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Abstract 

W i t h  increasing design complexity and  chip area, on-chip 
memory  has  become a n  important component whose integra- 
t ion  needs t o  be addressed during sys tem design. Modern 
embedded DRAM technology allows f o r  large amounts  of on- 
chip memory  space. However, in order t o  utilize the  available 
memory  intelligently, the memory  has t o  be appropriately cus- 
tomized f o r  the  specific application. W e  address the  topic of 
incorporating the application-specific customization of mem-  
ory  bank configuration i n t o  behavioral synthesis. T h e  strat- 
egy involves a partitioning of behavioral arrays i n t o  memory  
banks based o n  a cost f unc t ion  that estimates the  performance 
implications. For a given candidate parti t ion,  we present a 
heuristic f o r  determining the access sequence that min imizes  
page'misses in a bank while respecting data dependences. T h e  
output  of the exploration i s  a graph displaying the  variation 
of delay and memory  area with the bank configuration. Our  
experiments o n  several memory-intensive examples confirm 
that the  exploration results can provide critical feedback to the  
designer about the optimal memory  configuration f o r  a given 
application. 

1. Introduction 
Effective utilization of chip area is an important issue in 

the design of application specific integrated circuits. With 
increasing design complexity and chip area, on-chip memory 
has become an important component whose integration needs 
to be addressed during system design [I]. Array variables in 
behavioral descriptions are usually mapped to memory lo- 
cations when translated into hardware during the behavioral 
synthesis process. With the advent of embedded DRAM tech- 
nology [15], the available on-chip memory can possibly sat- 
isfy the entire memory requirements of an application. How- 
ever, in order to utilize the available memory intelligently, the 
memory has to be appropriately customized for the specific 
application. On-chip memory is amenable to  this type of cus- 
tomization, since many memory parameters such as size, page 
width, bit width, and bank configuration are now controllable 
by the designer. This is in contrast to using off-the-shelf off- 
chip memory components in the design, where the designer or 
synthesis tool has no control over the internal organization of 
the memory. Knowledge about, and application-specific cus- 

tomization of the memory organization by a behavioral syn- 
thesis tool would be of immense help to the system designer 
by automatically evaluating the effect of various memory pa- 
rameters on the area and performance of a given application, 
and suggesting the most promising memory configurations. In 
this paper, we address the issue of application-specific mem- 
ory bank customization. 

Memory banking is an organization strategy that helps 
increase the throughput of memory accesses by mapping dif- 
ferent parts of the address space into different memory banks 
[4]. Some DSP processors, such as the Motorola 56000 have 
two on-chip memory banks, with a facility for parallel access 
from both banks in the same cycle. However, in all such ar- 
chitectures, the banking structure is determined in advance, 
and it is the responsibility of the designer to derive the most 
efficient memory mapping and access schedule for his appli- 
cation. Consequently, the performance of such applications is 
usually sub-optimal. A more attractive strategy is to tailor 
the number of banks and the assignment of variables to  the 
banks to the specific application being synthesized, thereby 
increasing the possibility of optimal memory access perfor- 
mance. 

Customization of on-chip memory has received the atten- 
tion of researchers in recent years. Memory packing tech- 
niques for realizing the required memory for an application in 
terms of available components were presented in works such 
as [6, 51. In [13], the authors present a technique for flow, 
graph balancing, leading to lower overall memory bandwidth 
requirement for an application. In [9], the authors present 
a simulation-based technique for selecting a processor core 
and required memory and data caches for an application. 
Application-specific trade-offs between memory and CPU size 
for a given application were studied in [12]. 

Memory bank allocation of program variables in proces- 
sors with dual-bank architectures were addressed in [14, 111. 
While [14] addresses only scalar variables, [11] does not ac- 
count for the access frequency of the variables. In [8], a 
method for allocating variables to dual-bank synchronous 
DRAMS was presented. All the above techniques work for 
dual-bank memories only. However, with the advent of em- 
bedded DRAM technology where DRAM can co-exist with 
other synthesized logic, several DRAM blocks can be treated 
as memory banks and exploited for parallel access, while si- 
multaneously utilizing the advanced memory access features 
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offered by DRAM technology, such as page mode access [ lo] .  
We present a strategy for exploring the effect of memory bank- 
ing on the area and performance of an application during be- 
havioral synthesis. 

2. Memory Bank Customization 
Memory bank customization can be illustrated by a sim- 

ple example. Suppose we attempt to synthesize a loop of the 
form: 

for i = 0 to 1000 
a[ i]  = a[;] + b[ i ]  x c[2i] 

Since the arrays a ,  b ,  and c are, in general, too large to fit into 
a register file, they need to be stored in memory. Figure l ( a )  
shows one way of mapping the arrays into a single-bank mem- 
ory, implemented in the form of embedded DRAM. 

One important characteristic of DRAM architecture that 
should be accounted for during automatic memory mapping, 
is the presence of the page buffer (Figure l(a)). The address 
presented to the memory is internally split into a row address 
(higher order bits) and a column address (lower order bits). 
The row address is used by a row decoder to select one full 
row (or page - we use row and page interchangeably in this 
paper for simplification of the discussion, although in reality, 
the two need not be the same), and copy it into the page 
buffer. The column address is decoded by a column decoder 
to  select the offset of the addressed word within the page 
buffer . The architecture has the significant advantage that 
if subsequent memory accesses refer to words present in the 
page buffer (spatial locality), they can be directly accessed 
from the buffer, and the initial row decoding phase (as well as 
a final phase for precharging of the bit lines) can be omitted, 
thereby significantly speeding up the data access rate. This 
access mode is called page mode  [lo]. 

The page buffer has an important effect on the memory 
mapping strategy. In the example above, a naive approach of 
mapping the three arrays ( a ,  b,  and c )  into a single-bank mem- 
ory shown in Figure I(a) ,  is inefficient, since different pages 
corresponding to .[a], b[ i ] ,  and c[Zi],  are accessed in every it- 
eration, overwriting the page buffer on every new access and 
destroying the locality of reference across different loop iter- 
ations. Work-arounds such as loop unrolling were suggested 
in [ l o ] ,  where, after unrolling an inner loop a few times, all 
references to an array can be read from the page buffer, ex- 
ploiting a limited amount of spatial locality. For instance, in 
the for-loop above, elements b[i],  b[i + 11, and b[i + 21 can be 
accessed in sequence by unrolling the loop thrice. 

However, loop unrolling is limited to a few iterations since 
the synthesized register file cannot be arbitrarily large. A 
more general strategy to exploit the DRAM page buffers in 
the presence of multiple array accesses in a loop iteration is 
to use banked memories. Figure l (b )  shows a three-bank 
memory architecture where the arrays a ,  b, and c are mapped 
into different banks. Since each bank is associated with an 
independent page buffer, there is no interference caused by 
different pages being accessed in the same loop iteration, and 
the effective access rate is much faster. For example, if the row 
decode, column decode, and precharge stages of a memory 
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Figure 1. (a )  A r r a y s  mapped t'o single-bank 
m e m o r y  (b) 3-bank m e m o r y  a r c h i t e c t u r e  

access entail delays in the ratio 3 : 1 : 3 [lo], the steady 
state throughput in the banked memory architecture is almost 
seven times that of the single-bank architecture. 

Theoretically, it would seem that assigning a separate bank 
to each array would optimize the performalice, but in practice, 
data dependences limit the amount of parallelism, resulting in 
no significant performance gain (and in fact, causing higher 
routing area penalty due to increased number of data and 
address buses) from an arbitrarily large number of banks. 
Further, in our example, interleaving the storage of u[i] and 
b[i] in the same bank is not a general solution since the arrays 
may be accessed in different ways in different loops. Note 
that there is no simple way to interleave a[;] and c[2i].  A 
general memory customization strategy should consider the 
global effects of mapping arrays to banks iwer all loops. 

In this paper, we present an algorithm for exploring the 
effect of application-specific memory banl,. customization on 
the area and performance of the synthesized design. The  ex- 
ploration algorithm analyzes several memory bank configura- 
tions, and for each, determines the assignment of variables 
to the banks as well as an estimate of the area and memory 
performance for the computkd assignment. Since scalar vari- 
ables can usually be stored in on-chip registers, we limit our 
analysis to arrays. 

3. Exploration Algorithm 
We wish to compute, in general, a graph showing the vari- 

ation of area and delay with memory banking, so that a de- 
signer can select an appropriate point on the curve, which 
represents a bank configuration and the bank assignment of 
variables. The formulation can also be uzed to solve a vari- 
ant of the problem stated as: given a maximum memory size 
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constraint, determine a banking configuration and assignment 
that minimizes delay, which is a special case of the more gen- 
eral problem. 

The basic strategy is to vary the number of banks in the 
architecture, and determine the best variable assignment and 
estimate the memory access performance for each configura- 
tion. The maximum number of banks M can be as large as 
the number of arrays, but for practical considerations, may 
be restricted to a constant, e.g., 8. We formulate the vari- 
able assignment to banks as a k-way partitioning problem of 
n-variables: determine a partition Pk of n variables into k 
groups such that a cost function Delay(Pk) is minimized. 

We use as an overall strategy the k-way generalization of 
the .,Kernighan-Lin graph partitioning algorithm (also known 
as min-cut algorithm) [7, 21. The algorithm is summarized 
below: 

Algorithm Partit ion ( G )  
for k = 1 to  M /* Do k-way partitioning */ 

1. Generate initial partition I”. 
2. Generate n-move sequence into any of k partitions. 
3. Retain partition Pk with minimum Dehy(Pk) .  
4. Plot (k ,  Area (Pk))  and (k, Delay (Pk ) )  

on exploration graph 
end for 
end Algorithm 

For each k ,  we start with an initial partition P’ generated 
by a hierarchical clustering [2] of the set of arrays, where 
the decision to  cluster two nodes (arrays) a t  each step is 
determined by the total number of times they are accessed 
in the same loop iteration. The pair for which this number 
is minimum is grouped into the same bank. Variables with 
non-overlapping lifetimes can be clustered in this step. The 
hierarchical procedure is illustrated in Figure 2, where each 
horizontal cut-line represents a partitioning of clusters into 
banks. We omit the details here due to lack of space. 

3 Banks 
4 Banks 
5 Banks 

r’ 
Figure 2. Cut lines assign clusters to banks 

From the initial partition, we generate a sequence of n 
moves as follows: in each step of the sequence, we attempt to  
move any of the n nodes into any of k partitions - the move 
that minimizes the delay cost function is selected. Once a 
node is moved, it is not moved again in this step. We keep 
track of the partition Pk with minimum delay. The points (k, 
Area (Pk))  and (k, Delay (Pk ) )  are candidates on the explo- 
ration graph I .  Area (Pk)  is the total memory size required by 

~~ 

‘In the original Kernighan-Lin algorithm, the steps 1-4 are en- 
closed in a ‘forever’ loop that terminates when there is no decrease 
in delay in a new partition. We omit this outer loop here in the 
interest of computational complexity of the exploration algorithm. 

the partitioning and bank assignment. For the same applica- 
tion, an increase in the number of memory banks could result 
in an increase or decrease Yn the required memory size since 
memory modules are designed to  have sizes that are powers of 
two. For example, three 512B arrays require a 2K single-bank 
memory, but in the case of 2 banks, can utilize a 1K bank and 
a 512B bank, resulting in lower total area. Conversely, 3 ar- 
rays of 300B each can fit into a 1KB single bank memory, but 
if there are 3 banks, each requires a 512B bank, leading to  
greater total size. In the next section, we outline the proce- 
dure involved in computing the cost function D e h y ( P k )  used 
to  evaluate a given partition Pk. 

4. Cost Function Computation 

The cost function DelQy(Pk) used to evaluate the effective- 
ness of partition Pk is an estimate for the total length of the 
resulting schedule. We perform a simple list scheduling [a] 
of the inner loop DFGs to compute the estimate. However, 
a t  this stage, the scheduling cannot be performed because 
the memory access delays are still unknown. Normal accesses 
incur larger delays than page mode accesses (Section 2),  and 
the type of access is known only after the sequence of memory 
accesses in each bank is determined. In the rest of this sec- 
tion, we present a technique for determining a good ordering 
of memory access for a given bank partitioning of arrays. Our 
objective is to find an ordering of memory accesses that min- 
imizes the number of page misses, i.e., the number of times 
the accessed memory data is not already present in the data 
buffers. We assume that inter-basic block optimizations such 
as loop-invariant code motion, etc., have already been per- 
formed. 

We start with a data flow graph for the basic block, and 
generate from it a Memory Dependence Graph (MDG), which 
is essentially a partial order of the memory access depen- 
dences within the basic block. An edge U + v in the MDG 
implies that access U should precede access in the resulting 
ordering. 

An example DFG and the corresponding MDG are shown 
in Figure 3(a) and (b). In essence, the MDG consists of the 
DFG with only the memory access nodes, with the depen- 
dences propagated through the non-memory nodes. Proce- 
dure G e n M D G  summarizes the procedure for generating the 
MDG. 

Procedure G e n M D G  Procedure Visit  
Input - g: DFG 
for all nodes i 

visited [i] = FALSE 
dep [z] = q5 

Input - i: node 
for all parents nodes p of i 

Visi t  ( p )  
if (isMernAccessNode(p)) 

dep [i] = dep [i] U {p} 

dep [z] = dep [i] U dep [p] 

end for 
for all nodes i else 

if visited [z] == FALSE 
Visi t  ( a )  end for 

end for 
end Procedure end Procedure 

visited [i] = TRUE 

G e n M D G i s  a depth-first procedure that maintains at each 
node the set (dep) of memory access nodes on which the cur- 
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Figure 3. (a) Example DFG (b) Derived Mem- 
ory Dependence Graph (MDG) (c) Partitioned 
MDG (PMDG) for bank 1 under the partition: 
[Bank 1: A,D,G], [Bank 2: C, F], [Bank 3: E] 

rent node depends. Note that the depth-first search grows 
upwards from a given node in Figure 3(a). For a given node 
i, if the parent node p is a memory access, then we add p to the 
set dep[i]. On the other hand, if the parent is a non-memory 
node, then we add to dep[i] all members of depk], because, in 
this case, node p will not be present in the generated MDG, 
so its dependences are inherited by i. 

The MDG forms the basis for the bank partitioning explo- 
ration. Once a partition Pk of arrays into k banks is gener- 
ated, the corresponding MDGs for each basic block can be 
further partitioned into k sub-graphs. Figure 3(c) shows the 
partitioned MDG for bank 1 for a candidate partition: [Bank 
1: A,D,G], [Bank 2: C, F], [Bank 3: E]. Note that a per- 
fectly analogous procedure to G e n M D G  can be applied to the 
original MDG to generate the partitioned MDG for a spe- 
cific bank, with the memory vs non-memory distinction in 
the treatment of nodes in G e n M D G  replaced by current bank 
vs. other banks. 

The final step is to generate an ordering in the partitioned 
MDG (PMDG) that minimizes the number of page misses. 
Essentially, we look for a topological sort of the graph with 
the minimum number of page transitions. For the graph in 
Figure 3(c), the corresponding ordering is: A -+ A -+ D -+ 

D -t G. This sequence of memory accesses minimizes the 
number of page misses in bank 1,  while respecting the depen- 
dences in the PMDG. The problem of generating an optimal 
sequence for minimizing the number of page misses can be 
shown to be NP-hard. A degenerate case of this problem, 
formulated as the RMW-optimization problem, was shown in 
[lo] to be equivalent to the clique partitioning problem [3]. 

Procedure SchedulePMDG below outlines a greedy method 
for generating a memory access sequence from a PMDG. The 
main idea is to schedule those accesses that lead to the longest 
sequence of accesses in the same page before scheduling an ac- 
cess to a different page. Set X consists of the set of unsched- 
uled nodes in the same page (which can hence be scheduled 
in sequence, leading to page hits). Set Y is the set of all inter- 
nal nodes, lying in the same page, that  become schedulable 

after all nodes in X are scheduled. This is obtained by prop- 
agating (routine Propagate is omitted due to lack of space) 
the schedulable condition to all nodes lyirig in the same page 
whose parents are also schedulable. The cardinality of the set 
X U Y (=  IX U YI) gives the length of the sequence of page 
mode operations. We select for schedulii~g the set with the 
largest I X U Y I .  A schedule in this context means the addition 
of a precedence edge in the control flow graph to impose the 
relative ordering of memory accesses. 

Procedure SchedulePMDG (9: PMDG) 
G = PMDG 
while ( G  # 4) 

maxLength = 0 
for each schedulable node s 

Set X = {tlt 
Set Y = Propagate ( X )  
if (maxLeng th  < IX U YI) 

maxLength = IX U YI 
Z = X u Y  

is schedulable and Page(t) = Page(s)} 

end if 
end for 
Schedule Z 
G = G - Z  

end while 
end Procedure 

The main loop in the min-cut-based exploration algorithm 
takes O ( n 2 )  time where n is the number of arrays, assuming 
M, the maximum number of banks, is a small constant such 
as 8. Procedure G e n M D G  requires O(r?)  time, where r is the 
number of memory access nodes (assuming r2 > e ,  the num- 
ber of edges in the original DFG). G e n M D G  may add some 
new edges to the MDG, while at  the samts time, removing all 
non-memory nodes and their associated edges. In practice, 
we observe that the MDG is usually much smaller than the 
DFG because of the omission of all the computation-oriented 
nodes. Procedure SchedulePMDG could require upto O(r2)  
time because, in the worst case, O ( r )  nodes might need to be 
looked up every time a new set X is evaluated for schedul- 
ing. Thus, the theoretical computational complexity of the 
exploration is O ( n Z r z ) .  However in practice, the computa- 
tion time can be improved in several ways. First, in step 2 
of the main exploration algorithm, we can limit the sequence 
of moves to a constant instcad of the general n .  Also, if n 
is large, the initial hierarchical clustering of arrays can help 
reduce the effective number of nodes in the MDG. Finally, if 
r is small, SchedulePMDG can be replaced by an exhaustive 
search-based strategy. 

5 .  Experiments 

We used several memory access-intensive applications to 
demonstrate memory bank exploration. Table (1) gives the 
example names, the number of arrays imd the number of 
memory and non-memory nodes in the DFGs of the inner 
loop bodies. IDCT and SOR are used in image processing. 
EQN-OFSTATE and 2D-Hydro are examples from the Liv- 
ermore Loops suite of scientific computing benchmarks. Fig- 
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ure 4 shows the variation of the area and delay (normalized to 
1.0) with the number of banks. The bank count ranges from 
1 (all arrays in the same bank) to  the total number of arrays 
(each array in a different bank). 

There are several interesting observations, the most im- 
portant of which is the shape of the delay curves. In all cases, 
the delay decreases with increasing bank count initially, but 
eventually, the curve flattens out, leading to little or no im- 
provement. For example, in SOR, increasing the number of 
banks beyond 3 results in no performance improvement be- 
cause of data  dependences in the loop body. Such points on 
the curve represent potentially optimal configurations. 

The area curves represent the total size of the memory 
modules required for a given configuration and the associated 
variable mapping. As observed in Section 3, the required size 
varies for different configurations - in IDCT, increasing banks 
leads to  lower total area, while for certain configurations in 
SOR and 2D-Hydro, the converse is observed. For configura- 
tions with similar performance and area characteristics, the 
correct decision is to  choose the lesser number of banks, since 
this involves lesser routing area due to  fewer data  and ad- 
dress buses in the design. These graphs can be of immense 
value to the designer who can make an intelligent memory 
configuration decision based on the exploration. In all cases, 
the exploration algorithm required less than 10 seconds on a 
SUN UltraSparc system. We observed that procedure Sched- 
ulePMDG generated the same memory access sequence as an 
exhaustive-search strategy for the examples we considered. 

Example 

2D-Hvdro 50 40 

Table 1. Profile of Examples 

IDCT SOR 

0 . 2 1  EYF 1 0 . 2 1  I , 1 
0 0 

1 2 3 1 2 3 4 5 6 7  
No. of banks No. of banks 

EQN-OF-STATE 

0.8 
0.6 
0.4 
0.2 Area - 

1 2 3 4  
No. of banks 

2D-HYDRO 

Area - 

0.2 
0 
1 2 3 4 5 6 7 8 9  

No. of banks 

6. Summary 

We outlined a procedure for exploring the application- 
specific customization of memory banks during behavioral 
synthesis, based on the IC-way min-cut graph partitioning al- 
gorithm. The evaluation of candidate architectures involves 
a fast heuristic for determining an assignment of array vari- 
ables to memory banks with the objective of minimizing the 
number of page misses. In the future, we plan to  employ a 
more realistic model for incorporating memory access delay 
and routing area (that varies with the bank structure) into 
the cost function. We also plan to  investigate the integration 
of register allocation and banking when both register count 
and bank count are customizable. 
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