
Memory Bank Customization and Assignment
in Behavioral Synthesis

Preeti Ranjan Panda
Advanced Technology Group, Synopsys Inc.

700 East Middlefield Road, Mountain View, CA 94043, USA
E-mail: pandaC3synopsys. corn

Abstract

W i t h increasing design complexity and chip area, on-chip
memory has become a n important component whose integra-
t ion needs t o be addressed during sys tem design. Modern
embedded DRAM technology allows f o r large amounts of on-
chip memory space. However, in order t o utilize the available
memory intelligently, the memory has t o be appropriately cus-
tomized f o r the specific application. W e address the topic of
incorporating the application-specific customization of mem-
ory bank configuration i n t o behavioral synthesis. T h e strat-
egy involves a partitioning of behavioral arrays i n t o memory
banks based o n a cost f unc t ion that estimates the performance
implications. For a given candidate parti t ion, we present a
heuristic f o r determining the access sequence that min imizes
page'misses in a bank while respecting data dependences. T h e
output of the exploration i s a graph displaying the variation
of delay and memory area with the bank configuration. Our
experiments o n several memory-intensive examples confirm
that the exploration results can provide critical feedback to the
designer about the optimal memory configuration f o r a given
application.

1. Introduction
Effective utilization of chip area is an important issue in

the design of application specific integrated circuits. With
increasing design complexity and chip area, on-chip memory
has become an important component whose integration needs
to be addressed during system design [I]. Array variables in
behavioral descriptions are usually mapped to memory lo-
cations when translated into hardware during the behavioral
synthesis process. With the advent of embedded DRAM tech-
nology [15], the available on-chip memory can possibly sat-
isfy the entire memory requirements of an application. How-
ever, in order to utilize the available memory intelligently, the
memory has to be appropriately customized for the specific
application. On-chip memory is amenable to this type of cus-
tomization, since many memory parameters such as size, page
width, bit width, and bank configuration are now controllable
by the designer. This is in contrast to using off-the-shelf off-
chip memory components in the design, where the designer or
synthesis tool has no control over the internal organization of
the memory. Knowledge about, and application-specific cus-

tomization of the memory organization by a behavioral syn-
thesis tool would be of immense help to the system designer
by automatically evaluating the effect of various memory pa-
rameters on the area and performance of a given application,
and suggesting the most promising memory configurations. In
this paper, we address the issue of application-specific mem-
ory bank customization.

Memory banking is an organization strategy that helps
increase the throughput of memory accesses by mapping dif-
ferent parts of the address space into different memory banks
[4]. Some DSP processors, such as the Motorola 56000 have
two on-chip memory banks, with a facility for parallel access
from both banks in the same cycle. However, in all such ar-
chitectures, the banking structure is determined in advance,
and it is the responsibility of the designer to derive the most
efficient memory mapping and access schedule for his appli-
cation. Consequently, the performance of such applications is
usually sub-optimal. A more attractive strategy is to tailor
the number of banks and the assignment of variables to the
banks to the specific application being synthesized, thereby
increasing the possibility of optimal memory access perfor-
mance.

Customization of on-chip memory has received the atten-
tion of researchers in recent years. Memory packing tech-
niques for realizing the required memory for an application in
terms of available components were presented in works such
as [6, 51. In [13], the authors present a technique for flow,
graph balancing, leading to lower overall memory bandwidth
requirement for an application. In [9], the authors present
a simulation-based technique for selecting a processor core
and required memory and data caches for an application.
Application-specific trade-offs between memory and CPU size
for a given application were studied in [12].

Memory bank allocation of program variables in proces-
sors with dual-bank architectures were addressed in [14, 111.
While [14] addresses only scalar variables, [11] does not ac-
count for the access frequency of the variables. In [8], a
method for allocating variables to dual-bank synchronous
DRAMS was presented. All the above techniques work for
dual-bank memories only. However, with the advent of em-
bedded DRAM technology where DRAM can co-exist with
other synthesized logic, several DRAM blocks can be treated
as memory banks and exploited for parallel access, while si-
multaneously utilizing the advanced memory access features

0-7803-5832-5/99/ $10.00 Q 1999 IEEE 477

offered by DRAM technology, such as page mode access [lo] .
We present a strategy for exploring the effect of memory bank-
ing on the area and performance of an application during be-
havioral synthesis.

2. Memory Bank Customization
Memory bank customization can be illustrated by a sim-

ple example. Suppose we attempt to synthesize a loop of the
form:

for i = 0 to 1000
a[i] = a[;] + b[i] x c[2i]

Since the arrays a , b , and c are, in general, too large to fit into
a register file, they need to be stored in memory. Figure l (a)
shows one way of mapping the arrays into a single-bank mem-
ory, implemented in the form of embedded DRAM.

One important characteristic of DRAM architecture that
should be accounted for during automatic memory mapping,
is the presence of the page buffer (Figure l(a)). The address
presented to the memory is internally split into a row address
(higher order bits) and a column address (lower order bits).
The row address is used by a row decoder to select one full
row (or page - we use row and page interchangeably in this
paper for simplification of the discussion, although in reality,
the two need not be the same), and copy it into the page
buffer. The column address is decoded by a column decoder
to select the offset of the addressed word within the page
buffer . The architecture has the significant advantage that
if subsequent memory accesses refer to words present in the
page buffer (spatial locality), they can be directly accessed
from the buffer, and the initial row decoding phase (as well as
a final phase for precharging of the bit lines) can be omitted,
thereby significantly speeding up the data access rate. This
access mode is called page mode [lo].

The page buffer has an important effect on the memory
mapping strategy. In the example above, a naive approach of
mapping the three arrays (a , b, and c) into a single-bank mem-
ory shown in Figure I(a) , is inefficient, since different pages
corresponding to .[a], b[i] , and c[Zi], are accessed in every it-
eration, overwriting the page buffer on every new access and
destroying the locality of reference across different loop iter-
ations. Work-arounds such as loop unrolling were suggested
in [l o] , where, after unrolling an inner loop a few times, all
references to an array can be read from the page buffer, ex-
ploiting a limited amount of spatial locality. For instance, in
the for-loop above, elements b[i], b[i + 11, and b[i + 21 can be
accessed in sequence by unrolling the loop thrice.

However, loop unrolling is limited to a few iterations since
the synthesized register file cannot be arbitrarily large. A
more general strategy to exploit the DRAM page buffers in
the presence of multiple array accesses in a loop iteration is
to use banked memories. Figure l (b) shows a three-bank
memory architecture where the arrays a , b, and c are mapped
into different banks. Since each bank is associated with an
independent page buffer, there is no interference caused by
different pages being accessed in the same loop iteration, and
the effective access rate is much faster. For example, if the row
decode, column decode, and precharge stages of a memory

Row Address
Addr [15:8]

Col Address

i+ Page

'E' Page B u f f e a

Addr[lS:O] To D z p a t h

(a)

Row I A[il I Row I B[i] I

(b)

Figure 1. (a) A r r a y s mapped t'o single-bank
m e m o r y (b) 3-bank m e m o r y a r c h i t e c t u r e

access entail delays in the ratio 3 : 1 : 3 [lo], the steady
state throughput in the banked memory architecture is almost
seven times that of the single-bank architecture.

Theoretically, it would seem that assigning a separate bank
to each array would optimize the performalice, but in practice,
data dependences limit the amount of parallelism, resulting in
no significant performance gain (and in fact, causing higher
routing area penalty due to increased number of data and
address buses) from an arbitrarily large number of banks.
Further, in our example, interleaving the storage of u[i] and
b[i] in the same bank is not a general solution since the arrays
may be accessed in different ways in different loops. Note
that there is no simple way to interleave a[;] and c[2i]. A
general memory customization strategy should consider the
global effects of mapping arrays to banks iwer all loops.

In this paper, we present an algorithm for exploring the
effect of application-specific memory banl,. customization on
the area and performance of the synthesized design. The ex-
ploration algorithm analyzes several memory bank configura-
tions, and for each, determines the assignment of variables
to the banks as well as an estimate of the area and memory
performance for the computkd assignment. Since scalar vari-
ables can usually be stored in on-chip registers, we limit our
analysis to arrays.

3. Exploration Algorithm
We wish to compute, in general, a graph showing the vari-

ation of area and delay with memory banking, so that a de-
signer can select an appropriate point on the curve, which
represents a bank configuration and the bank assignment of
variables. The formulation can also be uzed to solve a vari-
ant of the problem stated as: given a maximum memory size

478

constraint, determine a banking configuration and assignment
that minimizes delay, which is a special case of the more gen-
eral problem.

The basic strategy is to vary the number of banks in the
architecture, and determine the best variable assignment and
estimate the memory access performance for each configura-
tion. The maximum number of banks M can be as large as
the number of arrays, but for practical considerations, may
be restricted to a constant, e.g., 8. We formulate the vari-
able assignment to banks as a k-way partitioning problem of
n-variables: determine a partition Pk of n variables into k
groups such that a cost function Delay(Pk) is minimized.

We use as an overall strategy the k-way generalization of
the .,Kernighan-Lin graph partitioning algorithm (also known
as min-cut algorithm) [7, 21. The algorithm is summarized
below:

Algorithm Partit ion (G)
for k = 1 to M /* Do k-way partitioning */

1. Generate initial partition I”.
2. Generate n-move sequence into any of k partitions.
3. Retain partition Pk with minimum Dehy(Pk) .
4. Plot (k , Area (Pk)) and (k, Delay (Pk))

on exploration graph
end for
end Algorithm

For each k , we start with an initial partition P’ generated
by a hierarchical clustering [2] of the set of arrays, where
the decision to cluster two nodes (arrays) a t each step is
determined by the total number of times they are accessed
in the same loop iteration. The pair for which this number
is minimum is grouped into the same bank. Variables with
non-overlapping lifetimes can be clustered in this step. The
hierarchical procedure is illustrated in Figure 2, where each
horizontal cut-line represents a partitioning of clusters into
banks. We omit the details here due to lack of space.

3 Banks
4 Banks
5 Banks

r’
Figure 2. Cut lines assign clusters to banks

From the initial partition, we generate a sequence of n
moves as follows: in each step of the sequence, we attempt to
move any of the n nodes into any of k partitions - the move
that minimizes the delay cost function is selected. Once a
node is moved, it is not moved again in this step. We keep
track of the partition Pk with minimum delay. The points (k,
Area (Pk)) and (k, Delay (Pk)) are candidates on the explo-
ration graph I . Area (Pk) is the total memory size required by

~~

‘In the original Kernighan-Lin algorithm, the steps 1-4 are en-
closed in a ‘forever’ loop that terminates when there is no decrease
in delay in a new partition. We omit this outer loop here in the
interest of computational complexity of the exploration algorithm.

the partitioning and bank assignment. For the same applica-
tion, an increase in the number of memory banks could result
in an increase or decrease Yn the required memory size since
memory modules are designed to have sizes that are powers of
two. For example, three 512B arrays require a 2K single-bank
memory, but in the case of 2 banks, can utilize a 1K bank and
a 512B bank, resulting in lower total area. Conversely, 3 ar-
rays of 300B each can fit into a 1KB single bank memory, but
if there are 3 banks, each requires a 512B bank, leading to
greater total size. In the next section, we outline the proce-
dure involved in computing the cost function D e h y (P k) used
to evaluate a given partition Pk.

4. Cost Function Computation

The cost function DelQy(Pk) used to evaluate the effective-
ness of partition Pk is an estimate for the total length of the
resulting schedule. We perform a simple list scheduling [a]
of the inner loop DFGs to compute the estimate. However,
a t this stage, the scheduling cannot be performed because
the memory access delays are still unknown. Normal accesses
incur larger delays than page mode accesses (Section 2), and
the type of access is known only after the sequence of memory
accesses in each bank is determined. In the rest of this sec-
tion, we present a technique for determining a good ordering
of memory access for a given bank partitioning of arrays. Our
objective is to find an ordering of memory accesses that min-
imizes the number of page misses, i.e., the number of times
the accessed memory data is not already present in the data
buffers. We assume that inter-basic block optimizations such
as loop-invariant code motion, etc., have already been per-
formed.

We start with a data flow graph for the basic block, and
generate from it a Memory Dependence Graph (MDG), which
is essentially a partial order of the memory access depen-
dences within the basic block. An edge U + v in the MDG
implies that access U should precede access in the resulting
ordering.

An example DFG and the corresponding MDG are shown
in Figure 3(a) and (b). In essence, the MDG consists of the
DFG with only the memory access nodes, with the depen-
dences propagated through the non-memory nodes. Proce-
dure G e n M D G summarizes the procedure for generating the
MDG.

Procedure G e n M D G Procedure Visit
Input - g: DFG
for all nodes i

visited [i] = FALSE
dep [z] = q5

Input - i: node
for all parents nodes p of i

Visi t (p)
if (isMernAccessNode(p))

dep [i] = dep [i] U {p}

dep [z] = dep [i] U dep [p]

end for
for all nodes i else

if visited [z] == FALSE
Visi t (a) end for

end for
end Procedure end Procedure

visited [i] = TRUE

G e n M D G i s a depth-first procedure that maintains at each
node the set (dep) of memory access nodes on which the cur-

479

A [I] A [1+1] E [il

Figure 3. (a) Example DFG (b) Derived Mem-
ory Dependence Graph (MDG) (c) Partitioned
MDG (PMDG) for bank 1 under the partition:
[Bank 1: A,D,G], [Bank 2: C, F], [Bank 3: E]

rent node depends. Note that the depth-first search grows
upwards from a given node in Figure 3(a). For a given node
i, if the parent node p is a memory access, then we add p to the
set dep[i]. On the other hand, if the parent is a non-memory
node, then we add to dep[i] all members of depk], because, in
this case, node p will not be present in the generated MDG,
so its dependences are inherited by i.

The MDG forms the basis for the bank partitioning explo-
ration. Once a partition Pk of arrays into k banks is gener-
ated, the corresponding MDGs for each basic block can be
further partitioned into k sub-graphs. Figure 3(c) shows the
partitioned MDG for bank 1 for a candidate partition: [Bank
1: A,D,G], [Bank 2: C, F], [Bank 3: E]. Note that a per-
fectly analogous procedure to G e n M D G can be applied to the
original MDG to generate the partitioned MDG for a spe-
cific bank, with the memory vs non-memory distinction in
the treatment of nodes in G e n M D G replaced by current bank
vs. other banks.

The final step is to generate an ordering in the partitioned
MDG (PMDG) that minimizes the number of page misses.
Essentially, we look for a topological sort of the graph with
the minimum number of page transitions. For the graph in
Figure 3(c), the corresponding ordering is: A -+ A -+ D -+

D -t G. This sequence of memory accesses minimizes the
number of page misses in bank 1, while respecting the depen-
dences in the PMDG. The problem of generating an optimal
sequence for minimizing the number of page misses can be
shown to be NP-hard. A degenerate case of this problem,
formulated as the RMW-optimization problem, was shown in
[lo] to be equivalent to the clique partitioning problem [3].

Procedure SchedulePMDG below outlines a greedy method
for generating a memory access sequence from a PMDG. The
main idea is to schedule those accesses that lead to the longest
sequence of accesses in the same page before scheduling an ac-
cess to a different page. Set X consists of the set of unsched-
uled nodes in the same page (which can hence be scheduled
in sequence, leading to page hits). Set Y is the set of all inter-
nal nodes, lying in the same page, that become schedulable

after all nodes in X are scheduled. This is obtained by prop-
agating (routine Propagate is omitted due to lack of space)
the schedulable condition to all nodes lyirig in the same page
whose parents are also schedulable. The cardinality of the set
X U Y (= IX U YI) gives the length of the sequence of page
mode operations. We select for schedulii~g the set with the
largest I X U Y I . A schedule in this context means the addition
of a precedence edge in the control flow graph to impose the
relative ordering of memory accesses.

Procedure SchedulePMDG (9: PMDG)
G = PMDG
while (G # 4)

maxLength = 0
for each schedulable node s

Set X = {tlt
Set Y = Propagate (X)
if (maxLeng th < IX U YI)

maxLength = IX U YI
Z = X u Y

is schedulable and Page(t) = Page(s)}

end if
end for
Schedule Z
G = G - Z

end while
end Procedure

The main loop in the min-cut-based exploration algorithm
takes O (n 2) time where n is the number of arrays, assuming
M, the maximum number of banks, is a small constant such
as 8. Procedure G e n M D G requires O(r?) time, where r is the
number of memory access nodes (assuming r2 > e , the num-
ber of edges in the original DFG). G e n M D G may add some
new edges to the MDG, while at the samts time, removing all
non-memory nodes and their associated edges. In practice,
we observe that the MDG is usually much smaller than the
DFG because of the omission of all the computation-oriented
nodes. Procedure SchedulePMDG could require upto O(r2)
time because, in the worst case, O (r) nodes might need to be
looked up every time a new set X is evaluated for schedul-
ing. Thus, the theoretical computational complexity of the
exploration is O (n Z r z) . However in practice, the computa-
tion time can be improved in several ways. First, in step 2
of the main exploration algorithm, we can limit the sequence
of moves to a constant instcad of the general n . Also, if n
is large, the initial hierarchical clustering of arrays can help
reduce the effective number of nodes in the MDG. Finally, if
r is small, SchedulePMDG can be replaced by an exhaustive
search-based strategy.

5 . Experiments

We used several memory access-intensive applications to
demonstrate memory bank exploration. Table (1) gives the
example names, the number of arrays imd the number of
memory and non-memory nodes in the DFGs of the inner
loop bodies. IDCT and SOR are used in image processing.
EQN-OFSTATE and 2D-Hydro are examples from the Liv-
ermore Loops suite of scientific computing benchmarks. Fig-

480

ure 4 shows the variation of the area and delay (normalized to
1.0) with the number of banks. The bank count ranges from
1 (all arrays in the same bank) to the total number of arrays
(each array in a different bank).

There are several interesting observations, the most im-
portant of which is the shape of the delay curves. In all cases,
the delay decreases with increasing bank count initially, but
eventually, the curve flattens out, leading to little or no im-
provement. For example, in SOR, increasing the number of
banks beyond 3 results in no performance improvement be-
cause of data dependences in the loop body. Such points on
the curve represent potentially optimal configurations.

The area curves represent the total size of the memory
modules required for a given configuration and the associated
variable mapping. As observed in Section 3, the required size
varies for different configurations - in IDCT, increasing banks
leads to lower total area, while for certain configurations in
SOR and 2D-Hydro, the converse is observed. For configura-
tions with similar performance and area characteristics, the
correct decision is to choose the lesser number of banks, since
this involves lesser routing area due to fewer data and ad-
dress buses in the design. These graphs can be of immense
value to the designer who can make an intelligent memory
configuration decision based on the exploration. In all cases,
the exploration algorithm required less than 10 seconds on a
SUN UltraSparc system. We observed that procedure Sched-
ulePMDG generated the same memory access sequence as an
exhaustive-search strategy for the examples we considered.

Example

2D-Hvdro 50 40

Table 1. Profile of Examples

IDCT SOR

0 . 2 1 EYF 1 0 . 2 1 I , 1
0 0

1 2 3 1 2 3 4 5 6 7
No. of banks No. of banks

EQN-OF-STATE

0.8
0.6
0.4
0.2 Area -

1 2 3 4
No. of banks

2D-HYDRO

Area -

0.2
0
1 2 3 4 5 6 7 8 9

No. of banks

6. Summary

We outlined a procedure for exploring the application-
specific customization of memory banks during behavioral
synthesis, based on the IC-way min-cut graph partitioning al-
gorithm. The evaluation of candidate architectures involves
a fast heuristic for determining an assignment of array vari-
ables to memory banks with the objective of minimizing the
number of page misses. In the future, we plan to employ a
more realistic model for incorporating memory access delay
and routing area (that varies with the bank structure) into
the cost function. We also plan to investigate the integration
of register allocation and banking when both register count
and bank count are customizable.

References
F. Balasa et al. Backgroundmemory area estimationfor multi-
dimensional signal processing systems. IEEE Trans. on VLSI
Systems, June 1995.

D. Gajski et al. Specification and Design of Embedded Sys-
tems. Prentice Hall, 1994.
M. Garey and D. Johnson. Computers and Intractibility -
A Guide to the Theory of NP-Completeness. W.H. Freeman,
1979.
J. L. Hennessy and D. A. Patterson. Computer Architecture
- A Quantitative Approach. Morgan Kaufman, 1994.
P. K. Jha and N. Dutt. Library mapping for memories.
EDUTC, 1997.

In

D. Karchmer and J. Rose. Definition and solution of the mem-
ory packing problem for field-programmable systems. In Proc.
ICCAD, 1994.
B. W. Kernighan and S. Lin. An efficient heuristic proce-
dure for partitioninggraphs. Bell System Tech. Journal, April
1970.
A. Khare et al. High-level synthesis with synchronous and
RAMBUS DRAMS. In Proc. SASIMI'98, February 1998.
D. Kirovski et al. Application-driven synthesis of core-based
systems. In Proc. ICCAD, 1997.
P. R. Panda et al. Incorporating DRAM access modes into
high-level synthesis. IEEE Trans. on CAD, February 1998.
M. A. R. Saghir et al. Exploiting dual data-memory banks in
digital signal processors. In Proc. ASPLOS, 1996.
B. Shackleford et al. Memory-CPU size optimization for em-
bedded system designs. In DA C, 1997.

P. Slock et al. Fast and extensive system-level memory explo-
ration for ATM applications. In ISSS, 1997.

A. Sudarsanam and S. Malik. Memory bank and register al-
location in software synthesis for ASIPs. In Proc. ICCAD,
1995.
R. Wilson. Graphics IC vendors take a shot at embedded
DRAM. EE Times, (938):41,57, January 27 1997.

Figure 4. Memory Bank Exploration Results

481

