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ABSTRACT

With increasing design complexity and stringent robustness re-

quirements in application such as automotive electronics, analog

andmixed-signal (AMS) verification becomes a key bottleneck. Rare

failure detection in a high-dimensional parameter space using mini-

mal expensive simulation data is a major challenge. We address this

challenge under a Bayesian learning framework using Bayesian op-

timization (BO). We formulate the failure detection as a BO problem

where a chosen acquisition function is optimized to select the next

(set of) optimal simulation sampling point(s) such that rare failures

may be detected using a small amount of data. While providing an

attractive black-box solution to design verification, in practice BO

is limited in its ability in dealing with high-dimensional problems.

We propose to use random embedding to effectively reduce the

dimensionality of a given verification problem to improve both the

quality of BO-based optimal sampling and computational efficiency.

We demonstrate the success of the proposed approach on detect-

ing rare design failures under high-dimensional process variations

which are completely missed by competitive smart sampling and

BO techniques without dimension reduction.

1 INTRODUCTION

With increasing design complexity and stringent robustness re-

quirements, analog and mixed-signal (AMS) verification becomes

a key bottleneck [2]. Many AMS verification methods, e.g. smart

sampling [7, 18, 19] and statistical blockade [15] were proposed

to speed up the verification process in the past decade. Recent

years have witnessed an accelerated integration of AMS ICs into

safety-critical applications such as auto-electronics and bio-medical

systems which may impose a stringent failure rate specification

of 1 DPPM (defective parts per million) or less on AMS ICs. De-

tecting even a single failure for circuits that are designed to be

extremely robust with typical simulation budgets during design

time is a completely nontrivial problem. Under this case, the rare

failure detection problem (e.g. finding the first failure) is a more

fundamental and challenging problem than yield prediction that

has been focused on in prior work [7, 15, 18, 19].
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The key problem this paper aims to address is the rare failure de-

tection of AMS circuits under large number of design uncertainties

(e.g. process variations) with a practically constrained simulation

data budget. Towards this end, the recent work of [5] adopted

Bayesian optimization (BO) for rare failure detection, demonstrat-

ing verification of AMS circuits with relatively limited numbers of

process parameters. BO is a powerful tool to find the optimum value

of black-box functions [14], which is popular for hyper-parameter

tuning [16, 20] and reinforcement learning [1] in machine learning.

BO is a sequential design technique for global optimization of black-

box objective functions that are expensive to evaluate. A chosen

acquisition function is optimized at each step to select the next (set

of) optimal sampling location(s). Queries of the objective function

to be optimized, e.g. performance of an AMS circuit, which can be

costly, e.g. via circuit simulations for AMS verification, are only

made at these optimized locations. The new data collected at each

step augments the training dataset to retrain a probabilistic surro-

gate model, e.g. Gaussian process model (GP), that approximates

the black-box function. The solutions obtained from optimizing the

acquisition function determine where the additional data will be

sampled, contribute directly to the accuracy of the surrogate model,

and guide the iterative global optimization process.

While providing an attractive black-box solution applicable to

AMS verification, a well-known limitation of Bayesian optimiza-

tion is its limitation in dealing with high-dimensional problems

[14, 17]. When the dimensionality of the black-box optimization

problem increases, so does the dimensionality of the optimization

of the acquisition function, which is typically non-convex, at each

sequential sampling step. Solving high-dimensional optimization

problems can be both computationally expensive and hard. The

high run-time cost and degradation of optimization solution quality

for high-dimensional problems severely limit the scalability of BO.

This work aims to extend the applicability of BO to the challeng-

ing problem of rare failure detection of AMS circuits with large

numbers of design uncertainties. We propose to employ random

embedding [21] to effectively reduce the effective dimensionality

of the verification problem. Dimensionality reduction is possible

for AMS circuits since under many practical situations variational

parameters of a circuit do not have equal significance to a given

design performance to be verified [9, 10]. Specific circuit topolo-

gies employed in practical circuits build constrained structures into

the way different circuit/process parameters interact with each

other and influence the given design performance. This gives rise

to parameters that are statistically insignificant to the targeted per-

formance. It shall be noted, however, such parametric redundancy

in practice may be only identified in a transformed parameter space.



Towards this end, random embedding provides a systematic way

to explore hidden parametric redundancy. As such, parameter re-

dundancy needs not to be specified by the designer a prior, which is

very hard in general. Instead, it can be streamlined in the sequential

statistical learning/black-box optimization framework of Bayesian

optimization. Our random embedding based BO approach is further

supported by a proposed random embedding dimension selection

algorithm that estimates the effective dimension of a given AMS

circuit using a small amount of training (simulation) data prior to

the BO-based failure discovery process. We demonstrate the suc-

cess of the proposed approach on detecting rare design failures

under up to 60 process parameters which are completely missed by

competitive smart sampling and BO techniques without dimension

reduction.

2 BAYESIAN OPTIMIZATION PRELIMINARY

2.1 Failure Detection Problem Formulation

Given a D-dimensional parameter variational space Ω ⊆ IRD ,

failure detection attempts to find the existence of points not satis-

fying a given specification inside Ω. Without loss of generality, a

point x is regarded a failure if:

y (x) < T ,x ∈ Ω, (1)

where T is the targeted specification (assuming the smaller the

value is, the worse the performance is), and the y (x) represents
the circuit performance at the parameter variation combination x .
Typically, the circuit performance has no closed-form expression,

and is highly-nonlinear and complex. Instead of solving a SAT

problem with the black-box function y (x), the failure detection

problem can be formulated as an equivalent optimization problem:

min
x ∈Ω

y (x) < T . (2)

We adopt Bayesian Optimization to optimize y (x) as a black-box
objective function.

2.2 Bayesian Optimization Introduction

There exist two critical components constituting Bayesian opti-

mization, as shown in Fig. 1. The first one is a surrogate probabilistic

model y∗ | x∗,D to approximate the original optimization objec-

tive function. The probabilistic surrogate model comes with model

prediction uncertainty, which can be reduced with sequentially

collected examples. The new examples are collected via optimiz-

ing the other critical component, an acquisition function α (x ;D),
which is based on the current information provided by the surro-

gate model. By carefully designing the acquisition function, the

search process can be guided either to improve the surrogate model

accuracy or to find more optimal objective function values. Queries

of the objective function to be optimized are only made at these

optimized locations. Hence, Bayesian optimization greatly reduces

the number of objective function evaluations, and is well-suited for

AMS rare failure detection.

2.2.1 Surrogate Model. To obtain both mean and uncertainty pre-

diction for the black-box objective function, a Gaussian Process

(GP) model is usually chosen as the surrogate model. The GP is

characterized with one prior mean functionm (x) and one prior
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Figure 1: Bayesian optimization procedure.

covariance function κ (x ,x ′) as a generative model:

f ∼ GP (m,κ) , (3)

y | f ,σ 2
0 ∼ N

(
f ,σ 2

0

)
, (4)

where σ 2
0 is another prior information representing the intrinsic

noise variance. Typically,m (x) is set be 0, and common choices

for the covariance function κ (x ,x ′) are the squared exponential

(SE) kernel and Matérn kernel [13]. Provided a finite collection of n
examples D = {(xi ,yi )}ni=1, and a new test point x∗, the posterior
mean and variance prediction of the objective function at x∗ given
by the GP model are [13]:

y∗ | x∗,D ∼ N
(
μ
(
x∗;D)

,σ 2 (x∗;D) )
(5)

μ
(
x∗;D)

= kT (
x∗

) (
K + σ 2

0 I
)−1

y (6)

σ 2 (x∗;D)
= κ

(
x∗,x∗

) − kT (
x∗

) (
K + σ 2

0 I
)−1

k
(
x∗

)
, (7)

where the elements of the vector k (x∗) are defined as ki (x∗) =
κ (x∗,xi ), and the elements ofmatrixK are given byKi j = κ

(
xi ,x j

)
.

The selection of hyper-parameters including the intrinsic noise σ 2
0

and kernel function parameters is usually achieved by optimizing

the log marginal likelihood:

logp (y |D ) = − 1

2
yT

(
K + σ 2

0 I
)−1

y − 1

2
log

��K + σ 2
0 I
��

− n

2
log 2π .

(8)

2.2.2 Acquisition Function. A good acquisition function balances

between finding the worst performance (exploitation) and explor-

ing in highly uncertain regions of the parameter space (exploration).

Popular acquisition functions include: probability of improvement

(PI), expected improvement (EI) and lower confidence bound (LCB)

[14]. We adopt the approach of (9) which employs multiple acquisi-

tion functions with different levels of balancing between exploita-

tion and exploration for added robustness:

α (x ;D) = αpBO (x ;D,w)
= (1 −w) μ (x ;D) −wσ (x ;D) , (9)

where w is the weighting parameter to balance exploitation and

exploration for the acquisition function search direction.

3 CHALLENGES OF HIGH-DIMENSIONAL BO

A global optimization method assisted with a local gradient-

free optimizer is usually to optimize the D-dimensional acquisition

function. Such methods often suffer severely from the curse of di-

mensionality. We tested the optimization efficiency of DIRECT_L

[3] and COBYLA [12] from the NLopt library [6] on a simple objec-

tive function:

ysyn (x) =
‖x − c‖2
‖c‖2

, (10)
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Figure 2: Number of function evaluations per optimization

for two optimization methods.

where c is a D-dimensional vector. Fig. 2 shows that the required

number of function evaluations for both methods is super-linear in

D. This suggests that in general when BO is applied to a black-box

function the number of acquisition function evaluations can be

much larger than D. The time complexity for evaluating simple

acquisition functions like PI, EI and LCB isO
(
N 2 + ND

)
, where N

is the number of training examples. Therefore, the time complexity

for optimizing the acquisition once is greater thanO
(
N 2D + ND2

)
which is quadratic in D at minimum. Optimizing general non-

convex acquisition functions in high-dimensions can be challenging.

To force the completion, the number of acquisition function evalu-

ations is upper bounded, leading to poor optimization quality. In

addition, hyper-parameter tuning for GP models also suffers from

high dimensionality.

4 PROPOSED HIGH-DIMENSIONAL
BAYESIAN OPTIMIZATION

Our experimental studies have shown that the degradation of

optimization solution quality and high time complexity of high-

dimensional AMS circuits can make BO fail to detect rare design

failures. We address this challenge by exploring random embed-

ding to effectively reduce the dimensionality motivated by the fact

typically only a subset of circuit parameters and parameter combi-

nations have a significant impact on a target design performance.

4.1 Dimension Reduction: Random Embedding

Consider that the original D-dimensional parameter space has a

de -dimensional effective linear subspaceV such that for all xe ∈ V
and xu ∈ V⊥, we have y (xe + xu ) = y (xe ), where de is the min-

imum integer number satisfying this property. Intuitively, para-

metric variations in the subspace orthogonal to V with the lowest

possible dimensionality de does not alter the performance value.
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Figure 3: Random embedding illustration.

As proven in [21], with a random matrix A ∈ IRD×d with entries

independently sampled according to N (0, 1), where embedding

dimension d ≥ de , for ∀x ∈ IRD , there exists a z ∈ IRd such that

y (x) = y (Az) with probability 1. Therefore, the original high di-

mensional space can be embedded into a low dimensional space

via a random matrix, resulting in a low dimension search space

in Bayesian optimization. The optimum solution x∗ ∈ IRD can be

found at some point z∗ ∈ IRd , where x∗ = Az∗.
For example, the 2D objective function in Fig. 3 only depends on

x1. The 2D parameter space can be embedded into a 1D space (red

solid line) along which the optimum solution can be found.

4.2 Proposed BO with Random Embedding

We define the failure search region for z asZ ⊆ IRd . Typically,

the normalized failure search space Ω for x can be set as a bounded

hyper-cube [−1, 1]D . The exact mapping of Ω in the embedding

subspace may be complex, but can be well approximated by another

bounded hyper-cube [−
√
d,
√
d]d [21]. Now BO can operate in the

low d-dimensional space defined by random embedding: both GP

modeling and optimization of the acquisition function take place

in terms of z. The sampling of training data for the GP model is

confined inZ. Each sampled z ∈ Z is mapped to a x ∈ Ω via the

random matrix A by:

x = pΩ (Az) . (11)

In case that Az locates outside Ω, the projection operation pΩ (·) is
performed to constrain the mapped x within Ω. Then the circuit

performance at x is obtained using circuit simulation.

Algorithm 1: Proposed Bayesian optimization for failure de-

tection in high dimension space

Input :Original function dimensionality D;
Initial sample dataset D0;

Simulation budget n; Batch size nb ;
Preset nb weighting parametersw1, . . . ,wnb ;

Objective function y(x); Target specification T .
Output :Detected failure set F .

1 Select an embedding dimension d from D0;

2 Sample a random matrix A ∈ IRD×d ;
3 Build the initial statistical model p (y∗ |z∗, D0);
4 F ← {} ;
5 for b ← 1 to n/nb do

6 for i ← 1 to nb do

7 zb,i ← argminz∈Z αpBO (z;Db−1,wi );
8 yb,i ← y

(
pΩ

(
Azb,i

) )
;

9 if yb,i < T then

10 F ← {F , (pΩ
(
Azb,i

)
,yb,i

)}
;

11 end

12 end

13 Db ←
{
Db−1,

(
zb,1,yb,1

)
, . . . ,

(
zb,nb ,yb,nb

)}
;

14 Update statistical model p (y∗ |z∗, Db );
15 end

16 return F .



We summarize our Bayesian optimization algorithm using both

random embedding technique and parallelizable acquisition func-

tion (9) as shown in Algorithm 1. With the proposed algorithm, the

acquisition function optimization is executed in a low dimension

space Z ⊆ IRd , which can be expected to have better optimization

quality and efficiency. In addition, the GP model is trained under

the low-dimensional space as well, resulting in more efficient GP

training and evaluation.

4.3 Embedding Dimensionality Selection

While [21] provides the general theoretical principle of random

embedding, it does not offer guidance for finding the effective

dimensionality de . Selection of the embedding dimension d must

balance two conflicting needs. An overly small d can lead to over-

compression of the original parameters x and hence poor accuracy

of the surrogate GP model, jeopardizing the robustness of failure

detection. On the other hand, if d is too large, we can barely benefit

from the dimension reduction brought by random embedding.

We propose the following data-efficient approach to select the

embedding dimensionality prior to the BO based failure detection.

For this, we collect a small training dataset to train multiple GP

models with varying embedding dimensionalities. To share the

same training dataset for all such GP models, the sampling of the

training dataset takes place in the originalD-dimensional parameter

space, and the labels (circuit performance values) are queried using

circuit simulation. Then, each sampled vector x ∈ IRD is mapped

to the corresponding vector z ∈ IRd with embedding dimension d
via pseudo inverse of the random embedding:

z = A†x =
(
ATA

)−1
ATx . (12)

The above procedure maps one common training dataset in x to a

training set for each embedding dimension d such that a GP model

with dimension d can be trained using the mapped data. We then

use the mean-square error (MSE) to evaluate each GP model. If

Algorithm 2: Proposed embedding dimension selection.

Input : Initial sample dataset D0 = {X ,y};
Original function dimensionality D;
Random matrix maximum trial count T .

Output :Embedded dimension d̃ .
1 for d ← 1 to D do

2 for i ← 1 to T do

3 Sample a random matrix A ∈ IRD×d ;

4 A† ←
(
ATA

)−1
AT;

5 Build statistical model p
(
y∗ |z∗, {A†X ,y

})
;

6 Computemsei of the model given
{
A†X ,y

}
;

7 end

8 MSEd ← 1
T

∑T
i=1msei ;

9 end

10 Pick the smallest d̃ where MSE stops decreasing from the plot

using {MSE1 · · ·MSED };
11 return d̃ .

the dimensionality d is smaller than the unknown effective dimen-

sion de , we expect the MSE of the corresponding GP model would

be large. We track the the variation of MSE as d increases. If the

MSE stops decreasing at some dimension d̃ , d̃ is likely to be just

somewhat greater than de , and hence a good choice as the embed-

ding dimension used for the sequential BO process. Since we only

want to use a small amount of data to determine d̃ , multiple, say

T , GP models with different random matrices are trained for each

d and their MSEs are averaged to minimize the variance of ran-

dom embedding with small data. Embedding dimension selection

is summarized in Algorithm 2.

5 EXPERIMENTAL RESULTS

5.1 Experimental Setups

We demonstrated the effectiveness of the proposed Bayesian

optimization approach with two circuits: an under-voltage lockout

circuit [4] (19 dimensions) and a low-dropout regulator [8] (60

dimensions), as shown in Fig. 4 and 5, respectively. Both circuits

are designed using a commercial 90nm CMOS technology design

kit, and simulated remotely on the server with the 2.80GHz Intel(R)

Xeon(R) E5-2680 v2 CPU.

The performances of two categories of techniques, i.e. sampling

methods and Bayesian optimization, are studied. Under the first

category, we employ Monte Carlo (MC) method and Scaled-Sigma

Sampling (SSS) algorithm [18, 19], a state-of-the-art statistical sam-

pling technique. The parameter variations of interest are bounded

inside a large hyper-cube, which encloses a wide ±4σ range for

each parameter. To maximize the possibility of hitting rare fail-

ures within the large hyper-cube, uniform sampling distribution is

adopted for MC. In the second category, Bayesian optimization ap-

proaches using different acquisition functions EI, PI, LCB [14] and

the parallelizable multi-acquisition functions (pBO) [5] are selected

to compare the proposed BO approach with random embedding.

The BO methods were implemented in C++ under the BayesOpt

[11] framework using DIRECT_L [3] for global optimization and

COBYLA [12] for local optimization in NLopt library [6]. All the ex-

periments were conducted on a workstation with a 3.50GHz Intel(R)

Xeon(R) E5-1620 v4 CPU.

5.1.1 CMOS Under-voltage Lockout Circuit. The offset of the turn-

off threshold voltage |ΔVTHL | is chosen as the interested verifi-

cation target for the UVLO circuit, which may undergo dramatic
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Figure 4: A CMOS under-voltage lockout circuit.
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Figure 5: A low-dropout regulator.

fluctuations even with small parametric variations. The variation

parameters considered are values of the three resistors and the

channel lengths of all 16 transistors, resulting in a 19-dimensional

parameter space. 5 initial samples are collected as the starting points

for all the Bayesian optimization experiments, and another 95 sam-

ples are subsequently collected for failure detection.

5.1.2 Low-dropout Regulator. Three specifications, quiescent cur-

rent, undershoot and load regulation, are set as the verification

targets for the LDO regulator. Three types of transistor-level varia-

tions are considered for all 20 transistors: channel length, threshold

voltage and gate oxide thickness, resulting in a 60-dimensional

verification problem. All experiments related to Bayesian optimiza-

tion use the same 50 samples for the first GP model training and a

simulation budget of 350 examples for the sequential experiment

design later on.

5.2 Random Embedding Dimension Selection

To pick the embedding dimension d̃ , Algorithm 2 is performed

for both circuits. For this, 5 initial examples are used for the UVLO

circuit, and 50 for the LDO. The GP model accuracy correspond-

ing to various dimensions is presented in Fig.6, where the MSE

results are normalized into the range of [0, 1] for demonstration

convenience. For the UVLO circuit, the minimum MSE is achieved

at dimension 16, which however does not bring in much benefit

from dimension reduction. Instead, we pick d̃UV LO = 8, a good

tradeoff between model accuracy and dimension reduction. For all

the three specifications of the LDO, the MSE reaches the minimal

level around dimension 30, therefore we set d̃LDO = 30.

5.3 Failure Detection Effectiveness and
Efficiency

As shown in Tables 1 and 2, the MC and SSS methods collect

thousands to hundreds of thousands of simulation examples with-

out detecting a single failure. This also indicates that the failures

in these two circuits are extremely rare. Meanwhile, traditional
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Figure 6: Random embedding dimension selection results.

acquisition functions like EI, PI and LCB or parallelizable Bayesian

optimization (pBO) method cannot detect a single failure as well

due to the inherent difficulty in applying BO in high-dimensional

spaces. The proposed failure detection approach is the only method

detecting failures for all specifications. The worst-case performance

levels found by our method are much worse than the given target,

while the statistical sampling methods and the more conventional

Bayesian optimization methods are overly optimistic.

Moreover, the number of simulation runs required by the pro-

posed methods is much less than others. As presented in Tables 1

and 2, we only need 26 simulation data points to discover the first

failure inside the 19-dimensional space for the UVLO circuit and

hundreds of samples to detect the first failures in the 60-dimensional

space for the LDO. The large reduction of simulation data brought

by the proposed technique can be even more significant for rare

failure detection of larger andmore complex AMS circuits for which

transistor-level simulation can be prohibitively expensive.

The runtime reported in Table 1 and 2 is the total runtime for

Algorithm 1 including circuit simulation in a single thread configu-

ration, i.e., no parallel mechanism is activated, which offers a clearer

view of the runtime reduction provided by random embedding

technique. As described earlier, since the original high-dimensional

parameter space is embedded into a space of a lower dimensional-

ity, the Gaussian process model can be trained at a much reduced

cost, which speeds up both its posterior distribution evaluation

and hyper-parameter tuning. Meanwhile, since the optimization of

the acquisition function is also executed in the lower-dimensional

space, the quality of optimization is improved and the number of

function evaluations is greatly reduced, resulting in significantly

less runtime compared to other Bayesian optimization methods.

The runtime for Algorithm 2 is typically less than one minute with

small sample size, which can be ignored compared to expensive

simulation cost.

6 CONCLUSION

In this paper, we present a high-dimensional Bayesian optimiza-

tion procedure for rare failure detection of analog/mixed-signal

circuits. We utilized random embedding techniques to remove re-

dundant features and reduce the dimensionality of Bayesian opti-

mization search space, resulting highly-efficient failure detection.

Our experimental results demonstrate that the proposed Bayesian

optimization is capable of detecting rare failures in high dimension

variation space with only hundreds of simulation samples, while

both statistical sampling and Bayesian optimization techniques

with traditional acquisition functions completely miss.
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Table 1: Failure detection result comparison for the UVLO circuit verification (19 dimension).

Spec Target Method # Sim Worst Case 1st Failure Hit Runtime

|ΔVTHL | 0.9V

MC 20,000 0.86V - 4h22m07s

SSS 1,000 0.15V - 13m24s

EI 5init + 95seq 0.16V - 8m30s

PI 5init + 95seq 0.04V - 7m56s

LCB 5init + 95seq 0.17V - 7m40s

pBO 5init + 5 × 19batch 0.14V - 9m01s

This work 5init + 5 × 19batch 0.95V 26 5m32s

Table 2: Failure detection result comparison for the LDO regulator verification (60 dimension).

Spec Target Method # Sim Worst Case 1st Failure Hit Runtime

Quiescent current 12mA

MC 649,000 11.6mA - 160h25m12s

SSS 6,000 8.2mA - 1h38m41s

EI 50init + 350seq 7.0mA - 6h46m13s

PI 50init + 350seq 7.2mA - 6h00m23s

LCB 50init + 350seq 8.0mA - 6h33m42s

pBO 50init + 5 × 70batch 7.0mA - 8h03m19s

This work 50init + 5 × 70batch 12.7mA 231 1h57m05s

Undershoot 0.40V

MC 649,000 0.39V - 160h25m12s

SSS 6,000 0.19V - 1h38m41s

EI 50init + 350seq 0.20V - 6h45m11s

PI 50init + 350seq 0.20V - 6h51m05s

LCB 50init + 350seq 0.18V - 6h23m55s
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