
TACUE: A Timing-Aware Cuts Enumeration Algorithm for
Parallel Synthesis

Mahmoud Elbayoumi, Mihir Choudhury†, Victor Kravets†, Andrew Sullivan†, Michael Hsiao
Mustafa Elnainay‡

ECE Dept., Virginia Tech, Blacksburg, VA, USA, 24061
†IBM T. J. Watson Research Center, Yorktown Heights, NY, USA, 10598

‡Computer and Systems Engineering Department, Alexandria University, Alexandria, Egypt, 21544
mbayoumi@vt.edu,{choudhury, kravets, sullia}@us.ibm.com

hsiao@vt.edu, ymustafa@alexu.edu.eg

ABSTRACT
Achieving timing-closure has become one of the hardest tasks
in logic synthesis due to the required stringent timing con-
straints in very large circuit designs. In this paper, we pro-
pose a novel synthesis paradigm to achieve timing-closure
called Timing-Aware CUt Enumeration (TACUE). In TACUE,
optimization is conducted through three aspects: (1) a new
divide-and-conquer strategy is proposed that generates mul-
tiple sub-cuts on the critical parts of the circuit; (2) two cut
enumeration strategies are proposed; (3) an efficient parallel
synthesis framework is offered to reduce computation time.
Experiments on large and difficult industrial benchmarks
show the promise of the proposed method.

Categories and Subject Descriptors
B.6 [Electronic Design Automation]: Logic Synthesis

Keywords
Timing Closure, BDD bidecomposition, parallel synthesis

1. INTRODUCTION
Logic synthesis is the automated generation of an opti-

mized logic networks (in terms of delay [1], area and/or
power [2]) from another unoptimized/sub-optimized logic
network. Over the years, many researchers have been in-
terested in optimizing certain dedicated hardware compo-
nents. For example, Sklyarov et al. [3] had proposed a
novel technique for synthesizing parallel hierarchical finite
state machines; Roy et al. [4] had proposed a customiz-
able prefix graph structures that yield adders with optimal
performance-area trade-off. Other researchers had devel-
oped various synthesis algorithms for dedicated platforms.
For example, Uma et al. [5] had explored constraint synthe-
sis optimization technique for targeted FPGA device. An-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
DAC’14 , June 01 - 05 2014, San Francisco, CA, USA
Copyright 2014 ACM 978-1-4503-2730-5/14/06 ...$15.00.
http://dx.doi.org/10.1145/2593069.2593227

other research aims toward building general methodologies
that is capable of efficiently synthesizing both control and
data-path components [6].

This paper fits in the last group, that is, general timing-
aware synthesis. As far as we know, there are two major
bodies of work that are related to delay-optimization with
cuts generation. The first was proposed by Baneres et al.
[7], in which a dominator-based partitioning technique is
used to find topologically ordered clusters in the circuit-
under-optimization (CUO), followed by logic restructuring
on these clusters. The second timing-aware work conducts
cuts enumeration on And-Inverter-Graphs (AIGs). For ex-
ample, Chatterjee et al. [8] had proposed a cut factorization
scheme to enumerate bounded size cuts up to 16 inputs.
Their technique is usually used in technology mapping and
re-writing. Martinello et al. [9] had extended the concept of
factor cuts to KL-cuts, where K is number of inputs and L
is number of outputs in a circuit cut. Because factor cuts are
not restricted to convex cuts [10], an unbounded amount of
area increase may result. This increase in area would lead,
in many cases, to undesirable degradation in circuit timing
behavior. Although KL-cuts extend the application of fac-
tor cuts to peep-hole optimization and regularity extraction,
they still suffer from having a restricted number of inputs
and work exclusively with AIGs.

Our work is uniquely different from the previous work in
several points. Unlike to Baneres work [7] that only groups
nodes in the critical paths and generates a single solution,
we enumerate sub-cuts in dominator-based partitions. As a
result, we are less likely to be stuck at local optima as our
approach explores more possible solutions to improve the
timing behavior of CUO. Secondly, their approach allows
the grouping of different dominant cuts, which can result
in a significant increase of area, thereby indirectly degrade
the timing performance of the optimized solution. On the
contrary, we propose two different cutting strategies, one
that aims to preserve the topological structure of CUO and
the other one would allow for other possible topologies.

In contrast with work by Chatterjee [8] on factor cuts, our
approach could handle larger cuts (TACUE have been tested
on up to 60 inputs sub-cuts). In addition, our technique runs
on a general circuit graph. Thus, each vertex represents
a general Boolean function (not just ”‘AND” function as
in AIG). Subsequently, our method can be applied in all
synthesis stages and it is not restricted only to technology
mapping stage.

Previous experiments were conducted on fairly small cir-
cuits (ISCAS’85, ISCAS’89, ITC’99 and some other small
circuits). In our case, we conducted experiments on very
large industrial benchmarks. In addition, previous meth-
ods only optimized their circuits using no longer actively
developed SIS tool [11]. In contrast, we first apply extensive
optimization techniques (i.e. BooleDozer [12] industrial syn-
thesis tools, ABC [13], SIS, etc.) before using our synthesis
framework to show that our synthesis framework exhibits
a superior outcome for very-large very-hard-to-optimize cir-
cuit instances. Finally, we propose an efficient parallel syn-
thesis framework for applying different synthesis optimiza-
tion techniques in the generated TACUE sub-cuts.

TACUE shows up to 22.22% reduction in the number of
levels compared with state-of-the-art timing-aware synthesis
algorithms. With adequate tuning, we could achieve up to
45.72% of reduction in the worst slack with a slight increase
in area of 1.87% in average (6.51% in the worst case). With
our work-balanced parallel synthesis engine, we get a speed
up of 2.18×, 3.99×, 5.42×, and 7.12× over 2, 4, 6 and 10
processes, respectively.

The rest of the paper is organized as follows. The next
section briefly introduces the preliminaries on Binary Deci-
sion Diagram (BDD) bi-decomposition, time-driven logic bi-
decomposition, vertex dominator and dominant cuts. TACUE
algorithm is presented in Section 3. In Section 4, we apply
TACUE algorithm to different cutting approaches: topology-
aware cuts and topology-masking cuts. We propose an effi-
cient parallel synthesis framework for TACUE cuts in Sec-
tion 5. Our results are presented in Section 6. Finally, the
paper is concluded in Section 7.

2. PRELIMINARIES

2.1 BDD Bi-decomposition
An efficient BDD bi-decomposition is proposed in [14]. It

starts by building the BDD of each output. Then, it recur-
sively decomposes each output BDD to two smaller logically
related BDDs. In order to achieve a provably optimum vari-
able partition for the given logic function, we use a fast,
scalable algorithm proposed in [15]. It constructs an undi-
rected graph called the Blocking Edge Graph (BEG). Please
refer to [15] (and reference therein) for more details.

2.2 Time-Driven Logic Bi-Decomposition
Time-driven logic bi-decomposition is proposed in [16].

It synthesizes a timing-aware circuit by first bi-decomposing
the Boolean representation of the circuit, then it re-balances
the functions using a tree-height reduction technique. Kravets
et al. [17] had proposed a general symbolic decomposition
template for logic synthesis to infer its decomposition pat-
terns. Using this template, the decomposition is performed
in a Boolean domain unrestricted by the representation of
a function. Bi-decomposition technique in [16] is applied
iteratively on the decomposed templates.

2.3 Vertex Dominator and Dominant Cuts
Vertex dominator and dominant cuts have been used in

many EDA domains [18]. Due to lack of space, we refer
readers to [18] for more details.

3. TIMING-AWARE CUT ENUMERATION

1: TACUE(C)
2: cbase = createBaseCone(C)
3: queue.enq(cbase)
4: while queue.size() > 0 do
5: v = queue.deque()
6: combCount = CalCombCount(v.boundary())
7: for i = 1 to combCount do
8: nPairEnum(v, i, queue)
9: end for

10: end while

Figure 1: TACUE algorithm outlines.

1: nPairEnum(v, i, queue)
2: c = getCritVertex(v)
3: if i = 1 then
4: for j = 1 to c.length() do
5: cnew = createNewCut(v, c[i])
6: queue.enq(cnew)
7: end for
8: else
9: for j = 1 to c.length() do

10: vnew = createNewCut(v, c[i])
11: nPairEnum(vnew, i− 1, queue)
12: end for
13: end if

Figure 2: Enumerates all n combinations at the
boundary of a sub-cut.

We target to generate time-critical sub-cuts from bigger
cuts. In other words, given a cut in the CUO, our objective
is to enumerate, heuristically, sub-cuts in the critical paths
of the CUO. These sub-cuts will be passed later to various
logic synthesis optimization techniques. If they successfully
find better solutions, a heuristic is used to select the opti-
mal choice among them. Then, the optimal choice will be
admitted, and hence, this would contribute to the overall
timing closure of the CUO.

The TACUE algorithm for enumerating critical sub-cuts
is shown in Fig. 1. TACUE starts with a critical cut C.
Then, it uses a Breadth-first (BF) approach for enumer-
ating the sub-cuts. First, TACUE creates base sub-cuts,
which contain the root with all direct children by calling
createBaseCut (line 2). TACUE adds the base cut to a
queue (line 3). Then it loops until the queue becomes empty
(line 4-10). It dequeues a sub-cut from the queue (line 5)
and calculates the possible combinations that could be con-
ducted on the boundary of this sub-cut (line 6). Finally,
it enumerates all combinations using nPairEnum function
(line 7-9).

Fig. 2 depicts the algorithm for nPairEnum function.
nPairEnum enumerates all i combinations at the bound-
ary of a sub-cut v and adds it to queue. We measure the
criticality of a vertex by vertex slack (the difference be-
tween the required arrival time and the actual arrival time).
nPairEnum enumerates only the critical vertices, that is,
it has a cut-off value on vertex slack. Thus, vertices with
slack larger than certain threshold will not be added to the
enumerated sub-cuts list.

Fig. 3 illustrates our approach in which TACUE gener-
ates the time-critical sub-cuts. Let the slack cut-off value
be 1. TACUE takes the original cut tO (the cut that needs
to be enumerated as depicted in Fig. 3.a) and a set of tun-

Figure 3: Cut enumeration illustration. (a) the orig-
inal cut, (b) sub-cuts generated in the first level, and
(c) sub-cuts generated in the second level.

ing parameters. The cut-enumeration algorithm starts with
the root a of tO and enumerates sub-cuts in a BF manner.
The vertices of cut tO are labeled with nodes a, b, . . . , etc.
The direct children of a are g, b and f . Without loss of
generality, let the slack of vertex g be 3 (which is greater
than the cut-off slack value). Then, vertex g and all of its
children will not be included in any enumerated sub-cuts.
Now, TACUE will enumerate all possible combinations for
the other direct children nodes b and f . As vertex b has
slack value of zero (b is in a critical path, and all critical
vertices have a zero slack) and is a direct child of a, it will
be included in any enumerated sub-cuts. For node f , let us
assume that its slack is 1, thus it is not on the critical path.
However, its slack is smaller than the cut-off value, thus, it
will be included in the future sub-cuts. However, because
it is not on a critical path, it does not need to be included
in every sub-cut. Thus, at this level, we have two sub-cuts
(a, {b}) and (a, {b, f}) as depicted in Fig. 3.b.

In the second round, the cut-enumeration algorithm will
enumerate cuts in the next level for all cuts in the first level
as depicted in Fig. 3.c. It starts with cut (a, {b}), the di-
rect children of this cut are c, d and f . We have 7 com-
binations, The children vertices will be enumerated one by
one. The resultant sub-cuts will be (a, {b, c}), (a, {b, d})
and (a, {b, f}). The next step would be enumerating them
two by two. The resultant sub-cuts will be (a, {b, c, d})
, (a, {b, c, f}) and (a, {b, d, f}). Finally we consider three
nodes at a time. Thus, all three direct children will be taken
altogether in sub-cut (a, {b, c, d, f}). This cut is not shown
in the Fig. 3 because the cut-off limit for generated sub-cuts
is 8 (which is a user input). In the case that the cut-off limit
is increased, this final cut and sub-cuts in deeper levels will
be generated and added.

4. CUT ENUMERATION
In the previous section, we described how TACUE takes

a cut C and enumerates timing-critical sub-cuts from C.
However, we did not describe how cuts were generated in

1: GenerateStructAwareCuts()
2: GenDomCuts()
3: CL = FilterCuts()
4: for all C in CL do
5: TACUE(C)
6: end for

Figure 4: Topology-Aware cuts generation algo-
rithm.

1: GenerateStructMaskCuts()
2: CL = GetCritOutCuts()
3: repeat
4: for all C in CL do
5: TACUE(C)
6: end for
7: CL =getNextCritCuts()
8: until CL is NOT empty

Figure 5: Topology-Masking cuts generation algo-
rithm.

TACUE. In this section, we describe two divide-and-conquer
strategies to generate these cuts.

4.1 Topology-Aware Cuts
In some cases, we need to preserve the connectivity of the

CUO. This is useful when we start with an initially ”‘good”
topology, and it is desirable to keep the same topology to be
used later.

One way to achieve connectivity preservation is by re-
stricting changes to be made only inside each dominant cut.
This intuition is motivated by the self-contained nature of
dominant cuts, that is, any vertex in a dominant cut does
not fanout to any vertex outside that cut. In other words,
we model each dominant cut as a single super node and we
restrict the change of logic to occur only inside these su-
per nodes. This restriction results in preserving the general
connectivity of circuit nearly the same.

Fig. 4 depicts topology-aware cuts generation algorithm.
It starts by generating dominant cuts (line 2). Then the
critical dominant cuts are enumerated (line 3). Finally, it
iterates on all filtered cuts and enumerates them (lines 4-5).

4.2 Topology-Masking Cuts
Fig. 5 depicts the topology-masking cuts generation algo-

rithm. Contrary to the topology-aware cutting strategy, this
strategy does not take the CUO connectivity preservation
into consideration because we may start with an initially
poor timing-performance CUO or locally optimized CUO.
The algorithm starts with identifying critical outputs of the
CUO and generates cuts from these outputs (line 2). These
cuts have the critical sink vertices as a root and all its fan-in
source vertices as the boundary vertices. Secondly, it enu-
merates sub-cuts from these critical cuts (lines 4-5). If a
sub-cut is being accepted as a new solution, it is committed
to CUO. The aforementioned process is repeated at the crit-
ical boundary vertices of the new committed sub-cut (line
7).

5. PARALLEL SYNTHESIS FRAMEWORK
In this section, the optimized parallel strategies for TACUE

in a synthesis framework are described.

1: ParrSynth()
2: CL = EnumerateCuts()
3: for all C in CL do
4: ParSynth(C)
5: end for

Figure 6: Parallel Synthesis Algorithm

Table 1: Circuit Statistics
ckt IN OUT DFF GATES LV AR WS

ia0 279 624 968 12339 27 48602 -36.335

ia1 229 517 870 146608 26 47110 -28.619

ia2 204 508 840 127823 26 39667 -19.344

ib0 253 626 963 149566 26 48234 -37.644

ib1 201 515 867 146530 27 46763 -26.999

ib2 176 505 841 127782 27 39126 -18.384

5.1 Parallel Framework - Optimized Approach
In order to have a well-balanced parallel framework, we

propose to split the cut enumeration step from parallel syn-
thesis. This is based on noting that cut enumeration only
takes a small fraction of time compared to the synthesis step.
Thus, we will not have a tangible performance degradation
if we enumerate the cuts sequentially. Meanwhile, we boost
the performance of the major part of our framework by hav-
ing a full parallelism in the synthesis optimization stage.

Fig. 6 lists our proposed parallel framework algorithm.
As shown in Fig. 6, sub-cuts are first pre-computed. Next,
they are evenly distributed among different workers (which
achieves a well-balanced workload). Thirdly, each worker
applies different synthesis optimization techniques on sub-
cuts assigned to it. All successful sub-cuts are sent back to
the master process, and the master determines which sub-
cut would be committed to the original circuit. The used
criteria aim to decrease the number of levels while maintain-
ing a limited percentage of area increase.

6. RESULTS
The proposed TACUE algorithm and parallel synthesis

framework have been developed with C++ and the perfor-
mance was evaluated on 11 dedicated 2.7 GHz Intel Xeon
cores, running a 64-bit Linux distribution. We have com-
piled our program with g++ under -O3 option. We have
used large industrial benchmarks to evaluate our work. The
characteristics for our benchmarks are reported in Table
1. We applied many optimizations before applying TACUE
(i.e., SIS, ABC, BooleDozer and industrial synthesis tools
. . . etc.). In doing so, we guarantee that our benchmarks
are already ”‘well optimized”, making further optimization
harder. For each circuit, the number of inputs (IN) is first
listed, followed by the number of outputs (OUT), the num-
ber of sequential elements (DFF), the total number of gates
(GATES), the number of levels (LV), the total area (AR)
for the combinational part of the benchmarks (measured in
number of basic unit cells). Finally, the worst slack (mea-
sured in picoseconds) is reported in the last column. Note
that all of the circuits have a negative worst slack, which
mean that, the current state of art synthesis tools
could not achieve timing-closure on these designs.

6.1 Topology-Aware Cuts

Table 2: No. of Level Reduction with Topology-
Aware Cuts

ckt
Itr. # 1 Itr. # 2

MLRP (%)
BD TD BD TD

ia0 25 24 25 23 14.81

ia1 25 25 24 23 11.53

ia2 25 24 23 23 11.53

ib0 25 24 24 23 11.53

ib1 25 24 25 23 14.81

ib2 25 24 24 23 14.81

Table 3: Area Report for Topology-Aware Cuts

ckt
Itr. # 1 Itr. # 2

MAIP (%)
BD TD BD TD

ia0 48698 48630 48668 48616 0.1975

ia1 47148 47213 47174 47231 0.2569

ia2 39656 39676 39666 39713 0.1160

ib0 48304 48223 48302 48195 0.1451

ib1 46771 46899 46782 46962 0.4256

ib2 39216 39312 39227 39275 0.475

Table 2 reports the number of levels after applying TACUE
using the topology-aware cuts. We apply TACUE for 2 iter-
ations (Itr. # 1 and Itr. # 2) with BDD bi-decomposition
(BD) and time-driven logic synthesis (TD). The last column
reports the Maximum Level Reduction Percentage (MLRP)
for each case. The results showed that we can reduce the
number of levels by 14.81% for topology-aware cuts. Table 3
reports the corresponding circuit area. The last column re-
ports Maximum Area Increase Percentage (MAIP) for each
case. Our approach showed that TACUE has a very slight
area increase of only 0.475%.

Table 4 reports the number of dominant cut (DC) com-
puted and the number of accepted dominant cuts (AC). AC
is defined as the number of dominant cuts that the synthe-
sis algorithm had successfully reduced its number of levels.
We report results for 3 iterations. For each iteration, we
ran both BDD Bi-decomposition and time-driven logic bi-
decomposition. We always had a higher acceptance rate
in TD case over BD because TD tends to better optimize
the cut in terms of delay. In addition, the number of AC
decreases with the increasing number of iterations because
the topology-aware cutting strategy restricts TACUE to pre-
serve the topology. Thus, we do not have a large room for
changing the design structure.

6.2 Topology-Masking Cuts
Table 5 reports the number of levels after applying TACUE

with topology-masking cuts. TACUE was applied for 3 itera-
tions for both BDD BD and TD as before. The results show
that we could get up to 22.22% reduction (compare with
14.81% for topology-masking cuts in Table 2) in the number
of levels. This is due to that we did not require TACUE to
preserve the topology.

Table 6 reports the percentage area increase from the
topology-masking technique. We noticed that TD perform
poorly (especially with the increase in number of iterations)
from the area point of view (up to 44.7% area increase). This
is because we allow for changing the topology, and TD had
a large acceptance rate. On the other hand, BD synthesis

Table 4: Dominant Cut Statistics for Topology-Aware Cuts

ckt

Itr. # 1 Itr. # 2 Itr. # 3

BD TD BD TD BD TD

DC AC DC AC DC AC DC AC DC AC DC AC

ia0 710 60 710 149 790 14 812 60 784 3 817 24

ia1 653 56 653 144 720 14 772 56 719 1 771 20

ia2 634 35 634 118 640 7 669 45 641 2 709 18

ib0 675 61 675 161 721 8 773 65 745 3 766 29

ib1 593 55 593 136 628 16 688 70 652 8 717 28

ib2 617 41 617 131 630 8 674 48 636 2 683 17

Table 5: No. of Level Reduction with Topology-
Masking Cuts

ckt
Itr. # 1 Itr. # 2 Itr. # 3

MLRP (%)
BD TD BD TD BD TD

ia0 26 24 23 22 23 21 22.22

ia1 25 23 23 21 23 21 19.23

ia2 25 23 23 21 23 21 19.23

ib0 24 23 23 21 23 21 19.23

ib1 25 24 23 21 22 21 22.22

ib2 25 24 23 22 22 21 22.22

Table 6: Area Report for Topology-Masking Cuts

ckt
Itr. # 1 Itr. # 2 Itr. # 3

MAIP
BD TD BD TD BD TD

ia0 48889 49658 50829 60527 51773 66322 36.5

ia1 47753 52981 48127 61422 49415 67599 43.5

ia2 39702 39757 40113 48385 40447 54049 36.3

ib0 49299 54703 51004 62566 51376 68565 42.15

ib1 47267 50691 49022 58715 50326 67698 44.7

ib2 39315 39352 40891 48683 41957 52999 35.5

would reduce number of levels (up to 22%) while maintain-
ing an adequate area increase (7.21% in circuit ib2). This
increase in area will be reflected on the physical synthesis
stages as it will be discussed later. We also noticed that,
if we restrict the number of iteration in this stage to one,
we would get enhancement on both logic and physical syn-
thesis stages. This is because the number of levels is highly
reduced from the first iteration with a limited percentage of
area increase.

6.3 Impacts of TACUE on Physical Synthesis
We have run our physical synthesis tool on the circuits

optimized by TACUE for topology-aware cuts. We report the
worst slack in Table 7. The Maximum Worst Slack Increase
Percentage (MWSIP) is reported in the last column. We
could gain 21.16% increase of worst slack on average and
45.72% in the best case.

The impact of TACUE on physical synthesis is also inves-
tigated. Table 8 reports the worst slack after each iteration.
Results show that we could gain 18.54% increase in the worst
slack on average and 31.23% in the best case.

We also manually conduct experiments with different tun-
ing parameters to optimize the overall flow of our synthesis
tool. Table 9 depicts the best results we could obtain for
each benchmark. We report worst slack and area in each
benchmark for base case (BC) and best case (BSC). In addi-

Table 8: Worst-Slack Report for Topology-Masking
Cuts

ckt
Itr. # 1 Itr. # 2 Itr. # 3 Itr. # 4

MWSIP
BD TD BD BD BD

ia0 -35.5 -31.3 -30.5 -28.4 -30.7 21.9

ia1 -26.3 -36.5 -30.0 -31.5 -26.4 8.13

ia2 -18.0 – -19.2 -13.3 -16.1 31.2

ib0 -32.2 -40.1 -35.1 -36.5 -35.8 14.49

ib1 -25.4 -29.5 -23.9 -24.2 -27.6 11.64

ib2 -16.4 -14 -16.9 -19.5 -18.9 23.85

tion, we report the synthesis technique (ST) we had utilize in
the best case. We have 3 cases in which BD is superior to TD
and other 3 cases in which TD is superior to BD. Moreover,
we report the cutting technique (CT) we had used (TA: for
topology-aware and TM: for topology-masking). The results
show that TM is generally superior to TA. The Worst Slack
Reduction percentage (WSRP) show that we could obtain
an average 21.98% and up to 45.72% in the best case (for
ia2). Results on Level Reduction Percentage (LRP) show
that we have an average of 9.37% LRP with minimum of
3.84% (in ia1) and 14.81% (in ia0). Results for Area In-
crease Percentage (AIP in the last column) show that we
have an average of 1.869% increase in area with minimum
increase of 0.2569% (in ia2) and maximum area increase of
6.52% (in ia0).

6.4 Parallel Synthesis Framework
Table 10 reports the time required for TACUE and our

parallel Synthesis framework to optimize our benchmarks.
The time is reported for one iteration of topology-aware cuts
and our synthesis method is time-driven logic bi-decomposition.
We report time for 1, 2, 4, 6, 10 and 20 processes. We gain an
average speed-up of 2.18×, 3.99×, 5.42×, 7.12× and 8.78×
on 2, 4, 6, 10 and 20 processes, respectively. The speed-up
showed that we could achieve a good work balance. The rea-
son for the super-linear speed for 2 processors and almost
linear for 4 processors is that these are conducted on quad-
core processors. Thus, in case of 2 and 4 processes we get
benefit from locality and advanced parallelism features on
the same processor. Our results show that we still get note-
worthy speed-up for 6 and 10 processes. This is due to the
fact that TACUE takes a small fraction of the computation.
In addition, the way we organize the parallelism framework
is efficient.

7. CONCLUSION
In this paper, a novel paradigm to accomplish timing clo-

Table 7: Worst-Slack Report for Topology-Aware Cuts

ckt
Itr. # 1 Itr. # 2 Itr. # 3 Itr. # 4

MWSIP (%)
BD TD BD TD BD TD BD TD

ia0 -32.602 -29.72 -31.342 -31.237 -33.355 -31.046 -28.579 -29.501 21.35

ia1 -28.213 -29.103 -26.842 -26.579 -28.333 -29.157 -26.648 -29.61 7.13

ia2 -15.803 -20.81 -14.583 -10.499 -13.019 -15.39 -15.395 -14.361 45.72

ib0 -34.172 -35.763 -42.46 -32.997 -34.076 -33.973 -33.525 -39.275 10.94

ib1 -24.881 -22.204 -22.861 -25.984 -26.114 -26.074 -25.387 -20.398 24.45

ib2 -17.331 -21.352 -15.19 -20.382 -15.81 -24.511 -17.126 -19.164 17.37

Table 9: Physical Synthesis Best Results Summary

ckt
WS AREA

CT ST # of itr. WSRP(%) LRP(%) AIP (%)
BC BSC BC BSC

ia0 -36.335 -28.368 48602 51773 TM BD 3 21.93 14.81 6.52

ia1 -28.619 -26.293 47110 47753 TM BD 1 8.13 3.84 1.36

ia2 -19.344 -10.499 39667 39713 TA TD 2 45.72 11.53 0.2569

ib0 -37.644 -32.189 48234 49299 TM BD 1 14.49 3.84 2.21

ib1 -26.999 -22.204 46763 46899 TA TD 1 17.76 11.11 0.2908

ib2 -18.384 -14 39126 39352 TM TD 1 23.85 11.11 0.5776

Table 10: parallelism Results (time measured in sec-
onds)

ckt/np. 1 2 4 6 10 20

ia0 1781.1 859.7 437.6 326.3 264.3 205.6

ia1 2015.8 935.1 516.0 351.6 303.3 227.6

ia2 1377.1 600.6 333.4 249.0 183.5 157.7

ib0 1735.3 903.7 497.6 368.1 280.8 208.3

ib1 1670.9 732.9 404.2 310.1 219.9 193.1

ib2 1588.7 658.2 374.2 277.1 197.1 168.1

sure of very large, previously optimized circuits is presented.
In order to tackle the scalability problem in our industrial
benchmarks, we propose a divide-and-conquer heuristic, which
we call Time-Aware CUt Enumeration (TACUE) algorithm.
The basic idea behind TACUE is to generate many well-
chosen sub-cuts along the critical paths of the circuits. We
apply different synthesis techniques to these sub-cuts, and
we choose the best solution in terms of delay and area. Some
circuits start with a ”‘good” topology, while others do not
have this feature. Thus, sometimes we need to make a deci-
sion whether to keep the current topology or not. Accord-
ingly, two different cutting strategies have been proposed to
handle this issue. Finally, we have also proposed an effi-
cient parallel synthesis framework for TACUE. Significant
reductions in worst slack was achieved with only a slight
to moderate area overhead. Although TACUE, with syn-
thesis framework, seems to be sequential in nature on first
impression, we could come up with an elegant way to sepa-
rate these data dependencies and sharing. The results show
that we could gain almost linear and sometimes super-linear
speedups.

8. REFERENCES
[1] T. Matsunaga et. al. Power and delay aware synthesis

of multi-operand adders targeting lut-based fpgas.
sym. on Low-power elect. and des., 2011.

[2] W. Shiue. Power/area/delay aware fsm synthesis and
optimization. Elsevier Mic. J., 2005.

[3] V. Sklyarov et. al. Synthesis of parallel hierarchical
finite state machines. ICEE, 2013.

[4] S. Roy et. al. Towards optimal performance-area
trade-off in adders by synthesis of parallel prefix
structures. DAC, 2013.

[5] R. Uma et. al. Performance enhancement through
optimization in fpga synthesis: Constraint specific
approach. 2013.

[6] L. Amarù et. al. Bds-maj: a bdd-based logic synthesis
tool exploiting majority logic decomposition. DAC,
2013.

[7] D. Baneres et. al. Dominator-based partitioning for
delay optimization. Proc. of the 16th ACM G. L. sym.
on VLSI, 2006.

[8] S. Chatterjee et. al. Factor cuts. ICCAD, 2006.

[9] O. Martinello Jr et. al. Kl-cuts: a new approach for
logic synthesis targeting multiple output blocks.
DATE, 2010.

[10] R. Glantz et. al. Finding all convex cuts of a plane
graph in cubic time. Springer, Alg. and Comp., 2013.

[11] E. Sentovich et. al. Sis: A system for sequential circuit
synthesis. U. C.,B., 1992.

[12] L. Stok et. al. Booledozer: logic synthesis for asics.
IBM J. of R. & D., 1996.

[13] R. Brayton et. al. Abc: An academic
industrial-strength verification tool. CAV., 2010.

[14] C. Yang et. al. Bds: A bdd-based logic optimization
system. IEEE Trans. on CAD of IC and Sys, 2002.

[15] M. Choudhury et. al. Bi-decomposition of large
boolean functions using blocking edge graphs. ICCAD,
2010.

[16] J. Cortadella. Timing-driven logic bi-decomposition.
IEEE Trans. on CAD of IC and Sys, 2003.

[17] V. Kravets et. al. Resynthesis of multi-level circuits
under tight constraints using symbolic optimization.
ICCAD, 2002.

[18] R. Tarjan. Finding dominators in directed graphs.
SIAM J. on Comp., 1974.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20120516081844
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 320
 None
 Up
 0.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryList_V1
 qi2base

