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Abstract 

This paper describes the testability features 
and test pattern development methodologies for  
the A MD-KGTM Microprocessor. The embedded 
Design for Testability (DFT)  structures and 
test strategy provide high quality manufacturing 
tests. 

1 Introduction 

Testability features and pattern development 
methodologies adapted for the AMD-KGTM are 
described in this paper. To provide support for 
both lab debug and pattern generation for wafer 
sort testing, it was decided at the outset of the 
project to make the AMD-KGTM design fully 
scannable. 1/0 cells are equipped with scan to 
support boundary scan and JTAG compatibility. 
BIST is utilized on all major internal full-custom 
functional blocks. A novel approach for IDDQ 
pattern generation is used. 

Section 2 provides an overview of the processor 
architecture. Section 3 describes the Design for 
Testability (DFT) features. Section 4 presents 
scan test generation. Section 5 describes cell 
library development for path delay-fault test 
generation. We also summarize path delay-fault 
results. Section 6 outlines BIST for cache mem- 
ory arrays and the emcode ROM. In Section 7 we 
briefly discuss the IEEE 1149.1 JTAG boundary 
scan implementation for AMD-KGTM. Section 8 
details issues related to IDDQ testing of the 
processor. Finally we present conclusions and 
fut lire work. 
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2 Overview of The AMD-K6TM Archi- 
tecture 

The AMD-KGTM processor is based on a 
RISC core known a s  the Enhanced RISC86 mi-  
croarchitecture. This architecture implements 
the X86 instruction set by internally translating 
X86 instructions into RISC-like operations called 
RISC86 Ops [4]. The processor decodes up to two 
X86 instructions per clock, most of which are de- 
coded by hardware into one to four RISC86 Ops, 
whereas the uncommon instructions are mapped 
into ROM-resident RISC sequences. The instruc- 
tion scheduler buffers up to 24 RISC86 Ops and 
up to six Ops are issued out-of-order to seven par- 
allel execution units, speculatively executed and 
retired in order (Figure 1). The Branch Resolv- 
ing unit uses two-level branch prediction based 
on an 8192-entry branch history table, a 16-entry 
branch target cache and a 16-entry return ad- 
dress stack. The processor has an MMX unit that 
incorporates the multi-media extensions (MMX) 
to the X86 instruction set. The MMX unit uses 
a Single-Instruction Multiple-Data (SIMD) tech- 
nique to perform highly-parallel and compute in- 
tensive algorithms involved in multimedia appli- 
cat ions. 

Figure 2 shows a rough floor plan of the 
AMD-KGTM processor. The processor imple- 
mentation contains large embedded memory 
arrays. The level-one instruction and data caches 
are 32KB each and are 2-way set associative. 
The data cache allows simultaneous load/store 
operations every cycle. The instruction/data 
TLB's store 64/128 entries. The instruction tag 
RAM stores 512 20-bit physical tags and logically 
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Figure 1: AMD-K gTM Processor Block Diagram. 

~~~~~~ 

Figure 2: Floor plan of AMD-K6T*f Processor. 
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is 2-way set associative. However, it is phys- 
ically constructed with eight sets of TAG-TLB 
comparators and eight sets of snoop comparators, 
with eight tags being read each cycle. This allows 
all possible synonyms to be checked in a single 
cycle, at the expense of layout complexity and 
area. The Instruction Predecode cache stores up 
to 8K 40-bit predecoded instruction words. The 
floating-point unit is implemented separately and 
runs on its own 4 1 / 4 2  clock grid, synchronous 
with the main processor clock (PCLK), and is 
interfaced with the core logic through the Nu- 
meric Processor Interface unit. The processor 
speaks to the outside world through the standard 
PentiumT" socket-7 interface shown in the center 
of the Figure 2. 

The processor is implemented, at this writing, 
using a 0.35pm 5-metal layer CMOS technology 
with shallow trench isolation and tungsten local 
interconnect. The die contains 8.8M transistors, 
about a third of which are in the cache arrays. 
C4 solder bump flip-chip technology is used to 
assemble the die into a ceramic 321-pin PGA. 

3 Design For Testability Features 

3.1 Full-Scan Design 

To provide support for both lab debug and 
pattern generation for wafer sort testing, it was 
decided at the outset of the project to make 
the AMD-KGTM design fully scannable. There- 
fore, all internal storage elements are scannable 
and 1/0 cells are equipped with scan to support 
boundary scan and JTAG compatibility. A logic 
diagram of the underlying functionality of the in- 
ternal storage element, depicted in Figure 3, illus- 
trates a shared master rising edge triggered scan 
flip-flop. In normal operation, it operates as a 
flip-flop. For scan operation, the clock is held low 
and data is scanned using non-overlapping pulses 
on the shift clock pins SC1 and SC2 as shown in 
Figure 4. Like the Shift Register Latch [5], this 
design eases the impact on the routing constraints 
of the shift clock signals and insures uncorrupted 
scans by increasing the non-overlap time of the 

shift clocks. This design does not support the 
use of a narrow interval between a shift pulse and 
a clock edge for path delay testing. However, scan 
test patterns have been produced for path delay 
testing of the AMD-KGT" design by scanning in 
a vector and clocking with a narrow interval be- 
tween 2 clock edges (see Section 5.3). Recent evi- 
dence suggests that this provides a more effective 
path delay test [6]. 

sc1 -, 
Q 

sc2 

SDO 

Figure 3: Logic Diagram of Scan Storage Ele- 
ment. 
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Figure 4: Clock Waveforms for Normal and Shift 
Operations. 

Scan chain stitching of the gate level netlist 
is performed with an intelligent stitch order ex- 
tracted from a placed netlist. The design utilizes 
4 scan chains with over 37,000 total scan storage 
elements. 

3.2 Embedded Clock Control 

The design uses an on-chip phase locked loop 
(PLL) to generate the distributed internal clock. 
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The PLL produced clock is a programniable mul- 
tiple of the external clock signal applied to the 
device. The PLL can be bypassed with an exter- 
nal clock to support scan and other debug test- 
ing. To better support debug of speed failures the 
PLL can be put into special test modes, to utilize 
the dedicated high-speed operation, rakher than 
using the bypass clock. Therefore, control of the 
PLL implements the following different modes of 
operation: 

1. Cycle Stretch 
2. stop PLL 
3. Pulse PLL 

In Cycle Stretch mode the device can operate 
at high speed to a desired pipeline cycle, double 
the period of the next one or more cycles, and 
then resume at the normal high rate. In Stop 
PLL mode the PLL can be halted on a desired 
cycle, after which a scan out of the design ci%n be 
performed. In Pulse PLL mode the PLL, cart pro- 
vide a selective number of high-speed clock pulses. 
This supports scan in, clock twice, scan out op- 
eration in speed testing. 

4 Scan Test Patterns 

Scan stuck-at test patterns have been created 
by a conventional ATPG tool. The AMD-K6TM 
design contains just over one million simulator 
primitive elements, as reported by the gate level 
fault simulation tool. The full scan inipleimen- 
tation makes combinational ATPG possible and 
thereby provides a realistic opportunity to push 
the stuck-at fault coverage goal for this large de- 
sign close to 100 %. 

To characterize the test quality of the AMD- 
K6Thf product, the final fault coverage number 
will be determined by several metrics, including 
the stuck-at. One of the metrics, bein<g imple- 
mented at this writing, is an inter-cell bridging 
fault simulation algorithm. The bridging fault 
simulation scheme is much like that described 
in [3] but with an improvement to account for 
feedback paths. Current plans are to fault grade 

the stuck-at scan patterns with the bridging fault 
simulator and generate additional patterns to im- 
prove the bridging fault coverage should it prove 
to be insufficient. Future plans include fault grad- 
ing and pattern generation of scan patterns for 
stuck-open faults. 

5 Path Delay-Fault Test Patterns 

Due to the high operation speed of the AMD- 
KGTM, AC tests are necessary to ensure that 
the chip operates at the target frequency. Be- 
sides at-speed parallel patterns, separate scan- 
based AC tests were generated using a path delay 
fault ATPG tool. Path delay fault patterns were 
generated for two purposes: silicon timing debug 
and delay fault detection for production testing. 
The flow of generating path delay fault test pat- 
terns starts with cell library modeling, followed 
by static timing analysis, and finally test pat- 
tern generation. Each of these three tasks are 
described below. 

5.1 Cell library development 

Most of the cell library models used for produc- 
ing single stuck-at test pattern generation can be 
used for path delay fault ATPG. However, some 
cell models need to be adapted for the path de- 
lay fault ATPG methodology. For example, re- 
dundancy may be introduced by the circuit de- 
signer for reasons such as performance enhance- 
ment or hazard removal. This may create some 
paths that are functionally redundant, but can 
physically propagate a transition. Since redun- 
dancy will introduce untestable single stuck-at 
faults, such paths are typically removed in gate 
level models used for single stuck-at ATPG. For 
path delay fault ATPG, functionally redundant 
paths are preserved, since a delay fault may ac- 
tually cause such a path to fail. For example, 
consider the function 
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An additional AND gate may be inserted for haz- 
ard protection as 

z = a b + b c + E c  (2) 
Although gate bc is redundant, a slow-to-fall fault 
on the gate bc may be sensitized to z by setting 
a = 1 and c = 1. Special remodeling was also 
ncedcd for sonic full custom blocks to produce 
nieaningful path delay fault patterns. 

5.2 Static Timing Analysis 

Paths were generated using a static timing 
analysis tool that produced the longest 5000 
paths in the chip, as well as 5000 other long paths 
distributed among various parts of the chip. This 
strategy was adapted to target paths with little 
slack as well as other paths covering a wide dis- 
tribution across the die. Known false paths in the 
design were declared as an input to the static tim- 
ing analysis tool, and were not reported among 
the 10,000 long paths. Runtime for static tim- 
ing analysis was approximately 3 days on an Sun 
UltraSparc 2 workstation. 

5.3 Path Delay-Test Generation 

Path delay fault tests were generated using an 
ATPG tool. Each path is tested with a two- 
patt,ern scquence as shown in Figure 5. The first 
pattern, applied through scan, sets up the initial 
condition on the path. The second pattern, ap- 
plied through pulsing the system clock, launches 
a transition along the target path. The transition 
is captured on the destination scannable flip-flop 
by pulsing the system clock again shortly after 
the first clock pulse. 

The ATPG tool provides an option of ran- 
domly filling the unassigned inputs for the test 
patterns. The random fill option was enabled 
when tests were generated (for the purpose of 
production testing), which may result in some 
fortuitous detection of delay or transition faults 
on non-targeted paths. When debugging explicit 
paths the random fill option was disabled and all 
outputs were masked except for the path destina- 
tion. This provcd helpful in debugging the path 
of interest. 

Launch transition 
Capture transition 

CLK 

sc1 n n n 
sc2 Jl n n 

Shift in initial conditions Shift out result 

Figure 5: Clocking for Delay-Fault Testing of a 
Path. 

5.4 Path Delay-Fault Coverage Results 

Table 1 shows the statistics for path delay 
fault ATPG. The total path coverage is the per- 
centage of total paths that arc detected. The 
testable fault coverage removes the untestable 
paths, which include many false paths, from the 
total paths. Aborted paths are paths that the 
ATPG tool was not able to generate a test for, 
nor determine if they were untestable within the 
given time limit. Notice that each vector is a two- 
pattern sequence. 

Table 1: Path Delay-Fault Results. 

Total number of paths 
Detected paths 
Untestable paths 
Aborted paths 
Total Path Coverage 

I Testable Path Coverage 

Runtime 

10000 
421 1 
4831 
958 

42.11 % 
81.4G % 

1088 
3 days 81 20 hrs 

Path delay test patterns will also be fault 
graded for transition fault coverage to determine 
areas on the die that are not covered by AC tests. 
If the transition fault coverage is proven to be in- 
sufficient, a set of transition fault tests will be 
generated to cover those undetected transition 
faults. 
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5 BIST 

There are l G  large full custom functional blocks 
in the design for which a gate level netlist was 
created and verified against results froim a tran- 
sistor level simulation. The full cristoin rrmros 
iinpleiiicnt a scheduler array, a PLA, the I,1 in- 
struction and data caches, translation look- aside 
buffers arid microcode ROMs. BIST is employed 
on the L1 instruction and data caches and trans- 
lation look-aside buffers and the CPU microcode 
ROM. BIST is run during engineering evaluation 
arid production testing. In the following stibsec- 
tions we describe BIST for RAM and ROM ar- 
rays. 

6.1 BIST for Cache Memory Arrays 

Eacli R.AM array in the AMD-KGTM processor 
has its own BIST controller that runs a 13N :BIST 
algorithm [2]. At power-on the BIST contr'ollers 
arc initialized to a safe reset state. The Start.BIST 
register in endl of the BIST controllers is set us- 
ing a single scan operation to start the BIST. The 
BIST t:xeciitioii time for each controller depends 
upon the size of each individiaal cache. However, 
the processor is clocked for a fixed (known) niim- 
ber of clock cycles that ensures the completion 
of BIST for the largest cache. The resultss are 
scanned out to check if all cache arrays piused 
BIST. 

Some of the cache RAMS implement a 2-row re- 
dundancy. After evaluation it will be enabled for 
future revisions of the product. With redundancy 
enabled, the reset emcode runs BIST in a special 
mode at power-on. In this mode, the BIST con- 
troller executes the 13N algorithm in two passes. 
In the first pass it records up to two had rows 
(if any) which are then available to the respective 
cache for rt:prograinming the redundant rows. In 
the sccond pass the BIST controller rerun:; the 
13N algorithm on a reprogrammed RAM array 
to ensure the fix. Had there been three or inore 
errors in the first pass OR any errors in the sec- 
ond pass, the B E T  controller signals a fatal er- 
ror. At the end of BIST the controller sends out a 
DoneBRISTsigIial for the reset emcode to take ap- 

propriate action depending upon the outcome of 
the BET.  As the cache arrays can perform a read 
and write in a single clock cycle, the complexity 
of the BIST algorithm reduces to 9N. 

6.2 BIST for emcode ROM 

The ROM BIST controller contains an address 
generator and a MER. The address generator is 
a standard up/down counter that generates ad- 
dresses once in a forward and then in a reverse 
direction. This avoids error cancellation arising 
from diagonal errors that are sensitive to the the 
output MISR shift direction [7]. The ROM BIST 
controller's StartBIST is set using a scan oper- 
ation. This initializes the address counter and 
the MISR and starts BIST in the subsequent cy- 
cle. The contents of each address are compacted 
into a signature which is then scanned out and 
compared with the known good signature. During 
production ROM B E T  can be run simultaneously 
with RAM BIST using a single scan operation. 

6.3 BIST Controller Implementation 

The BIST controllers were implcmented using 
standard verilog HDL and synthesized. The basic 
controller design was utilized for all instances of 
RAM BIST controllers by appropriately chang- 
ing the address and data generators. The area 
invested for BIST is 3-4 9% the area of the cache 
array. 

7 JTAG Boundary Scan Implementa- 
t ion 

AMD-KGThf has the standard IEEE 1149.1 
JTAG Boundary scan implementation on all of 
its 1/0 pins except a few reserved test and dc- 
bug pins. The JTAG instruction register is 5- 
bits wide and supports the following public in- 
structions: IDCODE, BYPASS, HIGH-Z, EX- 
TEST and SAMPLE/PRELOAD. No other pri- 
vate/public instructions haw bceri implemented. 
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8 IDDQ Tests 

8.1 Design Considerations 

To help minimize background currents from 
sub-threshold leakage when IDDQ testing, sep- 
arate power planes to the large custom arrays in 
the AMD-K@” design can be turned off at ded- 
icated C4 bumps that distribute power to the ar- 
rays. 

8.2 IDDQ Test pattern Development 

The IDDQ test pattern development for the 
AMD-K@” design extracts a subset of scan pat- 
terns from the set of total scan patterns based on 
considerations of both inter- and intra-cell shorts. 
Extraction of scan patterns based on the popu- 
larly used pseudo stuck-at model [1] selects pat- 
terns targeted to cover shorts within a cell by 
checking for the appearance of sensitizing values 
at the inputs of the cell(s). Our method also con- 
siders the possibility of the appearance of a short 
between nets in the interconnect between cells by 
using a list of netname pairs of candidate bridging 
fault sites extracted from the physical database. 
The netname pairs are used by the automated 
IDDQ pattern extraction tool by scoring a suc- 
cessful detection of the bridging fault site when a 
1/0 difference appears on the netname pair for a 
given scan pattern. This analysis is performed in 
concert with the pseudo stuck-at model, thereby 
grading the patterns for effectiveness of coverage 
of shorts appearing between the cells as well as 
within the cells. 

To avoid exponential runtime in extracting the 
candidate bridging fault sites from the physical 
database, all wire segments are resolved into or- 
dered lists sorted by the regular intervals, rout- 
ing tracks, into which they were routed. After 
collecting all segments into the ordered lists, it 
becomes a simple task of traversing the lists (one 
for the X direction, one for the Y direction) to de- 
terniine which nearest neighbor segments share a 
coinnion side-by-side run and report the accumu- 
lated amount of runs from all segments for the 
netname pair(s). The lists need to be traversed 

only once to extract the data for all possible net- 
name pairs. 

The gate level IDDQ fault grading method ac- 
commodates a technique to scale die area ex- 
posure to the aggregate critical area, or total 
amount of area occupied by nearest neighbor con- 
ductors on same levels of interconnect, and is to- 
taled for all levels of interconnect on the silicon 
for the 2 nets. The value, in microns, of the to- 
tal side-by-side runs of netname pairs are nor- 
malized to an average length of side-by-side poly- 
gons (driven by different sources) found within all 
cells in the standard cell library. The normalized 
value, or weight, for the netname pair is placed 
in the list with the netname pair and provided to 
the simulator. The simulator then scores a suc- 
cessful pseudo stuck-at detection of weight 1 and 
a successful netname pair bridge detection with a 
weight from the user supplied netname pair list. 
A highest sum of weights when injecting all faults 
yields a test pattern with highest bridging detec- 
tion. If a user supplies no weights in the netname 
pair list, the tool defaults to a weight of 1 for each 
netname pair. If a user supplies no netname pair 
list, the tool defaults to a pseudo stuck-at fault 
graded result. 

9 Conclusions & Future Work 

The above described testability features and 
pattern development methodologies provide high 
quality structural tests to minimize manufactur- 
ing costs of the AMD-K6 microprocessor design. 
The scan design for testability feature imple- 
mented in the design supports: (1) static volt- 
age level testing for wafer sort and debug test- 
ing; (2) the application of 2 pattern sequences 
for production testing; ( 3 )  scan based BIST; (4) 
JTAG. The metrics employed for pattern genera- 
tion and fault simulation include, stuck-at , tran- 
sition fault, path delay, and a novel IDDQ fault 
grading technique that incorporates physical de- 
sign information in consideration of both intra- 
cell and inter-cell bridging faults. Future work 
will (a) employ algorithms for scan pattern fault 
grading and pattern generation of bridging and 
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open faults, (b) device methods for fast data re- 
terition test of the cache arrays. 

[7] Yervant Zorian and Andrit Ivanov. An Effec- 
tive BIST Scheme for ROM’s. IEEE Trans- 
actions on  Computers, 41 (5):646-652, May 
1992. 
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