
Iterative and Adaptive Slack Allocation
for Performance-driven Layout and FPGA Routing

Jon Frankle
Xilinx, Inc.

2100 Logic Drive
San Jose, CA 95124

Abstract
We give a generalization, called the limit-bumping

algorithm (LBA). of a procedure of Youssef et. al. [I]
that iran&onns initial connection delays into upper lim-
its on delay suitable for performancedriven laput.
LBA is a simple way to distribute slacks using arbitrary
allocation functions. We then show how lower and
upper bounds on connection delays can be used in the
computation of upper limits for initial layout and for
layout improvement.

The methods have been integrated into a delay-
sensitive router for FPGAs. In 22 standard benchmark
designs (with placements jixed), feasible system clock
periods were reduced in every case, by an average of
14% and as much as 32%.

1. Introduction

In recent years, increasing attention has turned to the
problem of performance-driven layout. This is largely
because with increased chip complexity and switching
speeds, wiring delay accounts for an increasing propor-
tion of overall system delay.

The challenge for performance-driven layout tools is
to implement designs so that total path delays from start
pins (primary inputs or register outputs) to end pins
(primary outputs or register inputs) satisfy specified lim-
its. This presentation will focus on register uansfers,
for which the performance measure is the clock period
T. We treat the long-path problem and ignore the
related short-path problem. For a completed layout, the
minimum feasible period Tmmed is given by

+zDeloy(b) + z D & y (c) + u m p (e d)

over data transfer paths x from start to end registers
synchronized by the clock. We assume that block
delays are fixed, and that the design is free of purely
combinational cycles, i.e., has no unclocked feedback.

The difficulty is that layout tools ordinarily work on
individual nets, without attending to path requirements.

1 Y o o i b E a ~ l l ~ P i O l c ~ a

Automated performance optimization demands interac-
tion between the layout process and timing analysis of
paths. For example, the results of timing analysis can
be used to produce suggested upper limits on COMW-
tion delays for the layout process, such that any layout
that meets the limits would satisfy the performance
requirements.

This work makes three contributions: (1) We give a
generalization, called the limit-bumping algorithm
(LBA), of a procedure of Youssef et. al. [l] that
transforms initial connection delays into upper limits
suitable for performancedriven layout. LBA is a sim-
ple way to distribute slacks using arbitrary allocation
functions. (2) We show how lower and upper bounds
on connection delays can be used in the computation of
upper limits for initial layout and for layout improve-
ment. (3) We demonstrate that major improvements in
system perfonname can be achieved by integrating
these techniques in an FPGA router.

1.1. General background

Early work [2,3] performed timing analysis using
delay estimates. and gave critical signals higher weight
during partitioning or higher priority during routing.
The importance of intemctions between timing analysis
and place-and-route steps was highlighted in [4], but the
weighting function used to mediate the interactions was
not described. At each stage of recursive mincut in [51,
non-critical connections got weights in inverse propor-
tion to their slacks, and critical connections got slightly
higher weights. In [6], improved performance was
obtained by recursive partitioning and global routing
with a re-weighting scheme in which a net’s weight is
simply inmmented by one at any stage it is found to be
critical; the evolving weights influence both partition
costs and routing order.

A common problem with weight adjustment is that at
the same time critical connections are improved, other
connections can become critical. Another approach has
been to perform layout with continuous guidance from

29th ACMAEEE Design Automation Conference@

Psper 34.1
536

0738-100xE92 $3.00 8 1992 IEEE

path constraints. In [7], incremental timing analysis is
used to evaluate individual moves during placement.
Linear programming has been used at each stage of
recursive partitioning to track path constraints dynami-
cally during placement [81. Related work in [9, 101
used quadratic programming and reduced sets of active
constraints to produce high-perfcxmance placements
more efficiently.

The task of transforming the results of timing
analysis into guidance (typically weights) for placement
is nontrivial, as evidenced by the many heuristics that
have been proposed. An interesting formulation in E111
allows the derivation of an optimum formula for con-
nection re-weighting; it requires as inputs from timing
analysis a set of precise limits on individual connection
delays. We will see later that the routing process in
some technologies can utilize connection delay upper
limits more directly, to good effect. This increases the
importance of developing effective techniques to com-
pute such limits. Work on computing limits is reviewed
below.

1.2. Integration of path analysis with layout

The slack of a directed path A is defined as

actual total propagation times along A, respectively. A
system is said to have a long-path timing problem if for
some path, signals fail to propagate through the consti-
tuent logic blocks and interconnect within the required
time. (This corresponds to a negative slack.) We also
define a slack for each individual source-to-load connec-
tion c :

R(A)-A(A), where R(A) and A(%) are the required and

slack (c) = pnf& min I : C E U [slack (A)] (1)
Let R(c) and A(c) be the earliest required and latest

actual arrival times at the load pin of c, respectively.
An equivalent definition of the slack on connection c is
then

slack(c) = R (c) - A (c)

Computing slacks is straightforward [12]. Two linear-
time computations w performed, one in which A(c)’s
propagate forward, and one in which R(c)’s propagate
backward.

When layout is complete, slacks are readily com-
puted, but during the layout process, connection delays
are not yet known. Still, a performance-driven layout
system can make use of path analysis by iterating the
following steps: estimate delays --> compute resulting
slacks --> suggest delay upper limits --> aim to meet
upper limits. Our focus is the third step of this loop, in
which upper limits are derived from slacks.

13. The zero-slack algorithm and variations

huge et. al. introduced the -slack algorithm
(ZSA) [13]. This algorithm begins by computing slacks
based on a tentative set of connection &lays chosen so
that they meet the timing requirements. The algorithm
increases the delays in this set until they are maximal in
the sense that they still meet the requirements, but a
further delay increase on any wnnection would produce
a violation. ’Ihese delays are provided to the layout
tool as upper limits.

The ZSA identifies a continuous path segment with
minimum non-Zen, slack. Excess delay is distributed
uniformly among “xt ions on that path segment,
slacks are updated on other connections that are
affected, and the process is repeated until every connec-
tion has zero slack.

Excess delays can also be diseibuted in proportion to
physical measures. e.g.. capacitance per fanout or capa-
citance change per fanout [14]. In [l]. the slack of a
path is budgeted to its connections in proportion to the
function

weighr (c)=LF(c) *AcL(c) (2)
where U(C) is the delay per unit load on c’s source
pin, and AcL (c) is the e x t e d capacitance of c ’s load
pin; other weighting c r i w appear in [151.
Luk [141 sped up the ZSA by omitting the recompu-

ration of slacks on connections whose slacks are altered
by delay increases on the minimum-slack segments.
This can create intermediate slacks that are negative,
unless the increases are appropriately bounded. In prac-
tice, all slacks converge to near zero in a few iterations.

Another itemtive procedure to budget slacks, called
Ireraive-Minimux-PERT, is described in [1,15]. Ihe
weight function in (2) is used to define multipliers f(c):

In each iteration, the delay of every connection c is
incremented by f (c) * slack (c). It is proven that all
slacks decline monotonically and converge toward zero.

In the next section, we give a generalization of
Iteraive-Minimux-PHtT, called the limit-bumping algo-
rithm, that accepts arbitrary multipliers f (c) as inputs.
We identify simple conditions on the f (c)’s that are
necessary and sufficient to guarantee that slacks go
monotonically to zero. Finally, we introduce new
methods for setting both initial delays and f(c)’s. Sec-
tion 3 describes the application of these procedures to
an FFGA routing program. Section 4 presents experi-
mental results.

531
Pllper 34.1

r

2. The limit-bumping algorithm

The inputs to the limit-bumping algorithm (“LBA”)
are a netlist, timing constraints, block delays, and for
each connection c, an initial delay I(c) and a multiplier
f(c). The outputs of LBA are delays U(c). such that any
layout whose connection delays are less than or equal to
U(c) will satisfy the timing constraints.

Following [l], at each connection c, the product of
f(c) and c’s current slack is added to the current delay
in each iteration.

Limit-bumping algorithm
I* Step 1: initialize. *I
U(c) = I(c);
I* tCt skk(c . U) ¬e the slack on connection c, ivcn the

set ~f &lays U. Increme U until s l o ~ k r are NoI l *I
do (

I* step 2: *I
compute. slack(c. U) for all connections c;
close enough = near-mo (slacks); I* (stop criterion). I
if (!cTose enough)

1

P Stel 3: dktribute slach. *I
for every connection c

U(C) = U(C) + (f(c) * slack(c. U));

while (!close-enough);

2.1. Convergence conditions

THEOREM 1: Every term slack(c, U) generated by
LBA decreases monotonically to zero for arbitrary
inputs with non-negative slack if and only if the multi-
pliers f(c) satisfy
(a): f(c) > 0 for every connection c.
(b):

Proof.
(NECESSlTY): If either condition is violated, there will be
inputs for which some slack does not decrease monotonically
to zero. If (a) is violated, slack(c) may not decrease; if (b) is
violated, sleck(x) can become negative.
(SUFFICIENCY): If (a) is satisfied, then every positive slack
decreases by at least a fixed fraction in each iteration, and
hence converges to zero. We need only show that no slack
can become negative, i.e., that slack decrease I slack.

f (c) s 1 for every path IC.
c : e € x

Decrease in slack (path IC)
= f(c)*slack(c)

C : C E 1L

c : C E x

I slack(n)

- .

(by condition (b))

Q.E.D.
From now on, we restrict ourselves to f(c) values that
meet the conditions of theorem 1. We can thus safely
refer to the multipliers f(c) as fractions.

2.2. Adapting known slack budgeting heuristics

Each heuristic in past implementations of ZSA has
distributed path SlaCL among connections in proportion
to one or more functions weight(c). Alternatives al-
ready m e n t i d for weight(c) include:
WI(C) = 1; 1131
WAC) = source fanout (c); [131
w~(c) = W(C) AcL(c); H I

[141
w~(c) = f-t(c) * k(c); r 141
w S(C) = fanoW(c) * k(c) * C r p a c i u c) ;

where k(c) is a delay sensitivity (dt/dC for nets or dt/dR
for sourcesink pairs).

Any positive function weight(c) determines a
corresponding set of fractions f(c) according to equation
(3), which we restate here:

Furthermore, fractions defined this way satisfy the con-

LBA is particularly efficient when using fractions
f (c) given by equation (3) and values weight(c) that
do not change during the layout process. The fractions
then need be computed only once. This can be done in
linear time, e.g., using depth-first searches. From then
on, it is trivial to distribute slacks as soon as they are
computed, using a single multiply-and-add per connec-
tion. sorting or recomputing of slacks is necessary
during delay distribution, as is required in most previous
methods.

When we determine an f (c) a prwri by equation
(3), we divide by the total weight on the static
maximum-weight path thfough c rather than by the total
weight on a path segment of minimum slack. Static
fractions are thus “conservative”, i.e., sometimes
smaller than what could be used. The only apparent
downside of pre-computing the fractions f(c) is a possi-
ble increase in iterations for convergence - but we do
not expect convergence to be much slower. Different
paths through the same connection typically have simi-
lar weight. And when some path does have less weight
(where precomputation would be conservative) it is less
likely to be critical.

ditions of theorem 1 by construction .t

t Consider I path 1~ If it ia the m u weight path through
every one of its d o n s . then f(c)=i exactly; if it is

not. then any connection c that is on a path with gnater weight
would contribute comrpondingly less to the rum.

C : C E I

538
Paper 34.1

2.3. Uses of realistic lower bounds

The best available lower bounds on connection
delays, which we denote L(c), are a reasonable choice
of settings for inputs I(c) to LBA. One benefit of using
L(c) can be seen by considering what can happen when
the input I(c)’s are set to zero. as in [l]. An
unsatisfiable upper limit U(c) (< L(c)) could result, even
in designs for which layouts exist that meet the timing
constraints. To avoid this possibility, we should at least
ensure that I(c) 2 L(c) for every connection.

It is worthwhile to compute slacks based on the
delays L(c) in any case. The computation yields a
“best conceivable” clock period Th, i.e., what would
result if every connection achieved its lower bound
simultaneously. This is useful, independent of the time
T w , , that the designer wants. Even if T d <Tbw (what
the designer wants is impossible) we probably still want
to push the design’s performance. The request often
reduces to: “make it run as fast as it can”.

When timing constraint values have not been
specified, we need a way to set them automatically. We
set the system goal

Tgml = G * T b (G21) (4)
where the constant G is based on experience with the
layout tool. Starting with a conservative Tgod can have
practical advantages - even if Twi~, <Tgwl . First, the
performance achieved often beats the goal. Second, a
solution in hand whose performance falls short may be
valuable, especially when improvement methods are
available.

2.4. Use of realizable delays

Suppose our tool has produced a layout. We will use
upper bounds D (c) , namely

D (c) = connection delays achieved in existing layout,

to derive new upper limits U(c) that (1) are consistent
with a specified improvement in system performance,
and (2) optimize the chances that our layout tool will
meet them.

Our approach to performance improvement uses the
following new weight function:

w6(c) = D (C) - L (C) (5)
Unlike the other weight functions we have considered.
w6 depends on the current state of rhe layout, and thus
cannot be precomputed. Wg(C) is the gap between the
delay achieved on a connection and its lower bound. It
thus measures c’s maximum “potential for improve-
ment”. Our idea is to set the upper limits U(c) so that
the amount by which each delay is asked to improve is

proportional to this to improve. We first show
how to use w6 in the LBA, and then examine a tiny
example in detail.
First, set the desired new period T H , and compute

every slack(c, D). Then, compute fractions f(c) accord-
ing to equation (3). using function w&) for weight(c).
Using the resulting f(c) values, apply the variant of
LBA described below.

Since we start with the old delays, a requirement of
improved pedormance means that one or more slacks
will initially be negative. This destroys the monotonic
change propeaty from theorem 1. Although in practice
convergence is fast even when negative slacks are
allowed [14], we prefer to preserve monotonic change
by running LBA twice (in two stages). In stage 1, the
delay upper limits U(c) are bumped only for those con-
nections with negative slack. The same multiply-and-
add operation is used, with one precaution. Since in
this stage the limits are decreusing, we must check not
to allow any connection’s upper limit to be bumped
below its lower bound. Step 3 of LBA as revised for
stage 1 is thus:

p Step 3: distribute NEGATNE slacks,
don’t violate lower bounds. *I

for every connection c
if (skk(c, U) c 0)

U(C) = ma^ (U@) + f(c) * slack(C, U), L(c));
Stage 2 is the ordinary LBA, with input delays taken
from the U(c)’s produced by stage 1.

Example: Suppose D(c 1)=20, L(c l)=lO; D(c i)=20,
L(c2)=15; and we have slack -6 to distribute between c1

and c2. Since w6(c1)=10 and Wg(C2)=5, c1 gets twice
as much delay decrement as c2. The resulting values
are U(c +l6, U(cz)=18.

The delay decrement A(c) asked of connection c is
D (c) - U (c) . Equation (3) makes these decrements
proportional to weight. With weight W6, the effect is to
equate the “approach fractions” of different connec-
tions’ U(c) values from their achieved delays towards
their lower bounds. where

(The approach fraction in the example is 0.4 for both c 1

The approach fraction seems a reasonable measure of
how difficult it will be for the layout process to meet a
new limit U(c). Weight function w6 attempts to balance
this difficulty among connections as much as possible.
It is in this sense that the layout tool’s chances for suc-
cess are optimized.

and ~ 2 .)

539
Papu 34.1

r ~.

3. Application to FPGA routing
3.1. Performance-driven FPGA routing

As noted in section 1.1, past work on performance-
driven place-and-route has focused more on placement
than on routing, because for most technologies,
improvements to the placement algorithms have much
more impact on performance. In field-pgrammable
gate arrays (FPGAs), however, routing is unusually
important. The fraction of delay due to routing in
FPGAs is typically from 409i to 60%. which is much

The Xilinx XC4OOO architecture [16] offers a hierar-
chy of routing fesources distinguished by their path
lengths and delay characteristics. General-purpose
interconnects (figure 1) pass through switching matrices
between the blocks and are best for medium-length,
local interconnects.

greater than that for maslr-pgrammed gate arrays.

Figure 1. General-purpose wiring.

Other segments bypass alternate switchboxes. allowing
longer paths with fewer switches (also shown in figure
1). Long lines (figure 2), which span the entire height
or width of the array, are ideal for high-fanout nets and

I

Figure 2. Long-line wiring.

timecritical signals. special buffers can also be
inserted in routing paths to speed up connections. The
freedom to select the most appopnate * resources for
each connection means the routex has more influence on
delays than in traditional technologies. Improved rout-
ing algarithms offex great potential for e n h a n d perfor-
mance in FpGAs.
To realize this potential for improvement, a router

should be able to:
(1) Route connections within a specified delay limit

when possible.
(2) Use different cost functions in different situations.

For example, most muting choices must be made
not according to delay alone, but according to a
combination of delay and resource costs. Special
nets such 85 powex/gmund signals should be
oblivious to delay.

(3) support a retry mode to complete unrouted COM~C-
tions or improve existing routes. In this mode,
previously completed connections can become
temporarily muted.

Such capabilities are supported in existing routers,
including a router for the Xilinx XC4000 family.
Although this router is sensitive to delays, it has lacked
the capability to decide what connection delay limits to
aim for. Until now. a single upper limit has been used
for all connections. What is needed is an optimized set
of upper limits on connection delays. Guidance from
path analysis lets the router realize its full potential to
enhance system performance.

3.2. Initial routing solution

Following section 2.3, slacks are analyzed assuming
that connection delays equal their lower bounds L(c), to
find the best conceivable clock period Th. Using (4)
with 6 1 . 5 , our initial goal clock period is

T I o d = 1.5' Tbw.

Fractions f(c) are determined from equation (3) using
weight function w = 1 (uniform slack distribution).
We run LBA and use the resulting upper limits U(c)
both to constrain the connections and to determine the
order in which they are routed. As in the current
delay-sensitive router, connections that require special
mources are routed first. The others are routed in
decreasing order of L(c)/U(c), so connections with
tighter limits go first.

Connections that fail to meet their prescribed limits
U(c) are left m u t e d . If any connections fail, the lim-
its are relaxed by 20% and the retry procedure is called.
If failures still m a i n . the two steps of relaxing limits
and calling retry are repeated until every connection is
routed.

Paper 34.1
540

. T

3.3. Improvement of an existing routing

LBA (S i) %-low (%-I
vs.T-d&y vs.T-LBA

68.7 (32%) 56.6 (18%)
50.9 (23%) 44.6 (12%)
59.8 (23%) 48.2 (19%)
36.7 (23%) 30.0 (18%)
73.8 (23%) 57.1 (23%)
45.9 (22%) 39.0 (15%)
39.8 (18%) 30.3 (24%)
41.9 (17%) 36.0 (14%)
61.2 (17%) 51.0 (17%)

110.6 (16%) 82.4 (25%)
43.5 (15%) 36.6 (16%)
41.7 (13%) 36.6 (12%)
34.6 (11%) 29.3 (15%)
44.8 (10%) 38.3 (15%)
27.8 (9%) 23.9 (14%)
39.0 (8%) 35.2 (10%)
40.3 (7%) 365 (%)
34.3 (7%) 265 (23%)
40.1 (6%) 35.6 (11%)
59.0 (6%) 47.9 (19%)
31.2 (5%) 27.8 (11%)
28.9 (3%) 24.3 (16%)

14.2% 16.2%

We aim to reduce the clock period by one third of
the maximum possible decrement

Vokirr*l-T*)
Tpal=Tachi#ved-

Fractions f(c) are determined from equation (3) using
the new weight function w&)=D(c)-L(c) . We run
the two-stage LBA from section 2.4 to generate new
upper limits U(c). Every connection for which the
already achieved delay D(c) exceeds the new U(c) is
ripped up.

The connections are sorted in decreasing order of
D (c) / U (c) , so that those whose delays most exceed
their new limits go lint. The retry procedufe is then
called. If unrouted connections remain, a loop is
repeated as above in which their limits are relaxed by
20% and retry is called, until all are routed.

31
55
27
12

207
89
40
18
48
66
32
32
75

2318
80
90

171
39
95
32

4. Experimental results

4 8-by-8
7 10-by-10
5 8-by-8
5 8-by-8
5 14-by-14
5 10-by-10
4 8-by-8
4 8-by-8
5 8-by-8
7 12-by-12
4 8-by-8
4 8-by-8
4 12-by-12

12 18-by-18
6 12-by-12
8 14-by-14
4 14-by-14
6 8-by-8
7 14-by-14
7 16-by-16

We experimented with 22 designs: primary 1. from
the MCNC layout benchmarks, and 21 MCNC finite
state machine (fsm) examples. No logic optimization
was attempted, so comparisons of absolute sizes with
published optimization results are not meaningful.

Statistics on the designs are presented in Table 1.

design

bbara
bbSSe
beecount
cse
dk14
dk15
dk16
dk17
ex2
ex4
ex6
keyb
markl
OPUS
planet
primary1
sl
sand
scf
sse
styr
taV

-
h m t l -

137
132
92

240
164
104
459
256
68
71

181
416
95
91

388
988
389
630
579
132
519
588 -

mnuxion#

392
356
270
679
523
323

1332
730
188
157
5 17

1217
201
230

1035
2426
1138
1762
1334
356

1494
1769

-
ffS

12
13
9

16
7
4

53
28
18
14
12
26
16
11
50

269
20
32

123
13
31
18

-

-

array sue

Table 1. Statistics on the test designs
after conversion to the Xilinx XC4000 family

For each design, we give counts of total elements (pads,
function generators, and flip-flops), connections, flip-
flops, and pairs of flip-flops involved in data transfer.

54 I

We also indicate the maximum levels of connections on
any one transfer path, and the size of the array of
configurable logic bbcks (CLBs)f used for layout.

Table 2 shows the minimum feasible clock period
achieved for each design obtained by running the router
three different ways. T- is the result when delays
are ignored, so that resource utilization alone is optim-
ized. T- is the result with delay-sensitive routing,
when every connection is given an identical upper limit
on delay. Tu,, is the result using LBA to compute
upper limits U(c) for initial routing and for one pass of
routing improvement as described in sections 3.2 and
3.3. For comparison, the last column gives T h , the
feasible period if every co~ection could be routed at its
lower bound &lay. Table 2 also shows percentage
improvements: from T-# to Thh. from T h b to
Tu,,, and from Tu,, to Tb.

design

sand
sl
styr
Kf

dk17
planet
dk15
hYb
primary1
dk14
ex6
OPUS
dk16
ex2
bbara
bbsse
beecount
sse
cse
markl
ex4
Average

taV

‘-raaIlc4

94.4 ns
90.1 ns
83.3 ns
63.4 ns
22.7 ns
63.2 ns
51.8 ns
67.3 ns
96.3 ns
65.0 ns
63.5 ns
60.0 ns
36.7 ns
69.9 ns
41.0 ns
53.8 IIS
45.5 ns
43.8 ns
42.0 ns
74.9 ns
41.5 ns
32.3 11s

VI. T-mauw
101.0 (-7%)
66.4 (26%)
77.8 (7%)
47.7 (25%)
96.4 (21%)
585 (7%)
48.3 (7%)
50.7 (25%)
73.5 (24%)

131.1 (21%)
51.2 (19%)
47.7 (20%)
39.0 (-6%)
49.6 (29%)
30.4 (26%)
42.4 (21%)
43.2 (5%)
36.7 (16%)

63.0 (16%)
32.8 (21%)
29.8 (8%)

15.0%

42.6 (-1%)

Table 2. Effect of router improvements
on clock period

Not surprisingly, table 2 shows that delay-sensitive
routing with a single upper limit for all connections
gives substantial improvement in clock period (15%
shorter, on average) vs. routing to minimize reSOurCe
usage alone. There are cases in which delay-sensitive
routing produces a longer clock period. This is under-
standable, because with a single limit, non-critical con-
nections will compete for and sometimes win fast rout-

t Each CLB a m l a i n s two flip-flops, two fundon genauar
capable of generating ahitnty finctionr of four Boolean vari-
ables. and &er spesid-pulpore logic.

Papa 34.1

r -

ing resources, which can hurt the performance on criti-

Table 2 also shows that path-sensitive routing,
guided by limits U(c) determined by LBA, yields
f w t k r improvements to clock period for every design:
14% on average, and mare than 20% in six cases.
These results demonstrate that path analysis is espe-
cially valuable in improving system performance in
FPGAS.

The percentages associated with the T k column of
table 2 tell us that not much more can be achieved
solely through improvements to the router. We cannot
expect every connection to achieve its minimum possi-
ble delay in the same layout. An average of at must
16% further performance improvement is possible, and
in most cases even less. To improve performance
further, we can apply LBA to earlier stages of layout.

5. Conclusions

cal paths.

(1) We have introduced LBA. a generalization of a
known procedure to produce upper limits on connection
delay, and demonstrated its utility to implement new
approaches to slack allocation for performance-driven
layout. (2) We showed how the process of generating
upper limits can make use of realistic lower bounds and
realizable upper bounds on connection delays. (3) We
showed that integrating these techniques in an FPGA
router yields major performance improvements.

Future work will study the effectiveness of LBA for
other path types and for systems with multiple clocks.
It will also investigate the use of LBA for performance
improvement during FPGA technology mapping and
placement.

References

H. Youssef and E. Shragowitz, “Timing constraints for
correct performance.” Proc. of ICCAD ‘90, pp. 24-21.
1990.
A.E. Dunlop, V.D. Agrawal. D.N. Deutsch, “Chip layout
optimization using critical path weighting.” Proc. of the
21st Design Automation Conference. pp. 278-281. 1984.
M. Burstein and M.N. Youssef. “Timing influenced lay-
out design,” Proc. of the 22nd Design Auttnnation
Conference, pp. 124-130, 1985.
S. Teig, R.L. Smith, and J. Seaton, ‘Timingdriven lay-
out of cell-based ICs.” V U 1 Systems Design, pp. 63-73,
May 1986.
M. Marek-Sadowska and S.P. Lin. “Timing driven place-
ment.” Proc. of ICCAD ‘89. pp. 94-97, 1989.
J. Garbers, B. KO* H.J. h m e l , E. Scheietzke, A.
Steger, “VLSI-placement based on muting and timing
information.” Proc. of t k European Design Auttnnatwn
Conference, pp. 317-321. 1990.

W.E. b a t h , RJ. Norman, B.K. Agrawal. S.E. Bello,
S.Y. Han, JM. Kwtzbg. P. Lowy. and R.1.McMillan.
“Timing driven placement using canplete path delays,”
Proc. ofthe 27th Design Antanation Confetenc, pp. 84-
89.1990.
M.AB. Jwkson md E.S. Kuh, “Performancedriven
placement of cell based IC’s.” Proc. q f t k 26nd Design
Autcwnation Co$uence, pp. 370-375, 1989.
M.AB. Jwkson, A. Srinivasan, ad E.S. Kuh, “A fast
algorithm for paformance-driven placement.” Proc. of
ICCAD ‘W. pp. 328-331.1990.

[lo] A. Srinivas~m “An al@thm for performance-dri~en ini-
tial placement of smallall ICs,” boc. of t k 28th
Design Automarion Co$erence. pp. 636-639. 1991.

[ll] R.-S. Tmy md J. Koehl, “An malytic net weighting
approrrch for performance op.- m circuit place
men&” Proc. of the 28th Durgn Automation Conference,
pp. 620425,1991.

[12] RB. Hitchcock, Sr.. G.L. Smith, and D.D. Cheng. “Tim-
ing analysis of computer hardware.” IBA4 J . Res.
Devlop.. Vol. 26. No. 1, pp. 100-108. 1982

[13] P.S. Hauge, R. Nair, E.J. Yoffa, “Circuit placement for
predictable performance,” Proc. of ICCAD ‘87. pp. 88-
91. 1987.

[14] W.K. Luk. “A fast physical constraint generator for tim-
ing driven layout.” Proc. of the 28th Design Automation
Conference, pp. 626-631. 1991.

[15] H. Youssef. “Timing analysis of cell based VLSI
designs,” Computer and Information Sciences, University
of Minnesota, Ph.D. Thesis, January 1990.

[16] Xilinx. T k XC4000 dufu book Xilinx. Inc., 1991.

542
Paper 34.1

