
GateMaker: A Transistor to Gate Level Model Extractor for Simulation,
Automatic Test Pattern Generation and Verification

Sandip Kundu", Intel Corporation
2200 Mission College Boulevard

Santa Clara, CA 95052

Abstract
Hierarchy is key to managing design complexity. A hierarchical

design system needs to maintain many views of the same design
entity. Some of the examples might be physical view for placement,
routing and extraction; transistor schematic view for circuit simula-
tion, timing characterization and noise analysis; a gate level sche-
matic view for timing, ver$cation, logic simulation, fault simulation
and automatic test pattern generation (ATPG); a register transfer
level (RTL) view for speciflcation and high level simulation etc. In
order to achieve highest system peflormance, multiple design itera-
tions are necessary, each iteration involving both forward and back-
ward pass through hierarchy, with manual changes at any level of the
hierarchy. This poses an essential challenge of keeping all views of
same design entity in sync. In this paper we describe an automatic
tool called GateMaker; that has been developed to extract a gate
level schematic model from a transistor level schematic model for the
purposes of logic simulation, fault simulation and automatic test
pattern generation. This eliminates a manual process and offers
manifold advantages that will be discussed in this papel:

1. Introduction
A cell or megacell in any custom or semi-custom digital design

methodology is a manually manageable design piece that stands on
multiple views. Each view (also called a model or book or library
element in various terminologies) is created to support a level of
abstraction suitable for a particular analysis. A gate level schematic
view of a cell is necessary for supporting fault simulation, automatic
test pattern generation and potentially other tasks such as logic sim-
ulation, verification, static timing analysis, cell sizing (adjusting
transistor gate widths) etc. In this paper, we describe an automatic
method of extracting a gate level schematic model from a transistor
level schematic model for the purposes of fault simulation and test
pattern generation. This method has been embodied in a tool called
GateMaker. There are many advantages of having an automated pro-
cess for this extraction. We describe some of the advantages below.
1.1. Consistency of Gate Level Schematic Model

Besides saving designers' time, an automatic tool provides sev-
eral advantages. First of all, it provides a consistent modeling
approach. In Figure 1, we show a custom implementation of an
exclusive OR gate.

Vdd Vdd
4 4

0

Figure 1 : Custom implementation of an Exclusive-OR gate

At gate level there are several possible ways of representing the
transistor network shown in Figure 1. Some of these possible imple-
mentations are shown in Figure 2.
* This work was performed when the author was with IBM Corp.

A 4
z-0
B

Figure 2 : Some possible gate level realizations of Figure 1
It is easy to see that the absolute number of stuck-at faults and

the number of equivalent faults in each of the gate level realization
is different. Once we attach stuck-at faults with intemal nets of these
models, it is easy to see that they have different number of stuck-at
faults. This leads to an inadvertent weighting of the fault coverage.
Such weighting is a serious concern because in the context of the
larger design, improved fault coverage may mean a different gate
level model rather than improved test quality.

An automatic tool brings consistency to the modeling process, so
that the overall fault coverage is a more meaningful number
1.2. Quality of Test Patterns

There are many reasons why an ATPG tool runs on a gate level
model for the design. Firstly, it provides a layer of abstraction and
hides the test pattern generator from technology dependent informa-
tion. Therefore, even if the underlying circuit techniques change, the
test pattern generator does not have to be rewritten. Secondly, most
switch level test pattern generators are not capable of handling com-
plex circuits such as memory, clock regenerators etc. A layer of
abstraction eases the level of complexity. Thirdly, the circuit data
volume is reduced when transistor level schematics are translated to
gate level models. Fourthly, faults at the transistor level tend to pro-
duce a large number of cases where the faults are possibly detected.
From a practical standpoint this is not desirable, because the ultimate
goal is to generate a set of vectors to supply to a tester, where the
tester makes a pass/fail decision. Thus having too many possibly
detected faults increases uncertainty about fault coverage number
without providing any patterns. In contrast, test pattern generation at
the gate level model runs the risk of producing irrelevant patterns.
This may happen when the gate level model of a transistor level
schematic is logically correct under fault-free situation but the faulty
situations have no corresponding situation at the transistor level
model.

Thus the extractor not only has to extract a gate level schematic
that is valid under fault-free situation, but also 'valid' under faulty
situation. On this issue it differs from most of the prior work in the
area of functional extraction [l-71. We shall revisit this point later in
sections 3.3 and 3.5.

In section 2, we review the target CMOS circuit families and our
extraction goal in context of these circuits.. In section 3 we describe
the key steps of our extraction algorithm. In section 4 we present the
implementation details and finally conclude in section 5.

Paper 14.3
372

INTERNATIONAL TEST CONFERENCE
0-7803-5092-8/98 $1 0.00 0 1998 IEEE

2. Review of Target Circuit Families
Generally speaking most logic circuits can be classified in the fol-

lowing four broad categories: Combinational static circuits, DCVS
circuits (static or dynamic), pass gate logic and dynamic domino
logic. In each category several permutations are possible. In this sec-
tion, we will describe some of the realizations and devote some com-
ments relevant to their modeling.

2.1. Non-Clocked Logic
Non-clocked logic describes any category of static CMOS cir-

cuit, where a valid input produces a valid output regardless of any
prior condition.
2.1.1. Complementary P & N Networks [8]

This is the most popular CMOS design style. No matter what the
input pattem is, there is a valid path from output node to Ground or
output node to Vdd. The P and the N networks are usually dual of each
other, meaning a series(paralle1) connection of nFETs imply a paral-
lel(series) connection of pFETs. In Figure 3 we give an example of
such a circuit and describe how one might amve at a gate level model
for that.

Figure 3 : Example of a dual fully complementary gate
Step 1: Compression of series transistors

Step 2: Compression of parallel transistors

4

B
C :=k A

-L

0

Step 3: Drop the transistors for a functional model

0 B
C

Figure 4 : Final model for Figure 3

From the pictorial depiction of the steps, it should be apparent that we
can perform series parallel compression of transistors by replacing
them with just one transistor in successive steps. At the final step, a
topology check can prove that the P and the N networks are comple-

mentary and then we can drop the transistors for a final model.
There may be a situation when P and N networks are function-

ally complementary but not dual of each other as described in Figure
5.

4

Figure 5 : A P & N network after series parallel compression

F and G are AND-OR networks derived after successive series-
parallel compression steps. The issue of modeling here is a tricky
one. One can take a safe approach and model it as shown in Figure 6
using tristate drivers.

Figure 6 : Model using tristate drivers

However, usually one can run boolean equivalence check of
function F and G and determine whether they are complementary or
not. If F and G are pIoven to be complementary then the output 0
can be modeled as _F or -G . Either network may be used. The
advantages of using F or G is that:

a) we get a simpler model
b) simulation and test generation runs faster because X genera-

tion is suppressed. Tristate drivers tend to produce X under
some faulty situations when enable input of both drivers are
turned off. These faults can not be detected in purely combi-
national circuits (they may be possibly detected), and only
potentially detected in sequential circuits where sequential
test pattem generation is used.

The disadvantage in using a simpler model is that the structural
equivalence is lost and the resultant gate level circuit may not repre-
sent the complete switch level model. GateMaker allows users to
optionally choose one or the other. However, whatever approach is
used, it should be used consistently.
2.1.2. Static DiTerential Cascode Voltage Switch (DCVS) [9]

Static Differential Cascode Voltage Switch circuits produce
complementary outputs. The logic function is performed by the pull
down network of nFETs and pFETs are used in a cross coupled man-
ner for pull up as shown in Figure 7.

t. 3

Figure 7 : Example of a DCVS circuit
Static DCVS circuit modeling can proceed with the first step of

series parallel compression of transistors to yield a circuit shown in
Figure 8 next.

Paper 14.3
373

L--I--l
Figure 8 : making the path conductingReduced static DCVS circuit

However, at this stage it is important to know the relationship
between external inputs to determine if F and G are complementary
(such as between inputs A and A if they are supplied as external
inputs). At this_point, it is known that 0 is high when node O_ is
low and node 0 is low when F is high. Therefore 0 = G and 0 =
F. Thus we can reduce the circuit to F and G, provided:

a) relationship between inputs are known and
b) F and G are complementary

If F and G are not complementary an error should be flagged. In
normal erocessing steps, Output 0 willbe described as some func-
tion of 0 and other inputs and output 0 will be described as some
function of 0 and other inputs. In such a case a logical loop in argu-
ment is-detected. In this case the argument is resolved by looking past
node 0 when the function 0 is being determined. It is however not
very efficient to look beyond the input of the immediate node of the
driving gate. Therefore, the program should back up and reason past
when a loop is detected.

2.1.3. Pass-Transistor Logic

In complementary and static DCVS CMOS circuits we described
so far, a transistor is used either for pull up or pull down of output
node. In pass-transistor circuits the same transistor is used for both
pull up as well as pull down of a node. Even though current may flow
in both directions, usually signal flows is in one direction.
2.1.3.1. Single Ended Pass-Transistor Logic [lo]

This is commonly used in non-differential logic. In Figure 1 we
had given an example of a single ended pass-transistor logic. Here we
describe the basic steps involved in deriving in a model for that cir-
cuit.

The key step involved in modeling such circuits is enumeration
of paths through channel connected components. From the circuit it
is apparent that output 0 is inverted function of N . To determine
the function at N, all paths that traverse through source to drain or
drain to source of a transistor are explored beginning at N. Such paths
may terminate either at Vdd or at Ground or at a primary input node
such as A. Once the condition for conduction of path is established it
is captured in a logical form using AND gates. The output of the
AND gate enables the appropriate terminal node for the path. This is
shown next

Rgure 9 : After series-parallel compression
of transistors in Figure I

0

Figure 10 : After enumerating 4 possible paths
from node N of Figure 9

Figure 11 : After eliminating duplicate
tristate driver of Figure 10

Once a tristate model has been derived, the next goal is possible
simplijcation of tristate drivers. The tristate drivers are checked to
see if further simplification is possible. This step will be described in
detail in Section 3.7.5. It tums out that the tristate drivers (TSDs) can
be replaced by AND gates and the dotting of the drivers can be
replaced by a OR gate. The result is shown in Figure 12.

0

L------Ly

Figure 12 ; After converting the tristate circuits into AND-OR gates

Next step involves elimination of parallel duplicate gates as
shown in Figure 13 below.

0

Figure 13 : Result of removing duplicate parallel gate
Constants are propagated for further simplijcation of model

and one-input buffers are elimated next. The resultant circuit is the
final model for this circuit as shown in Figure 14 below.

fiD=$==0

Figure 14 : Final gate level model of circuit in Figure I

2.1.3.2. Complementary Pass-Transistor Logic

Complementary Pass-Transistor Logic (CPL) is a hybrid of
static DCVS logic with pass transistors [ll]. In Figure 15, we show
an example of CPL. It should be apparent that modeling proceeds as
in Single Ended Pass Transistor Logic with complementarity detec-

Paper 14.3
374

tion and loop breaking approaches of static DCVS modeling tech-
nique

B B
Figure 15 : Example of a CPL circuit

Figure 16 : Afterpath enumeration and loop breaking of Figure 15

-
0

Figure 17 : After inverter chain substitution and duplicate removal

Figure 18 : After boolean check to determine if
P & Q are complementary

2.1.3.3. Double Pass-Transistor Logic (DPL) [I 2 1

DPL is a differential pass gate logic family that uses pFET and
nFET in parallel. It makes the cross coupling unnecessary and does
not suffer from any Vt drop. With DPL, modeling is easy because
there is no loop breaking involved. However, boolean relationships
are very important for simplification. Example of a DPL circuit is
shown in Figure 19.

-
0 0
t t

B

B vdd Vdd

!:Tf(B

B A

2.2. Clocked Logic
Clocked logic circuits have two phases of operation. The first

phase is called precharge phase during which the precharge clock is
active and charge is stored on a node. The second phase is called
evaluate phase during which the precharge clock is inactive and the
stored charge may or may not be removed. An interesting case is
when the precharge is conditional. In such cases, the behavior of the
logic is sequential. Such circuits are beyond the scope of this paper.
In this paper, we are purely focussed on circuits that are precharged
in every cycle and evaluated in every cycle.

If we enumerate all channel connected paths, we can tag them as
belonging to one of four following categories:

a) The path conducts to v d d during precharge phase.
b) The path conducts to Ground during precharge phase.
c) The path is definitely off during precharge phase.
d) The path may potentially conduct to Vdd during evaluate

e) The path may potentially conduct to Ground during evaluate

Cases (a) and (b) are mutually exclusive, otherwise we have a
conditional precharge situation which is explicitly disallowed and a
warning message may be produced. Cases (d) and (e) need not be
mutually exclusive because the path may terminate in a input node.
If (c) is not true, the path may potentially tum on during precharge
phase.

Once the paths are tagged, following scenarios are possible:

phase.

phase.

1. Output node is precharged to 1 (recorded).
2. Output node is precharged to 0 (recorded).
3. Output node has a path to v,d as well as Ground during pre-

charge phase (error message is produced).
4. The paths that are not on during precharge are not definitely

off. In which case it may conflict with precharge activities
and a error message is produced.

potentially conducting path to Ground(Vdd) during evaluate
phase, indicating that the output node has a constant value.
An error message is produced in such a scenario.

5. If output node is precharged to Vdd (Ground), there is no

Once the required checks are performed and the circuit meets the
validity criteria a gate level model is produced. The gate level model
need not include the precharge signal and it is controlled optionally.
Once again, the modeling process is explained below with aid of
examples.
2.2.1. Single Ended Domino with Foot Device [8]

A foot device ensures that there are no sneak paths during pre-
charge by definitely tuming of all paths that do not participate in the
precharge process. In Figure 20 we show a simple domino circuit
with foot device.

4 4

foot device

Figure 20 : A footed domino circuit Figure 19 : Example of DPL circuit

Paper 14.3
375

Processing this circuit requires additional input from the user.
The exact value of the precharge clock (PC) during precharge and
evaluate phases need to be known. This information may be supplied
by tagging the schematic itself or with ovemdes from an assistant file.
In this circuit PC is tagged to have a value 0 during precharge phase
and 1 during evaluate phase.

In the first step of processing this circuit, we perform series par-
allel compression of transistors excluding all transistors that are fed
by a precharge clock. In this case there is no compression possible
because of the intermediate precharge point.

Next, N is recognized to be responsible for 0 and all paths from
N are enumerated. There are 3 possible paths:

1. Path 1 goes through transistor 1 to Vdd.
2. The second path goes to Vdd via the transistor fed by signal

3. The third path goes to Ground, via stacked nFETs.
A and transistor 2.

It is recognized that when PC=O, Path 1 conducts, Path 2 poten-
tially conducts to same value and Path 3 does not conduct. So there is
no interference with precharge process and it passes the checks. Thus
node N is precharged to 1.

When PC=l, Path 1 and 2 are definitely off and Path 3 may poten-
tially conduct depending on the value of A and B. Node N is 0 if and
only if, A 8z B are 1 in this phase. Thus the outpuunction at node N
can be written as N = A . B . PC or N = A . B . Therefore the
resultant model is as shown in Figure 21.

PC k-0
Figure 21 : Gate level model of circuit in Figure 20

2.2.2. Single Ended Domino without Foot Device

This case [8] is very similar to the previous case except we need
more analysis for modeling. In Figure 22 we describe the circuit of
Figure 20 without a foot device.

4-
L

Figure 22 : A domino circuit without foot device

As before there are 3 possible paths in this circuit. However,
when PC=O, unless A or B or both are turned off, there is a conflict
during precharge. A and B may be output of domino circuits and may
have value = 0 during precharge. If the circuits driving inputs A and
B are known, the analysis proceeds recursively backward until we
reach primary inputs or until we encounter circuits with footed device
that are guaranteed to be off during precharge. When primary inputs
are reached, they are checked for their precharge status, which are
optionally specified by the user. If the precharge status is unknown,
then an error message is produced and the analysis stops. Once non-
interference during precharge is established, the rest proceeds as
before.
2.2.3. Dual-Rail Domino [9]

We have discussed static DCVS circuits before. Dual rail domino
looks pretty much like static DCVS circuits as shown in Figure 23.
Dual-Rail Domino may or may not have a footed device. In absence

of a footed device the check described in section 2.2.2 needs to be
performed. Loop detection as described in 2.1.2 is also necessary.
Dual-Rail domino circuits are popular because of noise immunity.
Avoidance of floating state is a very attractive feature in a noisy envi-
ronment.

I - T

-L
Figure 23 : An example of a Dual-Rail Domino circuit

2.2.4. Zipper Domino [13]

Zipper domino logic eliminates the inverter normally associate
with single rail domino logic. It features cascaded logic blocks alter-
nately executing logic with P E T S and nFETs and requires inversion
of PC as well. Zipper domino is not very popular because drive
through pFET compromises performance, noise immunity and load
capacity. However, we mention this family because GateMaker can
handle members of this circuit family with ease.

A

I I

"1 '-I I -L

Figure 24 : An example of a Zipper Domino circuit

2.2.5. Pseudo Clocked

In pseudo static circuit, the precharge is driven by a signal rather
than a clock. Therefore a recursive analysis is necessary to determine
the precharge status of driving nodes.

0

Domino output ? during precharge is 0

Figure 25 : Example of a pseudo clocked circuit

2.2.6. Keeper Devices

A floating node may discharge due to a sudden noise pulse and
therefore, sometimes a feedback device is attached to increase noise
immunity at the expense of performance. Such devices are called
keeper devices. Keeper devices may help just one value (pFET for
keeping 1, or nFET for keeping 0) or they may help both values
(more common with pass logic or transparent latches or pulse to DC

Paper 14.3
376

converter circuits). In most instances keepers can be readily recog-
nized and ignored as helper devices. Though semantically there is a
difference between keeping and latching, circuit wise there is no such
distinction. Both look the same. Therefore it is wise to annotate sche-
matic as to which is a keeper and which is a latch and treat them
appropriately.

4 4

3

2 I

'"1

-C-0

Figure 26 : A domino circuit with a pFET keeper

2.3. Combinational Logic with Feedback

Many combinational circuits have topological feedback in them
that are logically open. We saw examples of them earlier in the con-
text of DCVS circuits. One way to break these loops is to treat pull
down functions and pull up functions separately. This was described
earlier in section 2.1.2. However, this may increase complexity if the
loop keeps getting bigger. A simple way to fix this complexity prob-
lem may be with user help where by users annotate a direction of sig-
nal flow through a transistor. While tracing paths all paths where
signal flow direction is violated will be aborted. This solves a compli-
cated problem with trivial help. Next we illustrate this with an exam-
ple.

AN-p-j-gJ

Figure 27 : A circuit with annotated signaljow direction

A

B

BN

AN

Figure 28 : After parallel compression of
transmission gate with boolean check

BN .lo
A N 4

Figure 29 : Transmission gates in Figure 28 are converted
to TSDs; Loops broken by directions

A,,

Figure 30 : After boolean check TSDs are
converted to AND-OR gates

3. Key Ideas & Algorithms
In the preceding section we have described the major steps

involved extracting a gate level model from a transistor level sche-
matic. In this section we will describe a flow that integrates these
major steps. There are many other nuances that we have not
described yet. After a flow has been presented we will describe some
of the subtleties that are need to be addressed as well.

In the introduction section a claim was made that all detectable
switch level faults should be detected by pattems generated by run-
ning ATPG on these gate level models. We will highlight the feature
of the algorithm that makes it so.
3.1. Pre-Processing Steps

Methodologically, GateMaker can be run after schematic entry
of a transistor network or after layout extraction of a physical layout.
A number of issues crop up when GateMaker is run after layout
extraction. First of all, extracted layout typically has a lot of parasitic
elements that are important for electrical simulation but irrelevant
for gate level modeling. Secondly, post layout schematic may differ
from pre layout schematic due to geometric reasons. In the subse-
quent sub-topics we discuss some of the steps that are run.
3.1.1. Treat Split Transistors as One

In a typical layout, metal 1 lines are run horizontally and poly-
silicon lines for transistors are run vertically. Typically, the cell
height is fixed to realize maximum density. A cell height may typi-
cally be 10 to 20 metal 1 tracks in height.

Figure 31 : Typical layout

Paper 14.3
377

It is easy to observe from Figure 31 that the maximum width of a
transistor is limited by cell height. Suppose a cell is 20 tracks high.
For a 0.35 p technology, metal 1 lines will typically have pitch of the
order of a p . Therefore, any transistor more than 20 J.I wide need to
be split up into two or more parallel fingers with identical source
drain and gate connections. If these transistors are not treated as a sin-
gle transistor then GateMaker will produce different results depend-
ing on whether it is run on designed or extracted schematic. Therefore
the first preprocessing step is to identify all parallel transistors and
treat them as one. However, sometimes it may be wise to run it even
afterwards. As an example, if this step was used on Figure 9 in section
2.1.3.1 after series parallel compression, then the subsequent steps
would have been simpler. However, in GateMaker it is strictly done
as a preprocessing step.
3.1.2. Treat Resistances as Shorts

Resistances are extracted to predict the delays and signal slew
rate etc. Given enough time all signals will stabilize in a combina-
tional circuit. Since, we are extracting a gate level model without a
timing behavior all resistances are treated as shorts.
3.1.3. Treat Capacitances as Opens

At the steady state capacitors do not conduct and therefore for the
same reasons mentioned before capacitances are treated as opens.

A new issue that crops up with extracted models is that of anno-
tation of schematic. A precharge clock line may be extracted as a
multi-segment RC network. After the resistances and capacitances
are dealt with as opens and shorts, we have to propagate the fact that
this is a precharge line all through out the circuit. This is also a part
of the pre-processing step. It may be calledpropagation of attributes.
A danger with blind propagation of attributes is that it may have been
there as a delay line for phase inversion. In such a case, if attributes
are propagated without taking phase inversion into account, the
resulting models will be inaccurate. Therefore, the annotation needs
to be explicit in stating whether there is any phase inversion involved.

3.2. Series Parallel Compression
Series parallel compression of transistors have already been

explained. In actuality, it is implemented as an event driven routine
that checks for possible parallel (serial) compression right after serial
(parallel) compression. GateMaker treats transistors as switches and
therefore pFETs and nFETs in series or parallel can be combined as
long as there is no other connection incident on the junction. When
dissimilar transistors are treated together, appropriate inversions are
taken into account.

I 1

Figure 32 : Example of a circuit with parallel
connection of nFETs and pFETs

+-@el
B d

Figure 33 : The resulting circuit after parallel
compression of transistors in Figure 32

3.3. Path Tracing
Path Tracing through Channel Connected Components (CCC)

was briefly touched upon in section 2.2.1. It is a popular technique
in switch level simulation, in electrical simulation of circuits and in
function extraction.

Definition: A CCC is defined to be the maximal set of transistors
and nets such that every net in the component is reachable from
every other net by traversing source-drain connections of transistors
within the component.

GateMaker uses an explicit path enumeration for extracting
model for every channel connected component. The path traversal is
done starting from each node that drives a primary output or gate
input(s) of other CCCs. Thus a model is also created for every node
that drives a gate input of a transistor. The path traversal is done in a
recursive manner starting from primary outputs. The advantage of a
recursive backward traversal is that false paths can be eliminated
efficiently. We will visit how this is done in the next section.

Every path thus enumerated ends in a terminal node that is either
Vdd, Ground or another primary input. All paths that lead to Ground
are bunched together as AND-OR expression, where each AND gate
represents the input conditions under which a path turns on. Simi-
larly all paths that lead to Vdd are bunched together as AND-OR
expression. For each primary input, all paths that are incident on it
are bunched together as AND-OR expressions. These AND-OR
expressions eventually controls TSDs that pass logic value 0 or 1 or
specific primary input(s).
3.4. Path Pruning 171

In general, a CCC can contain an exponential number of paths.
Typical problematic structures are rotate operations that are imple-
mented as flow forest (forests are collection of trees) of pass transis-
tors. In Figure 34, we describe a small shifter to explain the problem
and how it is solved.

I3 I2 I1 Io

Figure 34 : Barrel shifter circuit containing an
exponential number of paths

There are 4 inputs (10 ,...,lo) that are shifted to produce 4 outputs
(Oo, ... 0,) and two control inputs (CO,Cl). When the control inputs
have value 00 there is no shift. If Co=l and C1=0, inputs are shifted
by one position to the left, Cl=l produces additional shift by two
positions. In the figure we show configuration for left shift only.
However the principle extends to rotate left, shift and rotate right.

If path tracing begins at node Oo, then one possible path is 00-
Node O-02-Node 2-Node Id,,. However it is ea= to see that this path
can never conduct because it requires Cp = C y = Cb = C , = 1
which is not possible to satisfy. This is cal ed afa sepat . False paths
should be avoided in this case because (1) they produce redundancy
in the model and do not actually help produce patterns and (2)
increases the model volume.

When the path is traversed from node 0, to 0, we have two ways
to expand further, and once we take a path to 0, and reach node 2,
we again have a choice of two ways. These possibilities multiply and
for a 64 bit barrel shifter the number goes beyond any meaningful
analysis. Thus false paths should be truncated early and any time we
add a new segment, we should invoke boolean analysis to see if this

Paper 14.3
378

is feasible or not. This will prevent us from expanding path 0,-0 to
0 2 . This is called path pruning.

Path pruning requires that we have a boolean (gate level) model
for all inputs. Thus processing can only proceed from input to output.

Boolean analysis proceeds by asking whether there exists a com-
bination-of input values required to turn on the path, (such as is
C - C = 1 possible?). To answer that question wemust know
refationsiip between all primary inputs (are C , and C indepen-
dent?). There are many ways to run the analysis. We use abranch and
bound algorithm similar to one used in test pattern generation algo-
rithms. We could also use BDDs. However, BDDs are built up from
primary inputs and may not exist for all functions, on the other hand
the type of information we are looking for are usually obtained by
simple reasoning in the neighborhood and the analysis does not
spread far.
3.5. Analysis of Paths and Model Formulation

In section 3.3 we briefly touched upon how the model is created.
It is the most crucial part of the analysis. First of all, all switch level
paths that can not be factored are turned into an AND clause in the
model, assuring that the test pattern generator will exercise all paths
in sensitization criteria. The paths are optimized only in specific cases
where we can be certain that by throwing it away, we are not compro-
mising the test quality as judged on the switch level circuit. Series-
parallel compression ensures that all transistors are tested for conduc-
tion without creating unnecessarily large number of paths or AND
gates in the model.
3.5.1. Model Formulation when the node is Precharged

The simplest situation in this category is when the target node is
precharged to 1 (0) and there is no path to Vdd (Ground) and no path
to primary input. A check is performed to make sure that the pre-
charge is conflict free (as explained in section 2.2.2) and a AND-
NOR (OR) circuit is created.

If there are paths to primary inputs, tristate driver circuits are
built. These circuits are later targeted for further simplification. Sim-
plification steps will be discussed in section 3.7.
3.5.2. Model Formulation when the node is not Precharged

l k o cases are possible: there is a path to primary input; there are
no paths to primary input. In the first case a tristate driver model is
produced which is later targeted for simplification.

In the second case a check is performed to make sure that there is
at least one path to v d d and one path to Ground. If there are none then
an error is flagged. Now we subject the AND-OR function that turns
on a path to v d d to a check against the AND-OR function that turns
on a path to Ground. If it is possible to turn on both at once, a error
message is produced. If it is possible to turn off all paths to v d d and
Ground simultaneously, then a tristate driver model is produced else
we subject the AND-OR functions to topology check and based on
user option create a tristate model if topologies differ or produce a
AND-NOR circuit. Outputs of gates (AND/OR etc.) are treated as if
they are primary inputs.

BN B

0

3.6. Complementarity Recognition

In section 3.5.2 we described a check for complementarity with-
out specifically stating it as such. Complementarity recognition
deserves a separate mention because it forms an essential part of sim-
plification. Simply stated two functions F and G are complemen-
tary iff there is no input pattern that can make F = G :: 0 or
F = G = l .

Transmission gates can be easily identified if we perform a Com-
plementarity Recognition of the respective inputs.

3.7. Simpl8cation

It has been mentioned before that test pattern generators do not
like to see too many tristate drivers because they end up producing
too many possibly detecting faults without creating too many pat-
terns. It has also been mentioned that we would not like to simplify
the AND gate structures away because they represent electrically
conducting paths that we are targeting for test pattern generation. We
can still perform some simplifications without compromising either
goal. They are described next. These transformations either remove
redundancy created by intermediate steps in modeling process, or
actual redundancies (in same spirit of split transistors) or eliminate
gates that do not affect test patterns (but does affect fault coverage).
All simplification steps are optional.
3.7.1. Inverter Chain Elimination

N (N > 1) inverters in a series can be simplified by removing
them (N even) or replacing them with a single inverter (N odd) pro-
vided there are no fanouts from the internal nodes in the chain.

Figure 36 : The resultant model from Figure 35
after inverter chain elimination

3.7.2. Input Dropping

If there are multiple connections between output of one gate and
inputs of another gate whose inputs are commutable (AND, OR,
NAND, NOR etc. but not TSDs) then all but one of those connec-
tions can be dropped.

BN B
0

Figure 37 : The resultant model from
Figure 36 after input dropping

Figure 35 : The resultant model from Figure 33
after model conversion

Paper 14.3
379

3.1.3. Gate Dropping

all but one of them are dropped.
If two or more gates have identical input output connections then

A

Figure 38 : The resultant model from Figure 37 after gate dropping

3.7.4. Buffer Elimination

nated by moving the output to input.
All single input single output non-inverting gates can be elimi-

Figure 39 : The resultant model from Figure 38
afer buffer elimination

3.1.5. TSD to AND-OR conversion

AND-OR conversion is a very important piece of simplification.
This is also how MUX-es are recognized. Suppose we have a N (N>l)
dotted tristate drivers with enable inputs {el, ..., eN} and data inputs
{dl, ..., d ~ } .

0

Figure 41 : Final AND-OR circuit

B
0

Figure 42 : After AND-OR conversion of model in Figure 39

3.8. Pass-gate Factorization
Path Tracing algorithm explicitly enumerates all paths to form

AND-OR expressions. This approach works well in most cases.
However, for pass transistor trees the number of paths become large
and the model size increases. To contain the model size, we can keep
the tree as it is and convert pass gates to TSDs. However, boolean
analysis on TSDs is a little more complex than on AND-OR gates.
We solve this dilemma by doing an explicit enumeration of all paths,
but performing a factorization of paths to recover the original tree
structure. This is explained next with an example.

A

F
Figure 43 : A pass transistor tree network

The paths {R-P-C, R-P-D, R-Q-E, R-Q-F) are enumerated first
and after boolean analysis is performed, they can be factorized as R-
{ P-{ C,D } ,Q- { E,F]) and collapsed back to original structure. After
the factorization step, the model is a tree structure of TSDs. Without
this step it would have been a two level structure of AND-TSDs.

Figure 40 : A TSD circuit

The following two criteria are used for turning this TSD circuit to

1 . there should be no possibility of a floating state at the output
(prove that el = e2 = . . . = e , = 0 is not possible) and,

2. if two or more TSDs are on they must drive the same value to
the output (Vi, j , i # j show that ei = e j = 1 and di = d j
is not possible).

AND-OR circuit:

-

If above two conditions are met, the dotted TSD circuit can be
turned into a AND-OR circuit as shown in Figure 41.

Figure 44 : Coversion to gate level structure of
Figure 43 afer factorization

Paper 14.3
380

7. References

[11 G. Ditlow, W. Donath and A. Ruehli, “Logic equations for MOS-
FET circuits”, IEEE International Symposium on Circuits and
Systems, pp. 752-755, May 1983

[23 Z. Barzilai, L. Huisman, G. M. Silberman, D. T. Tang and L. S .
Woo, “Simulating pass transistor circuits using logic simulation
machines”, Design Automation Conference, pp. 157-163, June
1983

[3] R. E. Bryant, “Boolean analysis of MOS circuits”, IEEE Trans-
actions in Computer Aided Design, vol. 6, pp. 634-649, July
1987

[4] D. T. Blaauw, D. G. Saab, P. Banerjee and J. Abraham, “Func-
tional abstraction of logic gates for switch level simulation”,
European Conference on Design Automation, pp. 329-333, Feb-

[5] R. E. Bryant, “Extraction of gate level models from transistor cir-
cuits by four valued symbolic analysis”, International Confer-
ence in Computer-Aided Design, pp. 350-353, November 1991

[6] R. E. Bryant, D. Beatty and K. Brace, “COSMOS: A compiled
code simulator for MOS circuits”, Design Automation Confer-
ence, pp. 9-16,1987

[7] A. Kuehlmann, D.I.Cheng, A. Srinivasan and D. P. Lapotin,
“Error diagnosis for transistor level verification”, Design Auto-
mation Conference, pp. 218-224, June 1994

[8] N. Weste and Kamran Eshraghian, “Principles of CMOS VLSI
design”, Addison Wesley Publishing Company, ISBN 0-201-

191 L. G. Heller et. al., “Cascode Voltage Switch Logic: A differen-
tial CMOS family”, International Symposium on Solid State
Circuits, pp. 16-17, 1984

[IO] K. Yano et. al. “Top-Down pass-transistor logic design”, IEEE
JSSC, June 1996, pp. 792-803

[Ill K. Yano et. al, “A 3.8 ns CMOS 16x16 bit multiplier using

[I21 M. Suzuki et al., “A 1.511s 32b CMOS ALU in double pass tran-
sistor logic”, IEEE Journal of Solid State Circuits, pp. 1145-
1151, Nov 1993

[13] V. Friedman et. al., “Dynamic logic CMOS circuits”, IEEE
Journal of Solid State Circuits, pp. 263-266, April 1994

ruary 1991

53376-6

CPL”, IEEE JSSC, April 1990, pp. 388-395

-DO

Figure 45 : Coversion to gate level structure of
Figure 43 without factorization

4. Implementation
GateMaker was implemented in C. It has multiple source and

destination interfaces and stands at approximately 15K lines of code.
The most costly step in GateMaker is boolean analysis. Despite the
frequency with which it is invoked, run time is still not an issue. Run-
ning on a RS6000 model 550, a fully custom 64 bit Fixed Point Unit
has been extracted in less than 10 minutes of CPU time.

5. Conclusions
In high performance digital CMOS circuits, there are many cus-

tom components that are needed to be converted to gate level model
for logic simulation, formal verification and most notably Automatic
Test Pattem Generation. GateMaker addresses this problem and guar-
antees that the patterns created by ATPG on the gate level model exer-
cise all switch level paths and makes their effect sensitized to an
observable port.

GateMaker preserves the switch level structures as much as pos-
sible through series parallel compression of transistors and factoriza-
tion of paths.

GateMaker imbeds a boolean analysis tool that can perform a
variety of checks necessary to simplify tristate driver based designs
to AND-OR circuits. The boolean analysis also helps in containing
the exponential blow up in path enumeration in certain circum-
stances.

GateMaker also imbeds some transformations to simplify the
model without compromising the test pattern quality. Simplification
affects fault coverage computation and therefore all simplification
stages are optional.

GateMaker brings uniformity in modeling process and the auto-
mated process saves several man months in a design cycle.

6. Acknowledgments
The author would like to thank Derek Beatty, Charlie Malley,

Madhu Reddy of the PowerPC Development Center and Gill Van-
dling, Lori Smudde, Johnny Leblanc of IBM for their invaluable
inputs and significant contributions in development of GateMaker.
The author is also indebted to Andreas Kuehlmann and Vijay Iyengar
for stimulating discussions.

Paper 14.3
38 1

