
LAWN: Boosting the performance of NVMM File System
through Reducing Write Amplification

Chundong Wang
Singapore University of Technology and Design

cd_wang@outlook.com

Sudipta Chattopadhyay
Singapore University of Technology and Design

sudipta_chattopadhyay@sutd.edu.sg

ABSTRACT

Byte-addressable non-volatile memories can be used with DRAM to

build a hybrid memory system of volatile/non-volatile main mem-

ory (NVMM). NVMM file systems demand consistency techniques

such as logging and copy-on-write to guarantee data consistency

in case of system crashes. However, conventional consistency tech-

niques may incur write amplification that severely degrades the

file system performance. In this paper, we propose LAWN (logless,

alternate writing for NVMM), a novel approach that achieves data

consistency and significantly improves performance via reducing

write amplification. Our evaluation reveals that LAWN boosts the

performance of a state-of-the-art NVMM file system by up to 12.0×.

CCS CONCEPTS

• Software and its engineering→ File systems management;

Consistency; • Information systems → Storage class mem-

ory; • Hardware → Non-volatile memory;

KEYWORDS

NVMM File System, Alternate Writing, Data Consistency, NVM

ACM Reference Format:

Chundong Wang and Sudipta Chattopadhyay. 2018. LAWN: Boosting the

performance of NVMM File System through Reducing Write Amplification.

In DAC ’18: DAC ’18: The 55th Annual Design Automation Conference 2018,

June 24–29, 2018, San Francisco, CA, USA. ACM, New York, NY, USA, 6 pages.

https://doi.org/10.1145/3195970.3196066

1 INTRODUCTION

The byte-addressable non-volatile memory (NVM) technologies,

such as PCRAM [1, 2], STT-RAM [3–6], 3DXPoint [7], and ReRAM [8],

have DRAM-like access latency and disk-like non-volatility. There-

fore, NVM can be placed on the memory bus alongside DRAM to

build a hybrid memory system of volatile/non-volatile main mem-

ory (NVMM). NVMM blurs the conventional boundary between

main memory and storage device [9–18].

To leverage the performance potential of NVMM, NVMM file

systems have been proposed with a technique called Direct Access

(DAX) [9–13]. As illustrated by Figure 1, DAX facilitates an NVMM

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

DAC ’18, June 24–29, 2018, San Francisco, CA, USA

© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5700-5/18/06. . . $15.00
https://doi.org/10.1145/3195970.3196066

Applications

Virtual File System (VFS)

Block-based File Systems
(e.g., Ext4, XFS)

NVMM File Systems with DAX
(e.g., PMFS, NOVA)

DRAM
Page Cache

Bio Layer

Disk NVM Block Device NVMM

Direct I/O

File I/O

Block write/read

DAX
write/read

Figure 1: The Architecture of NVMMFile Systems with DAX

file system to bypass the DRAM page cache by directly transferring

application data between user space and NVMM space. Further-

more, DAX enables byte-level flexible data access across NVMM

without involving the DRAM page cache.

A file system should attend the crash consistency due to the inher-

ent unpredictability of system crashes (e.g., a sudden power failure).

In particular, the consistency of file-systemmetadata (metadata con-

sistency), such as an inode of each file, is of paramount importance

and hence, it must be preserved in the event of system crashes. Some

NVMM file systems further guarantee the consistency of user data

stored in files (data consistency) [10–12, 14, 17]. In this paper, our

focus is on the data consistency. Copy-on-write (COW) and logging

are two prevalent techniques for crash consistency. COW updates

the data of files out of place and substitutes the original data by

changing the metadata of respective files. In contrast, logging does

not change the metadata of a file, but it makes a backup copy of the

file data for recovery. As an example, redo logging first commits

modified data to a log and subsequently, updates file data in place.

In short, logging has to write the same data twice [10, 17–20].

NVMMfile systems primarilymanageNVMMspace in the unit of

4KB page to simplify the underlying design and implementation [9–

11]. In light of DAX, page-based logging successively writes two

pages to NVMM in the critical path [16, 18], which incurs severe per-

formance penalty. NVMM file systems that cover data consistency

hence prefer page-based COW [9, 11, 13]. However, page-based

COW degrades performance with significant write amplification in

updating small pieces of data. For example, on modifying a small

fragment of a 4KB page, say, a cache line of 64B, page-based COW

will copy the unmodified 4032B to a newly-allocated NVMM page

alongside writing the modified 64B. Such a strategy results in 64×
execution time compared to solely updating 64B data. Added to

this, page-based COW compromises the access efficiency of byte-

addressable NVM, as it reshapes all writes to be page-level.

A feasible solution to mitigate the write amplification of page-

based COW is to replace it with fine-grained logging that only

�

�
�

�
����

�	
��
�������

� �

�

�	
�

�
�

�	
�

�

�
�

�
�	
�

�
�

�
�	
�

�
�

��������
������

���

���

�����
�������

��

�
�

�
�	
�

�
�

�
�

�
�

�
�
�

�

�

���� ���� ���� ����

���	�

�����	
��������
������������������

 ��!�����

��������
������

��� ��
 ��� ���

"�������#�����

$�#�

"�������#�����

�������	
�����������������������
�� �
�
���
�������������������������
�����������

���	�

����������������
������������������

 ��!��	
�

���

�������	
�����������������������
��

�
���
�������������������������
�����������

�

(a) Execution time of Page-based COW

�

�
�

�
����

%�&�����'�
�������

� �

%�&

�

�
�

�
����

������ ���	�

������
����

���

()

%�&�����'�
�������

(

�
�

�
����

� �

�
�

�
%�&

(�

�
�

"�������#�����

��

�

�
�

�
����

������ ���	�

������
����

�
���
�������������������������
�����������

�������	
�����������������������
�� �
�
���
�������������������������
�����������

���

"�������#�����

���

���

$�#�

�������	
�����������������������
�� �

(b) Execution Time of Fine-grained Logging

Figure 2: An Illustration of Write Amplification in NVMM File System with Page-based COW and Fine-grained Log

records the updated data for backup. In this fashion, fine-grained

logging writes much less data as compared to page-based COW.

However, it still entails write amplification and yields suboptimal

performance due to writing the same data twice in the critical path.

To avoid write amplification for higher performance, we propose

LAWN (logless, alternate writing for NVMM). The main ideas behind

LAWN are as follows.

• LAWN manages a fine-grained zone for files in NVMM. Given

a small piece of file data to be updated, LAWN makes the copy

in the zone and the copy in the file be mutual backup copies.

• LAWN leverages a scheme called alternate writing that writes

only once in the critical path on updating a small piece of file

data, but strictly regulates how the updated data is written to

the zone or the file so as to avoid any inconsistencies.

We have prototyped LAWN in state-of-the-art NOVA [11] and

performed extensive experiments. Experimental results show that

LAWN is able to boost the performance of NOVA by up to 12.0×.
This is due to the significant reduction in write amplification.

The remainder of the paper is organized as follows. Section 2

details the background of NVMMfile systems and Section 3 outlines

the cause of write amplification. Section 4 presents the building

blocks of LAWN. In Section 5, we describe our LAWN prototype

and the evaluation results. Section 6 concludes the paper.

2 BACKGROUND

The next-generation byte-addressable are under prosperous devel-

opment and supposed to sit alongside DRAM on the memory bus

for CPU to directly load and store data. PCRAM, ReRAM, 3D XPoint,

and STT-RAM are good candidates in building NVMM with DRAM.

The first three have longer write latencies but higher density than

DRAM. STT-RAM has lower power consumption than DRAM and

shorter access latencies than PCRAM.

State-of-the-art NVMM file systems, like BPFS [9], PMFS [10],

and NOVA [11, 13], define and manipulate file system metadata,

like inodes, in a byte-addressable way while managing the NVMM

space for file data in the unit of page. They use DAX to access file

data. DAX does not buffer data pages in DRAM page cache but

directly writes and reads data with NVMM. Bypassing DRAM page

cache helps to avoid copying data between DRAM and NVMM in

the storage stack and enables flexible access across NVMM.

A system crash may happen at any time and result in data loss.

File systems employ different techniques for different levels of crash

consistency [10–12]. In regard to data consistency that guarantees

the consistency of both file system metadata and file data, NVMM

file systems prefer COW for updating file data, because COW is

more efficient than logging in light of DAX. On updating a data

page of a file, logging must write two pages to NVMM in the critical

path. Yet COW just writes one data page as well as a small pointer.

There are also other challenges for data consistency in NVMM.

Unlike hard disks, CPUs just support 8B atomic write to memory.

Instructions like cmpxchg16b (with the LOCK prefix) can atomically

write data of 16B. Atomically writing data greater than 16B to

memory demands special architectural support [10]. Worse, writing

multiple cache lines to memory may not adhere to the programmed

order [10, 14, 16]. Inconsistency issues may arise upon an altered

writing order. For example, recording a new file in a directory must

be done after the file creation. If the directory was modified before

creating the file but a crash occurred, a directory entry would show

the existence of a non-existent file.

We can utilize cache line flush (e.g., clflush) and memory fence

(e.g., sfence) to follow regular store instructions (e.g., mov) for a
desired writing order. clflush explicitly invalidates data in a cache

line and flushes it to memory. sfence enforces that store operations
after an sfence cannot proceed unless those before it have been

completed. Thus, a series of {sfence, clflush, sfence} persists
multiple cache lines to memory in order. New instructions for cache

line flush (clflushopt or clwb) have been proposed. In this paper

we use clflush for illustration because of its wide availability.

3 MOTIVATION

Page-based COW incurs severe write amplification in the critical

path when an application asks an NVMM file system with DAX to

update only a small part of a page. Figure 2(a) shows an example

on how page-based COW behaves in a time series. Assume that

a page has four pieces of data indexed by 0, 1, 2, and 3. The scale

unit of time axis is the execution time for writing one piece of data

to NVMM. An application is to use data ‘X’ to replace ‘A’ in file

a.txt, which stays at the offset 0 of page 1001. Page-based COW

first allocates a free page, i.e., 3721 in Figure 2(a). It copies three

unmodified pieces of data, i.e., ‘B’, ‘C’, and ‘D’, to page 3721. Then ‘X’

is written. When ‘X’ is to be replaced by ‘Z’ later, page-based COW

will copy unchanged ‘B’, ‘C’, and ‘D’ again before writing ‘Z’. Thus,

page-based COW makes writing a small piece of data identical to

writing an entire page, which badly impairs performance.

Write amplification caused by COW also exist for hard disk

drives and flash-based solid state drives. However, due to their

access unit and slow speed, writing data to them is performed with

DRAM page cache that helps to alleviate write amplification via

buffering. NVMM with DAX yet bypasses DRAM page cache.

One straightforward method to mitigate write amplification of

COW is to make the unit of COW fine-grained, either dynamic

or fixed. Nonetheless, fine-grained COW is difficult in practice for

two reasons. First, as applications can write data in any size at any

offset of a file, NVMM file system must consistently maintain a

complicated index structure in each file to trace every modified

piece. This demands considerable efforts in design and implementa-

tion, especially with a dynamic COW unit [15]. Second, compared

to managing NVMM space in the uniform pages, fine-grained COW

shall dramatically increase the complexity of space management.

A doable approach to reduce write amplification is using a fine-

grained log that is like a database transaction log. Take redo logging

for illustration. Before updating data in place, fine-grained logging

commits the write request’s information along with data into an

in-NVM log in the format of 〈inode number, offset in file, length,

data〉. Figure 2(b) indicates how the fine-grained redo logging deals

with the aforesaid example. It first commits ‘X’ to log as a backup

copy for recovery and then writes ‘X’ in situ. When ‘Z’ is used to

overwrite ‘X’, ‘Z’ will be logged. Obviously fine-grained logging

spends much less execution time than page-based COW. Whereas,

it is still suboptimal as with write amplification. As shown in Fig-

ure 2(b), fine-grained logging has to write the same data twice in the

critical path, one to the log and the other one to the file. The logged

write request’s information also has to be recorded in NVMM.

4 LAWN

In order to reduce write amplification without loss of data con-

sistency, we propose LAWN (logless, alternate writing for NVMM).

LAWN includes a fine-grained zone in NVMM and a scheme called

alternate writing. In brief, with alternate writing, LAWN writes

data to the zone or file only once in the critical path for each small

update request but enforces a strict execution order for consistency.

4.1 LAWN’s Components

Figure 3 illustrates the components of LAWN in NVMM and DRAM.

• The zone is a logical area in NVMM, separated from the space of

NVMMfile system. It comprises sub-zones, the number of which

is equal to the number of CPU cores. Each sub-zone is designated

with a CPU core for serving a quantity of files (inodes), the
number of which depends on a specific NVMM file system, the

NVMM size, and the number of sub-zones. In Figure 3, a sub-

zone is dedicated to 200 inodes (‘ino’ means inode number).

A sub-zone is cache line-aligned and contains numerous zone

slots. A zone slot has a uniform size of one or multiple times of

cache line size for cache efficiency. We call data stored in a zone

slot a data slice. A file page is evenly divided into data slices.

A data slice can be freely placed in any zone slot of the file’s

designated sub-zone. So a sub-zone can be viewed as a fully

associative cache to relevant files.

• The descriptor table keeps a descriptor for each slot in NVMM

and consists of sub-tables for sub-zones. A descriptor has two

fields for a data slice: inode number (8B) and in-file offset (8B),

and can be modified in a 16B atomic write, which is extremely

useful for consistency. When a data slice becomes obsolete, like

A
B
C
D

1001

a.txt (ino 218)

2740 2741

b.doc (ino 721)

…

X P Y

Files with data
in NVMM pages

LAWN
Zone

(0, 0) (218, 0) (721, 1) (721, 7) Descriptor
Table

NVMM
DRAM

100 101 315 316
(0, 0)

0

0 100 101 315 316

101 100

Hash Table for Sub-zone 1

Linked List for
Sub-zone 1

… …

… …

Sub-zone 0 Sub-zone 3
… …

Sub-zone 1

… … … …

H
I
J
K

L
M
N
O

ino ino

…

ino

… …

Slot

Figure 3: An Illustration of LAWN’s Components

ones in slots 0 and 100 in Figure 3, its corresponding descriptor

is cleared to be zeros (the zero inode number is usually reserved

by file system and inapplicable for ordinary files).

• We maintain a hash table and a linked list for each sub-zone

in DRAM for two purposes. First, the hash table can accelerate

lookups to check if the up-to-date version of a data slice is stored

in a zone slot or not. Second, a combination of hash table and

linked list helps us to locate slots with the least-recently-used

(LRU) valid data as well as free slots with obsolete data. A free

pointer (f _pti) and a valid pointer (v_pti) are used to trace these
two types of slots in the ith sub-zone. In Figure 3, f _pt1 and
v_pt1 refer to slots 100 and 101 of sub-zone 1, respectively.

Initially we preallocate 3% of NVMM space for the use of LAWN.

Given an NVM device of 128GB, the entire zone takes 3.8GB, which

is sufficiently large as compared to the default 128MB log (journal)

of Ext4 [17, 19]. If the percentage of free slots in all slots of a sub-

zone drops below a threshold, say, 10%, which may entail swapping

data with files to release slots, we will allocate more NVMM space

to expand that sub-zone. To further avoid swapping in the critical

path of updating data, we employ a background thread that writes

back the LRU valid data slices at the system’s idle time.

In-DRAM structures can be reconstructed by scanning the de-

scriptor table, so we keep them volatile in DRAM and rebuild them

at mounting file system. The spatial cost for them is insignificant. To

index a slot we use 4B (32-bit) so that the maximum zone size can be

256GBwith 64B per slot. In implementation a hash table and a linked

list require 4B and 12B for a slot, respectively. Given the aforesaid

3.8GB zone, in-DRAM structures take up 3.8GB
64B × 16B = 0.95GB.

This is about 0.8% in size as compared to the overall NVMM space.

4.2 Alternate Writing of LAWN

Leveraging aforementioned components, LAWN employs a scheme

called alternate writing that updates file data with minimized write

amplification and achieves data consistency. As its name suggests,

alternate writing writes updated data to LAWN zone and file system

in turn at runtime. Algorithm 1 illustrates how it regulates the

process of writing a data slice d for an application.

(1) LAWN looks up in the corresponding ith descriptor sub-table

with d’s inode number and in-file offset to check whether the

up-to-date version of d is stored in a zone slot or the file (Line 1).

(2) If the up-to-date version of d is not in the ith sub-zone, LAWN

will write the newer d into a free zone slot (Lines 2 to 6).

Algorithm 1 LAWN’s Alternate Writing (alternate_write())

Input: A data slice d to be written; //d is with inode number and in-file offset

1: if (is_valid_data_in_zone(d) == false) then //Not in a zone slot

2: Get a free slot ζ in the i th sub-zone with an exclusive use of f _pti ;

3: Write d to ζ through memcpy;
4: clflush(ζ), sfence;
5: Write d ’s information into ζ ’s descriptor (γ) in an atomic write;

6: clflush(γ), sfence;
7: else //the up-to-date version of d is found with descriptor θ in the i th sub-zone

8: Write d to its location (φ) in file through memcpy;
9: clflush(φ), sfence;
10: Clear d ’s descriptor (θ) to be zeros in an atomic write;

11: clflush(θ), sfence;
12: end if

13: Update in-DRAM structures where necessary;

14: Return completion or fail of writing d ;

(a) LAWN exclusively acquires f _pti for a free slot ζ (Line 2).

Then it moves f _pti forward by one and releases f _pti .
(b) LAWN commits d to ζ with clflush and sfence followed

to enforce a writing order (Lines 3 to 4).

(c) LAWN atomically writes the information of d (inode num-

ber, d’s in-file offset, and the size of d) into ζ ’s descriptor
with clflush and sfence followed (Lines 5 to 6).

(3) Otherwise, if the up-to-date version of d is in a zone slot, LAWN

writes the newer d into file system (Lines 8 to 11).

(a) LAWN commits d to the file with clflush and sfence fol-
lowed (Lines 8 to 9).

(b) LAWN clears d’s corresponding descriptor in an atomic

write with clflush and sfence followed (Lines 10 to 11).

(4) LAWN updates in-DRAM structures where necessary (Line 13).

(5) At last LAWN returns the completion or fail of writingd (Line 14).

The essence of alternate writing is that, LAWN makes the two

versions of a data slice, which are respectively stored in the zone

and file, be mutual backup copies. A crash that happens in writing

the newly-arrivedd to the file never results in inconsistency because
the last up-to-date version is still valid and retrievable in a zone

slot; vice versa. Hence, LAWN does not make a backup copy for

updating data like logging or COW. It substantially reduces write

amplification by writing a data slice only once in the critical path.

In Algorithm 1, we use clflush, sfence, and 16B atomic write

in alternate writing to ensure data consistency. A combination of

clflush and sfence imposes that writing updated data to a zone

slot or file is always completed prior to modifying a corresponding

descriptor. By doing so, a crash cannot leave a modified descriptor

that indicates unreliable data. The 16B atomic write that sets or

clears a descriptor determines whether the updated data slice is

committed to NVMM. Assume that we should write newer d to a

zone slot with the up-to-date version being in file. If a crash occurs

before atomically setting the descriptor, in recovery there will be

no descriptor related to d . So newer d has not been committed and

the in-file verison is deemed to be valid. If the crash occurs after

setting the descriptor, newer d has been successfully committed to

the zone and will be used as the valid version. This is identical to

the data consistency achieved by the classic Ext4 at the mode of

data=journal, in which data committed to the log (journal) would

be valid after a crash [17, 19].

�

�
�

�
����

%�"*�
�!��+��

� �

%�"*�
����

���	�

������
%�"*�����

���

�)�	

�
�

�
����

��

�

"�������#�����

(�

�

�
�

�
����

���	�

������
����

�
���
�������������������������
�����������

�������	
�����������������������
�� �
�
���
�������������������������
�����������

���

"�������#�����

���

���

$�#�

�������	
�����������������������
�� �

�
�

%�"*�
�!��+��

Figure 4: Execution Time of LAWN with Alternate Writing

4.3 File Write and Read with LAWN

A file write request goes through LAWN first. LAWN divides data

D in a write request into n parts when D spans n pages according

to the page boundaries in NVMM file system. In practice, with a

write request taking data for n pages (n ≥ 2), only the head and/or

tail pages can be fit for alternate writing as these two pages may

receive less data than a page size; the remaining pages will follow

the routine of page-based COW. For the data to be written via

alternate writing, LAWN proceeds as follows.

(1) In line with slot boundaries in a page, LAWN chunks the data

into k slices, each of which can be fitted in a zone slot. Ones

that are less than a slot size will be patched with unmodified

data in NVMM or zeros if at either end of file.

(2) LAWN calls alternate_write to write k slices one by one.

(3) The file system returns the completion or fail of writing D.

Figure 4 shows the execution time of LAWN in processing the

aforesaid example. First, ‘X ’ is written to a zone slot. Then, once the

information of ‘X ’ is recorded in the descriptor table, writing ‘X ’ is

completed. Later, to substitute ‘X ’ with ‘Z’, LAWN writes ‘Z’ to the

file in place as ‘X’ is stored in the zone. A comparison of Figure 2

and Figure 4 evidently shows that with alternate writing, LAWN

remarkably saves time by avoidance of write amplification.

A file read request also needs to ask LAWN because the up-to-

date version of data may reside in a zone slot. At memory access

speed, sequential read and random read yield comparable perfor-

mance. So reading data from zone slots and/or file pages should

achieve identical performance as compared to reading data in origi-

nal NVMM file system. This will be tested in Section 5.2 and 5.4.

LAWN supports concurrent write and read requests in a mul-

titasking environment. There are two cases for applications that

concurrently write data to files via LAWN. If they fall into different

sub-zones, LAWN will process their requests in parallel. If they

enter the same ith sub-zone, only f _pti needs to be locked to avoid
a contention in slot allocation. The lock period is much shorter than

writing a data slice to a slot with clflush and sfence [14, 16]. In
both cases LAWN well supports concurrency.

5 EVALUATION

5.1 Prototype and Evaluation Setup

Prototype We have built a prototype of LAWN within NOVA. In

NOVA, writing file data calls nova_cow_file_write that triggers
page-based COW. We modify this function to make updating small

data through alternate_write of LAWN. For reading data, we

 0

 100

 200

 300

 400

 500

 600

 700

 800

64B

128B
256B
512B
1KB

2KB

B
an

dw
id

th
 (

M
B

/s
)

I/O Request Size

(a) Random Write

Ext4
NOVA

Fine-log
LAWN

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

64B

128B
256B
512B
1KB

2KB

B
an

dw
id

th
 (

M
B

/s
)

I/O Request Size

(b) Read/Write = 3:7

Ext4
NOVA

Fine-log
LAWN

 0

 100

 200

 300

 400

 500

 600

 700

64B

128B
256B
512B
1KB

2KB
B

an
dw

id
th

 (
M

B
/s

)

I/O Request Size

(c) Read/Write = 5:5

Ext4
NOVA

Fine-log
LAWN

 0

 50

 100

 150

 200

 250

 300

 350

 400

64B

128B
256B
512B
1KB

2KB

B
an

dw
id

th
 (

M
B

/s
)

I/O Request Size

(d) Read/Write = 7:3

Ext4
NOVA

Fine-log
LAWN

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

64B

128B
256B
512B
1KB

2KB

B
an

dw
id

th
 (

M
B

/s
)

I/O Request Size

(e) Random Read

Ext4
NOVA

Fine-log
LAWN

Figure 5: Bandwidth of Four Competitors with Fio

change the read routine do_dax_mapping_read and handle a read

request by first checking whether the valid version is in a zone slot

or in the file. As for the NVMM space for LAWN, we revise the page

allocation and deallocation routines of NOVA. We use kmem_cache
in DRAM to support hash tables and linked lists, which can be

rebuilt in the function nova_fill_super on remounting NOVA.

Setup All experiments were performed on an Intel Xeon E5-

2660 v3 machine with 64B per cache line and supporting clflush
instruction. Out of 128GB DRAM space, we isolate 116GB in the

GRUB boot loader via configuring the memmap option and emulate

this space to be STT-RAM [10–12]. The remaining 12GB is used for

main memory. All tests were run using Ubuntu 16.04.3 with kernel

version 4.4.79 and GCC 5.4.0. We ran with 8 CPU cores for eight

sub-zones by setting maxcpus in the GRUB boot loader. The default

slot size of LAWN zone was configured as one cache line size (64B).

We compare NOVAwith LAWN (referred to as LAWN) to the origi-
nal NOVA,NOVAwith fine-grained logging, and Ext4 (data=journal
mode) on a memory-based block device. They will be referenced as

NOVA, Fine-log, and Ext4, respectively. All four competitors guar-

antee data consistency. As to benchmarks, we have used Fio [21],

Flexible Filesystem Benchmark (FFSB) [22], and Filebench [23]. The

key metric to measure performance is the bandwidth (MB/s).

5.2 Fio

We evaluate four approaches for five different settings with Fio

(cf. Figure 5), specifically with random reads and writes as well as

with three different read/write ratios (i.e. 3/7, 5/5 and 7/3). We used

Fio to generate a 60GB file (five times bigger than the size of main

memory) and set six different sizes for write and/or read requests.

We performed file operations for 30 minutes under each setting. The

bandwidths of four competitors are shown in Figure 5. From the

left four diagrams, we observe that LAWN significantly outperforms

other three competitors with random write and mixed workloads.

For example, with random writes at a request size of 128B, the

bandwidth of LAWN is 9.5×, 12.0×, and 1.9× that of Ext4, NOVA, and
Fine-log, respectively. Hence, LAWN boosts the performance of

NOVA up to a factor of 12. With larger requests, such as with 1KB

request, the bandwidth of LAWN is 6.6×, 5.6×, and 4.3× that of other

three competitors, respectively. The higher performance of LAWN
is accredited to the reduced write amplification. LAWN writes data
only once through alternate writing. In contrast, for Ext4 and NOVA,
they write almost twice the size of an entire page (block) where

the updated data resides. Fine-log also writes the update data

twice. Figure 6 captures the amount of data written by the four

competitors with random write at 1KB request size. LAWN writes

0
1000
2000
3000
4000
5000
6000
7000
8000

Ext4 NOVA Fine-log LAWN

By
te

s w
rit

te
n

pe
r

I/
O

 R
eq

ue
st

Figure 6: Bytes Written per I/O Request with Fio

86.3%, 75.3%, and 53.8% less data per write request than Ext4, NOVA,
and Fine-log, respectively. In summary, our results quantitatively

demonstrate the reduction of write amplification by LAWN.

We note that the performance gap between LAWN and Fine-log
widens with an increase in the size of read/write request. Concretely,

with larger size of requests, Fine-log spends more time in writing

the updated data twice in the critical path, while LAWN just writes
the requested data once and swiftly proceeds to the next I/O request.

With random reads, as captured in Figure 5(e), LAWN achieves

identical performance compared to NOVA and Fine-log. This con-
firms that LAWN hardly impacts the performance of file reads.

5.3 FFSB

FFSB is a macro-benchmark that synthesizes real-world workloads.

It supports conducting a configurable mix of different file opera-

tions over a number of files and with different file sizes. We ran the

default workload provided by FFSB except 1) changing the sizes of

write and read requests to be 1KB, 2) setting an initial dataset to be

60GB, and 3) varying the number of threads. All tests of FFSB were

run for 30 minutes. Figure 7 captures the comparison of bandwidths

obtained from the four competitors. We observe that the bandwidth

of LAWN is 2.1×, 3.8×, and 3.2× that of Ext4, NOVA, and Fine-log,

0

500

1000

1500

2000

2500

1 2 4 8

Ba
nd

w
id

th
 (M

B/
s)

Number of Threads

Ext4 NOVA Fine-log LAWN

Figure 7: Bandwidths of Four Competitors with FFSB

0

100

200

300

400

500

600

64B 128B 256B 512B 1KB

Ba
nd

w
id

th
 (M

B/
s)

Slot Size

Figure 8: The impact of Slot Size on LAWN with FFSB

respectively. In a workload of macro-benchmark, different file op-

erations, such as sequential or random write, fsync, and delete, are

continuously issued. The results with FFSB reflects that, via reduc-

ing write amplification, LAWN efficiently handles such a workload

and significantly outperforms the other three competitors.

We varied the number of threads to test the capability of LAWN in
processing concurrent write and read requests. In Figure 7, the band-

width of LAWN gradually increases with more threads. In particular,

the bandwidth of LAWN improves almost by a factor of two (1.9×)
when the number of threads is increased to two. Even from four

to eight threads, the bandwidth of LAWN increases by 1.5×. These
results confirm that with sub-zones as well as quick acquisition and

release of pointers, LAWN effectively supports concurrency.

Using FFSB, we also performed a test with different slot sizes.

We set five slot sizes, and the bandwidths of LAWN running with

one thread are shown in Figure 8. The performance of LAWN does
not deviate significantly with respect to slot size. Yet in-DRAM

structures may take up less space given a greater slot size.

5.4 Filebench

Filebench is a widely-used macro-benchmark [10–12]. It provides

numerous real-world workloads and we chose four representative

ones (cf. Figure 9). When configuring these workloads, we set the

size of dataset to be about 60GB, the mean size of I/O requests to be

1KB and the running time to be 30minutes. Bandwidths of four com-

petitors are presented in Figure 9. From Figure 9, we observe that

with the write-intensive fileserver, the bandwidth of LAWN is 3.2×,
1.9×, and 2.0× that of Ext4, NOVA, and Fine-log, respectively. Due
to the substantial reduction in write amplification, LAWN dramati-

cally outperforms the other three competitive approaches. With

metadata-intensive varmail and read-intensive webproxy and web-

server, LAWN achieves comparable performance compared to NOVA
and Fine-log. Although LAWN might scatter data into zone slots,

assembling these scattered data in a fast memory device hardly

takes more time than sequential read used by NOVA and Fine-log.

6 CONCLUSION

We propose LAWN to reduce the write amplification in NVMM file

systems with DAX. LAWN leverages alternate writing that entails

writing updated data only once. It also respects data consistency

via imposing a strict execution order. Our evaluation reveals that

LAWN substantially boosts the performance of NOVA by up to 12×.

ACKNOWLEDGEMENT

This work is partially supported by Singapore University of Tech-

nology and Design under the research grant SRIS17123.

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

Fileserver Varmail Webproxy Webserver

Ba
nd

w
id

th
 (M

B/
s)

Workload

Ext4 NOVA Fine-log LAWN

Figure 9: Bandwidths of Four Competitors with Filebench

REFERENCES
[1] P. Zhou et al. A durable and energy efficient main memory using phase change

memory technology. In Proceedings of the 36th International Symposium on
Computer Architecture, ISCA ’09, pages 14–23, New York, NY, USA, 2009. ACM.

[2] X. Zhang and G. Sun. Toss-up wear leveling: Protecting phase-change memories
from inconsistent write patterns. In Proceedings of the 54th Design Automation
Conference, DAC ’17, pages 3:1–3:6, New York, NY, USA, 2017. ACM.

[3] J. Ahn et al. DASCA: Dead write prediction assisted STT-RAM cache architecture.
In Proceedings of 20th International Symposium on High Performance Computer
Architecture (HPCA), pages 25–36, 2014.

[4] X. Chen et al. AOS: Adaptive overwrite scheme for energy-efficient MLC STT-
RAM cache. In Proceedings of the 53rd Design Automation Conference, DAC ’16,
pages 170:1–170:6, New York, NY, USA, 2016. ACM.

[5] H. Luo et al. Two-step state transition minimization for lifetime and performance
improvement on MLC STT-RAM. In Proceedings of the 53rd Design Automation
Conference, DAC ’16, pages 171:1–171:6, New York, NY, USA, 2016. ACM.

[6] S. Yin et al. Disturbance aware memory partitioning for parallel data access in
STT-RAM. In Proceedings of the 54th Design Automation Conference 2017, DAC
’17, pages 84:1–84:6, New York, NY, USA, 2017. ACM.

[7] Micron and Intel. 3D XPoint technology.
http://www.micron.com/about/innovations/3d-xpoint-technology.

[8] C. Xu et al. Understanding the trade-offs in multi-level cell ReRAM memory
design. In Proceedings of the 50th Design Automation Conference, DAC ’13, pages
108:1–108:6, New York, NY, USA, 2013. ACM.

[9] J. Condit et al. Better I/O through byte-addressable, persistent memory. In SOSP
’09, pages 133–146, New York, NY, USA, 2009. ACM.

[10] S. R. Dulloor et al. System software for persistent memory. In Proceedings of the
Ninth European Conference on Computer Systems, EuroSys ’14, pages 15:1–15:15,
New York, NY, USA, 2014. ACM.

[11] J. Xu and S. Swanson. NOVA: A log-structured file system for hybrid volatile/non-
volatile main memories. In 14th USENIX Conference on File and Storage Technolo-
gies (FAST 16), pages 323–338, Santa Clara, CA, 2016. USENIX Association.

[12] J. Ou et al. A high performance file system for non-volatile main memory. In
Proceedings of the Eleventh European Conference on Computer Systems, EuroSys
’16, pages 12:1–12:16, New York, NY, USA, 2016. ACM.

[13] J. Xu et al. NOVA-Fortis: A fault-tolerant non-volatile main memory file system.
In Proceedings of the 26th Symposium on Operating Systems Principles, SOSP ’17,
pages 478–496, New York, NY, USA, 2017. ACM.

[14] J. Ren et al. ThyNVM: Enabling software-transparent crash consistency in
persistent memory systems. In Proceedings of the 48th IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 672–685, 2015.

[15] Q. Hu et al. Log-structured non-volatile main memory. In Proceedings of the
2017 USENIX Conference on Annual Technical Conference, USENIX ATC ’17, pages
703–717, Santa Clara, CA, 2017. USENIX Association.

[16] S. Pelley et al. Memory persistency. In Proceeding of the 41st Annual International
Symposium on Computer Architecuture, ISCA ’14, pages 265–276, Piscataway, NJ,
USA, 2014. IEEE Press.

[17] T.-Y. Chen et al. Enabling write-reduction strategy for journaling file systems
over byte-addressable NVRAM. In Proceedings of the 54th Design Automation
Conference 2017, DAC ’17, pages 44:1–44:6, New York, NY, USA, 2017. ACM.

[18] A. Memaripour et al. Atomic in-place updates for non-volatile main memories
with Kamino-Tx. In Proceedings of the Twelfth European Conference on Computer
Systems, EuroSys ’17, pages 499–512, New York, NY, USA, 2017. ACM.

[19] Q. Wei et al. Transactional NVM cache with high performance and crash consis-
tency. In SC ’17, pages 56:1–56:12, New York, NY, USA, 2017. ACM.

[20] C. Wang et al. Persisting RB-tree into NVM in a consistency perspective. ACM
Trans. Storage, 14(1):6:1–6:27, February 2018.

[21] Flexible IO (Fio) Tester. Fio. https://github.com/axboe/fio, 2017.
[22] J. Santos and S. Rao. FFSB, 2013. https://sourceforge.net/projects/ffsb/.
[23] FileBench. https://github.com/filebench/filebench, 2017.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryList_V1
 qi2base

		2018-09-04T17:11:35-0400
	Preflight Ticket Signature

