
Timing Optimization by Restructuring
Long Combinatorial Paths

Jürgen Werber
Research Institute for Discrete

Mathematics, University of Bonn
Lennéstraße 2,

53111 Bonn, Germany

Dieter Rautenbach
Department for Mathematics and Science,

Technical University of Ilmenau
Weimarer Straße 26,

98693 Ilmenau, Germany
Dieter.Rautenbach@tu-ilmenau.de

Christian Szegedy
Cadence Berkeley Labs
1996 University Ave,

Berkeley, CA 94704, USA
szegedy@cadence.com

Abstract—We present an implementation of an algorithm for
constructing provably fast circuits for a class of Boolean functions
with input signals that have individual starting times. We show
how to adapt this algorithm to logic optimization for timing
correction at late stages of VLSI physical design and report
experimental results on recent industrial chips. By restructuring
long critical paths, our code achieves worst-slack improvements
of up to several hundred picoseconds on top of traditional timing
optimization techniques.

I. INTRODUCTION

Towards the end of the VLSI design process, physical design
determines locations for all the gates in a netlist with the objec-
tives of meeting timing constraints and minimizing intercon-
nect wirelength, among others. Traditional timing optimization
techniques include placement modifications, gate-sizing by
choosing different standard cells offered by the technology
library, Vt level assignment, interconnect buffering (inserting
or reimplementing repeater trees), wire type assignment, and
localized logic changes such as pin swapping or simple logic
replacements that involve a very small number of gates.

Decisions taken during initial logic synthesis may have
produced paths with a high number of non-repeater gates.
At that early design stage, lack of physical information and
uncertainty of estimates make it difficult to predict timing
problems accurately. When a path later turns out to be timing-
critical due to the number of individual gates that contribute
to the total path delay, standard transforms such as those
mentioned above cannot get to the root of the problem because
they do not fundamentally change the logical structure of the
netlist. On the other hand, the production time frame often
forbids going back and restarting from logic synthesis. In
this situation, tools are needed that avoid repeating previous
design steps and optimize critical paths of high combinatorial
depth after physical design has revealed them as critical in the
context of a placed and timing-optimized netlist.

We present BONNLOGIC, a new tool that addresses this
need. It is part of the BONNTOOLS [3], a comprehensive
software package for physical VLSI design. BONNLOGIC
restructures long critical paths and is guided by timing in-
formation that has become available during physical design.
It is based on an algorithm [6] that constructs provably fast

circuits with respect to a measure called circuit delay, which
is a generalization of the classical notion of circuit depth
and represents the stabilization time of the function outputs
when inputs do not arrive simultaneously, as is typically the
case in the VLSI application. While a simple delay model
has been suitable for the mathematical analysis in [6], we
show that the algorithm can easily be adapted to use physical
information such as placement locations and data from static
timing analysis, with a delay model that includes gate as well
as interconnect delay. We demonstrate that, in addition to
its theoretical justification, the method is also successful in
practice, and present experimental results on industrial designs
of up to six million gates where the overall worst slack is
improved by up to several hundred picoseconds.

Logic replacements for timing optimization in physical
design are often done by local exchange operations [12][13].
In contrast to these techniques, our approach explores more
extensive replacements as it restructures entire paths. The
importance of arrival time differences for the design of logic
circuits has been recognized in a couple of recent publications:
in [4] and [15], adder circuits are constructed by dynamic
programming or greedy algorithms that take unequal arrival
time profiles into account, but no general bounds have been
proved (optimality claims for these circuits are restricted to the
class of circuits that the algorithm can find). Earlier results on
the design of specialized circuits taking input arrival times into
account can be found in [5][9][10]. The essential difference
and strength of our approach is that it works for all arrival
time profiles and general paths and has a provable performance
guarantee in a reasonable mathematical delay model.

Our paper is organized as follows. In Section II, we shall
describe how to identify problem instances for our algorithm.
Section III presents the core algorithm and gives a short
summary of the results of [6]. In Section IV, we show how
to adapt this algorithm to the VLSI world. Section V gives
experimental results.

II. FINDING PROBLEM INSTANCES ON THE CRITICAL PATH

During physical design, static timing analysis identifies
signal paths through the logic that are too slow for the chip
to operate correctly. The difference between required and

1-4244-1382-6/07/$25.00 ©2007 IEEE 536

A
N

D
2
,1

-O
R

-I
N

V

M
U

LT
IP

L
E

X
E

R

i1 i2 i3

i4 i5

x

i1 i2

i3

i4
i5

x

i1 i2

i3
i4

i5

x

1st pair: OR: (dummy)
AND: i1, i2

2nd pair: OR: i3, ¬i4
AND: ¬x

Fig. 1. Processing a resolvable subpath. The subpath consists of two gates (an
AND-OR-INV and a multiplexer). In this example, the leftmost input pin and
the output pin are interlinked on both gates. (If the input pin corresponding
to signal i4 were the interlinked input pin instead of its neighbour, the path
to the output pin would not be unique, so the multiplexer gate would not be
resolvable in that case.) Main-path gates are drawn blank, while the side-logic
gate is grey. The two other circuits are the results of the normalization steps
explained in Subsection IV-A: in the middle circuit, inner inversions on the
main path have been removed; in the circuit on the right, the two consecutive
OR gates have been contracted such that the main path is an alternating
chain of AND and OR gates. The table at the top lists the main-path inputs,
grouped in pairs of OR and AND sets. A dummy OR set had to be added
for the first pair. Note that i5 is not a main-path input because it does not
feed the main path directly, while i1 is a main-path input in spite of being
interlinked because it feeds the first main-path gate.

computed arrival times is called slack. In particular, negative
slack indicates that timing constraints are not met. A worst-
slack path is called a critical path, and the gates on such a
path as well as the pins on the path can be queried from the
static timing engine. We call these pins interlinked.

On a critical path, we shall distinguish between resolvable
and non-resolvable gates. A gate on the critical path with
interlinked input pin p and interlinked output pin q is resolv-
able if the following condition is satisfied: in the template
circuit provided by the technology library which specifies the
Boolean function(s) evaluated by the gate, the intersection of
the fanout cone of p and the fanin cone of q is a path consisting
only of AND or OR gates with arbitrary fanin and arbitrary
pin inversions (including repeaters). Our algorithm deals with
subpaths on which all gates are resolvable.

By gluing the template circuits together, we get a representa-
tion of the function computed by an entire resolvable subpath.
It is a circuit made up of a main path, which contains the
interlinked pins, plus side logic. An example is shown on the
left in Fig. 1. We shall not modify the side logic gates in our
core algorithm.

III. RESTRUCTURING ALTERNATING PATHS

In this section, we give the mathematical description and
analysis of the core routine of our algorithm. Let us consider
the Boolean function f :

⋃
n≥1{0, 1}2n → {0, 1} on all

Boolean vectors of even dimension, defined by

f(x1, y1, x2, y2, . . . , xn, yn)
:= ((. . . (((x1 ∧ y1) ∨ x2) ∧ y2) ∨ . . .) ∨ xn) ∧ yn.

(1)

As shown in [6], the key to our algorithm is the observation
that we can rewrite f as

f(x1, y1, . . . , xn, yn)
=

[
f(x1, y1, . . . , xl, yl) ∧ p(yl+1, . . . , yn)

]
∨ f(xl+1, yl+1, . . . , xn, yn)

(2)

for any l ∈ {1, . . . , n − 1}, where p :
⋃
k≥1{0, 1}k → {0, 1}

denotes the conjunction p(y1, . . . , yk) := y1 ∧ . . . ∧ yk of
arbitrarily many variables. The following recursive formulation
of the algorithm generates a circuit that has two output
functions, f and p. Although we are really interested in the f
part of the circuit, p is needed on lower recursion levels.

Input: An integer n ≥ 1;
input arrival times t(x1), t(y1), . . . , t(xn), t(yn).

Output: A circuit that computes f(x1, y1, . . . , xn, yn)
and p(y1, . . . , yn).

If n = 1:
• Return a circuit with one AND2 gate connected to inputs
x1 and y1, where f is computed by the gate and p is
computed by input y1.

If n > 1:
• For l := 1 to n− 1:

– Use recursive calls to construct circuits for the
two instances (l; t(x1), t(y1), . . . , t(xl), t(yl)) and
(n− l; t(xl+1), t(yl+1), . . . , t(xn), t(yn)).
Let (f1,l, p1,l) and (fl+1,n, pl+1,n) denote the re-
spective functions.

– Combine the two circuits and add two AND2 gates
and one OR2 gate to form a new circuit computing
(f1,l ∧ pl+1,n) ∨ fl+1,n and p1,l ∧ pl+1,n.

• Among these n − 1 new circuits, return one which
minimizes the arrival time of the output.

This algorithm can be implemented in cubic time using
dynamic programming (see Subsection IV-C).

In the above description, we have left it open how arrival
times are defined. Indeed, the algorithm does not depend on a
particular delay model. In the mathematical analysis, we use
a simplified model; in the implemention, we take technology
and physical information into account.

For the mathematical analysis, we assume to be given arrival
times t(z1), . . . , t(zn) ∈ {0, 1, 2, . . .} for the primary inputs
z1, . . . , zn of a circuit C and recursively define the arrival
time t(g) of a gate g to be one plus the maximum of the
arrival times of all predecessors of g. Following [6], we call
delay(C) := maxv t(v) the delay of a circuit C, where the
maximum is taken over all inputs and gates of C. (For the case
where all input arrival times are zero, this definition of delay
coincides with the classical notion of circuit depth [8].) For an
arbitrary Boolean function F , arrival times for its inputs, and
a basis Ω that specifies which functions may be used as gates,
let delayΩ(F) be the minimum delay of any circuit over Ω
that computes F .

In order to state an approximation guarantee for the circuits

537

we are going to construct, we need the following lower bound
on delay:

Lemma 1: Let Ω be a basis that contains only functions
on one or two variables. If a Boolean function F essen-
tially depends on n inputs z1, . . . , zn with arrival times
t(z1), . . . , t(zn), then

delayΩ(F) ≥

⌈
log2

(
n∑
i=1

2t(zi)
)⌉

.

Proof: Let C be a circuit over Ω that computes F . We
can construct a binary tree of depth at most delay(C)
by deleting edges from the graph underlying C until each
vertex has at most one outgoing edge and replacing each
input zi by a full binary tree of depth t(zi) rooted at zi.
This tree has

∑n
i=1 2t(zi) leaves, so its depth is at least⌈

log2

(∑n
i=1 2t(zi)

)⌉
. �

We now state the main result of [6], the proof of which is
beyond the scope of this paper:

Theorem 1: Let f be as in (1), and let C be the circuit
over Ω := {AND2, OR2, INV} generated by the algorithm
for input arrival times t(x1), . . . , t(yn). Then

delay(C) ≤ 1.441 · log2

(
n∑
i=1

(
2t(xi) + 2t(yi)

))
+ 3

≤ 1.441 · delayΩ(f) + 3.

Moreover, C uses at most 4n − 3 gates, and the maximum
fanout is 3 for inputs and 2 for gates. �

The factor 1.441 of the theorem is not the smallest possible.
As shown in [7], it can be reduced to (1 + ε) for arbitrarily
small ε > 0, albeit with an additive constant growing polyno-
mially in ε−1. However, the algorithm of Theorem 1 is useful
in practice because it yields circuits of small delay and linear
size with bounded fanout, and all constants that appear are
small. Moreover, it is easy to replace the notion of circuit delay
by other objective functions that model arrival times according
to the application. We shall now show how to do this in the
context of timing optimization during physical design.

IV. IMPLEMENTATION OF THE METHOD

A. Preparing a Resolvable Subpath for the Dynamic Program

In order to run the dynamic programming algorithm for the
function f defined in (1), we apply two normalization steps
to the main-path logic. First, we get rid of “inner” inversions
on the main path by applying De Morgan’s rule on its gates,
cancelling inversion pairs where appropriate (Fig. 1, middle
circuit). After this, inversions can only appear at pins fed by
primary subpath inputs or side logic, at the output of the last
main-path gate, and on side logic gates. (Note that primary
inputs in the subpath circuit may or may not be primary inputs
on the whole chip.) Running De Morgan’s rule over the whole
circuit gives an alternative instance for the dynamic program;
we shall use this fact in Subsection IV-F.

As a second step, we contract each consecutive sequence
of AND gates to a single AND gate and each consecutive
sequence of OR gates to a single OR gate (merging repeaters

with either type as appropriate). Now AND and OR gates
alternate on the main path (Fig. 1, bottom right circuit). Except
for the very first gate on the path, the first input of each AND
gate is fed by an OR gate without in-between pin inversion,
and the first input of each OR gate is fed by an AND gate
without in-between inversion. The rest of the input pins on
the main path gates are fed by primary subpath inputs or gate
output pins, and we call these main-path inputs.

When resolving the original subpath gates, the algorithm
ensures that side logic gates cannot be further merged into the
main path. For example, with no inversion between them, a
side logic AND will not drive a main-path AND, but a main-
path OR.

We group the main-path inputs in sets labelled alternately
with AND or OR, according to the function of the gate
they feed. The sets correspond to the input variables of (1).
Combining the members of a set into a single signal is a
subproblem that we shall deal with in Subsection IV-B, after
explaining the delay model we use and how it guides the
construction of new logic.

In order to obtain an alternating OR-AND path with gate
types that match the definition of f , we might have to add
a dummy OR set at the beginning of the path, or a dummy
AND set at the end, or both. For example, if x1 is missing, a
dummy OR set at the beginning transforms (y1∨x2)∧y2 into
((1∧y1)∨x2)∧y2. Dummy sets get a special treatment in our
implementation (Subsection IV-C). The main-path input sets
can now be grouped into pairs, where each pair consists of an
OR set followed by an AND set (Fig. 1, top right).

The resulting sets can be degenerate: if there is only one
main-path input, no AND or OR function is involved at all.
This is an instance for a repeater tree algorithm. If there is
just one AND set or one OR set, but no alternation between
the two, it suffices to solve the above-mentioned subproblem
without running the algorithm for f .

B. The Delay Model for the Dynamic Program

Our goal will be to map the solution circuit of the dynamic
program into the netlist using only NAND2 and NOR2 gates
since these are typically faster than non-inverting gates in
CMOS technologies. (It is just for ease and readability that
we have been using AND and OR gates in the algorithm
description and analysis.) By De Morgan’s rule, we can switch
between AND and OR by flipping all pin inversions. Until
the end of the dynamic program, we use AND2 and OR2
gates with arbitrary pin inversions, and these may or may
not be switched to the respective other type later. The final
decisions between NAND2 and NOR2 are postponed because
they cannot be made independently for the individual gates
without creating inverters for Boolean correctness, which we
want to avoid because of their additional gate delay.

The dynamic program constructs its solution circuit starting
at the inputs and working towards the complete function:
when a partial solution is combined with others to give a new
function in the course of the algorithm, this new signal will
in turn be combined with other partial (f, p) pairs. It can play

538

either role of the two subfunctions in (2), a distinction which
produces even or odd numbers of inversions on the way to the
larger partial solution. This is why fixing gates to NAND2 and
NOR2 would eventually lead to additional inverters. Instead,
we use a De Morgan sweep in the end when the structure of
the entire function has been determined.

In our delay model, there is one parameter dgate for the
delay through a gate of fanin 2 (NAND2 or NOR2 in the final
netlist). Although NAND2 is faster than NOR2 in general [11],
our experience shows that the difference between the two types
does not dominate the delay differences seen between different
gates of the same type in logic optimized by our gate-sizing
routine. Since the dynamic program is mainly about deciding
the logic structure of the circuit, while all further decisions
will be made later, it is sensible to assume at this point that
gate-sizing and repeater tree construction will lead to “typical”
results, i.e. the delays can be approximated by characteristic
values. Our approach is therefore to have a realistic but simple-
to-use delay estimate during the first part of the algorithm and
combine it with powerful detailed optimization routines that
yield accurate final slack values computed by the static timing
engine (Subsection IV-E).

The bottom-up functioning of the dynamic program leads
to similar considerations for our placement policy. During
the algorithm, a partial solution function will be required at
different locations because it contributes to different other
functions at different levels of the dynamic program, not all
of which will contribute to the complete function that is
eventually built. Only at the last level will it become clear
at which locations the partial function signals were really
needed, but then the locations chosen earlier will already
have influenced decisions taken later on until the last level.
Therefore, whenever we place a new gate on the chip area,
our placement decision will depend on the input signals that
feed the new gate, but not on the next gates because we do
not know which of them will be significant. On this basis, our
best guess is to choose a location that results in an earliest
possible arrival time for the new signal.

To account for the time a signal needs to reach the next
gate, we model wire delay by multiplying distances by a
delay-per-distance parameter ddist. This is realistic because the
delay of a buffered connection grows linearly with distance.
We can think of a signal as travelling on the chip area and
merging with another signal at a new gate (Fig. 2). The two
signals start from their respective locations at their respective
arrival times and run towards each other until they eventually
meet. Since the gate delay is assumed to equal dgate for both
input pins, the arrival time at the output of the new gate is
minimized if we place it between its predecessors such that the
two input signals arrive simultaneously. Note that arrival times
and locations of the original subpath input signals are known
from static timing analysis and the design data. The ddist

parameter also accounts for inverter delay from buffering long
wire connections. We obtain the value of ddist by analyzing
long-distance repeater chains as described in [1].

We are now ready to describe how the algorithm generates

G1

s1

G2

s2

G3

Fig. 2. Placement of a new gate G3 fed by gates G1 and G2. Starting at time
ti, the output signal of Gi reaches G3 at time ti+ddistsi if G3 is at distance
si from Gi (i = 1, 2). If |t1 − t2| ≤ ddist(s1 + s2), then the position of
G3 is chosen such that the two signals arrive at the same time, leading to an
arrival time of t3 = t1 + ddists1 + dgate = t2 + ddists2 + dgate for the
output signal of G3. Otherwise, G3 is placed directly at G1 (for t1 > t2) or
G2 (for t2 > t1); this case is common in practice.

the input signals to the function f defined in (1). When
an instance is prepared for the dynamic program, main-path
inputs are grouped in AND and OR sets. Gates computing
the respective multiway function for each set are built by the
following greedy algorithm: as long as there is more than one
signal in the set, take the two earliest signals and combine
them by an AND2 or OR2 gate; replace the two signals by
the output of the new gate and repeat until the set consists
of just one signal. The locations and arrival times of the
new gates are determined as described above (using ddist and
dgate), just like the gates created subsequently by the dynamic
program. After building up gates for the multiway functions,
x1, y1, . . . , xn, yn (the inputs for f) are available.

C. Running the Dynamic Program

The dynamic programming algorithm starts from input
signal pairs (xi, yi), which are constructed as described in the
previous subsections, and builds up a circuit that computes
f(x1, y1, . . . , xn, yn). It maintains a table whose kth row
stores pointers to those gates that compute the partial functions
(f, p)i, i+k−1 := (fi, i+k−1, pi, i+k−1) corresponding to an
interval of k input variable pairs. For k = 1, these would
be (f, p)i,i = (xi ∧ yi, yi); however, to avoid circuits that
can be readily reduced by trivial transformations, we set up
the first row with the original pairs (xi, yi) and treat them
in a special way (see below). Then, for k = 1, . . . , n − 1,
after rows 1 up to k have been completed, row k+ 1 is filled
with the functions (f, p)i, i+k for all i ∈ {1, . . . , n− k}. The
solution for (f, p)i, i+k is determined by finding an appropriate
l ∈ {i, . . . , i + k − 1} such that the arrival time (according
to our two-parameter delay model) of the gate computing
fi, i+k = (fi,l∧pl+1, i+k)∨fl+1, i+k is minimized. (This arrival
time dominates the arrival time of the gate computing pi, i+k,
as can be proved by induction.) The new subcircuit is shown
in Fig. 3 (A). The last row will have exactly one entry, namely
for the complete function pair (f, p)1,n.

Care is necessary for the special case of initial pairs (xi, yi).
If we started with pairs (f, p)i,i = (xi ∧ yi, yi) instead of
(xi, yi), then (f1,1∧p2,2)∨f2,2 = ((x1∧y1)∧y2)∨ (x2∧y2)
would be built, for example, although ((x1 ∧ y1)∨x2)∧ y2 is
more efficient. An example for combining an initial (x, y) pair
with an (f, p) pair on its right is given in Fig. 3 (B)–(D). We
must also take dummy variables into account here, since x1

and yn might stand for a dummy OR or AND set, respectively
(Fig. 3 (E)).

539

(A)

fi,l pi,l fl+1, j pl+1, j

∧
∧

∨

fi, j pi, j

(B)

150 150 50 100

x1 y1 f2, j p2, j

∧

∧

∨

∧

f1, j p1, j

(C)

100 150 50 150

x1 y1 f2, j p2, j

∧

∧

∨

f1, j p1, j

(D)

150 100 50 150

x1 y1 f2, j p2, j

∧

∧

∨

∧

f1, j p1, j

(E)

y1 f2, j p2, j

∧

∨

f1, j p1, j

Fig. 3. Combining pairs in a dynamic programming step. The regular case is shown in (A): for 1 ≤ i < l < j − 1 < n, pairs (f, p)i,l and (f, p)l+1, j

are combined to a new pair (f, p)i,j =
`
(fi,l ∧ pl+1, j) ∨ fl+1, j , pi,l ∧ pl+1, j

´
. Initial pairs are treated as a special case; as an example, (B)–(D) show

how the leftmost pair (x1, y1) is combined with a partial solution (f, p)2,j for some j ∈ {3, . . . , n}. Since (f, p)1,1 would be equal to (x1 ∧ y1, y1)
if we had built it explicitely for the first row of the dynamic program, the straightforward solution for (f, p)1,j is ((f1,1 ∧ p2,j) ∨ f2,j , p1,1 ∧ p2,j) =
(((x1 ∧ y1)∧ p2,j)∨ f2,j , y1 ∧ p2,j). This solution is indeed tried (B). While the product p1,j is always built as y1 ∧ p2,j , the function f1,j could also be
realized as (x1 ∧ p1,j) ∨ f2,j (C) or as ((x1 ∧ p2,j) ∧ y1) ∨ f2,j (D). The numbers above the signals give the respective gate-delay sums for an example
dgate value of 50 picoseconds: e.g., both x1 and y1 traverse three new gates until f1,j is reached in (B), etc. None of the three boxes has a gate-delay profile
that dominates the two others, so each solution may be the best choice for some arrival time pattern. Wire delays (modelled by parameter ddist) are ignored
in the diagrams, but they do add to the arrival times in the actual dynamic program. Among the three distinct solutions, the one with the best arrival time for
f1,j is chosen. Of course, this will only be fixed as a solution for (f, p)1,j in row j if there is no other l ∈ {2, . . . , j − 1} such that combining (f, p)1,l

and (f, p)l+1, j (or (xj , yj) if l = j − 1) gives a better solution. If x1 is representing a dummy OR set, then (x1, y1) and (f, p)2,j are always combined
as (f, p)1,j = (p1,j ∨ f2,j , y1 ∧ p2,j) since this is the most efficient solution when x1 is set to 1 (E). For other cases, similar case distinctions are made,
e.g. when combining two initial pairs (xi, yi) and (xi+1, yi+1) (not shown here).

D. Mapping the Solution Logic into the Given Technology

While filling the dynamic programming table, we have
constructed (and placed) a circuit that computes a lot of unused
partial functions and contains gates whose pins may carry
inversions. Next we trace backwards from the final gate for
f1,n and identify its fanin-cone. Starting at this gate, we use
De Morgan’s rule to push inversions over the gates such that
only NAND2 and NOR2 gates are used. This process includes
the side logic gates and ends at the original inputs, where
inverters are built as needed. As gate fanouts can be greater
than one, inverters may also have to be built at the output pins
of gates that drive input pins of opposite parity.

So far, all computations could be done appropriately in
custom data structures without changing the actual netlist of
the chip. After identifying the relevant logic and performing
the De Morgan sweep, we modify the netlist itself by creating
the gates at the locations determined by the dynamic program
and connecting them with one another and the existing logic
on the chip. Some of the original gates on the critical path
might feed other gates besides the next gate on the path. We
retain the starting section of the path up to the gate that drives
the last of these side outputs. The tail of the path is deleted.

E. Detailed Optimization of the Solution Logic

The circuit we have constructed computes the correct
Boolean function and has been tailored by the dynamic
program to minimize the arrival time of the gate computing
the complete function. Even so, electrical optimization is very
important to find a netlist with improved slack according to
static timing analysis. In our implementation, we call a gate-
sizing routine [2] on all newly created gates that uses the
detailed delay model of the static timing engine. Next we
rebuild repeater trees on the new logic [1]; this cannot be
done before gate-sizing because it would then be based on

unrealistic slacks. After tree optimization, a second gate-sizing
call brings the new logic to its final form. This discloses
the actual slack improvement for the path instance (up to
degradation incurred by placement legalization).

We point out that optimization techniques such as pin swap-
ping, wire type assignment, Vt level assignment, localized
logic changes etc. have not yet been included in our implemen-
tation. These would offer additional optimization opportunities
beyond gate-sizing and repeater tree construction.

F. Iterative Application of the Algorithm

From looking at the performance guarantee given in The-
orem 1, we might expect that the longer the path is that we
restructure in the dynamic program, the more we gain in terms
of slack. However, it turns out that optimizing just a part of
a resolvable section can give better slack improvements in
practice. This can have several reasons. Although the constants
in the theorem are small, a signal that has to pass through
additional gates may take more overall time than in the
original path. During the dynamic program, we do not know
in advance where inverters will be needed to ensure Boolean
correctness, and due to their discrete nature, the delay-per-
distance parameter that accounts for them may give inaccurate
estimates. For some arrival time profiles, there might not be
good split positions at all recursive stages (the two parts
in (2) are more likely to minimize the arrival time of the
combination function if the arrival times of the parts are
balanced). Properties of the technology library have a strong
impact on how slack-optimal netlists look like, and arrival time
estimates in the dynamic program may be less accurate when
signals have to traverse a larger number of new gates, which is
more likely when long paths are optimized. So the distribution
of the input arrival times, combined with discrete effects of
the technology library and the electrical characteristics of the

540

gate-sizing and repeater tree instances, can bias the optimiza-
tion outcome towards partial instances. Indeed, even a path
consisting of one complex gate (a multiplexer, for example)
could be worth restructuring when the library provides just
a small range of choices for the complex cell and a lot of
logically equivalent simple cells such as NAND2 with better
optimization opportunities for the gate-sizing routine.

In our implementation, we consider all subpaths of a resolv-
able section that do not consist entirely of repeaters. Each of
these produces up to four problem instances for the dynamic
program, depending on the choices of the inversions during
path normalization (Subsection IV-A) and CMOS mapping
(Subsection IV-D). This approach makes it necessary to keep
a record of the tentative changes we make because the chip
must be reverted to its original state before the next candidate
solution is processed.

The quality of a solution circuit C is measured by the slack
improvement δpath at the gate computing the overall function
because this slack is the worst slack of all paths through C.
However, as the capacitance at some inputs to C can increase,
the slack due to a side path outside C at a repeater tree root
might get worse even if all the slacks within C improve. Since
we are working on the critical path, we allow side path slacks
to get worse, but we reject instances where they drop below
the original slack at the output gate (before C was inserted).
This ensures that the overall worst slack on the chip can only
improve (cf. Fig. 5).

The running time of our code is largely dominated by
electrical optimization: gate-sizing and repeater tree construc-
tion take 80 to 95 per cent of the time, while running the
dynamic programs is fast. To reduce the number of gate-sizing
calls, we first run the dynamic program for all subinstances
and sort the results in descending order according to the
difference between the original arrival time and the arrival time
estimated by the dynamic program, which is an estimate for
the slack improvement δpath. Then we continue with electrical
optimization for just a few instances from the beginning of
the sorted list and pick the best solution we have found. This
usually yields the best possible slack improvement over all
subinstances. All other solutions are discarded.

After optimizing the critical path, an incremental invocation
of static timing analysis reveals the new critical path. We
repeat the whole procedure described so far to improve the
worst slack of the chip, working on the new critical path in
each iteration. If the first few critical paths have very similar
slack values, optimizing the worst path will not improve the
overall worst slack much even if a large δpath could be
achieved. However, iterating critical path optimization can
improve the worst slack by more than the average δpath value.

V. EXPERIMENTAL RESULTS

Improvements achievable by restructuring long paths clearly
depend on prior optimization: fortunate decisions during early
logic synthesis will make slack gains harder, whereas poor
physical design will offer easy optimization opportunities for

A
N

D
2
,2

ii
-O

R
-I

N
V

O
R

2
,1

-A
N

D
-I

N
V

A
N

D
2
i,

1
-O

R
-I

N
V

O
R

2
,1

-A
N

D
-I

N
V

i1 i2 i3 i4

i5 i6

i7 i8

i9 i10

i1 i2

i3 i4

i5

i6i7

i8

i9

i10

[1–1]

[1–2]

[2–2]

[3–3]

[3–4][1–4]

[1–5]

Fig. 4. Subfunction grouping in the dynamic program (Dirk, iteration 17).
The path on the left resolves to five pairs of main-path inputs with dummy sets
at both ends (f = ((. . . (x1∧y1)∨. . .)∨x5)∧y5 with x1 = 1, y1 = i1∧i2,
x2 = ¬i3 ∧ ¬i4, y2 = ¬i5, x3 = ¬i6, y3 = ¬i7, x4 = i8, y4 = ¬i9,
x5 = ¬i10 and y5 = 1). The circuit on the right is the solution of the
dynamic program and has been applied to the netlist in this iteration. Dashed
lines separate sections of the circuit that correspond to different levels of the
dynamic program, as indicated by variable pair intervals. For example, the
part labelled [3–4] computes f3,4 and p3,4 from (x3, y3) and (x4, y4).

any tool that incorporates gate-sizing and repeater tree con-
struction as subroutines. Since detailed electrical optimization
is necessary for building up a netlist with meaningful slacks
(Subsection IV-E), we cannot evaluate logic optimization out
of context. In order to give a fair assessment of our algorithm,
we have made sure that our code uses the same gate-sizing
and repeater tree routines with the same parameter settings
that are used in earlier optimization steps.

For the sake of comparability, we have prepared each design
in the same way. First, we have run a timing driven loop tool
with standard parameter settings [2], which runs two rounds
consisting of placement and timing-optimization, with timing-
driven netweights in the second round. Next, gate-sizing and
repeater tree routines [1] have been iterated until the overall
worst slack could not be improved further, and the designs
have been legalized. This is the starting point for our code.
Naturally, worst slack levels after the preparatory optimization
steps vary.

As indicated in Subsection IV-F, our algorithm is iterated
and works on the current critical path in each iteration. We

541

TABLE I
TESTBED CHARACTERISTICS

Number Slack Worst Slack Standard-cell Critical pathChip Technology
of gates targeta slackb sumc density clock cycle

Jens 180 nm 64 K 1.250 ns 1.014 ns –2016 ns 0.7134 7.0 ns
Fazil 130 nm 64 K –2.000 ns –2.499 ns –2230 ns 0.7493 5.0 ns
Franz 90 nm 69 K 0.300 ns 0.186 ns –828 ns 0.7488 4.8 ns
Lucius 65 nm 72 K 0.000 ns –0.299 ns –2553 ns 0.3373 2.7 ns
Dirk 65 nm 98 K 0.600 ns 0.284 ns –7872 ns 0.3688 3.0 ns
Heidrun 130 nm 297 K 0.250 ns –0.389 ns –5376 ns 0.6447 15.0 ns
Wilhelm 130 nm 1361 K –1.200 ns –1.690 ns –7906 ns 0.4048 3.2 ns, 4.0 ns
Karsten 130 nm 3118 K 0.300 ns –0.151 ns –7130 ns 0.4817 1.7 ns
Herbert 90 nm 3447 K –2.000 ns –2.739 ns –242 ns 0.8529 1.6 ns, 4.7 ns
TRIPS 130 nm 5920 K –1.500 ns –2.071 ns –3393 ns 0.5756 4.5 ns
a Used to compute slack sum and to control gate-sizing and repeater tree construction.
b Legal placement.
c Sum of slacks below target (shifted by target).

TABLE II
OPTIMIZATION RESULTS

Logic optimization First legalization Second legalization Worst- Density
Chip number aver. time average worst slack worst slack worst slack slack incre-

of iter. per iter.a δpath slack sum slack sum slack sum gainb mentc

Jens 200 35 s 91 ps 1.114 ns –1340 ns 0.954 ns –1918 ns 1.053 ns –1486 ns 39 ps 0.0085
Fazil 200 40 s 155 ps –2.320 ns –1585 ns –2.498 ns –2575 ns –2.356 ns –1914 ns 143 ps 0.0081
Franz 200 133 s 108 ps 0.245 ns –345 ns 0.204 ns –620 ns 0.246 ns –186 ns 60 ps 0.0078
Lucius 200 30 s 109 ps –0.084 ns –591 ns –0.245 ns –754 ns –0.069 ns –354 ns 230 ps 0.0062
Dirk 200 19 s 179 ps 0.377 ns –7202 ns 0.336 ns –7418 ns 0.384 ns –6480 ns 100 ps 0.0042
Heidrun 200 162 s 108 ps –0.259 ns –5217 ns –0.265 ns –5208 ns –0.260 ns –4653 ns 129 ps 0.0018
Wilhelm 200 220 s 119 ps –1.338 ns –2682 ns –1.610 ns –4052 ns –1.364 ns –612 ns 326 ps –0.0005
Karsten 31 87 s 26 ps –0.032 ns –7140 ns –0.172 ns –7082 ns –0.052 ns –6593 ns 99 ps 0.0000
Herbert 64 154 s 168 ps –2.251 ns –162 ns –2.306 ns –225 ns –2.308 ns –152 ns 431 ps –0.0003
TRIPS 50 490 s 173 ps –1.583 ns –212 ns –1.625 ns –416 ns –1.539 ns –58 ns 532 ps 0.0000
a Running times on a 2.6GHz AMD Opteron. For Jens and Fazil, a 600MHz IBM PowerPC RS64III has been used and running times have been scaled down (4x).
b Improvement of worst slack after final legalization over initial worst slack as in Table I.
c Adding this number to the standard-cell density of Table I gives the standard-cell density after final legalization.

use IBM’s EinsTimer engine for static timing analysis with
interconnect delay modelled by Steiner trees and Elmore delay.
The number of iterations has been limited to 200, but can
be smaller if no further improvement is achieved. In each
iteration, all dynamic programming solutions were ordered
before the first gate-sizing call by expected slack improvement,
i.e. the estimates for δpath of the dynamic programs. Since
running times are dominated by gate-sizing (including incre-
mental static timing analysis), we use the following scheme
to cut down the number of detailed optimization instances.
Starting with an initial target of 150 ps for δpath, we optimize
the solution candidates one by one and select the best solution
as soon as the target is reached. The δpath target is decreased
by 10 ps each time five candidates have been processed. This
way, we may find the best solution even if it is not the first
candidate and even if we do not know which δpath value can
be achieved. We remark that it is possible to reduce running
times further by optimizing gate-sizing instances in parallel.

When copying a dynamic programming solution to the
netlist, we use medium-sized cells for NAND2, NOR2 and
INV as starting points for gate-sizing. If there is a choice
among different Vt levels, we use the level that is predominant
on the critical path. Technology library analysis yields charac-

teristic values for the delays of the NAND2 and NOR2 cells in
an optimized netlist with typical input slews and capacitative
loads; the average of the two is used as an initial value for
the dgate parameter mentioned in Subsection IV-B. The ddist

parameter is initialized with the average per-nanometer delay
of an optimized inverter chain, again obtained from library
analysis [1]. After each iteration, the average delay through
the NAND2 and NOR2 gates on the critical path of the newly
inserted logic is determined (gate-sizing often slows down
gates off the critical path), and dgate is set to 90% of its current
value plus 10% of that average delay.

In our experiments, logic optimization is followed by place-
ment legalization. To compensate for slack degradation, a
limited amount of gate-sizing is performed. Then a second
legalization step brings the netlist to its final state.

Our testbed consists of recent industrial IBM ASIC designs;
we are grateful to our cooperation partner IBM for providing
the data. We also thank the Department of Computer Sciences
at the University of Texas at Austin for granting us access to
the TRIPS data [14]. The other chip names have been changed
for confidentiality.

Characteristics of the testbed chips can be found in Table I.
To control the gate-sizing and repeater tree routines after the

542

A
N

D
2
,2
,2

-O
R

-I
N

V
IN

V
E

R
T

IN
G

M
U

LT
IP

L
E

X
E

R
A

N
D

2
,1
i
-O

R
-I

N
V

i1

i2 i3 i4 i5 i6

i7 i8

i9 i10

−168 339 −59 1 0 −148
−168 462 −59 403 611 −148

1
630

475
1146

2
80

330
330

output
slack: −168

i1 i2

i3 i4

i5 i6 i7
i8

i9

i10

−73
−16

0
336

−13

12
0

186

2
288

−53

9 1

156 372

465
830

0
291

−30

23 −30

output
slack: −30

Fig. 5. Slacks (in picoseconds) before and after path restructuring (Lucius,
iteration 38). The path on the left has been replaced by the circuit on the right,
giving a slack improvement of δpath = (−30 ps) − (−168 ps) = 138 ps.
Two numbers are specified at each input signal. The bottom number shows
the slack at the gate input pin fed by the signal. Note that the smallest of
these numbers is always equal to the output slack of the circuit. The top
number is the slack at the root of the repeater tree that contains the input pin,
which can be smaller due to side paths through the root. The original slack
at the interlinked input pin (fed by i1) climbs from −168 ps to −16 ps in
the new logic. The new critical input is i10; there are two paths from this
input to the overall function output with respective slacks of −30 ps (critical
path) and 23 ps. The smallest root slack of the original path always equals
the overall worst slack of the chip. In this example, the smallest root slack
after the replacement (−73 ps) is again found at i1. The algorithm would
have rejected the restructuring solution if any root slack had dropped below
−168 ps. Note how the logic has been rebalanced so that i1 and i6 (the two
worst inputs originally) traverse only four NAND/NOR stages.

timing-driven loop and during our algorithm, an individual
slack target has been chosen for each chip. However, logic
optimization itself ignores the slack target. It is also used for
computing a number called slack sum, which is the sum of
output pin slack minus the target, summed over all output
pins below the target. Next to worst slack, the slack sum is a
quality measure for our optimization results. The standard-cell
density is the ratio of the area taken up by standard cells and
the placement area not taken up by macros and blockages.
Table I also gives the cycle times of the clocks seen on the
critical paths that have been optimized by our algorithm.

Examples for paths that have been restructured are given in
Fig. 4 and 5; a summary of the results can be found in Table II.
The second column from the right shows that our code
successfully improves the overall worst slack and achieves
gains of several hundred picoseconds on some chips. We
emphasize that these improvements are made independently

of optimization techniques such as those mentioned in the
introduction, which can give additional slack gain.

As can be expected for a testbed of different industrial
designs, the degree varies to which logic optimization can
improve timing. Comparing the slack sums after final legaliza-
tion to their values before logic optimization, we see that the
overall quantity of timing violations is considerably reduced
on all chips. Even when worst slack gains are small, reducing
the slack sum is important.

Table II also gives worst slack and slack sum numbers at
intermediate optimization stages. Naturally, slack figures dete-
riorate by legalization just after logic optimization. However,
some gate-sizing (not even with highest tool effort) makes
good the loss, even when followed by another legalization.

For a tool that creates new circuits and changes gate sizes,
it is important to keep chip density under control. The last
column of Table II shows that the impact of our tool on density
is harmless. In fact, density savings are possible on some chips.

Summarizing the results, we have demonstrated that our
implementation is a powerful logic optimization tool that can
improve worst slack on real-world designs by up to several
hundred picoseconds.

REFERENCES

[1] C. Bartoschek, S. Held, D. Rautenbach, J. Vygen, Efficient Generation
of Short and Fast Repeater Tree Topologies, International Symposium
on Physical Design (2006), 120–127.

[2] S. Held, Fast Gate Sizing and Timing Closure for Multi-Million Cell
Designs, Report No. 07969, Research Institute for Discrete Mathematics,
University of Bonn, 2007.

[3] B. Korte, D. Rautenbach, J. Vygen: BonnTools: Mathematical Innova-
tion for Layout and Timing Closure of Systems on a Chip, Proceedings
of the IEEE 95 (2007), 555–572.

[4] J. Liu, S. Zhou, H. Zhu, C.-K. Cheng, An Algorithmic Approach for
Generic Parallel Adders, International Conference on Computer-Aided
Design 2003, 734–740.

[5] V. G. Oklobdzija, D. Villeger, S. S. Liu, A Method for Speed Optimized
Partial Product Reduction and Generation of Fast Parallel Multipliers
Using an Algorithmic Approach, IEEE Transactions on Computers 45
(1996), 294–306.

[6] D. Rautenbach, C. Szegedy, J. Werber, Delay optimization of linear
depth boolean circuits with prescribed input arrival times, Journal of
Discrete Algorithms 4 (2006), 526–537.

[7] D. Rautenbach, C. Szegedy, J. Werber, Asymptotically Optimal Boolean
Circuits for Functions of the Form

gn−1(gn−2(. . . g3(g2(g1(x1, x2), x3), x4) . . . , xn−1), xn)
given Input Arrival Times, Report No. 03931, Research Institute for
Discrete Mathematics, University of Bonn, 2003.

[8] J. E. Savage, Models of Computation: Exploring the Power of Comput-
ing, Addison-Wesley Longman, Reading, MA, 1998.

[9] P. F. Stelling, V. Oklobdzija, Design strategies for the final adder in a
parallel multiplier, 29th Asilomar Conference on Signals, Systems and
Computers (1995), 591.

[10] P. F. Stelling, V. Oklobdzija, Design strategies for optimal hybrid final
adders in a parallel multiplier, Journal of VLSI Signal Processing
Systems 14 (1996), 321–331.

[11] I. Sutherland, B. Sproull, D. Harris, Logical Effort: Designing Fast
CMOS Circuits, Morgan Kaufmann, San Francisco, CA, 1999.

[12] L. Stok et al., BooleDozer: Logic synthesis for ASICs, IBM Journal of
Research and Development 40 (1996), 407–430.

[13] L. Trevillyan, D. Kung, R. Puri, L. N. Reddy, M. A. Kazda, An
Integrated Environment for Technology Closure of Deep-Submicron IC
Designs, IEEE Design & Test of Computers 21 (2004), 14–22.

[14] http://www.cs.utexas.edu/users/cart/trips/index.html.
[15] W.-C. Yeh, C.-W. Jen, Generalized Earliest-First Fast Addition Algo-

rithm, IEEE Transactions on Computers 52 (2003), 1233–1242.

543

