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Embedded nonvolatile memory (NVM) and computing-in-memory (CIM) are
significantly reducing the latency (fyac) and energy consumption (Eyac) of multiply-
and-accumulate (MAC) operations in artificial intelligence (Al) edge devices [1,2].
Previous ReRAM CIM macros demonstrated MAC operations for 1b-input, ternary-
weighted, 3b-output CNNs [1] or 1b-input, 8b-weighted, 1b-output fully-connected
networks with limited accuracy [2]. To support higher-accuracy convolution neural
network heavy applications NVM-CIM should support multibit inputs/weights and
multi-bit output (MAC-OUT) for CNN operations. One way to achieve multibit weights
is to use a multi-level ReRAM cell to store the weight. However, as shown in Fig.
24.1.1, multibit ReRAM CIM faces several challenges. (1) a tradeoff between area
and speed for multibit input/weight/MAC-OUT MAC operations; (2) sense amplifier's
high input offset, large area, and high parasitic load on the read-path due to large BL
currents (/) from multibit MAG; (3) limited accuracy due to a small read/sensing
margin (/s) across MAC-OUT or variation in cell resistance (particularly MLC cells).
To overcome these challenges, this work proposes, (1) a serial-input non-weighted
product (SINWP) structure to optimize the tradeoff between area, fy,c and Eyuc; (2)
a down-scaling weighted current translator (DSWCT) and positive-negative current-
subtractor (PN-ISUB) for short delay, a small offset and a compact read-path area;
and (3) a triple-margin small-offset current-mode sense amplifier (TMCSA) to tolerate
a small /. A fabricated 55nm 1Mb ReRAM-CIM macro is the first ReRAM CIM
macro to support CNN operations using multibit input/weight MAC-OUT. This device
achieves the shortest CIM-MAC-access time (f,;) among existing ReRAM-CIMs
(twac=14.6ns with 2b-input, 3b-weight with 4b-MAC-0UT) and the best peak Ey,g of
53.17 TOPS/W (in binary mode).

Figure 24.1.2 presents the structure of the proposed ReRAM-CIM macro, using a
1T1R SLC ReRAM array, a current-aware BL clamper (CABLC), DSWCT, SINWP
sampler-and-combiner (SINWP-SC), PN-ISUB, and TMCSA. This work places both
positive and negative weights in the same array, but in different columns, unlike [1].
Each 3b-signed weight (W=1b-sign+2b-data) is stored in the same row of either the
2-column positive (PWG) or negative (NWG) group. In each PWG/NWG, the even
BLs (BLM) represent the MSB and the odd BLs (BLL) represent the LSB. In other
words, 4 SLC ReRAM cells are used to store 3b signed weights. To support
configurable 1b/2b input (IN), this work translates 2b-input into two sequential
single-bit (IN; and IN,) WL pulses in one CIM clock cycle. For an n-by-n CNN kernel,
? weights are stored in n* consecutive rows. CABLC clamps the BL voltage (Vgc)
for current-mode sensing. A BL current (/) that is equal to the sum of /7 cell currents
(huc) is generated via binary multiplication (INxW) between a WL (IN) and a 1b-weight
(W), as in [1]. The fg, of BLM (/g.ss) and BLL (/p.ss) do not include their place-
value processed in array (non-weighted /). DSWCT and SINWP-SC then combine
the fg.uss and fg. g5 0f @ PWG/NWG to generate a weighted data-line (DL) current
(o) for the MAC value (MACV) using 2b-inputs and 2b-weights. PN-ISUB outputs
the difference (/syg) between the o of PWG (/) and NWG (/p.y) as well as the sign
bit (DOUTggy=0 when Iy.p >lpy), Where lsyg=|lp.p = Ip.y|- The current reduction
provided by DSWCT and PN-ISUB allows for an /g that is much smaller than the
total current (/o wss + /o.1ss) Of the accessed PWG and NWG. This allows TMCSA to
use smaller transistors (achieving a lower parasitic load), which results in faster
response times, smaller area and less power compared to schemes without DSWCT
and PN-ISUB. Finally, each 10 repeats the operation of TMCSA in 3 sequential phases
to detect the same /g5 with 3 different frgr currents (/rers 10 Jrers), and then outputs
a 4b MACV with 3b data from TMCSA and a sign bit from PN-ISUB.

Figure 24.1.3 shows the operations of DSWCT, SINWP-SC, and PN-ISUB. DSWCT
uses a current-mirror (CM) to translate /p_ygs and o s into lower weighted DL
currents (hyoo), Mwomss= (1/P)-2-Iorwss and hypiise=(1/p)-lorss- Choice of the
reduced-amount ratio, p (p=4 for this work) is based on maintaining sufficient fy,
while reducing power consumption and the transistor size (area and parasitic load)
required for the remaining read-path. SINWP-SC operations occur in two phases.
(1) For the 1 WL pulse (INy), INSW=1 and the gate-voltage (Vsem-mss/ Veem-Lse) Of

CMyyss/CM 5 of DSWCT is sent to N3/N6 and stored in capacitor CM/CL to sample
the hyor-mss/ hwo-Lss resulting from INgxW. (2) For the 2" WL pulse (IN,), INSW=0 and
Veommse! Veow-Lss iS sent to N4/N7. The size of N4/N7 is 2x that of N3/N6. SINWP-SC
then combines the drain currents of N3, N4, N6 and N7 to output a weighted /y, as
follows:
IDL_LSB[O]'WDL-LSB[O]/8+IDL_MSB[U]'WDL-MSB[1]/4+/DL_LSB[1]'WDL-LSB[O]/4+/DL_MSB[1]'WDL-MSB[1]/2

In PN-ISUB, a comparator compares Iy p With fy_y to output the sign bit (DOUTjg,=0
when fyp> Ip..y), and DOUTg,s, enables PN-ISUB to connect the larger/lower current
path of DL to the high/low-current input (/L) terminal of a current-subtractor. If
DOUTggn=1, h¢= oy, and h¢= I p, then the current-subtractor generates the PN-
ISUB output current fyyg (=hc— hc, =loo.n— i if DOUTggy=1). Compared to schemes
that convert ./ I,y to MACV separately before the digital combiner as in [1], PN-
ISUB removes current leakage from HRS cells (n* lyrg) when .y >> Iy, OF €nable
larger current reduction (or small /syg) when .y ~=/y. . to improve sensing yield in
the CSA.

Figure 24.1.4 shows the operation of TMICSA, which comprises two pairs of PMOS
transistors (P1:P2 and P3:P4), four pairs of switches (SW1-SW4), two overdrive-
coupling capacitors (C1, C2), four discharge NMOSs (DN1-DN4), an NMOS latch
(N1-N3) and two current inputs (/y and k). In stand-by mode, SW3 and SW4 are
on, and SW1, SW2, and VDD_SA are off. DSD and CHD are high and DN1-DN4 are
turned on to hold nodes DP1, DP2, LQ and LQB at OV. In phase-1 (PH1, V4,
sampling), DSD, SW1 and SW2 are off and VDD_SA is on. The threshold voltages
(Vi to Vi) of diode-connected P1 to P4 are stored on their gates (i.e. Vgy=Vpp—
Vint, Vg = Vop = Vans)- In phase-2 (PH2, V4, sampling and coupling), SW4 is off,
SW1 is on, and fy/ ler flows through P1/P2. This results in Vg; = Vop— Vigs — Vou
and Vg, = Vop— Vio— Vovrer, Where Vouan/ Vovreris the overdrive voltage of P1/P2 for
sampling fy/ lwe @s in [3]. In the meantime, Voy/ Vo, is coupled to Vg, / Vg, via
C1/C2, so that Viy= Vop— Vina— Vous and Vgg = Vop— Vis— Voo. 1deally, fpy =21 and
Ip3 =2 lger Since transistors P3 and P4 are twice as big (2-finger style) as P1 and P2.
In phase-3 (PH3, A/ amplifying), SW2 is on and SW1 and SW3 are off. Thus, the
current at node LQ iS fpg— fy=2/kee— /. The current at node LQB is fpy— fyer=2/y—
Irer- FOr a given period (Tpys), the voltage difference (1 q.qg) between node LQ and
LQB is proportional to [(2/ker— hn) = (2hn= fer)]: Tons = 3+ (/= Irer)- Tons, Which is 3x
the sy (=hy— k) in conventional CSA. In phase-4 (PH4, latch), SAEN is high and
N1-N3 are enabled to detect 1,z and generate a digital output at SAOUT.

Figure 24.1.5 shows the performance of the proposed schemes. For 3x3-CNN kernels
DSWCT reduces the worst-case current by 3.6x. The combination of DSWCT and
PN-ISUB schemes enables a 3.6-3.8x reduction in MACV-current. The SINWP
scheme achieves an FoM (SM/ (Energy x Area)) 1.4-6x better than those of
sequential-input-parallel-weight (SIPW) and parallel-input-parallel-weight (PIPW)
structures. TMCSA enabled 6x and 1.7x reductions in input offset, compared to
conventional CSA and DR-CSA [1], using a 70pA input current.

Figure 24.1.6 presents the measurement results from a 1Mb ReRAM-CIM macro
fabricated using 1T1R SLC ReRAM in a 55nm CMOS process. A demo system was
built using our ReRAM-CIM with an FPGA host. For CNN operations using 3x3
kernels and 2b-input and 3b-weight, the captured waveforms confirm that £, for a
4b MAC output (1b sign and 3b data) is 14.6ns, excluding the path-delay. Using 3x3-
CNN kernels with 1b-input and 3b-weight, shmoo results confirm a #y,; of 11.75ns
per cycle at typical Vqp, and the system test achieve an 88.52% inference accuracy
on the CIFAR-10 dataset. The measured peak energy-efficiency is 53.17TOPS/W in
binary mode (1b-input, 3b-weight, 4b-MAC-0UT) and 21.9TOPS/W in multibit mode
(2b-IN, 3b-weight, 4b-MAC-OUT) using CIM peripheral circuits and a reference
generator. This work also achieves a 3.4x improvement in energy-efficiency and a
1.3x faster #,,c, compared to [1]. Figure 24.1.7 presents the die micrograph and chip
summary.
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Figure 24.1.1: Multi-bit computation in nonvolatile memory. Figure 24.1.2: Proposed ReRAM-CIM macro.
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Figure 24.1.3: Sequential input parallel weight structure. Figure 24.1.4: Structure and operation of TMCSA.
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Figure 24.1.5: Performance comparison of this work vs prior-art. Figure 24.1.6: Measurement results.
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Figure 24.1.7: Die micrography and summary Table.
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