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Abstract 
As the density of embedded memory increases, 
manufacturing yields of integrated circuits can 
reach unacceptable limits. Normal memory test- 
ing operations require Built-In Self Test (BIST) 
to effectively deal with problems such as limited 
access and "at speed" testing. I n  this paper we 
describe a novel methodology that extends the 
BIST concept to diagnosis and repair utilizing 
redundant components. We describe a n  applica- 
tion using redundant columns and accompany- 
ing algorithms. I t  allows for the autonomous 
repair of defective circuitry without external 
stimulus (e.g. laser repair). The method has been 
implemented with negligible timing penalties 
and reasonable area overhead. 

1. Introduction 
Continual advances in the manufacturing pro- 
cess of integrated circuits provide designers the 
ability to create more complex and dense archi- 
tectures and higher functionality on a chip. But 
these manufacturing process advances are not 
without limitations. In particular, embedded 
high density memories in combination with 
these process limitations can result in poor over- 
all yields. Depending on the application and 
design, much of the low yield can be attributed 
to faults in the memory. In order to circumvent 
these problems, designers have added redun- 
dancy to their circuits. 

This paper discusses an approach for reconfigur- 
ing defective memory cells using redundant col- 
umns. Redundancy and diagnosis in memory 
designs are not new concepts[ll[21[31[41[51. 
Many DRAM manufacturers use redundancy to 
repair defective cells by replacement with good 
cells using lasers. These techniques have also 

been applied to cache memory in high perfor- 
mance microprocessors. Niggemeyer, et a1 ,[61 
describe a self-reconfiguration technique for 
high density DRAM'S in a video processor 
design. Our paper also discusses a technique 
that can be used for self-repair, in particular, a 
memory device that incorporates surrounding 
logic to detect faults and repair them by column 
replacement. It differs from laser repair in that 
it is a soft repair. 

The additional circuitry of our Built In Self 
Repair (BISR) architecture not only detects 
defective memory cells, but also maps redundant 
memory cells, via multiplexors, to functionally 
replace these defective cells. Care is taken in the 
design of the circuitry to ensure that the use of 
replacement devices does not adversely affect 
memory performance. The architecture is 
designed so that defects in the replacement 
devices are treated uniformly with defects in the 
SRAM array, utilizing the same hardware for 
both, thus reducing area overhead. The test and 
repair operation is generally performed at  
power-up to  also accommodate degradation of 
the memory over time. 

There are several problems that must be 
addressed to implement this technique. Section 
2 discusses the main memory diagnostic algo- 
rithm. The memory architecture is described in 
Section 3. Section 4 discusses the Spare Alloca- 
tion Algorithm implemented in the design. 

2. Fault LocatiodIdentification 
To ensure the accurate determination of fault 
locations without aliasing, in this section we will 
list the adopted fault model and test algorithm, 
and analyze the ability to diagnose the detected 
faults for repair purposes. 
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2.1 The fault model 
The memory test algorithm is based on the 17N 
Algorithm B[71. We have expanded it to a 20N 
algorithm incorporating retention tests, 
described elsewhere[81[91: 

I(W0) 
.l(rO,wl,wO,w 1) 
L(rl,wO,rO,wl) 
'T(rl,wO,wl,wO) 
T(rO,w l,rl,wO) 
Hold 
T(rO,w 1) 
Hold 
'T(r1) 

This march test has been successfully used to 
detect faults. However, in this application we 
must verify that it can also be used for diagnosis 
of the memory. 
The fault model for the memory in use is the fol- 
lowing: 

Faults in the cell array 
- Stuck-at faults (SAF) of memory 

elements 
- Transition faults (TF) 
- Coupling faults (CF) 
- Linked coupling faults 
- Linked transition and coupling 

- Retention faults 

- Multiple addresses are accessed 
- The appropriate address is failed 

to be accessed 
- A different address is accessed 

- Stuck-at faults in input/output 
and read-write register 

Faults in the additional BIST circuitry 
- Stuck-at faults in the test pat- 

tern generator and output data 
evaluator blocks. 

Not in the fault model, but detected (if harmful) 
is an address fault together with a CF or TF or 
SAF. The fault that is not detected is a <? or 

faults 

Faults in the address decoders 

Faults in the read-write logic 

case of an AND function (also analogous TFs and 
SAF are not detected, but unharmful). 
For the RAM to be properly repaired, it is neces- 
sary that the BIST fault flag be monitored con- 
tinuously and that at the moment the fault flag 
goes high, the current address and bit are 
known. 

The faults that the test does not always detect, 
are coupling faults between cells of a (output) 
word. This has consequences for the walking l / O  
test applied after the 20N test, to be sure the 
read and write registers are free of coupling 
faults. For this test a memory word has to be 
selected. However it is not guaranteed to be free 
of coupling faults between bits in a word. Thus a 
fault signal indicates a fault in the read-write 
logic or in the memory cell. For the sake of yield 
it would be better to repeat the test with another 
memory word and declare the chip unrepairable 
only if the second test has at least one fault pat- 
tern that coincides with the first one. 

2.2 Overview of fault detection and its use-, 
fulness for repairing 
All address faults (AFs) are detected and 
mapped onto the memory array such that AFs 
are repaired properly (in some cases address 
lines which work correctly in absence of other 
A F s  will be replaced; see comment later on). The 
address when the fault flag goes up is the 
address to be replaced. 
All faults in the memory array are detected. The 
current address of the test as indicator is suffi- 
cient to repair the fault. 

Faults in the read-write circuitry will cause a 
burst of errors in the memory cells. The chip will 
be rejected automatically if it can not replace 
bits inside the read and write registers. 

Also faults in the BIST circuit will cause a burst 
of errors. This fault also cannot be repaired. 

So for all faults of the model the current address 
pointer indicates the replaced address. Unfortu- 
nately a faulty flag does not necessarily mean 
that the current address, Ax, is wrong. For exam- 
ple, a write access to Ay which changes the con- 
tents of Ax will cause a fault flag at Ax (fault C). 
Also fault Ay will be detected and repaired, leav- 
ing a usable Ax. Still Ax will be repaired, despite 
its solved problem. 

J;O> CF in case of an OR function for two 
selected address lines, or a c?;1> c.L;l> CF in 

Another issue is that an addressing fault (multi- 
ple cell access) with a stuck-open fault (fault B) 
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will only be partially repaired; i.e., the stuck- 3. Architecture 
open fault is detected and the is In evaluating redundancy approaches, three 
but the address accessing two Or more memory 
cells will not be replaced. In general this will not 
be a problem because a cell is first written before 
it is read. 

methods were considered: a) spare rows and col- 
umns, b) spare only or c )  spare columns 
only. 

The same problem arises for faults D2 and 
D3[10] in an AND-implementation. If two or 
more addresses are accessed, fault D3 will not be 
detected for address Ax. In the OR implementa- 
tion fault D2 will not be detected for address Ax. 
In both cases the faulty row will not be replaced. 

A similar problem is chained CFs (the coupled 
cell is a coupling cell too). Also for them it is not 
necessary that all faulty cells are replaced. Only 
the cells between the head and the tail of the 
chain need to be replaced. This will not be 
detected by the march test. 

Faults in the read and write circuitry can not be 
distinguished from each other. This means that 
either the two registers have to be tested sepa- 
rately, or if a fault is detected in one of them, in 
both the same bit replaced. SAF in these circuit- 
ries can be recognized by the observation that a 
certain bit position for all words is SA. If this 
fault will be repaired then the same test has to 
be done all over again, because of the risk of 
masking other faults. 

Based on the 17N algorithm, all faults in the 
memory array are detected. The current address 
and a fault indicator suffice as repair informa- 
tion in case of row redundancy and the faulty bit 
position together with the current address suf- 
fice in case of column redundancy. 

Most address faults are detected and projected 
on the memory array in such a way that they are 
repaired properly (although in some cases cells 
with an AF which is disabled by a repair of 
another fault, will still be repaired). This means 
that if the faulty address(es) is replaced by a row, 
the memory is repaired. 

Typically as part of our overall BIST algorithm, 
at the conclusion of the 20N operation, steps are 
added to test the BIST circuitry. We rearranged 
our algorithm to perform the BIST circuit test 
and retention test on all the memory modules in 
parallel prior to the 17N section of the algo- 
rithm. Memory that is part of the BISR circuitry 
is also tested using the 17N algorithm. Failures 
of any of these tests results in unrepairable 
memory. 

The spare rows and columns method typically 
requires a complete fault mapping of the mem- 
ory before determining replacement with a row 
or column. The spare allocation procedure would 
be quite complex. 

For spare rows only or columns only, the spare 
allocation procedure can be simplified and is 
more viable. In addition, the spare allocation 
process can operate in parallel with the diagnos- 
tic algorithm. To determine the best method to 
implement, several factors must be considered 
based on the basic memory design and expected 
fault distribution. Either of these two methods 
would effectively replace single cell faults. How- 
ever, for some classes of faults, row replacement 
would be much more effective than column 
replacement and vice versa. For example, spare 
rows would be effective repairing faults in a 
word line, a word line driver and a word line 
decoder. Spare columns would be effective for 
faults in a bit line, column multiplexer, sense 
amplifier, data input register, data output regis- 
ter and column line decoding. Because of this 
greater functional fault coverage, we used an 
approach based on spare columns. 

An initial spare column implementation of Built 
In Self Repair embedded memory consists of four 
basic components: 

a standard SRAM array of memory cells, 

one or more replacement memory columns, 
a BISTBISR Control Unit (BBCU) and 

a memory Reconfiguration Control Unit 
(RCU). 

The basic memory repair architecture is illus- 
trated in Figure 1. It only shows the blocks 
active in a normal operating mode, after the 
repair operation. 
In addition to the four basic blocks described 
above, additional circuitry is included to re-route 
the spare columns t o  replace memory columns 
that contain defective cells. This circuitry 
includes input multiplexors to route the data to 
the correct functional columns and output multi- 
plexors to route the data to the output data reg- 
isters. 
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The BBCU (not shown) has Finite State 
Machines that control the operation of the BIST 
and BISR. For the BIST function, the BBCU 
uses an Address Generator for stepping through 
the memory, a Data Generator to provide test 
stimuli to the memory cells and an Output Data 
Evaluator to detect failures. The BBCU encodes 
defective address and bit information, storing it 
in the RCU. 

The RCU is basically a memory whose data out- 
puts provide signals to control the input and out- 
put multiplexors. In normal operation, the RCU 
memory addresses are driven from the upper 
address bits of the main memory. It behaves as a 
look-up memory, translating the main memory 
upper address bits (column selectors) into con- 
trol signals, so its access time is critical. The 

~ ~~ 

Address 
Decoder 

Data Input Bus 

overall access time of the BISR memory is 
derived from the access time of the SRAM, the 
access time of the RCU and the multiplexor 
decoding time. We used a high speed QRegfile 
memory for the RCU in our application. In our 
application this memory is 128 words by 30 bits. 
This memory is volatile, so the repair process 
must automatically operate at power on. Using a 
nonvolatile flash memory would remove this 
requirement. 

Since defective memory cells are repaired by re-. 
mapping replacement columns for their columns, 
a simple greedy algorithm for replacement is suf-. 
ficient and straight forward to implement. That 
is, when a defective cell is detected and the col-, 
umn containing it is identified, the BISR control- 
ler can determine if there are any remaining 

Main Memory 1 
I 

I ... 

I 
... 

I 

Column 
Decoder 

t Reconfiguration 
Control Unit 

Redundant 
Memory 

Figure 1. Block Diagram of a Basic Memory Repair Architecture. 
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spare columns left for repair. If there are, the 
RCU can be programmed replace the defective 
cell’s column with the replacement column. 

In order to minimize the performance impact of 
large multiplexors, the replacement columns are 
actually implemented by grouping the spare col- 
umns into blocks of columns. As a particular 
example for a 512 row by 1024 column memory 
arranged into 8 bit words, there might be two 
groups of eight spare columns. The Data Inputs 
are put into an 8:l multiplexor to select the 
appropriate replacement bit when writing. For 
reading, spare 8:l multiplexors select the col- 
umn to send to the output multiplexors. The out- 
put multiplexors, in addition to  being able to 
select the address decoded columns from the 
memory block, can also select a repair column 
when necessary. These multiplexors are driven 
by the values stored in the RCU Register and 
sent by the Decoder Control Logic. One implica- 
tion of this scheme is that at most 2 bits can be 
corrected in any word (row). 

In the current implementation, we classify the 
defects as two types: repairable defects and non- 
repairable defects. In particular, if any non- 
repairable defect occurs, the entire SRAM (and 
therefore the chip) must be discarded. The 
repairable type of defects includes the usual 
defects in the SRAM array as well as defects in 
the spare blocks. The non-repairable type 
includes defects in the RCU, data retention 
defects of all memory blocks, and overflows 
described in the Spare Allocation Algorithm 
below. The constraints imposed by the architec- 
ture are matters of on-going investigation, and 
need to be addressed in the future after their 
impact on final yield is determined. 

4. Algorithm Flow 
The RCU is first checked for defects using the 
17N algorithm. Since defects here are non- 
repairable, checking this test first minimizes the 
amount of time wasted on non-usable chips. 
Then, a complete initialization of the RCU, 
SRAM, and spare block memory is performed by 
writing a memory pattern. An  optional data 
retention test is performed by waiting a prede- 
termined amount of time. The data is then veri- 
fied by reading. During the same verification 
step the memory is rewritten with the comple- 
mentary value to allow for checking the memory 
for the retention of that value. After another 
wait, the complementary value retention is veri- 

fied. A walk and other address tests are per- 
formed to check for address decoder faults, as 
well as test the internal BIST circuitry. The RCU 
is then loaded with a pattern to  indicate that the 
core memory is initially assumed to have no 
defects. The external circuitry and memory has 
been tested; we are now ready to proceed with 
the test and repair operation on the core mem- 
ory. 
The 17N algorithm is now applied to the SRAM 
array. As a defect is detected, the BBCU directs 
the flow to the Spare Allocation Algorithm, 
described below. Only one defect is detected and 
repaired during any single iteration of applying 
the 17N algorithm. This is done to minimize the 
size and complexity of the additional circuitry 
used in the BBCU and RCU. 

During the first pass of the 17N algorithm, the 
entire core memory is checked regardless of any 
defects found. In fact, the RCU is disabled until 
the end of this pass, but its contents are updated 
as defined by the detection of defects. This first 
loop is called the Replace When Done mode in the 
Spare Allocation Algorithm. If no defects were 
detected, the algorithm signals a done condition. 
If any defects were detected, the test is 
restarted, now with the RCU enabled. The rea- 
son for a new loop is that up to this point the 
spare columns have only been tested for data 
retention. The 17N algorithm has not been 
applied to the spare memory, only the RCU. So 
any new columns must be tested and a simple 
way to do this (architecturally) is to rerun the 
test with the new columns in place. 

These secondary loops are called the Replace 
Immediately mode in the Spare Allocation Algo- 
rithm. During the second and later iterations, 
the algorithm marches through successive 
addresses until a new defect is found and its col- 
umn identified. If one is detected before the test 
completes, the Spare Allocation Algorithm is 
engaged. The RCU is updated to reflect the new 
failure, and the algorithm restarted without 
completion. This procedure continues until the 
array eventually completes the entire test, or the 
effort to repair is abandoned. The latter could 
occur if the RCU detects that there are no 
remaining spare columns, or if a large number of 
iterations have been made in an attempt to 
repair the array. The loop ends by signaling via a 
control signal that the algorithm has success- 
fully repaired the core memory, or that the 
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device is unremirable. Algorithm is shown in Figure 2. This algorithm 
has the following characteristics: The Spare Allocation Algorithm is employed 

whenever the 17N algorithm finds a core mem- 
ory fault. A flow chak of the Spare Allocation 

Repair Branch Q 
Carry information: no. of 

faults, bit nos., column no. 

no. faults repairable Unrepairable 

Immediately Mode 

Mark replacement column 
as faulty 

Unrepairable 

I 
1 

Allocate spare column by 
entering fault info. in RCU 

Replace When Done Mode Replace Immediately Mode 

Return & Continue Go to Start/Initialize 

Figure 2. Repair Branch - Spare Allocation Algorithm. 
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- operates in one of two modes: a) Replace 
When Done - the repair information is 
stored in the RCU, but the RCU is not 
enabled until done; b) Replace Immedi- 
ately - the repaired column is replaced 
immediately. 

- does not allow duplicate repairs, e.g., a 
faulty bit line could indict all bits in a 
column; the algorithm must handle this 
as a single column replacement. 

- determines that the device is unrepair- 
able when limits defined by the architec- 
ture are reached. 

If a fault is found in the 17N algorithm, the fol- 
lowing information is carried to the repair 
branch: number of faults, faulty bits and column 
number. The repair branch first checks if the 
number of faults exceed the repairable limit for a 
given address. It then checks if the faulty col- 
umn had been previously identified. If so, one of 
two paths is followed - Replace When Done 
(RWD) or Replace Immediately (RI). In the RWD 
mode, if it is the same as a previously identified 
bit (column), the algorithm continues by return- 
ing control to the 17N algorithm. In the RI mode, 
the defective column is one that has already 
been replaced; it is marked as faulty and the 
algorithm will attempt replacement of another 
column. If the number of faults and allocated 
spares do not exceed the limits, a spare column 
is allocated by writing to the RCU. In the RWD 
mode, the algorithm returns control to the 17N 
algorithm. In the RI mode, the 17N algorithm 
must restart. from the beginning. 

5. Results 
An initial implementation of this BISR architec- 
ture has been fabricated at Lucent Microelec- 
tronics. Using this BISR circuit, detection and 
repair of both single and multiple defects has 
been observed. Investigation is ongoing to deter- 
mine the trade-offs of yield, performance, area 
overhead, and architecture for future designs. 
As an example, the core memory size of our 
design is 1 M bit (64K x 16). The BISR area over- 
head, including routing and the RCU (128 x 30 
memory) is e 4% of the 1M bit memory area. The 
spare columns are e 2% of the 1M bit memory 
area. This is very favorable when compared to 
DRAM'S and other architectures.[61 

6. Summary 
This paper describes a novel method for imple- 
mentation of Built-In Self Repair. We have out- 
lined a diagnostic algorithm, an architecture and 
repair algorithm that demonstrate an effective 
solution by straightforward modifications of the 
memory core and extensions of the BIST hard- 
ware. 

In the current architecture, defects in the mem- 
ory array are only covered by the use of addi- 
tional spare columns. Further experience may 
show that this function may be better performed 
by the use of spare rows, or a combination of 
spare columns and rows. In the latter case, it  has 
been shown that the problem of optimally utiliz- 
ing the columns and rows to cover defective cells 
is NP-hard[ll]. This implies that, especially in 
the case of Built In Self Repair, efficient approxi- 
mation heuristics are needed. 
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