: repartition-

ing using an unoptimized baseline with no repartitioning (Baseline)

and an optimized baseline, [7] (Leopard) which uses software-based

repartitioning. A new set of changes to the graph is available every

one million clock cycles, beginning as soon as the current algorithm

iteration finishes. When simulating without repartitioning, com-

putation resumes immediately after the graph is updated. When

simulating the software repartitioning solution [7], a repartition-

ing phase is executed immediately after the graph changes before

computation. When simulating DREDGE, repartitioning occurs at

the beginning of every algorithm iteration, based on decisions com-

puted in the background. In addition, we used hash-based stream-

ing partitioning in our experiments when vertices are added to the

graph to reduce the time taken to update the graph. While a more

complex streaming partitioning scheme would yield us a lower

immediate hopcount, a hash-based scheme allows for a more direct

comparison between DREDGE, [7], and the unoptimized baseline.

To compare partitioning quality, we measure hopcount: the sum

of the distances (in network hops) of all edges in the graph. For

example, the graph shown in Figure 3 has a hopcount of five. Hop-

count is a synthetic metric to quantify spatial locality in the graph

partitioning. Figure 7 reports our findings on total graph hopcount

for the datasets we considered while executing PageRank. The plots

include four traces for each solution: each trace corresponds to a

different system size, ranging from 8x8 nodes, up to 32x32 nodes.

The software repartitioning solution and the baseline performs

within 1% of each other, and are represented by the same traces.

DREDGE produces a lower total hopcount than both the other

solutions in all cases, often an order of magnitude difference. The

Leopard solution [7] waits until a vertex is affected by a graph

change (adjacent edges being added or removed) multiple times

before calculating the optimal partition, so to avoid repartitioning

a large subset of the total graph each time. Since these datasets are

highly dynamic and vertices are removed quickly, many vertices

are either never repartitioned before being removed or are removed

soon after being optimized, providing little benefit. As a result,

software repartitioning provides approximately the same hopcount

than the unoptimized repartitioning. In contrast, DREDGE is ca-

pable of moving vertices as soon as they appear in the system,

especially if their neighbors are far away. Also, opportunities for

movement occur much more frequently (after an application it-

eration, instead of only after a set of graph changes). As a result,

vertices are moved faster and the layout of the graph converges

more quickly to a stable state, achieving lower hopcount.

Figure 7: Aggregated hopcount for all edges over time

Figure 8: Performance improvement of DREDGE over the

baseline solution of iterations completedwithin onemillion

clock cycles for varying systems sizes (64 to 1,024 nodes).

Though counter-intuitive, DREDGE may obtain a lower hop-

count for larger hardware systems with more nodes than for smaller

ones. A larger network allows for pressure to rise faster and for

more iterations to finish in the same amount of time, increasing the

opportunities for repartitioning. This shows an important feature:

DREDGE performs better with larger compute systems.

To measure performance, we compared the total number of al-

gorithm iterations completed between graph updates (one million

clock cycles in our experiments). Because the update interval is

fixed, this metric takes into account both the partitioning quality

and the time taken to repartition. The results of this analysis are

reported in Figure 8, where we report our findings over a range of

system sizes, from 64 to 1,024 nodes. The values reported are the

performance ratios between DREDGE and the baseline solution.

Note again, the performance improvement provided by DREDGE

trends up as the system scales to larger sizes.

To evaluate DREDGE’s performance over a range of applica-

tions, we executed five different popular graph algorithms on the

Friendster dataset, simulating a 32x32 node system. This study

evaluates DREDGE in presence of a wide range of access patterns.

Each application traverses a different number of edges per iteration.

DREDGE’s performance deteriorates significantly for RandomWalk

5%, as this application entails a minimal level of activity with very

few messages exchanged, giving DREDGE very few opportunities

to improve the graph partitioning.

Figure 9: Performance at 100M clock cycles after running

the Friendster dataset in a 32x32 system.

In general, as graph-based applications are usually memory-

bound, memory access patterns have a key impact on performance.

Because DREDGE uses the messages sent during algorithm exe-

cution to inform the vertex movement, there is a greater speedup

for algorithms that traverse many edges, like PageRank. DREDGE

performance is worse than the baseline solution for algorithms

that exhibit very low parallelism and experience very few edge

traversals. We argue that, if parallelization and execution time are

not critical for the application, repartitioning is also not critical.

We also analyzed the impact of varying the number of graph

changes per update interval. Because DREDGE’s repartitioning

decisions are based on interconnect packets during meaningful

computation, not the number of changes, performance is not di-

rectly affected by the rate of change in the graph. Instead, the rate

of change impacts how quickly the partition quality (hopcount) de-

grades, affecting all repartitioning schemes. As DREDGE maintains

the same speedup for all rates of change, we observe that DREDGE’s

rate of spatial locality improvement is proportional to the amount

of repartitioning work necessary: DREDGE works faster for poorly-

partitioned graphs, slower for well-partitioned graphs, and more

effectively than state-of-the-art baselines for all rates of change.

Area and Power overheads.We synthesized DREDGE using Syn-

opsys’ Design Compiler and the IBM 45nm technology library based

on the microarchitecture presented in Figure 6. We found that the

DREDGE unit requires 4.84 mW of power at peak usage. Based

on prior work [16], we scaled the power usage of DREDGE to a

Figure 10: Performance improvements of DREDGE over a

varying intensity of graph changes for PageRank running

on the LiveJournal dataset in a 24x24 node system after

100M clock cycles.

32nm technology node, and found its power demands to be 3.14

mW, corresponding to a 2.1% overhead over an ARM Cortex A5-like

core (150.4 mW) in a 3D-stacked memory system [14]. DREDGE

also requires an additional 0.0077mm2 of silicon area when scaled

to the 32nm node. corresponding to a 1.5% area overhead over the

cores used in Tesseract [14].

5 RELATEDWORK

Dynamic Graph Partitioning There are three standard ways

to repartition graphs: scratch-map, streaming, and incremental.

Scratch-map partitioning periodically applies a static graph parti-

tioning heuristic to the whole graph to achieve close-to-optimal

repartitioning. While state-of-the-art solutions like ParMETIS [10]

and PT-Scotch [5] leverage highly-parallel systems to create well-

partitioned results, the computation overhead is too large to con-

tinuously repartition large graphs.

Several streaming graphs like Fennel [17] and Linear Determin-

istic Greedy [15] are used to partition vertices as they arrive. For

an incoming vertex, they prioritize locations that house immediate

neighbors and penalize locations that already have many vertices.

These were originally designed to partition a large, static graph,

working while the graph is loaded into a system, but can be used

for dynamic graphs as well.

Continuous partitioning applies a repartitioning stage at the end

of a graph update, relocating vertices before meaningful compu-

tation resumes. [18] determines the location of all neighbors for

each vertex and randomly selects a subset of vertices to move to

better partitions. [1] proposed only examining and moving vertices

based on the most recent changes to the graph, so that only a subset

of vertices are examined. Leopard [7] also proposed tracking and

examining only those vertices affected by recent changes to the

graph, using a more efficient heuristic.

Hardware for Graph Analytics To the best of our knowledge,

we are the first to use specialized hardware for graph partitioning.

Other graph accelerators have been presented using specialized

additional storage in the core to improve the locality visible to the

core [19] [21] [13] [2]. Graphicionado [6] uses a specialized execu-

tion pipeline with optimized communication to the memory system.

Tesseract [3] demonstrated benefits using high-bandwidth memory

for graph processing. They show performance improvements for

well-partitioned graphs, but do not address dynamic graphs.

6 CONCLUSION

In this paper, we present DREDGE, a novel heuristic to reparti-

tion dynamic graphs in a many-core system with private memory

vaults, such as Hybrid Memory Cubes. This heuristic leverages

information gathered during an application’s execution to make

repartitioning decisions, avoiding costly inter-vault communication

required by prior work.We also present a hardware implementation

of this heuristic which shows 1.9x speedup to application execution

without modifying the core or the algorithms and only 1.5% area

and 2.1% power overheads.

Acknowledgments This work was supported by the Applications

Driving Architectures (ADA) Research Center, a JUMP Center co-

sponsored by SRC and DARPA.

REFERENCES
[1] Amirreza Abdolrashidi and Lakshmish Ramaswamy. 2016. Continual and Cost-

Effective Partitioning of Dynamic Graphs for Optimizing Big Graph Processing
Systems. In Proc. Big Data Congress.

[2] Abraham Addisie, Hiwot Kassa, Opeoluwa Matthews, and Valeria Bertacco. 2018.
Heterogeneous Memory Subsystem for Natural Graph Analytics. In Proc. IISWC.

[3] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi.
2016. A scalable processing-in-memory accelerator for parallel graph processing.
SIGARCH Computer Architecture News 43, 3.

[4] Lars Backstrom, Dan Huttenlocher, Jon Kleinberg, and Xiangyang Lan. 2006.
Group formation in large social networks: membership, growth, and evolution.
In Proc. SIGKDD.

[5] Cédric Chevalier and François Pellegrini. 2008. PT-Scotch: A tool for efficient
parallel graph ordering. Parallel Computing 34, 6-8.

[6] Tae Jun Ham, Lisa Wu, Narayanan Sundaram, Nadathur Satish, and Margaret
Martonosi. 2016. Graphicionado: A high-performance and energy-efficient accel-
erator for graph analytics. Proc. MICRO.

[7] Jiewen Huang and Daniel J Abadi. 2016. Leopard: Lightweight edge-oriented
partitioning and replication for dynamic graphs. Proc. VLDB.

[8] Nan Jiang, Daniel U Becker, George Michelogiannakis, James Balfour, Brian
Towles, David E Shaw, John Kim, and William J Dally. 2013. A detailed and
flexible cycle-accurate network-on-chip simulator. In Proc. ISPASS.

[9] George Karypis, Rajat Aggarwal, Vipin Kumar, and Shashi Shekhar. 1999. Mul-
tilevel hypergraph partitioning: applications in VLSI domain. IEEE Trans. VLSI
Systems 7, 1.

[10] George Karypis and Vipin Kumar. 1998. A fast and high quality multilevel scheme
for partitioning irregular graphs. SISC 20, 1.

[11] Jure Leskovec, Lada A Adamic, and Bernardo A Huberman. 2007. The dynamics
of viral marketing. ACM Trans. on the Web 1, 1.

[12] Jure Leskovec, Kevin J Lang, Anirban Dasgupta, and Michael W Mahoney. 2009.
Community structure in large networks: Natural cluster sizes and the absence of
large well-defined clusters. Internet Mathematics 6, 1.

[13] Muhammet Ozdal, Serif Yesil, Taemin Kim, Andrey Ayupov, John Greth, Steven
Burns, and Ozcan Ozturk. 2016. Energy efficient architecture for graph analytics
accelerators. Proc. ISCA.

[14] Seth Pugsley, Jeffrey Jestes, Huihui Zhang, Rajeev Balasubramonian, Vijayalak-
shmi Srinivasan, Alper Buyuktosunoglu, Al Davis, and Feifei Li. 2014. NDC:
Analyzing the impact of 3D-stacked memory+ logic devices on MapReduce
workloads. In Proc. ISPASS.

[15] Isabelle Stanton and Gabriel Kliot. 2012. Streaming graph partitioning for large
distributed graphs. Proc. SIGKDD.

[16] Aaron Stillmaker and Bevan Baas. 2017. Scaling equations for the accurate
prediction of CMOS device performance from 180nm to 7nm. Integration, the
VLSI Journal 58.

[17] Charalampos Tsourakakis, Christos Gkantsidis, Bozidar Radunovic, and Milan
Vojnovic. 2014. Fennel: Streaming graph partitioning for massive scale graphs.
In Proc. WSDM.

[18] Luis Vaquero, Félix Cuadrado, Dionysios Logothetis, and Claudio Martella.
2013. xDGP: A dynamic graph processing system with adaptive partitioning.
arXiv:1309.1049.

[19] Chongchong Xu, Chao Wang, Lei Gong, Lihui Jin, Xi Li, and Xuehai Zhou. 2018.
Domino: Graph Processing Services on Energy-Efficient Hardware Accelerator.
In Proc. ICWS.

[20] Jaewon Yang and Jure Leskovec. 2015. Defining and evaluating network commu-
nities based on ground-truth. Knowledge and Information Systems 42, 1.

[21] Jinhong Zhou, Shaoli Liu, Qi Guo, Xuda Zhou, Tian Zhi, Daofu Liu, Chao Wang,
Xuehai Zhou, Yunji Chen, and Tianshi Chen. 2017. Tunao: A high-performance
and energy-efficient reconfigurable accelerator for graph processing. In Proc.
CCGrid.

