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Abstract 
We give a generalization, called the limit-bumping 

algorithm (LBA). of a procedure of Youssef et. al. [ I ]  
that iran&onns initial connection delays into upper lim- 
its on delay suitable for performancedriven laput.  
LBA is a simple way to distribute slacks using arbitrary 
allocation functions. We then show how lower and 
upper bounds on connection delays can be used in the 
computation of upper limits for initial layout and for 
layout improvement. 

The methods have been integrated into a delay- 
sensitive router for FPGAs. In 22 standard benchmark 
designs (with placements jixed), feasible system clock 
periods were reduced in every case, by an average of 
14% and as much as 32%. 

1. Introduction 

In recent years, increasing attention has turned to the 
problem of performance-driven layout. This is largely 
because with increased chip complexity and switching 
speeds, wiring delay accounts for an increasing propor- 
tion of overall system delay. 

The challenge for performance-driven layout tools is 
to implement designs so that total path delays from start 
pins (primary inputs or register outputs) to end pins 
(primary outputs or register inputs) satisfy specified lim- 
its. This presentation will focus on register uansfers, 
for which the performance measure is the clock period 
T. We treat the long-path problem and ignore the 
related short-path problem. For a completed layout, the 
minimum feasible period Tmmed is given by 

+zDeloy(b) + z D & y ( c )  + u m p ( e d )  

over data transfer paths x from start to end registers 
synchronized by the clock. We assume that block 
delays are fixed, and that the design is free of purely 
combinational cycles, i.e., has no unclocked feedback. 

The difficulty is that layout tools ordinarily work on 
individual nets, without attending to path requirements. 

1 Y o o i b E a  ~ l l ~ P i O l c ~ a  

Automated performance optimization demands interac- 
tion between the layout process and timing analysis of 
paths. For example, the results of timing analysis can 
be used to produce suggested upper limits on COMW- 
tion delays for the layout process, such that any layout 
that meets the limits would satisfy the performance 
requirements. 

This work makes three contributions: (1) We give a 
generalization, called the limit-bumping algorithm 
(LBA), of a procedure of Youssef et. al. [l] that 
transforms initial connection delays into upper limits 
suitable for performancedriven layout. LBA is a sim- 
ple way to distribute slacks using arbitrary allocation 
functions. (2) We show how lower and upper bounds 
on connection delays can be used in the computation of 
upper limits for initial layout and for layout improve- 
ment. (3) We demonstrate that major improvements in 
system perfonname can be achieved by integrating 
these techniques in an FPGA router. 

1.1. General background 

Early work [2,3] performed timing analysis using 
delay estimates. and gave critical signals higher weight 
during partitioning or higher priority during routing. 
The importance of intemctions between timing analysis 
and place-and-route steps was highlighted in [4], but the 
weighting function used to mediate the interactions was 
not described. At each stage of recursive mincut in [51, 
non-critical connections got weights in inverse propor- 
tion to their slacks, and critical connections got slightly 
higher weights. In [6], improved performance was 
obtained by recursive partitioning and global routing 
with a re-weighting scheme in which a net’s weight is 
simply inmmented by one at any stage it is found to be 
critical; the evolving weights influence both partition 
costs and routing order. 

A common problem with weight adjustment is that at 
the same time critical connections are improved, other 
connections can become critical. Another approach has 
been to perform layout with continuous guidance from 
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path constraints. In [7], incremental timing analysis is 
used to evaluate individual moves during placement. 
Linear programming has been used at each stage of 
recursive partitioning to track path constraints dynami- 
cally during placement [81. Related work in [9, 101 
used quadratic programming and reduced sets of active 
constraints to produce high-perfcxmance placements 
more efficiently. 

The task of transforming the results of timing 
analysis into guidance (typically weights) for placement 
is nontrivial, as evidenced by the many heuristics that 
have been proposed. An interesting formulation in E111 
allows the derivation of an optimum formula for con- 
nection re-weighting; it requires as inputs from timing 
analysis a set of precise limits on individual connection 
delays. We will see later that the routing process in 
some technologies can utilize connection delay upper 
limits more directly, to good effect. This increases the 
importance of developing effective techniques to com- 
pute such limits. Work on computing limits is reviewed 
below. 

1.2. Integration of path analysis with layout 

The slack of a directed path A is defined as 

actual total propagation times along A, respectively. A 
system is said to have a long-path timing problem if for 
some path, signals fail to propagate through the consti- 
tuent logic blocks and interconnect within the required 
time. (This corresponds to a negative slack.) We also 
define a slack for each individual source-to-load connec- 
tion c :  

R(A)-A(A), where R(A) and A(%) are the required and 

slack (c ) = pnf& min I : C E  U [slack (A)] (1) 
Let R(c) and A(c) be the earliest required and latest 

actual arrival times at the load pin of c, respectively. 
An equivalent definition of the slack on connection c is 
then 

slack(c) = R ( c ) - A ( c )  

Computing slacks is straightforward [12]. Two linear- 
time computations w performed, one in which A(c)’s 
propagate forward, and one in which R(c)’s propagate 
backward. 

When layout is complete, slacks are readily com- 
puted, but during the layout process, connection delays 
are not yet known. Still, a performance-driven layout 
system can make use of path analysis by iterating the 
following steps: estimate delays --> compute resulting 
slacks --> suggest delay upper limits --> aim to meet 
upper limits. Our focus is the third step of this loop, in 
which upper limits are derived from slacks. 

13. The zero-slack algorithm and variations 

huge  et. al. introduced the -slack algorithm 
(ZSA) [13]. This algorithm begins by computing slacks 
based on a tentative set of connection &lays chosen so 
that they meet the timing requirements. The algorithm 
increases the delays in this set until they are maximal in 
the sense that they still meet the requirements, but a 
further delay increase on any wnnection would produce 
a violation. ’Ihese delays are provided to the layout 
tool as upper limits. 

The ZSA identifies a continuous path segment with 
minimum non-Zen, slack. Excess delay is distributed 
uniformly among “xt ions on that path segment, 
slacks are updated on other connections that are 
affected, and the process is repeated until every connec- 
tion has zero slack. 

Excess delays can also be diseibuted in proportion to 
physical measures. e.g.. capacitance per fanout or capa- 
citance change per fanout [14]. In [l]. the slack of a 
path is budgeted to its connections in proportion to the 
function 

weighr (c )=LF(c ) *AcL(c )  (2) 
where U(C) is the delay per unit load on c’s source 
pin, and AcL (c ) is the e x t e d  capacitance of c ’s load 
pin; other weighting c r i w  appear in [ 151. 
Luk [141 sped up the ZSA by omitting the recompu- 

ration of slacks on connections whose slacks are altered 
by delay increases on the minimum-slack segments. 
This can create intermediate slacks that are negative, 
unless the increases are appropriately bounded. In prac- 
tice, all slacks converge to near zero in a few iterations. 

Another itemtive procedure to budget slacks, called 
Ireraive-Minimux-PERT, is described in [1,15]. Ihe 
weight function in (2) is used to define multipliers f(c): 

In each iteration, the delay of every connection c is 
incremented by f ( c )  * slack (c ). It is proven that all 
slacks decline monotonically and converge toward zero. 

In the next section, we give a generalization of 
Iteraive-Minimux-PHtT, called the limit-bumping algo- 
rithm, that accepts arbitrary multipliers f (c) as inputs. 
We identify simple conditions on the f (c)’s that are 
necessary and sufficient to guarantee that slacks go 
monotonically to zero. Finally, we introduce new 
methods for setting both initial delays and f(c)’s. Sec- 
tion 3 describes the application of these procedures to 
an FFGA routing program. Section 4 presents experi- 
mental results. 
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2. The limit-bumping algorithm 

The inputs to the limit-bumping algorithm (“LBA”) 
are a netlist, timing constraints, block delays, and for 
each connection c, an initial delay I(c) and a multiplier 
f(c). The outputs of LBA are delays U(c). such that any 
layout whose connection delays are less than or equal to 
U(c) will satisfy the timing constraints. 

Following [l], at each connection c, the product of 
f(c) and c’s current slack is added to the current delay 
in each iteration. 

Limit-bumping algorithm 
I* Step 1: initialize. *I 
U(c) = I(c); 
I* tCt skk(c .  U) &note the slack on connection c, ivcn the 

set ~f &lays U. Increme U until s l o ~ k r  are NoI l *I 
do ( 

I* step 2: *I 
compute. slack(c. U) for all connections c; 
close enough = near-mo (slacks); I* (stop criterion ). I 
if (!cTose enough) 

1 

P Stel 3: dktribute slach. *I 
for every connection c 

U(C) = U(C) + (f(c) * slack(c. U)); 

while (!close-enough); 

2.1. Convergence conditions 

THEOREM 1: Every term slack(c, U) generated by 
LBA decreases monotonically to zero for arbitrary 
inputs with non-negative slack if and only if the multi- 
pliers f(c) satisfy 
(a): f(c) > 0 for every connection c. 
(b): 

Proof. 
(NECESSlTY): If either condition is violated, there will be 
inputs for which some slack does not decrease monotonically 
to zero. If (a) is violated, slack(c) may not decrease; if (b) is 
violated, sleck(x) can become negative. 
(SUFFICIENCY): If (a) is satisfied, then every positive slack 
decreases by at least a fixed fraction in each iteration, and 
hence converges to zero. We need only show that no slack 
can become negative, i.e., that slack decrease I slack. 

f (c) s 1 for every path IC. 
c : e €  x 

Decrease in slack (path IC) 
= f(c)*slack(c) 

C : C E  1L 

c : C E  x 

I slack(n) 

- .  

(by condition (b)) 

Q.E.D. 
From now on, we restrict ourselves to f(c) values that 
meet the conditions of theorem 1. We can thus safely 
refer to the multipliers f(c) as fractions. 

2.2. Adapting known slack budgeting heuristics 

Each heuristic in past implementations of ZSA has 
distributed path SlaCL among connections in proportion 
to one or more functions weight(c). Alternatives al- 
ready m e n t i d  for weight(c) include: 
WI(C) = 1; 1131 
WAC) = source fanout (c); [131 
w~(c )  = W(C) AcL(c); H I  

[ 141 
w~(c )  = f-t(c) * k(c); r 141 
w S(C) = fanoW(c) * k(c) * C r p a c i u c ) ;  

where k(c) is a delay sensitivity (dt/dC for nets or dt/dR 
for sourcesink pairs). 

Any positive function weight(c) determines a 
corresponding set of fractions f(c) according to equation 
(3), which we restate here: 

Furthermore, fractions defined this way satisfy the con- 

LBA is particularly efficient when using fractions 
f (c) given by equation (3) and values weight(c) that 
do not change during the layout process. The fractions 
then need be computed only once. This can be done in 
linear time, e.g., using depth-first searches. From then 
on, it is trivial to distribute slacks as soon as they are 
computed, using a single multiply-and-add per connec- 
tion. sorting or recomputing of slacks is necessary 
during delay distribution, as is required in most previous 
methods. 

When we determine an f (c) a prwri by equation 
(3), we divide by the total weight on the static 
maximum-weight path thfough c rather than by the total 
weight on a path segment of minimum slack. Static 
fractions are thus “conservative”, i.e., sometimes 
smaller than what could be used. The only apparent 
downside of pre-computing the fractions f(c) is a possi- 
ble increase in iterations for convergence - but we do 
not expect convergence to be much slower. Different 
paths through the same connection typically have simi- 
lar weight. And when some path does have less weight 
(where precomputation would be conservative) it is less 
likely to be critical. 

ditions of theorem 1 by construction .t 

t Consider I path 1~ If it ia the m u  weight path through 
every one of its d o n s .  then f(c)=i exactly; if it is 

not. then any connection c that is on a path with gnater weight 
would contribute comrpondingly less to the rum. 

C : C E  I 
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2.3. Uses of realistic lower bounds 

The best available lower bounds on connection 
delays, which we denote L(c), are a reasonable choice 
of settings for inputs I(c) to LBA. One benefit of using 
L(c) can be seen by considering what can happen when 
the input I(c)’s are set to zero. as in [l]. An 
unsatisfiable upper limit U(c) (< L(c)) could result, even 
in designs for which layouts exist that meet the timing 
constraints. To avoid this possibility, we should at least 
ensure that I(c) 2 L(c) for every connection. 

It is worthwhile to compute slacks based on the 
delays L(c) in any case. The computation yields a 
“best conceivable” clock period Th, i.e., what would 
result if every connection achieved its lower bound 
simultaneously. This is useful, independent of the time 
T w , ,  that the designer wants. Even if T d  <Tbw (what 
the designer wants is impossible) we probably still want 
to push the design’s performance. The request often 
reduces to: “make it run as fast as it can”. 

When timing constraint values have not been 
specified, we need a way to set them automatically. We 
set the system goal 

Tgml = G * T b  (G21) (4) 
where the constant G is based on experience with the 
layout tool. Starting with a conservative Tgod can have 
practical advantages - even if Twi~,  <Tgwl .  First, the 
performance achieved often beats the goal. Second, a 
solution in hand whose performance falls short may be 
valuable, especially when improvement methods are 
available. 

2.4. Use of realizable delays 

Suppose our tool has produced a layout. We will use 
upper bounds D ( c ) ,  namely 

D (c) = connection delays achieved in existing layout, 

to derive new upper limits U(c) that (1) are consistent 
with a specified improvement in system performance, 
and (2) optimize the chances that our layout tool will 
meet them. 

Our approach to performance improvement uses the 
following new weight function: 

w6(c) = D ( C ) - L ( C )  (5 )  
Unlike the other weight functions we have considered. 
w6 depends on the current state of rhe layout, and thus 
cannot be precomputed. Wg(C) is the gap between the 
delay achieved on a connection and its lower bound. It 
thus measures c’s maximum “potential for improve- 
ment”. Our idea is to set the upper limits U(c) so that 
the amount by which each delay is asked to improve is 

proportional to this to improve. We first show 
how to use w6 in the LBA, and then examine a tiny 
example in detail. 
First, set the desired new period T H ,  and compute 

every slack(c, D). Then, compute fractions f(c) accord- 
ing to equation (3). using function w&) for weight(c). 
Using the resulting f(c) values, apply the variant of 
LBA described below. 

Since we start with the old delays, a requirement of 
improved pedormance means that one or more slacks 
will initially be negative. This destroys the monotonic 
change propeaty from theorem 1. Although in practice 
convergence is fast even when negative slacks are 
allowed [14], we prefer to preserve monotonic change 
by running LBA twice (in two stages). In stage 1, the 
delay upper limits U(c) are bumped only for those con- 
nections with negative slack. The same multiply-and- 
add operation is used, with one precaution. Since in 
this stage the limits are decreusing, we must check not 
to allow any connection’s upper limit to be bumped 
below its lower bound. Step 3 of LBA as revised for 
stage 1 is thus: 

p Step 3: distribute NEGATNE slacks, 
don’t violate lower bounds. *I 

for every connection c 
if (skk(c, U) c 0) 

U(C) =  ma^ (U@) + f(c) * slack(C, U), L(c)); 
Stage 2 is the ordinary LBA, with input delays taken 
from the U(c)’s produced by stage 1. 

Example: Suppose D(c 1)=20, L(c l)=lO; D(c i)=20, 
L(c2)=15; and we have slack -6 to distribute between c1 

and c2. Since w6(c1)=10 and Wg(C2)=5, c1 gets twice 
as much delay decrement as c2. The resulting values 
are U(c +l6, U(cz)=18. 

The delay decrement A(c) asked of connection c is 
D ( c ) - U ( c ) .  Equation (3) makes these decrements 
proportional to weight. With weight W6, the effect is to 
equate the “approach fractions” of different connec- 
tions’ U(c) values from their achieved delays towards 
their lower bounds. where 

(The approach fraction in the example is 0.4 for both c 1  

The approach fraction seems a reasonable measure of 
how difficult it will be for the layout process to meet a 
new limit U(c). Weight function w6 attempts to balance 
this difficulty among connections as much as possible. 
It is in this sense that the layout tool’s chances for suc- 
cess are optimized. 

and ~ 2 . )  
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3. Application to FPGA routing 
3.1. Performance-driven FPGA routing 

As noted in section 1.1, past work on performance- 
driven place-and-route has focused more on placement 
than on routing, because for most technologies, 
improvements to the placement algorithms have much 
more impact on performance. In field-pgrammable 
gate arrays (FPGAs), however, routing is unusually 
important. The fraction of delay due to routing in 
FPGAs is typically from 409i to 60%. which is much 

The Xilinx XC4OOO architecture [16] offers a hierar- 
chy of routing fesources distinguished by their path 
lengths and delay characteristics. General-purpose 
interconnects (figure 1) pass through switching matrices 
between the blocks and are best for medium-length, 
local interconnects. 

greater than that for maslr-pgrammed gate arrays. 

Figure 1. General-purpose wiring. 

Other segments bypass alternate switchboxes. allowing 
longer paths with fewer switches (also shown in figure 
1). Long lines (figure 2), which span the entire height 
or width of the array, are ideal for high-fanout nets and 

I 

Figure 2. Long-line wiring. 

timecritical signals. special buffers can also be 
inserted in routing paths to speed up connections. The 
freedom to select the most appopnate * resources for 
each connection means the routex has more influence on 
delays than in traditional technologies. Improved rout- 
ing algarithms offex great potential for e n h a n d  perfor- 
mance in FpGAs. 
To realize this potential for improvement, a router 

should be able to: 
(1) Route connections within a specified delay limit 

when possible. 
(2) Use different cost functions in different situations. 

For example, most muting choices must be made 
not according to delay alone, but according to a 
combination of delay and resource costs. Special 
nets such 85 powex/gmund signals should be 
oblivious to delay. 

(3) support a retry mode to complete unrouted COM~C- 
tions or improve existing routes. In this mode, 
previously completed connections can become 
temporarily muted. 

Such capabilities are supported in existing routers, 
including a router for the Xilinx XC4000 family. 
Although this router is sensitive to delays, it has lacked 
the capability to decide what connection delay limits to 
aim for. Until now. a single upper limit has been used 
for all connections. What is needed is an optimized set 
of upper limits on connection delays. Guidance from 
path analysis lets the router realize its full potential to 
enhance system performance. 

3.2. Initial routing solution 

Following section 2.3, slacks are analyzed assuming 
that connection delays equal their lower bounds L(c), to 
find the best conceivable clock period Th. Using (4) 
with 6 1 . 5 ,  our initial goal clock period is 

T I o d  = 1.5' Tbw. 

Fractions f(c) are determined from equation (3) using 
weight function w = 1 (uniform slack distribution). 
We run LBA and use the resulting upper limits U(c) 
both to constrain the connections and to determine the 
order in which they are routed. As in the current 
delay-sensitive router, connections that require special 
mources are routed first. The others are routed in 
decreasing order of L(c)/U(c), so connections with 
tighter limits go first. 

Connections that fail to meet their prescribed limits 
U(c) are left m u t e d .  If any connections fail, the lim- 
its are relaxed by 20% and the retry procedure is called. 
If failures still m a i n .  the two steps of relaxing limits 
and calling retry are repeated until every connection is 
routed. 
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3.3. Improvement of an existing routing 

LBA ( S i )  %-low (%-I 
vs.T-d&y vs.T-LBA 

68.7 (32%) 56.6 (18%) 
50.9 (23%) 44.6 (12%) 
59.8 (23%) 48.2 (19%) 
36.7 (23%) 30.0 (18%) 
73.8 (23%) 57.1 (23%) 
45.9 (22%) 39.0 (15%) 
39.8 (18%) 30.3 (24%) 
41.9 (17%) 36.0 (14%) 
61.2 (17%) 51.0 (17%) 

110.6 (16%) 82.4 (25%) 
43.5 (15%) 36.6 (16%) 
41.7 (13%) 36.6 (12%) 
34.6 (11%) 29.3 (15%) 
44.8 (10%) 38.3 (15%) 
27.8 (9%) 23.9 (14%) 
39.0 ( 8%) 35.2 (10%) 
40.3 ( 7%) 365 ( %) 
34.3 ( 7%) 265 (23%) 
40.1 ( 6%) 35.6 (11%) 
59.0 ( 6%) 47.9 (19%) 
31.2 ( 5%) 27.8 (11%) 
28.9 ( 3%) 24.3 (16%) 

14.2% 16.2% 

We aim to reduce the clock period by one third of 
the maximum possible decrement 

Vokirr*l-T*) 
Tpal=Tachi#ved- 

Fractions f(c) are determined from equation (3) using 
the new weight function w&)=D(c)-L(c) .  We run 
the two-stage LBA from section 2.4 to generate new 
upper limits U(c). Every connection for which the 
already achieved delay D(c) exceeds the new U(c) is 
ripped up. 

The connections are sorted in decreasing order of 
D ( c ) / U ( c ) ,  so that those whose delays most exceed 
their new limits go lint. The retry procedufe is then 
called. If unrouted connections remain, a loop is 
repeated as above in which their limits are relaxed by 
20% and retry is called, until all are routed. 

31 
55 
27 
12 

207 
89 
40 
18 
48 
66 
32 
32 
75 

2318 
80 
90 

171 
39 
95 
32 

4. Experimental results 

4 8-by-8 
7 10-by-10 
5 8-by-8 
5 8-by-8 
5 14-by-14 
5 10-by-10 
4 8-by-8 
4 8-by-8 
5 8-by-8 
7 12-by-12 
4 8-by-8 
4 8-by-8 
4 12-by-12 

12 18-by-18 
6 12-by-12 
8 14-by-14 
4 14-by-14 
6 8-by-8 
7 14-by-14 
7 16-by-16 

We experimented with 22 designs: primary 1. from 
the MCNC layout benchmarks, and 21 MCNC finite 
state machine (fsm) examples. No logic optimization 
was attempted, so comparisons of absolute sizes with 
published optimization results are not meaningful. 

Statistics on the designs are presented in Table 1. 

design 

bbara 
bbSSe 
beecount 
cse 
dk14 
dk15 
dk16 
dk17 
ex2 
ex4 
ex6 
keyb 
markl 
OPUS 
planet 
primary1 
sl 
sand 
scf 
sse 
styr 
taV 

- 
h m t l  - 

137 
132 
92 

240 
164 
104 
459 
256 
68 
71 

181 
416 
95 
91 

388 
988 
389 
630 
579 
132 
519 
588 - 

mnuxion# 

392 
356 
270 
679 
523 
323 

1332 
730 
188 
157 
5 17 

1217 
201 
230 

1035 
2426 
1138 
1762 
1334 
356 

1494 
1769 

- 
ffS 

12 
13 
9 

16 
7 
4 

53 
28 
18 
14 
12 
26 
16 
11 
50 

269 
20 
32 

123 
13 
31 
18 

- 

- 

array sue 

Table 1. Statistics on the test designs 
after conversion to the Xilinx XC4000 family 

For each design, we give counts of total elements (pads, 
function generators, and flip-flops), connections, flip- 
flops, and pairs of flip-flops involved in data transfer. 

54 I 

We also indicate the maximum levels of connections on 
any one transfer path, and the size of the array of 
configurable logic bbcks (CLBs)f used for layout. 

Table 2 shows the minimum feasible clock period 
achieved for each design obtained by running the router 
three different ways. T- is the result when delays 
are ignored, so that resource utilization alone is optim- 
ized. T- is the result with delay-sensitive routing, 
when every connection is given an identical upper limit 
on delay. Tu,, is the result using LBA to compute 
upper limits U(c) for initial routing and for one pass of 
routing improvement as described in sections 3.2 and 
3.3. For comparison, the last column gives T h ,  the 
feasible period if every co~ection could be routed at its 
lower bound &lay. Table 2 also shows percentage 
improvements: from T-# to Thh. from T h b  to 
Tu,,, and from Tu,, to Tb. 

design 

sand 
sl 
styr 
Kf 

dk17 
planet 
dk15 
hYb 
primary1 
dk14 
ex6 
OPUS 
dk16 
ex2 
bbara 
bbsse 
beecount 
sse 
cse 
markl 
ex4 
Average 

taV 

‘-raaIlc4 

94.4 ns 
90.1 ns 
83.3 ns 
63.4 ns 
22.7 ns 
63.2 ns 
51.8 ns 
67.3 ns 
96.3 ns 
65.0 ns 
63.5 ns 
60.0 ns 
36.7 ns 
69.9 ns 
41.0 ns 
53.8 IIS 
45.5 ns 
43.8 ns 
42.0 ns 
74.9 ns 
41.5 ns 
32.3 11s 

VI. T-mauw 
101.0 (-7%) 
66.4 (26%) 
77.8 ( 7%) 
47.7 (25%) 
96.4 (21%) 
585 ( 7%) 
48.3 ( 7%) 
50.7 (25%) 
73.5 (24%) 

131.1 (21%) 
51.2 (19%) 
47.7 (20%) 
39.0 (-6%) 
49.6 (29%) 
30.4 (26%) 
42.4 (21%) 
43.2 ( 5%) 
36.7 (16%) 

63.0 (16%) 
32.8 (21%) 
29.8 ( 8%) 

15.0% 

42.6 (-1%) 

Table 2. Effect of router improvements 
on clock period 

Not surprisingly, table 2 shows that delay-sensitive 
routing with a single upper limit for all  connections 
gives substantial improvement in clock period (15% 
shorter, on average) vs. routing to minimize reSOurCe 
usage alone. There are cases in which delay-sensitive 
routing produces a longer clock period. This is under- 
standable, because with a single limit, non-critical con- 
nections will compete for and sometimes win fast rout- 

t Each CLB a m l a i n s  two flip-flops, two fundon genauar 
capable of generating ahitnty finctionr of four Boolean vari- 
ables. and &er spesid-pulpore logic. 
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ing resources, which can hurt the performance on criti- 

Table 2 also shows that path-sensitive routing, 
guided by limits U(c) determined by LBA, yields 
f w t k r  improvements to clock period for every design: 
14% on average, and mare than 20% in six cases. 
These results demonstrate that path analysis is espe- 
cially valuable in improving system performance in 
FPGAS. 

The percentages associated with the T k  column of 
table 2 tell us that not much more can be achieved 
solely through improvements to the router. We cannot 
expect every connection to achieve its minimum possi- 
ble delay in the same layout. An average of at must 
16% further performance improvement is possible, and 
in most cases even less. To improve performance 
further, we can apply LBA to earlier stages of layout. 

5. Conclusions 

cal paths. 

(1) We have introduced LBA. a generalization of a 
known procedure to produce upper limits on connection 
delay, and demonstrated its utility to implement new 
approaches to slack allocation for performance-driven 
layout. (2) We showed how the process of generating 
upper limits can make use of realistic lower bounds and 
realizable upper bounds on connection delays. (3) We 
showed that integrating these techniques in an FPGA 
router yields major performance improvements. 

Future work will study the effectiveness of LBA for 
other path types and for systems with multiple clocks. 
It will also investigate the use of LBA for performance 
improvement during FPGA technology mapping and 
placement. 
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