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Abstract

We present a methodology for diagnosing arbitrary
defects in digital integrated circuits (ICs). Rather than
using one or a set of fault models in a cause-effect or
effect-cause approach, our methodology derives defect
behavior from the test set, the circuit and its response,
and the physical neighbors that surround a potential de-
fect location. The defect locations themselves are iden-
tified using a model-independent stage. The methodol-
ogy enables accurate identification of defect location and
behavior through validation via simulation using pass-
ing and additional diagnostic test patterns. A byprod-
uct of our methodology is the distinction that can be
made among stuck-fault equivalencies which results in
improved diagnostic resolution. Several types of shorts
and opens are used to demonstrate the applicability of
our approach to the diagnosis of arbitrary defects.

Keywords: Diagnosis, defects, failure analysis, test
generation, yield enhancement .

1 Introduction

Failure analysis (FA) is used to characterize defects that
occur during the fabrication of an IC so that the man-
ufacturing process and/or design can be corrected to
improve yield or test escape. Fault diagnosis has typi-
cally augmented the complex task of physical analysis of
the failure (PFA) by acting as a first step towards locat-
ing defects. However, because PFA is becoming increas-
ingly complex and time-consuming, diagnosis must take
on a more important role in FA [1]. Most defects exhibit
logic-level misbehavior, and therefore, can be modeled
as a logical fault. Our objective in fault diagnosis is to
identify where and under what logical conditions does
the logical misbehavior of a defect manifest.

Past approaches to fault diagnosis include tech-
niques for fault localization [2,3] and those that attempt
to identify a particular type of fault [4–6]. It has been
argued that localization alone is not sufficient [7–9] and
that using accurate fault models for diagnosis improves
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accuracy [4, 9]. The latter approach of using specific
fault models for fault diagnosis works well when the de-
fect behavior can be conjectured fairly accurately. How-
ever, it has been shown that the commonly used fault
models may be insufficient to model the complex be-
haviors of defects in nanoscale technologies [7,10]. One
approach is to use several fault models and response
matching algorithms for fault diagnosis [8,11,12]. How-
ever, those approaches require vital information regard-
ing the logical behavior of defects for correct diagnosis.

In contrast to past approaches, the diagnosis
methodology presented in this paper attempts to derive
the behavior of defects that manifest as a logical fault
from the test data regardless of the types of defects. The
extracted logical behavior is exhaustively verified before
being declared a diagnosis candidate and contains both
location and behavior of the defect. By explicitly re-
maining independent of any particular defect type (and
its assumed logical behavior), our methodology implic-
itly deals with arbitrary defects of both known and un-
known types. Additionally, rather than finding if a set
of modeled faults is the cause of a failure, our method-
ology identifies all possible causes of the failure. For ex-
ample, a defect that resembles a 2-line short may in fact
be a 3-line short; our methodology will identify both as
possible candidates. In this paper, we discuss the appli-
cability of our methodology for diagnosis of single-cycle
defects, i.e., sequence- and delay-dependent defects are
not considered but are the focus of our current work.

The rest of the paper is organized as follows. A
brief overview of our diagnosis methodology is provided
in Section 2. The diagnosis framework consisting of the
circuits, defects and test data used in this paper are
introduced in Section 3. The details of the diagnosis
methodology and the results are described in the con-
text of the diagnosis framework in Section 4. Finally,
conclusions are provided in Section 5.

2 Methodology Overview

Our diagnosis methodology is targeted towards identi-
fying both the site and defect type. The methodology
uses a very general set of assumptions regarding defect
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behavior that are much weaker than those employed by
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Figure 1: Our diagnosis methodology.

In this work, we assume defects manifest as a log-
ical fault affecting one or more signal lines when cer-
tain logical conditions on the physical neighbors sur-
rounding the faulty lines are satisfied. As shown in
Figure 1, our methodology first identifies the faulty sig-
nal lines and then attempts to extract the set of logi-
cal conditions for the physical neighbors responsible for
fault excitation for each faulty line. Once the conditions
have been identified, the fault and the excitation condi-
tions (called neighborhood functions) for each location
are represented using fault tuples [13], which is subse-
quently verified via simulation to validate that the fault
accurately matches the behavior of the defects. The val-
idated neighborhood functions for each fault location
are then combined into a “macrofault” [14] to repre-
sent the defects in the fault derivation step. Finally,
the derived faults are validated via simulation using ex-
isting and possibly additional test patterns [15]. The
validated faults are the output of our diagnosis.

When defects do not meet our assumptions, it is
possible that incorrect locations and/or neighbor func-
tions are derived early in the diagnosis methodology. In
order to account for error in the early stages, feedback
from the validation stages to the location identification
stage can be used to backtrack and relax some of the
assumptions.

It is known that industry has typically correlated
fault locations identified by logic diagnosis tools with
layout information. However, this correlation is largely
manual and in general is restricted to identifying lines
that are close enough to be part of the defect. We pro-
pose an automated approach that uses restricted layout
information to derive a precise fault model based on the
logical misbehavior of defects. Additionally, the faults
derived by our methodology can be utilized for fast iden-

tification of similar defects in the future. In summary,
our methodology attempts to discover defect behavior
rather than assume it in the form of a finite et of fault
models.

In this paper, we first describe the important details
of our methodology and discuss our set of assumptions.
We then demonstrate one application of our diagnosis
methodology: we show how identification of accurate
logic behavior from the test data can be utilized to re-
duce the number of fault locations for failure analysis.
Specifically, we present results showing the reduction in
the number of diagnosis candidates for several types of
defects. For lack of space, we do not present results
for the additional ATPG, fault model derivation, and
validation stages.

3 Diagnosis Framework

In this section, we describe the circuits and defects
used in this paper. We use five benchmark circuits;
although each analyzed circuit carries the name of an
ISCAS’85 [16] circuit, the actual gate-level circuits dif-
fer significantly from their original form due to synthe-
sis. The circuits are first logically optimized and then
technology-mapped using a commercial physical synthe-
sis tool for a 0.18µm standard-cell library. For logic di-
agnosis purposes, a gate-level netlist consisting of prim-
itive gates is extracted from the standard-cell represen-
tation. For each circuit, we use a 100% stuck-at test
set generated by a commercial ATPG tool. The basic
characteristics of the five circuits are listed in Table 1.

Circuit No. of No. of No. of

name lines gates tests

c432 179 420 61
c880 868 385 64
c1196 1106 480 138
c1355 1091 489 91
c3540 2433 1104 155

Table 1: Benchmark characteristics.

Our methodology utilizes lines in the physical neigh-
borhood of potentially faulty lines. The physical neigh-
bors for each line in the circuit are obtained using criti-
cal area analysis. Specifically, for each signal line in the
circuit, the set of lines that have a critical area for a de-
fect of radius 0.5µm are deemed its physical neighbors.
Critical area extraction for the layout is performed us-
ing a commercial critical area analysis tool.

For each circuit, we simulated various types of two-
and three-line shorts and opens to generate test re-
sponses. The shorted lines are selected based on criti-
cal area analysis. We created bridge models where one
line dominates the other based on the relative driving
strengths of the two lines [17]. Driving strengths of lines
are determined based on the number of ON and OFF
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Figure 2: Two-line short between victim s9 and a phys-
ical neighbor s7; physical neighbors of s9 are circled.

transistors. An example of a driver-based dominating
bridge fault is shown in Figure 2, where s7 imposes its
value on s9 only when both s1 and s2 are driven to
logic-0. We also included the commonly used AND/OR
and dominating bridge models. We modeled three-line
shorts using a majority function, that is, a line is forced
to v if the other two lines are driven to v. Further, we
created models of opens based on the analysis presented
in [6].

4 Diagnosis Methodology

An overview of our diagnosis methodology is shown in
Figure 1. In this section, we provide the details of the
important steps in the methodology.

4.1 Defect Site Identification

The first step involves identification of potential defect
sites. Initially, we partition the set of test patterns into
failing and passing patterns by comparing the output
response of the circuit-under-diagnosis (CUD), called a
test response, and its fault-free response for every test
pattern. We then reduce the search space for faulty sig-
nal lines by performing a path-trace procedure [11] from
the failing outputs for all the failing patterns. Path-
trace is very conservative and is guaranteed to include
all possible faulty signal lines, even when multiple lines
are simultaneously faulty. The output of our path-trace
procedure is a list of stuck-at faults, represented by the
set Sp. The signal lines associated with the faults in Sp

are marked as lines that are potentially affected by the
defect.

After path-trace, failing patterns are categorized as
either SLAT [3] or non-SLAT patterns. SLAT patterns
are obtained by simulating the stuck-at faults in Sp and
finding those failing patterns that can be explained by
at least one fault in Sp. A fault is said to explain a test
pattern if the CUD output response for the pattern ex-
actly matches the simulation response of the fault. All

failing patterns that are not SLAT patterns are called
non-SLAT patterns [3]. In this work, we use only SLAT
patterns for characterizing potential defect sites. At
this stage, we make the following assumption based on
our experience in dealing with various defect types and
empirical data published in the literature [3].

Assumption 1. For each line li affected by an arbitrary
defect in a CUD, there exists at least one SLAT pattern
explained by a stuck-at fault on li.

Non-SLAT patterns represent the failing patterns
that cannot be explained by any one stuck-at fault, and
therefore, must be due to the presence of a defect that
simultaneously affects multiple lines1. Although, we do
not use non-SLAT patterns for defect site identification,
they are used for fault model validation as shown in
Figure 1. For the defects analyzed in this paper, all the
failing patterns are SLAT patterns.

Even though the set of suspect lines returned by
path-trace is much smaller than the set of all circuit
lines, Sp is still quite large. In order to further reduce
the size of Sp, we adopt an approach similar to per-test
diagnosis [2, 3, 12]. Per-test diagnosis treats each indi-
vidual test response as an independent diagnosis. For
each SLAT pattern, the CUD exhibits a certain logical
misbehavior. Per-test diagnosis attempts to identify the
cause of misbehavior for each SLAT pattern. We first
collapse the faults in Sp using structural equivalence
and then fault simulate the representative faults of each
equivalence class using SLAT patterns to identify the
patterns explained by each class. Only the classes that
explain at least one SLAT pattern are retained.

The result of per-test diagnosis is a set of stuck-at
fault classes along with the SLAT patterns that each
class explains. The stuck-at faults in these classes rep-
resent potential defect locations and are represented us-
ing a graphical data structure we call a cover forest. A
cover forest is a directed acyclic graph in which each
class of equivalent (under the SLAT patterns) stuck-at
faults are represented as a vertex of the graph. A di-
rected edge from vertex a to a different vertex b exists,
if and only if, the faults represented by a explains all
the failing patterns explained by b but not vice-versa2.

An example of a cover forest is shown in Figure 3.
Each vertex of the cover forest is labeled with a tuple
(fi,s,n), where fi is the representative of the equivalence
class of faults in the vertex, s is the number of SLAT
patterns explained by each fault belonging to the vertex,
and n is the number of faults in the vertex. The top
of each tree in the forest is called a root vertex and
contains a fault set that explains the largest number of

1It is possible that multiple faults cause a failing pattern to
appear as a SLAT pattern due to error masking.

2If a and b explain the same set of SLAT patterns, the two
classes, by definition, should be combined.
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Figure 3: An example of a cover forest.

SLAT patterns. The graph in Figure 3 has three trees
rooted at (f7,2,4), (f1,5,3) and (f5,2,3). The relation
among faults with respect to SLAT patterns can easily
be deduced from the cover forest. For example, it can be
observed that two of the five SLAT patterns explained
by f1 are also explained by f2, and one SLAT pattern
explained by f1 is explained by f6. However, since there
is no edge from f2 to f6, the SLAT pattern explained
by f6 must be different from those explained by f2.

As shown in Figure 3, a sub-circuit graph represent-
ing the structural relationship among the fault sites in
a vertex is also contained in the forest. The sub-circuit
graph is a directed acyclic graph where each fault site is
represented as a vertex of the graph. A directed edge ex-
ists between two vertices li and lj, if lj can be reached
from li. The structural connections between different
fault sites can be utilized for generating fault distin-
guishing test patterns for increasing diagnostic resolu-
tion, a stage of our methodology that is not elaborated
upon in this paper.

Generation of a cover forest involves the accumu-
lation of defect behaviors per failing pattern. Even if
non-SLAT patterns are present, Assumption 1 ensures
that all the affected signal lines have at least one SLAT
pattern and thus, will be included in the cover forest.
This means that every vertex in the cover forest pro-
vides a snapshot of the behavior caused by the defect.
Heuristically, the faults belonging to the root vertices
represent the strongest evidence of defect manifestation.
However, every vertex must be examined to ensure com-
pleteness. For the 583 defects analyzed in this paper,
cover forest sizes are listed in Table 2.

Avg. no.
Circuit of SLAT No. of vertices No. of faults
name patterns avg. min/max avg. min/max
c432 9.3 9.6 1/41 42.6 2/118
c880 8.8 15.6 1/99 101.8 2/492
c1196 18.3 12.2 1/78 69.8 3/365
c1355 21.6 95.1 1/551 557.7 1/1599
c3540 19.3 20.3 1/116 107.9 9/552

Table 2: Sizes of cover forests for the analyzed circuits
and defects.

Past per-test diagnosis approaches attempt to rank
the stuck-at faults by finding minimal covers of faults
that explain all failing [2] or all SLAT [3] patterns. The
sites associated with the stuck-at faults in the covers are
then reported as defect locations. An extension to the
diagnosis approach in [3] is presented in [18], where the
authors attempt to extract defect behavior from the test
data using the defect locations identified in [3]. Specif-
ically, the approach in [18] looks for logic conditions
responsible for dominant bridge behavior. The derived
conditions are subsequently verified against the entire
test set.

In [12], the authors rank covers of faults using
Bayesian probabilities rather than using minimal cov-
ers. Further, they attempt to correlate the top-ranking
covers with a set of common fault models. While the
approach in [12] is a significant step towards charac-
terization, it has two limitations: (1) the approach is
dependent upon the accuracy and applicability of the
fault models, and (2) the approach does not validate
the behavior of the defect conjectured after the correla-
tion step, and therefore, does not check if the selected
cover is completely consistent with observed defect be-
havior.

4.2 Neighborhood Function

For each potential defect site in the cover forest to
manifest as stuck-line, certain logic-level conditions on
the physical neighbors may be required3. Neighbor-
hood function extraction (NFE) attempts to identify
the logic-level conditions associated with defect activa-
tion [19]. For example, if the two-line short in Figure 2
behaves like a dominant bridge with s9 stuck-at-1 being
in the cover forest, NFE should identify s7=1 (where, s7

is a physical neighbor of s9) as the excitation condition
responsible for the fault on s9.

For NFE, we make one reasonable assumption re-
garding defect misbehavior, an assumption that is cen-
tral to the proposed diagnosis method.

Assumption 2. Whenever the defect causes a logical
error (i.e., a logic 0 flips to a logic 1 or vice-versa) on
a signal line li, the physical neighbors (and the drivers
of li and its neighbors) are the only lines (if any) that
cause li to be erroneous.

Given that defects are generally localized, Assump-
tion 2 is both conservative and practical. In case the
single defect in the CUD affects several signal lines (e.g.,
the defect manifests as a multiple stuck-line fault) or the
CUD has multiple defects, each faulty line must satisfy
Assumption 2. The two important failure mechanisms

3If the defect shorts a line li to one of the power rails, then
the neighbors other than the power rail are assumed to have no
effect on li.
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in CMOS circuits, shorts and opens, certainly satisfy
Assumption 2 [4–6].

The signal lines driving a faulty line li and those
driving the physical neighbors of li are also important
for neighborhood function extraction. The logic values
of the drivers may be an important factor that deter-
mines when li becomes faulty [17].

4.2.1 Function Extraction

Given a stuck-at-v fault affecting line li (repre-
sented as li/v, vε{0,1}), a set of SLAT patterns
T={t1, t2, ..., tj} explained by li/v, and the set of signal
lines N={n1, n2, ..., nk} that are li’s physical neighbors
(including drivers of li and its neighbors), a neighbor-
hood function is defined as a boolean expression that de-
scribes the logic values on the “important” signal lines
in N for every tiεT .

Some lines in N are not important for neighbor-
hood function extraction since their logic values are
fixed for every SLAT pattern explained by the fault
li/v. A neighbor whose logic value is implied due to
the detection of li/v, or always lies on a sensitized path
from li/v, i.e., whose value is directly controlled by the
fault can be removed for NFE. This is called imply-
based pruning and results in a substantial reduction in
the number of lines in N for each fault li/v. Note, only
physical neighbors present in N are imply-pruned; when
a neighbor is pruned, its corresponding drivers are also
eliminated from N . Imply-pruned neighbors may actu-
ally play an important role in defect activation, how-
ever, their significance is reduced since logic conditions
on them are implicit in li/v detection.

Clearly, the lines in N that can be imply-pruned
based on fault detection is a function of the circuit
structure as well as the fault under consideration. The
average number of neighbors (along with their drivers)
per fault for the 583 CUDs after employing imply-based
pruning are shown in Figure 4. We use two more prun-
ing techniques for NFE that will be described in Sec-
tion 4.2.2.
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Figure 4: Average number of neighbors per fault after
imply-based pruning.

For deriving a neighborhood function for li/v, logic
values on the lines in N are obtained using good-value
simulation of the SLAT patterns in T . The set of values
on the lines in N for each SLAT pattern in T is called a
neighborhood state. A neighborhood function describes
any trend in the neighborhood states that may cause
defect activation, specifically, that cause li to be stuck-
at-v for the SLAT patterns in T . The task of identi-
fying a trend in the neighborhood states is equivalent
to finding a function that covers all the states, i.e., the
neighborhood states can be viewed as minterms of a
truth table. All the other states not exhibited by the
SLAT patterns in T are treated as maxterms. Boolean
minimization techniques are then applied to the truth
table to derive a minimum sum-of-products (SOP) ex-
pression. We use SIS [20] for deriving the SOP expres-
sion. The final boolean expression is the neighborhood
function for the fault li/v. It is possible that some of
the states declared as maxterms are exhibited by some
passing patterns that detect li/v, resulting in the re-
moval of li/v from the cover forest. A detailed analysis
of this point is discussed as part of the validation stage
in Section 4.3.

We can safely use good-simulation values on the
physical neighbors to derive the neighborhood functions
NFE only if the following assumption is valid.

Assumption 3. For every SLAT pattern ti explained
by a fault li/v, the logic value on every neighbor ni of li
is assumed to be fault-free unless ni lies on a sensitized
path from li/v.

If a defect violates Assumption 3, that is, one or
more neighbors has an erroneous value, the neighbor-
hood function derived by NFE may be incorrect.

To illustrate NFE, let us again consider the two-
line short shown in Figure 2. For the fault s9/1, there
are six physical neighbors – s3, s7, s8, s10, s11 and s12.
Including the drivers of s9 and its neighbors makes the
total number of neighborhood lines to be |N |=11 (s1

and s2 drive the neighbor s7; s4 and s5 drive s8 that
in turn drives s9 and s10; s6 drives the neighbor s10).
However, detection of s9/1 requires s3=s8=1 for fault
activation. Also, the logic value on the neighbor s11

is directly implied by s9/1 since s11 always lies on the
sensitized path from s9/1. Thus, s3, s8, and s11 and
their drivers s4 and s5 are imply-pruned, leaving only
six meaningful neighbors.

SLAT Imply-pruned lines

patterns s1 s2 s6 s7 s10 s12

t1 0 0 1 1 0 1
t2 1 0 0 1 1 1

Table 3: Neighborhood states for s9/1 for the defect
shown in Figure 2.

Table 3 shows logic values on the six remaining
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neighbors for two SLAT patterns t1 and t2 explained
by s9/1. A quick analysis of the Table 3 reveals that s7

and s12 are always driven to logic-1 whenever the defect
manifests as s9/1. It can be hypothesized at this stage
that the defect is probably a short involving s7, s9 and
s12, where s7 and s12 adversely affect s9. However, no
hypothesis is correct unless validated. Therefore, our
methodology includes a validation step after NFE as
described in Section 4.3.

4.2.2 Neighborhood Pruning

Imply-based pruning was described in Section 4.2.1. We
use two other pruning techniques to reduce the list of
physical neighbors for a fault location. First, given a
stuck-at fault li/v, any neighbor ni on a sensitized path
from li/v is eliminated on a per-test basis because we
assume that the logic value on ni cannot enable the
activation of the fault on li in the same clock period.
We call this type of pruning sensitization-based prun-
ing. Similar to the imply-based pruning, drivers of any
neighbor removed using sensitization-based pruning are
also eliminated from the list of neighbors (if they are
not neighbors themselves).

For the defect in Figure 2 and the test patterns in
Table 3, the neighbor s12 lies on the sensitized path of
s9/1 for only the SLAT pattern t2. Since s12 cannot
act as an aggressor causing s9/1, it does not need to
be considered in the neighborhood state shown in Ta-
ble 3. Combining the two neighborhood states using SIS
yields Z=s1s

′

2s
′

6s7s10 + s′1s
′

2s6s7s
′

10s12 as the neighbor-
hood function for s9/1.

The second type of pruning called polarity-based
pruning involves eliminating neighbors that are not
driven to the same logic value as the polarity of the fault
on a per-test basis. Specifically, for a fault li/v that
explains a SLAT pattern ti, any neighbor that is not
driven to v is assumed unable to cause a stuck-at-v fault
on li and thus, can be removed for ti. Applying polarity-
based pruning to the neighborhood states in Table 3,
and minimizing using SIS yields Z=s1s

′

2s7 + s′2s7s12.

All pruning techniques are heuristics that work for
most defects. We can conceive of defects however, where
the heuristics do not hold. For example, for a defect
that manifests as li/1, neighbor ni will be polarity-
pruned if it is driven to logic-0. However, ni driven
to 0 in a particular way (say, weakly driven) may cause
a test to fail, while a strongly driven 0 means the test
passes. In this case, the weakly driven 0 on ni is essen-
tial to describe the defect activation.

4.3 Validation

Inadvertently, incorrect faults are included in the cover
forest due to stuck-fault equivalence and dominance.

In this section, we describe how the stuck-fault rela-
tionships can be severed to eliminate incorrect faults.
Specifically, we use passing patterns (and possibly ad-
ditional diagnostic test patterns) to validate the cor-
rectness of each fault in the cover forest.

4.3.1 Passing Pattern Validation

The process of removing incorrect faults and the subse-
quent reduction of a cover forest is referred to as defor-
estation. For each fault li/v in the forest, deforestation
starts with identification of passing patterns that de-
tect li/v. If a passing pattern that detects li/v creates
a neighborhood state that is also caused by some SLAT
patterns that explain li/v, two different strategies can
be used to decide the status of li/v. We can either be
aggressive and remove li/v from the cover forest, or we
can be conservative and just not consider the particular
neighborhood state for NFE.

In this paper, we use the aggressive approach as a
heuristic to maximize deforestation. It turns out that
this heuristic works well in that the actual faults are
never dropped for the defects analyzed in this paper.
The heuristic assumes that neighborhood states for li/v

derived from SLAT patterns (that explain li/v) repre-
sent the precise fault activation conditions. Therefore,
a pattern that detects li/v cannot have the same exci-
tation conditions and be a passing pattern if the defect
in the CUD really manifests as li/v. For example, if a
passing pattern creates one of the two states shown in
Table 3 and also detects s9/1, s9/1 is removed from the
forest.

The aggressive approach to deforestation is enabled
by representing each fault li/v and its associated neigh-
borhood function as a macrofault using fault tuples [13].
By definition, the macrofault must be detected by ev-
ery SLAT pattern explained by li/v. If the macrofault
is detected by a passing pattern, li/v is removed. We
use FATSIM [14] to simulate the fault tuple macrofaults
against passing patterns.

The aggressive approach to deforestation may cause
removal of a real fault location for certain situations
of defect behavior. In particular, a defect that causes
multiple faulty lines that are equivalent for a given test
can create a situation where one or more of the lines are
removed.

Deforestation reduces the size of a cover forest,
which means the number of faulty behaviors investi-
gated during FA is also reduced. Deforestation can po-
tentially remove all the faults belonging to a vertex, re-
sulting in vertex elimination. The adjusted cover forest
is called a pruned cover forest. For example, if defor-
estation removes the root vertex (f1, 5, 3) in Figure 3,
the vertex (f2, 2, 5) becomes a root vertex and the edge
between (f1, 5, 3) and (f6, 1, 2) is deleted.
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To illustrate deforestation, let us again consider the
short between s7 and s9 shown in Figure 2, where s7 is
assumed to dominate s9. Assume that s7 is not a neigh-
bor of s11. Therefore, while the neighborhood function
for s9/1 includes s7, the function for the equivalent fault
s11/0 does not. Now, if there is a test ti that detects
s11/0 (as well as s9/1) and does not set s7 to logic-1, ti
will be a passing pattern. When ti is used for valida-
tion, the macrofault representing s11/0, but not the one
associated with s9/1, may be detected which will cause
s11/0 to be eliminated. In this fashion, the equivalency
between two otherwise indistinguishable faults can be
severed, resulting in higher diagnostic resolution.

0

200

400

600

800

1000

1200

1400

1600

1 101 201 301 401 501

after failing 
patterns

after passing 
patterns

N
u

m
b

er
 o

f 
fa

u
lt

s 
in

 c
o

ve
r 

fo
re

st

CUD index

Figure 5: Reduction in the number of cover forest faults.

Figure 5 illustrates all the results for 353 two-line
shorts, 123 three-line shorts, and 107 opens simulated
for the five benchmarks. All the results are combined to
show the overall effectiveness of deforestation. Figure 5
is a histogram comparing the number of faults in the
cover forest before and after passing pattern validation.
The CUDs on the x -axis are ordered from left to right
based on the number of faults in their forests before
deforestation.

For 583 diagnosed CUDs, there is a reduction in the
number of faults for all but ten CUDs after passing pat-
terns are utilized. For the ten CUDs, deforestation is
not able to remove any fault from the cover forest since
the passing patterns do not possess any macrofault-
distinguishing capability. Additional ATPG is required
to increase diagnostic resolution for such faults. Over-
all, deforestation resulted in an average reduction of
over 43% with the maximum reduction being 95% for
one CUD that had a dominant bridge defect. For the
CUD with maximum reduction, the number of faults
reduced from 21 to a single, correct fault. Passing pat-
terns contained excellent diagnostic resolution for this
particular dominant bridge case. In general, Figure 5
reveals that the greatest reduction takes place where it
is most needed, that is, for large cover forests. For ex-
ample, the average reduction for cover forests with more
than 500 faults is 62%. As a final point, it is important
to note that the real fault locations are never dropped
in any of the 583 diagnosed CUDs.
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Figure 6: Ratio of initial to final number of root faults.

As discussed earlier, the stuck-at faults belonging
to the root vertices in a cover forest heuristically repre-
sent the strongest evidence of defect manifestation. We
conducted another experiment where only the faults in
the roots of cover forests were considered for deforesta-
tion. The histogram for faults in roots reveals that on
average, number of root faults reduced from 33 to 13.
Figure 6 represents the reduction in number of faults
as a percentage of the number of faults present in the
roots before deforestation.

As highlighted in Figure 6, deforestation removed
all the faults in the roots (i.e., eliminated all the roots)
for a few CUDs. Removal of a root implies that the
most probable faults, the ones that explain the great-
est number of failing patterns, may in fact be incorrect
and exist initially in the forest due to equivalence and
dominance. A diagnosis algorithm that uses only fail-
ing patterns may report these faults as candidates - an
imprecise result. Upon further investigation of these
specific CUDs, it was revealed that the real faults were
indeed present in the cover forest, but not in the roots.
Deforestation severed the fault relationships that caused
an incorrect stuck-at fault to be present in a root.

4.3.2 Additional ATPG

Deforestation using passing patterns may not always re-
sult in a substantial reduction in cover forest size. For a
passing pattern to be effective in removing an incorrect
fault, the pattern must detect that fault in simulation.
In the example described in Section 4.3.1, if no pass-
ing pattern detects s11/0 without setting s7 to logic-1,
s11/0 cannot be removed.

In order to alleviate this shortcoming, our method-
ology allows application of additional test patterns. The
primary objective of additional ATPG is to distinguish
macrofaults that remain after passing pattern valida-
tion. One way to distinguish macrofaults is described
in [9]. Another objective for additional test patterns is
to maximize the number of unique neighborhood states
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reached by test patterns [19] for each fault in the cover
forest. This may, for example, lead to generation of a
test pattern that detects s9/1 (and s11/0) while setting
s7=0, which can remove s11/0.

While not a common industry practice, the gen-
eration of new test responses for increasing diagnosis
accuracy has been proposed in [21] and more recently,
in [9, 15, 22].

5 Conclusions

A generalized methodology for diagnosis of arbitrary
defects in logic circuits has been presented. The pro-
posed methodology addresses both defect localization
and characterization. Characterization can lead to a
significant reduction or altogether elimination of the ef-
fort involved in physical failure analysis. Unlike past
diagnosis approaches for identifying defect types, our
methodology does not use assumptions regarding defect
behavior in the form of fault models; the methodology
attempts to derive defect behavior from the test data.

The neighborhood functions derived in the method-
ology allows accurate representation of defect behavior
per failing test pattern. The defect behaviors are then
validated using passing patterns. Results indicate that
passing pattern validation allows stuck-fault relation-
ships (i.e., equivalence under the applied test set) to be
severed, leading to a reduction in the number of faults
analyzed for FA.

The diagnosis methodology proposed in this paper
makes certain assumptions regarding defects. These as-
sumptions are used to keep the problem tractable. Cur-
rent work focusses on relaxing some of these assump-
tions in order to expand the scope of defects for which
the diagnosis methodology can be applied.
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