
ReForm: Static and Dynamic Resource-Aware DNN
Reconfiguration Framework for Mobile Device

Zirui Xu†, Fuxun Yu†, Chenchen Liu‡, Xiang Chen†
†George Mason University, Fairfax, Virginia, {zxu21, fyu2, xchen26}@gmu.edu

‡Clarkson University, Potsdam, New York, chliu@clarkson.edu

ABSTRACT

Although the Deep Neural Network (DNN) technique has been

widely applied in various applications, the DNN-based applications

are still too computationally intensive for the resource-constrained

mobile devices. Many works have been proposed to optimize the

DNN computation performance, but most of them are limited in

an algorithmic perspective, ignoring certain computing issues in

practical deployment. To achieve the comprehensive DNN perfor-

mance enhancement in practice, the expected DNN optimization

works should closely cooperate with specific hardware and system

constraints (i.e. computation capacity, energy cost, memory occu-

pancy, and inference latency). Therefore, in this work, we propose

ReForm – a resource-aware DNN optimization framework. Through

thorough mobile DNN computing analysis and innovative model

reconfiguration schemes (i.e.ADMM based static model fine-tuning,

dynamically selective computing), ReForm can efficiently and effec-

tively reconfigure a pre-trained DNN model for practical mobile

deployment with regards to various static and dynamic computa-

tion resource constraints. Experiments show that ReForm has ∼3.5×

faster optimization speed than state-of-the-art resource-aware op-

timization method. Also, ReForm can effective reconfigure a DNN

model to different mobile devices with distinct resource constraints.

Moreover, ReForm achieves satisfying computation cost reduction

with ignorable accuracy drop in both static and dynamic computing

scenarios (at most 18% workload, 16.23% latency, 48.63% memory,

and 21.5% energy enhancement).
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1 INTRODUCTION

In the past few years, the Deep Neural Network (DNN) technique

has been widely applied in various cognitive applications, such as

image classification [14], voice recognition [22], etc. Although effec-

tive and popular, the DNN-based applications are still too compu-

tationally intensive for resource-constrained platforms, especially
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the mobile devices. Therefore, many works have been proposed

to optimize the DNN computation performance leveraging novel

model designs [20], parameter compression [11], etc.

However, most optimization works are driven merely by a the-

oretical algorithm perspective, ignoring specific hardware and

system constraints associated with practical computing scenarios.

Therefore, many “algorithm-oriented” works fail to achieve compre-

hensive performance enhancement. For example, [27] shows that,

although the advanced DNN model of MobileNetV1 [10] achieves

19% computation workload reduction on the Pixel-1 Android smart-

phone, its practical inference latency gains 29%. Such contradictory

performance changes are caused by inconsistent optimization tar-

gets, where the aggressive structural compression fragments the

computation process and introduces considerable latency.

To achieve the comprehensive performance enhancement in

practical deployment, many recent DNN design and optimization

works have taken into account of various hardware and system

resource constraints, such as computation capacity, energy cost,

memory occupancy, inference latency, etc. [5, 25, 27]. For example,

Wang et al. [24] formulated energy loss in addition to the accuracy

loss, which guides the DNN training for certain energy budgets.

These works are referred as “resource-aware” DNN optimization.

Generally, these “resource-aware” DNN optimization works have

several critical challenges: (1) The adaptability for inconsistent re-

source constraints in various computing scenarios. Since different

computing scenarios have distinct specifications, the optimization

works need to be capable to identify and adapt to different con-

straint requirements. (2) The comprehensiveness for multiple re-

source constraints. To achieve comprehensive optimization, the

optimization works are expected to handle multiple constraints

simultaneously. (3) The reconfigurability for dynamic resource con-

straint change. During the practical deployment, especially on the

multi-task system like mobile devices, the constraints may be con-

tinuously changed by various applications. Therefore the optimiza-

tion work is expected be dynamically configurable for real-time

requirements. However, most of emerging “resource-aware” DNN

optimization work can’t fulfill all the challenges simultaneously.

To tackle these challenges, in this paper, we propose ReForm –

a resource-aware DNN optimization framework, which can com-

prehensively enhance DNN models’ computation performance on

mobile devices. Through innovativemodel reconfiguration schemes,

ReForm can efficiently and effectively optimize mobile DNN models

with regards to various static and dynamic resource constraints.

Specifically, we have the following contributions in this work:

• We identify and formulate the major computation resource

constraints for DNN computation on mobile devices.

• We propose a static DNN reconfiguration scheme to fine-

tune a pre-trained DNN model to a specific mobile device’s
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Figure 1: Structural Filter Pruning Overview

default computation resource. We formulate the fine-tuning

process as an ADMM [2] optimization problem, which can

retain optimal accuracy performance under multiple config-

urable constraints with satisfying efficiency.

• We propose a dynamic DNN reconfiguration scheme to adapt

a DNN model into real-time mobile computing scenarios. By

evaluating individual model component’s resource consump-

tion and accuracy impact, the proposed scheme selectively

compute the model components to balance the accuracy per-

formance and real-time constraints without model retraining.

• We implemented ReForm on multiple types of mobile devices,

and quantitatively evaluated its performance with practical

mobile dynamic computing scenarios.

The experiment results show that ReForm has optimal efficiency

with ∼3.5× faster speed than state-of-the-art resource-aware opti-

mization method. Also, ReForm can effectively reconfigure a DNN

model to different mobile devices with distinct resource constraints.

Moreover ReForm achieves satisfying cost reduction with ignorable

accuracy drop in both static and dynamic computing scenarios.

2 PRELIMINARY
2.1 DNN Computation Optimization

Considering the intensive DNN computation cost, many works

have been proposed for DNN computation optimization. Specifi-

cally, the optimization works can be categorized into several ma-

jor approaches: (1) Novel Model Design, such as ShuffleNet [20],

SqueezeNet [12], Xception [3]; (2) Parameter Compression, such as

filter pruning [11, 18, 21] andweight sparsity [7, 8]; (3) Approximate

Calculation, such as low rank [13] and quantization [4].

These “algorithm-oriented” works mainly take the model pa-

rameters and computing mechanism as the optimization targets.

For example, the filter pruning is considered as one of the most

effective optimization methods, which eliminates the insignificant

filters to reduce the major DNN computation workload – filter

convolution process. Fig. 1 illustrates the filter pruning process in

the ith convolutional layer. By pruning the insignificant filters, the

correspondingly feature maps are also eliminated in the ith layer’s

output. As the ith layer’s output feature maps are the inputs of the

(i + 1)th layer, all the filters in the (i + 1)th layer therefore have less

computation workload.

In this work, we adopt the filter pruning as the major tool for re-

configuration, expecting to take the advantages of both “algorithm-

oriented” and “resource-aware” optimization approaches.

2.2 Resource-Aware DNN Optimization

As aforementioned, the “algorithm-oriented” works can’t achieve

comprehensive optimization result. While, many “resource-aware”

optimization works have emerged by taking into account of prac-

tical computation resource constraints: (1) For the computation
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Figure 2: Scheme Overview of Static DNN Reconfiguration

capacity constraint, Gordan et al. [6] evaluated the computation

workload of each DNN component and dynamically reconfigured

the model for different computing scenarios. (2) For the energy

constraint, Yang et al. [26] identified the DNN layer-wise energy

consumption and implemented corresponding filter pruning for

energy-constrained system. (3) For the memory constraint, Liu et

al. [19] leveraged the reinforcement learning to optimize the DNN

model to meet certain memory budget.

However, most existing“resource-aware” DNNoptimizationworks

only address single constraint in a specific computing scenario,

which can’t fulfill the comprehensive optimization expectation.

2.3 Mobile DNN Computation Constraints

Although the mobile devices are considered as the most promising

platform for DNN computing, the “resource aware” optimization

works for mobile DNN computing have even more critical require-

ments than the general challenges as aforementioned:

(1) Compared to general computing platforms, the computation

constraints of mobile devices have significant diversity with re-

gards to default device configurations, computing scenarios, and

real-time requirements. In other words, the computation resource

constraints on mobile devices have greater complexity. Therefore,

the mobile optimization works should be designed with more flexi-

bility and effectiveness. (2) The mobile computing scenarios have

distinct dynamics. When deployed on mobile devices, DNN based

applications will be affected by much more real-time issues. For

example, with starting a new application or closing an existing

one, the available system computation resource will be dynamically

changed. Conventionally, the optimization methods of DNNmodels

replies on heavy model component analysis and hours of model

retraining [6, 9]. Considering the real-time requirement, the mobile

optimization works are expected with certain efficiency.

Motivated by these challenges, we propose our “resource-aware”

optimization framework for mobile DNN computing.

3 STATIC DNN RECONFIGURATION

WITH ADMM BASED FINE-TUNING

In this work, we propose ReForm – a resource-aware DNN optimiza-

tion framework, which can comprehensively enhance DNNmodels’

computation performance on mobile devices. In ReForm, two DNN

optimization schemes are proposed to optimize the DNN computa-

tion performance with regards to static and dynamic computing

scenarios, respectively.

In the static scheme, the reconfiguration is focused on fine-tuning

a pre-trained DNN model to adapt to a specific mobile device’s de-

fault computation resource configuration. Fig. 2 shows the overview

of the proposed scheme: The scheme first identifies and formulates

specific device’s computation resource constraints in terms of mem-

ory, energy, and computation capacity. Then, a pre-trained DNN



model is reconfigured via an ADMM based fine-tuning process to

meet all the constraints and enhance the computation performance.

3.1 Computation Resource Constraints

Identification and Formulation

In mobile device, there are various computation resource con-

straints, which can be formulated into mathematical expression

and be easily inserted into the optimization objective function. In

our scheme, we focus on three typical constraints, including com-

putation capacity, memory occupancy and energy consumption.

3.1.1 Computation Capacity Constraint. Usually, the compu-
tation capacity C required by a DNN computation is represented
as the total number of MACs (Multiply-Accumulate Operations),
which can be modeled as:

C =

L∑

i=1

ni∑

j=1

r
j
i s

j
i ni−1h

j
iw

j
i (1)

where r
j
i and s

j
i represent j

th filter’s kernel size in ith layer, h
j
i and

w
j
i denote the corresponding height and width of output feature

map, L is the total layer number and ni is the filter numbers in ith

layer. According to the computation unit’s specification, the total

computation cost C has a upper budget bound BC , which denotes

its maximum capability.

3.1.2 Memory Occupancy Constraint. We then calculate the
memory for running a DNN using the total number of bits as-
sociated with weights and the feature maps as:

M = Bf

L∑

i=1

ni∑

j=1

r
j
i s

j
i ni−1+Ba

L∑

i=1

ni∑

j=1

h
j
iw

j
i , (2)

whereM is the total memory cost. Bf and Ba are data bandwidth

which usually equals to 32 bits in the hardware platforms. We set

different memory cost budget BM during the DNN reconfiguration

process according to specific hardware platforms.

3.1.3 Energy Consumption Constraint. We then formulate the
total energy consumption E and its constraint. Usually, the total
energy consumption in a DNN includes two main parts: computa-
tion energy cost Ec and memory access energy cost Em . According
to the formulation of computation capacity, the former one can be
represented as total cost of all MACs in the DNN, i.e., Ec = εcC .
Whereas the latter one is depended on the stored weights and fea-
ture maps. In this paper, according to [19], we assume that all the
weights are stored in the Cache while all the feature maps are stored
in the DRAM. Therefore, the total energy consumption is:

E =Ec + Em = εc

L∑

i=1

ni∑

j=1

r
j
i s

j
i ni−1h

j
iw

j
i +

εf Bf

L∑

i=1

ni∑

j=1

r
j
i s

j
i ni−1 + εaBa

L∑

i=1

ni∑

j=1

h
j
iw

j
i ,

(3)

where εc represents the energy consumption for each MAC opera-

tion. εf and εa denote the energy cost per bit when accessing the

Cache and DRAMmemory, respectively. Denote BE as the available

energy budget which can be allocated to DNN during executing.

3.2 Fine-tuning Process Formulation
After identifying the potential computation resource constraints for
specific device, we leverage the filter pruning technique to realize
DNN reconfiguration. Firstly, we multiply each output feature map

with a gate F
j
i for filter selection, where j means the jth output

feature map in ith layer. The original value of gate F
j
i equals to 1.

During the fine-tuning process, we will leverage the lasso regular-

ization to force the F
j
i approach to 0 and we remove output feature

map whose gate F
j
i value below a given threshold value. There-

fore, for DNN model fine-tuning to specific hardware platform, we
aim to solve the following optimization problem by embedding all
potential resource constraints:

min
F ∈{0,1},θ

Loss(F , θ ) + λR(F ), s .t ., Ccon
m (F ) ≤ bm , (4)

where Loss(F , θ ) is used to maintain the model accuracy, F denotes

the set of all F
j
i . R(·) is a sparse regularization term to achieve the

filter pruning based model regulation, which usually denotes as

norm-1 value: ‖F ‖1. C
con
m (F ) represents the mth type of compu-

tation resource constraint which mentioned above and bm is its

corresponding budget. Since we want to speed up the optimization

process, we change ≤ to = in our reconfiguration scheme. There-

fore, the objective function could be interpreted as minimizing both

accuracy loss and filter numbers in the network but approximat-

ing to the given budget at the same time. In the next step, we will

introduce how to use ADMM algorithm to optimize the objective

function we formulated above.

3.3 Fine-tuning Process Optimization with

ADMM-based Algorithm
Although the formulated DNN fine-tuning process with Eq. 4 is flex-
ible and comprehensive, it will be prohibitively difficult to solve via
directly stochastic gradient descent method, since the constraints
Cconm (F ) could be complex, non-differentiable, and non-convex.
Therefore, we explore the ADMM algorithm to decompose the
original optimization problem down into several easier-to-solve
sub-problems. Before applying ADMM, to simplify computation
process, we first put the constraintsCconm (F ) = bm into the Eq. 4 as
norm-2 term:

min
F ∈{0,1},θ

Loss(F , θ ) + λ1R(F ) + λ2 ‖C
con
m (F ) − bm ‖22 . (5)

Leveraging the ADMM algorithm, we further introduce a simple
auxiliary variable Z to replace F in the equation terms of sparse
regularization and hardware constraints. Then, the augmented La-
grange function of Eq. 5 will be formulated as:

L(F , Z , u) =Loss(F , θ ) + λ1R(Z ) + λ2 ‖C
con
m (Z ) − bm ‖22

+ uT (F − Z ) +
ρ

2
‖F − Z ‖22 ,

(6)

where u is a Lagrange Multiplier. Then by defining u = ρs , we
derive the scaled form of ADMM and get:

L(F , Z , s) =Loss(F , θ ) + λ1R(Z ) + λ2 ‖C
con
m (Z ) − bm ‖22

+
ρ

2
‖F − Z + s ‖22 −

ρ

2
‖s ‖22 .

(7)

We could use ADMM to solve the problem Eq. 7 through decom-
position and iteratively solving subproblems in the kth iteration:

F k+1 = argmin
F

L(F k , Zk , sk ), (8)

Zk+1 = argmin
Z

L(F k+1 , Zk , sk ), (9)

sk+1 = sk+F k+1−Zk+1 . (10)

In every sub-problem, we only optimize the targeted variable

and fix the other variables with values taken from last iterations.

For example, in Eq. 8, we fix Z and u but optimize F according

to the Eq. 7. Therefore, F and Z are updated iteratively and in an

alternating way. ADMM converges when the difference between F
and Z is smaller than a given threshold ϵ .
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By using proposed static DNN reconfiguration scheme, we can

optimize a DNN model under all potential computation resource

constraints for specific platforms with high optimization efficiency.

4 DYNAMIC DNN RECONFIGURATION

WITH SELECTIVE COMPUTING

Although the static DNN reconfiguration scheme can customize

DNN models for static platform requirements, dynamic compu-

tation resource constraints might still be introduced by various

real-time mobile applications. Therefore, in this section, we pro-

pose a dynamic DNN model reconfiguration scheme to adapt DNN

model to dynamic computation resource by selectively computing

filters in the network.

Fig. 3 shows the overview of proposed dynamic DNN model

reconfiguration scheme. Firstly, we determine the filter computing

priority by identifying a filter selection priority indicator. This in-

dicator can be derived by conducting filter resource mapping and

filter accuracy impact analysis. Then, with selection priority indica-

tor obtained, we further propose our dynamic selective computing

paradigm to dynamically reconfigure the DNN model generated

from the static reconfiguration. By doing this, the DNN model can

be optimized for all dynamic computation resource constraints.

4.1 Resource Aware Filter Significance
4.1.1 Dynamic Resource Mapping. Since filters in same layer

has identical resource consumption, based on the neural network

structure and computation mechanism, we can formulate the re-

source consumption for any filter in the ith layer with regard to

memoryMi , energy Ei , and latency Li :

Mi = B(ri sini−1+hiwi+ri+1si+1ni+1), (11)

Ei =εc (ri sini−1hiwi + ri+1si+1ni+1hi+1wi+1)+

εwB(ri sini−1 + ri+1si+1ni+1) + εaBhiwi ,
(12)

Li = (ri sini−1hiwi+ri+1si+1ni+1hi+1wi+1)/p , (13)

where risi and hiwi represent the calculated sizes of the filter and

feature map. ni−1 is the number of the output feature maps in the

(i − 1)th layer, B is the data bandwidth (usually 32-bit). p means the

processor’s average computation capability in terms of MACs.

Based on these formulations, a preliminary resource-mapping

analysis for VGG-13 [23] is shown in Fig. 4. (a), (b), and (c) rep-

resent each filter’s corresponding energy consumption, memory

occupancy and inference latency, respectively. We can find that

all 13 layers in VGG-13 have distinct resource consumption prefer-

ences. For energy consumption and inference latency, stop one filter

computation in 2nd layer can lead to largest energy and latency

reduction. On the contrary, stopping filter’s computation in last 4

layers will cause larger memory reduction.

4.1.2 Accuracy Impact Analysis. To obtain the consumption-

accuracy trade-off, we need to further investigate each filter’s accu-

racy impact. Since the accuracy impact differs for different layers,
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Figure 4: Resource Mapping and Layer Accuracy Impact

we need to divide the analysis into two steps: comparing layer’s

accuracy impact firstly and then measuring the filter’s accuracy

impact in each layer.
1. Layer Accuracy Impact Analysis. The first step aims to reveal

layer’s accuracy impact. For each layer, the impact can be measured

by the model’s accuracy drop when a certain portion of filters are

gradually stop computing in this layer (empirically, we adopt 20% in

each time). Larger accuracy drop indicates the layer’s bigger impact

(denoted as LI ) to the classification results. For example, Fig. 4 (d)

shows the LI distribution of all layers in VGG-13. We can find that

2nd to 7th layers have relatively larger LI values, which indicate

higher accuracy impact.
2. Filter Accuracy Impact Analysis. The second step aims to deter-

mine filter’s accuracy impact in each layer. In here, we introduce
contribution index (CI ) to indicate the filter’s accuracy impact,
which is defined by each filter’s total differential impact to the
network’s final loss value Z:

Z (A
j
i+δ ) = Z (A

j
i )+

∂Z (A
j
i )

∂A
j
i

∗Δ, (14)

CI
j
i =

∑
|
∂Z (A

j
i )

∂A
j
i

|, (15)

where A
j
i denotes the activation of jth filter in ith layer and Z (A

j
i )

means its corresponding final loss value. The coefficients matrix
∂Z (A

j
i )

∂A
j
i

represents filter’s contribution to the nth task. We use aver-

age L1-norm of the coefficients as CI, which is the filter’s average

contribution to final accuracy. With higher CI, the filter has more

impact to the network accuracy.

4.1.3 Selection Priority Indicator. Based on the analysis above,

we can evaluate the consumption-accuracy trade-off for each filter,

which can be used as the priority indicator for selective computing:

P I
j
i =

LIi×norm(CI
j
i )

αMnorm(Mi )+αEnorm(Ei )+αLnorm(Li )
, (16)

where LIi × norm(CI
j
i ) is the comprehensive accuracy impact for

jth filter in ith layer, norm(Mi ), norm(Ei ), and norm(Li ) are respec-
tively the normalized memory, energy, and latency consumption.

αM , αE , and αL are the consumption weights determined by practi-

cal constraints. The filters with higher PI
j
i values are supposed to

have higher accuracy impact and less resource consumption, which

will be favored by selective computing.

4.2 Dynamic Selective Computing Paradigm

Since the resource constraints are dynamic during the DNN recon-

figuration, we further propose the DNN dynamic selective com-

puting algorithm to optimize the network without retraining. The



Algorithm 1 DNN Dynamic Selective Computing Algorithm

Input: 1)Reconfigured DNN model after fine-tuning process; 2)total

computation cost C total
m , real-time resource budget br ;

2: Initialize the Selection Priority Index P Il
while C total

m −
∑
Di
j > br do

4: Masking the filter computing with least P Il ;

Regard filter with sub-least P Il value as least one

6: end while

Return Reconfigured DNN

algorithm is shown inAlgorithm. 1. DuringDNN-based applications

executing, the system consistently obtains the available resource

br that can be allocated to DNN. Once any DNN computation costs

Ctotal
m exceeds the available budgetbr , the filter with least PI

j
i value

in current status will be masked for computing in a filter pruning

manner. Then the DNN total computation cost Ctotal
m is updated

and the filter with sub-least PI
j
i value will be updated as the least

one in next masking status. The system iteratively executes the

masking process until Ctotal
m below br . By applying this algorithm,

a DNN can be dynamically reconfigured to meet any resource con-

straints introduced by real-time applications. Since all PI
j
i values

are determined by pre-analysis, no further computation cost will

be introduced. Also, to ensure the real-time performance, no model

retraining is utilized. Although slight accuracy drop is inevitable,

the consumption-accuracy trade-off is highly manageable based on

thorough trade-off analysis.

5 EXPERIMENT

In this section, we conduct comprehensive evaluations to demon-

strate the effectiveness of the proposed framework through three

perspectives: optimization efficiency, static reconfiguration and

dynamic reconfiguration.

5.1 Experiment Setup

We implement the static DNN reconfiguration scheme in ReForm

in Tensorflow [1] environment. The dynamic DNN reconfiguration

scheme is implemented with Tensorflow Lite.

To evaluate the performance of the proposed ReForm, two well-

known models are considered: LeNet [17] and VGG-13 [23]. The

corresponding datasets are MNIST [16] and CIFAR-10 [15]. The

original accuracy is 97% for LeNet and 90% for VGG-13. We evaluate

ReForm on 4 commercial off-the-shelf mobile platforms, including

3 smartphones and 1 smart home device, which are Nexus 4, Honor

8, Redmi 3S and Xiaomi Box. These 4 platforms are equipped with

different hardware configurations in perspectives of processors,

DRAM size, battery capacity.

5.2 Experiment Evaluation
5.2.1 ReForm Optimization Efficiency Evaluation. We first eval-

uate ReForm’s static DNN reconfiguration efficiency and compare

its performance with NetAdapt [27], which is one of the state-of-

the-art resource-aware DNN optimization methods. It should be

notified that, for simplicity, the original NetAdapt only consider

inference latency constraint. Since latency is not a constraint during

DNN static reconfiguration, we reproduce their method with mem-

ory occupancy consideration in our experiment. We reconfigure

the LeNet model on MNIST and VGG-13 model on CIRFAR-10 by

utilizing both methods. The memory constraints are set as 12.4MB

and 31MB respectively. During the evaluation, we set λ1 and λ2
with values from 10−2 to 102.

Tab. 1 shows the static DNN reconfiguration efficiency evalua-

tion by comparing the optimization time cost. The notes below the

table are the original baselines for LeNet and VGG-13. It is observed

that both methods can keep original accuracy for LeNet on MNIST,

and ReForm needs 3 minutes to finish the reconfiguration. Mean-

while, the time consumed by NetAdapt is 10 minutes. For VGG-13

on CIFAR-10, the proposed ReForm needs 19 minutes while the

NetAdapt needs 72 minutes. Therefore, ReForm has 3.3× and 3.8×

speed-up than NetAdapt, indicating a better optimization efficiency.

5.2.2 ReForm Static Reconfiguration Evaluation. Our proposed

framework’s static reconfiguration is further evaluated by compar-

ing theVGG-13 reconfiguration results of both ReForm andNetAdapt

on 4 mobile platforms mentioned above with different computation,

energy and memory budgets. The accuracy drop is constrained

within 1.5%. NetAdapt is evaluated under individual computation,

energy, and memory constraints that is shown as the first three

histograms in Fig. 5, and ReForm is evaluated under all constraints

which is demonstrated as last histogram. The original VGG-13 com-

putation costs are used as baseline, which are 317.04M(Million

MACs) for computation capacity, 62MB for memory occupancy,

and 33.06mJ for energy cost.

Fig. 5 indicates that both ReForm and NetAdapt can reconfig-

ure the original network under the given constraints. However,

the reconfigured network may still exceed the other constraints as

NetAdapt only consider one constrain during reconfiguration. For

example, NetAdapt can reduce the memory below to memory bud-

get 45MB when it used to reconfigure network on Nexus 4, while

the energy and computation capacity are still larger than the given

budgets. On the contrary, ReForm can optimize VGG-13’s resource

consumption since it takes all computation resource constraints

into consideration during the reconfiguration process. Take Nexus

4 as an example, the given budget are 270M, 45MB, and 26mJ. After

reconfiguration, the proposed framework reduce computation ca-

pacity from 317.04M to 259.46M, memory occupancy from 62MB to

43.25MB, and energy consumption from 33.06mJ to 25.96mJ.

Therefore, compared with NetAdapt, our proposed framework

can optimize the network under all computation resource con-

straints with neglect accuracy drop and can achieve at most 18%

capacity, 30% memory, and 21.5% energy reduction.

5.2.3 ReFormDynamic Reconfiguration Evaluation. The dynamic

reconfiguration of the proposed framework is also evaluated on

Honor 8 and its specific VGG-13 model. The model is obtained from

the above static reconfiguration and runs in an image recognition

application. According to our measurement, the memory occupancy

of this VGG-based application includes model size, application na-

tive data size, camera graphic size and other overhead which is 2.5

Table 1: DNN Optimization Efficiency Comparison

Accuracy Memory Time Cost

LeNet
NetAdapt [27] 97% 12.38MB 10min

ReForm 97% 12.35MB 3min

VGG-13
NetAdapt [27] 90% 30.67MB 72min

ReForm 90% 30.3M 19min
∗Original LeNet Computation Cost Baseline: Capacity:42.77M Memory: 12.6MB Energy:3.56mJ

∗Original VGG-13 Computation Cost Baseline: Capacity:317.04M Memory: 62MB Energy:33.06mJ
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Figure 5: The Static Reconfiguration Performance for

Various Mobile Platforms

times as model size. Three sets of representative mobile applica-

tions are considered as the background computing scenarios which

includes gaming, Internet and VR camera. In addition, we add VR

camera (charging) to show a more clear comparison, meaning that

the mobile device is charging during VR scenario. The experiment

results are obtained based on 10000 times task executions.

Fig. 6 shows ReForm adaptation result in the four computing sce-

narios. With different applications running, the resource budgets

left for model execution are different (denoted by black lines). And

some scenarios can not afford the computation resource for the

VGG-based application execution, such as gaming and VR applica-

tions. For example, in VR camera scenario, ReForm first examines

the energy budget and finds the original VGG-based task’s energy

consumption exceeds the budget. In such case, ReForm dynamically

masks 19.8% filters with 1.3% accuracy drop and reduces model

consumption to meet the energy constraint. On the contrary, in VR

camera(charging) scenario, ReForm finds there is no constraint for

energy consumption because of charging. It further examines the

memory budget and reduce the memory occupancy until meets the

given budget with only 0.8% accuracy drop.

Therefore, the DNN related applications can be well balanced

with acceptable accuracy performance and manageable resources

under the dynamic reconfiguration of ReForm.

6 CONCLUSION

In this paper, we propose a resource-aware DNN reconfiguration

framework ReForm to solve the challenges of deployingDNNs inmo-

bile platforms. Through innovative model reconfiguration schemes,

ReForm can efficiently and effectively optimize mobile DNN models

with regards to various static and dynamic computation resource

constraints. The experiment results show that ReForm has optimal

efficiency with ∼3.5× faster speed than state-of-the-art resource-

aware optimization method. Also, ReForm can effective reconfigure

a DNN model to different mobile devices with distinct resource con-

straints. Moreover, ReForm achieves satisfying computation cost

reduction with ignorable accuracy drop in both static and dynamic

computing scenarios (at most 18% workload, 16.23% latency, 48.63%

memory, and 21.5% energy enhancement). In summary, our work

can comprehensively optimize DNN models to various constraints

simultaneously and provide optimal performance enhancement in

various computing scenarios.
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