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Abstract 
Hierarchy is key to managing design complexity. A hierarchical 

design system needs to maintain many views of the same design 
entity. Some of the examples might be physical view for placement, 
routing and extraction; transistor schematic view for circuit simula- 
tion, timing characterization and noise analysis; a gate level sche- 
matic view for timing, ver$cation, logic simulation, fault simulation 
and automatic test pattern generation (ATPG); a register transfer 
level (RTL) view for speciflcation and high level simulation etc. In 
order to achieve highest system peflormance, multiple design itera- 
tions are necessary, each iteration involving both forward and back- 
ward pass through hierarchy, with manual changes at any level of the 
hierarchy. This poses an essential challenge of keeping all views of 
same design entity in sync. In this paper we describe an automatic 
tool called GateMaker; that has been developed to extract a gate 
level schematic model from a transistor level schematic model for the 
purposes of logic simulation, fault simulation and automatic test 
pattern generation. This eliminates a manual process and offers 
manifold advantages that will be discussed in this papel: 

1. Introduction 
A cell or megacell in any custom or semi-custom digital design 

methodology is a manually manageable design piece that stands on 
multiple views. Each view (also called a model or book or library 
element in various terminologies) is created to support a level of 
abstraction suitable for a particular analysis. A gate level schematic 
view of a cell is necessary for supporting fault simulation, automatic 
test pattern generation and potentially other tasks such as logic sim- 
ulation, verification, static timing analysis, cell sizing (adjusting 
transistor gate widths) etc. In this paper, we describe an automatic 
method of extracting a gate level schematic model from a transistor 
level schematic model for the purposes of fault simulation and test 
pattern generation. This method has been embodied in a tool called 
GateMaker. There are many advantages of having an automated pro- 
cess for this extraction. We describe some of the advantages below. 
1.1. Consistency of Gate Level Schematic Model 

Besides saving designers' time, an automatic tool provides sev- 
eral advantages. First of all, it provides a consistent modeling 
approach. In Figure 1, we show a custom implementation of an 
exclusive OR gate. 
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Figure 1 : Custom implementation of an Exclusive-OR gate 

At gate level there are several possible ways of representing the 
transistor network shown in Figure 1. Some of these possible imple- 
mentations are shown in Figure 2. 
* This work was performed when the author was with IBM Corp. 
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Figure 2 : Some possible gate level realizations of Figure 1 
It is easy to see that the absolute number of stuck-at faults and 

the number of equivalent faults in each of the gate level realization 
is different. Once we attach stuck-at faults with intemal nets of these 
models, it is easy to see that they have different number of stuck-at 
faults. This leads to an inadvertent weighting of the fault coverage. 
Such weighting is a serious concern because in the context of the 
larger design, improved fault coverage may mean a different gate 
level model rather than improved test quality. 

An automatic tool brings consistency to the modeling process, so 
that the overall fault coverage is a more meaningful number 
1.2. Quality of Test Patterns 

There are many reasons why an ATPG tool runs on a gate level 
model for the design. Firstly, it provides a layer of abstraction and 
hides the test pattern generator from technology dependent informa- 
tion. Therefore, even if the underlying circuit techniques change, the 
test pattern generator does not have to be rewritten. Secondly, most 
switch level test pattern generators are not capable of handling com- 
plex circuits such as memory, clock regenerators etc. A layer of 
abstraction eases the level of complexity. Thirdly, the circuit data 
volume is reduced when transistor level schematics are translated to 
gate level models. Fourthly, faults at the transistor level tend to pro- 
duce a large number of cases where the faults are possibly detected. 
From a practical standpoint this is not desirable, because the ultimate 
goal is to generate a set of vectors to supply to a tester, where the 
tester makes a pass/fail decision. Thus having too many possibly 
detected faults increases uncertainty about fault coverage number 
without providing any patterns. In contrast, test pattern generation at 
the gate level model runs the risk of producing irrelevant patterns. 
This may happen when the gate level model of a transistor level 
schematic is logically correct under fault-free situation but the faulty 
situations have no corresponding situation at the transistor level 
model. 

Thus the extractor not only has to extract a gate level schematic 
that is valid under fault-free situation, but also 'valid' under faulty 
situation. On this issue it differs from most of the prior work in the 
area of functional extraction [l-71. We shall revisit this point later in 
sections 3.3 and 3.5. 

In section 2, we review the target CMOS circuit families and our 
extraction goal in context of these circuits.. In section 3 we describe 
the key steps of our extraction algorithm. In section 4 we present the 
implementation details and finally conclude in section 5. 
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2. Review of Target Circuit Families 
Generally speaking most logic circuits can be classified in the fol- 

lowing four broad categories: Combinational static circuits, DCVS 
circuits (static or dynamic), pass gate logic and dynamic domino 
logic. In each category several permutations are possible. In this sec- 
tion, we will describe some of the realizations and devote some com- 
ments relevant to their modeling. 

2.1. Non-Clocked Logic 
Non-clocked logic describes any category of static CMOS cir- 

cuit, where a valid input produces a valid output regardless of any 
prior condition. 
2.1.1. Complementary P & N Networks [8] 

This is the most popular CMOS design style. No matter what the 
input pattem is, there is a valid path from output node to Ground or 
output node to Vdd. The P and the N networks are usually dual of each 
other, meaning a series(paralle1) connection of nFETs imply a paral- 
lel(series) connection of pFETs. In Figure 3 we give an example of 
such a circuit and describe how one might amve at a gate level model 
for that. 

Figure 3 : Example of a dual fully complementary gate 
Step 1: Compression of series transistors 

Step 2: Compression of parallel transistors 
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Step 3: Drop the transistors for a functional model 
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Figure 4 : Final model for Figure 3 

From the pictorial depiction of the steps, it should be apparent that we 
can perform series parallel compression of transistors by replacing 
them with just one transistor in successive steps. At the final step, a 
topology check can prove that the P and the N networks are comple- 

mentary and then we can drop the transistors for a final model. 
There may be a situation when P and N networks are function- 

ally complementary but not dual of each other as described in Figure 
5. 

4 

Figure 5 : A P & N network after series parallel compression 

F and G are AND-OR networks derived after successive series- 
parallel compression steps. The issue of modeling here is a tricky 
one. One can take a safe approach and model it as shown in Figure 6 
using tristate drivers. 

Figure 6 : Model using tristate drivers 

However, usually one can run boolean equivalence check of 
function F and G and determine whether they are complementary or 
not. If F and G are pIoven to be complementary then the output 0 
can be modeled as _F or -G . Either network may be used. The 
advantages of using F or G is that: 

a) we get a simpler model 
b) simulation and test generation runs faster because X genera- 

tion is suppressed. Tristate drivers tend to produce X under 
some faulty situations when enable input of both drivers are 
turned off. These faults can not be detected in purely combi- 
national circuits (they may be possibly detected), and only 
potentially detected in sequential circuits where sequential 
test pattem generation is used. 

The disadvantage in using a simpler model is that the structural 
equivalence is lost and the resultant gate level circuit may not repre- 
sent the complete switch level model. GateMaker allows users to 
optionally choose one or the other. However, whatever approach is 
used, it should be used consistently. 
2.1.2. Static DiTerential Cascode Voltage Switch (DCVS) [9] 

Static Differential Cascode Voltage Switch circuits produce 
complementary outputs. The logic function is performed by the pull 
down network of nFETs and pFETs are used in a cross coupled man- 
ner for pull up as shown in Figure 7. 

t. 3 

Figure 7 : Example of a DCVS circuit 
Static DCVS circuit modeling can proceed with the first step of 

series parallel compression of transistors to yield a circuit shown in 
Figure 8 next. 
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L--I--l 
Figure 8 : making the path conductingReduced static DCVS circuit 

However, at this stage it is important to know the relationship 
between external inputs to determine if F and G are complementary 
(such as between inputs A and A if they are supplied as external 
inputs). At this_point, it is known that 0 is high when node O_ is 
low and node 0 is low when F is high. Therefore 0 = G and 0 = 
F. Thus we can reduce the circuit to F and G, provided: 

a) relationship between inputs are known and 
b) F and G are complementary 

If F and G are not complementary an error should be flagged. In 
normal erocessing steps, Output 0 willbe described as some func- 
tion of 0 and other inputs and output 0 will be described as some 
function of 0 and other inputs. In such a case a logical loop in argu- 
ment is-detected. In this case the argument is resolved by looking past 
node 0 when the function 0 is being determined. It is however not 
very efficient to look beyond the input of the immediate node of the 
driving gate. Therefore, the program should back up and reason past 
when a loop is detected. 

2.1.3. Pass-Transistor Logic 

In complementary and static DCVS CMOS circuits we described 
so far, a transistor is used either for pull up or pull down of output 
node. In pass-transistor circuits the same transistor is used for both 
pull up as well as pull down of a node. Even though current may flow 
in both directions, usually signal flows is in one direction. 
2.1.3.1. Single Ended Pass-Transistor Logic [lo] 

This is commonly used in non-differential logic. In Figure 1 we 
had given an example of a single ended pass-transistor logic. Here we 
describe the basic steps involved in deriving in a model for that cir- 
cuit. 

The key step involved in modeling such circuits is enumeration 
of paths through channel connected components. From the circuit it 
is apparent that output 0 is inverted function of N . To determine 
the function at N, all paths that traverse through source to drain or 
drain to source of a transistor are explored beginning at N. Such paths 
may terminate either at Vdd or at Ground or at a primary input node 
such as A. Once the condition for conduction of path is established it 
is captured in a logical form using AND gates. The output of the 
AND gate enables the appropriate terminal node for the path. This is 
shown next 

Rgure 9 : After series-parallel compression 
of transistors in Figure I 

0 

Figure 10 : After enumerating 4 possible paths 
from node N of Figure 9 

Figure 11 : After eliminating duplicate 
tristate driver of Figure 10 

Once a tristate model has been derived, the next goal is possible 
simplijcation of tristate drivers. The tristate drivers are checked to 
see if further simplification is possible. This step will be described in 
detail in Section 3.7.5. It tums out that the tristate drivers (TSDs) can 
be replaced by AND gates and the dotting of the drivers can be 
replaced by a OR gate. The result is shown in Figure 12. 

0 
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Figure 12 ; After converting the tristate circuits into AND-OR gates 

Next step involves elimination of parallel duplicate gates as 
shown in Figure 13 below. 

0 

Figure 13 : Result of removing duplicate parallel gate 
Constants are propagated for further simplijcation of model 

and one-input buffers are elimated next. The resultant circuit is the 
final model for this circuit as shown in Figure 14 below. 

fiD=$==0 

Figure 14 : Final gate level model of circuit in Figure I 

2.1.3.2. Complementary Pass-Transistor Logic 

Complementary Pass-Transistor Logic (CPL) is a hybrid of 
static DCVS logic with pass transistors [ll]. In Figure 15, we show 
an example of CPL. It should be apparent that modeling proceeds as 
in Single Ended Pass Transistor Logic with complementarity detec- 
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tion and loop breaking approaches of static DCVS modeling tech- 
nique 

B B 
Figure 15 : Example of a CPL circuit 

Figure 16 : Afterpath enumeration and loop breaking of Figure 15 

- 
0 

Figure 17 : After inverter chain substitution and duplicate removal 

Figure 18 : After boolean check to determine if 
P & Q are complementary 

2.1.3.3. Double Pass-Transistor Logic (DPL) [ I 2 1  

DPL is a differential pass gate logic family that uses pFET and 
nFET in parallel. It makes the cross coupling unnecessary and does 
not suffer from any Vt drop. With DPL, modeling is easy because 
there is no loop breaking involved. However, boolean relationships 
are very important for simplification. Example of a DPL circuit is 
shown in Figure 19. 
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2.2. Clocked Logic 
Clocked logic circuits have two phases of operation. The first 

phase is called precharge phase during which the precharge clock is 
active and charge is stored on a node. The second phase is called 
evaluate phase during which the precharge clock is inactive and the 
stored charge may or may not be removed. An interesting case is 
when the precharge is conditional. In such cases, the behavior of the 
logic is sequential. Such circuits are beyond the scope of this paper. 
In this paper, we are purely focussed on circuits that are precharged 
in every cycle and evaluated in every cycle. 

If we enumerate all channel connected paths, we can tag them as 
belonging to one of four following categories: 

a) The path conducts to v d d  during precharge phase. 
b) The path conducts to Ground during precharge phase. 
c) The path is definitely off during precharge phase. 
d) The path may potentially conduct to Vdd during evaluate 

e) The path may potentially conduct to Ground during evaluate 

Cases (a) and (b) are mutually exclusive, otherwise we have a 
conditional precharge situation which is explicitly disallowed and a 
warning message may be produced. Cases (d) and (e) need not be 
mutually exclusive because the path may terminate in a input node. 
If (c) is not true, the path may potentially tum on during precharge 
phase. 

Once the paths are tagged, following scenarios are possible: 

phase. 

phase. 

1. Output node is precharged to 1 ( recorded). 
2. Output node is precharged to 0 ( recorded). 
3. Output node has a path to v,d as well as Ground during pre- 

charge phase (error message is produced). 
4. The paths that are not on during precharge are not definitely 

off. In which case it may conflict with precharge activities 
and a error message is produced. 

potentially conducting path to Ground(Vdd) during evaluate 
phase, indicating that the output node has a constant value. 
An error message is produced in such a scenario. 

5. If output node is precharged to Vdd (Ground), there is no 

Once the required checks are performed and the circuit meets the 
validity criteria a gate level model is produced. The gate level model 
need not include the precharge signal and it is controlled optionally. 
Once again, the modeling process is explained below with aid of 
examples. 
2.2.1. Single Ended Domino with Foot Device [ 8 ]  

A foot device ensures that there are no sneak paths during pre- 
charge by definitely tuming of all paths that do not participate in the 
precharge process. In Figure 20 we show a simple domino circuit 
with foot device. 

4 4  

foot device 

Figure 20 : A footed domino circuit Figure 19 : Example of DPL circuit 

Paper 14.3 
375 



Processing this circuit requires additional input from the user. 
The exact value of the precharge clock (PC) during precharge and 
evaluate phases need to be known. This information may be supplied 
by tagging the schematic itself or with ovemdes from an assistant file. 
In this circuit PC is tagged to have a value 0 during precharge phase 
and 1 during evaluate phase. 

In the first step of processing this circuit, we perform series par- 
allel compression of transistors excluding all transistors that are fed 
by a precharge clock. In this case there is no compression possible 
because of the intermediate precharge point. 

Next, N is recognized to be responsible for 0 and all paths from 
N are enumerated. There are 3 possible paths: 

1. Path 1 goes through transistor 1 to Vdd. 
2. The second path goes to Vdd via the transistor fed by signal 

3. The third path goes to Ground, via stacked nFETs. 
A and transistor 2. 

It is recognized that when PC=O, Path 1 conducts, Path 2 poten- 
tially conducts to same value and Path 3 does not conduct. So there is 
no interference with precharge process and it passes the checks. Thus 
node N is precharged to 1. 

When PC=l, Path 1 and 2 are definitely off and Path 3 may poten- 
tially conduct depending on the value of A and B. Node N is 0 if and 
only if, A 8z B are 1 in this phase. Thus the outpuunction at node N 
can be written as N = A . B . PC or N = A . B .  Therefore the 
resultant model is as shown in Figure 21. 

PC k-0 
Figure 21 : Gate level model of circuit in Figure 20 

2.2.2. Single Ended Domino without Foot Device 

This case [8] is very similar to the previous case except we need 
more analysis for modeling. In Figure 22 we describe the circuit of 
Figure 20 without a foot device. 

4- 
L 

Figure 22 : A domino circuit without foot device 

As before there are 3 possible paths in this circuit. However, 
when PC=O, unless A or B or both are turned off, there is a conflict 
during precharge. A and B may be output of domino circuits and may 
have value = 0 during precharge. If the circuits driving inputs A and 
B are known, the analysis proceeds recursively backward until we 
reach primary inputs or until we encounter circuits with footed device 
that are guaranteed to be off during precharge. When primary inputs 
are reached, they are checked for their precharge status, which are 
optionally specified by the user. If the precharge status is unknown, 
then an error message is produced and the analysis stops. Once non- 
interference during precharge is established, the rest proceeds as 
before. 
2.2.3. Dual-Rail Domino [9] 

We have discussed static DCVS circuits before. Dual rail domino 
looks pretty much like static DCVS circuits as shown in Figure 23. 
Dual-Rail Domino may or may not have a footed device. In absence 

of a footed device the check described in section 2.2.2 needs to be 
performed. Loop detection as described in 2.1.2 is also necessary. 
Dual-Rail domino circuits are popular because of noise immunity. 
Avoidance of floating state is a very attractive feature in a noisy envi- 
ronment. 

I -  T 

-L 
Figure 23 : An example of a Dual-Rail Domino circuit 

2.2.4. Zipper Domino [13] 

Zipper domino logic eliminates the inverter normally associate 
with single rail domino logic. It features cascaded logic blocks alter- 
nately executing logic with P E T S  and nFETs and requires inversion 
of PC as well. Zipper domino is not very popular because drive 
through pFET compromises performance, noise immunity and load 
capacity. However, we mention this family because GateMaker can 
handle members of this circuit family with ease. 
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Figure 24 : An example of a Zipper Domino circuit 

2.2.5. Pseudo Clocked 

In pseudo static circuit, the precharge is driven by a signal rather 
than a clock. Therefore a recursive analysis is necessary to determine 
the precharge status of driving nodes. 

0 

Domino output ? during precharge is 0 

Figure 25 : Example of a pseudo clocked circuit 

2.2.6. Keeper Devices 

A floating node may discharge due to a sudden noise pulse and 
therefore, sometimes a feedback device is attached to increase noise 
immunity at the expense of performance. Such devices are called 
keeper devices. Keeper devices may help just one value (pFET for 
keeping 1, or nFET for keeping 0) or they may help both values 
(more common with pass logic or transparent latches or pulse to DC 
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converter circuits). In most instances keepers can be readily recog- 
nized and ignored as helper devices. Though semantically there is a 
difference between keeping and latching, circuit wise there is no such 
distinction. Both look the same. Therefore it is wise to annotate sche- 
matic as to which is a keeper and which is a latch and treat them 
appropriately. 

4 4  

3 

2 I 

'"1 

-C-0 

Figure 26 : A domino circuit with a pFET keeper 

2.3. Combinational Logic with Feedback 

Many combinational circuits have topological feedback in them 
that are logically open. We saw examples of them earlier in the con- 
text of DCVS circuits. One way to break these loops is to treat pull 
down functions and pull up functions separately. This was described 
earlier in section 2.1.2. However, this may increase complexity if the 
loop keeps getting bigger. A simple way to fix this complexity prob- 
lem may be with user help where by users annotate a direction of sig- 
nal flow through a transistor. While tracing paths all paths where 
signal flow direction is violated will be aborted. This solves a compli- 
cated problem with trivial help. Next we illustrate this with an exam- 
ple. 

AN-p-j-gJ 

Figure 27 : A circuit with annotated signaljow direction 
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Figure 28 : After parallel compression of 
transmission gate with boolean check 

BN .lo 
A N 4  

Figure 29 : Transmission gates in Figure 28 are converted 
to TSDs; Loops broken by directions 

A,, 

Figure 30 : After boolean check TSDs are 
converted to AND-OR gates 

3. Key Ideas & Algorithms 
In the preceding section we have described the major steps 

involved extracting a gate level model from a transistor level sche- 
matic. In this section we will describe a flow that integrates these 
major steps. There are many other nuances that we have not 
described yet. After a flow has been presented we will describe some 
of the subtleties that are need to be addressed as well. 

In the introduction section a claim was made that all detectable 
switch level faults should be detected by pattems generated by run- 
ning ATPG on these gate level models. We will highlight the feature 
of the algorithm that makes it so. 
3.1. Pre-Processing Steps 

Methodologically, GateMaker can be run after schematic entry 
of a transistor network or after layout extraction of a physical layout. 
A number of issues crop up when GateMaker is run after layout 
extraction. First of all, extracted layout typically has a lot of parasitic 
elements that are important for electrical simulation but irrelevant 
for gate level modeling. Secondly, post layout schematic may differ 
from pre layout schematic due to geometric reasons. In the subse- 
quent sub-topics we discuss some of the steps that are run. 
3.1.1.  Treat Split Transistors as One 

In a typical layout, metal 1 lines are run horizontally and poly- 
silicon lines for transistors are run vertically. Typically, the cell 
height is fixed to realize maximum density. A cell height may typi- 
cally be 10 to 20 metal 1 tracks in height. 

Figure 31 : Typical layout 
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It is easy to observe from Figure 31 that the maximum width of a 
transistor is limited by cell height. Suppose a cell is 20 tracks high. 
For a 0.35 p technology, metal 1 lines will typically have pitch of the 
order of a p . Therefore, any transistor more than 20 J.I wide need to 
be split up into two or more parallel fingers with identical source 
drain and gate connections. If these transistors are not treated as a sin- 
gle transistor then GateMaker will produce different results depend- 
ing on whether it is run on designed or extracted schematic. Therefore 
the first preprocessing step is to identify all parallel transistors and 
treat them as one. However, sometimes it may be wise to run it even 
afterwards. As an example, if this step was used on Figure 9 in section 
2.1.3.1 after series parallel compression, then the subsequent steps 
would have been simpler. However, in GateMaker it is strictly done 
as a preprocessing step. 
3.1.2. Treat Resistances as Shorts 

Resistances are extracted to predict the delays and signal slew 
rate etc. Given enough time all signals will stabilize in a combina- 
tional circuit. Since, we are extracting a gate level model without a 
timing behavior all resistances are treated as shorts. 
3.1.3. Treat Capacitances as Opens 

At the steady state capacitors do not conduct and therefore for the 
same reasons mentioned before capacitances are treated as opens. 

A new issue that crops up with extracted models is that of anno- 
tation of schematic. A precharge clock line may be extracted as a 
multi-segment RC network. After the resistances and capacitances 
are dealt with as opens and shorts, we have to propagate the fact that 
this is a precharge line all through out the circuit. This is also a part 
of the pre-processing step. It may be calledpropagation of attributes. 
A danger with blind propagation of attributes is that it may have been 
there as a delay line for phase inversion. In such a case, if attributes 
are propagated without taking phase inversion into account, the 
resulting models will be inaccurate. Therefore, the annotation needs 
to be explicit in stating whether there is any phase inversion involved. 

3.2. Series Parallel Compression 
Series parallel compression of transistors have already been 

explained. In actuality, it is implemented as an event driven routine 
that checks for possible parallel (serial) compression right after serial 
(parallel) compression. GateMaker treats transistors as switches and 
therefore pFETs and nFETs in series or parallel can be combined as 
long as there is no other connection incident on the junction. When 
dissimilar transistors are treated together, appropriate inversions are 
taken into account. 

I 1 

Figure 32 : Example of a circuit with parallel 
connection of nFETs and pFETs 
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Figure 33 : The resulting circuit after parallel 
compression of transistors in Figure 32 

3.3. Path Tracing 
Path Tracing through Channel Connected Components (CCC) 

was briefly touched upon in section 2.2.1. It is a popular technique 
in switch level simulation, in electrical simulation of circuits and in 
function extraction. 

Definition: A CCC is defined to be the maximal set of transistors 
and nets such that every net in the component is reachable from 
every other net by traversing source-drain connections of transistors 
within the component. 

GateMaker uses an explicit path enumeration for extracting 
model for every channel connected component. The path traversal is 
done starting from each node that drives a primary output or gate 
input(s) of other CCCs. Thus a model is also created for every node 
that drives a gate input of a transistor. The path traversal is done in a 
recursive manner starting from primary outputs. The advantage of a 
recursive backward traversal is that false paths can be eliminated 
efficiently. We will visit how this is done in the next section. 

Every path thus enumerated ends in a terminal node that is either 
Vdd, Ground or another primary input. All paths that lead to Ground 
are bunched together as AND-OR expression, where each AND gate 
represents the input conditions under which a path turns on. Simi- 
larly all paths that lead to Vdd are bunched together as AND-OR 
expression. For each primary input, all paths that are incident on it 
are bunched together as AND-OR expressions. These AND-OR 
expressions eventually controls TSDs that pass logic value 0 or 1 or 
specific primary input(s). 
3.4. Path Pruning 171 

In general, a CCC can contain an exponential number of paths. 
Typical problematic structures are rotate operations that are imple- 
mented as flow forest (forests are collection of trees) of pass transis- 
tors. In Figure 34, we describe a small shifter to explain the problem 
and how it is solved. 

I3 I2 I1 Io 

Figure 34 : Barrel shifter circuit containing an 
exponential number of paths 

There are 4 inputs (10 ,...,lo) that are shifted to produce 4 outputs 
(Oo, ... 0,) and two control inputs (CO,Cl). When the control inputs 
have value 00 there is no shift. If Co=l and C1=0, inputs are shifted 
by one position to the left, Cl=l produces additional shift by two 
positions. In the figure we show configuration for left shift only. 
However the principle extends to rotate left, shift and rotate right. 

If path tracing begins at node Oo, then one possible path is 00- 
Node O-02-Node 2-Node Id,,. However it is ea= to see that this path 
can never conduct because it requires Cp = C y  = Cb = C ,  = 1 
which is not possible to satisfy. This is cal ed afa sepat . False paths 
should be avoided in this case because (1) they produce redundancy 
in the model and do not actually help produce patterns and (2)  
increases the model volume. 

When the path is traversed from node 0, to 0, we have two ways 
to expand further, and once we take a path to 0, and reach node 2, 
we again have a choice of two ways. These possibilities multiply and 
for a 64 bit barrel shifter the number goes beyond any meaningful 
analysis. Thus false paths should be truncated early and any time we 
add a new segment, we should invoke boolean analysis to see if this 
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is feasible or not. This will prevent us from expanding path 0,-0 to 
0 2 .  This is called path pruning. 

Path pruning requires that we have a boolean (gate level) model 
for all inputs. Thus processing can only proceed from input to output. 

Boolean analysis proceeds by asking whether there exists a com- 
bination-of input values required to turn on the path, (such as is 
C - C = 1 possible?). To answer that question wemust know 
refationsiip between all primary inputs (are C ,  and C indepen- 
dent?). There are many ways to run the analysis. We use abranch and 
bound algorithm similar to one used in test pattern generation algo- 
rithms. We could also use BDDs. However, BDDs are built up from 
primary inputs and may not exist for all functions, on the other hand 
the type of information we are looking for are usually obtained by 
simple reasoning in the neighborhood and the analysis does not 
spread far. 
3.5. Analysis of Paths and Model Formulation 

In section 3.3 we briefly touched upon how the model is created. 
It is the most crucial part of the analysis. First of all, all switch level 
paths that can not be factored are turned into an AND clause in the 
model, assuring that the test pattern generator will exercise all paths 
in sensitization criteria. The paths are optimized only in specific cases 
where we can be certain that by throwing it away, we are not compro- 
mising the test quality as judged on the switch level circuit. Series- 
parallel compression ensures that all transistors are tested for conduc- 
tion without creating unnecessarily large number of paths or AND 
gates in the model. 
3.5.1. Model Formulation when the node is Precharged 

The simplest situation in this category is when the target node is 
precharged to 1 (0) and there is no path to Vdd (Ground) and no path 
to primary input. A check is performed to make sure that the pre- 
charge is conflict free (as explained in section 2.2.2) and a AND- 
NOR (OR) circuit is created. 

If there are paths to primary inputs, tristate driver circuits are 
built. These circuits are later targeted for further simplification. Sim- 
plification steps will be discussed in section 3.7. 
3.5.2. Model Formulation when the node is not Precharged 

l k o  cases are possible: there is a path to primary input; there are 
no paths to primary input. In the first case a tristate driver model is 
produced which is later targeted for simplification. 

In the second case a check is performed to make sure that there is 
at least one path to v d d  and one path to Ground. If there are none then 
an error is flagged. Now we subject the AND-OR function that turns 
on a path to v d d  to a check against the AND-OR function that turns 
on a path to Ground. If it is possible to turn on both at once, a error 
message is produced. If it is possible to turn off all paths to v d d  and 
Ground simultaneously, then a tristate driver model is produced else 
we subject the AND-OR functions to topology check and based on 
user option create a tristate model if topologies differ or produce a 
AND-NOR circuit. Outputs of gates (AND/OR etc.) are treated as if 
they are primary inputs. 
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3.6. Complementarity Recognition 

In section 3.5.2 we described a check for complementarity with- 
out specifically stating it as such. Complementarity recognition 
deserves a separate mention because it forms an essential part of sim- 
plification. Simply stated two functions F and G are complemen- 
tary iff there is no input pattern that can make F = G :: 0 or 
F = G = l .  

Transmission gates can be easily identified if we perform a Com- 
plementarity Recognition of the respective inputs. 

3.7. Simpl8cation 

It has been mentioned before that test pattern generators do not 
like to see too many tristate drivers because they end up producing 
too many possibly detecting faults without creating too many pat- 
terns. It has also been mentioned that we would not like to simplify 
the AND gate structures away because they represent electrically 
conducting paths that we are targeting for test pattern generation. We 
can still perform some simplifications without compromising either 
goal. They are described next. These transformations either remove 
redundancy created by intermediate steps in modeling process, or 
actual redundancies (in same spirit of split transistors) or eliminate 
gates that do not affect test patterns (but does affect fault coverage). 
All simplification steps are optional. 
3.7.1. Inverter Chain Elimination 

N (N > 1) inverters in a series can be simplified by removing 
them (N even) or replacing them with a single inverter (N odd) pro- 
vided there are no fanouts from the internal nodes in the chain. 

Figure 36 : The resultant model from Figure 35 
after inverter chain elimination 

3.7.2. Input Dropping 

If there are multiple connections between output of one gate and 
inputs of another gate whose inputs are commutable (AND, OR, 
NAND, NOR etc. but not TSDs) then all but one of those connec- 
tions can be dropped. 

BN B 
0 

Figure 37 : The resultant model from 
Figure 36 after input dropping 

Figure 35 : The resultant model from Figure 33 
after model conversion 
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3.1.3. Gate Dropping 

all but one of them are dropped. 
If two or more gates have identical input output connections then 

A 

Figure 38 : The resultant model from Figure 37 after gate dropping 

3.7.4. Buffer Elimination 

nated by moving the output to input. 
All single input single output non-inverting gates can be elimi- 

Figure 39 : The resultant model from Figure 38 
afer  buffer elimination 

3.1.5. TSD to AND-OR conversion 

AND-OR conversion is a very important piece of simplification. 
This is also how MUX-es are recognized. Suppose we have a N (N>l) 
dotted tristate drivers with enable inputs {el, ..., eN} and data inputs 
{dl, ..., d ~ } .  

0 

Figure 41 : Final AND-OR circuit 
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Figure 42 : After AND-OR conversion of model in Figure 39 

3.8. Pass-gate Factorization 
Path Tracing algorithm explicitly enumerates all paths to form 

AND-OR expressions. This approach works well in most cases. 
However, for pass transistor trees the number of paths become large 
and the model size increases. To contain the model size, we can keep 
the tree as it is and convert pass gates to TSDs. However, boolean 
analysis on TSDs is a little more complex than on AND-OR gates. 
We solve this dilemma by doing an explicit enumeration of all paths, 
but performing a factorization of paths to recover the original tree 
structure. This is explained next with an example. 

A 

F 
Figure 43 : A pass transistor tree network 

The paths {R-P-C, R-P-D, R-Q-E, R-Q-F) are enumerated first 
and after boolean analysis is performed, they can be factorized as R- 
{ P-{ C,D } ,Q- { E,F] ) and collapsed back to original structure. After 
the factorization step, the model is a tree structure of TSDs. Without 
this step it would have been a two level structure of AND-TSDs. 

Figure 40 : A TSD circuit 

The following two criteria are used for turning this TSD circuit to 

1 .  there should be no possibility of a floating state at the output 
(prove that el  = e2 = . . . = e ,  = 0 is not possible) and, 

2. if two or more TSDs are on they must drive the same value to 
the output (Vi, j ,  i # j show that ei = e j  = 1 and di  = d j  
is not possible). 

AND-OR circuit: 

- 

If above two conditions are met, the dotted TSD circuit can be 
turned into a AND-OR circuit as shown in Figure 41. 

Figure 44 : Coversion to gate level structure of 
Figure 43 afer  factorization 
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Figure 45 : Coversion to gate level structure of 
Figure 43 without factorization 

4. Implementation 
GateMaker was implemented in C. It has multiple source and 

destination interfaces and stands at approximately 15K lines of code. 
The most costly step in GateMaker is boolean analysis. Despite the 
frequency with which it is invoked, run time is still not an issue. Run- 
ning on a RS6000 model 550, a fully custom 64 bit Fixed Point Unit 
has been extracted in less than 10 minutes of CPU time. 

5. Conclusions 
In high performance digital CMOS circuits, there are many cus- 

tom components that are needed to be converted to gate level model 
for logic simulation, formal verification and most notably Automatic 
Test Pattem Generation. GateMaker addresses this problem and guar- 
antees that the patterns created by ATPG on the gate level model exer- 
cise all switch level paths and makes their effect sensitized to an 
observable port. 

GateMaker preserves the switch level structures as much as pos- 
sible through series parallel compression of transistors and factoriza- 
tion of paths. 

GateMaker imbeds a boolean analysis tool that can perform a 
variety of checks necessary to simplify tristate driver based designs 
to AND-OR circuits. The boolean analysis also helps in containing 
the exponential blow up in path enumeration in certain circum- 
stances. 

GateMaker also imbeds some transformations to simplify the 
model without compromising the test pattern quality. Simplification 
affects fault coverage computation and therefore all simplification 
stages are optional. 

GateMaker brings uniformity in modeling process and the auto- 
mated process saves several man months in a design cycle. 

6.  Acknowledgments 
The author would like to thank Derek Beatty, Charlie Malley, 

Madhu Reddy of the PowerPC Development Center and Gill Van- 
dling, Lori Smudde, Johnny Leblanc of IBM for their invaluable 
inputs and significant contributions in development of GateMaker. 
The author is also indebted to Andreas Kuehlmann and Vijay Iyengar 
for stimulating discussions. 

Paper 14.3 
38 1 


