
How Effective are Compression Codes for Reducing Test Data Volume?
�

Anshuman Chandra
�
, Krishnendu Chakrabarty

�
and Rafael A. Medina

���
�

Dept. Electrical & Computer Engineering � Dept. Electrical Engineering & Computer Science

Duke University, Durham, NC 27708 Massachusetts Institute of Technology, Cambridge, MA 02139

Abstract
Run-length codes and their variants have recently been

shown to be very effective for compressing system-on-a-
chip (SOC) test data. In this paper, we analyze the Golomb
code, the conventional run-length code and the FDR code
for a binary memoryless data source, and compare the
compression obtained in each case to fundamental entropy
bounds. We show analytically that the FDR code out-
performs both the conventional run-length code and the
Golomb code for test resource partitioning (TRP) based on
data compression. We also present a modified compres-
sion/decompression architecture for obtaining even higher
compression. We demonstrate the effectiveness of these
compression codes using the larger ISCAS-89 benchmark
circuits and two representative circuits from industry. Fi-
nally, we show that the FDR code is almost as effective as
Unix utilities gzip and compress, even though it uses a much
simpler decompression algorithm.

1 Introduction
Test automation remains a major bottleneck in the plug-

and-play design of system-on-a-chip (SOC). New tech-
niques are needed to test complex SOCs consisting of sev-
eral intellectual property (IP) cores. Each of these cores
must be exercised with a large number of precomputed test
patterns. The volume of test data and the testing time for an
SOC are growing rapidly as IP cores become more complex
and an increasing number of cores are integrated on a chip.

Test resource partitioning (TRP), in which some of the
test resources are moved from the automatic test equipment
(ATE) to the chip, offers a promising solution to the prob-
lem of rising test data volume and testing time [10]. One
approach to TRP is based on test data compression [2]. In
this approach, a precomputed test set �	� for an IP core is
compressed (encoded) to a much smaller test set �	
 , which
is stored in ATE memory. An on-chip decoder is used for
pattern decompression to obtain �	� from ��
 during test
application [3, 4, 5, 6]. Compression codes have recently
been shown to be very effective in reducing test data vol-
ume and testing time [4, 6]. Here, we address the following
important questions related to TRP based on test data com-
pression:

�
This research was supported in part by the National Science Founda-

tion under grant number CCR-9875324.
Work carried out at Duke University.

� What are the fundamental compression limits of the
codes proposed for TRP?� How effective are these codes for representative indus-
trial circuits?

� What techniques and variants can be used to increase
the compression further?

� How do these codes compare to standard Unix file
compression utilities such as gzipand compress?

We systematically address each of these issues and show
that compression codes are especially suitable for TRP.

In order to efficiently encode SOC test data, we can
use conventional run-length codes to map variable-length
blocks of data to fixed-length codewords. These codes
are however less efficient than more general variable-to-
variable-length codes [7, 8], especially if hardware-based
decoding is necessary. Instead of using a run-length code
with a fixed block size � , we can achieve greater compres-
sion by using Golomb coding, which maps variable-length
runs of 0s in the data sequence to variable-length codewords
[7]. Yet another approach to run-length coding is based
on the use of the frequency-directed run-length (FDR) code
[6], which takes into account the specific properties of the
data source. The on-chip decompression hardware is ex-
tremely small for the Golomb and the FDR code [4, 6].

In this paper, we examine the fundamental limits of
compression achieved by the Golomb code, the conven-
tional run-length code and the FDR code. We compare
the compression achieved with the three codes for a bi-
nary memoryless data source, and show that the FDR code
outperforms both the conventional run-length code and the
Golomb code. We also show that the average codeword size
for the FDR code is smaller than that for the Golomb code.
This analysis is necessary to explain the high percentage
compression reported in [4, 6] for the ISCAS-89 benchmark
circuits. Such a rigorous analysis has not been attempted
before for these codes. In particular, the FDR code was de-
veloped only recently [6] and hence has not been studied by
the information theory community.

It was shown in [6] that the FDR code is very effec-
tive for compressing deterministic test sequences. We now
present a novel technique to further increase the amount of
compression for precomputed test sets. We show that the
hardware overhead for the proposed scheme is small and
requires only a simple redesign of the decompression logic
for the basic FDR code. In addition, we apply the Golomb

Proceedings of the 20 th IEEE VLSI Test Symposium (VTS�02)
1093-0167/02 $17.00 © 2002 IEEE

Golomb code (��� �) FDR code
Run Gr- Group Code Gr- Group Code

-length oup prefix Tail -word oup prefix Tail -word
0 00 000 0 0 00
1 � � 0 01 001 � � 1 01
2 10 010 00 1000
3 11 011 ��� 10 01 1001
4 00 1000 10 1010
5 � � 10 01 1001 11 1011
6 10 1010 000 110000
7 11 1011 001 110001
8 00 11000 010 110010
9 ��� 110 01 11001 ��� 110 011 110011

10 10 11010 100 110100
11 11 11011 100 110100	
	
	 	�	�	 	�	
	 	
	�	 	
	
	 	
	�	 	�	�	 	�	
	 	�	
	

Figure 1. An example of Golomb and FDR coding.

and FDR codes to the scan test data for two real-life mi-
croprocessor designs from IBM. We demonstrate that the
compression results obtained for these circuits are not only
exceptionally high, but they are extremely close to funda-
mental entropy bounds. Finally, we show that the FDR
code is almost as effective as the Unix file compression util-
ities gzip and compress. This is particularly striking since
gzipand compressemploy sophisticated compression algo-
rithms, and the corresponding decompression utilities (gun-
zipand uncompress) are implemented in software.

The rest of the paper is organized as follows. We present
a rigorous analysis of the conventional run-length code, the
Golomb code and the FDR code for a memoryless binary
data source in Section 2. In Section 3, we present the mod-
ified test architecture for on-chip pattern decompression.
Experimental results for the large ISCAS-89 benchmark cir-
cuits and two industrial circuits from IBM are presented in
Section 4. We also present entropy bounds and show that
the FDR code provides almost as much compression as the
entropy bounds for the benchmarks and for the industrial
circuits.

2 Analysis for a memoryless data source
In this section, we analyze the Golomb code, the con-

ventional run-length code and the FDR codes for a memo-
ryless data source that produces 0s and 1s with probabilities� and (

�� �), respectively. The purpose of this analysis is
to examine the fundamental limits of the three codes, and to
demonstrate the effectiveness of the FDR code for all values
of � , ��� � � �

. The entropy ��� ��� of the data generated by
this memoryless source is given by the following equation
[8]: ��� ����� �������� !� � �" ���#�$�%�& � �" �'�)(

We first analyze the Golomb code with parameter * .
This is necessary to determine a baseline for evaluating
FDR codes. (The reader is referred to [4] for a review
of Golomb codes. Figure 1 presents an overview of the
Golomb code for * �,+ .) The smallest and longest run-
lengths that belong to group -/. are �10 � � * and �10&* � � ,
respectively. Therefore, the probability that an arbitrarily-

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99
0

2

4

6

8

10

12

14

max β

G(m=4)β

G(m=8)β

G(m=2)β

Probability of 0s in data stream, p

C
om

pr
es

si
on

 g
ai

n

Figure 2. Compression gain for the Golomb code.

chosen run of length 2 belongs to group -/. is given by:

3 �42)560 �7�
8 .:9<;'=
>?
@$A 8 .B;C=�>49

� @ � �" ���D� � �" � 9 �E� 8 .B;C=�>49 (

The codewords in group - . consist of (������ *GFH0) bits
each [4]. Therefore, the average codeword length IJ for the
Golomb code is given by:

IJ � K?
. A = �

�" � 9 �E� 8 .B;C=�>49 � �$�%�& *LFH0 �
� ����� *MF �ON � �P � 9 �)(

We next determine Q , the average number of bits in any
run generated by the data source. It can be easily shown
that:

Q � � F K?
@�A = 2

� @ � �� �����
�

�" � (
The effectiveness of compression is measured by the

compression gain RTS , which is defined as the ratio of the
average number of bits in any run to the average codeword

size, i.e., RTS � Q
IJ . This yields

RUS �
�

� �" ��� � �����# *LF ==:;WVYX �
(

For example, for * �Z+ and �[� � (\#] , RTS �_^!(a` �]b\ .
An upper bound on the compression gain is obtained

from the entropy ��� ��� of the source using the equation
RU9"c:d � �eN ��� �'� . For example, RT9"c:d �gfh(+�\ �ji for�k� � (\#] . Figure 2 shows the relationship between R�S and� for three values of * . The upper bound R�9"c:d is also
shown in the figure. We note that while the compression
gain for the Golomb code is significant, especially for large
values of � , there is a significant difference between R S and
the upper bound R 9"c:d . This motivates the need for the FDR
code.

We next analyze the effectiveness of conventional run-
length codes for a memoryless data source. Let group -l.

Proceedings of the 20 th IEEE VLSI Test Symposium (VTS�02)
1093-0167/02 $17.00 © 2002 IEEE

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99
0

2

4

6

8

10

12

14

max β

G (m=4)β

β R (M=15)

Fβ

Probability of 0s, p

C
om

pr
es

si
on

 g
ai

n

Figure 3. Compression gain for the Golomb code, the
run-length code and the FDR code for ��� �������	�
� ��� .

for run-length codes contain (� F �
) members such that

� � ^� �
for some positive number � . The parameter

� must be kept small, e.g. � � �] , in order to keep
the decoder simple. The smallest and the longest run-length
that belong to group -/. are given by �G� 0 � � and � 0 �

,
respectively. Therefore, the probability that an arbitrarily-
chosen run of length 2 belongs to group - . is given by:

3 � 2)560 ���
8 .�� ;C=�>?
@�A 8 .B;'=
>��

� @ � �" ��� F � .�� � � .��
� � (

The codewords in group - . consist of 0 �$�%�# ��� F � �
bits. Therefore, the average codeword length I� for run-
length codes is given by:

I� � K?
. A =

� .��
� � 0 ����� ��� F � ��� �$�%� ��� F � �

� �" � � �
(

The compression gain R�� for run-length codes is given
by: R � � � �� � � �

� �" ���#�$�%�& ��� F � � (
For �[� � (\�] and � � �] , we get R�� � � (+%+ � f .
Finally, we analyze the effectiveness of FDR codes for a

memoryless data source. Figure 1 presents the FDR coding
procedure (details are discussed in [6]). The smallest and
longest run-lengths that belong to group -l. are � ^ . ^#� and
� ^ .�� = f&� , respectively. Therefore, the probability

3 � 265)0 �
that an arbitrarily-chosen run of length 2 belongs to group
-<. is given by:

3 � 2)560 ���
 ������ ;! ?
@�A � ;

� @ � �" �'��� �
 "� ; � �" �

 "� �:(
The codeword in group -/. consists of ^ 0 bits. There-

fore, the average codeword length I# for FDR codes is given
by:

I# � K?
. A =

^ 0 �
 �� ; � �" �

 �� ��� ^ K?
. A =

� (�� ;

0.99 0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999
0

10

20

30

40

50

60

70

80

90

β max

β F

β G (m=4)

β R (M=15)

Probability of 0s, p

C
om

pr
es

si
on

 g
ai

n

Figure 4. Compression gain for the Golomb code, the
run-length codes and the FDR code for ��� �$�%���&�	��� �$�$� .
Even though we do not have a closed-form expression

for I# , the series summation converges when 0 exceeds 100.
Hence the above equation can be used to evaluate the effec-
tiveness of FDR codes. The compression gain R(' for FDR
codes is given by

R!' �
�

^ � �" ���*) K. A = �
 � ; (

For � � � (\#] , we have R ' � ^h(\#]%]b\ . Figure 3 shows a
comparison between R 9"c:d and the compression gains R ' ,
R S and R � . The upper bound R 9"c:d is also shown in the
figure. We note that compression gain for FDR codes is
always higher than that for Golomb codes for �,+ � (\%+#^ .
Figure 4 shows that for large values of � , there is a signifi-
cant difference between R�' and RTS . The figures also show
how closely the FDR gain curve follows the upper bound
RU9"c:d . Finally, it can be easily shown that the average code-
word size for FDR codes is less than for that for Golomb
codes. Hence these results show that FDR codes are inher-
ently superior to Golomb codes and run-length codes, and
they allow us to approach fundamental entropy limits.

3 Improved test data compression
In this section, we present an enhancement to the basic

on-chip decompression architecture of [4] to increase the
amount of compression achieved with variable-to-variable-
length codes. We first present a theoretical basis for the pro-
posed scheme and then present the architecture for achiev-
ing higher compression.

It was shown in [4] that the compression achieved is
directly proportional to the number of 1s in the test set.
Hence, for the test cubes that have more 1s than 0s, invert-
ing the 0s to 1 (and vice versa) is expected to yield higher
compression. Let ��� (�.-�) be the set of original (inverted)
test cubes. �/-� is obtained from ��� by flipping all the 1s to
0 and all the 0s to 1. Let 0b= and 0�1 be the total number of
1s and 0s in � � , respectively. If 0�1 �20e= , we expect �.-� to

Proceedings of the 20 th IEEE VLSI Test Symposium (VTS�02)
1093-0167/02 $17.00 © 2002 IEEE

Internal scan chain
TD

TD

0

1

Switching logic

Demultiplexer

Encoded data

Core under test

Figure 5. Application of �
�� and �

�� .

yield a higher compression using either the Golomb or the
FDR code. Note that all the don’t cares are mapped to 0 in
� � and �.-� . If �.-� is used for compression instead of � � ,
an inverter must be placed between the internal scan chain
and the decoder.

Upper and lower bounds on the amount of compres-
sion achieved using Golomb codes were presented in [4].
A lower bound on the number of bits in the encoded test
set for � � with � bits and 0O= 1s is given by: ����� �
� N * F 0e= �$�%�# * , where * is the Golomb code parame-
ter. Similarly, an upper bound on the number of bits in the
encoded test set for �/-� with � bits and 0�1 1s is given by:	
� -�

� � N *GF 0�1 ������ *LF 0�1#� �" �ON * �)(
It is obvious that �/-� will result in higher compression

compared to � � if
	
� -� �
����� , which implies that � N * F

0�1 �$�%�# *GF 0�1&� �" �eN * � �� N * F 0e= �$�%�# * . This yields
0 = N 0 1 + � F �eN ����� * � �� �ON * � , where the right-hand side
of the inequality serves as a lower bound on the ratio 0 = N 0 1 .
This ratio can be used to determine whether � -� should be
used for compression. A high value of 0 = N 0 1 is sufficient
to ensure greater compression with � -� ; however this not a
necessary condition.

An alternative approach is to selectively invert only those
patterns that have more specified 1s than 0s. �	� is now di-
vided into two parts— � 1� and � =� . For all the patterns in
� 1� , the number of 0s is greater than number of 1s and for
all the patterns in � =� , the number of 1s is greater than num-
ber of 0s. � 1� is encoded directly but � =� is encoded after
complementation. Thus � 1� and � =� are encoded separately
and this provides higher compression than that obtained if
� � is encoded directly. Pattern application is also carried
out in two stages. First � 1� is applied to the core under test
and than � =� is applied to it. A small amount of logic is re-
quired to switch the pattern application from � 1� to � =� . The
“switch” signal can either be provided by the ATE or by a
small on-chip finite-state machine. Figure 5 shows a test ar-
chitecture for the proposed scheme. Our experiments show
that the proposed test architecture based on selective inver-
sion of patterns provides significant improvements over the
amount of compression obtained using simple test pattern
decompression.

4 Experimental results
We evaluate the proposed compression techniques for

the ISCAS-89 benchmarks and two representative industrial
circuits. The experiments were conducted on a Sun Ultra

10 workstation with a 333 MHz processor and 256 MB of
memory. For ISCAS-89 benchmarks, we considered only
the large full-scan circuits with a single scan chain each.
The test vectors for these circuits were reordered to increase
compression.

Table 1 presents the experimental results for test cubes
��� obtained from the Mintest ATPG program with dy-
namic compaction [11]. The table lists the sizes of the pre-
computed (uncompacted) test sets, the sizes of the encoded
test sets obtained using the difference vector test sets de-
rived from � � and �/-� and the percentage compression for
Golomb and FDR codes. We note that the �%-� yields better
compression in all cases. This increase in compression is
obtained at negligible additional cost since only an inverter
needs to be added to the decompression circuit.

We now present compression results when test pattern
compression/decompression is performed in two stages. Ta-
ble 2 shows the results for the scheme based on selective
inversion of patterns. We note that there is significant in-
crease in compression in almost all cases. For example,
there is 24.51% increase in compression for s38417 using
the FDR code. The results show that the proposed two-
stage compression/decompression scheme makes test data
compression even more attractive for TRP.

Next, we compare the experimental results to the the-
oretical upper bounds on the compression predicted by
the “entropy” of the test data. Let � be a data sequence
with patterns �b=e5�� 5��$ b5 (((5��e. , and let � =O5 � 5 � O5 (j((5 � .
be the relative frequencies of the patterns in � , respec-
tively. An entropy measure of � is given by = : � ��� � �
) .@$A = � @ �$�%�& � �ON �'�)(Intuitively, � ��� � provides a lower
bound on the average number of bits required to encode
each pattern in � [9]. If � is the sum of the relative frequen-
cies of �O=e5�� 5��$ %5 ((j(5��B. , a lower bound on the encoded data
stream for � is given by ��� ��� � .

Table 3 compares the entropy bounds to the compres-
sion obtained with the FDR code. We find that in almost all
cases, the percentage compression obtained is very close to
the entropy bound (less than 3% in all cases).

We next present experimental results for two real test sets
from industry. The test set for the first circuit (CKT1) from
IBM consists 32 statically-compacted scan vectors (a total
of 362922 bits of test data per vector). This microprocessor
design consists of 3.6 million gates and 726000 latches. The
compression results using the Golomb and the FDR code,
and the entropy bounds for the 32 scan vectors are shown in
Table 4. Note that we obtain a staggering 97.10% compres-
sion on average. Table 4 also shows the entropy bounds for
the test vectors. The difference between the entropy-based
lower bound on the size of the encoded data and the size of

�
An explicit distinction is being made here between the formal notion

of entropy for a probabilistic data source, and the entropy measure for a
deterministic test set with relative frequencies of test patterns.

Proceedings of the 20 th IEEE VLSI Test Symposium (VTS�02)
1093-0167/02 $17.00 © 2002 IEEE

Size of Golomb code FDR code
Circuit � � Based on Based on Based on Based on Based on Based on Based on Based on

(bits) � � (bits) � � (%) � -� (bits) � -� (%) � � (bits) � � (%) � -� (bits) � -� (%)
s5378 23754 10989 53.73 10881 54.19 9188 61.32 9200 61.26
s9234 39273 15767 59.85 15357 60.89 15460 60.63 15324 60.98
s13207 165200 25873 84.33 24268 85.30 20368 87.67 20284 87.72
s15850 76986 25748 66.55 23835 69.03 21590 71.95 20904 72.84
s38417 164736 69047 58.08 67889 58.78 57066 65.35 56634 65.62
s38584 199104 80404 59.61 75058 62.30 70328 64.67 67814 65.94

Table 1. Compression obtained using Golomb and FDR code for difference vector sequences derived using � � and � -� .

Golomb code FDR code
Percentage Two stage compression Percentage Two stage compression

Circuit compression (based Size of Percentage compression (based Size of Percentage
on � � only) ��� (bits) compression on � � only) ��� (bits) compression

s5378 53.73 5330 77.56 61.32 2942 87.61
s9234 59.85 14231 63.76 60.63 12613 67.86

s13207 84.33 25217 84.73 87.67 18118 89.03
s15850 66.55 25904 66.35 71.95 20938 72.80
s38417 58.08 34585 79.00 65.35 16698 89.86
s38584 59.61 67546 66.07 64.67 52458 73.65

Table 2. Compression obtained for test data with � � and selective inversion of test patterns.

Entropy bounds FDR code Entropy bounds FDR code
Size Percentage Size of Percentage Size of Size Percentage Size of Percentage Size of

Circuit of comp- encoded comp- ��� Circuit of comp- encoded comp- ���
� � (bits) ression data (bits) ression (bits) � � (bits) ression data (bits) ression (bits)

s5378 23754 63.21 8738.4 61.32 9188 s15850 76986 73.51 20387.8 71.95 21590
s9234 39273 63.06 14505.9 60.63 15460 s38417 164736 67.88 52903.9 65.35 57066

s13207 165200 88.77 18543.9 87.67 20368 s38584 199104 65.98 67733.1 64.67 70328

Table 3. Comparison of compression predicted by entropy of test data and obtained using the FDR code.

Scan Size of Size of encoded test set (bits) Percentage compression
vector � � (bits) Golomb (� �����	�) FDR Entropy bound Golomb (� �
���	�) FDR Entropy bound

1 362922 27708 23800 20509.3 92.36 93.44 94.34
2 362922 20406 17410 14523.6 94.37 95.20 95.99
3 362922 20406 17410 14523.6 94.37 95.20 95.99
4 362922 20244 16366 13736 94.42 95.49 96.21
5 362922 18267 14802 12195.7 94.96 95.92 96.63
6 362922 14081 12152 9671.14 96.12 96.65 97.33
7 362922 14418 10432 8218.14 96.02 97.12 97.73
8 362922 14370 10058 7899.4 96.04 97.22 97.82
9 362922 12875 9718 7543.95 96.45 97.32 97.92
10 362922 10414 6866 5071.56 97.13 98.10 98.60
11 362922 9729 7622 5589.85 97.31 97.89 98.45
12 362922 11199 7908 5920.32 96.91 97.82 98.36
13 362922 8618 6240 4527.83 97.62 98.28 98.75
14 362922 8675 6380 4622.78 97.60 98.24 98.72
15 362922 8123 5326 3845.45 97.76 98.53 98.94
16 362922 6508 4000 2749.55 98.20 98.89 99.24
17 362922 7629 4982 3582.11 97.89 98.62 99.01
18 362922 7974 5996 4293.5 97.80 98.34 98.81
19 362922 7668 4842 3471.37 97.88 98.66 99.04
20 362922 6791 4256 2852.64 98.12 98.82 99.21
21 362922 8149 6022 4242.26 97.75 98.34 98.83
22 362922 7120 4892 3388.64 98.03 98.65 99.06
23 362922 6959 4266 3049.34 98.08 98.82 99.15
24 362922 5856 2836 1955.32 98.38 99.21 99.46
25 362922 5911 3330 2188.08 98.37 99.08 99.39
26 362922 6254 3994 2625.88 98.27 98.89 99.27
27 362922 6903 4258 2989.75 98.09 98.82 99.17
28 362922 9212 5220 3925.03 97.46 98.56 98.91
29 362922 6460 3982 2726.91 98.22 98.90 99.24
30 362922 5580 2386 1655.87 98.46 99.34 99.54
31 362922 5994 3418 2282.86 98.34 99.05 99.37
32 362922 6118 3208 2211.5 98.31 99.11 99.39

Table 4. Compression obtained for CKT1 from IBM.

Proceedings of the 20 th IEEE VLSI Test Symposium (VTS�02)
1093-0167/02 $17.00 © 2002 IEEE

Scan Size of Size of encoded test set (bits) Percentage compression
vector � � (bits) Golomb (� �����	�) FDR Entropy bound Golomb (� �
���	�) FDR Entropy bound

1 1031072 82242 47998 41393.8 92.02 95.34 95.98
2 1031072 79927 49612 42938.4 92.24 95.18 95.83
3 1031072 74902 46986 40961.1 92.73 95.44 96.02
4 1031072 73013 43396 37650.4 92.91 95.79 96.34

Table 5. Compression obtained for CKT2 from IBM.
Size of encoded test set (bytes) Percentage compression

Circuit gzip comp- FDR gzip comp- FDR
ress code ress code

s9234 5913 6398 4910 46.19 41.77 55.31
s13207 8747 9279 20650 94.70 94.38 87.50
s15850 8135 8096 9624 89.43 89.48 87.49
s38417 10096 16833 20592 93.87 89.78 87.50
s38584 23948 21467 24888 87.97 89.21 87.50

Table 6. Comparison of compression obtained using gzip,
compress and FDR code.

FDR-coded data is less than 1% in all cases.
Table 5 shows experimental results for a second micro-

processor circuit (CKT2) from IBM. � � for this consists
of a set of 4 scan vectors (a total of 1031072 bits of test
data per vector); this design contains 1.2 million gates and
32200 latches. Over 95% compression is obtained for the
test cubes of CKT2. The compression results here are also
within 1% of the entropy bounds.

Finally, we compare the compression obtained using the
FDR code to the Unix file compression utilities gzip and
compress. In order to carry out a fair comparison, we con-
verted the encoded test sets obtained using the FDR code
to a binary format. Table 6 shows the size of the encoded
test set and the percentage compression obtained using gzip,
compress, and the FDR code. We note that in almost all
cases, the compression obtained using the FDR code is
close to the compression obtained using the two Unix util-
ities. For s9234, the FDR code outperforms both gzipand
compress. The gzipand compressutilities employ far more
complex encoding algorithms than the FDR code. Hence it
is inconceivable that they can be decoded using simple hard-
ware techniques for TRP; the corresponding decompression
utilities (gunzipand uncompress) are usually implemented
in software. It is therefore particularly noteworthy that the
simpler FDR code, which can be easily used for on-chip de-
compression, provides almost as much compression as gzip
and compress.

5 Conclusion
Test data compression based on the FDR code is espe-

cially attractive for SOC test resource partitioning. Our
rigorous analysis reveals that the FDR code outperforms
both the conventional run-length code and the Golomb
code. Moreover, the compression obtained using the FDR
code is close to the entropy-based fundamental bound.
We have also presented a modified test data compres-
sion/decompression architecture that provides even higher
compression. The proposed test architecture requires a sim-

ple redesign of the FDR decoder and the corresponding
hardware overhead is kept small. We have also compared
the FDR code to the standard Unix file compression utili-
ties gzipand compress. Even though decompression for the
FDR code is considerably simpler than the software-based
decompression for gzipand compress, we obtain compara-
ble compression using the FDR code for all benchmark cir-
cuits. Experimental results for the larger ISCAS-89 bench-
marks and for two IBM production circuits demonstrate the
effectiveness of test data compression for TRP.

Acknowledgments
We thank Brion Keller of IBM Corporation for providing

scan vectors for the two production circuits.

References
[1] Y. Zorian, “Testing the monster chip”, IEEE Spectrum,

vol. 36, issue 7, pp. 54-70, July 1999.

[2] A. Chandra and K. Chakrabarty, “Test resource partitioning
for SOCs”, IEEE Design & Test of Computers, vol. 18, pp.
80-91, September-October 2001.

[3] A. Jas and N. A. Touba, “Test vector decompression via
cyclical scan chains and its application to testing core-
based designs”, Proc. International Test Conference, pp.
458-464, 1998.

[4] A. Chandra and K. Chakrabarty, “System-on-a-chip test
data compression and decompression architectures based
on Golomb codes”, IEEE Trans. CAD, vol. 20, no. 3, pp.
355-368, March 2001.

[5] A. Chandra and K. Chakrabarty, “Efficient test data com-
pression and decompression for system-on-a-chip using in-
ternal scan chains and Golomb coding”, Proc. DATE Conf.,
pp. 145-149, 2001.

[6] A. Chandra and K. Chakrabarty, “Frequency-directed run-
length (FDR) codes with application to system-on-a-chip
test data compression”, Proc. IEEE VLSI Test Symposium,
pp. 42–47, 2001.

[7] S. W. Golomb, “Run-length encoding”, IEEE Transactions
on Information Theory, vol. IT-12, pp. 399-401, 1966.

[8] H. Kobayashi and L. R. Bahl, “Image data compression
by predictive coding, Part I: Prediction Algorithm”, IBM
Journal of Research and Development, vol. 18, pp. 164,
1974.

[9] J. A. Storer, Data Compression: Methods and Theory,
Computer Science Press, Rockville, MD, 1988.

[10] A. Khoche and J. Rivoir, “I/O Bandwidth Bottleneck for
Test: Is it Real?”, Proc. Test Resource Partitioning Work-
shop, pp. 2.3-1 - 2.3-6, 2000.

[11] I. Hamzaoglu and J. H. Patel, “Test set compaction al-
gorithms for combinational circuits”, Proc. International
Conference on CAD, pp. 283-289, 1998.

Proceedings of the 20 th IEEE VLSI Test Symposium (VTS�02)
1093-0167/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

