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Transmitting massive amounts of image and audio data acquired by Internet-of-
Everything (loE) devices to data center servers for intelligent recognition
processes is impractical for energy reasons, requiring in-situ processing of such
data. However, algorithms accelerated by previous recognition processors [1, 2]
are limited to specific applications, therefore, each loE device may require an
application-specific accelerator. On the other hand, deep convolutional neural
networks (CNNs) [3] are a promising machine-learning approach, showing state-
of-the-art recognition accuracy in a wide variety of applications, including both
image and audio recognition. This makes CNNs a suitable candidate for a universal
recognition platform for IoE devices, as described in Fig. 14.6.1. Due to the
computational complexity and significant memory requirements of CNNs, a
microcontroller unit (MCU) typically used for IoE devices is incapable of producing
a meaningful recognition result in an energy-efficient way. Hence, the
implementation of an energy-efficient CNN processor is desired to realize
intelligent IoE systems.

In this paper, we present an energy-efficient CNN processor with 4 key features:
(1) a CNN-optimized neuron processing engine (NPE), (2) a dual-range multiply-
accumulate (DRMAC) block for low-power convolution operations, (3) an on-chip
memory architecture and a utilization scheme for reducing off-chip memory
accesses, (4) kernel data compression for further reducing off-chip memory
accesses.

Figure 14.6.2 shows the overall architecture of the CNN processor. 4
homogeneous CNN cores are integrated and connected by a shared memory bus.
Each core contains 2 NPEs, 2 image buffers, 2 output buffers, and a kernel buffer.
A single front-end/control unit fetches and decodes instructions and generates
control signals for both NPEs, meaning that two NPEs operate in lockstep. Each
NPE accesses a different image and output buffer, while a single kernel buffer is
shared by 2 NPEs. An NPE consists of the minimum number of hardware blocks
required for a single recognition process in a CNN, including 32 DRMAC blocks,
32 rectified-linear (ReLU) blocks, and 8 maxpool blocks. For the computation of
a convolution layer in a CNN, an NPE executes 32 MAC blocks to perform 32
different convolution operations in parallel. A group of 8 DRMAC blocks shares a
single kernel word to avoid redundant memory accesses for the same kernel word
when an input image is swept with a kernel, generating 8 words for a single output
image. 4 DRMAC groups are fed with the same set of 8 input image words, but
with 4 different kernel words to prevent redundant memory accesses for the same
input word when an input image is filtered with different kernels. In this way, the
input image and kernel data provided in each cycle are maximally utilized. Finally,
when convolution operations for the 32 output words are finished, the NPE runs
32 ReLU blocks to rectify the output words. For a max-pooling layer, the NPE
executes 8 max-pooling blocks in parallel, and each max-pooling block selects
an output word with the maximum value among 4 output words.

Most of the operations required for a single recognition process in a CNN are
MAGC operations. In order to reduce the power consumed by the massive number
of MAC operations, a DRMAC block is implemented as shown in Fig. 14.6.3.
Basically, a 24b (16.8 format) fixed-point truncated multiplier and an adder are
included in a single MAGC block to cover the dynamic range and precision of
operands used in our target CNN benchmarks: MNIST, CIFAR-10, GTSRB, and
AlexNet. This provides similar recognition accuracy to a 64b double-precision
floating-point format that requires much more complex hardware. However,
further analysis on the MAC operands used in CNN reveals that about 99% of
operands require at most 8b for the integer part, while only 0.01% of operands
need full 16b for the integer part. Additionally, operands which require 16b for
the integer part are generated by repetitive accumulations of operands with small
values. Therefore, instead of executing full 24b MAC operations all the time, 16b
(8.8 format) MAC operations are performed at first, saving unnecessary power
consumption. The 16b truncated MAC operation is implemented by masking the
upper 8 bits of inputs of a 24b MAC block, which results in the elimination of the
switching activity of the upper part. When an overflow flag is detected by a 16b
MAC operation, the pipeline is stalled for one cycle to prevent the accumulator

register from updating the wrong MAG result, and then the DRMAC block begins
to operate in a full 24b mode. As a result, the DRMAC block reduces the power
consumption by 56% compared to the 24b MAC block.

Transferring a large amount of image and kernel data from off-chip memory to
on-chip buffers and writing intermediate image values to off-chip memory incurs
a significant loss in both performance and energy-efficiency. Thus, the data of
on-chip buffers are maximally reused to reduce unnecessary off-chip memory
accesses, as shown in Fig. 14.6.4. First, convolution operations are performed in
a tiled-manner with the size of a tile equal to the capacity of an on-chip image
buffer when it is smaller than the size of an input image. That is, instead of filtering
the entire image with a single kernel, only a tile is swept with as many kernels as
possible. Thereafter, the data of the tile is never accessed. Second, when the tile
operation is finished, on-chip input and output image buffers switch their role to
the opposite one for the subsequent CNN layer since the output images of the
current layer become the input images of the next layer. As a result, intermediate
output images do not need to be written to off-chip memory.

To further reduce off-chip kernel data accesses, an algorithm-level modification
in accord with the CNN hardware architecture is presented, as shown in Fig.14.6.5.
Based on the observation that a group of kernels in a CNN exhibits a high
correlation between them, principal component analysis (PCA) is carried out on
the kernel data, and fewer basic kernels are extracted. Then, the original group of
kernels is generated by weighted sums of such basic kernels. In other words, only
basic kernels are saved in on-chip buffers and constant values needed for the
weighted sum are transferred from off-chip memory, reducing the overhead of
transferring the whole group of kernels at a little cost of on-chip kernel generation
process and recognition accuracy loss. For the kernel generation process, since
weighted sum operations are equal to a series of MAC operations, the existing
DRMAC blocks are used without any extra hardware overhead. This on-chip kernel
generation technique is applied for target CNN benchmarks. Off-chip kernel data
are reduced by the maximum 92%, with only 0.68% recognition accuracy loss.

Figure 14.6.6 shows chip features, and shows a comparison with previous CNN
processors. The die micrograph is shown in Fig. 14.6.7. The CNN processor is
fabricated in 65nm 1P8M CMOS technology. It integrates 3.2M logic gates,
including 36KB of on-chip memory within a 4x4mm? die. The maximum supported
kernel size is 15x15. The power consumption is 45mW, operating at 125MHz
clock frequency with a 1.2V supply voltage, measured by performing convolution
on the data extracted from the convolution layers of the MNIST benchmark. We
achieve 1.42TOPS/W energy efficiency, represent 5.59x, 4.06x, and 1.52x
improvements over previous CNN processors [4-6], which makes it a promising
universal recognition platform for intelligent loE systems.
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Figure 14.6.1: CNN and its application to an loE system.
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Figure 14.6.3: Dual-range multiply-accumulate block. Figure 14.6.4: Tile-based operation.
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Figure 14.6.5: On-chip kernel generation technique. Figure 14.6.6: Chip specification and comparison.
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Figure 14.6.7: Chip micrograph.
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